PNE FILE COPY

ADAQ 59904

NPS-55-78-014

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

SIMULATION OF
NONHOMOGENEOUS POISSON PROCESSES
BY THINNING

by

P. A. W. Lewis
and

G. S. Shedler

JUNE 1978

Approved for public release; distribution

unlimited.




NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

Rear Admiral Tyler F. Dedman Jack R. Borsting
Superintendent Provost

Reproduction of all or part of this report is authorized.

This report was prepared by:

Peter A. W. Lewis, Professor
Department of Operations Research

GSS Ladler oy PRMY

Gerald S. shedler
IBM Research Laboratory

Reviewed by: Released by:
< e
Michael G. Sovereign, atairma;, William M, Tolles

Department of Operations Research Acting Dean of Research




e

m—r

Unclasgifjed
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

2. GOVT ACCESSION NO.
NPS55-78~14

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

i o o e

S. TYPE OF REPORT & PERIOD COVERED

1 Technical p ¢ 7“)

imulation of Nonhomogeneous Poisson Processes
y ghinning ' : b

A e me v = R T R o IR VP

§. PERFORMING .

- By T o ]
Peter A. w./Lewis Md- G758 Sliedler
4 € |3

'

Naval Postgraduate School -

Monterey, Ca. 93940

9

- ',“
€ o) _
% PERFORMING ORGANIZAT ey e |0 CROGRAM ELEMENT, PROJECT, TASK

%, CONTRACY OR GRANT NUMBER(a)

Sy

e

AREA & WORK UNIT NUMBER

63153N, RRo14-05-0]

({ls) IFRALYHS |

N 0001478WR80035
t1. CONTROLLING OFFICE NAME AND ADDRESS EPQRT DATE
Office of Naval Research ’\ Junewi#978 A/
Arlington, VA 22217 Z NUN,
T TToTTE (o) N 27
. MONITOR'MG AGENCY QQM;_LAD?RESS(M ditlerent from Controlling Otffice) | 18. SECURITY CLASS. (of thie report)
Unclassified

T8a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

(TERGL S gL |

(ol dhlsRopost)-—-

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, il dilferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side If neceasary and ldentity by block number)

cesses, simulation of point processes, thinning,
acceptance-rejection, order statistics.

Poisson processes, nonhomogeneous Polsson processes, one-~dimensional non-
homogeneous Poisson processes, two-dimengional nonhomogeneous Poisson pro-

search and detection,

%& ABSTRACT (Continue on reverse side If neceseery and identity by block number)

two-dimensional nonhomogeneous Poisson processes
is applicable for any rate function and is based

function.

generatior of Poisson variates.

3

"A simp'e and relatively efficient method for simulating one-dimensional and

is presented, The method
on controlled deletion of

points in a Poisson process whose rate function dominates the given rate
In its simplest implementation, the method obviates the need for
numerical integration of the rate function, for ordering of points, and for

\
EDITION OF 1 NOV 68 1S OBSOLETE
S/N 0102-014-6601 |

DD ,7an'ss 1473

\ 4 k‘} \4/

I
SECURITY CLASSIFICATION OF THIS PAGE (When Date Bntered)
Ll 2N A _




W oy

SIMULATION OF NONHOMOGENEOUS POISSON PROCESSES BY THINNING

by

P. A. W, Lewis"
Naval Postgraduate School
Monterey, CA 93940

G. S. Shedler:
IBM Research Laboratory
San Jose, CA 95193

JUNE 1978

T ——— ———— -~ -

A'.L!‘.S A B

) '

oL

ey,

Pee

ny

USRI,
e

ﬁ |

LY RS

© AL

*
Support under Office of Naval Research Grant NR-42-343 is gratefully

acknowledged.




SIMULATION OF NONHOMOGENEOUS POISSON PROCESSES BY THINNING

by
P. A, W, Lewis
Naval Postgraduate School
Monterey, CA 93940
and
G. S. Shedler

IBM Research Laboratory
San Jose, CA 95193

ABSTRACT

A simple and relatively efficient method for simulating
one-dimensional and two~-dimensional nonhomogeneous Poisson pro-
cesses is presented. The method is applicable for any rate function
and is based on controlled deletion of points in a Poisson process
whose rate function dominates the given rate function. 1In its
simplest implementation, the method obviates the need for
numericel integration of the rate function, for ordering of

points, and for generation of Poisson variates.

