
[EVE"f.
NPS-55-78-014

NAVAL ruOUA DIlATE SCHOOL
Monterey, California

0

SIMULATION OF

NONHOMOGENEOUS POISSON PROCESSES

BY THINNING

by

P. A. W. Lewis

and

G. S. Shedler

JUNE 1978

Approved for public release; distribution unlimited.



NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

Rear Admiral Tyler F. Dedman Jack R. Borsting
Superintendent Provost

Reproduction of all or part of this report is authorized.

This report was prepared by:

Peter A. W. Lewis, Professor
Department of Operations Research

Gerald S. Shedler
IBM Research Laboratory

Reviewed by: Released by:

Michael G. Sovereign, hairmaiV William M. Tolles
Department of Operations Research Acting Dean of Research



Unclassg fled
SECURITY CLASSIFICATION OF THIS PAGE (Wia Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORMREO ,2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. T E OF REPORT & PERIOD COVERED

imulation of Nonhomogeneous Poisson Processes / TechnicalTy hinning - ) / .P'MNOa -" ..- "

7. A 6S. CONTRACT OR GRANT NUMSEROe)
Peter A. W.Sdewis A 0 'Shedler

9 PERFORMING O1ANI0ZATIO- ,,-,. . ..... . PROGRAM ELEMENT. PROJECT, TASK
-~ ARA & WORK UNIT NUMBERS

Naval Postgraduate School 61153N, RRo14-05-01
Monterey, Ca. 93940 N0001478WV80035

II. CONTROLLING OFFICE NAME AND ADDRESS 1.-AEPOR. DATE

Office of Naval Research I)JunW78 Z
Arlington, VA 22217 . N h -

27
14. MONITOR"IG AGENCY _ J -. RESS(If different from Controlllng Office) IS. SECURITY CLASS. (of thli report)

It-- -± iJ Unclassified

IS0. OECL ASSI FICATION/ DOWN GRADING
A't./ SCHEDULE

IS. DM U Ira ONme~eae)~

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If different from Report)

II. SUPPLEMENTARY NOTES

1S. KEY WORDS (Continue on reveree ide if noceeewy and Identify by block number)

Poisson processes, nonhomogeneous Poisson processes, one-dimensional non-
homogeneous Poisson processes, two-dimensional nonhomogeneous Poisson pro-
cesses, simulation of point processes, thinning, search and detection,
acceptance-rejection, order statistics.

2IS ABSTRACT (Continue an revere* aide it neccevy and Identify by block nmbor)

A simple and relatively efficient method for simulating one-dimensional and

two-dimensional nonhomogeneous Poisson processes is presented. The method

is applicable for any rate function and is based on controlled deletion of

points in a Poisson process whose rate function dominates the given rate
function. In its simplest implementation, the method obviates the need for
numerical integration of the rate function, for ordering of points, and for
generation of Poisson variates.

DD I ' 'AN 1473 EDITION OF I NOV ss IS O@SoLITE
SECURITY CLASSIFICATION Of THIS PAGE (When Data Entered)

SA)x4 ArLIP/



SIMULATION OF NONHOMOGENEOUS POISSON PROCESSES BY THINNING

by

P. A. W. Lewis

Naval Postgraduate School
Monterey, CA 93940

G. S. Shedler-
IBM Research Laboratory

San Jose, CA 95193

py

!'iAL

JUNE 1978

Support under Office of Naval Research Grant NR-42-343 is gratefully
acknowledged.



SIMULATION OF NONHOMOGENEOUS POISSON PROCESSES BY THINNING

by

P. A. W. Lewis
Naval Postgraduate School

Monterey, CA 93940

and

G. S. Shedler
IBM Research Laboratory
San Jose, CA 95193

ABSTRACT

A simple and relatively efficient method for simulating

one-dimensional and two-dimensional nonhomogeneous Poisson pro-

cesses is presented. The method is applicable for any rate function

and is based on controlled deletion of points in a Poisson process

whose rate function dominates the given rate function. In its

simplest implementation, the method obviates the need for

numerical integration of the rate function, for ordering of

points, and for generation of Poisson variates.
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1. INTRODUCTION

