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The work done under this contract resulted in two scientific
papers, both of which were co-authored with Mark Ablowitz:

(i) "Long internal waves in fluids of great depth,"
submitted to The Physics of Fluids; and

(ii) "On the evolution of packets of water waves,' sub-

mitted to the Journal of Fluid Mechanics.

These papers are include in this report an Appendices A and B..

The first paper discusses three-dimensional effects on the
kind of internal waves first discovered by Benjamin (1967) and
Davis and Acrivos (1967). In this paper, we derive the ap-
propriate higher-dimensional generalization of Benjamin's equa-
tion describing the evolution of these waves, and show that the
(plane-wave) solitons are not unstable to long transverse per-

turbations.

The second paper represents the major effort under this
contract. In it, we discuss three-dimensional effects on packets
of surface waves, including both long waves (governed by the
Korteweg-deVries equation in two dimensions) and short waves
(governed by the nonlinear Schrodinger equation in two dimensions).
In each case, we derive the appropriate higher-dimensional equa-
tion, along with the appropriate boundary conditions. Then using

these equations we

(i) analyze the stability of (plane-wave) solitons to long
transverse perturbations;

(ii) show the-existence of '"lumps,'" which are higher dimen-
sional analogues of solitons;

(iii) derive conditions under which a packet of capillary-
type waves must ''focus'" at a point in a finite time
(a strong nonlinear instability);

(iv) investigate the suitability of Inverse Scattering Trans-
forms for these higher dimensional equations; and

(v) discuss some special solutions that may have physical
interest.



It is difficult to describe the outcome of these analyses
simply, because different results are obtained in different
ranges of the dimensionless fluid depth and dimensionless sur-
face tension. Certainly the evolution of wave packets in three
dimensions involves phenomena that cannot occur in two dimen-
sions. More detail has been given in the previous quarterly
progress reports, and of course in the paper itself (Appendix B).

The work in these two papers shows the direction of research
that seemed most fruitful as it developed. The final result,
however, is not obviously related to the set of problems out-
lined in the original proposal for this contract. Therefore,
it may be worthwhile to comment hereon the current status of
the problems that were originally outlined almost two years

ago.

1. It was proposed to analyze the resonant interaction of
a long internal wave with a packet of short surface waves,
originally discussed by Phillips (e.g., 1974). The proposed
analysis would employ multiple time-scales, in order to see if
the evolution could be described in terms of solitons. The
answer is affirmative, but no work on that problem was done under
this contract, primarily because the analysis had already been
initiated by Larry Redekopp (private communication). His work
should appear shortly as a TRW Report; related work was also done
by Grimshaw (1977).

2. 1t was proposed to analyze the oblique interaction of
envelope solitons, to see whether an interaction like Miles'
(1977) three-wave resonance of KdV solitons could occur. The
answer is affirmative, as shown by Newell and Redekopp (1977).
However, the results of our stability analyses are relevant here.
The fact that envelope solitons are unstable to long transverse
perturbations, whereas KdV-type solitons ordinarily are not, sug-
gests that the oblique interaction of envelope solitons has
limited physical significance.




3. It was proposed to reinterpret field measurements of
ocean wave spectra in terms of solitons. But these spectra are
decidedly three-dimensional in character. The differences al-
ready discovered between wave evolution in two and three dimen-
sions suggest that (two-dimensional) solitons alone will not
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explain chese spectra, and poinis iu ihe need £or WOre WOTrK on

the three-dimensional problem.

4, 1t was proposed to study the stability of envelope soli-
tons to transverse perturbations. This analysis was completed
under this contract. Experiments to test these results are now

being set up by Joe Hammack.

5. It was proposed to study the viscous decay of envelope
solitons. The experimental portion of this problem has been
completed; development of an appropriate theory, and its com-
parison with the experimental data should occur within the next

year.

In summary, the work completed this year on the evolution
of packets of water waves in three dimensions indicates that
even though the two-dimensional theory (involving solitons)
may describe well the essentially two-dimensional laboratory
experiments on water waves, neither is necessarily representative
of what happens in the three-dimensional ocean. We have begun
to understand some of the additional phenomena that occur in

three dimensions, but much more work is required.
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ABSTRACT

An equation is derived that governs the evolution in
two spatial dimensions of long internal waves in fluids
of great depth. The equation is a natural generalization
of Benjamin's (1967) one-dimensional equation, and relates
to it in the same way that the equation of Kadomtsev and
Petviashvili relates to the Korteweg-deVries equation.
The stability of one-dimensional solitons with respect to
long transverse disturbances is studied in the context
of this equation. Solitons are found to be unstable with
respect to such perturbations in any system in which the
phase speed is a minimum (rather than a maximum) for the
longest waves. Internal waves do not have this property,

and are not unstable with respect to such perturbations.
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L. INTRODUCTION

It is known that the evolution of long waves of
moderate amplitude in a nonlinear system depends on the
form of the linearized dispersion relation. 1If, in the

long wave limit (k + 0), the linearized dispersion rela-
tion is
w? = cé k? - ZBcok“ + 0(k®) (1.1)

the governing equation is typically the Korteweg-deVries

(KdV) equation [1,2,3] (assuming quadratic nonlinearities),

ou du 2'a _
-a—E+C!U-a~}E+B‘a'X—;-O . (12)

If the dispersion relation has the form

w? = cék2 - 2bcok2|k| 4+ Oty (L.3)

then (1.2) is replaced by the equation of Benjamin [4],

2
%% + au %§'+ b 5%7 Fla) = @ , (1.4)
where
-1 fL
H{L) = = yox £(y)dy

is the Hilbert operator. [Note the sign convention.] Both
equations are known to have soliton solutions [5], and
these agree in many of their important features:

for (1.2),
u = (12K?B/a)sech?{K(x - 4K?Bt)} (1.5)




and for (1.4), with c¢b > 0 ,

-1
u=“—a‘i{(§ (x-ct))2+1} . (1.6)

Whereas the KdV equation can be solved exactly as an
initial value problem [6,7], a corresponding method of
solution for (1.4) has not yet been discovered. There-
fore, it is not presently known how different the general
solutions of the two problems really are.

If the long waves in (1.2) are subjected to even
longer transverse modulations, Kadomtsev and Petviashvili

[8] reasoned that the KdV equation should be generalized

to:
%o
u du 3’u  So 3%u e
ﬁ+au§§+8—”x-—2—f—7&y dg o, co>0
X ki1.73

Moreover, they showed that the soliton solution, (1.5),
is either neutrally stable for a limited time or unstable,
depending on whether £ is positive or negative; i.e.,
if the linearized phase speed (w/k) has a maximum at
k = 0 (B > 0) , then the solitons are not unstable. For
example, this is the situation for long water waves without
surface tension.

[For B > 0 (the stable case), no information travels
faster than the waves described by (1.7), and it is ap-
propriate to take X, * 4+ ., Further, one may require

that u+ 0 as x + +«, but then one cannot require that
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u-+90 as x = -« unless Zg;l}dx=0. For
B < 0 , the situation is re;ersed and one should take
B, ®=® Moreover, it is worth noting that when the
one-dimensional solitons are unstable (8 < 0) , (1.7)
admits "lump" solutions, which are localized in both x
and y and do have jz %;% dx = 0 [9]. Their interaction
behavior suggests th;; lumps are two-dimensional analogues
of solitons.)

The purpose of this note is to show that, with regard
to very long transverse modulations, (1.2) and (1.4)
behave similarly. Specifically, we will show that:

(i) the appropriate generalization of (1.4) for two-dimensional

waves is (co > 0)

X
o
du du 22 o 3%u
§-E+aug}?+bWH(u)-_2- '37?‘1&:0 ’ (1.8)
X

subject to the constraint that .7.%%% dx = 0 ; and
(ii) the soliton solution, (1.6;T is either neutrally
stable for a limited time or unstable, depending on
whether b 1is positive or negative. Again, if the
linearized phase speed has a maximum at k = 0 , then
the solitons are not unstable. This is the situation for
long internal waves, traveling along the thermocline in
the deep ocean [4,10,11].
In Section III, we show how to derive (1.8) in the context
of internal waves on an ocean thermocline. This derivation

is based on the work of Ono [11], but we have found his analy-
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sis to be incomplete. In particular, the matching section of
his analysis applies only 1. the density gradient is con-
tinuous, although no such restriction is stated (or even
suggested) in [11]. In order to complete this analysis,
therefore, we show how to match correctly both where the
density gradient is continuous, and where either the density
or its gradient is discontinuous.