KEYWORDS: Poisson processes, nonhomogeneous Poisson processes,
one~dimensional nonhomogeneous Poisson processes,
two-dimensional nonhomogeneous Poisson processes,
simulation of point processes, thinning, search
and detection, acceptance-rejection, order
statistics,
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1. INTRODUCTION

The one-gimensional nonhomogeneous Poisson process (see
e.g., Cox and Lewis, 1966, pp. 28-2S; ginlar, 1975, pp. 94~-101)
has the characteristic properties that the numbers of points in
any finite set of nonoverlapping intervals are mutually independent
random variables, and that the number of points in any interval
has a Poisson distribution, The most general nonhomogeneous
Poisson process can be defined in terms of a monotone nondecreasing
right-continuous function A(x) which is bounded in any finite
interval. Then the number of points in any finite interval, for
example (O,xo], has a Poisson distribution with narameter
Wy = A(xo) - A(0). 1In this paper it is assumed that A(x) is
continuous, but not necessarily absolutely continuous. The
right derivative A(x) of A(x) is called the rate function of the
process; A(x) 1is called the integrated rate function and has the
interpretation that for x > 0, A(x) - A(0) = E[N(x)], where N(x)
is the total nunker of points in (0,x]. Note that X(x) may
jump at points at which A(x) is not absolutely continuous. 1In
contrast to the homogeneous Poisson process, i.e., A(x) a constant
(usually denoted by 1), the intervals between the points in a
one~-dimensional nonhomogeneous Poisson process are neither inde-
pendent nor identically distributed.

Applications of the one-dimensional nonhomogeneous Poisson
process include modelling of the incidence of coal-mining disasters
(Cox and Lewis, 1966), the arrivals at an intensive
care unit (Lewis, 1972), transaction processing in a data base

management system (Lewis and Shedler, 1976b), occurrences of major

1




freezes in Lake Constance (Steinijans, 1976), and geomagnetic

reversal data (Reyment, 1976). The statistical analysis of trends

in a one~dimensional nonhomogeneous Poisson process, based on the

assumption of an exponential polynomial rate function, is discussed

by Cox and Lewis (1966), Cox (1972), Lewis (1972), and Lewis and

Shedler (1976b).

There are a number of methods for simulating nonhomogeneous

Poisson process which we review briefly.

(1)

Time-scale transformation of a homogeneous (rate one)

Poisson process via the inverse of the (continuous) integrated
rate function A(x) constitutes a general method for generation
of the nonhomogeneous Poisson process (cf., ginlar, 1975

pp. 96-97), This method is based on the result that xl'XZ""’-
are the points in a nonhomogeneous Poisson process with continuous
integrated rate function A(x) if and only if xi = A(xl),

x5 = A(xz), .++ , are the points in a homogeneous Poisson process
of rate one. The time-scale transformation method is a direct
analogue of the inverse probability integral transformation
method for generating (continuous) nonuniform random numbers.

For many rate functions, inversion of A(x) is not simple

and must be done numerically; cf., Gilchrist (1977) and Patrow
(1977). The resulting algorithm for generation of the non-
homogeneous Poisson process nay be far less efficient than
generation based on other methods; see e.g., Lewis and Shedler
(1976a, 1977) and Patrow (1977) for discussion of special

methods for efficiently generating the nonhomogeneous Poisson
process with log-linear and log-quadratic rate functions.

2




(ii)

(iii)

A second general method for generating a nonhomogeneous Poiscon
process with integrated rate function A(x) is to generate the
intervals between points individually, an approach which may
seem more natural in the event-scheduling approach to simulation.

Thus, given the points xl = Xy X2 = Xyreeey X.

X, < x2 Ceeol xi, the interval to the next point, X,

1l i+l
is independent of Xyv eoe o X4 g and has distribution function

il

F(x) =1 - exp[-{A(x; + x) - A(xi)}]. It is possible to find the
inverse distribution function F-1(°), usually numerically,

. -1
and generate X, ., - X; according to xi+1 - Xi = F (Ui)’ where
Ui is a uniform random number on the interval (0,1). Note,
however, that this not only involves computing the inverse distri-

bution function for each interval X -xi, but that each distribution

i+l
has different parameters and possibly a different form. An
additional complication is that xi+l - X is not necessarily a
proper random variable, i.e,, there may be positive probability
that X~ % is infinite. It is necessary to take this into
account for each interval xi+I'xi before tﬁe inverse probability
integral transformation is applied. The method is therefore very
inefficient with respect to speed, more so than the time-scale
transformaticn method.