The one-dimensional nonhomogeneous Poisson process (see

e.g., Cox and Lewis, 1966, pp. 28-29; Sinlar, 1975, pp. 94-101)

has the characteristic properties that the numbers of points in

any finite set of nonoverlapping intervals are mutually independent

random variables, and that the number of points in any interval

has a Poisson distribution. The most general nonhomogeneous

Poisson process can be defined in terms of a monotone nondceUreasing

right-continuous function A(x) which is bounded in any finite

interval. Then the number of points in any finite interval, for

example (0,x0], has a Poisson distribution with parameter

10 - A(x0) A(0). In this paper it is assumed that A(X) is

continuous, but not necessarily absolutely continuous. The

right derivative A(x) of A(x) is called the rate function of the

process; A(x) is called the integrated rate function and has the

interpretation that for x > 0, A(x) - A(0) - E[N(x)j, where N(x)

is the total nui.er of points in (0,xJ. Note that X(x) may

jump at points at which A(x) is not absolutely continuous. In

contrast to the homogeneous Poisson process, i.e., X(x) a constant

(usually denoted by X), the intervals between the points in a

one-dimensional nonhomogeneous Poisson process are neither inde-

pendent nor identically distributed.

Applications of the one-dimensional nonhomogeneous Poisson

process include modelling of the incidence of coal-mining disasters

(Cox and Lewis, 1966), the arrivals at an intensive

care unit (Lewis, 1972), transaction processing in a data base

management system (Lewis and Shedler, 1976b), occurrences of major
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freezes in Lake Constance (Steinijans, 1976), and geomagnetic

reversal data (Reyment, 1976). The statistical analysis of trends

in a one-dimensional nonhomogeneous Poisson process, based on the

assumption of an exponential polynomial rate function, is discussed

by Cox and Lewis (1966)i Cox (1972), Lewis (1972), and Lewis and

Shedler (1976b).

There are a number of methods for simulating nonhomogeneous

Poisson process which we review briefly.

(i) Time-scale transformation of a homogeneous (rate one)

Poisson process via the inverse of the (continuous) integrated

rate function A(x) constitutes a general method for generation

of the nonhomogeneous Poisson process (cf., inlar, 1975

pp. 96-97), This method is based on the result that XX2,..,,

are the points in a nonhomogeneous Poisson process with continuous

integrated rate function A(x) if and only if X1 = A(Xl) ,

X = A(X 2) , *0* , are the points in a homogeneous Poisson process

of rate one. The time-scale transformation method is a direct

analogue of the inverse probability integral transformation

method for generating (continuous) nonuniform random numbers.

For many rate functions, inversion of A(x) is not simple

and must be done numerically; cf., Gilchrist (1977) and Patrow

(1977). The resulting algorithm for generation of the non-

homogeneous Poisson process may be far less efficient than

qp-eration based on other methods; see e.g., Lewis and Shedler

(1976a, 1977) and Patrow (1977) for discussion of special

methods for efficiently generating the nonhomogeneous Poisson

process with log-linear and log-quadratic rate functions.
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(ii) A second general method for generating a nonhomogeneous Poisson

process with integrated rate function A(x) is to generate the

intervals between points individually, an approach which may

seem more natural in the event-scheduling approach to simulation.

Thus, given the points X1 = X11 X2 = x2,.... Xi = xi, with

X1 < X2 <...< Xi, the interval to the next point, Xi+1 - Xi,

is independent of x1 , ... xi 1 and has distribution function

F(x) = 1 - exp[-{A(xi + x) - A(xi)}]. It is possible to find the

inverse distribution function F-1 (), usually numerically,

and generate Xi+1  - Xi according to Xi+ 1 - Xi = F- (Ui), where

Ui  is a uniform random number on the interval (0,1). Note,

however, that this not only involves computing the inverse distri-

bution function for each interval Xi+1 -X, but that each distribution

has different parameters and possibly a different form. An

additional complication is that Xi+ 1 - Xi  is not necessarily a

proper random variable, i.e., there may be positive probability

that Xi+ 1 - Xi is infinite. It is necessary to take this into

account for each interval X i+ - Xi before the inverse probability

integral transformation is applied. The method is therefore very

inefficient with respect to speed, more so than the time-scale

transformation method.

