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The work done under this contract resulted in two scientific
papers , both of which were co-authored with Mark Ablowitz:

(i) “Long internal waves in fluids of great depth ,”

submitted to The Physics of Fluids; and

(ii) “On the evolution of packets of water waves ,” sub-
mitted to the Journal of Fluid Mechanics.

These papers are include in this report an Appendices A and B..

The first paper discusses three-dimensional effects on the
kind of internal waves first discovered by Benjamin (1967) and
Davis and Acrivos (1967). In this paper , we derive the ap-
propriate higher-dimensional generalization of Benjamin’s equa-
tion describing the evolution of these waves, and show that the
(p lane-wave) solitons are not unstable to long transverse per-
turbations .

The second paper represents the major effort under this
contract. In it , we discuss three-dimensional effects on packets
of surface waves, including both long waves (governed by the
Korteweg-deVries equation in two dimensions) and short waves
(governed by the nonlinear Schrodinger equation in two dimensions).
In each case , we derive the appropriate higher-dimensional equa-
tion , along with the appropriate boundary conditions . Then using
these equations we

(i) analyze the stability of (plane-wave) solitons to long
transverse perturbations ;

(ii) show the-existence of “lumps,” which are higher dimen-
sional analogues of solitons;

(iii) derive conditions under which a packet of capillary-
type waves must “focus” at a point in a finite time
(a strong nonlinear instability);

(iv) investigate the suitability of Inverse Scattering Trans-
forms for these higher dimensional equations ; and

(v) discuss some special solutions that may have physical
interest.
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It is difficult to describe the outcome of these analyses
simply, because different results are obtained in different
ranges of the dimensionless fluid depth and dimensionless sur-
face tension . Certainly the evolution of wave packets in three
dimensions involves phenomena that cannot occur in two dimen-
sions. More detail has been given in the previous quarterly

j progress reports , and of course in the paper itself (Appendix B).

Tile work in these two papers shows the direction of research
that seemed most fruitful as it developed. The final result ,
however, is not obviously related to the set of problems out-
lined in the original proposal for this contract. Therefore ,
it may be worthwhile to comment here on the current status of
the problems that were originally outlined almost two years
ago .

1. It was proposed to analyze the resonant interaction of
a long internal wave with a packet of short surface waves,

g originally discussed by Phillips (e.g., 1974). The proposed
analysis would employ multiple time-scales , in order to see if
the evolution could be described in terms of solitons . The
answer is affirmative , but no work on that problem was done under
this contract , primarily because the analysis had already been
initiated by Larry Redekopp (private communication). His work
should appear shortly as a TRW Report; related work was also done
by Grimshaw (1977).

2. It was proposed to analyze the oblique interaction of
envelope solitons, to see whether an interaction like Miles ’

• (1977) three-wave resonance of KdV solitons could occur . The
answer is affirmative, as shown by Newell and Redekopp (1977).
However, the results of our stability analyses are relevant here.
The fact that envelope solitons are unstable to long transverse
perturbations , whereas KdV-type solitons ordinarily are not , sug-
gests that the oblique interaction of envelope solitons has
limited physical significance .

2 9 ~ 3 4



3. It was proposed to reinterpret field measurements of
ocean wave spectra in terms of solitons . But these spectra are
decidedly three-dimensional in character . The differences al-
ready discovered between wave evolution in two and three dimen-
sions suggest that (two-dimensional) solitons alone will not
explain these spectra , and poinLs tu Lh~ need for more work on
the three-dimensional problem .

4. It was proposed to study the stability of envelope soli-

tons to transverse perturbations. This analysis was completed

under this contract. Experiments to test these results are now

being set up by Joe Hammack .

5. It was proposed to study the viscous decay of envelope
solitons . The experimental portion of this problem has been
completed ; development of an appropriate theory , and its com-
parison with the experimental data should occur within the next
year .

In summary, the work completed this year on the evolution
of packets of water waves in three dimensions indicates that
even though the two-dimensional theory (involving solitons)
may describe well the essentially two-dimensional laboratory
experiments on water waves, neither is necessarily representative
of what happens in the three-dimensional ocean . We have begun
to understand some of the additional phenomena that occur in

three dimensions , but much more work is rcquired .
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APPENDIX A

LONG INTERNAL WAVES IN FLUIDS OF GREAT DEPTH

by

N.  J .  Ablowit z *
Program in Applied Mathematics

Princeton University
Princeton , New Jersey 08540

and
H. Segur

Aeronautical Research Associates
of Princeton , Inc.
50 Washington Road

P.O. Box 2229
Princeton , New Jersey 08540

ABSTRACT

An equation is derived that governs the evolution in

two spatial dimensions of long internal waves in fluids

of great depth . The equation is a natural generalization

of Benjamin ’s (1967) one-dimensional equation , and relates

to it in the same way that the equation of Kadomtsev and

Petviashvili relates to the Korteweg-deVries equation .

The stability of one-dimensional solitons with respect to

long transverse disturbances is studied in the context

of this equation . Solitons are found to be unstable with

respect to such perturbations in any system in which the

phase speed is a minimum (rather than a maximum) for the

longest waves. Internal waves do not have this property ,

and are not unstable with respect to such perturbations .

*Perij~nent Address: Department of Mathematics , Clarkson
College , Potsdam , New York , 13676.

February 1978
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I
I. INTRODUCTION

I It is known that the evolution of long waves of

I moderate amplitude in a nonlinear system depends on the

form of the linearized dispersion relation . If , in the

I long wave limit (k -
~ 0), the linearized dispersion rela-

tion is

I
= c~ 

k2 - 2~c0k~ + 0(k 6 )  
, (1.1)

I
the governing equation is typically the Korteweg-deVries

(KdV) equation [1 ,2,3] (assuming quadratic nonlinearities),

(1.2)

If the dispersion relation has the form

= c2k2 - 2bc0
k2 I kI + O(k~) , (1.3)

then (1.2) is replaced by the equation of Benjamin [4],

~~~~~~ 
+ au ~~~~~ b K(u) = 0 , (1.4)

where

11(f)  
~ J ~~~ f(y)dy

is the Hilbert operator . [Note the sign convention.] Both

equations are known to have soliton solutions [5], and

these agree in many of their important features :

for (1.2),
u — (12K 2 8/cz)sech2{K(x - 4K28t)} (1.5)

I
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and for (1.4), with cb > 0

u = ~~~~~~ (x - ct))
2 

+ 1) . (1.6)

Whereas the KdV equation can be solved exactly as an

initia l value problem [6 , 7 ] ,  a corresponding method of

solution for (1.4) has not yet been discovered. There-

fore , it is not presently known how different the general

solutions of the two problems really are .

If the long waves in (1.2) are subjected to even

longer transverse modulations , Kadomtsev and Petviashvili

[8] reasoned that the KdV equation should be generalized

to:

xo

+ au + ~~ - -

~~~~ 

f }-4 d ~ = 0 , c0 > 0

x (1.7)

Moreover , they showed that the soliton solution , (1.5),

is either neutrally stable for a limited t ime or unstable ,

depending on whether ~ is positive or negative ; i . e . ,

if the linearized phase speed (w/k) has a maximum at

k = 0 (~ > 0) , then the solitons are not unstable . For

example , this is the situation for long water waves without

surface tension .

[For 8 > 0 (the stable case), no information travels

faster than the waves described by (1.7), and it is ap-

propriate to take x0 
— +~~ . Further, one may require

that u • 0 as x + +~~~~~ , but then one cannot require that
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u -~ 0 as x = - unless 7 3 U  dx = 0 . For

~ < 0 , the situation is reversed and one should take

= - . Moreover , it is worth noting that when the

one-dimensional solitons are unstable (E < 0) , (1.7)

admits “lump S’ solutions , which are localized in both x

and y and do have 7 ~~~~~~~~~ dx = 0 [9]. Their interaction

behavior suggests that lumps are two-dimensional analogues

of solitons .]

I The purpose of this note is to show that , with regard

I to very long transverse modulations , (1.2) and (1.4)

behave similarly. Specifically , we will show that:

I (i) the appropriate generalization of (1.4) for two-dimensional

waves is (c0 > 0)

I

I 
+ au + b T 11(u) - 55;~T dF~ = 0 , (1.8)

subject to the constraint that 
~~~ 

dx = 0 ; and

(ii) the soliton solution , (1.6), is either neutrally

stable for a limited time or unstable , depending on

I whether b is positive or negative . Again , if the

lineari zed phase speed has a maximum at k 0 , then

the solitons are not unstable . This is the situation for

long internal wave s , traveling along the thermocline in
I the deep ocean [4,10 ,11].

I In Section III, we show ho~ to derive (1.8) in the context

of internal waves on an ocean thermocline . This derivation

I is based on the work of Ono [11], but we have found his analy-

I
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I
sis to be incomp lete. In particular , the matching section of

$ his analysis applies only ~ the density gradient is con-

tinuous , although no such restriction is stated (or even

suggested) in [11]. In order to complete this analysis ,

therefore , we show how to match correctly both where the

density gradient is continuous , and where either the density

or its gradient is discontinuous .

Finally, we note that if one is simply interested

in the structure of the underlying equation , such a derivation

is unnecessary , because one can see directly from the linear

dispersion relation , (1.3), that (1.8) is the appropriate

generalization of (1.4). In two dimensions , we must interpret

k2 
= k2 + k2

x y

in (1.3). In order that the effects of y-variations enter

at the same order as the linear dispersion , we require

that

= O(k~) , k,j < <  1 . (1.9)

Then (1.3) becomes

k
~~
2

- c~k,~[
l+(~~)_ 2 ~~~~

- Ik~
J

and for waves in one direction , we obtain

k w  - c0k~ - bk
~ Ik~ l + .-

~~~~ k . (1 .10)

This corresponds to a certain linear operator acting on

exp {i(k
~
x + ~~~ - wt)} . After the Galilean transforma-
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*
tion ~ = x - c t  , T = t , this operatc~ becomes

-~ i3t  , sgn(k~) _iK)

Lv = 

~~ 
(
~~

+ b ~~~2 H(v)) + 
c 

~~v 0

Integrating once gives the linearized version of (1.8)

and the anal y sis which yi e lds (1.4) shows that the non-

I linear term also enters at this order.

