
~~~~~ A!*O59 861 NAVAL Oc EAN SYSTEM5~~~~~T~~~!0h!0 cA
P C  1100:

LASSIFIED NOSC/TR 271 

PASCAL LANGUAGE FOR UN!VA~~ ETC(U)

AD ________________________________

U _  
_

EflD
DATE

FtL~ ED

D~ C

I

_ _  . /



~~�LEVEL~
<

Technica l Report 271 ~~

: PASCAL iido: AN IMPLEMENTATION
OF THE PASCAL LANGUAGE FOR

UNIVAC 11ÔO SERIES COMP RS

‘ \ MS/BaII /r~ .
~~~

.

-
1J ~~~78L~.Research and ~evelopmeiitYOct~ba~~~76—SepL.L_. 1177)

Prepared for
Naval Sea Systems Command

1 D D C

H 19T8~~~~

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO, CALIFORNIA 92152 4 ~! / /

~~~~~~~~~ 

-——--- --—-— -.‘.—-.‘ - — —



-~~ -~~------

•

a
NAVAL OCEAN SYSTEMS CENTER . SAN DIEGO. CA 92152

A N  A C T I V I T Y  O F  T H E  N A V A L  M A T E R I A L  C O M M A N D

RR GAVAZZ I , CAPT. USN HI BLOOD

Commande r Tec hnica ’ Directo r

ADMINISTRATIVE INFORMATION

This report is a revised and expanded version of Naval Undersea Center Technical
Publication 527 of September 1976. The original work was sponsored jointly by the Naval
Sea Systems Command (code 06H 1) and Naval Electronic Systems Command (code 310).
The revision was sponsore d by the Naval Sea Systems Command (code PMS 406) as part
of the Advanced Lightweight Torpedo Program.

Released by Under authority of
RH HEARN , Head DA KUNZ , Head
Electron ics Division Fleet Engineering Department

___________ _______ ______ ________



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (lTh.n D.c. ZnI. r.d) 

__________________________________

~~~~~~~~~~~~~~ ~~~~~~ I I U I  kI l’ A ’?IfbI.I 041 READ INSTRUCTION S
rI~~r~JI% I U’J’...V M~~ I~ ~ BEFORE COMPLETIN G FORM

I. REPORT NuMB ER 2. GOVT ACCESSION NO 3. RECIPIENT’S CATALOG NUMBER

NOSC TR 2 7 I 1
4. TITLE (aid SubtIIIs) 5. TYPE OF REPORT & PERIOD COVERED

Research and Development
PASCAL 1100: AN IMPLEMENTAT ION OF THE PASCAL October 1976-September 1977
LANGUAGE FOR UNIVAC 1100 SERIES COMPUTERS

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(.) S. CONTRACT OR GRANT NUMSER(.)

MS Ball

9. PERFORMING ORGANIZATION NAME AND ADDRESS to . PR OG R A M E LE M E N T , PROJECT , TASK
A RE A & W O R K U N I T N U M BE RS

Naval Ocean Systems Center
San Diego , California 92152

I I . CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Sea Systems Command 1 July 1978

Washington , DC 13. NUMBER OF PAGES

14. MONITORING AGENCY NAM E & ADORESS(I(dlii orml l ftooi ContrOUln4 OffI c.) IS. SECURITY CLASS. (of thl. r.porf)

UNCLASSIFIED
IS.. OECLASSIFICAT ION/ DOW NGRADING

SCHEDULE

IS. OISTR IB uT ION STATEMENT (of thu R.pott)

Approve d for public release ; distribution unlimited.

17. DISTRIBUTION STATEMENT (of h. .b.tract .nt.r.d In 8lock 20, Ii dIf l.,un t irøo, R.porf)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Contlnu. on r.v.r.. .ld. Ii n•c...~~y wd Id.ntlfy by block nim,bor)

20. ‘jIBSIRACT (Conhl nu. on r.v r.. .ld. If nic...~~~ aid Id.ntlfr by block n.m,b.r)

This report describes the features of Pascal language peculiar to its implementation on Univac 1100 series
digita l computers . It defines terms left undefined in the general language and describes local extensions to the
language . It also describes procedure s for using the language under the 1100 Executive . ~

DD JAN 73 1473 £01 TION II OBSOLETE UNCLASSIFIED
SECURITY CLAUIPICATION OF THIS PAGE (lISiai Dm1. lii(S,.d~

‘U”

UNCLASSIFIED
..I~. L U H TY CLASSIFICATION OF THIS PAGE(*7,.n Dm1. Ent.r.d)

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(Wb.n Dm1a Xnl.r. ~~

~ .

r~~
r — —.——-

~~

- .