(iii) In a third method,simulation of a nonhomogeneous Poisson

process in a fixed interval (0,x0] can be reduced to the

generation of a Poisson number of order statistics from a fixed

density function by the following result (cf., Cox and Lewis,

1966, p. 45). If X1 0 X2, ... Xn are tne points of the
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nonhomogeneous Poisson process in (O,x0], and if N(x0) = n,

then conditional on having observed n(> 0) points in (O,x0],

the Xi are distributed as the order statistics from a sample

of size n from the distribution function {A(x) -A(O)}/{A(x 0 ) -A(0)},

defined for 0 < x < x0. Generation of the nonhomogeneous Poisson

process based on order statistics is in general more efficient

(with respect to speed) than either of the previous two methods.

Of course, a price is paid for this greater efficiency. First,

it is necessary to be able to generate Poisson variates, and

second, more memory is needed than in the interval-by-interval

method in order to store the sequence of points. Enough memory

must be provided so that with very high probability the random

number of points generated in the interval can be stored. Recall

that the number of points in the interval (O,x0] has a Poisson

distribution with mean p0 = A(x0 ) - A(0). Memory of size, e.g.#

P0 + 4 11/2 will ensure that overflow will occur on the average

in only one out of approximately every 40,000 realizations. This

probability is small enough so that in the case of overflow, the

realization of the process can generally be discarded.

(iv) Again, there is a very particular and very efficient

method for simulation of nonhomogeneous Poisson processes with

log-linear rate function (Lewis and Shedler, 1976a) which, at

the cost of programming complexity and memory, can be used to

obtain an efficient simulation method for other rate functior ,,

as in Lewis and Shedler (1977).
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In this paper a new method is given for simulating a non-

homogeneous Poisson process which is not only conceptually simple,

but is also computationally simple and relatively efficient. In

fact, at the cost of some efficiency, the method can be applied

to simulate the given nonhomogeneous Poisson process without the

need for numerical integration or routines for gnating Poisson

variates. Used in conjunction with the special methods given by

Lewis and Shedler (1976a, 1977), the method can be used to generate

quite efficiently nonhomogeneous Poisson processes with rather

complex rate function, in particular combinations of long-term

trends and fixed-cycle effects. The method is also easily extended

to the problem of generating the two-dimensional nonhomogeneous

Poisson prccess.

2. SIMULATION OF ONE-DIMENSIONAL NONHOMOGENEOUS POISSON PROCESSES

Simulation of a nonhomogeneous Poisson process with general

rate function X(x) in a fixed interval can be based on thinning

of a nonhomogeneous Poisson process with rate function X (x) > X(x).

The basic result is

THEOREM 1. Consider a one-dimensional nonhomogeneous Poisson

process {N (x) :x > 0) with rate function A (x), so that the

number of points, N(x 0 ), in a fixed interval (0,x 0 ] has a
S* ^* ^*

Poisson distribution with parameter 40 w A (x0 ) - A (0). Let
* * * ,x

X1 , X2 , ., ) be the points of the process in the interval
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(O,x0 ]. Suppose that for 0 < x < x0, X(x) < X (x). For
*

1,2,...,n, delete the point Xi  with probability

1 - X(Xi)/X (Xi); then the remaining points form a nonhomogeneous

Poisson process {N(x):x > 0) with rate function X(x) in the

interval (0,x 0].

Proof. Since {N*(x) :x > 01 is a nonhomogeneous Poisson process,

and points are deleted independently, it is clear that the number

of points in {N(x):x > 0} in any set of nonoverlapping intervals

are mutually independent random variables. Thus, it is sufficient

to show that the number of points N(a~b) in {N(x);x > 0}

in an arbitrary interval (a,b] with 0 < a < b < x0 has a

Poisson distribution with parameter A(b) - A(a).