I
I
I
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I
I I .  STABILITY OF THE SOLITON

I In order to test the stability of (1.6) to weak

transverse perturbations , it is convenient to rescale

y so that (1 .8)  b ec omes

I x
0

+ au + b a 2 H(u )  
- 6 2f  

a 2 u
ax -~-y-2- dx = 0

I x ó << 1 . (2.1)

I We define a slow time scale , and a spatial scale that

travels with the wave :

T = ~~t
t (2.2)

z = x -f cdt
’ - E~(T ,y , 5)

and we assume

u = u0(z,T,y,~~) + 6u1(z,T,y,6) . (2.3)

Then ,

au 
= ~ a~ au -c = c ( T ) + 6 ~~~

(2.4)
au au + au p a8
ry

= 
~~~~~ ~~

Substituting into (2.1) yields
au ~ a 2

-E -----~~+ a u  —2 + b ~~--~- l1(u )
0o a z

a a 2
0 -

+ o 
~~ 

- c ~~~~~~~~ + a .
~~
— ( u u 1) + b ~~~~~~ ff(u1~

au
I + 62[ _

~i + au1 
1 + + +az 3y ay 0

a 2uI -f 
~~~

° dz l]  
- O(6~) (2.5)

z

I
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To leading order , (2.5) is

au 2
-~~~ . ...2. + au ~~

—°- + b ~~—r 11(u ) = 0 , (2.6)

and the solution of interest is

4~
u0(z;E) 

= 
f~~z\ ’ , ~b > 0 (2.7)

+ 1

At higher order , the equations all take the form

L f = F  , (2.3)

I
where

1 - a f  a 2
Lf -c + a ~~~ (u 0

f)  + b ~~~~~ 
H ( f )

The usual secularity condition is found by multip lying

1 (2.8) by u0(z) , integrating on (-°~,~~) , and using (2.6):

I f u0Fdz = 

~ 
f - btl (u ) 

~~ 
]

Inserting (2.7), this can be written as

f u Fdz [4b
2 

~~~~ Z 2 
z 2 f

) ]

Thus , the solution of (2.8) and its derivative is bounded

for all z only if

I
i fuoFdz 0 . (2.9)

1
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This provides our basic secularity condition . We also

note that (2.9) will not yield a uniformly valid solution

on l x i  < , but does give the correct evolution following

P the soliton . This is also true for (1.7).

At 0(6) , ( 2 . 5 )  yields

Lu1 = - (2.10)

Applying (2.9) requires that

= 0(6) ; = c + 6 ~~~~~~ (T ,y 6) (2.11)

Hence , the first nontrivial result comes by taking

u1 = 6u2 . The question of stability is determined at

0( 6 2) , where (2 .5 )  become s

32u
Lu2 = - - - 2~ ~~~~ - u~ + f 3y ’~

° dz

Z (2.12)

Applying ( 2 . 9 )  to (2 .12) , and us ing 3 E / ay  = 0(6) , y ields

an expression which reduces to

1 3 2 0 — 3
2
0- ~ + C ~~~~ 

— 0 . (2.13)

If b < 0 , then ~ ( 0 (from (2.7)), and (2 .13) shows

that arbitrarily small y-variations in the phase

of the soliton grov rapidl y;  i . e . ,  the

soliton is unstable with respect to such transverse per-

turbations . In fact , (2.13) is elliptic when ~ < 0 , and

(2.13) with initial conditions actually is ill-posed .

However , this is due to the fact that we are considering

I
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I
long wave perturbations . A similar result occurs in

I Whitham ’s analysis of the Stokes wave problem [12]: he

I 
finds that the slow modulation equations are elliptic .

In the one-dimensional problem this instability leads

to solitons . Here we expect to find lump-type solutions.

Conversely, if b > 0 , then ~ > 0 , and these perturba-

I tions merely propagate without change along the crest of the

soliton . Thus , the stability of the soliton solution of

(1.8) with respect to transverse perturbation s is deter-

mined by exactly the same criterion that determines the

(transverse) stability of the KdV soliton obeying (1.7);

i.e., whether the linearized phase speed is a maximum

or a minimum at k — 0
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I
III. DERIVATION OF THE TWO-DIMENSIONAL EQUATION

I In this section , we derive (1.8) in the context of

i long internal waves. For the sake of definiteness , it

is convenient (but not necessary) to think in terms of

a background density distribution of the form

I p
0 (z)  = p

~jl 
+ 6 e x p ( - z/ h ) } , z > 0 , (3.1)

For the problem of waves propagating along the oceanic

thermocline , z = 0 denotes a plane of symmetry (where

the vertical velocity vanishes for the modes of interest)

at the center of thermocline , h is a measure of the

thermocline thickness , the ocean surface is taken at

z = +~~ , and typically 6 - 1 02  . ~Long” disturbances

have horizontal scales much larger than h , and (1.8)

results if they are also much smaller than the distance

to the surface. Later , we will indicate in context what

modifications to this derivation are necessary for

density distributions that differ significantly from that

in (3.1).

The equations of motion of an incompressible , non-

diffusive fluid are

V.i~~= 0

I p = -Vp - . (3 .2)

I
I
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I
where U = (u,v,w), g = g(0,0 ,l) and D/Dt = a/at + u•V

I In this problem , we require

I w = 0 at z = 0 , -, 0 as z -, (3.3)

I In the absence of any fluid motion ,

p = p (z) , given

p = p0(z) = -gf p0d~ . (3.4)

The required strategy for this problem can be seen

by looking for infinitesimal perturbations of the form

(z)e~~~~
_c (1

~~
t)

around this undisturbed state . The result is an equation

for the vertical velocity of the form

~~ .(p (z)  

~
) - 

(4 ~a~
a (z) + k 2 P 0 (z))  ~ = 0 (3 .5)

For realistic density profiles , a natural length scale is

p (z) - p
h = dp I (3.6)

- -~~~~(z) 
-‘mm

Hence , the waves in (3.4) are long if

= I k I h  <<  1 . (3.7)

In what follows , we shall assume that Ip~(z)l is mono-

tonically decreasing , and is finite as z -
~~ 0 . Assuming

I
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c 2 (k) remains finite as k -p 0 , it follows that there

is an “inner region” where (i/h) is the appropriate

variable and the last term in (3.5) can be neglected ,

to leading order. In this region , the solution can be

expanded as

- 4 (z)  + Ik k  (z)

c2 - c~ + kid (3.8)

On the other hand , for fixed , small k and sufficiently

large z , there is an “outer region” where density varia-

tions can be neglected and (3.5) reduces to

I
- k2 q - 0

The appropriate variable in this region is iktz(=cz/h)

I and the solution of interest is

- Ae~~~~~ . (3.9)

The region of overlap is found by solving for z from

the relation :

I - p (z) - (3.10)

I For the density distribution given by (3.1), this occurs

i 
as z/h ~ in the inner region, and as Ikl Z -p 0 in the

I outer region. For other types of smooth density distribu-

I tions, the matching can occur in a neighborhood of a

finite z/h , but always as I k I z  -~~ 0 . Provic~ d dp0/dZ

I
I
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is continuous , ~ and its derivative must match in this

region of overlap , and it follows from the structure of

(3.8) and (3.9) that the required conditions are

d~ dq 1 (3.11)

These matching conditions provide the additional information

required to specify the solutions 
~o ’~ l completely.

If d~ /dz is discontinuous , there may be no region

of overlap , and then the matching must be done along the

isopycnic surface (surface of constant density) where the dis-

continuity occurs. The required matching conditions now

are that the normal velocity and pressure are continuous

across this surface. In the linearized problem , these

reduce to matching 4 and dq/dz , but not in the non-

linear problem . We will discuss this point in more detail

after first deriving (1.8) for a density distribution like

that in (3.1), where dp 0/dz is continuous .

Returning now to (3.2) and (3.3), we apply these

ideas to the nonlinear problem . Small amp litude waves

which are long in the sense described above , traveling

in the x-direction , are obtained by using the following

scaling in the lower layer (z/h — 0(1))

-a
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I
~~~~c(x -ct )/h ,0

c 3 / 2 ( y f h)

ç = z / h

T = c 2c0t/h

u - cc0u1(~ ,ri,~~,t) + c c 0u2 (3.12)
v c 3/2 c vo l
w — c 2c0w1(~~,ri,~~,t) + c

3cow2
— p (~,) + CP ODPl(~~,fl ,

? ,t)

p - p (c ) + ( € p c 2 ) p
1

(~~ , r 1,~~ , T )  . 
—

These scales were used by Ono [11], except for y , which

is based on (1.9), and v , which is required for momentum

balance. To leading order , after using (3.4), (3.2) yields

dp
0

3u1 3w1

3u1 3p1(p (~ )/p ) ~~~~~~~~~ + ~~~~~~~~~ = 0 , (3.13)

h
~ _ _ + & r p

l °

~
“l 3p 1(p

0~~ )/p 00
) ~~~~~~~~~ + = 0 -

We define

W i 
— - (~ , n , t ) q ( ~ ) (3.14)

and for future purposes , we require that 3f/3~ 
-p 0 as

RI -p ~ Then (3.13) provides the equation that deter-

mines the vertical structure of the waves:
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(3.15)

It also determines the other unknowns in terms of f and

As ç -, , p
0 

-p p,~ and ~ approaches a linear

function of r~ ; ( i . e . ,  ~~~
“ -

~~ 0). The only bounded solution , there-

fore , satisfies the boundary conditions :

~(O) = 0 , -‘ 0 as (3.16)

in accord with (3.11). Now (3.15) and (3.16) constitute

an eigenvalue problem for ( l/ c~, ) - Ther e are in f i n i tely

many solut ions to this problem , but the lowest eigenvalue ,

whose eigenfunction does not vanish in (O,°’) , is

ordinarily the solution of physical interest. We normalize

this eigenfunction by choosing ~ (~ ) = 1

The relevant equations at the next order are :

dp f ~f-
~~~ 

-
~~

-
~~

.— + w2 ~~~~ = - 4 p ’ + f {4 : ’ 4 p ’ ~~(p ’~~ ) ’ }

3u2 3v1 3w2

3u2 3p2-p 0 (ç )  -
~~
-

~~
— + ~~~~ -

~~
-

~~-— = - 

~~ ~ (3.16)

+ f .
~f 

{-p (4 ’)2 + p 4 ~~~~~

I ’  
- p ’~ q~’}

+ (g h/ c~,)p
2 

— 0 ,

and w2 0 at ~~~ 0

These equations reduce to a single nonhomogenous

equation for w2 , the homogenous portion of which is
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identical to that in (3.15). The equation has a solution

only if the nonhomogenous terms satisfy an orthogonality

condi t ion :

p
0

{w 2~~’ - 

~w~ J =f ( ~0~’) ’~ d~ • 
(2 ~ + 

~f fd~
)

- 2p~~~
’
~~” 

- 2(p
0~~

”) ’ }~ dç f

(3 .18)

Again we note that if (3.10) should hold at a finite r~

say h0 , then “
~~~~~~~~~

‘ in (3.18) should be replaced by

h
~~

.