Finally, we note that if one is simply interested
in the structure of the underlying equation, such a derivation
is unnecessary, because one can see directly from the linear
dispersion relation, (1.3), that (1.8) is the appropriate

generalization of (1.4). In two dimensions, we must interpret

2 a2 2
k® = kx + ky

in (1.3). 1In order that the effects of y-variations enter
at the same order as the linear dispersion, we require

that

2 3
R w0ghy . IR bee L (1.9)

Then (1.3) becomes
2

k .2 b
2 o N2 e D AL |
w Cokx[l +(El) 2 P ,kx(J s
X o
and for waves in one direction, we obtain
2 2 CO 2
~ - 1
kxw Cokx bkxlkxl + "2- ky B (1 10)
This corresponds to a certain linear operator acting on

exp {i(kxx + kyy - wt)} . After the Galilean transforma-




tion ¢ = x - cot , T =+t , this operatcr becomes

(ky»-idx , w » i3t ,  sgn(k,)*-iH)

3 fav 32 o 3ty _
LV—'a—é‘(?*‘ ba—g-zH(V))“'—z—W-O

Integrating once gives the linearized version of (1.8)

and the analysis which yields (1.4) shows that the non-

linear term also enters at this order.
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II. STABILITY OF THE SOLITON

In order to test the stability of (1.6) to weak
transverse perturbations, it is convenient to rescale

y so that (1.8) becomes

We define a slow time scale, and a spatial scale that

travels with the wave:

T = 6t
t (2.2)
z =X -f cdt' - 6(T,y,6)
and we assume
u = uo(z,T,y,é) + 6ul(z,T,y,6) . (2.3)
Then,
du. s, =D+ .
(2.4)
au _ ou du - . 98
W Piz * 3y » P 3y
Substituting into (2.1) yields
L auo auo 52
-c-a—g—+auov+b5—7H(u)
Buo E aul 3
e o e T L e
au ou au du
1 1 2 o) o, 9p
2 u— 3 pmi—
+6[-—T—a +au132 + p 5 +2pay+:_)yuo
Zo
azuo
- V dz' - 0(63) (25)
z
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To leading order, (2.5) is
= 'duo 8uo 32
-ca—z-—+au0 H—"'ba—z—zﬁ(uo) =0 ; (26)

and the solution of interest is

Holaie) o e e cb > 0 (2.7)

At higher order, the equations all take the form

Lf = F (2.3)
where
- A 3 52
Lf = -c gE + a gz (uof) + b 527 H(f)

The usual secularity condition is found by multiplying

(2.8) by uo(z) , integrating on (-«,®) , and using (2.6):

Al of
UOFdZ . —7— f - bH(uo) 3z

- 00 -

Inserting (2.7), this can be written as

o

4b? d 2?2 f ]
u Fdz =| —
f ) [:az a_z'( w4 zgj"’)

Thus, the solution of (2.8) and its derivative is bounded

for all 2z only if

fuol'-‘dz =0 . (2.9)

- 00




This provides our basic secularity condition. We also

note that (2.9) will not yield a uniformly valid solution
on |x| < « , but does give the correct evolution following
the soliton. This is also true for (1.7).

At 0(8) , (2.5) yields

auo
Lul - ET_ (2.10)
Applying (2.9) requires that
e _ ) meoies 06
ST =0(8) i E=c 4637 (T,y,8) (2.11)

Hence, the first nontrivial result comes by taking

u; = 6u2 . The question of stability is determined at
0(6%?) , where (2.5) becomes .
o
3u 3u du 3%u
SR Wi S S TS - S o
g I P 5 Wiy Nt e
E (2.12)

Applying (2.9) to (2.12), and using 93c/3y = 0(8) , yields

an expression which reduces to

1 3%6 , - 2%s
- 2 ETT + c 5;7 ~ 0 v (2.13)

If b< 0, then ¢ < 0 (from (2.7)), and (2.13) shows
that arbitrarily small y-variations in the “hase

of the soliton grow rapidly; i.e., the

soliton is unstable with respect to such transverse per-
turbations. In fact, (2.13) is elliptic when ¢ < 0 , and
(2.13) with initial conditions actually is ill-posed.

However, this is due to the fact that we are considering
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long wave perturbations. A similar result occurs in
Whitham's analysis of the Stokes wave problem [12]: he
finds that the slow modulation equations are elliptic.
In the one-dimensional problem this instability leads
to solitons. Here we expect to find lump-type solutions.
Conversely, if b > 0, then ¢ > 0, and these perturba-
tions merely propagate without change along the crest of the
soliton. Thus, the stability of the soliton solution of
(1.8) with respect to transverse perturbations is deter-
mined by exactly the same criterion that determines the
(transverse) stability of the KdV soliton obeying (1.7);
i.e., whether the linearized phase speed is a maximum

or a minimum at k = 0
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IIT. DERIVATION OF THE TWO-DIMENSIONAL EQUATION

In this section, we derive (1.8) in the context of
long internal waves. For the sake of definiteness, it
is convenient (but not necessary) to think in terms of

a background density distribution of the form
po(z) = p {1 + 6 exp(-z/h)} . z >0 (3259

For the problem of waves propagating along the oceanic
thermocline, z = 0 denotes a plane of symmetry (where
the vertical velocity vanishes for the modes of interest)
at the center of thermocline, h 1is a measure of the
thermocline thickness, the ocean surface is taken at
z =+« , and typically & ~ 10?2 . "Long" disturbances
have horizontal scales much larger than h , and (1.8)
results if they are also much smaller than the distance
to the surface. Later, we will indicate in context what
modifications to this derivation are necessary for
density distributions that differ significantly from that
in (3.1).

The equations of motion of an incompressible, non-

diffusive fluid are

(0] Dt . 'Vp — g . (3.2)
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where u = (u,v,w), é = g(0,0,1) and D/Dt = 3/3t + u-v
In this problem, we require
w=0 at z=0 , |ul+0 as z+ = (3.3)

In the absence of any fluid motion,

u=0 |,
p=p () , given ,
o -
P =7p, () = -g/ p,dt . (3.4)

The required strategy for this problem can be seen

by looking for infinitesimal perturbations of the form

cp(z)eik(x-c(k)t)

around this undisturbed state. The result is an equation

for the vertical velocity of the form

dp
(7@ ) - {Cﬁz e (5 & k2o0<z)}¢ =0 (3.5)

For realistic density profiles, a natural length scale is

h = _°a__—_°° (3.6)
min

Hence, the waves in (3.4) are long if
e = |k|lh << 1 . (3.7)

In what follows, we shall assume that |pé(z)| is mono-

tonically decreasing, and is finite as z + 0 . Assuming
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c?(k) remains finite as k + 0 , it follows that there
is an "inner region' where (z/h) 1is the appropriate
variable and the last term in (3.5) can be neglected,
to leading order. In this region, the solution can be

expanded as
¢~ 0,(2) + [klo;(2)

e = e + |klc? (3.8)

On the other hand, for fixed, small k and sufficiently
large z , there is an '"outer region' where density varia-

tions can be neglected and (3.5) reduces to
¢ll s k2¢ 7 0

The appropriate variable in this region is |k|z(=ez/h) ,

and the solution of interest is
b~ puriBlE (3.9)

The region of overlap is found by solving for 2z from

the relation:

1 dpo i k2C2 (k) y (3.10)

b po(z) dz g

For the density distribution given by (3.1), this occurs
as z/h + ®» in the inner region, and as |k|z + 0 in the
outer regién. For other types of smooth density distribu-
tions, the matching can occur in a neighborhood of a

finite 2z/h , but always as |k|z + 0 . Provided dp /dZ
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is continuous, ¢ and its derivative must match in this
region of overlap, and it follows from the structure of
(3.8) and (3.9) that the required conditions are

d¢ d¢,

> o-r S -
¢o & - T ot A ’ (3.11)

These matching conditions provide the additional information
required to specify the solutions ¢y completely.

It dpo/dz is discontinuous, there may be no region
of overlap, and then the matching must be done along the
isopycnic surface (surface of constant density) where the dis-
continuity occurs. The required matching conditions now
are that the normal velocity and pressure are continuous
across this surface. In the linearized problem, these
reduce to matching ¢ and d¢/dz , but not in the non-
linear problem. We will discuss this point in more detail
after first deriving (1.8) for a density distribution like
that in (3.1), where dpo/dz is continuous.

Returning now'to (3.2) and (3.3), we apply these
ideas to the nonlinear problem. Small amplitude waves
which are long in the sense described above, traveling
in the x-direction, are obtained by using the following

scaling in the lower layer (z/h = 0(1))




A
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E=celx - c t)/h ' W
n=¢e*/2(y/h) '
C =z/h ’
_ 2
T = e’c t/h ,
u -~ ecouy(€,n,z5,7) + ezcouz ’ > £3.12)

3/2

V ~ € cOvl(g,n,C'T) ’
2 3

W ~ E cowl(g,n,;,r) + € Co¥Wy

P~ p,8) +ep py(E,n,Z,T) ;

P~ P,@) + (epc2)py(E,n,0,T) . )

These scales were used by Ono [11], except for y , which
is based on (1.9), and Vv , which is required for momentum

balance. To leading order, after using (3.4), (3.2) yields

3p do
1 o _
g% il vl
ou OW.
1 s
1 i sl
(b _@)/o.) b, G S (3.13)
o «) 3E E ' :
op
1, gh &
’a_c—+CC2) pl—o 2
v Bpl

(0 (6)/0,) 3= + 5 = O

We define

wy = - 36060 (3.14)

and for future purposes, we require that 23f/3¢ + 0 as
|[€] + » . Then (3.13) provides the equation that deter-

mines the vertical structure of the waves:
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dp

- {pom gg:} B2 @e-0 . (315
o
It also determines the other unknowns in terms of £ and ¢
As ¢ » = | b, * P, and ¢ approaches a linear
function of ¢ ; (i.e., ¢" » 0). The only bounded solution, there-

fore, satisfies the boundary conditions:

$(0) = 0 , g% ~ 0 @8 ¢ +w (3.16)

in accord with (3.11). Now (3.15) and (3.16) constitute

an eigenvalue problem for (l/cé) . There are infinitely
many solutions to this problem, but the lowest eigenvalue,
whose eigenfunction does not vanish in (0,x) , is
ordinarily the solution of physical interest. We normalize
this eigenfunction by choosing ¢(=) =1 .