Observe that with p(a,b) a (A(b) - A(a)1/{A (b) - A (a)),

we have the conditional probability

1 if nk=0

{P(a.b)1n{l-p(a,b)}k ' n if k >n >0

P{N(a,b) - nlN*(a,b)-k} -
- -

and k>l (1)

0 if n>l

and k <n

Equation (1) is a consequence of the well-known result that,

conditional on n (>0) points in the interval (a,b], the joint

density of the n points in the process {N (x):x > 0} is

6



X(x I) .. A (X N)/{A (b) - A (a)}n. The desired result is
n

obtained in a straightforward manner from Equation (1) by removing

the condition.

Theorem 1 is the basis for the method of simulating non-

homogeneous Poisson processes given in this paper.

ALGORITHM 1. One-dimensional nonhomogeneous Poisson process.

1. Generate points in the nonhomogeneous Poisson process {N *(x)} with
*

rate function A (x) in the fixed interval (O,x0]. If

the number of points generated, n , is such that n = 0,

exit; there are no points in the process {N (x)).

2. Denote the (ordered) points by XI, X2 , ... , X,. Set

i - 1 and k - 0.

3. Generate Ui, uniformly distributed between 0 and 1. If

U. i  (X i)/A (Xi), set k equal to k+l and Xk = X1 .

4. Set i equal to i+l. If i < n , go to 3.

5. Return X1 , X2, ... 1 Xn , where n = k, and also n.

In the case where
, *

(i) {N*(x)) is a homogeneous Poisson process with A (x) = A ;

(ii) the minimum of X(x), say A, is known, and

(iii) generation of uniformly distributed variates is compute-'

tionally costly,
*

considerable speedup can be obtained by noting that X. is always

accepted if Ui  A/A . This obviates, in some cases, computation
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of x(*), which is the main source of inefficiency in the algorithm.
*

Moreover, in this case A Ui/X can be used as the next uniformly

distributed variate.

The method of thinning in this simple form, i.e.,
* *

(x) = A >max0 <x x0 A(x), can also be used to provide an

algorithm for generating a nonhomogeneous Poisson process on an

interval-by-interval basis, as discussed in subsection (ii) of

Section 1. The interval to the next point X i+1 - Xi  is

obtained by generating and cumulatinq exponential(A*) random

numbers El, E2, ... , until for the first time

U (X1 + E1 +.. + E )/A, where the U are independent

uniform random numbers between 0 and 1. This algorithm is

considerably simpler than the interval-by-interval algorithm

of Section 1 since it requires no numerical integration,

only the availability of uniform random numbers.
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3. DISCUSSION OF THE METHOD OF THINNING

(i) Relationship to acceptance-rejection method

The method of thinning of Algorithm 1 is essentially the

obverse of the conditional method of Section 1, using condition-

ing and acceptance-rejection techniques to generate the random

variables with density function A(x)/{A(x) - A(O)} (Lewis

and Shedler, 1977, Algoritnm 3). The differences are subtle,

but computationally important. In the acceptance-rejection

metnod, it is first necessary to generate a Poisson variate

with mean 10 - A(x0 ) - A(O), and this involves an integration

of the rate function A(x). Then the Poisson (P0) number, n,

of variates generated by acceptance-rejection must be ordered to

give X1 , X2, ... 1 Xn .

(ii) Simplest form of the thinning algorithm
*

In the simplest form of the method of thinning, A (x) is

taken to be a constant X , so that, for instance, the points

X1, X2, ... , Xn* can be generated by cumulating exponential (X*)

variates until the sum is greater than x0  (cf., Lewis and /

Shedler, 1976a, Algorithm 1). Thinning is then applied to the

generated points. No ordering, no integration of A(x) and no

generator of Poisson variates is required. Of course for both
algorithms to be efficient, computation of A(x) and A (x)

must be easy relative to computation of the inverse of A(x).
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(iii) Efficiency

For the thinning algorithm (as well as the algorithm based

on conditioning and acceptance-rejection) efficiency, as measured
*

by the number of points deleted is proportional to P 0=
* A*

{A(x 0 ) - A(0)}/{A (x0 ) - A (0)}; this is the ratio of the

areas between 0 and x 0 under A(x) and A (x). Thus, X* (x)

should be as close as possible to X(x) consistent with ease

of generating the nonhomogeneous Poisson process {N (x):x > 0).

