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(‘materials , that there exists a remarkable universality of
dielectric response behavior regardless of physical structure,
types of bonding , chemical type , polarizing species and geo-
metrical configurations. This strongly suggests that there
should exist a correspondingly universal mechanism of dielectric
polarization in condensed matter. The present work proposes
such a universal mechanism associated with the existence of
some ubiquitous very low energy excitations in the system. These
excitations exhibit an infrared divergent—like response to
transitions of the polarizing species induced by a time-varying
electric field in the dielectric and give rise to the universal
dielectric response.
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FREQUENCY DEPENDENCE OF DIELECTRIC LOSS
IN CONDENSED MATTER

I. INTRODUCTION

The dielec tric res ponse of soli ds and liq uids has been the subje ct

of intense investigation over a long period of time extending to this

date , and pursued by physi cists, chemists and engineers alike. A

detailed survey of the dielectric properties of a wide range of solids

has been given recently by Jonecher) It was observed1 that the die-

lectric response functions in frequency or in time depart strongly from

the Debye response for a large number of essentially dissimilar materials

and fall into a remarkably common or “universal” pattern. In particular ,

the frequency dependence of di electric loss follows the empirical law

x” (w) ~~~ wi th 0 < n < 1 (1)
extending over several decades of frequency from low audio and sub—audio

to ~/2iT sPlO9 Hz. For some dielectrics , a broad loss peak may be found

at lower frequencies. Genuine Debye behavior with the complex suscepti-

bility given by x(w) (1 +iwt)~~ is seldom observed in solids.

Examples of the materials that obey the empirical law (Eq. (1)) include

inorganic ceramics ; ionic conductors; polymeric materials , inorganic

crystalline and amorphous materials including glasses , insulating or

semiconducting ; and organic and biological systems. By way of these

examples we see that the frequency response (1) is similar for systems

wi th permanent dipoles and wi th hoppin g charge carri ers of elec tronic or
ionic nature. It is valid in covalent , ionic and molec ular solids , in
single crystals , polycrystalline and amorphous structures; hence the

behavior (1) is apparently independent of the particulars of the

material. At higher frequencies, l0~ Hz aná up, quantum effects involv-
ing lattice mode excitations and/or electronic excitations become

prominent and , as is well known, the res ponse then differs from
material to material , and as such will not be of interest to us in the

Note: Manuscript submitted August 16, 1978. 
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present context.

The various types of dielectric response are si.umnarized in Fig. 1.

We no te the vir tual absence of the pure Debye response; and the valid-
ity of the universal law of dielec tric response , (1), in a remarkab ly
wide range o physic al and chemical situations , and over a very wide

range of frequencies. In some types of dielectrics the universal

response (1) is followed at low frequencies by a loss peak referre d to

as a and ~ peak s , or by ano ther unive rsal response wi th n typicall y
between 0.1 and 0.3.

It is this state of affairs that has motivated us to seek a

renewed understanding of these phenomena in terms of a common or

“universal” characteristic across the entire spectrum of materials and

to associate such a characteristic with some physically simple and

“elementary” principles or properties. In the next section we shall

pre sent seve ral elementary princi ples whi ch when c omb ined enable a
derivation of the “universal” law (1) regardless of the physical ,
chemical and geometrical properties of the solids, and also regardless

of the nature of the electrically active species responsible for polari-

zation, whe ther dipoles , electrons or ions. Then in Section III we

d isc uss several examples of low energy exci tat ions expected in a hos t of
systems that satisfy these elementary principles . In Section IV we

derive the universal response (1) and the possible presence of a loss

peak at lower frequencies. Finally, in Section V we make some con-

cluding remarks.

II. INFRARED DIVERGENCE AND THE “UNIVERSAL” LAW x” ()~~~~ 
~~

Infr ared divergence phenomena , although no t commonly observe d in
physics , have been seen in several instances. The most well—known case

is in quantum elec trodyn amics where the inf rared diverge nce manife sts
itself in a Bremsstrahlung experiment2 of a fast charged particle. In

the real m of soli d s tate physic s 3’4 an example of infrare d divergence is
thought to be provided by the peculiar shape of X—ray absorption edges

of metals ,5 and the “or thogona lity ca tas tro phe” for an impurity poten-
tial inserted in a Fermi gas.6 These examples are by no means exhaus-

tive but the subjects they cover demonstrate that infrared divergence is

not uncommon. Excellent reviews on the subject are available.3’4

The features common to systems exhibiting the infrared divergence

2



phenomenon are (a) the sudden application of a potential , or a sudden

change of the potential or the Hamiltonian; and (b) availability of low—

energy excitations of the system and its response to the sudden potential

change dom ina ted by th~ emissions of these low—energy excitations. In

the time domain the phenomenon is the transient response7 9  of the
system to that abrupt change of potential. Infrared divergence occurs

whenever the suddenly switched on potential V excites some low energy

exci tat ions , with density of statesN (E) for excitation energy E, whi ch
is such that V2(E) NE  ~ E. In this instance there is an increasingly

high probability of exciting decreasingly small energy excitations and

this causes a power law divergence of the response in the frequency

domain. In the X—ray edge problem in metals an X—ray photon when

abso rbed , suddenly switches on a hole—core potential V for the conduc—
tion electrons. The low—energy excitations here are the electron—hole

pairs.

In the later sections we shall argue that within a broad classifi-

ca tion of dielec trics , according to a scheme to be outlined , there exist

states which , fo r convenience , we shall refer to as correlated states.

These correlated states have a smooth and continuous density of states

N(E), which we take as constant N. Low energy excitation of the cor—

related states with excitation energy E consists of removing an

“occupied” state to an “unoccupied” state and is the analogue of the

electron—hole pair excitation in the X—ray edge problem.

The charged par ticles or di poles res ponsi ble for pol ariza tion in
the dielectrics undergo quantum transitions, including changes in their

positions /ori en tat ions, between preferred states in an abrupt manner by
hoppin g or jump ing movements such that the time 1/v taken by the actual
transition is negligible in comparison with bo th (i) the time spent on
average in the respective preferred states , and (ii) the time charac-

teristic of the low energy excitation of the correlated states. The

condition (i) is invariably satisfied in solid dielectrics. That con—

dition (ii) is also satisfied will become clearer after we have con—

sidered the nature of the correlated states.