In the upper layer , the f l u i d  is nearly hornogenous

and it is assumed that the only motion is that excited

by waves in the lower layer . Therefore , the equations

of motion must reduce to LaPlace ’s equation to leading

order. Moreover , the horizontal scales should be chosen

to be consistent with those in the lower layer , but the

vertical scale changes. Hence , in this region , we define

Z— c z / h = c ~ (3.19)
w c 2c0

W (~~,fl ,Z ,r ,c)

and the scaling of the other independent variables is

t aken from (3.12) . The equation for the vertical velocity

Z >0) is

3 W  + — 0( c ) , (3.20)

I
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subject to the conditions that

W 0  as Z-’~~ ,

W -p 0 as RI  , (3 .21)

I 
W = - 

~~
-
~~

- (~~~, n , i , c)  on Z = 0 . J
This last condition is derived from the requirement that

the two representations of the vertic;al velocity must

match (as functions) in the region of overlap , which in

this case is

c~ z/h 0(1) , 0 < p < 1 . (3.22)

The solution of this problem is

I 
W (~~,r1,Z, T;c) = ~~~ (~~~ f l~ T~~c)]  

~~~~~~~ 
d~~(3.23)

Ono [11] noted that

I 
3W 1 3  r a f  - 1

(3.24)
= - ~~2 11(f)

‘
By construction , the two representations of the

vertical velocity match . Matching the vertical derivatives

I of these functions as well insures the unique analytic

continuation of W , as required. From (3.16) and (3.24),

I this implies

I
I
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3w 2
- - w

The last step is to substitute (3.25) into (3.18) and

integrate by parts appropriately, using the fact that

I q ” -~~ 0 as ç -~ . (3.26)

The result has the form of (1.8), where u is identified

wi th f

a = 3fPO~~
3 d~
/[2f 

Po~~
I2 d~

]

(3.27)

I b = P

y

/[2f 
P o4~~2

d?]

and c0 = 1 because of our scaling in (3.12). In this

I app lication b > 0 , and no disturbance can arrive at

I 
— +a before the solution of (1.8). Hence , it is ap-

propriate to take x0 
= +cxD in (1.8), ~o that the integral

I term becomes I~T 
d~ ’ . It follows from (3.12), (3.13)

and (3.14) that f , the solution of (1.8), represents both

I the horizontal fluid velocity and the vertical displacement

of an isopycnic surface. Moreover the soliton , (1.6), is not

I unstable with respect to long transverse perturbations , as

I shown in Section II.

The integrals in (3.23 ) and (3.24 ) coverge only if

I -p 0 as . With x0 
— +~ , there is no apparent

I
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d i f f i c u l t y  in requiring that the solution of (1.8) should

I vanish , along with its derivatives , as ~ -* +u . However ,

even if f (i.e., u) and all of its derivatives vanish

I i n i t i a l ly as F~ -p -~~~ , it is evident from (1.8) that f

will not remain zero there unless

= 0 . (3.28)

This additional constraint on the solution can be inter-

preted in terms of the vertical component of vorticity ,

w = 
~~~~~~ 

- . (3.29)

Using (3.12), (3.13) and (3.14), one can show that both terms

I in (3.29) are of the same order of magnitude (in c ) , and that

both are proportional to ~~~~~~ . Thus, (3.28) is satisfied

if the total (i.e. , integrated in ~ 
) w-component of vorticity

is constant in ~ -

We close this section by outlining the analysis required

I for discontinuous density profiles. The main point is that

i 
when either p

0 or pc (z) is discontinuous , there is no

matching region , but rather a sharp interface. In these

I cases , we must match normal velocity and pressure along the

interface which, in turn , has to be found . The essential

steps are as follows . We define the interface z — e ( x ,y)

by

i 
— }

~
. + — w . (3.30)

I
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$
If we call

F = z - = z - 1 - 
~~l 

- £ C 2 .  . -

then using the unit norma l , ñ VF/ I VF I , the problem

becomes specified by the matching conditions

= 
~~•fi , (3.31)

lower upper

Pressure~ = Pressure (3.32)
lower upper

We then successively (in powers of c ) satisfy in order :

(3.H), (3.30), (3.32), from which we obtain unique func-

tions for the velocity , interface , and pressure. In all

cases , we find (1.8) with a,b given by (3.27) (and ~
replaced by h0 = 1 ). In the case where we have two

homogenous fluids of differing densities , a = 3/2

b = p /2p  where p , p are the respective densities

of the upper and lower fluids.

When p (z) is continuous , but p~ (z) is discontin-

uous , then the effect of the interface is weaker . To

obtain (1.8) , we need onl y use leading order results

from (3.31) ; i . e .,  continuity of vertical velocity (to

higher order , however , (3.31) itself must be employed).

If p ’(z) is also continuous then a matching region exists ,

and the analysis presented at the beginning of this sec-

tion applies .
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Finally, it should be noted that the wave modes of

interest here , which leave the center of the thermocline

undisturbed , travel slower than either the surface wave or

the fastest internal wave with the same horizontal wave-

number . The analysis presented here assumes that if there

is any energy ir1 these other wave modes , the relevant group

velocities greatly exceed c0 , so that there is no coupling

between the long internal waves considered here and packets

of shorter waves in these other modes. If there is significant

coup ling , the equations are more complicated than (1.4) and

(1.8).
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ABSTRACT

We consider the evolution of packets of water waves

that travel predominantly in one direction , but in which

the wave amplitudes are modulated slowly in both horizontal

directions . Two separate models are discussed , depending

3 on whether or not the waves are long in comparison with

I 
the fluid depth. These models are two-dimensional generaliza-

tions of the Korteweg-deVries equation (for long waves)

I and the cubic nonlinear Schrödinger equation (for short

waves). In either case , we find that the two-dimensional

evolution of the wave packets depends fundamentally on the

dimensionles s surf ace tension and fluid depth . In particular ,

for the long waves , one-dimensional (KdV) solitons become

unstable with respect to even longer transverse perturba-

tior.s when the surface tension parameter becomes large

I enough , i.e., in very thin sheets of water. Two-dimensional

long waves (“lumps”) that decay algebraically in all

horizontal directions and interact like solitons exist

only when the one-dimensional solitons are found to be

unstable .

I The most dramatic consequence of surface tension

and depth , however , occurs for capillary-type waves in suf-

I ficiently deep water . Here a packet of waves that are

I everywhere small (but not infinitesimal) and modulated in

both horizontal dimensions can “focus” in a finite time ,

I
I ii



producing a region in which the wave amplitudes are finite .

This nonlinear instability should be stronger and more

apparent than the linear instabilities examined to date ;

it should be readily observable .

Another fea ture  of the evolution of short wave nackets

in two-dimensions is that all one-dimensional solitons are

I unstable with respect to long transverse perturbations .

‘ 
Finally, we identify some exact similarity solutions to the

evolution equ ations .

I
I

iii



1. INTRODUCTION

Our understanding of the evolution of surface water

waves of moderate amplitude has increased significantly

within the last decade or so. The evolution in one spatial

dimension of a packet of inviscid waves of sufficiently small

amplitude is governed by linear equations on a short time

scale , and by either the Korteweg-deVries (KdV) equation

+ uu
~ 

+ uxxx = 0 (1.1)

or the cubic nonlinear Schrbdinger equation

+ A,~~ + o IA I 2 A = 0 (1.2)

on longer time scales , depending on whether or not the

typical wavelengths are large in comparison with the fluid

depth. In (1.2) and throughout this paper , a = ±1 , and

represents an irreducible choice of signs . Both of these

equations can be solved exactly as initial value problems ,

using inverse scattering transforms (1ST ; an account of 1ST

can be found in [1]). In situations in which viscous ef-

fects are felt on an even longer time scale , these theories

(or viscously-corrected versions of them) predict with very

reasonable accuracy the evolution of waves over quite long

distances in wave tanks (Hammack and Segur , [2], [3]; Yuen

and Lake , [4]).
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Outside of specially designed tanks, surface waves

ordinarily evolve in two spatial dimensions and here the

theory is much less complete. A two-dimensional generaliza-

tion of (1.1) for nearly one-dimensional long waves was

$ given by Kadomtsev and Petviashvili [5] in the form :

U
t 

+ uu + au ~fu d* = 0 , (1.3)

I
Results by several authors indicate that (1.3) is of 1ST-

type , but a complete method of inverse scattering , analogous

to that in one spatial dimension , has not yet been developed .

Two-dimensional generalizations of (1.2) were derived

by Zakharov [6], Benney and Roskes [7], Davey and Stewartson

[8], and Djordjevic and Redekopp [9]. All of these analyses

followed approximately the same lines . The problem was

also studied by Hayes [10], using somewhat different methods .