(iv) An example: fixed cycle plus trend

To illustrate the applicability of the thinning

algorithm, consider its use in conjunction with the algorithms

given by Lewis and Shedler (1976a, 1977) for log-linear and

log-quadratic rate functions. Assume that it is necessary to

simulate a nonhomogeneous Poisson process whose rate function

increases quadratically with time but also has a fixed-period

cycle, e.g.,

A(x) - exp{a 0 + aix + 02 x2 + K sin(W0x 8)1,

0 <X< xO; K > o; 0 < 8 < 2n; wo > 0.

This is the model found by Lewis (1972) for arrivals at an

intensive care unit, where there is a strong time-of-day effect.

Thus if w0 = 2w/T0 ' then the period To = 1 day. Computation

of A (.) is difficult. To determine A (x), note that

A(x) < A (x) = exp{a 0 + K + alx + a 2 x 2
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and therefore

X(x)/X (x) = exp[K{l - sin(w0x + 0)1]

Thus in Step 3 of Algorithm 1, Ui is compared to

exp[K~l - sin(w0Xi + e)}]. Equivalently, if unit exponential

variates Ei are available, it is faster to compare Ei to

K{1 - sin(w0Xi + 0)1, accepting Xi  if Ei > K{l - sin(w0 Xi + 0)}.

The main computational expense here is generation of the Ei

and computation of the sine function, both n times. The expense

involved in computation of the sine function can be reduced by

noting that the point Xi is always accepted if Ei is greater

than 2K. This will be a great saving if the cyclic effect is

minor (K small). The number of Ei generated can be reduced

by noting that if, in one step of the algorithm, Ei is observed

to be greater than 6, then E - Ei - 6 can be used as an

(independent) unit exponential variate in the next step. The

above procedure can be extended to the case of a trend with

two fixed-period cycles, e.g., a time-of-day and a time-of-week

effect.

4. SIMULATION OF TWO-DIMENSIONAL HOMOGENEOUS POISSON PROCESSES

The two-dimensional homogeneous Poisson process (of rate X > 0)

is defined by the properties that the numbers of points in any finite

set of nonoverlapping regions having areas in the usual geometric

sense are mutually independent, and that the number of points in any

region of area A has a Poisson distribution with mean XA;

11



see, e.g., Karlin and Taylor (1975), pp. 31-32. Note that the

number of points in a region R depends on its area, but not on its

shape or location. The homogeneous Poisson process arises as a

limiting two-dimensional point process with respect to a number

of limiting operations; cf.,Goldman (1967a,b). Properties of

the process are given by Miles (1970). Applications of the two-

dimensional homogeneous Poisson process to problems in ecology

and forestry have been discussed by Thompson (1955) and Holgate

(1972). The model also arises in connection with naval search

and detection problems.

In considering the two-dimensional homogeneous Poisson

process, projection properties of the process depend quite

critically on the geometry of the regions considered. These

projection properties are simple for rectangular and circular

regions, and make simulation of the homogeneous process quite

easy. We consider these two cases separately.

(i) Homogeneous Poisson Processes in a Rectangle

The following two theorems form the basis for simulation

of the two-dimensional homogeneous Poisson process in a

rectangle.

THEOREM 2. Consider a two-dimensional homogeneous Poisson process

of rate X, so that the number of points in a fixed rectangle

R = {(xy): 0 < x < x0 , 0 < y < Y01 has a Poisson distribution

with parameter Xx0y0. If (Xl,Y 1 ), (X2 ,Y2 ), '" I (XN N ) denote

the position of the points of the process in R, labelled so that

12



X1 < X2 < ... < XN, then Xl, X ... , form a one-dimensional

homogeneous Poisson process on 0 < x < x0 of rate Ay0. If the

points are relabelled (X ,Y ), (X2,Y2), ... , (X ,Y') so that

P' Y'"Y XiN, 1'2
1 2 < * < ,then Y', Y'1, ,Y form a one-dimensional

homogeneous Poisson process on 0 < y y0  of rate Ax0 .