In a third method,simulation of a nonhomogeneous Poisson

process in a fixed interval (O,xo] can be reduced to the
generation of a Poisson number of order statistics from a fixed

density function by the following result (cf.,, Cox and Lewis,

1966, p. 45). 1If Xl, XZ' cee o xn are the points of the




(iv)

nonhomogeneous Poisson process in (0,x0], and if N(xo) =n,

then conditional on having observed n(> 0) points in (O,xO],

the xi are distributed as the order statistics from a sample

of size n from the distribution function {A(x)-A(O)}/{A(xo)-A(O)},
defined for 0 < x < Xg e Generation of the nonhomogeneous Poisson
process based on order statistics is in general more efficient

(with respect to speed) than either of the previous two methods.

Of course, a price is paid for this greater efficiency. First,

it is necessary to be able to generate Poisson variates, and

second, more memory is needed than in the interval-by-interval

method in order to store the sequence of points. Enough memory

must be provided so that with very high probability the random
number of points generated in the interval can be stored. Recall
that the number of points in the interval (O,xo] has a Poisson
distribution with mean g = A(xo) - A(0). Memory of size, e.qg.,

Mo * 4u3/2 will ensure that overflow will occur on the average
in only one out of approximately every 40,000 realizations. This
probability is small enough so that in the case of overflow, the
realization of the process can generally be discarded.

Again, there is a very particular and very efficient

method for simulation of nonhomogeneous Poisson processes with
log-linear rate function (Lewis and sShedler, 1976a) which, at

the cost of programming complexity and memory, can be used to

obtain an efficient simulation method for other rate functior .,

as in Lewis and Shedler (1977).




In this paper a new method is given for simulating & non-
homogeneéus Poisson process which is not only conceptually simple,
but is also computationally simple and relatively efficient. 1In
fact, at the cost of some efficiency, the method can be applied

to simulate the given nonhomogeneous Poisson process without the

need for numerical integration or routines for generating Poisson

variates. Used in conjunction with the special methods given by
Lewis and Shedler (1976a, 1977), the method can be used to generate
quite efficiently nonhomogeneous Poisson processes with rather
complex rate function, in particular combinations of long-term
trends and fixed-cycle effects. The methoa is also easily extended

to the problem of generating the two-dimensional nénhomogeneous

Poisson prccess.

2. SIMULATION OF ONE-DIMENSIONAL NONHOMOGENEOUS POISSON PROCESSES
Simulation of a nonhomogeneous Poisson process with general

rate function A(x) in a fixed interval can be based on thinning

+

*
of a nonhomogeneous Poisson process with rate function A (x) > A(x).

The basic result is

THEOREM 1. Consider a one-dimensional nonhomogeneous Poisson
process {N*(x):x 2 0} with rate function A*(x), so that the
number of points, N*(xo), in a fixed interval (O,xO] has a

Poigson distribution with parameter u; = A*(xo) - A*(O). Let

* * ]
Xp0 X500 o0y xN'on) be the points of the process in the interva}
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(O,xO]. - Suppose that for 0 < x ¢ Xq A(x) < A*(x). For
i=1,2,...,n, delete the point X: with probability
1

* * *
A(xi)/k (xi); then the remaining points form a nonhomogeneous
Poisson process {N(x):x > 0} with rate function A(x) in the

interval (0,*0].

Proof. Since {N*(x):x > 0} is a nonhomogeneous Poisson process,
and points are deleted independently, it is clear that the number
of points in {N(x):x > 0} in any set of nonoverlapping intervals
are mutually independent random variables. Thus, it is sufficient
to show that the number of points N(a.b) in {N(x);x > 0}

in an arbitrary interval (a,b] with 0 < a <b £ X has a
Poisson distribution with parameter A(b) - A(a).