~~

-

~~

—-

CONTENTS

INTRODUCTION . . . page 3

I HARDWARE REPRESENTATION . . . 3

2 EXTENSIONS TO THE LANGUAGE . . .4

2.1 Processor Format Call . . . 4
2.2 External Procedures . . . 5
2.3 FORTRAN Procedures and Functions. . . 6
2.4 Enhancements of “Read” and “Write ” . . . 7
2.5 Enhancements to “Reset ” and “Rewrite ” . . . 8
2.6 Octal Numbers . . . 8

3 SPECIFICATIONS LEFT UNDEFINED . . . 9

3.1 Program Heading and External Files . . . 9
3.2 Standard Types. . . 9
3.3 Standard Procedure “Write ” . . . 10

4 RESTRICTIONS.. . 11

5 ADDITIONAL PREDEFINED IDENTIFIERS. . . 11

5.1 Constants . . . 11
5.2 Variables . . . 12
5.3 Procedures.. . 12
5.4 Funct ions . . . 14

6 BRINC FI HANSEN PASCAL . . . 14

6.1 Extensions for Compatibi l i ty . . . 14
6.2 The “B” Op t ion . . . 15
6.3 Incompatibilities . . . 16

7 HOW TO USE PASCAL 1 10 0 . . . 16

7.1 Compiler Opt ions . . . 16

8 PERFORMANCE. . . 18

8.1 Compiler Performance.. . 18 ACCESSION for
8.2 Compiled Code Performance. . . 18 wNt. S.ctIon~~

9 IMPLEMENTATION D E T A I L S . . . 19 ~~ ~~~~ ~UNANNOUNCED
9.1 Form of Generated Code . . . 19 PJ STIFICA TI ON ___________

9.2 Run-Time Organization . . . 20
9.3 Diagnostic System . . . 23 . - .

~~
.. —

9.4 Representation of Fi les . . . 23 ~tS111BIJTWN/AYAILA~LIIY cth
~LDisi. AVAIL and/or SPLC!*I.

9.5 Miscellaneous Topics.. . 24

~~r~~~~~~~
--

~

INTRODUCTION

This report describes the features of the Pascal implementation for the Univac 1100
series of digita l computers. The Pascal language in general is described in the book

PASCAL User Manual and Report , by Kathleen Jensen and Nik laus Wirth ,
Springer-Verlag, New York , 1974 (Lecture Notes in Computer Science 18).

Th e present report describes only those features of the language that are peculiar to the
Univac implementation.

The Pascal compiler is also capable of compiling programs written in a Pascal dialect
used by Per Brinch Hansen in his minicomputer-based implementation of the language.
Those features related to this implementation are always available to the user but are not
generally available on other Pascal implementations. They will be described in a separate
chapter.

This note is divided into nine sections as follows:

1. Hardware representation.
2. Extensions to the language.
3. Specifications left undefined.
4. Restrictions.
5. Additional predefined identifiers .
6. Brinch Hansen Pascal.
7. How to use Paseal 1100.
8. Perf ormance.
9. Implementation details .

I HARDWARE REPRESENTATION

Pascal 1100 uses the American Standard Code for Information Interchange (ASCII)
character set exclusively. Within the compiler, lower case characters are converted into
upper case before use as reserved words and identifi ers , so that there is no difference be-
tween “begin ” and “BEGIN” as far as the compiler is concerned.

All reserved words are written out wi thout escape characters or under l in ing : for
example.

begin , end , case

Only .he first twelve characters of any identifier are significant , and identifiers which differ
only after the fi rst twelve characters are considered identical.

The special symbols given in the manual are used as given , with the alternates shown
in table 1 .1 . All the alternates are in addition to the standard and are included for compati-
bi l i ty with other implementations and the keypunch character sets.

The character “_
“ (underline) is considere d to be an alphabetic character within an

identif ier. The arrow , used for pointers , is represented by “a ”.

3

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



.. —--—. —~ —~ ~~~~~~~~T

TABLE 1.1. ALTERNATE SYMBOL REPRESENTATIONS.

Standard Alternate

and &
{ (S

} 5)

2 EXTENSIONS TO THE LANGUAGE

This section describes nonstandard language constructs available on the Pascal 1100
system. They are oriented toward the 1100 operating system and exist primarily to allow
utilization of the operating system facilities.

2.1 PROCESSO R FORMAT CALL

There are two basic formats for executing a program under the 1100 executive. The
most commonly used method for user programs is

@XQ T,OPTS PROGRAM

This is the format with which a normal Pascal program should be executed.
The second format , used for processors and control cards , is

@PROGRAM ,OPTS ARG 1 .ARG2 ....

This method has the advantage of allowing the user to specify input and output tiles to the
program on the calling card . It is also the format expected by the processor interface
routines. A Pascal program may be constructed for this method of calling by replacing
the program heading by the following

<program> : : <program heading> (block> . I (processof heading> (block> .
<processor heading) : PROCESSOR (identifier> ( <process parameters >
(process parameters> : : (file specifier) { , <file specifi er) )
(file specifier> :: (identifier> (identifier> *

The (processor heading> generates a program which can be called using the second
format above. The (file specifier> operates as usual , except that an asterisk (5)  following
“INPUT” instructs the program to take its input from the system source input routine
(SIR) . If the input is from SIR , then the user also has access to the system routines for
source output and relocatable output. This will be discussed later.

The INFOR table from the calling line may be manipulated using external procedures
available in the library . See the Univac Programmer ’s Reference Manual (PRM ) for further
data.

4

_ _ _ _ _ _ _ _  _ _ _ _ _



_ _  —.~~~~~~~~~~~~~ -.-~~--- ~~- -~~~ -~~~~~~~-.~- _ _ _ _ _ _ _

For example:

PROCESSOR prtd (input 5 ,output);

specifies that the program will be called by a card

@PRTD FILE ,ELT

and will receive its input from the standard source input routine.

2.2 EXTERNAL PROCEDURES

The Pascal 1100 system allows the user to define and use external ly compiled
procedures. The declaration for an external procedure consists of a procedure heading
followed by the word “EXTERN” .