The relevant equations at the next order are:

9p do
2 (13 Bf ] af ' ' ' 1 w
-pwsg—-+w2d; ---a—_[¢00+f§—£{¢> ¢OO-¢(OO¢)} ’
ou v oW
2 1 2 _
e TR ol B
Ju ap
2 e of '

“Pole) BE= + P B = = 37 Po? >

af ' " ' '
+ £ ogp -0 (@")" + 0 00" - pies'}

3p2 .
3T » (gh/co)oz =0 ,

and Wy = 0 at ¢ =20
These equations reduce to a single nonhomogenous

equation for LOW the homogenous portion of which is

-—

(3.16)
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identical to that in (3.15). The equation has a solution

only if the nonhomogenous terms satisfy an orthogonality

condition:
- £

A . ] e to Ve ar - |2 38 42T gar
0o tW2 9 - Po & oT anZ >

o 0
+f{3(o $'2)" -~ 20 4'¢" - 2(p.06™) "4 d - £ 2£
o} o} o & a&
0 (3.18)

Again we note that if (3.10) should hold at a finite ¢ ,

say ho , then "« in (3.18) should be replaced by

h
o

In the upper layer, the fluid is nearly homogenous
and it is assumed that the only motion is that excited
by waves in the lower layer. Therefore, the equations
of motion must reduce to LaPlace's equation to leading
order. Moreover, the horizontal scales should be chosen
to be consistent with those in the lower layer, but the

vertical scale changes. Hence, in this region, we define

Z=¢2/h = €C :
(3.19)

w= e’c W(,N2Z,1,¢€)
and the scaling of the other independent variables is

taken from (3.12). The equation for the vertical velocity

Z > 0) i1is

2 2
9‘W 9°W 0(e)

37 + 377 = (3.20)
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subject to the conditions that

W-+0 as Z + o«

W-+0 as |[£] + = (3.21)

Fh

=

I

1
%

(E.n,T,E) on Z = 0

),
Y

This last condition is derived from the requirement that
the two representations of the vertical velocity must
match (as functions) in the region of overlap, which in

this case is
P afh=0(1y , OD<ps1 . (3.2

The solution of this problem is

ey wabkl. 88 Z §
W(E,T‘I,Z,T,e) .n,f[ ag (Eb; anuE)] (E_E)Z +Z‘T dg (3'23)

Ono [11] noted that

(3.24)

‘By construction, the two representations of the
vertical velocity match. Matching the vertical derivatives
of these functions as well insures the unique analytic
continuation of W , as required. From (3.16) and (3.24),

this implies

-

Dnnd e
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(o5

w 2

N
(o8]

H(E) {3.25)

A

0

Q

C c-foo

The last step is to substitute (3.25) into (3.18) and
integrate by parts appropriately, using the fact that

¢" » O @8 T e (3.26)

The result has the form of (1.8), where u is identified

with £ ,
= '3 12
a 3fpo¢ dg ?.foocb dzg .
0 0
(3. 27)
b =op

12
e 2]po¢ dg
0

and €y ™ 1 Dbecause of our scaling in (3.12). In this
application b > 0 , and no disturbance can arrive at
£ = +» before the solution of (1.8). Hence, it is ap-
propriate to take B, ™% in (1.8), o that the integral
term becomes _7-%%5 at' . It follows from (3.12), (3.13)
and (3.14) that f , the solution of (1.8), represents both
the horizontal fluid velocity and the vertical displacement
of an isopycnic surface. Moreover the soliton, (1.6), is not
unstable with respect to long transverse perturbations, as
shown in Section II.

The integrals in (3.23) and (3.24) coverge only if

of
3 0 as |g| + « . With X, = 4+~ , there is no apparent
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difficulty in requiring that the solution of (1.8) should
vanish, along with its derivatives, as ¢ + 4+« . However,
even if f (i.e., u) and all of its derivatives vanish
initially as & + -« , it is evident from (1.8) that f

will not remain zero there unless

2
-f'%ﬁﬁ dc = 0 . (3.28)

This additional constraint on the solution can be inter-

preted in terms of the vertical component of vorticity,

PEPNE | N . (3.29)

Using (3.12), (3.13) and (3.14), one can show that both terms
in (3.29) are of the same order of magnitude (in ¢ ) , and that
both are proportional to %% . Thus, (3.28) is satisfied
if the total (i.e., integrated in £ ) w-component of vorticity
is constant in n

We close this section by outlining the analysis required
for discontinuous density profiles. The main point is that
when either Po OF pé(z) is discontinuous, there is no
matching region, but rather a sharp interface. 1In these
cases, we must match normal velocity and pressure along the
interface which, in turn, has to be found. The essential

steps are as follows. We define the interface 2z = £(x,y)

by

Be = se +u-vi =W . . (3.30)
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If we call

22

F® 2= &z ] = c&l “« £°8g. .

then using the unit normal, f = VF/|VF| , the problem
becomes specified by the matching conditions

‘ - 2.0 , (3.31)
lower upper

Pressure‘ = Pressure (3.32)
lower upper

We then successively (in powers of € ) satisfy in order:
(3.21), (3.30), (3.32), from which we obtain unique func-
tions for the velocity, interface, and pressure. In all
cases, we find (1.8) with a,b given by (3.27) (and
replaced by ho =1 ). In the case where we have two
homogenous fluids of differing densities, a = 3/2 ,
b = pm/200 where o , p, are the respective densities
of the upper and lower fluids.

When po(z) is continuous, but pé(z) is discontin-
uous, then the effect of the interface is weaker. To
obtain (1.8), we need only use leading order results
from (3.31); i.e., continuity of vertical velocity (to
higher order, however, (3.31) itself must be employed) .

If pé(z) is also continuous then a matching region exists,

and the analysis presented at the beginning of this sec-

tion applies.
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Finally, it should be noted that the wave modes of
interest here, which leave the center of the thermocline
undisturbed, travel slower than either the surface wave or
the fastest internal wave with the same horizontal wave-
number. The analysis presented here assumes that if there
is any energy in these other wave modes, the relevant group
velocities greatly exceed C, » 8O that there is no coupling
between the long internal waves considered here and packets
of shorter waves in these other modes. If there is significant
coupling, the equations are more complicated than (1.4) and

(1.8).
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ABSTRACT

We consider the evolution of packets of water waves
that travel predominantly in one direction, but in which
the wave amplitudes are modulated slowly in both horizontal
directions. Two separate models are discussed, depending
on whether or not the waves are long in comparison with
the fluid depth. These models are two-dimensional generaliza-
tions of the Korteweg-deVries equation (for long waves)
and the cubic nonlinear Schrddinger equation (for short
waves). In either case, we find that the two-dimensional
evolution of the wave packets depends fundamentally on the
dimensionless surface tension and fluid depth. 1In particular,
for the long waves, one-dimensional (KdV) solitons become
unstable with respect to even longer transverse perturba-
tiors when the surface tension parameter becomes large
enough, i.e., in very thin sheets of water. Two-dimensional
long waves ('"'lumps') that decay algebraically in zll
horizontal directions and interact like solitons exist
only when the one-dimensional solitons are found to be
unstable.

The most dramatic consequence of surface tension
and depth, however, occurs for capillary-type waves in suf-
ficiently deep water. Here a packet of waves that are
everywhere small (but not infinitesimal) and modulated in

both horizontal dimensions can ''focus'" in a finite time,

ii
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producing a region in which the wave amplitudes are finite.
This nonlinear instability should be stronger and more
apparent than the linear instabilities examined to date;

it should be readily observable.

Another feature of the evolution of short wave nackets
in two-dimensions is that all one-dimensional solitons are
unstable with respect to long transverse perturbations.
Finally, we identify some exact similarity solutions to the

evolution equations.

iii
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1. INTRODUCTION

Our understanding of the evolution of surface water
waves of moderate amplitude has increased significantly
within the last decade or so. The evolution in one spatial
dimension of a packet of inviscid waves of sufficiently small
amplitude is governed by linear equations on a short time

scale, and by either the Korteweg-deVries (KdV) equation

u, + uu + . 0 (1.1)

or the cubic nonlinear Schrodinger equation

iA, + A+ 0|A|?A =0 {1.2)
on longer time scales, depending on whether or not the
typical wavelengths are large in comparison with the fluid
depth. 1In (1.2) and throughout this paper, o = *1 , and
represents an irreducible choice of signs. Both of these
equations can be solved exactly as initial value problems,
using inverse scattering transforms (IST; an account of IST
can be found in [1]). 1In situations in which viscous ef-
fects are felt on an even longer time scale, these theories
(or viscously-corrected versions of them) predict with very
reasonable accuracy the evolution of waves over quite long
distances in wave tanks (Hammack and Segur, [2], [3]; Yuen

and Lake, [4]).




Outside of specially designed tanks, surface waves
ordinarily evolve in two spatial dimensions and here the 4
theory is much less complete. A two-dimensional generaliza-
tion of (1.1) for nearly one-dimensional long waves was

given by Kadomtsev and Petviashvili [5] in the form:

u, + uu + ou x -fuyy dx = 0 , (1.3)
X
Results by several authors indicate that (1.3) is of IST- 1

type, but a complete method of inverse scattering, analogous

to that in one spatial dimension, has not yet been developed. 1
Two-dimensional generalizations of (l1.2) were derived J

by Zakharov [6], Benney and Roskes [7], Davey and Stewartson

(8], and Djordjevic and Redekopp [9]. All of these analyses

followed approximately the same lines. The problem was

also studied by Hayes [10], using somewhat different methods. 1

The most general analysis was by Djordjevic and Redekopp,

who included the effects

arbitrary depth to get a

iAt + olA

XX

XX

where (a,b,01,02) depend

and surface tension.