The most general analysis was by Djordjevic and Redekopp ,

who included the effects of gravity , surface tension and

arbitrary depth to get a system that can be reduced to

iAt + a 1A + Ayy a 2 I A I 2 A + ~~~

(1 .4 )

~~~~~ + = -b (JA I2 )
~

where (a , b , o1, o2) depend on the (dimensionless) fluid dep th

and surface tension . In the long wave limit , (1.4) reduces
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to one of the problems that Ablowitz and Haberman [11] had shown

were of 1ST-type. As with (1.3), beyond identifying the ap-

propriate linear scattering problem and obtaining special solu-

tions , no general inverse scattering theory has yet been developed.

In these two cases , (1.3) and the long wave limit of (1.4),

3 one can reasonably anticipate that the necessary inverse scat-

tering theory eventually will be developed , and that the general

I solutions of (1.3) and ( 1.4) , as initial value problems , will

become available. In these cases , the two-dimensional problem

should eventually be solved to the extent that the one-dimensional

I pr obl em is now . However , as discussed in §5 , we conjecture that

(1.4) cannot be solved by inverse scattering transforms over

I the entire range of parameters and that the general two-dimen-

I sional problem cannot be solved in a manner analogous to that

in one dimension .

I The purpose of this paper is to identify some important re-

sults regarding (1.3) and (1.4), and to suggest the role that

they play in the solution of initial value problems . A major

p result of this study is the dramatic effect that surface tension

can have upon the dynamics of the wave motion . A suimnary of

I these results , and an outline of the paper is as follows .

(~2) The derivations of (1.3) and (1.4) from the physical

problem of water waves are discussed. These equations are well

established in the literature, but the question of what boundary

conditions and other constraints are required to make the prob-

lems well-posed is still open . We show that the original prob-

lem selects certain side conditions as “natural.”

Which conditions are appropriate depends on the dimensionless

I
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surface tension and depth . In this section we also consider

the physical interpretation of an infinite set of conserva-

tion laws .

(~3) The role that one-dimensional soliton solutions

can play in the two-dimensional problems is examined (i.e.,

stability of solitons). KdV solitons are unstable in (1.3)

when a = -l  , which occurs in sufficiently thin sheets of

water (i.e., large enough surface surface tension coefficient).

For zero surface tension a = ~1 , and the argument does

not yield instability . When solitons are unstable , they

cannot be viewed as the asymptotic (t + oD) states towards

which the solution evolves , as they are in the one-dimensional

problem . In this case , “lump” solutions exist and may play

( an asymptotic role analogous to that of one-dimensional

solitons .

Zakharov and Rubenchik [12] showed that for the one-

dimensional cubic nonlinear Schrbdinger equation all one-

dimensional solitons are unstable . These results apply to

the deep water limit of (1.4). We extend their analysis to

demonstrate the equivalent results in the case of finite

depth .

(~4) The most dramatic effect of strong surface ten-

sion is focusing. A wave that is large enough (in a certain

integral sense) focuses at a particular point in space

after a finite time . Here there is no asymptotic (t -p cc)

state , because the solution of (1.4) develops a singularity

in a finite time. Focusing provides a mechanism by which

a field of relatively small amplitude waves produces a local
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region in which the amplitudes are large . Focusing is a

potentially important mechanism in the redistribution of

energy within  the spectrum ; it should be readily measurable .

(~5) We consider the question of the complete integra-

bility of (1.4). Moreover , we exhibit some special solutions

that are not one-dimensional , and are candidates for asymp-

$ totic states in the two-dimensional problem .

I
I
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2. RELEVANT EVOLUTION EQUATIONS

The classical problem of water waves is to find the

the irrotational motion of an inviscid , incompressible ,

homogeneous fluid , subject to the forces of gravity and

surface tension . The f luid rests on a horizontal  and im-

permeable bed of infinite extent at z = -h (h may be

finite or infinite), and has a free surface at z = c(x,y t )

The fluid has a velocity potential , q , which satisfies

-= 0 -h < z < ~(x,y,t) (2.1)

It is subject to boundary conditions on the bottom , z = -h

(2.2)

and along the free surface , z =

Dt = + cl~xCx + ~y~y 
=

gc + + ~Iv~ I 2 = T ~~~
U4~~) + cyy (l+c ) 

(2.3)

(1 + +

Here g is the gravitational acceleration , and T is the

ratio of surface tension coefficient to fluid density . We

note that the linearized dispersion relation for this sys-

tem is

— (gK + K 3T)tanh Kh , (2 .4)

In two dimensions , one should interpret K rk 2  + ~2 in

(2 .4),
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2.1 KdV Limit

The solution of (1.3)  provides an approximate solution

to these equations that is valid when the initial disturbnace

f consists  primarily of near ly  one-dimensional long waves of

small amplitude . To be precise , let ~ = (k , 2.) be the

I horizontal wavenumber characteristic of the disturbance .

I 
Orient the horizontal coordinate system such that the x-

direction is the principal direction of wave propagation .

I Let a denote the characteristic amplitude of the distur-

bance . Then we need:

I (i)  small amplitudes ,

I c a/h < <  1 ;

I (i i)  long waves ,

(Kh)2 < <  1 ; (2 .5b)

- (iii) nearly one-dimemansional waves ,

(2 ~/ K ) 2  << 1 . (2.5c)

The KdV equation (1 .1) results when the f i r s t  two e f fec t s

bal ance in truly one-dimensional problems , and (1.3) results

when all three effects balance :

(Kh)2 — 0(c )  , (2.5d)

(L/K )2 = 0 (c)  . ( 2 . S e )

~~1



-8-

I
Under the assumptions of (2.5) a first approximation

$ of (2.1) - (2 .3) reduc es to

$ a 2 c - gh fri- = 0(L) (2.6)

Thus , to lowest order , the solution of (2 .1) - (2.3) may

be approximated by

c h [ f 1(x - ~~~t ; y )  + 12 (x * ~~~ t ; y ) ]  , (2.7)

where f 1,f2 are known in terms of the initial dat~a.

Throug hou t this paper , we are in terested in problem s wher e

the initial disturbances are localized , and it is then con-

ven ien t to assume a for tiori tha t the physical quantities

have compac t suppor t ini tiall y . In thi s case , it is easy

to show the f1 and f 2 in (2.7) have compact support as

well.

To go t o higher order , we def ine  scaled , dimension-

less variables:

r = /~(x-/jfit)/h , s =

— cy /h  , T =

(2.8)
u = f 1 , v = f 2
T= T/gh 2 

-

Now we look for solutions of the form ~ - Lh [ u ( r , T , f l )  + v ( s , r ,~~) ] ;

i . e . ,  we use the method of multiple scales .  To eliminate

secular terms at the next order , we find
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(2u 1 + 3Uu + (~ 
- ~) u )  + U = 0

1 
r (z.9)

(2v - - (~- - T)v ) - v = 0

The equation given by Kadomtsev and Petviashvili t 5 ]  is

in this form.

For most circumstances of interest in water waves ,

1 o I ~~~ O , (2.’U)

and i t  follows from (2.4) that the linearized phase speed

is a (local) maximum a t v 0 . Thus , the waves governed

by (2.9) travel faster than their neighbors (in v-space )

and there should be no,disturbance as r ~ +°~ , or s -

Consequently, (2 .9a) may be integrated to

2u 1 + 3UU + (~ - ~ )u ~fu dz - 0 , (2.11)

with a similar equation for (2.9b) . This is now in the

form of an evolution eq~iation for u , as is (1.3). For

very thin sheets of water (i.e., T large enough)

(2 .10) is fa l s e , the long waves travel slower than their

neighbors , and the in tegral in (2 .11) should be over (_w ,r )

Given (2 .10), there is no apparent difficulty in

requiring that u should vanish , along with its derivatives ,

as r +oD , Howeve r , even if u and all of its derivatives

vanish initially as r -‘ -
~~~ , it is evident from ( 2 . 1 1 )

that u wil l  not remain zero there unless
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fu~~dr 0 (2.12)

Since u is the derivative of a velocity potential , (2 .12)

is automatically satisfied at the initial instant. Indeed,

for the linearized form of (2.11) , (2.12) is a constan t

of the motion , and it is sufficient to require it initial-

ly.

The constraint in (2.12) has a simple physical inter-

pretation . One can identify Ju( r ,n , i)dr as the total

mass of the wave in a thin strip at n . Then (2.12) as-

sures that the transverse derivative of mass is constant ,

and this preven ts a net flow of mass to (or from) any

particular strip .

There are several indications that (2 . 11), or (1 .3) ,  is

of 1ST-type. Dryuma [13] has identified an appropriate

linear scattering problem for (1.3) ; Zakharov and Shabat

[14] have related special solutions to a linear integral

equation ; Chen [15] found a Bäcklun d transformation ;

Satsuma [16] has obta ined “N aoliton , ” but nonlocalized ,

solutions by direct methods . In Section III we discuss

localized lump solutions . However , as mentioned earlier ,

no complete 1ST method has been developed for (1.3) to

date.
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2.2 The Nonlinear Schrödinger Limit

Let us now consider the derivation of (1.4) from

(2 .1) - (2.3). Here we are following a packet of nearly

one-dimensional waves, traveling in the x-direction ,

with an identifiable (mean) wavenumber , ~ (k ,.~)

We denote the maximum variation in k within the packet

by 6k - To derive (1.4) we need :

(i) small amp litudes ,

C Ka << 1 (2.15a)

(ii) slowly-vary ing modula tions ,

6k/K <‘- 1 (2.lsb)

(iii) nearly one-dimensional waves ,

<< 1 (2 .l5c)

(iv) balance of all three effects ,

6k/K — 0(c) (2.15d)

I t I / K  — 0(c)  (2 .l5e)

The dimensionless depth, kh , can be finite or infinite ,

but to avoid the shallow water limit (and KdV), we need

(kh)2 >> c . (2.16)
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I
In this limit , the solution of the lowest order (l inear)

problem is

- c (c0 5~~
j
~~ 

[A exp(iO) + (*)] + const)  (2 . l7 a )

where (*) denotes complex conjugate ,

0 = kx - w(k)t , (2 . l 7 b )

and ~4.(k) is given by (2.4). To go to higher order , we

introduce slow (dimensional) variables (again , using the

method of mul tip le scales),

x 1 = cx , y~ 
= cy , t 1 = ct , t2 = c 2 t , (2 .18)

and expand 4 and r~

c [;(xi~Yi~ ~~~~~~~~~~~~~~ + 
cosh~~(~~~~ [A(x1,y1, t 1 , t2)exp(iO)

+ (*) ] + O( c 2 )  (2.19)

= 

c[~i i ~~~(io) +(*)J + 0(c 2 )  
~11 = A

In order to derive (1.4) , these expansions must be carried

out to 0(c 3) - The variations allowed in A reflect

the fact  that this is a wave packe t , rather than a uniform

wavetrain , and ~ provides the mean drift current generated

by the packet. In what follows we shall only discuss the

secular ef fec ts  that the higher order terms have on ~
and A details can be found in [7]-[9].
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At the next order of approximation , a secular condi-

tion requires that  the wave packet travel with its linear

group veloci ty ,

I
+ C (k) -

~~~~~ 
— 0 (2.20)at 1 g

where Cg 
— dw/ d K . On this same t ime scale , t2 sa tisfies

a forced wave equation ,

- gh(~
.
~~ + = kw~ 1 ~~~~~

_. j A j 2  , (2 .21)

where

kC
= —i sech 2 kh + 2/(1+T)

T = k2T/g = (kh)2T

The solution of (2.21) changes dramatically , depending on

whe ther or no t

gh > C~ . (2 .22)

If the ratio Cg
//~Ti is interpreted as the “Mach number ”

of the wave packet , then (2 .22) is the condi tion for “sub-

sonic ” flow . In this case , if A has compact support ,

then ~ has a forced component that travels with speed

Cg (i.e., it satisfies (2.20)), and a free componen t

that radiates outward with speed 1~E , and is 0(ti ½ ) as

Hence with (2.22), as t 1 -p , we find that •

satisfies both (2.20) and

a
2
~~ ~~~ k~ ‘A 2 2 23+ w2. — - 8 1  

-
~~~~~

-- i

I
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I
where

= (gh - C~)/gh

S along with the boundary condition that ~ vanishes as

I 
(x~ + y~) -p These are the boundary conditions pre-

scribed by Davey and Stewartson [8], and they are correct

I without surface tension .

If the effects of surface tension are strong enough ,

I (2.22) fails and the flow is “supersonic.” Now even if

A has compact support , ~ and its derivatives are non-

zero along “Mach lines” that emanate from the s.lpport of A

$ In the limit t1 -p 

~ satisfies both .(2.2O) and (2.23)

as before . However , the appropriate boundary conditions

I for (2.23) now are that ~ and its derivatives vanish

ahead of the support of A (e.g., as x1 p a3) , and no con-

ditions as x 1 -p -oD Hence , in general , we can not expect

that global integrals involving ~ will converge .