Due to the charged particle (dipole) transition a potential 
is3
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suddenly switched on which acts on the correlated states . The low—

frequency response of the dielectric to this potential involves the emis-

sion of low—energy excitations of the correlated states. We shall argue

that the low energy excitations of these correlated states have a density

of states NCR ~ E, and that the potential change V has little or no E

dependence. It follows that the conditions for an infrared divergent

dielectric response of the correlated states are satisfied . The mean

number ~ of correlated s tate excitations is then ~ bV2N2f~c EdE/E 2,
which diverges logarithmically, where Ec is the upper “cut—gff” of the
correlated state excitation energy. The Fourier transform to the time

domain of the “universal” relation (1) is i(t) 
~ t

’
~, i.e., the widely

observed Curie—von Schweidler law1 of depolarization. It is interesting

to note that the infrared divergence problem when considered in the

time domain as a transient response problem7 9  does lead to the time
decay of the response function for large times as S(t) ~~~ The

derivation of the complete dielectric response will be deferred to

Sec tion IV , after we have discussed the correlated states in a broad

classification of dielectrics in the next section.

III. Correlated States

In the preceding section we connected the “universal law,” Eq. (1)
to an infrared divergent response of correlated states. For this inter-

pretation to follow it is necess ary for such states to be prevalent in
dielectrics and satisfy two rather stringent but interrelated criterion:
namely (i) the characteristic response time for the correlated states is

long in comparison to the swi tching of the Hamiltonian and (ii) these
low energy excitations are not in general thermodynamically accessible

at the moderate temperatures; i.e., several lOO°K, since otherwise we
expect significant temperature smearing of the effect. Below we discuss

several examples of such correlated states which can reasonably be

expected to be present in many dielectrics. One should note from the

onset that although these examples are quite general , they are by no

means exhaustive.

4  
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(a) Dielec trics with Electron Pairing Interac t ions and States
Anderson1° has recently proposed a model of amorphous semicon-

ductors which emphasizes the role of electron pairing interac tions in
these systems . Anderson ’s ideas should apply to a large number of dia-
magnetic dielectrics. The concept of strong local electron pairing

interactions arises from the observation that by and large if a par-

ticular elec tronic s tate is singly occupied , the atom or atoms prin-

cipally associated with this state will adjust their positions in such

a way as to lover the energy of this state relative to its value if it

were constrained to be unoccupied. This effect can produce a self—

trapping of the electron in a manner related to the formation of a

small polaron; however, it also makes it favorable for the spin—mate of

the occupied state to be occupied and in turn the two electrons can be

more strongly self—trapped in a correlated way. The resultant quasi—

particle (the two electrons and the concomitant lattice distortion) has

been termed1° for obvious reasons a bipolaron. Of course the formation

of such a quasi—particle is resisted by the mutual coulomb repulsion of

the constituent electrons , but only in comparatively few systems, such

as the transition metal oxides or impurity bands in crystalline semi—

conductors does this repulsive interaction dominate, giving rise to e.g.

spin density fluctuations .

In order to develop further the idea of local distortion mediated

effective electron—electron attractive interaction Anderson has employed

an effective negative U Hubbard—like term ~~~~~~ to model the effect

where is the number operator for an electron of spin a in a state

centered at the “site” i; ia>. One should keep in mind that i could

well index the up and down spin states associated with a group of atoms

and not just a single one. Let us describe a group of such centers in

contact with one another as well as alternate states of the system

( those wi th U~ = 0) by the simplified Haniiltonian:

H = ~~~ E~
t
~

i
a 

+ .Z
a
R..a

~~
a.
a 

+ 
~~ ~~~~~ , (2 )

where a~ , a. create and annihilate electrons of spin ~ in the state‘a ‘a
icy>, and we take R... as R if i ,j are nearest neighbors and zero 

other—5



wise. The parameters fE.} and {U.} are considered as random variables

obeying the joint probability dis tr ibut ion P(E 1, U~
) which for the time

being is left unspecified. This model can be made to mimic many dif-

ferent situations depending on the choice of P(E~ ,U1).

To obtain results from (2) we have developed11 a generalized mean

field—like method which entails linearizing the many—body terms
.j’ ..r .r ~/‘ 

i i i

as U
1n~+

n
~+ ~

“ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ is present to prevent

double counting of the interaction and the conditionally averaged

number of spin a electrons at the site i is given by the relation

= — � JdEf(E)g. (E
4 ) (3)