In

"
°° 4

of gravity, surface tension and

system that can be reduced to

= 2

(1.4)

o e 2
+ ¢yy b(|A] )x ;

on the (dimensionless) fluid depth

the long wave limit, (1.4) reduces f

-
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to one of the problems that Ablowitz and Haberman [11] had shown
were of IST-type. As with (1.3), beyond identifying the ap-
propriate linear scattering problem and obtaining special solu-
tions, no general inverse scattering theory has yet been developed.

In these two cases, (1.3) and the long wave limit of (1.4),

one can reasonably anticipate that the necessary inverse scat-
tering theory eventually will be developed, and that the general
solutions of (1.3) and (1.4), as initial value problems, will
become available. 1In these cases, the two-dimensional problem
should eventually be solved to the extent that the one-dimensional
problem is now. However, as discussed in §5, we conjecture that
(1.4) cannot be solved by inverse scattering transforms over

the entire range of parameters and that the general two-dimen-
sional problem cannot be solved in a manner analogous to that

in one dimension.

The purpose of this paper is to identify some important re-
sults regarding (1.3) and (l1.4), and to suggest the role that
they play in the solution of initial value problems. A major
result of this study is the dramatic effect that surface tension
can have upon the dynamics of the wave motion. A summary of
these results, and an outline of the paper is as follows.

(§2) The derivations of (1.3) and (l1.4) from the physical
problem of water waves are discussed. These equations are well
established in the literature, but the question of what boundary
conditions and other constraints are required to make the prob-
lems well-posed is still open. We show that the original prob-
lem selects certain side conditions as ''matural."

Which conditions are appropriate depends on the dimensionless




-

surface tension and depth. 1In this section we also consider
the physical interpretation of an infinite set of conserva-

tion laws.

(§3) The role that one-dimensional soliton solutions
can play in the two-dimensional problems is examined (i.e.,
stability of solitons). KdV solitons are unstable in (1.3)

when o = -1 , which occurs in sufficiently thin sheets of

water (i.e., large enough surface surface tension coefficient).

For zero surface tension o = +1 , and the argument does

not yield instability. When solitons are unstable, they
cannot be viewed as the asymptotic (t + «) states towards
which the solution evolves, as they are in the one-dimensional
problem. In this case, "lump" solutions exist and may play

an asymptotic role analogous to that of one-dimensional
solitons.

Zakharov and Rubenchik [12] showed that for the one-
dimensional cubic nonlinear Schrodinger equation all one-
dimensional solitons are unstable. These results apply to
the deep water limit of (1.4). We extend their analysis to
demonstrate the equivalent results in the case of finite
depth.

(§4) The most dramatic effect of strong surface ten-
sion is focusing. A wave that is large enough (in a certain
integral sense) focuses at a particular point in space
after a finite time. Here there is no asymptotic (t + =)
state, because the solution of (1.4) develops a singularity
in a finite time. Focusing provides a mechanism by which

a field of relatively small amplitude waves produces a local

Y




region in which the amplitudes are large. Focusing is a
potentially important mechanism in the redistribution of
energy within the spectrum; it should be readily measurable.
(85) We consider the question of the complete integra-
bility of (1.4). Moreover, we exhibit some special solutions
that are not one-dimensional, and are candidates for asymp-

totic states in the two-dimensional problem.




2 RELEVANT EVOLUTION EQUATIONS

The classical problem of water waves is to find the
the irrotational motion of an inviscid, incompressible,
homogeneous fluid, subject to the forces of gravity and
surface tension. The fluid rests on a horizontal and im-
permeable bed of infinite extent at z = -h (h may be
finite or infinite), and has a free surface at 2z = ¢(x,y,t)

The fluid has a velocity potential, ¢ , which satisfies

V¢ = 0 -h < z < ¢(x,y,t) (2.1)
It is subject to boundary conditions on the bottom, 2z = -h
0 : {2.2)

and along the free surface, z = ¢

UIU
(g4 O

=Gy ¥ b8y F T 9,

2 2y £2.3)
Ly (1HEy) + Lo, (14EL) - 20,.8,8

Xy X'y
2 2y3/2
(1 + g, +2y)

8L + ¢, + 7lV4|% = T

Here g 1is the gravitational acceleration, and T is the
ratio of surface tension coefficient to fluid density. We
note that the linearized dispersion relation for this sys-

tem is

w? = (gk + x’T)tanh kh , (2.4)

In two dimensions, one should interpret « = k? 4+ 22 in

(2.4),




2.1 KdV Limit

The solution of (1.3) provides an approximate solution
to these equations that is valid when the initial disturbnace
consists primarily of nearly one-dimensional long waves of
small amplitude. To be precise, let K = (k,2) be the
horizontal wavenumber characteristic of the disturbance.
Orient the horizontal coordinate system such that the x-
direction is the principal direction of wave propagation.

Let a denote the characteristic amplitude of the distur-
bance. Then we need:

(i) small amplitudes,

e = aflh =<1 = (Z.5a)
(ii) long waves,
(kh)* << I~_; (2.5b)
(iii) 1 di 5 1 T
. i1 near one-dimemansional waves, ~
y \\\\\\
(a/k)? << 1 . T(2.5¢)

The KdV equation (1.1) results when the first two effects
balance in truly one-dimensional problems, and (1.3) results

when all three effects balance:

(cxh)? = 0(e) , (2.5d)
(L/k)2 = 0(e) . £2.5e)




Under the assumptions of (2.5) a first approximation

of (2.1) - (2.3) reduces to

n 2 n 2
ggé - gh %E% = 0(e) (2.6)

Thus, to lowest order, the solution of (2.1) - (2.3) may

be approximated by

o e ch[fl(x - /ght;y) + fz(x + /ght;y) ] , (2.7)

where fl'fZ are known in terms of the initial data.
Throughout this paper, we are interested in problems where
the initial disturbances are localized, and it is then con-
venient to assume a fortiori that the physical quantities
have compact support initially. In this case, it is easy
to show the fl and f2 in (2.7) have compact support as
well.

To go to higher order, we define scaled, dimension-

less variables:

£ = /E(x-/ERE)/h , 8 = JE(x/EHE)/h 3
n=¢ey/h , T = e/ght/h ) (2.8)
u - fl » 2 i f2

T = T/gh? . y

Now we look for solutions of the form ¢ ~ chlu(r,t,n) + v(s,t,n)];
i.e., we use the method of multiple scales. To eliminate

secular terms at the next order, we find
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: 1 1
(2u, + 3uur g (5 b T)urrr)r 4 Bon o . _
; e (2.9)
(Zv,l - 3vvS - (7 - T)vsss)s - Vnn -0 .,

The equation given by Kadomtsev and Petviashvili [5] is
in this form.

For most circumstances of interest in water waves,
1 A T
-T>0 2.10)
| '

and it follows from (2.4) that the linearized phase speed

is a (local) maximum at « = 0 . Thus, the waves governed

by (2.9) travel faster than their neighbors (in k-space)

and there should be no .disturbance as r + +» , or s + -«

Consequently, (2.9a) may be integrated to

2u_ + 3uu_ + (5 - Do -Iun”dz =0 , (2.11)

r

with a similar equation for (2.9b). This is now in the

form of an evolution eantion for u , as is (1.3). For

very thin sheets of water (i.e., T large enough)

(2.10) is false, the long waves travel slower than their

neighbors, and the integral in (2.11) should be over (-«,r)

Given (2.10), there is no apparent difficulty in

requiring that u should vanish, along with its derivatives,

as r + to , However, even if u and all of its derivatives

vanish initially as r + -» |, it is evident from (2.11)

that u will not remain zero there unless
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o

]unndr = 0 (2.12) .

- 00

Since u 1is the derivative of a velocity potential, (2.12)
is automatically satisfied at the initial instant. Indeed, j
for the linearized form of (2.11), (2.12) is a constant

of the motion, and it is sufficient to require it initial-
ly.

The constraint in (2.12) has a simple physical inter-
pretation. One can identify J’u(r,n,T)dr as the total
mass of the wave in a thin strip at n . Then (2.12) as-
gures that the transverse derivative of mass is constant,
and this prevents a net flow of mass to (or from) any
particular strip.

There are several indications that (2.1l) or (1.3), is
of IST-type. Dryuma (13] has identified an appropriate
linear scattering problem for (1.3); Zakharov and Shabat
[14] have related special solutions to a linear integral
equation; Chen [15] found a Backlund transformation;
Satsuma [16] has obtained "N soliton,'" but nonlocalized,
solutions by direct methods. 1In Section III we discuss
localized lump solutions. However, as mentioned earlier,
no complete IST method has been developed for (1.3) to

date.



2.2 The Nonlinear Schrodinger Limit

Let us now consider the derivation of (1.4) from
§ (2.1) - (2.3). Here we are following a packet of nearly
one-dimensional waves, traveling in the x-direction,
with an identifiable (mean) wavenumber, K = (k,)
' We denote the maximum variation in k within the packet
by 6k . To derive (1.4) we need:

’ (i) small amplitudes,
€ T ka << 1 (2
(ii) slowly-varying modulations,

(iii) nearly one-dimensional waves,

(iv) balance of all three effects,

The dimensionless depth, kh , can be finite or infinite,

but to avoid the shallow water limit (and KdV), we need

Sk/xk << 1 (£

|9'|/K << 1 (2.

§k/k = 0(e) KZ.
2]/« = 0(e) (2.