Observe that with p(a,b) = {A(b) - A(a)}/{A"(b) - A*(a)},

we have the conditional probability

1 if n=k=0

. {p(a,b)}n{l»p(a,b)}k"n if k>no0
P{N(a,b) = n|N (a,b)=k} =

and k>1 (1)
0 if n>1
and k<n ,

Equation (1) is a consequence of the well-known result that,
conditional on n (>0) points in the interval (a,b], the joint

*
density of the n points in the process {N (x):x > 0} is




gt res g

li

* * * * n . ]
Adxy) cee A (x)/{A (b) - A (a)}". The desired result is
obtained in a straightforward manner from Equation (1) by removing

the condition.

Theorem 1 is the basis for the method of simulating non-

homogeneous Poisgon processes given in this paper.

ALGORITHM 1., oOne-dimensional nonhomogeneous Poisson process.

1. Generate points in the nonhomogeneous Poisson process fN*(x)}with

*
rate function X (x) in the fixed interval (0,x If

ol-
the number of points generated, n*, is such that n* =0,
exit; there are no points in the process (N (x)}.

2. Denote the (ordered) points by XI, x;, cee ¢ x;*. Set
i=1 and k = 0.

3. Generate Ui' uniformly distributed between 0 and 1. If
Ui £ A(XI)/A*(X;), set k equal to k+l and xk = X;.

4. set i equal to i+l. If i <n”, go to 3.

5. Return xl' xz, ces xn' where n = k, and also n.

In the case where
(1) N"(x)) is a homogeneous Poisson process with AT (%) = A*;
(ii) the minimum of X(x), say A, is known, and
(iii) generation of uniformly distributed variates is compute-
tionally costly,
considerable speedup can be obtained by noting that X: is always
accepted if Ui < A/A*. This obviates, in some cases, computation

7




of A(x), which is the main source of inefficiency in the algorithm.
Moreover, in this case A*Ui/& can be used as the next uniformly
distributed variate.

The method of thinning in this simple form, i.e.,
“(x) =" > maxoi"ixo A(x), can also be used to provide an
algorithm for generating a nonhomogeneous Poisson process on an
interval~by-interval basis, as discussed in subsection (ii) of
Section 1. The interval to the next point Xip1 - xi is
obtained by generating and cumulating exponential (1*) random
numbers E;, E;, «es o until for the first time
Uj <X, + EI + oeee # E;)/Ai where the Uj are independent
uniform random numbers between 0 and 1. This algorithm is
considerably simpler than the interval-by-interval algorithm

of Section 1l since it requires no numerical integration,

only the availability of uniform random numbers.




3. DISCUSSION OF THE METHOD OF THINNING
(1) Relationship to acceptance-rejection method

The method of thinning of Algorithm 1 is essentially the
obverse of the conditional method of Section 1, using condition-
ing and acceptance-rejection techniques to generate the random
variables with density function A(x)/{A(x) - A(0)} (Lewis
and Shedler, 1977, Algoritnm 3). The differences are subtle,
but computationally important. In the acceptance-rejection
method, it is first necessary to generate a Poisson variate
with mean Mg = A(xo) - A(0), and this involves an integration
of the rate function X (x). Then the Poisson (uo) number, n,
of variates generated by acceptanée-rejection must be ordered to

give Xp0 Xg0 vee 4 X

(1i) Simplest form of the thinning algorithm
*
In the simplest form of the method of thinning, A (x) is

*
taken to be a constant ) , so that, for instance, the points

* * *
xl, x2, cee g xn* can be generated by cumulating exponential (A*)

variates until the sum is greater than x (cf., Lewis and

4

0
Shedler, 1976a, Algorithm 1), Thinning is then applied to the

generated points. No ordering, no integration of A(x) and no

generator of Poisson variates is required. Of course for both

algorithms to be efficient, computation of A(x) and A*(x)

must be easy relative to computation of the inverse of A(x).
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(iii) Efficiency

For the thinning algorithm (as well as the algorithm based

on conditioning and acceptance-rejection) efficiency, as measured
by the number of points deleted, is proportional to uo/ug =
{A(xq) - A(O)}/{A*(xo) - A*(O)}; this is the ratio of the

areas between 0 and x, under A(x) and A*(x). Thus, A*(X)
should be as close as possible to A(x) consistent with ease

*
of generating the nonhomogeneous Poisson process {N (x):x > 0}.