iT

with f the fermi function and E
4 
denotes the u r n  (E+is). Equation

54.0+

(3) provides a set of generalized Hartree Fock—like self—consistent
relations determining the parameters since the Green ’s functions

~~~~~~~ 
entering these formulae are defined as = <iJ I (z_H 1)~ Iai>

where H
l 

= ~cy(E .+U.~~i ...0)n.cy+ ~~~~~~~~~~~ and hence dep:nds on ç0.
For convenience (3) can be recast as — (Im/ir) fdEfcE /E—E

~
—U
~
’1
~ 0

_

~ ~
) , where t~. is the usual self—energy and is a function of E

and R.

To solve these self—consistent conditions we employ the long

established coherent potential approximateion12 (CPA) to obtain the self

energies &
i~~ 

This entails defining an effective medium characterized

by a single potential 
~~, 

which is energy dependent and can be complex,

in such a way that the G(E—Z0
) <g10(E~~ , where the brackets < >

av.
here and henceforth denote an average over the random variables entering

He1 and G is the Green ’s function obtained by replacing the site

diagonal random potentials of Hel by ~~ 
at each site i. The CPA is

exact in both strong and weak scattering (virtual crystal) limits and

hence provides an interpolation scheme for treating the intermediate
cases. The use of this method greatly simplifies the computations since

its functional form of A. can be easily found using established tech-

niques once the “lattice” structure is specified . For example , if we
assume a simple chain then A = (E—Z ) —v’{(E—Z0)

2—4R21. The CPA equation

defining 
~~ 

and hence A can be written explicitly for the present model

6
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as: f fP (E~~
u .) d E.du 1/ [E—E . —U.

~~10
(E.

~
u . ) — A ( z 0)] = l/[E—z0— A z 0)]

We now have as inputs into the formalism some specified tempera-

ture, T, and number of electrons in the band , NelS as well as particular

functional forms for G(E) and P(E1,U1). The calculation then proceeds

as follows: First we assume the function ‘/~. (E.,U.) and then solve the
L~ i i.

CPA equations using a modified Newton—Raphson technique to obtain Z
0

(E)
and hence A (Z ). There are presumably many Z0(E) satisfying the CPA con-

dition for a particular E; however, the correct branch of Z0
(E )  goes as

<E1+U.~~0>at large energies , and this solution can be analytically

extended into the region of interest (energies within the band) by use

of the Newton—Raphson method. In doing this we have found it most eff i—

c~ent to follow a path in the complex plane slightly above the real axis
(E + i~ ; q .05) and then take the limit ‘i÷O ’ numerically. Having so

determined ~~(Z) we can then find the chemical potential ~.i of the

system from the usual relation t~~’

where in obtaining this condition , we have employed the CPA equation.

Note the CPA determined satisfies the important sum rule

fdE/(E—E0—A (Z0
)) = 1. Having Z

0
(E~) and ~i , we then calculate a new

function 
~~a

(Ei~Uj) from (3) and this procedure is iterated until self—
consistency is established , i.e. 

~
ia(Ej~Ui) = ~j~ (E1,U1). If a con-

tinuous probability distribution is assumed for the random variables ,

it is of course not numerically feasible to establish self—consistency

at each point in (E~~ U~
) space. In these instances we establish self—

consistence at a grid of points assuming that ‘
~10

(E1,U~
) can be

adequately represented for intermediate values by trapezoidal interpola—

tiort. We have found for simple continuous probability distributions

that this procedure converges very nicely (well within the realm of

numerical feasibility) as the number of points in the grid is increased .

Note that usually more than one self—consistent solution exists and this

will prove important to our subsequent development.

Before detailing some of the examples that we have treated , it is

convenient to backtrack somewhat and draw a relationship between elec—

tron pairing interactions and covalency and in so doing motivate these

cases and further stress the generality of the pairing ideas.

7
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As a prototype consider a simple dangling bond such as one associ-

ated with an Si atom which is bonded to three neighboring silicons

leaving a dangling hybrid. If we denote by x.~ the displacement of this

atom from where it would sit if the dangling hybrid were constrained to

be singly occupied with energy ~~ then a Harnil tonian partially
describing the energetics of this atom 13 is Hh= ~~hrtha %(%++%~1)
+ ch%/2 , where is the number operator for electrons of spin a in

the dangling hybrid orbital ha>. The last term entering Hh is a back—

bond stretching energy and the second is the so—called dehybridization
14 .energy . If we have a group of such nonbonded states interacting with

one another then a simplified Haxniltonian describing the situation is

H = ~~ E~n. — 

~X.x.(n. +n. —1 ) + ~c.x~ /2 + •~~ R. .a! a. We can now view
to i. to i. i i i~ 1+ 1 . ij O U ia jo

the displacements x. as parameters entering the Hamiltonian to be deter-

mined self—consistently by requiring the free energy of the system to

be stationary with respect to their variations. This results in a set

of self—consistent conditions which can be used to eliminate the

parameters x~ . It is then a simple matter to show that the resultant

Ramiltonian is essentially similar to the negative U model (2) within

the context of our mean field approximation if we make the identifica-

tion: 2X~/c.~ U.,E~±E.+U./2. Thus we expect the negative U model to

incorporate the behavior of a simple nonbonded orbital since the

analysis of course is not limited to only the Si dangling hybrid but

applies whenever one has a dangling bond associated with covalent back—

bonds and hence is quite general. Furthermore , in amorphous partially

covalent materials because of the more localized nature of the wave

function in comparison to the crystalline case one expects similar

effects to arise from states with origin in the conducting band.
10Indeed in an amorphous material one would expect after Anderson

that the one electron potential E~ obeys a continuous probability

dis tribut ion P(E~) spanning the forbidden gap. To model the resultant

situation we have solved the self—consistent equation (3) assuming

P(E.,U.) = ~S(U.—U )W(E.) where W(E~ )/B = 1/2 for —l < Ei/B 
< I and zero

otherwise and U0/B —3; B is unperturbed half bandwidth . Also we

assumed that T 0 , Nel=l and employed as an unperturbed Green
’s function,

8



G, appropriate for a Cayley tree of coordination number six. In Fig. 2

we exhibit the numerically determined lowest energy state of the

system (solid line), as well as another self—consistent solution (dashed line)

which represents a low—lying excitation of the system . The two solutions

essent ially differ from one another by the transfer of electrons from

one group of pairing centers to another, and in this way, al though there
is a large gap in the one—electron spe trum very low lying exci tations
can be achieved leading to a gapless pair state spectrum. To understand

this behavior further consider two isolated pairing centers labeled i,j
in competition with one another for two electrons . Then if U~ = U~ it

is not the magnitude of U that determines the occupancy but ra ther E
~
,

E~. For example if E1 <E~ then the site labeled i is doubly occupied

and that labeled j is doubly empty in the ground state. Thus, although

the one electron states lie at E~ + U1 and ~~ and are hence usually

well separated in energy (~ .lev), excitations of the system that require

only energy E
1—E. which becomes vanishingly small as E(E~ can be

achieved by removing the electron pair from the site i to the site j.

In the case R1.~ 0, the density of pair state excitations is then
.1’ P(E~ + U./2) which is continuous and slowly varying around Ef and as

we have seen a similar picture also applies if we assume some coupling

between the pairing centers .

Such a smooth distribution of self—trapped pair state excitations

is expected to have a character sufficient to produce an infrared

divergence at very low temperature. This is so because the density of

states of low energy pair state excitations with energy E is J’N2(E
f

)E
where N (E

f) is the density of pair states at Ef. Furthermore, the

matrix elements ~~ of the poten tial change V abruptly swi tched on by
the polarizing species should on the whole be independent of E~

_E .
~ and

the facL that the pair states are strongly self—trapped implies that

their response time can be much longer than the time characteristic of

the hopping or reorientation of the charge species. Thus all conditions

for an infrared divergent dielectric response are apparently satisfied .

At elevated temperatures the infrared divergence will survive provided

the low lying pair state excitations are thermodynamically inaccessible ,

9
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but this is a natural consequence for large enough U~ (~U~ J /kT>>l)

which should produce an energy barrier between pairing states suff i—

cient to effectively presevent thermally assisted tunneling in physical

systems.

So far we have considered only pair state excitations that involve

essentially transferring a pair of electrons from one pairing center to

another. However, there is another (not comp letely orthogonal) clas s
of low—lying excitations associated with pairing interactions that arise

from breaking the pair and “plac ing” the elec trons in states associated
with non—pairing sites. For example, in the case of metal—semiconductor

(Schottky) contac ts one could envision transferring the electrons from
pairing centers in the semiconductor (say, nonbonded orbitals) to the

Fermi sea. A particular example derived from our general model is shown

in Fig. 3 where we display two different self—consistent solutions to

(3) obtained by using the previously detailed formalism. We have taken

as inputs in calculating these examples: T 0 , ~~.3 and C appropriate for

a Cayley lattice of coodination number six. The form of P(E1,U1
) is

chosen so that P(E
~
,U
~

) = x~5(U1) 5(E
1—E0) + (l—x)S(1J1—U0)W (E1) where

W (E.~ B = 5 (B the unperturbed half bandwidth) for .1 < Er/B < .3 and

zero otherwise and x (the concentration of pairing centers ) = .1 with

U0/B —1.6. The solid line of Fig. 3 is within our formalism the

density of states corresponding to the numerically determined lowest

energy state of the system while the dashed line represents a low—lying

self—consistently obtained excited state; a fact that we have verified

directly by comparing the energies of the two cases. These two solu-

tions differ from one another by the transfer of electrons from the
pairing centers (which when occup ied in this example form a band of
states ‘J’U0/2 below Ef as shown in Fig. 3) to the main band with the
unoccupied pairing levels now appearing PU0/2 above Ef. This is exem-

plified in Fig. 3 in going from the ground to excited state by the
slight increase in ‘Ef

’~ as well as the decrease in the measure of the

pair band below the main band edge and a concurrent increase in the
measure of the main band .

Further insight into this behavior can be gained by considering a

10 
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single pairing impurity in a tight binding lattice. The situation can

be described by the model Hamiltonian H E n. + .4 R.. at a. +icy o tcy ‘ja ij ia ja
~~~~~~~~ 