The limit t1 -
~ is of interest because (1.4) ap-

I pears when one eliminates secular terms on the next time

scale , t = 0(c 2) . Carrying this out , and putting the

result in dimensionless form, we define

~~= Ck(X~~~Cgt) , n — c k y  .

I T = c 2(gk) ½t , (2.24)

A = k2 (gk)~~A , ~ = k2(gk)~~~ J
and find that A and ‘~ satisfy

I
I
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iAT + AA~~ + ~iA1~ 
— x IA I 2 A 4 x~A~~

~~ + ~ - -8 (IA I2)~ J (2.25)

where

a tanh kh , T — k2T/g , 
K ~4~~~+ ~~

w
2 ghc(l+i) > 0

0

2A K (~~~.)/2wI
KC

> 0 I

w 
_ _ _ _ _ _ _ _____________________________ 

(2.26)l_ 0 2 ) ( 9 _ 0 2 )  + T(2—o2)(7-a2) + 802X - 

~~ 
(( 

o~ -

30
2

- 2(l-a2)2(l+T) - l+T J ‘

KC
X i 1 + 

~~~~~~~~~ 

(l- a2)(l+T) > 0

— (gh-C~)/gh

(A) 
(KC

B c0kh~ ~ 
__& (1- as) + 0

X -

In the above formulae , all functions are evaluated

at £— 0 , since we are considering our underl y ing wavetrain

to be propagating purely in the x-direction . It should be

noted that (2.25) can be easily scaled to (1.4) where

— sign A , 02 — sign x , a — a~i/A
2 and b — BUX1 /A 2 lx i

in (1.4).
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( 2 . 2 5)  - (2.26) are equivalent to those of Djordjevic and

Redekopp ([9], their equations (2.12) - (2.13)) except for

the correction of a misprint . If the initial wave packet

is local , it is appropr iate to require tha t A vanishes

as ~~2 + r~
2 -p As discussed above , the appropriate

boundary conditions for ~ depend on the sign of cx

In the deep water limi t , (2.25) reduces to

iAT + A A ~~ + P oDA
flfl 

= XoD I A I 2 A , (2 .27 )

where

— 

Ui ( l_ 6 T _ 3~r 2 \A oD
_
~~~~~ k l+T~~~1

-
= -

~~~~~ (l+3T)

~~ 
8+T+2T 2

X oD = 

~~~~~ (1- 2~)(l+’~)

The appropriate boundary conditions for localized initial

da ta are tha t A vanish as ~~ 2 + ~~ 2 
-p

The charac ter of the solu tion of (2 .25)  depends funda-

mentally on the signs of the coefficients in the equations .

Figure 1 is a map of parameter space , showing where these

signs change . The f i gure is tha t of Dj ordj evic and Redekopp

[9] , who used it to explain the various regions of

s tab i l i ty/ ins tab i l i ty  of the Stokes wave . Each boundary

line corresponds to a simple zero of a coefficient , as

shown, except for the two curves bounding region F . These

two curves denote singularities of v . In a neighborhood

of each of these two curves , phenomena occur on a shorter time

scale than the O(c 2) scale required elsewhere; cf . [9].

-~~~
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If we take the long wave limit, kh - 0, of (2.25) but

keep ing c (kh)2 , we find equations which are of 1ST-

‘ 
type . We discuss this further in Section 5. Alternatively,

the long wave limit in which C O((kh)2) , where (2.11)

app lies , corresponds to the lower left-hand corner of this

figure (kh -
~ 0 , T ‘s 0 , ‘I~ fixed). The only parameter thaç

changes sign in this limit is (1/3 - ‘I~) , which is positive

in Region A , and negative in Region B. The uniformity of the

limits kh 0 , c + 0 has been discussed in [17,18,19].

2 . 3 Conservation Laws

Our final objective in this section is to give a

simple physical interpretation for an infinite set of con-

servation laws . It is well-known that the equations of

water waves conserve mass , horizontal momentum and energy .

If we interpret “mass ” as the mass associated with the

wave , etc., then these conserved quantities may be repre-

sented as integrals. In one dimension (which is sufficient

for the purpose of this discussion) we have :

Mass

M p f r~dx ; ( 2 . 28 )

Momentum

m
~ 

- p ([f •~dz]dx (2.29)

II
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Energy

I
K.E. = 

~f f 9~~~dz dx

P.E. = 
~~
‘ g f ~2dx (2.30)

I E = K.E. +

I On the other hand , problems that have been solved

exactly by 1ST possess an infinite set of conservation laws .

I For example , the first few quantities conserved by (1.2)

are

I = f i A i 2 dx

12 = f (A*A~ - A~A) dx (2. 31)

I 13 = f ( 1 A 1 2  - 
~~ jA fl)dx

There has been some speculation about the proper physical

interpretation of this infinite set of conserved quantities .

We offer here a very simple explanation . We have seen that

(1.1) - (1.4) all are obtained via expansions in wave am-

I plitude , c . From this viewpoint , one might also expand

(for example) the expression for the mass of the wave in

powers of c , to obtain a series of the form

M — p ~ £
nC~ (2 .32)

Because M is constant in time , it follows that each

coefficient , Cn , is also constant .

I
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Because one generates the complete series for $ , C

4 through 0(c3) in deriving (1.4), it is then straight-

forward to compute the series in (2.32) to this order . In

(2.19), any terms involving exp(iO) can be shown to con-

tribute only at higher order , using integration by

parts:

J
C1I (xl , t l , t2)eiO dx = - e~

0dx

€ a~~~1 ise dx

I

This process can be repeated as many times as 
~~ 

can

be differentiated . The result of explicit computation

is

M — ca 1 11 + c 2 azI2 + 0(c3)

m = c 2b212 + 0(c3)
X (2.33)

K.E. — cc111 + C 2 C2 12 + 0(c3)

P.E. — cc1 11 + C 3 C2 12  + 0(c3)

13 enters at 0(c 3) . The coefficients (a~~b~~cj) are

unimpor tant for our purpose. The momen tum starts at higher

order because it is referred to a coordinate system trave l-

ing with the group velocity of the wave . The identity of the

last two series is a statement of the equipar tition of the

averaged energy, to this order . It is not true that I~ ,

and I~ represen t respec tively the mass , momentum and energy

of the water waves. (Similarly, the first three conserved
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quantities for KdV are not respectively the leading terms

of the expansions of the mass, momentum and energy of the

water waves.)

11

I

I
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3. STABILITY OF SOLITONS

The primary purpose of this section is to discuss the

stability of solitons with respect to transverse perturba-

tions .

3.1 The KdV Limit

Let us first consider the long wave problem , and (2.11).

The one-dimensional limit , ~~~~ = 0 , yields KdV . Here

initial data on compact support evolve into a finite num-

ber of solitons , ordered by amplitude , followed by decaying

oscillations that can be described in terms of a modulated

similarity solution . The decay rate of the oscillations

is not uniform in space , but it is of al gebrai c order

[2 0 ] .  The solitons are ( theoret ica l )

waves of permanent form when separated spatially from

other waves. They represent water waves that decay only

due to viscous effects. A KdV soliton is shown in Figure 2a.

Both the solitons and the decaying oscillations have been

observed experimentally [2,31 .

Kadomtsev and Petviashvili [5] analyzed the stability

of a KdV soliton with respect to long transverse perturba-

tions in (2.11). They found that the solitori is unstable

with respect to such perturbations when (2.10) fails (i.e.,

in the lower left corner of Region B in Figure 1). The

usual situation is Region A , where (2.10) applies . Here

they did not find that the solicon is unstable .
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In Region B , wher e the solitons are unstable , the

KdV theory is of limi ted value . Here the solitons cannot

represent asymptotic states , as they do in the one-dimen-

sional problem . Thus , the question arises as to whether

(2.11) has any other special solut ions tha t  mi ght act as

asymptotic states when the solitons are unstable . The

answer is no t known def in itivel y at this time , bu t the work

ir~ [21 ,221 is suggestive . In Region B , but not in

Region A , (2.11) possesses “lump” solutions . Lumps share

many of the important properties of solitons :

(i) Each is a permanent wave whose speed , rela tive to

the linear ized speed , /~Ti , can be made propor tional to i ts

amplitude .

(ii) Solitons are localized waves , with exponential tails

in one dimension ; lumps are localized waves , wi th al gebraic

tails , in two dimensions.

(~.ii) Two soliton s regain their original amplitudes and

speeds after a collision ; the final effect of the collision

is a phase shift of each soliton . Two lumps regain their

original amplitudes and speeds after a collision , and su f fe r

no phase shift.

(iv) Explici t formulae are available for N solitons ,

and for N lumps. The formulae for the one soliton and one

lump solutions of (1.3), with a = -l , are:
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Soliton

I d 2
u = - 12 a--~ 

R..n {l + exp(-2Kx ’))
x (3.1)

x ’ x + 4K 2 t

Lu~p

u -l 2~~jr £n {(x’ + py ’ ) 2  + (qy ’ ) 2  + 3/q 2 J , (3.2)

where

I x ’ — x + (p 2 + q 2)t

y ’ — y -2pt

These two solutions are drawn in Figure 2 for a particular

I choice of the constants. (The soliton is a negative wave

in Region B , as shown . In Region A , solitons are positive.)

These s tab i l i ty  results suggest that whereas the one-

I dimensional KdV solution may play an important role in

(1.3) with a = ~l (Region A), no such situation is en-

visaged when a — -l (Region B).

I
3.2 The Nonlinear Schrödinger Limit

I Next , we consider the nonlinear ~chrödinger equation (2.25).

Observe that (2.25) admits one-dimensional solitons traveling at

almost any acute angle relative to the group velocity of the

I packet. The extreme cases are found by setting either a/ an — 0

or a/ a c  — 0 . If a/an — 0 , the second equa tion in (2 .2 5)
I can be integrated once , and the system reduces to

I iA + A A cc V IA I 2 A

— ‘B /ci IA I2 
(3 3)
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where ~ = X - X 1~~/ cx , and the coefficients A , cx , , x
x 1 are defined in (2.26). (Throughout this discussion ,

it should be borne in mind that the amplitude A represents

the envelope of a train of plane waves.) Ini t ia l  data

s can be created experimentally by modula ting ( in time) the

stroke of an oscillating paddle at the end of a one-dimensional

wave tank . If À y  > 0 , as it is in R.eg ions A , B and E ,

of Figure 1, there are no solitons . The initial data

evolve into a field of decaying oscillations that we shall

refer to as “radiation .” This radiation can be described

in terms of a modulated similarity solution , and it decays

as ~~½ [ 231 . In Regions C , D and F, Au < 0 , and the

same in i t ia l  data now produce a finite set of envelope

solitons in addition to the radiation . (For appropriate

initial data , multi-soliton states are also possible [1],.