For example:

PROCEDURE pr int i t (tab:  integer ; ch :  char) :  E X T E R N .
FUNCTION gcd(x , y: integer): integer; EXT ERN ;

The user can define procedures to be called in this manner by inserting the reserved
word “ENTRY ” after the “PROCEDURE” or “FUNCTION” in the procedure heading.

For example:

PROCEDURE ENTRY printit(tab: integer; ch : char ) :
(body)

FUNCTION EN 1RY gcd(x , y:  integer): integer;
(body)

Any procedure in the outer scope of the program may be declared an entry. In
addition , a procedure or group of procedure s may be compiled by themselves without a
containing program . In this case , any variables declared outside the procedures are available
for use in the procedures and will be retained from call to call. File variables may not be
declared in this outer scope , since they will not be initialized properly. A group of such
procedures must be terminated with a period (“ .“)ju st  as a program is terminated.

For example:

VAR i: integer ;
PROCEDURE ENTRY initialize;

BEGIN
i : 0;
END;

PROCEDURE ENTRY increment;
BEGIN
i : i + l ;
END;

5



~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~

FUNCTION ENTRY current _value : integer;
BEGIN
current _value :~ 1;
END;

{This period is necessary to terminate compilation)

There is a limited run-time check for proper call of external procedure s. Th is checks
that the procedure is called with the proper number of arguments (mod 1 6) and that the
types and parameter modes of the first seven arguments are correct. The check is not very
detailed and will not , for instance , find a call with an array of a different size. It will ,
however , catch most simple errors , such as an argument missing or the order of two argu-
ments inverted .

There is no way to disable this check.

2.3 FORTRAN PROCEDURES AND FUNCTIONS

FORTRAN procedures or functions can be declared in a manner similar to external
procedures. To use a FORTRAN procedure , the user declares it in the same manner as a
Pascal procedure but replaces the body of the procedure with the word “FORTRAN” . For
example:

PROCEDURE plot (x , y: real; m dx: integer); FORTRAN ;

The compiler will generate the FORTRAN calling sequence for this procedure. Only code
generated by the ASCII FORTRAN (FTN) processor may be used.

Although FORTRAN makes no distinction between value and variable parameters
and will happily assign a value to an expression or constant , Pascal makes such a distinction
and will make a local copy of any parameter declared to be value . This is done for safety
reasons , and the programmer is advised to make use of this property whenever possible.

There are some incompatibilities in the representation of variables between Pascal
and FORTRAN. The major one is the storage of arrays. Pascal considers multidimensiona l
arrays to be arrays of arrays , which automatically defines storage with the rightmost of any
group of subscripts varying more rapidly. This is called “rowwise storage. ” FORTRAN , on
the other hand , uses columnwise storage , with the leftmost subscript varying most rapid ly.
This means that the user must transpose array elements in the Pascal code , or the FORTRAN
program must take this into account.

Table 2.1 summarizes the type
correspondence.6

-_ -.--—--_ --. . T T - —--——-------- -_—
~~~~

•-
~ 

-._—
~

---_- .~~~~~
—

~
—

~
—

~~~~
-- -.—--. — -._ — - - _________________

TABLE 2 - I . FORTRAN vs. PASCAL TYPES.

Parameter type Parameter type
in FORTRAN in Pascal Remarks

INTEGER integer
REAL real
DOUBLE none double precision not supported

in Pascal
COMPLEX record

re; real;
im: real

end;
LOGICAL Boolean
ARRAY ARRAY see the note above for

inco mpatibility
SUBROUT INE PROCEDURE formal procedures must be

FORTRAN procedures
FUNCTION FUNCTION as procedure , also , result

cannot be COMPLEX or
DOUBLE, as record-valued
functions are not allowed

Only the above parameter types make sense if the external routine is actually written
in FORTRAN. Note that the Pascal compiler does not check for legal argument types.

2.4 ENHANCEMENTS OF “READ” AND “WRITE ”

The standard procedures “read” a nd “write ” have been enhanced to work wi th all
files , not just text files. The following equivalences now hold independently of file type.

write(f ,v); (> f~ : v; put(f) ;
read(f ,v); () v : f~ ; get(f) ;

In line with these definitions , “read” will take a component of a packed structure
as an argument. This makes “read” an unusual procedure , but the formal equivalence given
in the definition will hold.

A further enhancement is the addition of octal editing when writing numbers to a
character file. Octal editing is specified by writing the word “OCT” after the editing
statement:

write (f:4 OCT):
Octal editing is legal with all scalar or pointer variables and will write exactly the number
of digits specified. If the value will not fit in the number of digits specified , it will be trun-
cated from the left to fit. Any leading zeros wi ll also he printed.

For example:
write (l024B:3 OCT); writes “024”