EE.n ., which represents of course a special case of (2).

Approximating U~ n.~n.4 
as before the free energy of the system as a

function of can be expressed as

‘I’ 
____________________F = K — Un~ — (2/iT)Im_CdEf(E) 

1
E 

+.3 .-.~~~~ l—(un~+E~ )G~(~ )

where K is a constant independent of and we have used the up—down

spin symmetry present for U. < 0 to replace ~~. by ~~~.. The free energy,
ja,,, .1

F 
F, possesses a double minimum as a function of n~ when E~ + U~ /2 lies

in the vicini ty of Ef and U./R is >>l , as is shown in Fig. 4. In

arriving at these results we have chosen for simplicity a rectangular

density of states of half—bandwidth B to model the main band i.e.

G
~0
(Z) = —(l/2B)ln .{(Z_B)4Z÷B)} and neglected temperature effects which

are unimportant at moderate temperatures for physically expected U~ ;

i.e. U~ ~~
‘ .1 ev. At the minima satisfies the appropriate form of

Eq. (3) and hence represents the self—consistently obtained average

number of electrons of one spin species at the site j. The two minima

hence correspond to distinctly different occupancy of the pairing center
‘I,

since in one case n. ..r 0 and the other n. ‘4’ 1. That is on one hand
3 .3

almost two electrons occupy the pairing levels which lie approximately

at (E.—U .) while on the other the pairing center is effectively unoc-

cupied and its associated states lie at ~
1’E
~ . One can easily show that

the two minima are separated for large U~ by .PJE~ ÷ IJ~/2 — Ef J and hence

such a negative U center can give rise to a low lying excitation of the

system if its characteristic parameters are such that (E~÷U~ /2 )  ~ Ef.
This is of course consistent with the previously obtained results sum-

marized in Fig. 4 and is just a rather more specific case.

Although within the context of the present mean—field like approxi-

mation we cannot make a new linear combination of the two states

represented by the essentially degenerate generalized Hartree—Fock self—

consistent, solutions (associated with the minima of Fig. 4) that reduces

further the energy of the system (there is an orthogonality theorem6)

11
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such an effec t of course physically exists. The resultant intrinsic

matrix element connect ing these s tates should itself be a random
variable because of the different allowed choices of E., U~ sufficient

to produce the same degree of degeneracy. Such being the case, one

expects the density of the very low—lying excitations at a particular

E to behave as E and contribute an infrared divergent dielec tric
response (1). We will postpone details of this argument until the next

subsect ion where we are confronted with an analogous problem in terms
of tunneling modes.

The essentials of the present low—lying pair state picture should

not be smeared out at reasonable temperatures since although e.g. the

details of Fig. 3 may be somewhat different at different temperatures

one s till finds a double minimum in F(
~~
) and the corresponding low—ly ing

excitations , and once again for large U. thermally assisted tunneling

from one state to the other would not be exDected to occur.

Thus, we have detailed two rather general examples which ill ustrate
how elec tron pairing interact ions can provide correlated states with
characteristics sufficient to produce the “universal law”; Eq. (1). Of

course these examples are not comp letely unrelated, and one expec ts in
many systems that both types of excitations are simultaneously present

and operative in producing an w
n
~~ behavior of x”• Although we have

phrased our discussion primarily in terms of amorphous sys tems where one

expec ts an appreciable number of weaker/s tronger bonds , lone pairs , etc.,
to be present giving rise to the gapless correlated states , it is also
reasonable to expect that such low—lying excitations occur and are

important in more nearly crystalline covalent solids since the remaining

pairing centers in these materials could partially pin the Fermi level
in their vicinity. Another point that should not be overlooked is the

probable presence of an appreciable density of pairing states in the
electronic structure of various interfaces such as oxide—semiconductor ,

metal—semiconductor etc. This follows since these interfacial regions

are expected on the whole to be disordered giving rise e.g. to weaker!

stronger bonds. Indeed the presence of such centers can be used to

unders tand some of the more puzzling elec tronic behavior of the

12
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localized inversion layer regime of MOSFETs12 where one is dealing with

an oxide—semiconductor interface in contact with a quasi—two dimensional

electron gas. Furthermore, recen tly 35 we have carried out an analysis

of the origin and role of such states at metal—semiconductor (Schottky)

interfaces and the resultant picture has been found to be consistent

with the so—called Covalent—tonic trend .16 Thus , although interface or
contact effects are usually ignored we expect that such systems should

also exhibit a dielectric loss obeying the “universal law” and a
systematic study of the details could provide a powerful probe of the
interfacial structure.