Proof. The number of points in an interval on the x-axis, say,

(a,b] is the number of points in the rectangle bounded by the

lines x - a, x = b, y = 0, and y - y0 . This number is therefore

independent of the number of points in any similar nonoverlapping

rectangle bounded on the x-axis by x - a', x = b', i.e., the

number of points in the interval (a',b']. This establishes the

independent increment property for a one-dimensional Poisson

process. The Poisson distribution of the number of points in

(a,b] follows from the fact that it is equal to the number of

points in the rectangle bounded by x - a, x - b, y - 0, and

y - y0, and the latter has a Poisson distribution with parameter

AY0(b-a). An analogous argument shows that the process formed

on the y-axis by Y, Y , ... , Y' is Poisson.

Conditional properties of the Poisson process in a rectangle

are established next. The important thing to note is that while

the processes obtained by projection of the points onto the x

and y axes are not independent, there is a type of conditional

independence which makes it easy to simulate the two-dimensional

process.
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THEOREM 3. Assume that a two-dimensional homogeneous Poisson

process of rate X is observed in a fixed rectangle

R = {(x,y): 0 < x < x0, 0 < y < y0 } , so that the number of

points in R, N(R), has a Poisson distribution with parameter

x0y0 . If N(R) = n > 0 and if (XlY 1 ), (X2 ,Y2 ),...,(XnYn)

denote the points, labelled so that X1 < 2 < go' <Xn, then con-

ditional on having observed n points in R, the X , X2,...,Xn

are uniform order statistics on 0 < x < x0 , and YI' Y2 ' "'" ' Y-- n

are independent and uniformly distributed on 0 < y < YO'

independent of the X..

Proof. If there are N points in the rectangle, form N

vertical strips, from 0 to y0 and from Xi to Xi + dxi,

such that each strip contains only one of the N points. The

position of Yi on the vertical line through Xi is that of

an event in a Poisson process of rate Xdxi, given that only

one event occurs. But this means that Yi is uniformly dis-

tributed between 0 and y0 " Moreover, this is true irrespective

of where Xi occurs; therefore Yi is independent of Xi

Also, occurrences in all N strips are independent, and therefore

Yi is independent of the other Y and Xj positions, j # i.

Tnus the Yi are a random sample of size N from a uniform

(0,y0 ) distribution, independent of the Xi. Now condition

on N = n (> 0); since by Theorem 2 the X form a Poisson process

they are, by well-known results, order statistics from a uniform

(0,x0) sample and are independent of the fixed size Yi popula-
tion; .th~ds the irs (XiyI) are mutually independent.

14



COROLLARY.* Denote the Poisson points by (X1 ,Y1), (X2 ,Y2), ...,

where the index does not necessarily denote an ordering on either

axis. Conditionally, the pairs (Xl,Yl),...,(XN,YN) are inde-

pendent random variables. Furthermore, for each pair, Xi is

distributed uniformly between 0 and x0, independently of Yi'

which is uniformly distributed between 0 and y0.

From the two theorems, the following simulation procedure

is obtained.

ALGORITHM 2. Two-dimensional homogeneous Poisson process in a

rectangle.

1. Generate points in the one-dimensional homogeneous Poisson

process of rate )y0 on (0,x03. If the number of

points generated, n, is such that n - 0, exit; there

are no points in the rectangle.

2. Denote the points generated by Xl < X2 < ** < Xn #

3. Generate Y1 ' Y2 ' "" 'n as indepensdent, uniformly dis-

tributed random numbers on (0,y0].

4. Return (X1 ,Y1), (X2,Y2), ... , (Xnn ) as the coordinates

of the two-dimensional homogeneous Poisson process in the

rectangle, and n.

Note that generation of the points Xl, X2, ... , XN in Steps 1

and 2 can be accomplished by cumulating exponential(Xy0 ) random

numbers. Alternatively, after generating a Poisson random number

N = n (with parameter Xxo0y), n independent, uniformly distributed

random numbers on (0,x0] can be ordered? see Lewis and Shedler

(1976a), p. 502. 15



Another algorithm for generation of the two-dimensional

Poisson process in a rectangle can be based on the Corollary

to Theorem 3.

(ii) Homogeneous Poisson Processes in a Circle

The following two theorems form the basis for simulation

of the two-dimensional homogeneous Poisson process in a fixed

cirle of radius r0.