~~-

r - — —

~~~~~~~~~~~~~~

--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

2.5 ENHANCEM ENTS TO “RESET” AND “REWR iTE”

The standard procedures “reset ” and “rewrite ” have been enhanced to allow a better
interface to the operating system. They now tak e an additional two arguments , disk address
and tile name . These arguments are optional an d may be left out if they are not needed . The
declarations are as follows:

TYPE identifier PACKED ARRAY I I . 1 2 I OF char;

PROCEDUR E reset(VAR f: file ; address: integer; fname : iden t i f i e r) :

Address , if specified gives the sector address within a mass storage file to which the file will
be reset. It is the responsibility of the caller to ensure that this address is valid. “Fname ,”
if specified. causes the procedure to close out the current file and reopen the file with the
internal name of the “fname. ” This file must be assigned to the run at the time of the call.

For example:

reset (f , l 2) ;

resets the file f to sector address 12.

rewrite (f , I 2,’OUTFILE ’):

closes any file currently in use , attaches the file with the internal name ‘OUTFILE ’ . a nd re-
sets to sector 12 of that file.

In addition , the new standard procedure “close” has been added to explicitly close a
file. Its declacation is

PROCEDURE close(VAR f: file ; VAR addr: integer) :

where “addr ” is an optional integer variable which will contain the next available mass stor-
age address in the file at the time of closing.

The combination of these enhancements allows the user to deal with 1100 executive
element files directly, as well as attaching and freeing user files dynamically from within the
run.

2.6 OCTAL NUMBERS

The user may specify octal numbers to the compiler by following an integer with the
character “B”. Thus l 000B is equivalent to 512.

8

_ _

--.— -.,~~~~~~~~~~~~~ --—~~~~~~~~~ -~~~~—
_

~~~~~~~~~~~~~~~ 
- . -

~~~~~~~~~ 
. - -

3 SPECIFICATIONS LEFT J I ND E FINED

3.1 PROGRAM HEADING AND EXTERNAL FI LES

A Pascal file variable is implemented as a file under the 1100 executive . External
files are those specified in the program head ing and must be assigned to the run at the time
of program execution. Internal files are generated on entry to the procedure in which they
are declared and are released upon exit from that procedure .

The following predec lared files may be used in the program heading and allow access
to 1100 executive standard files.:

lnput : t ext : This is the standard input file maintai ned by all programs. It is the file
ob tain ed by the nor mal syste m ~‘READS ” routine. To allow the use of Pascal
programs with demand termina ls , this file is initial ized with EOLN true. To
obtain the first image , the user must issue a “read .” A “reset ” of this file
has no effect. The maximum line length allowed is 132 characters.

Input 5 :text; When followed by an asterisk , this file obtains its data from the source input
routine. In this case , a “reset ” will close out the current pass and begin the
next pass over the input data. Since the user cannot use the source or relo-
catable output routines until after the first pass is completed , this is quite
important. In all other ways , the performance is identical to the normal use
of “input. ” See the Univac PRM for more data. The maximum line length
allowed is 132 characters .

Output : text ; The output file writes to the standard output stream using the system
“PR INT$” command. It must be declared in any program. A call to
“rewrite ” has no effect on this file. The maximum line length allowed is
132 characters.

SOR:text : This writes a symbolic element using the system symbolic output routine
(SOR). This is meaningfu l only when a processor call card is used. The file
must be initialized with a “rewrite” after the fi rst pass of SIR (if used) is
complete. Subsequent “rewrites ” to this file will produce an error termina-
tion. The maximum line length allowed is 132 characters . See the Univac
PRM for more data.

Punch:text; This produces punched card s using the system “PUNCh-IS” comm an d. A call to
“rewrite ” will have no effect . Note that the maximum record length for this
file is 80 characters. The ASCII characters written to this file will be con-
verted to their Fieldata equivalents before punching.

3.2 STANDARD TYPES

3.2.1 INTEGER

The standard type “integer ” is implemented with the standard 1100 series interger
wore , which allows values in the range -34359738367 ..34359738367.9

r
I~ - _ _

~~~~~~~~~~-~~~~~~~~~~~~~~~~ -.~~~~~~~~~~~~ ~~~~

Warning: To check for intege r overflow , except on divide , is impractical on the
Univac 1100 series. It is the user ’s responsibility to make sure that these limits are not
exceeded.

In line with the above , the standard identifier “maxint ” has the value 34359738367.

3.2.2 REAL

Real numbers are implemented using the 1100 single-precision floating point format.
This allows 27 bits for the fraction , which corresponds to about 8 significant decimal dig i t s.
The values of the exponent are between —39 and 38. Exceeding the upper limit causes a
run-time error , and dropping below the lower limit causes the resuit to be set to a tru e zero .

3.2.3 CHAR

The type “char” contains all of the standard ASCII characters , including unprinting
control characters . Although ASCII is a 7-bit code , with possible ordinate values between
0 and 127, the 1100 series typically allows 9 bits for each character and stores them 4 to a
word. The Pascal system also follows this practice , and a packed array of “char ” will have
4 characters per word , each with 9 bits of space allocated.

3.3 STANDARD PROCEDURE “WR ITE ”

If no minimum field length parameter is specified , the default values shown in
table 3.1 are assumed. If the length of a line will exceed the allowed length for the file
(80 for punch , 132 otherwise), the line will be terminated and a new line written. The
effect is the same as if “writein ” had been called. There are no spacing control characters
at the start of each line , and all the characters in a line are printed.

The standard data format for text files truncates trailing blanks , then pads the
number of characters to a multiple of 4 with blanks. This means that if a file is written
and then read , the number of blanks read at the end of the line may not be the same as
the number written. (What can I say?)

TABLE 3.1. DEFAULT VALUES.

Type Default

integer 12
real 12 (where the exponent is

always written E+xx)

Boolean 12
char I
a st ring length of the string
octal format 12

10

- - -— -—-- ,. . .