(b) Dielectrics with Atom—atom or Molecule—molecule or Ion—ion
or Dipole—dipole Interactions

New concepts and ideas on low—energy excitations in real glasses

and spin glasses have been recently introduced by Anderson , et al,
17

Philli ps 18 and by Anderson)9 They propose the existence of a

statistical distribution of localized tunneling levels and/or modes.

A tunneling mode in a real glass is realized by an atom (or group of
atoms) which has an energy E(x) as a function of its generalized posi-

tion coordinate x which exhibits two local minima of energy difference

~E separated by a barrier. Similarly in spin glasses spins are con-

sidered as classical dynamical quantities with a potential energy sur-

face that is a function of the simultaneously specified orientat ions of
all the spins (i.e. a N—dimensional configuration space); local minima

• in the energy correspond to metastable states of the spin glass associ-

ated with different spin configurations. A tunneling mode for spin

glasses17 ’19 is defined in spin configuration space as two local minima

separated by a quantum—mechanical energy barrier. Tunneling between one

local minimum and another, if it occurs, involves the rearrangement of

several spins. The linear specific heat observed in real glasses (spin

glasses) comes from tunneling modes whose energy barriers are suffi-

ciently great so that resonant tunneling of atoms (spins) between local

minima does not occur , but sufficiently small such that tunneling

between the two levels can take place during the time span of the

specific heat measurement. Tunneling modes that contribute to the low

temperature linear specific heat have a density of levels N(~E) per unit

~ which is non—zero , smooth and continuous for ~E $ kT. Those tunnel—
13
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ing modes that contribute to the low temperature linear specific heat

compose only a small subset’7”9 of the total density of alternate
states or modes with level splitting AE. It has been pointed out~

7”9

that there are also a large number of modes having small AE which have

their two alternate states inaccessible to each other because their

energy barriers are too large for tunneling to occur. Those pairs of

levels are prac tically not connec ted, and some of them contribute to the
zero point entropy of the glass. Indeed experimental measurements of

fused silica20 and glycerol21 has shown that the zero—point entropy is

finite for both.
• Let us examine the transient response of the tunneling modes to

sudden potential change caused by fast quantum transition of some

charged species. Tunneling modes whose alternate states are thermo-

dynamically accessible can be eliminated at the outset for consideration
of infrared divergent response at W/27T < 10 0Hz. Our interest is in the

low frequency dielectric response where u~ is smaller or much smaller
than 10 0Hz and the ambient temperature is usually room temperature.

Any infrared divergence had it existed would be obli terated by the

effects of finite temperature T which replaces the characteristic ~~
n

by an exponentially damped dependence in the response function9’22 for
t >>1i/kT. Thus we need to consider only very low energy tunneling

modes where the two alternate levels of a mode must be thermodynamically

inaccessible to each other. The very low ~E of the tunneling modes

guarantees contribution to the dielectric response at corresponding low

• frequencies w ~ ~~~ and thertnodynamical inaccessibili ty enables the
infrared divergence to survive at finite T. This class of tunneling

modes should exist. Anderson’9 pointed out that since the configura-

tions of the atoms (spins) is random, there must be very many locations
(of order N, the number of atoms or sets of atoms) where there are two
possible configurations of very similar energies E1 and E2. If E1 and
E2 are independent random, variables , then the probability p(AE

) of

finding ~ ~E2—E~ 
is fini te as ~E + 0. But physically this is not

true because it is possible to tunnel between the two alternate levels

with a tunneling matrix element T12 even though it is small for thermo—

14
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dynam icall y inaccessible tunneling modes. The energy level separation

will be at least AE> 1T12 1; the off—diagonal matrix element between the
alternate levels. For this class of very low energy inaccessible tun-

neling modes (i.e., < 10 0Hz) the physical energy difference AE is

• determined by the off—diagonal matrix element AE 1T 121.
Let us confine our further discussions to only spin glasses. There,

it has been argued by Anderson,19 that T12 being a complex matrix element
ac ts like the x and y components of the random field that prevents the
actual level spli tt ing AE going to zero even though IE 1—E21 +0 unless

T12 0 also. For low frequency dielectric response, we are particularly

interested in the AE 1T12 1 + 0 limit. T12 consists of two random
variables since it has real and imaginary parts. The probability that

the mode energy AE lie in the interval TJ and T~ + df T( is propor-

tional to ITI dl Tf . Hence the density of states of inaccessible , very
low energy, tunneling modes 

~~ 
is proportional to AE. Now the sudden

potential change that induces transitions between the two alternate

levels should not depend on AE. Here we envisage the sudden potential

change inducing a virtual transition of one level to an excited state

which has easy access to the other level. In other words the sudden

potential change introduces an additional transition channel that allows

thermodynamically inaccessible tunneling modes to contribute to low

frequency dielectric response. Within this class of tunneling modes ,

the condition for infrared divergence tV 12I
2
~J(AE) 

= nAE is satisfied .

The universal law follows for spin—glasses. A model of spin glasses in

the Ising model formulation has recently been analyzed,23 in which the

exchange interac tions are ass umed to be distributed randomly and
independently of one another over both positive and negative values.
Many features of the spin glasses including the low temperature linear
specific heat have been derived from the model.