The one-soliton solution of (3.3) is

A = a I 2A /v i~ sech~a(E~-2bT)}exp{ib~ 1- iA (a2 -b 2)T} . (3.4)

The constant b in (3.4) represents an 0(c) correction

to the basic wavenuxnber , k ; without loss of generality

we take b = 0 . It is evident from (3.4) that the am-

plitude of the envelope soliton is of permanent form , and

represents a physical wave that decays onl y due to viscous

effects. Figure 3 shows the experimental measurements of

such a wave , and we have superposed on the measurements

the soliton solution with the same peak amplitude . [This

experiment was conducted by Professor J.L. Hammack while
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at the University of Florida , and we are grateful to him

for allowing us to use his unpublished data.] It is clear

from this comparison that , at least in some aspects , the

model represented by (3 .3)  is remarkably accurate . For

more detailed comparisons , see [4] or [ 2 4 ] .

At the other extreme , if aiac — 0 in (2 .25 ) , the system

reduces to

~~~T
+
~~~~~ flfl A

~~~~~ , (3.5)

which is mathematically equivalent to (3.3) but represents

a much different situation physically . Here wave crests

move in the x (or ~) direction , but they are modulaced

in the n direction . These modulations can move only

in the ri direction . To our knowledge , this configura-

tion has not been explored experimentally in water waves ,

although it is conunon in nonlinear optics , where

represents diffraction of the light. In optics , initial

data is produced experimentally with a diffraction grating ,

and the solution of (3.5) provides a nonlinear description

of Fraunhofer diffraction (cf., Manakov , [25] ) .  Soli tons

exist where x < 0 (since ~i > 0) in Regions B , C and F.

To distinguish them from the soliton solutions of (3.3),

we will refer to the solitons in (3.3) as “envelope solitons ,”

and the solitons in (3.5) as “waveguides .”

Between these two extremes, a / a n — 0 and a /a c — 0 , is a

one-parameter family of other one-dimensional restrictions of

(2.25), corresponding to one-dimensional waves (of the envelope)

traveling at various angles relative to the group velocity of

the carrier wave . Each of these one-dimensiona l problems is

governed by an equation of the form (1.2), except at one angle
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that corresponds to crossing from region B to F , and another

that corresponds to crossing from F to D .

Again , the question arises of the physical relevance

of the one-dimensional soliton in the two-dimensional

problem . For the nonlinear Schrödinger equation , (2.25),

the answer seems to be that except for specially contrived

one-dimensional geometries (like laboratory wave tanks),

they are unlikely to persist. We show next that every

one-djmensjc~al soliton solution of (2.25), envelope

soliton or waveguide , is unstable with respect to a long-

wave transverse perturbation . Apparently , this instability

I has not been observed in wave tanks only because the tanks

are too narrow to admit the long-wave perturbations re-

quired . The instability was discovered first by Zakharov

and Rubenchik [12 ] for (2 .27 ) . Our analysis is a generaliza-

tion of the irs to the case of finite depth .

Consider first the envelope solitons , which are solu-

tions of (3.3) and can exist in Regions C, D and F in

Figure 1. As remarked above , it is sufficient to demonstrate

the instability of the stationary soliton :

A — exp(iAa 2 t )~p( c)
(3.6)

— 8 f c z q 2 (
~ )

where ~~~ is real and satisfies

+ Aa 2 + v~’ — 0 . (3.7)

Perturbations about this soliton can be put in the form 

~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~ .. .~~~~~~~~~. ~. T~
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A = exp(iXa2’r)[4i + u + iv]

4 (3.8)
= (~~/ c x )  if ( ‘P 2 + 2ipu)dz + w , JI

where u , v , and w are real ,

I
lv i  << ‘P w i  << 

~

I and

u,v ,w -. exp ( ip n ± ich)

The question of stability now comes down to determining

I whe ther ç~2 is positive. Substituting (3 .8)  into (2.25),

lineariz ing and elimina ting v yields

$ = (L0 + ~ip
2)(L, + ~p2)u + ~ 1 (L0 + pp 2 ) ip w~ ,

= p2[2~~J(Ipu)dz + w]

where L and L1 are the self-adjoint
I ° (3.9)

operators defined by

I 2
L0 

= -A + Aa 2 + vip 2

I L1 = -A + Aa 2 + 3vip 2 .

I In the short-wave limit (p 2 -P co) , (3 .9) reduces to

I cZ2u = p 2 p ’• u + 0(p 2 )  
, ‘1

1 (3.10)

I ~~~f ( ’ P u ) d z + w -  0

I
I

— --V - - - -  ---V .. -.  . — - V -  
~~~~~~~~~~~~~ ~~~. ,  - — -
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I
Clearly c~

2 is posi tive in this limit, and shor t waves

are not uns table . Indeed , if they were unstable , it would

$ be difficult to observe envelope solitons even in narrow

wave tanks .

In order to analyze the long wave limi t (p 2 -p 0), we

expand the unknowns in (3 .9) as
I

U -. u~ + p 2u1

w -. p 2w 1 , (3.11)

Then to leading order , (3.9) becomes

L L 1u0 = 0 . (3.12)

In order to solve (3.12), we define certain odd (-)  and

even (+) functions of ~

= , u = -
~~~ 

.~~ ?r , v = -~ ip/2A , v = ~p . (3.13)

The following relations can be obtained from (3.7):

+L0v0 = O

L v = u
0 0 (3.14)

L 1u = O
+ +L u  = v0

It follows that u and u both satisf y (3.12) , and

that v and v sat isfy the adj oint equation ,

L 1L0v0 — 0 (3.15)

I
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In each case , there are two other solutions that do not

vanish as -p . We will also need cer tain scalar

products of these functions . Using the notation

(

~~~~

1 ,

~~~~

2 =f
one computes

I
+ +(v 0 ,v0) = I

(v ,u )  = I/4A

+ +~ — 
1 dl (3.16)(v0 , u0j — -

~~~~ ~~ r
+ - - +(v0,u0) = (v0,u0) 

= 0

(u~ ,u~) = J’P~
2d~

where

I = I l A l 2 d~ 
=

At 0(p2) , (3.9) reduces to

L0L1u1 = ~~u0 
- p (L0 + L 1)u 0 

-

(3.17)
= if (‘Pu0

)dz

For u 1 to decay as + 
, it is necess ary that the

nonhomogeneous terms in (3.17) be orthogonal to the decaying

solutions of the homogeneous adjoint equation (3.15).

Because the equations are linear, it is suff icient  to con-

sider the odd and even modes separately . Thus, if

in (3.17) is u , we multiply (3.l7a) by v , integrate

over c , and use integration by parts to obtain



— 2 + 1 dl0 — (
~~ ) ~x -

or

((~~) + 
= - ~~L= -2Apa 2 

• (3.18)

$ For the odd mode , u , we multiply (3 .l7a) by v~ and

use (3.l7b). The result is

(~~~)
_ 

= 

~ ~~ 
+ ~~~~f ’P~ d~]$ (3 .19)

~~

Aaf

~~

+ 2

~~~ 

IA / u i ]

The question of stability of envelope solitons depends

only on the sign of A (the other factors in (3.18) and

(3.19) are intrinsically positive). Using c~
2 .. p2 (Q~)

we summarize the result as follows :

(i) In Region D, where A < 0 , an envelope soliton

with amplitude a is unstable with respect to long dis-

turbances that are antisyimnetric ( - )  in E~ . The growth

rate (ia) of the disturbance with wavenuniber p i

found f rom

..
~~~

. ~~~~~~~~~~~~~~~~ + 2~~~ 1X /v l ) + O(p “)  (3.20)

In the deep water l imi t , this simplifies to

— .4 p 2a2 ,iI A l + O(p~ ) , (3.21)

as found by Zakharov and Rubenchik [12]. Thus , for an

inviscid fluid , the e f fec t  of f ini te  depth is to enhance

the growth rate of the instability. Zakharov and Rubenchik

I

-4
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found the O(p”) correction to (3.21), and argued qualita-

tively that the most unstable wave satisfies

— 0(IA Ia 2) (3.22a)

4 and that the maximum growth rate is on the order of

— 0 1x 1 a 2 
. ( 3 .22b)

Moreover , they noted that the growth of a mode that is anti-

symmetric in c and sinusoidal in i r~nds to bend the

wavecrest , producing a “snake” e f f ec t ;  i . e . ,  the crest

of the perturbed wave oscillates back and forth in the

(F~-r~) p lane about its unperturbed position . Recent numerical

computations in [26] have made (3.22) more precise.

(ii) In Regions C and F, where A > 0 , an envelope

soliton with amplitude a is unstable with respect to

long symmetric (+) disturbances. The growth rate of the

disturbances with wavenumber p is found from

— -2p 2a2 Au + O(p~) , (3.24)

and this result also holds in the deep water limit. Again ,

qualitative considerations yield (3.22b). Growth of a

sytnrnetric mode tends to modulate the wave amplitude periodi-

cally in n .

Analysis of the stability of waveguides (in Regions B,

C and F) follows similar lines , and it is necessary only

to indicate the main points of the analysis. A stationary

waveguide has the form
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I A = exp(ii..~a
2 t)ip (n ) (3.25)

where ‘P is real and

+ ~a 2
’P - x ’P 3 — 0

Perturbations take the form

A — exp(iua 2 r) [ip + u + iv]

(3.26)

I
I The linearized equations for u and w , derived from (2.25),

are

- (L0 + Ap 2 ) ( L
1 + Ap 2 ) u  + X 1(L 0 + Ap 2 ) ’ P  w

W
r1 r 

— p 2 [2~ iPu + cxw]

I where
(3.27)

— -

~~~ 

+ ~a
2 + x’P~

I 1.1 — -
~~ f—~. + ~.ia

2 + 3y ’P 2

I These equations are very similar to those in (3.9)

and we simply state the final result. Throughout Regions B ,

I C and F , (A ,~~) are positive . Anywhere in these reg ions ,

i 
a stationary vaveguide with amplitude a is unstable with

respect to long symmetr ic (in n) disturbances . The growth

I rate (i~2) of the disturbance wi th wavenumber p (in ~)

is foun d from

I
1



I
I 

-33-

= -2p 2a2 A~i + O(p~ ) , (3 .28 )

and qualitative considerations given (3.23a ,b) with A , p

I interchanged.

I We conclude this section by summarizing our results

for the nonlinear Schrödinger equation , (2.25). There are many

I one-dimensional l~~its, including (3.3) and (3.5). These two limits

admit envelope solitons and waveguides , respectively, in

various regions of Figure 1. However , all possible solitons

are unstable with respect to some long-wave transverse

pertu rbation . This ins tabi l i ty  does not appear in experi-

ments in one-dimensional wave tanks, provided the tank

width is small in comparison with the soliton length ,

because the unstable mode s are excluded by the geometry .