Fix the origin and initial line of polar coordinates r

and 6 so that the origin is the center of the circle and the

initial line is horizontal. We consider the projection of the

points (Ri,Oi), of the Poisson process circularly into the

r-axis (Ri) and radially onto the circumferential e-axis (ei).

The number of points projected onto the r-axis in the interval

(O,r], where r < r0 , is the number of points in the circle of
2radius r and area rrr ; thus the number of points in (O,r]

has a Poisson distribution with parameter Avr 2. Consequently,

if the projection process on the r-axis is a Poisson process,it

must have integrated rate function A(r) = Afr 2 , with A(O) = 0.

Similarly,the number of points on the circumferential arc

of the fixed circle (radius r0) from 0 to 6 is the number

of points in the sector of the circle defined by radial lines

at angles 0 and 0; thus,the number of points on the arc from

0 to 6 has a Poisson distribution with parameter AXr2 x

= OXr2/2. Accordingly, if the projection process on the 6-axis

is a Poisson process, it must have integrated rate function

A() = Xr2 /2, with A(0) = 0.
0'
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We now assert that the projection processes are in fact

Poisson processes. Since proofs of these theorems are directly 4

analogous to the proofs of Theorems 2 and 3, they are omitted.

THEOREM 4. Consider a two-dimensional homogeneous Poisson process

of rate X so that the number N of points in a fixed circular area

C of radius r0 and area wr2 has a Poisson distribution0 2 0

with parameter ?fr0 . If (R1,01), (R2,02), ... , (RNtN)

denote the points of the process in C, labelled so that

R1 < R2 < @to < RN, tnen R1 , R2, ... , R form a one-dimensional

nonhomogeneous Poisson process on 0 < r < r0 with rate function

X(r) - 2wrr. If the points are relabeiled (RIle), (R , I2),

... , so that < < ... < 6j, then e e

form a one-dimensional homogeneous Poisson process on 0 < 0 < 2n

of rate Xr 2/2.
0

THEOREM 5. Assume that a two-dimensional Poisson process of

rate A is observed in a fixed circular area C of radius r0

so that the number of points in C, N(C), has a Poisson distri-

2bution with parameter Xwrr0  If N(C) - n > 0 and if

(R 1 6), (R2102), ... , (Rne n ) with R1 < R< ... < Rn

denote the points, then conditional on having observed n points in

C, the R1 , R2, ... , Rn are order statistics from the density

f(r) - 2r/r2 concentrated on 0 < r < rO-, and 0I, 62, ... ,

are independent and uniformly distributed on 0 < 0 < 27,

independent of the Ri .
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These theorems lead to the following simulation procedure.

ALGORITHM 3. Two-dimensional homogeneous Poisson process in a

circular area.

1. Generate n as a Poisson random number with parameter

2XTrr 0. If n = 0, exit; there are no points in C.

2. Generate n independent random numbers having density

function f(r) = 2r/r 0 and order to obtain R1 R R< a* <R

3. Generate 611 e2l''' I en independent, uniformly distributed

random numbers on (0,2w].

4. Return. (R1 1 ), (R2 ,62), ... , (RnOn), and n.

Note that the wedge-shaped density 2r/r2 can be generated by

scaling the maximum of two independent uniform (0,1) random

numbers.

Direct generation of homogeneous Poisson points in

non-circular or non-rectangular regions is difficult. The

processes obtained by projection of the points on the two axes

are nonhomogeneous Poisson processes with complex rate functions

determined by the geometry of the region. However, the conditional

independence which is found in circular and rectangular regions

(Theorems 3 and 5) for the processes on the two axes is not

present. In particular, given that there are n points

(X1,Yl),.**(XnYn) in a non-rectangular region, the pairs (Xi,Yi)

are mLtually independent, but X is in general not independent

of Yip i = 1,...,n. Therefore, it is simpler to enclose the

18



region in either a circle or a rectangle, generate 
a homogeneous

Poisson process in the enlarged area, and subsequently 
exclude

points outside of the given region.

5. SIMULATION OF TWO-DIMENSIONAL NONHOMOGENEOUS POISSON 
PROCESSES

The two-dimensional nonhomogeneous Poisson process

{N(x,y):x > 0, y > 01 is specified by a positive rate function

X(x,y) which for simplicity is assumed here to be continuous.