The spin—glass system and the resultant spin—spin interaction

models can often be transcribed to other physical models with non—spin

interactions.24 Well known examples include the Ising model equivalence
to a lattice gas and to a binary alloy . A lattice gas is a collection

of atoms (molecules) whose positions can take on only discrete values

15
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which form a la t t ice . Each latt ice si te can be occupied by at most one
atom . In general the potential  energy of the system of atom s cor-

responds to a gas in which the atoms are located only on latt ice sites
and interact through a two—body potential v(j~~ — 5~ I) . The cor-

respondence between the latt ice gas and the Ising model is seen by
identifying occupied sites to up spin and empty sites to down spin and

the nearest neighbor atom—atom interaction C
M to 

1~ 
~~~~~~~ 

with 
~~~ 

the

Ising interaction between spins. A binary alloy in a lattice model

corresponds to sites occupied by A or B atoms (molecules). Let

~~~~~~ CBB represent the interaction energies between the atoms. A site

occupied by an atom A is identified with an up spin and a site occupied
by an atom B with a down spin. The quantity (2 _C

M
_C

BB)/4 then cor-

respond to J in the Ising model.

Consider dielectrics where atom—atom, molecule—molecule or ion—ion

interactions are important. In the lattice gas and/or binary alloy

modelling of dielectrics with random interac tions, the equivalence to
the spin glass Ising model imp lies a dielectric state corresponding to
the spin glass state exists. Such dielectrics will have, in analogy to
spin glasses , tunneling modes which can be either accessible or inac-
cessible. In direct analogy to a tunneling mode in spin glasses which

corresponds to several spins turned over, in these dielectrics a tunnel-

ing mode co rresponds to the change of the atomic (molecular or ionic)
occupancy of several sites to get from one energy minimum to the other.

The essential point is the exis tence of very low energy tunneling modes
in these d ielec trics which are only accessible when a sudden potential
change has occurred . This class of tunneling modes again satisfies the

criterion for infrared divergence and hence yields the universal law.

The lattice gas and binary alloy model should be good representations

of many dielec trics including the class of solid s tate ionic conductor25

or solid elec trolytes such as AgI, CaF and Na B—alumina. In fact ionic

conduc tivity for these solids has been calculated in the latt ice gas
model.26 In the case of Na B-alumina, there is the repulsive interac tion
among the diffusing sodium ions and also the attrac tive interac tions
between the ions and their randomly distributed , compensating defects.

16
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These properties imply a lattice gas with random interactions . There

is indeed amp le experimental evidence27 ’28 for the existence of tunnel-
ing modes in alkali B—alumina as well as Ag B—alumina . In particular

there is an exce ss low tempera ture specific heat28 contribut ion which
is nearly linear in T as in the case of spin glasses.

To conclude this Sec tion, we note that the apparent arbitrary
division of dielectrics according to whether electron pairing inter-

actions or ion—ion interactions, etc., dominate the behavior of the
dielectrics is very natural after all. Ions have closed atomic shells

and molecules are usually covalently bonded . In both cases electron

pairing interact ion has already gone to completion, although the origins
of the pairing interaction in the two cases are entirely different. The

residual interactions are then the ior’—ion or the molecule—molecule

interactions, which then should play the important role in providing

correlated states and their excitations.

IV. Low Frequency Infrared Divergent Dielectric Response

Having demonstrated that dielectrics with diverse interaction types

should have invariably some very low frequency excitations that con-

tribute a time dependence of the form t ’~ at large t to some correlation

function, we embark on the derivation of the dielectric response func-

tion29 and examine its properties. The total dielectric polarization

induced by an elec tric field ~~~
(t )  can be calcula ted by standard

me thods 30’3’ of linear response. The interaction of the polarization

with the electric field is given by 
~~~~ 

= —
~~
. . ~~,(t) where P is the

operator of the polarizatio~ . The perturbation Hint induces a polariza-

tion density <P>= <P>~, + f 4,(t—t ’) . E (t’)dt ’ where 4~(t—t ’)‘4’ ,I’ 
~-~~~~,j’ ,J’

— <t~,(t) P(t’)>> is the dielec~
’ric polarizability tensor , and is

the polarization density in the equilibrium state as + 0, which can
be nonzero for some dielectrics such as ferroelectrics. For simplicity

consider the dielectric tensor to be diagonal . In the case when

classical statistical tnechattics’4’suffice (as often is the case for die-

lectrics at finite temperatures), the response funct ion simplifies to
the time correlation function ‘i’

~~
(t—t ’) B < P.( t) ~.(t ’)>0 where

17
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denotes averaging with the equilibrium distribution function,

B — l/k~T and P
~
(t ’) the derivative of P1(t’) with respect

28 to t ’
.

If P.(t) takes on either of two values + p0 and makes transi tions

from one value to the other, as in the case of a sys tem of particles with
a dipole moment or the case of a charged particle that can occupy one
of two alternate sites, then 4~~~~~ can be readily calculated by general-
izing the method31 to take into account a time dependent jump transition
rate W(t). Rewriting t—t ’ as r, we wish to calculate 4~~ (t) —

— 8<~~~(t ~~~~~(t—t)>
0
, where the derivative is now with respect to 1.

Doing this we obtain the result ~~~(‘r) = 2Bp~ W(T) exp(_20
ftW(t)dt) for

the time dependence of the dielectric repsonse function. The task that

remains is to calculate w(t ) includ ing the possibility of an infrared
divergence of correlated states excitations. Let 4(T) describe the

time response of the correlated states to the sudden jump of the elec-

tron (dipole) from one position to another with probability per unit

time W .  The form of ~(t) has been given
3’4 and in our notation is

= .f~c V~~J~E) (l_e~~~
t)dE/E2. We have seen in the last section

that there exists some class of correlated states in the dielectrics we

considered so that V~~JcE) EbV~E is proportional to E and satisfies the
condition for infrared divergence in the number of these low energy cor-

related states excitations. The integral, cI~(T), has been evaluated

under this circumstance4 and yields 4~(T) bV~ {Y+ ln(iE~t) +
E (iE t)} where y = 0.5722, E (ix) is a standard integral which vanishes

at large x. The jump transition rate is W (t) = Wole~~~
t) I .  On

defining a time t
0 by l/ T = 2W0 and combining equations , we obtain

4 (T) = (Bp~/T0)Iexp(—~(T))I exp(_fTIexp(_~(t))ldT/To) (5)