If this constraint is removed , however , the instability

should occur , and neither kind of soliton is a stable

asymptotic state that can be achieved from initial data

in (2 .25) .

I

I
- - V _ _ _ _ _ _ _ _ _ _
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4. FOCUSING

In one-dimensional problems , like (1.2), the mos t dramatic

nonlinear e f f e c t  is that smooth initial  data can “focus ”

in to a localized soli ton , or into a set of solitons , which

then persist forever. In this sec tion , we show that focusing

is even more drama tic in two dimensions and that a solu tion

of (2 .25) tha t evolve s from smoo th ini tial da ta can become

singular at a poin t in space af ter  a f in i te  time . This is

known as the “self-focusing singularity,” or simply as

“focusing .” In such a case the water wave equations must be

re-examined in the neighborhood of the focus .

To our knowledge , the phenomenon of focusing has not

yet been observed as such in water waves, although it has

been known for some time in nonlinear optics (e.g., Vlasov ,

Petrishchev and Talonov [27]). Some of the analysis dis-

cussed here uses the ideas presented by Zakharov and

Synakh [28] who studied what amounts to the two-dimensional

version of (1.2) ( i . e . ,  2.27) in the context of the optics

probl em .

4.1 Necessity of Focusing

Our first objective is to identify circumstances under

which the solution of (2.25) must focus in a finite time .

I
• - • • • • • • . • - -~ V
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Consider any point in Region F of Figure 1, where

~~~~~~~~~~~~~~~ are all positive ; i.e., consider capillary-

type waves in su f f i c i en t ly  deep water . Consider ini t ial

data for (2.25) which are infinitely differentiable and

which decay rapidl y as (
~~~2 + rj 2) -~ ; e.g., A(~ ,n, 0)

might have compact support. If a solution of (2.25)

exists and vanishes rapidly enough as (
~~~ 2 + ~~2) ..p

then the following integrals are constants of the motion :

I~ = JfjAI2d~dq

$ 
~2 ff (A - A*

(4 .1)
13 ff (A - A*

14 ff [(~~~~~~~~~~~~2 + 
~~~~~~~~~~

2J - -x i A t ~ + ~~~ (
~~~~~ )2

+ ~J.. (~~~ )2)
] 

d~ dri

Each br acke t , U , in 14 
is positive definite , and

the second bracket vanishes in the linear limit of (2.25).

Clearly 14 < 0 is possible (e.g. , if the initial

data has sufficiently large amplitude).

It also follows from (2 .25) tha t

(

s-. + 

~
-) IA I 2 d~dn 

- 814 (4.2)
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As noted in Section 2 , one may in terpr et I~ as the mass

of the wave (to leading order in c). Then the integral

in (4.2) may be interpreted as the moment of inertia , and

(4.2) is an example of the virial theorem (e.g.,

[29], p. 581). (4 . 2 )  is easil y in tegra ted , and we see that

if 14 0 , then the moment of inertia vanishes at a finite

$ time . Clearly, no global solution exists after this time ,

because the (positive definite) moment of inertia would

become negative ! Since the mass of the wave is conserved ,

(.2) suggests that prior to this time the radius of gyration

is vanishing as the mass accumulates at a single point. The

rapid development of this singularity is what we mean by

focusing .

Before examining the nature of the singularity that

develops , let us consider the implications of this argu-

men t ou tside of Reg ion F. In Regions B and C , wher e

ci 0 global integrals involving ~ are generally un-

bounded (cf., Section 2) and no global information about

the solution is available by this approach . Whether focusing

exists in these regions is open . In Region E there is no
focusing in the deep water limit , since the parame ters are

such tha t 14 > 0 . In arbitrary depth the question of

focusing is s t i l l  open .

In Regions A and D, the integral in (4.2) is not of

definite sign , and provides no contradiction . Both be-

cause of the breakdown of this argument and because the

type of instability of solitons is different than in Region F,
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we expect that if singularities develop in these re-

gions , they will be qualitatively different than those

of the self-focusing type.

4. 2 Nature  of the Singularity

Next , we examine the possible behavior of the singularit.y

I that develops at the focus . Zakharov and Synakh [28]

studied the radially symmetric case of (2.27). They in-

vestigated this equation both by numerical compuations

and an approximate analytic procedure. From these they

concluded that as T + T 0 
(T

0 
being the time of focus)

the wave amplitude grows as (T0-ryP , p = 2/3 .

I In this section we show that there are a number of

quasi-self-similar solutions to the generalized nonlinear

I Schrodinger equation , (1.4), including one with p — 2/3

but we have found no convincing argument that this local

behavior is necessarily of the p — 2/3 type.

For convenience , we consider the scaled form of (2.25),

namely (1 .4) .  In Region F of Figure 1, where focusing

I can occur , — +1 , 02 — -l .

Let A — B exp(i’Y) in (1.4), with B,’~ real and
I find :

I (¾B2 )
~+ (

~~
B 2 )  + (‘p B 2 )  - 0 , (4.3a)

I -‘pd + B
~~ 

+ B~~, - B(~s~ + — -B3 + •~ B . (4.3b)

I
I 

— ----.-—--.__________________________ -—• - —~~~~~~~~~~~~~ -- • - - ——-— - -
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I
a4~~ + 

~yy -b (B 2)
~ (4 .3c)

We seek quasi-self-similar solutions of (4.3) in the neigh-

borhood of the point of focus in the form

B - ~ R(i,)~) + R0(i,~~,t) , (4.4a)

~ Q(i,~) + Q0(i,~~,t) (4.4b)

where i~ — x/f , — y/ f  , f(t) — (t0-t)~ , so that f + 0

* as t -p This expansion is asymptotic near the focus provided

<< R , Q0 << Q in this reg ion . Zakharov and Synakh [28]

also assumed

R0 
— 0( fR) , (4.5)

- but this assumption seems to be unnecessary . In any case , the

I dominant terms in (4.3a) as t + to are

- 
~ R

2f ’),~ + ( ‘f’y
R2 - 

~~
. R2f ’)~ 0 (4 .6)

A special solution of (4.5) is

‘p — 
X 

~~ + G 1( ~~, t)
I x -

1 (4.7 )

i
Taking C1 — G2 — 0 (for which some motivation is provided below)

I - y ields

‘p — L~
_ 
(~~~

2 + ~~2)  + g (t )  , (4.8 )

and with this we have from (4.3) - (4.4) , as f + 0

I
I
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3

+ R~~ + R 3 - RQj - g’(t)f2R - ~~~ (~~~
2 + ~ 2 ) R - O  (4.9a)

I
+ + b (R 2)- - 0 

• 

(4.9b)

There are various possibilities; e.g.,

(a) f”f3 << 1 , g’— K / f2

(b) f”f3 — 0(1) , g ’— K/f2

others are obtained similarly. Case (a) implies that

to leading order (4.9) reduces to

R-- + R~~ + R 3 - RQ~ - KR - 0 , (4. lOa)

- 

aQ~ ( + Q~~ 
— -b(R2)~ . (4.lob )

If one also assumes (4.5), then (a) becomes f3f” — 0 ( f )  , from

which it follows that p — 2/3 . kiowever , the spatial structure

def~ne~ by (4.IC) ~oe~ not ~epen~ on (4.5), or on p — 2/3

In the deep water case with radial symmetry [23], b — Q 0

— ~~2 + ~~~2 
, and (4.lOa) reduces to

R
~~~

+

~~~

R

~~
+ R

~ 

- K R — 0  . (4.11)

Chiao , Garmire and Townes [30] first studied (4.11) as a

mode l of cylindrical optical beams , and showed that its

bounded solutions decay exponentially for large ~ . The

equation also arises as an exact reduction of (1.4) if

we take

I
I
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~~
_ A /x~~+ y z 

, (4.12 )

A — AR(i)exp(iKA 2t)

The fact that (4.11) is exact has important consequences ,

which we discuss in Section 5.

I n  c a s e  ( b) , p  — 1/2 and the solution is exactly

self-similar . Here (4.8) - (4.9) yield

Rjj + R~~ + R 3 - RQ~ - KR + ~ (i2 + ~ 2 ) R  - 0 (4.13a)

+ Q~~ 
= -b (R2)~ (4.13b)

‘p = + ~~
) - itn (t - t) + ~ . (4.l3c)

In the radially symmetric case , (4.13a) becomes

R~~~+ 1R -+ (~~~- K )R+R~~— 0  , (4.14)

I
and for large ~ all bounded solutions decay as (

~~~~)_ 1

We also note that a somewhat more general equation than

(4.14), obtained by retaining G in (4.7), can be found

in the symmetric case:

R~~ + ~ R~ + (~~~ - K)R + R3 - 

TZRS 
— 0 (4.15a)

‘p — -i-- - KLfl(t0 
- t) + Cf R’() + ~o 

(4.15b)

However , one can show from (4.15a) that R has a finite value

at the origin only if C — 0 . This result provides some

justification for neglecting C in (4.7).

I
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Using any of these similarity solutions , going back to

the full water wave equations and rescaling , we find that the

focusing instability produces a finite (i.e., 0( 1)) region

of space in which the wave amplitudes are potentially large

enough to break (0(1))

Next , we present an argument which suggests that the

self-focusing singularity cannot be of the p — 1/2 type ,

as we have described it here. For convenience, we consider

the case of radial symmetry . The expansion in (4.4) is valid

in a region near the focus where the first terms are dominant.

If we assume that this “inner solution” matches to an outer

solution that is 0(1) , then the inner expansion breaks down

where

~ R(~ ) — 0(1) (4.15)

But for large ~ , R decays as (~~~
)_ 1  

, so that R

decays as r ’ ; i.e., there is no time-dependence . It

follows that (4.16) defines a boundary for the focal region ,

denoted by r — 0(L) , where L is time-independent . The

mass within this region is proportional to

L L/f
M — J r  ~y R

2 (~).-dr — f i~R
2(~ )d~ , 

(4 17)

0 0

and (because R - ~~~‘) this grows logari thmically as t •

But the total mass is finite , and this is a contradiction .

In case (a) R(~) decays exponentially and no such

contradiction appears . Moreover , if the nonlinearity in

V_  ~~~~~~~ V - - ~~~~ - - --
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(1.4) were slightly stronger , no contradiction appears in

the purely self-similar case . To be precise , if the non-.

linear term in (1.4) were replaced with ,A I2aA , a > 1

$ then the radially symmetric similarity solution becomes

$ A - (t0-t)~~~~~(~) , ~ r/(t0~t)
½ . (4.18 )

In this case the radial decay is B(~ ) (~)_l/a and

again L is finite. However , in this situation, when

a > 1 the mass remains finite as i ~ , and the pure

similarity solution is a likely candidate for describing

the dynamics of the focus regime.