(iv) An example: fixed cycle plus trend

To illustrate the applicability of the thinning
algorithm, consider its use in conjunction with the algorithms
given by Lewis and Shedler (1976a, 1977) for log-linear and
log-quadratic rate fu.ctions. Assume that it is necessary to
simulate a nonhomogeneous Poisson process whose rate function

increases quadratically with time but also has a fixed-period

cycle, e.q.,
Ax) = exp{a0 + a; X + azx2 + K sin(mox +8)},
Oixf_xos K>0

This is the model found by Lewis (1972) for arrivals at an
intensive care unit, where there is a strong time-of-day effect.
Thus if wy = Zn/TO, then the period T, = 1 day. Computation

- *
of A l(-) ig difficult., To determine X (x), note that

*
Ax) <A (x) = exp{ay + K + a;x + azxz} p
10




and therefore
A(x) /A" (%) = explK{l - sin(ugx + 8)}] .

Thus in Step 3 of Algorithm 1, Ui is compared to

exp[K{l - sin(wox; + 6)1}]1. Equivalently, if unit exponential

variates Ei are available, it is faster to compare Ei to

K{l - sin(ugX; + 6)}, accepting X; if E, > K{l - sin(uyX; + 0)}.
The main computational expense here is generation of the E;

and computation of the sine function, both n* times. The expense

involved in computation of the sine function can be reduced by

noting that the point x; is always accepted if Ei is greater

than 2K. This will be a great saving if the cyclic effect is

minor (K small)., The number of Ei generated can be reduced

by noting that if, in one step of the algorithm, Ei is observed

to be greatér than §, then E; = Ei - § can be used as an

(independent) unit exponential variate in the next step. The

above procedure can be extended to the case of a trend with

two fixed-period cycles, e.qg., a time-of-day and a time-of-week

effect.

4. SIMULATION OF TWO-DIMENSIONAL HOMOGENEOUS POISSON PROCESSES

The two-dimensional homogeneous Poisson process (of rate A > 0)
is defined by the properties that the numbers of points in any finite
set of aonoverlapping regions having areas in the usual geometric
sense are mutually independent, and that the number of points in any
region of area A has a Poisson distribution with mean )A;

1l




(1)

see, e.g., Karlin and Taylor (1975), pp. 31-32. Note that the
number of points in a region R depends on its area, but not on its
shape or location. The homogeneous Poisson process arises as a
limiting two~-dimensional point process with respect to a number

of limiting operations; cf., Goldman (1967a,b). Properties of

the process are given by Miles (1970). Applications of the two-
dimensional homogeneous Poisson process to problems in ecology

and forestry have been discussed by Thompson (1955) ana Holgate
(1972) . The model also arises in connection with naval search

and detection problems.

In considering the two-dimensional homogeneous Poisson
process, projection properties of the process depend quite
critically on the geometry of the regions considered. These
projection properties are simple for rectangular and circular
regions, and make simulation of the homogeneous process quite

easy. We consider these two cases separately,

Homogeneous Poisson Processes in a Rectangle
The following two theorems form the basis for simulation
of the two-dimensional homogeneous Poisson process in a

rectangle.

THEOREM 2. Consider a two-dimensional homogeneous Poisson process
of rate A, so that the number of points in a fixed rectangle

R= {(x,y): 0 < x < x5y 0 <y¢« yo} has a Poisson distribution
with parameter Axoyo. If (xl,Yl), (x2,Y2), cve » (XN,YN) denote

the position of the points of the process in R, labelled so that

12




xl < x2 { eee ( xN, then xl' xz, ces o xN form a one-dimensional
homogeneous Poisson process on 0 < x ¢ Xy of rate Ayo. If the
points are relabelled (Xi,Yi), (x&,Yé), oo 4 (x&,Y&) so that

Yi < Yé { oo <'Y&, then Yi, Y!, ... Y& form a one-dimensional
homogeneous Poisson process on 0 <y ¢ Yq of rate Axo.