Consider the case when either the infrared divergent correlated states
do not exist or the coupling V~ of the hopping charges (dipoles) to the

correlated states is vanishiugly small. Then in either case 4( i)  + 0

and ~~
1
~~~

(T )  — Bp~/t0 exp(— T/T0 whose Fourier transform is X~j (W )

which is the classical Debye susceptibility. Rec pturing

the classical Debye laws by turning off the low energy correlated state

excitation is of course no surprise. The interesting point is that

18

_ ___ _  - • - - -  •-.. -~~
. -~~~~~-



• • . -•-- -•~ - • . • -•-~~~

dielectrics or dielectric interfaces in nature seldom obey the Debye law
which implies there should exist some low energy correlated states exci-

tations which are coupled to the carriers/charges/dipoles of the die-

lectric.

The dielectric response function for Bet >>l is 4~~ (r) —

(8p~/r0
)e~~~

’ (E
~
T)
~~ 

exp(—e~~~ t~~
th/ (l~n) t0 E~~) where we have put n E

by
0 and assumed n < I. By inspection one can observe that although the

(E
~
t)
~~ 

term may initially determine the t—dependence of 9~~~~~~, for suf-
ficiently large values of t 4I j~j be dominated by the exponential func-
tion. This occurs roughly at t~ ~~[U_n) e~

1 E~ t0]~
fln. x~

(w), the
Fourier transform of 411(t) of Eq. (5) can be obtained numerically.
Several representative results for reasonable choices of the parameters

a, E
~ 

and T are shown in Fig. 5. A peak in x”(w) exists and its loca—
‘4’ . 1-ntion is close to the value of = lit 11. This post—1/w peak may be

identified with the ~ or the B peaks commonly observed in dipole systems

such as polymers, li quids, p—n junctions, ferroelec trics , liquid
crystals, cryogenic polymers and some glasses. The approximate peak
position 

~ 
[(l_n)e ’~1 t E ~]~~~~~~~ is a decreasing function of

increasing t and E
~ 

and depends sensitively also on the infrared

divergence exponent n. In general T is temperature dependent and

usually has a clearly defined activation energy BA: T
0

(T) =

~~ exp (EA/kBT). This alone introduces a temperature dependence into

~ 
exp(_E

A
/(l_rt)k

B
T) , with an apparent activation energy EA of

EA/(l~n). Increase in temperature will cause a lateral shift of the

universal law and its post—peak along the frequency axis. If a post—

peak either occurs at too low a frequency to be measured or obscured by

another mechanism, it can be revealed at higher frequencies by raising

the temperature. This behavior has been seen for example in the ionic
conductor Hollandi te of the composition K1 8Mg09Ti7 1016 as T ranges
from 77K to 230K. If a is close to unity , ‘

~A 
can be much larger than

and corresponds to an unreasonably high “activation energy” as is
found for the a loss peaks of many materials.’ •

A wide range of dielectrics have associated with them the presence
of charge carriers of electronic or ionic nature. These charge carriers
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are also evidently responsible for dc conductivity. Thus one expects

that charge carrier hopping transitions , under excitat ion by a time—
varying electric field , do not necessarily involve only two preferred

sites. Consider the charge carriers that do not jump randomly between

two states/sites, then the dielectric loss is simply proportional to

the probability of exciting low energy correlated state excitations.

With the same time response function of the correlated states 4(t) as

displayed in preceding paragraphs , x”(w)~ _~J dt exp(iTw) exp(—4(t)).

For E
~
t large, ~(t) can be approximated by ny + nR.n(iE

~
T). The approxi-

mate dielectric loss )(“(w) is then proportional to l/Ci31~~~ which is
identical to the universal law1 and the absence of a loss peak. This

predicted type of dielectric response is indeed observed in a very wide

range of dielectrics of all physical and chemical characteristics , and

interestingly they are always associated with the presence of hopping

charge carriers (Fig. 1). A second universal law (w/w~)
n2~~ will follow

a firs t (
~~w )~ l~~ on decreasing w if there are available two types of

correlated states that can contribute to infrared divergences. From sum

rule considerations on ~<“(w), we expect n2
<n1 

which is also observed
(Fig. 1).

V. SUMMARY AND DISCUSSIONS

In this work we have broadly and arbitrarily classified dielectrics

according to the type of interaction or correlations inherent in all

materials. We have found that independent of the type of correlations ,

a dielectric in general has gapl ess “correlated states” whose density

of states is continuous. These “correlated states” have response times

much longer than the time taken by the hopping between sites of charged

particles or jumping between orientations of dipoles . Hence the hopping

or jumping movements can be considered instantaneous as far as the

“correlated states” are concerned and they experience a sudden change of
the potential induced by the charged particles or dipoles. The tran-

sient response of the system is the emission of low—energy excitations

of the “correlated states” which cause the response to have a t~~~~
time dependence or an infrared divergent like i,~

l—n frequency response
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of the dielectric loss. We have thus arrived at a fundamental mechanism

for the empirical dependence (accompanied sometimes by a peak at

low enough 
~~~) of the dielectric loss obeyed by nearly all dielectrics

and the mechanism is operative independent of the type of physical

structure and chemical bonding in the materials , and whether the

polarization is associated with permanent dipoles or hopping charge car-

riers of electronic or ionic nature.

This arbitrary classification of dielectrics according to the

present scheme is quite general after all. The classification is based

on the type of dominant correlations and the correlated states they

render. Detailed developments of the electron pairing correlations and

of the ion—ion correlations have been given. Correlated states are

identified in both cases. Types of correlations other than those

between electrons or between ions could conceivably lead to some sort of

“correlated states” as has been demonstrated explicitly for the cases of

electron pairing correlations and the ion—ion correlation. These cot—

related states although they may have very different physical origin and

interpretations dependent on which class of dielectrics share some com-

mon important properties. These include the therinodynamical inacces-

sibility of these states from one to another , and yet the possibility of
excitation when a sudden change in potential occurs. The very low

energy excitations of these correlated states have an infrared divergent

behavior, and lead to the low frequency dielectric response obeying a

universal law, x” u~ ~ 
i,~

l_n
, with sometimes the appearance of a post

peak at low enough ~. The Debye law holds only in the probably seldom

realized cases where the correlated state excitations are either non— F

existent or ineffective because of weak coupling to the hopping charges!