Finally, we remark that a natural generalization of

(1.4) is:

iA
~ 

+ o i A~~ + Ayy + o 2 Azz — O3IM
2aA + 4~~A (4. 19a)

a1
~ xx + 

~YY 
+ 
~~~~~ 

— _b( IA j2a)~ , (4.].9b)

where the — ±1 (i — 1,2 ,3) and ai , a~ , b ar e

constant. The spherically symmetric limit is obtained by

taking b — ~=O , a~ — 02  — +1 . Since the spherically

symmetr ic equation has wide applicability , and (1.4) is

itself physically relevant , we expect that (4.23) will

also ar ise in physical problems .

I
I
I
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I

5 . OTHER SOLUTION S OF THE NONLINEAR SCHR~DINGER EQUATION

$ The purpose of this section is to identify other fea-

tures of the solution of (2.25) that may play a role in

its asymptotic (t • ~ ) solution .

5.1 Complete Integrability

Perhaps the fundamental question to answer about (2.25)

is whether it is completely integrable ; i.e., whether it

can be solved exactly by relating it to an appropriate

linear scattering problem . The question is natural in

light of the fact that the one-dimensional problem can be

solved in this way .

Consider first the long-wave limit of (2.25) , stibject

to the constraint in (2.16). Here , (2.25) becomes (after

rescaling of variables)

l.A - a1A~~ + ~~~ — a~ t A t  2 A +
(5.1)

+ ~~~~~~~~ 
— .-2( IA I2 )~ , 01 — sign(~.-T)

This system is of I.S.T. type [11]. Special N solitons

solutions can be constructed either by a direct (Hirota

type) method or via the Zakharov-Shabat approach [14,31].

V 
- - - — -- --- - -~~
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The situation seems to be much different in the deep

water limit. Here we have already seen that (4.11) is an

exact reduction of (2.25) to an ordinary differential

equation ; i.e., every solution of (4.11) provides an exact

solution of (2.25) in this limit. Let us consider those

partial differential equations (PBE) which have been solved

exactly by 1ST methods . We have found that every reduc-

tion of one of these PDE ’s to an ordinary differential

equation (ODE) results (perhaps after a transformation

of dependent variables) in an ODE without moveable critical

po ints [32 ,33] .

We expect that if (2.25) can be solved by some 1ST ,

then (4.11) should have no moveable critical points. But

Ince [34], esp . p. 344) provides a complete list of all

such second-order equations ; (4.11) is not on this list

and cannot be transformed to an equation on this list.

Therefore , the solution of (4.11) has moveable

critical points . Moreover , one can show that (4.11)

has logarithmic singularities in addition to poles. On

this basis , we conjecture that (2.25) cannot be solved

exactly by 1ST in the deep-water limit.

Although (2.25) can be solved by 1ST in the shallow-

water limit (i.e., lower-left corner of Figure 1), it

apparently cannot be solved in this way in the deep-water

limit . Wherever 1ST methods fail , one is forced to piece

together special solutions of the problem to describe the

general solution .
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5.2 Decaying Oscillations

The special solutions discussed so far in this paper

have been localized: either solitoris (or soliton-like)

or self-focusing singular solutions . However , in the one-

dimensional limit of (2.25), solitons make up only part

of the asymptotic solution of the initial value problem .

That part of the solution associated with the continuous

spectrum spreads over large regions of space , while it

decays as t~~ . In particular , an exact solution of

(1.2) is

2

A t~~ A exp{i(~~ + aA 2 9..n t + 4 ,) } , (5.2)

where A and ~ are real constants; the solution of

(1.2) associated with the continuous spectrum tends to

a slowly-varying modulation of this , where It and 4

depend on (x/t) [22,35].

In the two-dimensional problem , (1.4), there is

an analogous exact solution :

A — t~
1 A exp{i (

01
~~~4t

+ ~ + o2 A2/t + B(t) + 4))

(5.3)• — -B’ ( t ) x  + C ( t ) y  + D ( t )  .

Similar solutions in the deep water limit of (2.25) were

found by Talanov [36]. On the basis of the one-dimensional

theory , we anticipate that the part of the solution of (1.4)

that decays in time can be described in terms of a slowly-

varying modula tion of this exact solution .

V ~~~~~ -~~
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Moreover , this behavior would be consistent with the

results of Lin and Strauss [37] who studied the three-

dimensional problem
I

iu - Au + I u I 2 u 0 , (5 .4)

1
where A is the Laplacian in three dimensions . They found

that the solution exists for all time and decays as t~
3”2

The appropriate similarity solution here is

u - t 312 A exp{i ( X~~ Y + Z ) + A 2 / 2 t 2 + ~
) }  . (5.5)

Without solitons or focusing , the decay rate of the solution

of the nonlinear Schrödinger equation seems to be

u = O(t~~
”2) (5.6)

where n is the number of spatial dimensions . This decay

rate is the same as in the linearized problem .

ACKNOWLEDGMENT

We are grateful to L.G. Redekopp and to J.L. Hammack

for lending us the material in Figure 1 and 3, respectively,

and to Martin Kruskal for useful comments . This work

was supported by the Office of Naval Research and by t~ie

Jational Science Foundation .



I 47

REFERENCES

I
1. Ablowitz , M . J . ,  Kaup , D . J . ,  Newell , A . C . ,  and Segur , H. ,

Stud . App l. Math. 53 , 249 , 1973 .

2. Hammack , J., and Segur , H., J. Fluid Mech. 65 , 209 ,
- - 

1974.

I 
~~. Hammack , J., and Segur , H., J . Fluid Mech . 84, 337 ,

1978.

I 4. Yuen , H.C., and Lake , B.M., Phys. Fluids 18, 956, 1975.

- 5. Kadomtsev , B., and Petviashvili , V., Soy . Phys. Dokl .1 15 , 539 , 1970.

6. Zakharov , V.E., Soy. Phys . J . Appl. Mech . Techn . Phys .

1 4, 86, 1968.

7. Benney , D.J., and Rosk~~, G.J., Stud . App l. Math . 1,

I 377 , 1969 .

8. Davey , A., and Stewartson , K ., Proc. Roy . Soc . 388, 191,

I 1974.

9. Djovdjevic , V.D., and Redekop~ , L.G., J. Fluid Mech.
79 , 703, 1977.

I 10. Hayes , W .D., Proc . Roy. Soc . A , 332 , 199, 1973.

I 11. Ablowitz , M.J., and Haberman , R., Phys . Rev . Lett.
I 35 , 1185 , 1975.

12. Zakharov , V.E ., and Rubenchik , A.M., Soy . Phys . JETP( 38 , 494 , 1974.

13. Dryuma , V., Soy . Phys . JETP Lett . 19, 387 , 1974.

I 14. Zakharov, V.E ., and Shabat, A.B., Func . Anal . and
Appi. 8, 226, 1974.

I 15. Chen , H., J. Math. Phys . 16, 2382, 1975.

16. Satsuma , J. J. Phys. Soc. Japan 40, 286, 1976.

17. llrsell , F., Proc . Camb . Phil. Soc., 49 , 685 , 1953.

( 13. Hasimoto , ~-1 . and Ono , H . , J. Phys. Soc. Jaoan , 33 , 305 , 1972.

19. Freeman , N.C. and iMvey , ~~~~~~~ Proc . Roy . Soc . A , 344, 427 ,

1 1975.

- --



I -48-

I
20. Ablowitz , M.J., and Segur , H., Stud . Appl. Math . 57,

• 
13, 1977.

1 
21. Lecture by Novikov , S.P. for Zakharov , V.E. on work

Bordag , L.A., Its , A.R., Man akov , S .V . , Matre ev , V . B . ,
and Zakharov , V.E., Rome, Italy, June 1977.

22. Ablowitz , M.J. , and Satsuma , J., J. Math. Phys., to be
publi shed.

2 3. Segur , H . ,  and Ablowitz , M . J . ,  J. Math. Phys.  17 , 710 ,
1976.

24. Hammack , J . ,  to appear .

I 25 . Manakov , S.V. , Soy . Phys. JETP 38, 693 , 1974 .

26. Saffman , P.C., and Yuen , H.C., Phys. Fluids 21, 1450, 1978.

I 27. Vlasov , V.N., Petrishchev , l.A. , Talanov, V.1., Quantum
Electronics , Radiophys. 14, 1062, 1974.

I 28. Zakharov , V.E., and Synakh , V.S., Soy. Phys. JETP 4, 465 ,
1976.

1 29. Chandrasekhar , S., Hydrodynamic and Hydromagnetic Stability,
Oxford Press, London , 1961.

I 30. Chiao , R.Y., Garmire , E ., and Townes, C.H. , Phys. Rev. Lett.
1 13 , 479 , 1964 .

i 31. Anker , D., and Freeman , N.E., J. Fluid Mech., to be publishe d .

32. Ablowitz , M V J . ,  and Segur, H., Phys. Rev. Lett. 38, 1103,
1977.

33. Ablowitz, M.J., Ramani, A., and Segur , H., preprint.

I 34. Ince , E.L., Ordinary Differential Equations , Dover , N.Y.,
1944.

i 35. Segur , H., J. Math. Phys. 17 , 714 , 1976.
- 36. Tal anov, V.1., Radiophysics 9, 260, 1967.

I 37. Lin , J.E., and Strauss , W.A., J. Funct. Anal., to appear .

I
I
I



-49-

LIST OF FIGURE CAPTIONS

I
Figure 1. Map of parameter space , showing where the coef-

f icients in (2.25) change sign. The dynamics
of wave evolution is different in each region .

Figur e 2a . KdV soli ton , as seen in two space dimensions
at a fixed time ; (

2
= 1/12 in (3.1), wi th a = -l

Figure 2b. Lump solution of (3.2) as seen in two dimensions
of a fixed time ; p = 0 , q 2 = 1/3 , a = -l

Figure 3. Measured surface displacement , showing evolution
of envelope soliton at two downstream locations ;
h = 1 m , kh = 4 . 0  = 1 cps
T = 1.0 * lO~~
— 

, measured hi story of surface disp lacement;
theoretical envelope shape

= 
~a sech(z)

z = ~~~~ (V/8A)~~(Cgt~X)
(3a) 6mdownstream of wavemaker , ca = 0.132

(3b) 30 m downstream of wavemaker , xa = 0.116

Figur e 4. Stationary waveguide , as seen in time at a fixed
location . In (3.5), ~i = 2 , x = -4 and
Re(A) = 2 sech 2r~ cos 8T is plotted. The dis-
placement of the free surface , K t ~ , is similar .

I
I
I
I
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