Proof. The number of points in an interval on the x-axis, say,
(a,b] is the number of points in the rectangle bounded by the
lines x=a, x=Db, y =20, and y = y,. This number is therefore
independent of the number of points in any similar nonoverlapping
rectangle bounded on the x-axis by x = a', x = b', i.e,, the
number of points in the interval (a',b']. This establishes the

independent increment property for a one-dimensional Poisson

process. The Poisson distribution of the number of points in
(a,b] follows from the fact that it is equal to the number of

points in the rectangle bounded by x = a, x = b, y = 0, and
Y = Yoo and the latter has a Poisson distribution with parameter
Ayo(b-a). An analogous argument shows that the process formed

on the y-axis by Y!, Yé, eee 4 Y. is Poisson.

N

Conditional properties of the Poisson process in a rectangle
are established next. The important thing to note is that while
the processes obtained by projection of the points onto the x
and y axes are not independent, there is a type of conditional

independence which makes it easy to simulate the two-dimensional

process.

13




THEOREM 3. Assume that a two-dimensional homogeneous Poisson
process of rate ) is observed in a fixed rectangle

R= {(x,y): 0 < x¢ Xgr 0 <y <y}, so that the number of
points in R, N(R), has a Poisson distribution with parameter
Axoyo. If N(R) =n >0 and if (Xl,Yl), (xz'Yz)""'(xn’Yn)

denote the points, labelled so that x1< X2< ree ( Xn' then con-

2,...,Xn

2, e e g Yn

are independent and uniformly distributed on 0 <y < Yo

ditional on having observed n points in R, the X;0 X

are uniform order statistics on 0 < x < x,, and Yo ¥

independent of the Xi.

Proof., If there are N points iﬁ the rectangle, form «
vertical strips, from 0 to Yo and from Xi to xi + dxi,

such that each strip contains only one of the N points. The
position of Y, on the vertical line through Xy is that of

an event in a Poisson process of rate Adxi, given that only

one event occurs. But this means that Y, is uniformly dis-
tributed between 0 and yo. Moreover, this is true irrespective
of where xi occurs; therefore Yi is independent of xi‘

Also, occurrences in all N strips are independent, and therefore
Y, is independent of the other Yj and xj positions, j # i,

Tnus the Y, are a random sample of size N from a uniform

(O,yo) distribution, independent of the X;. Now condition

on N =n (> 0); since by Theorem 2 the X, form a Poisson process

they are, by well-known results, order statistics from a uniform
(0,x0) sample and are independent of the fixed size Yi popula-

tion; .thus the béifé (Xi,Yi) are mutually independent.

14




COROLLARY.” Denote the Poisson points by (xl'Yl)' (xz,Yz), ceay
where éhe index does not necessarily denote an ordering on either
axis. Conditionally, the pairs (Xl,Yl),...,(xN,YN) are inde-
pendent random variables. Furthermore, for each pair, xi is

distributed uniformly between 0 and Xq independently of Y.,

which is uniformly distributed between 0 and Yo

From the two theorems, the following simulation procedure

is obtained.

ALGORITHM 2. Two-dimensional homogeneous Poisson process in a

rectangle.

1. Generate points in the one-dimensional homogeneous Poisson
process or rate Ayo on (O,xol. If the number of
points generated, n, is such that n = 0, exit; there
are no points in the rectangle.

2. Denote the points generated by A Xy Ceee X

3. Generate Y,, Yor eov o Y, as independent, uniformly dis-
tributed random numbers on (0,y,].

4. Return (xl,Yl), (XZ'YZ)' ceo 4 (xn,Yn) as the coordinates
of the two-dimensional homogeneous Poisson process in the

rectangle, and n,

Note that generation of the points xl' Xor eee o Xy in Steps 1
and 2 can be accomplished by cumulating exponential(xyo) random
numbers. Alternatively, after generating a Poisson random number
N=n (with parameter Axdyo), n independent, uniformly distributed

random numbers on (O,xol can be ordered; see Lewis and Shedler

(1976a), p. 502. 15




Another algorithm for generation of the two-dimensional
Poisson process in a rectangle can be based on the Corollary

to Theorem 3.