_ 
~~~~~~~- - - - ——

,-.~~~~~~~~~~~
_ _

4 RESTRICTIONS

The following restrictions must be observed in using the Pascal 1100 language:

1. The words “entry ”, “processor”, and “univ ” (used by Brinch Hansen style
programs) are reserved.

2. The base type of a set must be as follows:
a. A scalar with at most 144 elements (including “char ”).
b. A subrange with a minimum element greater than or equal to 0 and a

maximum element less than or equal to 143.
3. Standard functions or procedures cannot be used as actual procedure para-

meters. For instance , to run program 11 .6 from the manual , one would have to write auxili-
ary functions as follows :

function sine(x: real); real ;
begin sine : sin(x) end ;

function cosine(x: real); real ;
begin cosine : cos(x) end;

function zero(function f: real ; a ,b; real); real;
begin ... end;

begin
read(x ,y); writein(x ,y,zero(sine ,xy));
read(x ,y); writein(x ,y ,zero(cosine ,x ,y));

end.

4. Formal procedures and functions must have only value arguments. This will be
diagnosed at run time. Also , formal procedures and functions may not have procedure or
function arguments.

5. It is not possible to construct a file of files; however , records and arrays with
files as components are allowed.

6. It is not possible to declare files in a dummy outer block containing external
procedures , as the files will not be initialized properly .

7. Files must be initialized for writing by calling “rewrite”.

Thus it is not possible to read to the end of an existing file and then extend it by writing.

S ADDITIONAL PREDEFINED IDENTIFIERS

5.1 CONSTANTS

The constant “linenuniber ” is predefined. This is an integer wh ose value is always the
current line number in the source program. Although the value changes , the identifier is

I I

treated as a constant by the compiler. This is useful in debugging for inserting error messages
which refe r to the source line.

5.2 VARIABLES

The variable “options ” is defined by

options: set of char;

Th is ~ triable is allocated in every program and is initialized by the system using the options
specified on the (~z XQT or the processor call line. The character corresponding to each
option character will be included in the set. Note that the system considers all options to
be upper case , no matter what is typed.

5.3 PROCEDURES

Additional predefined procedures include the following:

halt(niessage); Writes the string “message” to the print file and initiates an error walk-
back. This is primarily for use in library procedures written in Pascal.

mark(p); Sets the pointer “p” (which may be any pointer type) to the current
heap top. This may be used with the procedure “release ” below.

release(p); Resets the current heap top to the value in the pointer “p” (which .may
be of any pointer type). This value should have been set by the proce-
dure “mark ” above. These are primitive routines which allow the user
to simulate a second stack on the heap. Since the routine “dispose” is
presently not functional , this is the only method available to return
storage to the heap.

close(file ,addr) Closes the file specified just as if the block containing that file had been
exited. If addr is included (it is optional), it will be set to the next
available mass storage address in the file.

The following procedures are for programmers interfacing closely with the executive
and are of little interest to the average programmer. In all cases, further details are available
in the Univac PRM.

sror(kbits); Applicable only for processor. Opens the system relocatable output
routine (ROR) for the generation of relocatable code. The integer
“kbits ” sets the “kbit limit ” for the element.

ror(pkt); Applicable only for processor. Writes a word to the relocatable output.
“Pkt ” is any array which contains the relocation data and word to write.

eror(trans ,transic) ; Applicable only for processor. Closes ROR and sets up the transfe r
address. “Trans” and “transic ” are the relative address and location
counter of the transfe r location. If no transfe r location is desired ,
“trans” should be negative.

12

—

~

-.-——-———-—-

~

————-- - -~--- -- .-~~~~~~~~
-

~~
-—

~~~~~~~
- . -



-

1 .

tblwr(tab le .Iength); Applicable only for processor. Writes a relocatable preamble in the
array “table ” of length “length” to the relocatable element. ROR
must be closed. For more data , see the Univac PRM.

er(index , ”A0” ,”A 1 “ ,“A2”) ;
(Warning: Use of this procedure may be hazardous to your sanity. )
This procedure is very low level and provides no protection for error.
It does allow the user access to the 1100 executive “E R” mechanism
from Pascal , an ability which is sometimes necessary . The “index ” is
a constant which is the ER index. It is checked against an internal set
of allowed values before the call is generated. “AC” , “Al” , and “A2”
are optional integer variables which , if they exist , are loaded into the
hardware registers AU , Al , and A2 before the call. On return from
ER , the final values of AU , Al , and A2 are stored in these variables.
The function “address ”, described below , allows the use of this proce-
dure with Pascal variables for the packets. Allowed ER index values
are given in table 5 .1 .

TABLE 5.1. ALLOWED ER INDEX VALUES.

Name Val ue Name Value
ABORTS Cl2B ACLIST$ l4 lB
ACSFS 140 B ACTS l47B
APCHCN$ 075 B APRTCNS 074B
CON DS 066B DACTS 150B
DATES 022B EABT S 026B
ERRS 040B ERRPR S 202B
EXI TS O l I B EXLIN KS 173B
FACI LS l l4B FACIT$ 143B
FITEM$ 032B FORK S 013 B
IN FOS l l 6B lOS QOIB
IOARB$ 02 1B lOWS 003B
LABELS O3lB LINKS l7 lB
NAME S 146B NRT$ 062B
PCTS 064B PFD$ lO6B
PFI$ 104 B PFSS IOSB
PFUWLS 107B PFWL$ I lOB
RLINK$ 172B RU STS l75B
RSIS l l 2 B  RT$ O6lB
SETCS 0658 TDATE$ 054B
TIMES U23B TSWAP$ l35B
TWAITS 060B WAITS * 006B
WANYS 007B ____________________

* Because of the unusual calling sequence of WAITS , it generates:
L AO ,”AO”
TP 3,AO
ER WAITS
S AO ,”A0”