(kh)? >> ¢ . i

.15a)

15b)

15¢c)

15d4)
15e)

16)
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In this limit, the solution of the lowest order (linear)

problem is

55 ECxﬁgsﬁ(ﬁgh) [A exp(if) + (*)] + const) (2.17a)

where (*) denotes complex conjugate,

8 = kx - w(k)t , (2.17b)

and w(k) 1is given by (2.4). To go to higher order, we
introduce slow (dimensional) variables (again, using the

method of multiple scales),
X; = €X , Y1 = €y . By = gt ’ Ex = z*¢ , (2.18)

and expand ¢ and ¢

¢ ~ € {;(Xx,Y1. Ca k) + cozgsﬁ(igh) [A(Xl.Y1,t1.tz)exP(ie)

o (*)i} + 0(e?) (2.19)

L = C{E“exp(ie)+(*)} * 0(52) ’ Ell i g__];:ETT ;

In order to derive (l1.4), these expansions must be carried
out to 0(e?®) . The variations allowed in A reflect

the fact that this is a wave packet, rather than a uniform
wavetrain, and ¢ provides the mean drift current generated
by the paéket. In what follows we shall only discuss the

secular effects that the higher order terms have on ¢ ,

and A ; details can be found in [7]-[9].




e
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At the next order of approximation, a secular condi-
tion requires that the wave packet travel with its linear

group velocity,

dA dA
3+ C () 32 =0 (2.20)
where Cg = dw/dv¢ . On this same time scale, ¢ satisfies

a forced wave equation,

223 T P L [ 3 azas
5t—lz - h{é—x—{ + 5-}717} - kwﬁl 5‘}; IA] ’ (221)
where
kC =
B, = —Gﬂ sech?kh + 2/(14T) ,

~

k?T/g = (kh)?T

2
]

The solution of (2.21) changes dramatically, depending on

whether or not

gh > 2 . (2.22)

If the ratio cg//gﬁ is interpreted as the '"Mach number"
of the wave packet, then (2.22) is the condition for "sub-
sonic" flow. 1In this case, if A has compact support,
then ¢ has a forced component that travels with speed
Cg (i.e., it satisfies (2.20)), and a free component

that radiates outward with speed vgh , and is 0(t7%) as
t, -+ » . Hence with (2.22), as t; - » , we find that o

satisfies both (2.20) and

329 329 ¥ kw ) 212 2.23
“ax7 tayr T T B A g e
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where

= _ 2
a = (gh Cg)/gh ;

along with the boundary condition that ¢ vanishes as
(x3 + y3) » = . These are the boundary conditions pre-
scribed by Davey and Stewartson [8], and they are correct
without surface tension.

If the effects of surface tension are strong enough,
(2.22) fails and the flow is '"supersonic.'" Now even if
A has compact support, ® and its derivatives are non-
zero along '""Mach lines'" that emanate from the support of &,
In the limit t, » » , & satisfies both (2.20) and (2.23)
as before. However, the appropriate boundary conditions
for (2.23) now are that ¢ and its derivatives vanish
ahead of the support of A (e.g., as x, + »), and no con-
ditions as x; - -» . Hence, in general, we can not expect
that global integrals involving ¢ will converge.

The limit t; » » is of interest because (1.4) ap-
pears when one eliminates secular terms on the next time
scale, t = 0(e~?) . Carrying this out, and putting the

result in dimensionless form, we define

£ = ek(x - Cgt) , n = eky
T = e2(gk)¥t , (2.24)
A=k(gk) XA, & = k’(gk) % ,

and find that A and ¢ satisfy
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1A, + XA, + VA = x|A|2A 4 x,A®

4 nn A
5 (2.25)
ab, . + By ™ -B(|A] )E .
where
~ N
o=tanh kh , T =k3T/g , x = /&kZ + 27 |
w? = gho(1+1) > 0 g
w; = gk ;
32
A = k2 (527) /20, :
2 32(1) KC
w2 (57 20, = 2;5 20
w 2 2 T 2 2
ou [(1-02) (9-07) + T(2-0?) (7-0%) ) 2.26)
x = (Z‘—‘:) { 07 . T—(B_CT[) + 80’2
- 2m
- 2(1-00)2+D) - )
kC 3
x1 =1+ B (1-0®)(14T) 2 0
o = (gh'Cé)/gh ’
o s [ g 152y 4 2
B‘(B-O'EH) - (1‘0)+1—+T}10 ’ j
Ve oy - X80
In the above formulae, all functions are evaluated
at 2=0 , since we are considering our underlying wavetrain

to be propagating purely in the x-direction. It should be
noted that (2.25) can be easily scaled to (l.4) where

o, =sign A , o0, =sign x , a = au/A? and b = Bux,/r?|x|
in (1.4).

o P Y
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(2.25) - (2.26) are equivalent to those of Djordjevic and
Redekopp ([9], their equations (2.12) - (2.13)) except for
the correction of a misprint. If the initial wave packet
is local, it is appropriate to require that A vanishes
as £? + n? » » . As discussed above, the appropriate
boundary conditions for ¢ depend on the sign of «

In the deep water limit, (2.25) reduces to

: s} 2
1A, + M Ay + AL = X [AlPA (2.27)
where
Y - (1-61:-3&'72)
© ‘86 ]+T »
wo »,
M, = 7o (143T)
w 8+T+2T?

e 0 s
Xo ™ %5 (1-2T) 14D

The appropriate boundary conditions for localized initial
data are that A vanish as £2? + n? +

The character of the solution of (2.25) depends funda-
mentally on the signs of the coefficients in the equations.
Figure 1 is a map of parameter space, showing where these
signs change. The figure is that of Djordjevic and Redekopp
[9] , who used it to explain the various regions of
stability/instability of the Stokes wave. Each boundary
line corresponds to a simple zero of a coefficient, as
shown, except for the two curves bounding region F . These
two curves denote singularities of v . In a neighborhood
of each of these two curves, phenomena occur on a shorter time

scale than the 0(e-?) scale required elsewhere; cf. [9].

-
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I1f we take the long wave limit, kh - 0, of (2.25) but
keeping € << (kh)? , we find equations which are of IST-
type. We discuss this further in Section 5. Alternatively,
the long wave limit in which € = 0((kh)?) , where (2.11)
applies, corresponds to the lower left-hand corner of this
figure (kh - 0 , T+0, T fixed). The only parameter that
changes sign in this limit is (1/3 - T) , which is positive
in Region A, and negative in Region B. The uniformity of the
limits kh - 0, € » 0 has been discussed in [17,18,19].

2.3 Conservation Laws

Our final objective in this section is to give a
simple physical interpretation for an infinite set of con-
servation laws. It is well-known that the equations of
water waves conserve mass, horizontal momentum and energy.
1f we interpret ''mass' as the mass associated with the
wave, etc., then these conserved quantities may be repre-
sented as integrals. In one dimension (which is sufficient

for the purpose of this discussion) we have:

Mass
M= pICdx : (2.28)
Momentum .
m, = pI[] oxdz}lx (2.29)
“h

vy
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Energy
z
K.E. = %f I |ve|2dz dx
h
PE. =% g[g2dx (2.30)
E = K.E. + P.E. f

On the other hand, problems that have been solved
exactly by IST possess an infinite set of conservation laws.
For example, the first few quantities conserved by (1.2)

are

1, - [ |A|2dx
1, = [ a*a - azayax (2.31)
1, = fdalr - § al")ax

There has been some speculation about the proper physical
interpretation of this infinite set of conserved quantities.

We offer here a very simple explanation. We have seen that

(1.1) - (1.4) all are obtained via expansions in wave am-
plitude, € . From this viewpoint, one might also expand

(for example) the expression for the mass of the wave in

powers of € , to obtain a series of the form

M=p % enCn (2.32)

Because M 1is constant in time, it follows that each

coefficient, Cn , 1s also constant.
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Because one generates the complete series for ¢ , ¢

through 0(e?)

in deriving (1.4), it is then straight-

forward to compute the series in (2.32) to this order. 1In

(2.19), any terms involving exp(if6) can be shown to con-

tribute only at higher order,

using integration by

parts:
!Cll(xlotlaCZ)eiedx - Illzjgca‘)l{l' eiedx
- . .E 3%, 1ib
‘{E! 3%, e  dx
This process can be repeated as many times as ¢,, can

be differentiated.

is

M= €ea,
m =
X

K.E. = €¢;

yY.E, = EC)

I, enters at O0(e?)

The result of explicit computation

I, + €2a,I, + 0(e?) ;

e?b,I, + 0(e?) ;
(2.33)

I, + €?¢c,I, 4+ 0(e?)

I, + €¥c,I, + 0(e?)

The coefficients (ai’bi'ci) are

unimportant for our purpose. The momentum starts at higher

order because it is referred to a coordinate system travel-

ing with the group velocity of the wave. The identity of the

last two series is a statement of the equipartition of the

averaged energy, to this order. It is not true that I, , I,

and 1,

represent respectively the mass, momentum and energy

of the water waves.

(Similarly, the first three conserved
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quantities for KdV are not respectively the leading terms
of the expansions of the mass, momentum and energy of the

water waves.)

&
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3. STABILITY OF SOLITONS

The primary purpose of this section is to discuss the
stability of solitons with respect to transverse perturba-

tions.

3.1 The KdV Limit

Let us first consider the long wave probiem, and (2.11).
The one-dimensional limit, ©4/%n = 0 , yields KdV. Here
initial data on compact support evolve into a finite num-
ber of solitons, ordered by amplitude, followed by decaying
oscillations that can be described in terms of a modulated
similarity solution. The decay rate of the oscillations
is not uniform in space, but it is of algebraic order
[20]. The solitons are (theoretical)
waves of permanent form when separated spatially from
other waves. They represent water waves that decay only
due to viscous effects. A KdV soliton is shown in Figure 2a.
Both the solitons and the decaying oscillations have been
observed experimentally [2,3].