(ii) Homogeneous Poisson Processes in a Circle

The following two theorems form the basis for simulation
of tne two-dimensional homogeneous Poisson process in a fixed
cir:zle of radius rye

Fix the origin and initial line of polar coordinates «r
and 6 8o that the origin is the center of the circle and the
initial line is horizontal. We consider the projection of the
points (Ri,ei), of the Poisson process circularly onto the
r-axis (Ri) and radially onto the circumferential 6-axis (ei).
The number of points projected onto the é-axis in the interval
(0,r], where r < Y is the number of points in the circle of
radius r and area nr2; thus the number of points in (0,r]
has a Poisson distribution with parameter Anrz. Consequently,
if the projection process on the r-axis is a Poisson process,it
must have integrated rate function A(r) = Anrz, with A(0) = 0,

Similarly,the number of points on the circumferential arc
of the fixed circle (radius r,) from 0 to 6 is the number
of points in the sector of the circle defined by radial lines
at angles 0 and 0; thus,the number of points on the arc from
0 to 6 has a Poisson distribution with parameter Anrg x f%
= ekrg/Z. Accordingly, if the projection process on the 9-axis
is a Poisson process, it must have integrated rate function

ACB) = ekrg/Z, with A(0) = 0.

16




We now assert that the projection processes are in fact
Poisson processes. Since proofs of these theorems are directly

analogous to the proofs of Theorems 2 and 3, they are omitted.

THEQREM 4. Consider a two-dimensional homugeneous Poisson process
of rate A so that the number N of points in a fixed circular area
C of radius ry and area wrg has a Poisson distribution

. 2
with parameter Amrg. If (Ry,0;), (Ry,85), ... , (RN,GN)
denote the points of the process in C, labelled so that
Rl < R2 ¢ vee ¢ RN' then Rl' R2, eee v Ry form a one-dimensional
nonhomogeneous Poisson process on 0 < r ¢ Ly with rate function
A(r) = 2mAr. 1If the points are relabeiled (R',ei), (35,95),
ooy (Rﬁ,eﬁ) so that ei < 65 ¢ voe ¢ 6&, then ei, 65,...,6&
form a one~dimensional homogeneous Poisson process on 0 < 8 < 2r

of rate Arg/2.

THEOREM 5. Asaume that a two-dimensional Poisson process of
rate A 1is observed in a fixed circular area C of radius r,
so that the number of points in C, N(C), has a Poisson distri-
bution with parameter Anrg. If N(C) =n > 0 and if

(Rlcel)' (Rzlez), e g (Rn,en) With Rl < R2< see Rn

denote the points, then conditional on having observed n points in

C, the Rl' Rz, ces 4 Rn are order statistics from the density
f(r) = 2r/rg concentrated on 0 < r & ry, and 6y, 85, ... , O
are independent and uniformly distributed on 0 < ¢ < 27,

independent of the R;.

17
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These theorems lead to the following simulation procedure.

ALGORITHM 3. Two-dimensional homogeneous Poisson process in a

circular area.

1. Generate n as a Poisson random number with parameter
Anrg. If n = 0, exit; there are no points in C.
2. Generate n independent random numbers having density
function f(r)==2r/r% and order to obtain R, < Ry, < +++ < R..
3. Generate 91, 92,... ’ en independent, uniformly distributed

randonm numbers on (0,2m].

4. Return (Rl,el), (Rz.ez), oo (Rn,en), and n,

Note that the wedge-shaped density 2r/r§ can be generated by
scaling the maximum of two independent uniform (0,1) random
numbers.

Direct generation of homogeneous Poisson points in
non-circular or non-rectangular regions is difficult. The
processes obtained by projection of the points on the two axes
are nonhomogeneous Poisson processes with complex rate functions
determined by the geometry of the region., However, the conditional
independence which is found in circular and rectangular regions
(Theorems 3 and 5) for the processes on the two axes is not
present. In particular, given that there are n points
(xl,Yl),...,(Xn,Yn) in a non-rectangular region, the pairs (Xi,Yi)
are mutually independent, but X, is in general not independent

of Yi' i=1,...,n. Therefore, it is simpler to enclose the

18




region in either a circle or a rectangle, generate a homogeneous

Poisson process in the enlarged area, and subsequently exclude

points outside of the given region.

5. SIMULATION OF TWO~DIMENSIONAL NONHOMOGENEOUS POISSON PROCESSES
The two-dimensional nonhomogeneous Poisson process

{N(x,y):x >0, ¥ 2 0} is specified by a positive rate function

A(x,y) which for simplicity is assumed here to be continuous.