13



- ~~~~~~~~~~~~~~~~ 
- . 

- — . —_~~~~~~~~~~~~~~~~~

5.4 FUNCTIONS

The following additional predefined function is available:

conv(j): Returns a real value for the integer “j ” . For use in Brinch Hansen Pascal ,
which has no implicit conversion to real.

The following functions are primarily for programmers writing code which interfaces
closely with the executive or the hardware and should be of little interest to the average
programmer. More details are available in the Univac PRM.

expo(x); Returns an integer equal to the exponent part of the real number “X”.
This is in excess 64 notation.

address(x); (Warning: Use of this procedure may be hazardous to your sanity !)
Returns an integer value equal to the machine address of the variable
“x”, which may be of any type. This is provided to allow use of the
standard procedure “er” and is otherwise of no use.

6 BRINCH HANSEN PASCAL

The compiler will accept the dialect of Pascal used by Per Brinch Hansen and called
“Sequential Pascal” by him. For a complete description , see his publication:

Sequential Pascal Report , by Per Brinch Hansen and Alfred C. Hartman , Information
Science , Calif. Inst. Tech., July 1975.

The Pascal 1100 implementation makes no attempt to follow the restrictions of the
Bu nch Hanse n dialect , but  the following extensions allow the compilation of programs
written in it. There is no guarantee that programs which run under this system will also be
legal under Brinch Hansen ’s system.

6.1 EXTENSIONS FOR COMPATIBILITY

The following extensions are available at all times:

1. The symbols shown in table 6.1 may be used as alternate representations of
standard symbols.

2. The reserved word “UNIV” is allowed in parameter lists. The modified syntax is

(parameter group> : : (identifier> {, (identifier> } : (parameter type>

(parameter type> : : (type identifier) I UNIV (type identifier>

The use of “UNIV” before the type identifier informs the compiler that any parameter type
is acceptable as long as it has the same size as the formal type. This is obviously highly
machine dependent.

3. The procedure “cony ” convert s integer to real explicitly.

14



4. The boolean operators “and” and “or” will accept set operands. When they are
used , “and” is equivalent to “*“ and “or” is equivalent to “+“.

S. A constant string of any length may be used as a value parameter or in an assign-
ment statement to any packed array of characters . The lower subscripts are automatically
aligned , and the string is truncated or extended with blanks to match the length of the array .

6. Within a string or character constant the syntax

(ordinate expression) : : (: (number) : )

may be used. This inserts into the string at that point a character whose ordinate is the
value of (number) .

7. Within an expression or a “WITH” statment , a pointer-valued function may be
used in place of a pointer variable. For example:

type realp = ~real ;
FUNCTION p(x: real): realp;

w : p(3 .O)* + 5.0;

This is forbidden by the Pascal report and Brinch Hansen ’s own report but used extensively
in his code.

TABLE 6. 1. ALTERNAT E SYMBOL REPRESENTATIONS.

Standard Alternate

[ (.

{
}

6.2 THE “B” OPTION

The “B” option to the compiler (see the chapter on compiler use ) specifies that the
program being compiled is to be treated as a Brinch Hansen program. This makes the
following changes in the form of the source program and the compiled code.

1. A “prefix ” is now allowed. This contains type , constant , and procedure/
function declarations. The type and constant declarations are entered into the outer scope
of the program , and the procedures and functions are declared as external. This allows the
direct simulation of Brinch Hansen ’s operating system interface through the prefix.

2. The main program will be compiled as an entry procedure which can be called
from another program. In this case, the progra m argument list can have the same form as a
procedure parameter list , rather than containing external file names.

3. All arrays of characters are treated as packed arrays.

IS

U—.— -_. _

~ 

— - - — -.—- - - -  -



6.3 INCOMPATIBILITIES

There are many incompatibilit ies between Pascal 1100 and the Brinch Hansen com-
piler. The user is referred to the publication above. The following are a few of the less
obvious problems.

I .  Brinch Hansen style compiler options are not accepted by Pascal 1100.

2. In Brinch Hansen Pascal , a case selector value with no corresponding statement
is ignored. In Pascal 1100 , it produces a run-time error.

3. Pascal 1100 does not initialize pointers to ni l .
4 . Brinch Hansen Pascal uses constant parameters , while Pascal 1100 uses value

parameters. The difference is that no value can be assigned to a constant parameter wi th in
a procedure , whi le a value parameter can he treated as a local variable.

7 HOW TO USE PASCAL 1100

The Pascal system consists of a compiler , which converts the Pascal code into Univac
1 100 series relocatable code , and a run-time library, which provides utility and input-output
functions for the compiled code. The location of the compiler and run-time library is de-
pendent upon the local system configuration. Check with the computer center for your site.

The Pascal compiler (PAS) is a Pascal program . It is a processor and is called in the
standard manner. The processor call statement is

(aPAS ,OPTS SOURCE ,RELOC ,UPDATEDSOURCE

When the program is compiled , the relocatable elements must be collected with the Pascal
run-time library , and the program can then be executed in the usual manner. Any external
files must be assigned at the time of execution.

7.1 COMPILER OPTIONS

The behavior of the compiler may be varied by the use of certain options. There are
two types of options recognized by the Pascal compiler: control card options , specified on
the calling control card , and compiler directives included in the code.

A compiler directive is written as a special form of comment with a $-character as
the firs t character

{$(option sequence> <an y comment>}

For example:

{$S+ ,T- this sets “S” and resets “T”}

Normally, a “+“ following an option will activate that option and a “-“ will deactivate it.

16 



-.-~~~~~- .-~~~~~~~ ---~~~~~~~~~ - - -.- ..- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

7 .1.1 COMPILER DIRECTIVES

The following options operate as compiler directives:

A Generate code to check the values assigned to variables of subrange type to
make sure that they are within bounds.

default = A+

B Generate a Brinch Hansen style program

default = B-

E Generate code for machines other than the 1110. This causes the generated
code to consider the possibility of the real residue affecting registers in use. See the section
on “Non-l 110 Code Generation ” for details.

default E-

L Generate a full compiler listing including generated code.

default =

R If one or two digits follow the R, this is the amount of extra space allocated
for dynamic variables (those not declared in the main program). The number specifies this
in thousands of words.

default = R2 2000 extra words

S Produce a source listing.

default = S-

T Include run-time tests for subscripts out of range and invalid pointer references.

default T+

Z Include line number diagnostics for error termination.

default =

Most of these compiler directives can be activated and deactivated as often as required
ai~d can be applied selectively to different portions of the code. “B” and “R” are obvious
exceptions.

7 .1.2 CONTROL CARD OPTIONS

Control card options follow:

B Set B+. See above.
E Set E+. See above.
I Inserting a new element from the run stream .
L Set L+. See above.
0 Set A-, T- (omit tests). See above.
S Set S+. See above.
Z Set Z-. See above.

17

L - -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . -  J



r ________________________ 
.-.

8 PERFORMANCE

The following performance was measured on a Univac 1110 .  All times given are
totals , including both Central Arithmetic Unit (CAU) time and Control Card and Execu tive
Reference (CCER) time.

8.1 COMPILER PERFORMANCE

The compi lefs performance was measured as it comp iled itself. The comp iler consists
of 7 ,494 lines of code , including comments and blank lines, it compiles into 34,875 words
of code and litera ls. The library adds 5 ,91 2 words (including some data area) for a total of
40,787 words. The Univac processor interface routine s account for 4,685 words of the
library . The data space allocated for the compiler is 16,108 words , and while compiling
itself the compiler uses 8 ,068 words in the heap and 7 ,444 words in the stack.

The compilation rate is 105 lines per second while produc ing an output  listing and
118 lines per second without producing a listing.

8.2 COMPILED CODE PERFO RMANCE

The compiled code was compared with that generated by the Norwegian University
Algol (NUALG) and ASCII FORTRAN (FTN) processors. For both Pascal and NUALG ,
tests were done both with and without run-time checks. The FORTRAN compiler never
generates run-time checks but allows for three different levels of optimization. The normal
mode does no optimization , and optional modes provide local and global optimization. The
local optimization mode was chosen as the standard of comparison , since the short test
programs which were used provide an unusua lly simple case for the global optimizer. This
allows it to perfo rm much better than would be expected for the average program.

The programs used as a basis for comparison were taken from Wirth ’s pape r on t h e

design of a Pascal compiler. * They are all short programs which are easil y wri t ten in all
three languages and thus do not use the expressive power of Pascal. In addition , measure-
ments were taken of the time to call a simple procedure and tra nsmit  four value parameters.
The result s are summarized in tables 8.1 and 8.2 .

TABLE 8. 1. PROCEDURE (‘ALL TiMES .

Pascal NUALG FORTRAN

Time in microsec onds 26.4 108 .6 2 1.9

Relative tIme 1.2 1 4.96 1 .00

~N. Wirt h , “The Design of a Pas :al (‘oiiip ikr .” Software - Pract ce an erience , vol. 1, Oct—Dec.
1971 , pp . 3O9-334. 

18



___ — .  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—.=.--.—- .---— --.,.. - -—~
—