Then the process has the characteristic properties that 
the numbers

of points in any finite set of nonoverlapping regions having

areas in the usual geometric sense are mutually independent, and

that the number of points in any such region R has a Poisson

distribution with mean A(R); here A(R) denotes the integral

of X(x,y) over R, i.e., over the entire area of R.

Applications of the two-dimensional.nonhomogeneous Poisson

process include problems in forestry and naval search and

detection. The use of the process as a model for the pattern of

access to the storage subsystem of a computer system will be

reported elsewhere. Detection and statistical analysis of trends

in the two-dimensional nonhomogeneous Poisson process is discussed

by Rantschler (1973).

Theorem 1 dealing with thinning of one-dimensional non-

homogeneous Poisson processes generalizes to two-dimensional

nonhomogeneous Poisson processes. Thus, suppose that

X(x,y) < X (x,y) in a fixed rectangular region of the plane.

If a nonhomogeneous Poisson process with rate function X (x,y)

is thinned according to X(x,y)/x (x,y) (i.e., each point
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(Xi,Y i ) is deleted independently if a uniform (0,1) random
number Ui is greater than A(Xi,Yi)/X (XiYi)), the result

is a nonhomogeneous Poisson process with rate function X(x,y).

The proof is a direct analogue of the proof for the one-dimensional

case.

The nonhomogeneous Poisson process with rate function

X(x,y) in an arbitrary but fixed region R can be generated by
enclosing the region R either in a rectangle or a circle, and

applying Algorithm 2 or Algorithm 3. The following procedure

assumes that the region R has been enclosed in a rectangle R

and that X * max{X(x,y): x,y E R) has been determined; here

the bounding process is homogeneous with rate X* in the rectangle R*.

ALGORITHM 4. Two-dimensional nonhomogenous Poisson process.

I. Using Algorithm 2, generate points in the homogeneous
* R*

Poisson process of rate X in the rectangle R. If

the number of points, n , is such that n - 0, exit; there

are no points in the nonhomogeneous Poisson process.
*

2. From the n points generated in 1, delete the points that

are not in R, and denote the remaining points by
* , * * * * ,** *

(X1,¥I), (X2,Y2 ),***.(XmYm) with X1 < X2 < $so < Xm.
Set i - 1 and k - 0.

3. Generate Ui uniformly distributed between 0 and 1. If
** ** *

Ui  (Xi,¥i)/X , set k = k+l, Xk = Xi and Yk = i"

4. Set i equal to i+1. If i < m , go to 3.

5. Return (X1,Y1 ), (X2 ,Y 2 ), ... 1 (XnYn), where n = k, and n.
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It is not necessary that the bounding process have a constant rate

A Theroems 2 and 4 can be generalized to certain cases where

the process is nonhomogeneous (cf., Bartlett, 1974), for instance

A(x,y) - p(x) *(y). Thus, a tighter bounding process which is

nonhomogeneous may possibly be obtained. It is not simple to

see how much efficiency could be gained by doing this, as opposed

to using a two-dimensional homogeneous Poisson process for the

bounding process. Again, as in the one-dimensional case, savings

in computing A(x,y) can be obtained by computing its minimum

beforehand, and the Ui's can be reused by scaling.

6. COMPARISONS AND CONCLUDING REMARKS

The method of thinning presented in this paper for simulating

one-dimensional and two-dimensional nonhomogeneous Poisson processes

with given rate function can be carried out in a computationally

simple way by using a bounding process which is homogeneous with a

rate function equal to the maximum value of the given rate function.

No numerical integration, ordering or generation of Poisson

variates is required, only the ability to evaluate the given :ate

function. The thinning algorithm appears to be particularly

attractive in the two-dimensional case where there seem to be

no competing algorithms.

The thinning algorithm can also be implemented more

efficiently at the cost of programming complexity and by casing a

nonhomogeneous bounding process. In particular the method can be

used in conjunction with the special algorithms given by Lewis

and Shedler (1976a, 1977).

It is also possible to extend tha method of thinning to

simulation of doubly stochastic or conditioned Poisson processes.

This will be discussed elsewhere.
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