Then the process has the characteristic properties that the numbers

of points in any finite gset of nonoverlapping regions having
areas in the usual geometric sense are mutually independent, and
that the number of points in any such region R has a Poisson
distribution with mean A(R); here A(R) denotes the integral
of \(x,y) over R, i.e., over the entire area of R.

Applications of the two-dimensional .nonhomogeneous Poisson
process include problems in forestry and naval search and
detection. The use of the process as a model for the pattern of
access to the storage subsystem of a computer system will be
reported elsewhere. Detection and statistical analysis of trends
in the two-dimensional nonhomogeneous Poisson process is discussed
by Rantschler (1973).

Theorem 1 dealing with thinning of one-dimensional non-
homogeneous Poisson processes generalizes to two-dimensional
nonhomogeneous Poisson processes. Thus, suppose that
Ax,y) € A*(x,y) in a fixed rectangular region of the plane.

If a nonhomogeneous Poisson process with rate function A*(x,y)

is thinned according to A(x,y)/k*(x,y) (i.e., each point

19




(xi,Yi) is deleted independently if a uniform (0,1) random
number 'Ui is greater than A(xi,Yi)/A*(xi,Yi)), the result

is a nonhomogeneous Poisson process with rate function \(x,y).

The proof is a direct analogue of the proof for the one-dimensional

case.

The nonhomogeneous Poisson process with rate function
A(x,y) in an arbitrary but fixed region R can be generated by
enclosing the region R either in a rectangle or a circle, and
applying Algorithm 2 or Algorithm 3. The following procedure
assumes that the region R has been enclosed in a rectangle R*,
and that 1A' = max{)(x,y): x,y € R} has been determined; here

the bounding process is homogeneous with rate A* in the rectangle R¥*,

ALGORITHM 4. Two-dimensional nonhomogenous Poisson process.

1. Using Algorithm 2, generate points in the homogeneous
* *
Poisson process of rate ) in the rectangle R . 1If
*
the number of points, n , is such that n* = (0, exit; there
are no points in the nonhomogeneous Poisson process.
*
2, From the n points generated in 1, delete the points that
are not in R, and denote the remaining points by
*  * * & * k0 * *
(Xl,Yl), (XZ’YZ)’°"’(xm'Ym) with Xl < x2 { 200 ( Xm.
Set i=1 and k = 0,
3. Generate Uy uniformly distributed between 0 and 1. If

* * * Kk * *
Uy < A(xi,Yi)/A , set k = k+1, X = X and Y, = Y.

*
4. Set i equal to i+l. If i <m, go to 3.

5. Return (Xl,Yl), (XZ'YZ)’ cee 4 (xn,Yn), where n =k, and n.

20
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It is not necessary that the bounding process have a constant rate
A*. Theroems 2 and 4 can be generalized to certain cases where
the process is nonhomogeneous (cf., Bartlett, 1974), for instance
Ax,y) = p(x) wgy). Thus, a tighter.bounding process which is
nonhomogeneous may possibly be obtained. It is not simple to

see how much efficiency could be gained by doing this, as opposed
to using a two-dimensional homogeneous Poisson process for the
bounding process. Again, as in the one-dimensional case, savings

in computing A(x,y) can be obtained by computing its minimum

beforehand, and the U;'s can be reused by scaling.

6. COMPARISONS AND CONCLUDING REMARKS

The method of thinning presented in this paper for simulating
one-dimensional and two-dimensional nonhomogeneous Poisson pronesses
with given rate function can be carried out in a computationally
simple way by using a bounding process which is homogeneous with a
rate function equal to the maximum value of the given rate function.
No numerical integration, ordering or generation of Poisson
variates is required, only the ability to evaluate the given cate
function. The thinning algorithm appears to be particularly
attractive in the two-dimensional case where there seem to be
no competing algorithms.

The thinning algorithm can also be implemented more
efficiently at the cost of programming complexity and by using a
nonhomogeneous bounding process. In particular the method can be
used in conjunction with the special algorithms given by Lewis
and Shedler (1976a, 1577).

It is also possible to extend th2 method of thinning to

simulation of doubly stochastic or conditioned Poisson processes.

This will be discussed elsewhere.
21
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