Kadomtsev and Petviashvili [5] analyzed the stability
of a KdV soliton with respect to long transverse perturba-
tions in (2.11). They found that the soliton is unstable
with respect to such perturbations when (2.10) fails (i.e.,
in the lower left corner of Region B in Figure 1). The
usual situation is Region A, where (2.10) applies. Here

they did not find that the soliton is unstable.
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In Region B, where the solitons are unstable, the
KdV theory is of limited value. Here the solitons cannot
represent asymptotic states, as they do in the one-dimen-
sional problem. Thus, the question arises as to whether
(2.11) has any other special solutions that might act as
asymptotic states when the solitons are unstable. The
answer is not known definitively at this time, but the work
in [21,22] 1is suggestive. In Region B, but not in
Region A, (2.11) possesses '"lump' solutions. Lumps share

many of the important properties of solitons:

(i) Each is a permanent wave whose speed, relative to
the linearized speed, vgh , can be made proportional to its
amplitude. '

(ii) Solitons are localized waves, with exponential tails
in one dimension; lumps are localized waves, with algebraic
tails, in two dimensions.

(iii) Two solitons regain their original amplitudes and
speeds after a collision; the final effect of the collision
is a phase shift of each soliton. Twc lumps regain their
original amplitudes and speeds after a collision, and suffer
no phase shift.

(iv) Explicit formulae are available for N solitons,
and for N lumps. The formulae for the one soliton and one

lump solutions of (1.3), with o = -1 , are:
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Soliton
d2
u=-12 = ¢n {1 + exp(-2¢x')} ;
(3.1)
x' = x + 4’ ;
Lump
2
us 1285 a0 (x4 py)? + (¥ 43/, (3.2)
where

x' =x + (p? + q¥)t ,

e L o

These two solutions are drawn in Figure 2 for a particular

choice of the constants. (The soliton is a negative wave

in Region B, as shown. In Region A, solitons are positive.)
These stability results suggest that whereas the one-

dimensional KdV solution may play an important role in

(1.3) with o = +1 (Region A), no such situation is en-

visaged when o = -1 (Region B).

3.2 The Nonlinear Schrodinger Limit

Next, we consider the nonlinear ’chrdédinger equation (2.25).

Observe that (2.25) admits one-dimensional solitons traveling at
almost any acute angle relative to the group velocity of the
packet. The extreme cases are found by setting either 3/an= 0

or 93/3f =0 . If 23/3an =0 , the second equation in (2.25)

can be integrated once, and the system reduces to

1A+ Mg, = v|A|*A

(43
o = -B/alA|? P

o
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where Vv = yx-x,f/a , and the coefficients X , a , B, x ,
x, are defined in (2.26). (Throughout this discussion,

it should be borne in mind that the amplitude A represents
the envelope of a train of plane waves.) 1Initial data

can be created experimentally by modulating (in time) the
stroke of an oscillating paddle at the end of a one-dimensional
wave tank. If Av > 0 , as it is in Regions A, B and E,

of Figure 1, there are no solitons. The initial data

evolve into a field of decaying oscillations that we shall
refer to as ''radiation." This radiation can be described

in terms of a modulated similarity solution, and it decays
as 1% [23]. In Regions C, D and F, v < 0 , and the
same initial data now produce a finite set of envelope
solitons in addition to the radiation. (For appropriate
initial data, multi-soliton states are also possible [1],.

The one-soliton solution of (3.3) is
A = a|2A/v|%sech{a(£-2bT)}exp{ib£ + ix(a?-b?)t} ; (3.4)

The constant b in (3.4) represents an 0(e) correction
to the basic wavenumber, k ; without loss of generality
we take b = 0 . It is evident from (3.4) that the am-
plitude of the envelope soliton is of permanent form, and
represents a physical wave that decays only due to viscous
effects. Figure 3 shows the experimental measurements of
such a wave, and we have superposed on the measurements
the soliton solution with the same peak amplitude. [This

experiment was conducted by Professor J.L. Hammack while
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at the University of Florida, and we are grateful to him
for allowing us to use his unpublished data.] It is clear
from this comparison that, at least in some aspects, the
model represented by (3.3) is remarkably accurate. For
more detailed comparisons, see [4] or [24].

At the other extreme, if 23/93f = 0 in (2.25), the system
reduces to

- 2
iA, + wA = x|Al’A (3.5)

which is mathematically equivalent to (3.3) but represents
a much different situation physically. Here wave crests
move in the x (or £) direction, but they are modulaced
in the n direction. These modulations can move only

in the n direction. To our knowledge, this configura-
tion has not been explored experimentally in water waves,
although it is common in nonlinear optics, where An%
represents diffraction of the light. 1In optics, initial

data is produced experimentally with a diffraction grating,

and the solution of (3.5) provides a nonlinear description

of Fraunhofer diffraction (cf., Manakov, [25]). Solitons

exist where x < 0 (since u > 0) in Regions B, C and F.

To distinguish them from the soliton solutions of (3.3),

we will refer to the solitons in (3.3) as '"envelope solitons,"
and the solitons in (3.5) as ''waveguides."

Between these two extremes, 23/9n =0 and 93/3f = 0, is a
one-parameter family of other one-dimensional restrictions of
(2.25), corresponding to one-dimensional waves (of the envelope)
traveling at various angles relative to the group velocity of
the carrier wave. Each of these one-dimensional problems is

governed by an equation of the form (1.2), except at one angle
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that corresponds to crossing from region B to F, and another
that corresponds to crossing from F to D.

Again, the question arises of the physical relevance
of the one-dimensional soliton in the two-dimensional
problem. For the nonlinear Schrédinger equation, (2.25),
the answer seems to be that except for specially contrived
one-dimensional geometries (like laboratory wave tanks),
they are unlikely to persist. We show next that every
one-dimensional soliton solution of (2.25), envelope
soliton or waveguide, is unstable with respect to a long-
wave transverse perturbation. Apparently, this instability
has not been pobserved in wave tanks only because the tanks
are too narrow to admit the long-wave perturbations re-
quired. The instability was discovered first by Zakharov
and Rubenchik [12] for (2.27). Our analysis is a generaliza-
tion of theirs to the case of finite depth.

Consider first the envelope solitons, which are solu-
tions of (3.3) and can exist in Regions C, D and F in
Figure 1. As remarked above, it is sufficient to demonstrate

the instability of the stationary soliton:

A = exp(ira’t)y(g)

(3.6)
¢E - -B/G‘Pz(ﬁ) ’
where () 1is real and satisfies
Aw€€ + la‘ + vy 0 " (3.7)

Perturbations about this soliton can be put in the form
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exp(ira?t)[y + u + iv]

>
I

o (3.8)
o) [ @+ 2pwydz 4w,
€

o
I

where u , v, and w are real,

lul, [v] << ¥, |w| << ¢ ,
and

u,v,w ~ exp(ipn * iQt)

The question of stability now comes down to determining
whether Q? 1is positive. Substituting (3.8) into (2.25),

linearizing and eliminating v yields

Q%u = (L, + up?)(Ly + up™)u + x, (L + up*)vw, , W

oW, = pz[%f(lpu)dz + w] '

€
where L and L, are the self-adjoint }
(3.9)
operators defined by
L= =X e 4 N + vyt
0o o9& .
Ly = -} e + 22”4 Jvy?
1 S—ET a vy “. J
In the short-wave limit (p? + «) , (3.9) reduces to
Q%u = u?p“u + 0(p?) ’
(3.10)

28

o

(Yu)dz + w~ 0

m'qs
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Clearly ©? 1is positive in this limit, and short waves
are not unstable. Indeed, if they were unstable, it would
be difficult to observe envelope solitons even in narrow

wave tanks.

In order to analyze the long wave limit (p? + 0), we

expand the unknowns in (3.9) as

u~u, + piu, ;
w ~ p’w, 3 £3.11)

92 (o sz% ’
Then to leading order, (3.9) becomes
LoLluo =0 . (3.12)

In order to solve (3.12), we define certain odd (-) and

even (+) functions of ¢

“+
u = -

3 - >
3 o, ovo=-Ew/2n , Vo= . (3.13)

>

B, wg ,

The following relations can be obtained from (3.7):

+-
Lovo =0 ;
Lv =u_ "
e (3.14)
Llu = 3
o
+ o+
L,uo i 4
It follows that u; and u: both satisfy (3.12), and
that v_ and v: satisfy the adjoint equation,
L.Lv =0 (3.15)

o o
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In each case, there are two other solutions that do not
vanish as |£| - @ . We will also need certain scalar

products of these functions. Using the notation

(¢)n¢2) =I¢l¢2dg ’

- 00

one computes

+ _+y _
(VO,VO) = I )
(vo,uo) = T/4) i
- SO ] (W 11 (3.16)
(¥oels) = T &r
R e A
(vo,uo) == (Vopuo) 5 o
= = - 2
(uo.uo) = fw€ dg ’
where
¥, 2 ol ra
I—IIAI dg-a‘—v—
At 0(p?) , (3.9) reduces to
LoLlul = quo - U(Lo oz Ll)uo i leow(wl)C ’
® (3.17)
a(w;) = Z_EI (Yu_)dz
IR o o
&

For u, to decay as |&| » » , it is necessary that the
nonhomogeneous terms in (3.17) be orthogonal to the decaying
solutions of the homogeneous adjoint equation (3.15).
Because the equations are linear, it is sufficient to con-
sider the odd and even modes separately. Thus, if u

in (3.17) is ul , we multiply (3.17a) by vy

o
, integrate

over ¢ , and use integration by parts to obtain
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0= @DYCF £ -
or
@h* = - A - 2a (3.18)
(F37)