~~~~~~~
.-‘ - -

TABLE 8.2. CODE PERFORMANCE .

Programs
Language Time PART PARTNP SORT MAT M UL COUNT

Pascal in microseconds 9.36 1.10 24.62 18.70 4.99
with checks relative 0.62 1.18 1 .37 1.82 0.30

Pascal in microseconds 9.17 0.99 20.22 14.69 4.69
with no checks relative 0.6 1 1.06 1.12 1 .43 0.28

NUALG in microseconds 12.88 3.06 32.92 2 1.02 12.15
with checks relative 0.85 3.29 1 .83 2.05 0.72

NUALG in microseconds 12.67 2.95 26.8 1 17.46 11.13
with no checks relative 0.84 3.17 1 .49 1.70 0.66

FIN in microseconds 15.10 0.87 18.0 1 10.27 16.88
relative 1 .00 0.94 1 .00 1 .00 1 .00

FTN in microseconds 15.10 0.93 18 .01 10.26 16.83
local relative 1 .00 1 .00 1 .00 1 .00 I .00

FTN in microseconds 14.94 0.79 10.56 4.04 16.40
global relative 0.99 0.85 0.59 0.39 

- 
0.97

The programs listed are

PART Compute the additive partitions of a number (30 in this case) and print the
results. This uses recursive procedures in Pascal and NUALG and a hand-
simulated stack in FORTRAN.

PARTNP The same as PART , but with no output.
SORT Sort an array of 1 ,000 numbers with a bubble sort.
MATMUL Matrix multiply of two 100 X 100 matrices.
COUNT Count the occurrences of each character in a file and print the number of times

each occurs . The file was 124 ,000 character long.