dipoles that contribute to the Debye susceptibility. The invariable

deviation from the Debye laws in most dielectrics implies that the

existence of very low energy correlated state excitations are often the

rule rather than the exception. We emphasize the importance here of not

only the recognition of the Curie—von Schweidler law as an infrared

divergence phenomenon but also the subtle task of identifying the (cor—

related state) excitations that are responsible for it. There is an



important d i f fe rence  between the present case and the Cerenkov (or

Bremstrahlung) radiation or the X—ray edge singularity problem , since

energies in the present regime of interest are so low that for these

cases , the spontaneous photons or electron—hole pairs produced infrared

divergence is entirely smeared out at finite temperatures. This is not

the case here for the particular correlated states responsible for such

low energy dielectric response singularities are thermodynamically inac-

cessible from one to another. The infrared divergence is retained at

finite temperatures even 10 0Hz. In all infrared divergence problems ,

an upper cut off E of the excitation energies E is needed either to

insure convergence at large E or simply that we run out of these excita—

tions as E increases. In the specific examples we discussed here, the

upper cut—off energies are deduced by examining the nature of these

excitations . The universal law x”(w) ~l/W
l_n 

may be modified at low

enough frequencies in dipolar dielectrics by the introduction of a peak,

and this may or may not occur within the frequency spectrum scanned ,

dependent on the magnitude of E , the upper cut—off of the correlated

state excit.~tions , and the value of a. The occurrence of a post—peak in

some classes of dielectrics and the non—occurrence in other classes can

be correlated . Order of magnitude estimates of E
~ 

are possible for

certain classes of dielectrics and the post—peak frequency predicted

seems to be consistent with experimental data. The temperature depen—

dance of the post—peak position is also consistent with experimental

data.

In addition to bulk dielectrics we have considered also the inter-

faces of a dielectric with another dielectric or a semiconductor or a

metal . An interesting example is the thermal oxidized Si—Si02 inter-

face in MOS device structures. The present authors13 have investigated

the local electron pairing interaction on dangling bonds and weaker/
32 10stronger bonds (a concept also introduced by Anderson ) and the

resultant electronic structure of the Si—Si02 interface
’ Bo th the

dangling bonds and the weaker/stronger bonds give rise to pair states

which are strongly self—trapped and have the interest ing dynamic charac-

ter when electrons are excited in pairs. Correlated pair states at the
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interface give rise to electron pair excitations with arbitrary low

energies and should give rise to an infrared divergent dielectric

response. We wish to point out that low frequency dielectric response

measurements of the interfacial region could be a powerful and novel

tool for the characterization of devices. These measurements may have
the potential of yielding more in depth understanding of interfaces when

coupled with conventional measurements such as capacitance versus gate

voltage.
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Fig. 1. A schematic representation of the various observed types of

dielectric response in the entire range of solids . The upper

set of diagrams represent the shapes of the logarithmic plots

of X’(W)—chain—dotted lines , and X”(W)—solid lines , ranging

from the ideal Debye through the ~ and B peaks and on to the

universal dependence for charged carrier systems . The limiting

forms of behaviour are represented by the strong low—frequency
• dispersion with small values of n and by the limiting case of

frequency—independent “lattice response” with a 1. The lower

set of diagrams represent the corresponding complex X plots.

The various types of materials obeying the respective types of

response are shown and the presumed polarization mechanisms are

indicated .

25

4



- -  ~~~~~~~ — — - ~~ ~~~~~~~~~~~~~~ — - - - -.—- -— .

0 —

a
S

_•% C) ~-I

LU ~~~~~
e
l.a 0)
l.a l.a

03

/

I I 
E

26



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
“-

~~

-

~~

-----

~~

-—___

0
~~0

o .-i
‘I l.a

~ .1
03 15s o .
5 I

0s o
S O
l.a

15

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

A o. i~

C) l.a

_  

I

27

_ _ _  • _ • . —-~~~~~~~~~ -~~~~~~~~~~~~~~ --_-- .~~ —-.— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~ .



-~ —~ -.--——---w— ” -——-———-————-—-— .-----— -—_~ _ -_~ -

‘ i

- ~~~0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

0 0 1 5
15 0 0 0
I. ...4 l.a ~~

• 4) A) 4 ) 1 5
~ l5

w 15

4,
4) 1 5 . e  o
.15 .•.~ I-i 15
A) .0
O 4) •o A) M.a IlJ

O 0 0 . 0
• . cd~— A)

A ~~~~ 00~~~~ Ii
I ~d O - ~. s)
I I ..4 ~~~~~~~

— ~~4 14 ~~ 15
— a •— .

~~ + 
S

~~. 0.
00

~~•tuI~ ~ ~) 
~~ 4)

~~~~~~ 
4, —

I

15
4) m Ia
II) — 4,
l.a 15

M.d AS 
~IC) 4)

4) 0 ~~~.0 ~~..-C) _ _ 4 )
.154.a 5 1 5  3 ~o —

— ~, r—4) ~. 15 15
(I U 41
15 1 5 . 1 5 04) 4)o. .~~15 5 41 15

— _ Q
4) 0 ~~ ~~

— .) ._4
U .3

4) .
~~ — ~~.15 15 54

1~ 0 5 4 1 4 . - i
14 1 5 4 )
“ 15 H

~ U ~~ 4)
L I I I I i • I I ~15 , .~~ U~ .._

0 i~) 0 
US 0

0 0
0 0

00

28

_ _ _  ~~~~,_- 



-_ .

~~~~~~~~~

-
_ .

~~~~~~~~~~~~~~~~~~~~~

-

~~~~~~~~

-—

~~~

— - -

~~~~

- . _

I I I ~ I t  -

5 . _ S n 6  p .4  p .O

O .—— — _ _. - .——— --. - .— — -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.3 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~Z O 2

LOG,o[_ ~.j_ ]
__...

Fig. 5. The behavior of X’, )~‘ in the present theory for several dif-

ferent values of a. Note the peak shape is independent of

a e~~”~
’/ ( 1—n ) T

0E~
0 but strongly dependent on n. The slope

m of each of these log ~~‘) versus log ((*)) plots varies con-
tinuously from zero to one for log (w) < log ((4,), where 

~is the post peak position. m for a fixed decrement of log (w),

i.e. at a value of W with log ( (4/~~~) < 0 and fixed) decreases as
a increases. In view of this property one should not take the

asymptote of the lowest available frequency measurements of
x” (~~~) and attach a universal meaning to the slope of that

asymptote but rather analyze the local slope m at a fixed

decrement below the post peak.
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