For the odd mode, u; , we multiply (3.17a) by v; and

use (3.17b). The result is

@) = ‘—‘%E} [ via, + %;gfw“df,]

% xaz[u + %-;ﬁ |A/v|:'

(3.19)

The question of stability of envelope solitons depends
only on the sign of A (the other factors in (3.18) and
(3.19) are intrinsically positive). Using Q? -~ p?(a?) ,
we summarize the result as follows:

(i) In Region D, where X < 0 , an envelope soliton
with amplitude a 1is unstable with respect to long dis-
turbances that are antisymmetric (-) in ¢ . The growth
rate (i¢l) of the disturbance with wavenumber p 1.

found from
' = -2 pra’ A+ 258 v+ o ) (3.20)
In the deep water limit, this simplifies to
a? = -% prafu|A| + 0(p") (3.21)

as found by Zakharov and Rubenchik [12]. Thus, for an
inviscid fluid, the effect of finite depth is to enhance

the growth rate of the instability. Zakharov and Rubenchik




31 =

found the O0(p") correction to (3.21), and argued qualita-

tively that the most unstable wave satisfies

up? = 0(|x]a?) (3.22a)

and that the maximum growth rate is on the order of

2] = 0(]r]a?) . (3.22b)

Moreover, they noted that the growth of a mode that is anti-
symmetric in £ and sinusoidal in + tends to bend the
wavecrest, producing a 'snake'" effect; i.e., the crest
of the perturbed wave oscillates back and forth in the
(£-n) plane about its unperturbed position. Recent numerical
computations in [26] have made (3.22) more precise.

(ii) In Regions C and F, where X > 0 , an envelepe
soliton with amplitude a 1is unstable with respect to
long symmetric (+) disturbances. The growth rate of the

disturbances with wavenumber p 1is found from
R? = -2p%a?iu + 0(p") (3.24)

and this result also holds in the deep water limit. Again,
qualitative considerations yield (3.22b). Growth of a
symmetric mode tends to modulate the wave amplitude periodi-
cally in n .

Analysis of the stability of waveguides (in Regions B,
C and F) follows similar lines, and it is necessary only
to indicate the main points of the analysis. A stationary

waveguide has the form

SRS S SSS—- Y Y-
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A = exp(ipa’t)y(n) (2.25)
¢ =0 P
where Yy 1is real and
- 2 - 3 =
WV, +ua’v - xy 0
Perturbations take the form
A = exp(iua?t)[y + u + iv] ,
(3.26)

(- ]

¢ = - ].wdz

2

The linearized equations for u and w , derived from (2.25),

are
Q%u = (Lo + Apz)(L1 + Ap?)u + Xl(Lo + ApY w w
oy p*l2Byu + aw] '
where $
{3.27)
92
by ® 24 g wa? + xy* ,
L:-u82+pa2+3w2
1 an? i J

These equations are very similar to those in (3.9)
and we simply state the final result. Throughout Regions B,
C and F, (X,u) are positive. Anywhere in these regions,
a stationary waveguide with amplitude a is unstable with
respect to long symmetric (in n) disturbances. The growth
rate (i91) of the disturbance with wavenumber p (in §)

is found from
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Q2 = -2p2a’iy + 0(p*) (3.28)

and qualitative considerations given (3.23a,b) with A,u
interchanged.

We conclude this section by summarizing our results
for the nonlinear Schrodinger equation, (2.25). There are many
one-dimensional limits, including (3.3) and (3.5). These two limits
admit envelope solitons and waveguides, respectively, in
various regions of Figure 1. However, all possible solitons
are unstable with respect to some long-wave transverse
perturbation. This instability does not appear in experi-
ments in one-dimensional wave tanks, provided the tank
width is small in comparison with the soliton length,
because the unstable modes are excluded by the geometry.
If this constraint is removed, however, the instability
should occur, and neither kind of soliton is a stable
asymptotic state that can be achieved from initial data

in €Z.25).




-34-

4. FOCUSING

In one-dimensional problems, like (1.2), the most dramatic
nonlinear effect is that smooth initial data can ''focus"
into a localized soliton, or into a set of solitons, which
then persist forever. In this section, we show that focusing
is even more dramatic in two dimensions and that a solution
of (2.25) that evolves from smooth initial data can become
singular at a point in space after a finite time. This is

known as the '"self-focusing singularity,'" or simply as

"focusing.'" In such a case the water wave equations must be
re-examined in the neighborhood of the focus.

To our knowledge, the phenomenon of focusing has not
yet been observed as such in water waves, although it has
been known for some time in nonlinear optics (e.g., Vlasov,
Petrishchev and Talonov [27]). Some of the analysis dis-
cussed here uses the ideas presented by Zakharov and
Synakh [28] who studied what amounts to the two-dimensional

version of (1.2) (i.e., 2.27) in the context of the optics

problem.

4.1 Necessity of Focusing

Our first objective is to identify circumstances under

which the solution of (2.25) must focus in a finite time.

oy
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Consider any point in Region F of Figure 1, where
(A,u,(-x),x,,a,B) are all positive; i.e., consider capillary-
type waves in sufficiently deep water. Consider initial

data for (2.25) which are infinitely differentiable and

which decay rapidly as (£% + n?) - « ; e.g., A(£,n,0)
might have compact support. If a solution of (2.25)

exists and vanishes rapidly enough as (£? + n?) + = ,

then the following integrals are constants of the motion:

1, - ff1al2dcan

- 0A* dA
12 —II (A '—Bz- - A* -a—g)dﬂdn

(4.1)
1, = ff @ X a4,
ap |2 2 axi
1, =ff [{x R } - %{(-x)IAI“ ¥ ()7
+ X1 (¢ )2}] dedn
B n
Each bracket, {} , in I4 is positive definite, and

the second bracket vanishes in the linear limit of (2.25).
Clearly Ih < 0 1is possible (e.g., if the initial
data has sufficiently large amplitude).

It also follows from (2.25) that

2 2 2
‘aan!I {%— + -'}J-} |A|2dedn = 81, (4.2)
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As noted in Section 2, one may interpret I1 as the mass
of the wave o leading order in ¢). Then the integral
in (4.2) may be interpreted as the moment of inertia, and
(4.2) is an example of the virial theorem (e.g.,
[(29], p. 581). (4.2) is easily integrated, and we see that
1 I4 < 0 , then the moment of inertia vanishes at a finite
time. Clearly, no global solution exists after this time,
because the (positive definite) moment of inertia would
become negative! Since the mass of the wave is conserved,
(4.2) suggests that prior to this time the radius of gyration
is vanishing as the mass accumulates at a single point. The
rapid development of this singularity is what we mean by
focusing.

Before examining the nature of the singularity that
develops, let us consider the implications of this argu-
ment outside of Region F. 1In Regions B and C, where
a < 0 global integrals involving ¢ are generally un-
bounded (cf., Section 2) and no global information about
the solution is available by this approach. Whether focusing
exists in these regions is open. In Region E there is no
focusing in the deep water limit, since the parameters are
such that I, » 0 . In arbitrary depth the question of
focusing is still open.

In Regions A and D, the integral in (4.2) is not of
definite sign, and provides no contradiction. Both be-
cause of the breakdown of this argument and because the

type of instability of solitons is different than in Region F,
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we expect that if singularities develop in these re-
gions, they will be qualitatively different than those

of the self-focusing type.

4.2 Nature of the Singularity

Next, we examine the possible behavior of the singularity
that develops at the focus. Zakharov and Synakh [28]
studied the radially symmetric case of (2.27). They in-
vestigated this equation both by numerical compuations
and an approximate analytic procedure. From these they
concluded that as 1 =+ e (TO being the time of focus)
the wave amplitude grows as (TO-T)‘P , p=2/3
In this section we show that there are a number of
quasi-self-similar solutions to the generalized nonlinear
Schrodinger equation, (1.4), including one with p = 2/3 ,
but we have found no convincing argument that this local
behavior is necessarily of the p = 2/3 type.

For convenience, we consider the scaled form of (2.25),
namely (1.4). In Region F of Figure 1, where focusing
can occur, o0; =41 , o0, = -1 .

Let A =B exp(i¥) in (1.4), with B,Y real and
find:

(%B?), + (\PxB’)x + (Wsz)y =0 ' (4.3a)

-th + Bxx + B - B(w; + w;) = -B3 + °xB " (4.3b)

yy
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= 2
a¢ .+ 0yy b(B )x (4.3c)

We seek quasi-self-similar solutions of (4.3) in the neigh-

borhood of the point of focus in the form
R(x,y) + R (x.¥.£) . (4.4a)

Q(x,y) + Q, (x,y,t) (4.4b)

= Hh=

where % = x/f , y=y/f, f£(t) = (t,-t)P , so that £ + 0
as t >t . This expansion is asymptotic near the focus provided

Ro << R , Qo << Q 1in this region. Zakharov and Synakh [23]

also assumed

K, ™ 0(frR) , (4.5)

but this assumption seems to be unnecessary. In any case, the

dominant terms in (4.3a) as t + to are

i (] y eLt =
(Y,R? - 3 R?E')_ + (wyR2 - % RPE£)y =0 (4.6)

A special solution of (4.5) is

(4.7)

NN'
t.':
FY)
n

Taking G, = G, = 0 (for which some motivation is provided below)

“yields '
v =2l 43 rp) (4.8)

and with this we have from (4.3) - (4.4), as £ + 0 ,




T

3Ien
Bgg + 8o + R - MGg - g(OE'R - f—f- (X2 + y2)R-0 (4.9a)

X

aQ-- + Q;)-' + b(Rz);( ~ 0 (4-9b)

There are various possibilities; e.g.,
(o) 278 << 3  , g'= gff? ;
(b) f£"f® =0(l) , g'=«/f? ;
others are obtained similarly. Case (a) implies that

to leading order (4.9) reduces to

- - 3 - - - =
Rxx + Ryy + R RQx kR g . (4.10a)

aQii + Q§9 = -b(Rz)i . (4.10b)

If one also assumes (4.5), then (a) becomes f£f3*f'" = 0(f) , from
which it follows that p = 2/3 . dowever, the spatial structure
defined by (4.1C) does not depend oa (£.5), oz on p = 2/3 .

In the deep water case with radial symmetry [23], b =Q3=20,

r? = x> + y> , and (4.10a) reduces to
1 3 _ "
REE + ; RE + R kR 0 . (4.11)

Chiao, Garmire and Townes [30] first studied (4.11l) as a
model of cylindrical optical beams, and showed that its
bounded solutions decay exponentially for large r . The
equation also arises as an exact reduction of (1.4) if

we take
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Q=b=10 .
r = Ax?7 + y? A (4.12)
A = \AR(r)exp(ikr?t) ,
The fact that (4.11) is exact has important consequences,
which we discuss in Section 5.

In case (b), p = 1/2 and the solution is exactly

self-similar. Here (4.8) - (4.9) yield

- i s l .- =2 >
R;{;( + R;,g’ + R RQX kR + I~6 (x + y )R 0 (4.138.)
- — 2 -
aQii + Q;,;, b(R )x (4.13b)
. —hil? 5% . ¥
y -TF(X + y*) Kan (tO t) + Wo : (4.13c¢)

In the radially symmetric case, (4.13a) becomes
Boe 42 Be & (fz -k)R+R*=0 (4.14)
¥E "8 T 16 s '

and for large r all bounded solutions decay as (r)~!
We also note that a somewhat more general equation than
(4.14), obtained by retaining G in (4.7), can be found

in the symmetric case:

Ree + LR+ (B - IR+ R - gSer = 0 (4.15a)
¥Y  § T 16 T’R° '

by
PEEE _ dp
Yy T Kln(to t) + CI W + VO (4.15b)

However, one can show from (4.15a) that R has a finite value
at the origin only if C = 0 . This result provides some

justification for neglecting G in (4.7).
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Using any of these similarity solutions, going back to
the full water wave equations and rescaling, we find that the
focusing instability produces a finite (i.e., O0(l)) region
of space in which the wave amplitudes are potentially large
enough to break (0(1))

Next, we present an argument which suggests that the
self-focusing singularity cannot be of the p = 1/2 type,
as we have described it here. For convenience, we consider
the case of radial symmetry. The expansion in (4.4) is valid
in a region near the focus where the first terms are dominant.
I1f we assume that this "inner solution' matches to an outer

solution that is 0(l) , then the inner expansion breaks down

where

FRE) = 0(1) (4.15)
But for large r , R decays as (r)-! , so that % R
decays as r~! ; i.e., there is no time-dependence. It

follows that (4.16) defines a boundary for the focal region,
denoted by r = 0(L) , where L 1is time-independent. The

mass within this region is proportional to

L L/f
M-IréR%ﬂdr-I FRI(£)dE (4.17)
o 0

and (because R ~ r~!') this grows logarithmically as t =+ t, -
But the total mass is finite, and this is a contradiction.
In case (a) R(r) decays exponentially and no such

contradiction appears. Moreover, if the nonlinearity in
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(1.4) were slightly stronger, no contradiction appears in
the purely self-similar case. To be precise, if the non-
linear term in (l1.4) were replaced with |AlzaA ! e A

then the radially symmetric similarity solution becomes

-1
A= (t-t) P2B(E) , fo=r/(e 0 . (4.18)
In this case the radial decay is B(r) -~ (f)-l/a , and

again L 1is finite. However, in this situation, when
a > 1 the mass remains finite as 1 + | and the pure
similarity solution is a likely candidate for describing

the dynamics of the focus regime.

Finally, we remark that a natural generalization of

(1.4) is:

¢ 2a
A+ 0AL + A+ 0A,, os|A|“%A + ¢ A (4.19a)

= - 28
81 fen 0yy > a7°zz b([A] )x ' (4.19b)

where the o; = +]1] (i =1,2,3) and a, , a2 , b are
constant. The spherically symmetric limit is obtained by
taking b =¢=0 , o0, = 0, = 41 . Since the spherically
symmetric equation has wide applicability, and (1.4) is
itself physically relevant, we expect that (4.23) will

also arise in physical problems.
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L OTHER SOLUTIONS OF THE NONLINEAR SCHRODINGER EQUATION

. The purpose of this section is to identify other fea-
tures of the solution of (2.25) that may play a role in

' its asymptotic (t + «) solution.

5.1 Complete Integrability

Perhaps the fundamental question to answer about (2.25)
is whether it is completely integrable; i.e., whether it
can be solved exactly by relating it to an appropriate
linear scattering problem. The question is natural in
light of the fact that the one-dimensional problem can be
solved in this way.

Consider first the long-wave limit of (2.25), subject
to the constraint in (2.16). Here, (2.25) becomes (after

rescaling of variables)

- - 2
iAT olAEE + A °1|A| A + A¢g
(5.1)

1 ~
= - 2 = -
01055 + °nn 2(|A| )g 4 0, sign(s T)
This system is of I.S.T. type [11]. Special N solitons
solutions can be constructed either by a direct (Hirota

type) method or via the Zakharov-Shabat approach [14,31],
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The situation seems to be much different in the deep
water limit. Here we have already seen that (4.11) is an
exact reduction of (2.25) to an ordinary differential
equation; i.e., every solution of (4.1l1) provides an exact
solution of (2.25) in this limit. Let us consider those
partial differential equations (PDE) which have been solved .
exactly by IST methods. We have found that every reduc-
tion of one of these PDE's to an ordinary differential
equation (ODE) results (perhaps after a transformation
of dependent variables) in an ODE without moveable critical
points [32,33].

We expect that if (2.25) can be solved by some IST,
then (4.11) should have no moveable critical points. But
Ince [34], esp. p. 344) provides a complete list of all
such second-order equations; (4.11) is not on this list
and cannot be transformed to an equation on this list.
Therefore, the solution of (4.11) has moveable
critical points. Moreover, one can show that (4.11)
has logarithmic singularities in addition to poles. On
this basis, we conjecture that (2.25) cannot be solved
exactly by IST in the deep-water limit.

Although (2.25) can be solved by IST in the shallow-
water limit (i.e., lower-left corner of Figure 1), it
apparently cannot be solved in this way in the deep-water
limit. Wherever IST methods fail, one is forced to piece
together special solutions of the problem to describe the

general solution.
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5.2 Decaying Oscillations

The special solutions discussed so far in this paper
have been localized: either solitons (or soliton-like)
or self-focusing singular solutions. However, in the one-
dimensional limit of (2.25), solitons make up only part
of the asymptotic solution of the initial value problem.
That part of the solution associated with the continuous
spectrum spreads over large regions of space, while it
-%

decays as t In particular, an exact solution of

(1.2) is
A = t'35 A exp{i(§% + oh? an t + ¢)} (5.2)

where A and ¢ are real constants; the solution of
(1.2) associated with the continuous spectrum tends to
a slowly-varying modulation of this, where A and ¢
depend on (x/t) [22,35].

In the two-dimensional problem, (1.4), there is

an analogous exact solution:

2 2
A=t pexpli (DX 4 0,07/t + B(E) + 0))

¢ = -B'(t)x + C(t)y + D(t)

(5.3)

Similar solutions in the deep water limit of (2.25) were
found by Talanov [36]. On the basis of the one-dimensional
theory, we anticipate that the part of the solution of (1.4)
that decays in time can be described in terms of a slowly-

varying modulation of this exact solution.

il i st et i
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Moreover, this behavior would be consistent with the
results of Lin and Strauss [37 ] who studied the three-

dimensional problem

iu, - Au + [uj?u =0, (5.4)

where A 1is the Laplacian in three dimensions. They found

that the solution exists for all time and decays as t.3/2
The appropriate similarity solution here is
il '3/2 3 _x2+ 2+22 2 2
=t A exp{i ( “z%"‘*) + A2/2t% + ¢)} . (5.5)

Without solitons or focusing, the decay rate of the solution

of the nonlinear Schrédinger equation seems to be
u = 0(t™™2) (5.6)

where n is the number of spatial dimensions. This decay

rate is the same as in the linearized problem.
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LIST OF FIGURE CAPTIONS

Figure 1.

Figure 2a.

Figure 2b.

Figure 3.

Figure 4.

Map of parameter space, showing where the coef-
ficients in (2.25) change sign. The dynamics
of wave evolution is different in each region.

KdV soliton, as seen in two space dimensions
at a fixed time; «?=1/12 in (3.1), with o = -1

Lump solution of (3.2) as seen in two dimensions
of a fixed time; p=0, q*=1/8, o= -1

Measured surface displacement, showing evolution
of envelope soliton at two downstream locations;
= lm, kh=4.0, =1 cps ,

= 1.0 « 10~* ;

—— , measured history of surface displacement;
--- , theoretical envelope shape

kg = ka sech(z)
z = 2B (v/8A)%(Cgt-x)

(3a) 6mdownstream of wavemaker, «ka = 0.132
(3b) 30 m downstream of wavemaker, «xa = 0.116

Stationary waveguide, as seen in time at a fixed
location. In (3.5), u =2, x = -4 and

Re(A) = 2 sech 2n cos 81 1is plotted. The dis-

placement of the free surface, «z , is similar.
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