9 IMPLEMENT ATION DETAILS

9.1 FORM OF GENERATED CODE

The Pascal compiler generates code in the standard relocatable format , using the
following location counters:

1. Procedure code.
2. Literals.
3. Forward reference links.
4. Working storage .

19



_

Working storage is allocated at compile time and includes space for all variables
allocated at the global level , plus the reserve specified with the “R” compiler directive. At
the moment , this is the entire storage allocation for both the stack and the heap. There are
plans under way to remove this restriction and allow the dynamic increase of this space up
to 262K. The code generated by the compiler will support this , but the run-time system
does not.

Forward re ferences are handled by assigning a location under location counter 3 at
the time of the reference. When the re ference is resolved , the procedure or label location is
entered into a table and at the end of the program code is emitted under location counter 3
to complete the references.

9.2 RUN-TIME ORGANIZATION

9.2. 1 MEMORY MANAGEMENT

The allocation of working storage is shown in figure 9.1. The working store is used
for both the stack and the heap.

WORKSP (R12) ~~
LIBRARY

WORK
SPACE

GLO~ AL (X 1) ~

STACK AND
GOBAL STORE

LOCAL 1X2) ~
LOCAL STORE

STACKTOP ~

HEAPTOP -~~~

HEAP

TOP ~

Figure 9.1. Working stora ge allocation .

20

~~L m  ~~~~~~~~~~~ - - .~-~~-- .  
- - -

~ 
-- -

~~~ 
-

pr —~~~ _.__ — __ _ ._ ._ _ . z - z z . r a~~~. .-’.-’.—-.. .-—-—~~~-’- --..-—~~~~~ .. - , ..-..-—..._‘—. .~~~~~

Upon entry to an external procedure , Xl is set to point to its own global storage ,
but local storage for the procedure is put on the same stack as other procedures.

The storage handling on procedure entry and exit is simple and conventional and
best seen by examining the library procedures which handle it.

9.2 .2 PROCEDURE ENTRY AND EXIT

Each Pascal procedure called has space allocated on the top of the stack for its
activation record , which has the form shown in figure 9.2.

(X 2)
~~

- Fv

DL SL

GL LNUM

AD FL

RBDI MA

PBDI PL

ARGUMENTS

LOCAL STORE

FV — FUNCTION RETURN VALUE

DL — DYNAMIC LINK (X2 IN SURROUNDING ENV.J

SL — STATIC LINK (X2 IN STATIC ENV.)

GL — GLOBAL LINK (Xl IN SURROUNDING ENV.)

LNUM — LINE NUMBER OF CALL

AD — ALLOCATION DATA (OLD STACK TOP)

FL — FILE LINK (FOR CLOSING FILES)

RBDI — BDI OF THE RETURN ADDRESS

PA — RETURN ADDRESS

PBDI — BDI OF THE CALLED PROCEDURE

Pt. — PROCEDURE LOCATION FOR DIAG.

Figure 9.2 . Activation record.

21

- - ~~~~~~-—-~~~~~~~~~~~~~~~~~~ - - — -_ -- - -- --- - - -

The procedure calling sequence generated by the compiler is as follows:

SX “static link” ,SL
SX X2, DL.

“compute parameters”

AX X2. ”local length” ,,U . NEW X2
LMJ X l l ,PROC
“return location ”

The code generated in the procedure has the form :

‘proc ‘ . for diagnostics
PROC LMJ X I O .P SPFNT RY

+ “argument length” ,”total space ”
“code to store arguments ”

“procedure code ”

LMJ X l 0 ,P SPEXIT

The details of filling in the linkage data and for initializing and closing files are best
seen by examining the library routines for these functions.

Arguments may be considered to be in four categories as follows:

direct Those value arguments which will fit in a single word .
indirect Variable arguments or value arguments too large to fit in a sing le word .
setvalue Set arguments passed by value.
proc / func Formal procedure or function.

In general , arguments are passed in registers whenever possible , with the called pro-
cedure storing them in its local activation record. When the number of arguments exceeds
the available registers , they are store d in the activation record by the calling program . The
compiler allocates space in the activation record as follows:

direct A single wore in the argument are a to hold the value.
indirect A single word in the argument area to hold the address. In addition , value

arguments have enough space allocated in the local variable area to hold a local
copy of the argument.

setvalue Sufficient space (4 words currently) to hold the set value.
proc / func Two words , the firs t for the instruction and environment pointers , the second

for a check word .

The arguments are passed as follows:
direct Up to 9 arguments are passed in the registers A4 to Al 2 , in that order. Others

are passed in core .

~ . - —- - -.-—
~ -

indirect Up to 4 arguments are passed in the registers X8 down to X 5 , in that order.
Others have their addresses stored in core .

setva lue Always passed in core .
proc/ func The fi rst word is passed as an indirect argument , while the check word is passed

as a direct argument.

9.2.3 REGI STER USAG E

The registers X l , X2 , and R9 throug h R l 5 are used in storage allocation and must be
left undisturbed. All other registers are available for use.

9.3 DIAGNOSTIC SYSTEM

The diagnostic system is close to the minimum livable. On error , it provides an error
message and a walkback through the stack , listing calling lines and procedure names. In
most cases, this provides the data necessary for fault location.

The diagnostic system works by keeping the current line number in the register R b .
This line number , plus the address of the called procedure , is k ept in t h e stac k on proced u re
call. At the start of any procedure , the compiler inserts the procedure name in ASCII . This
allows a simple trace of the calls and a reasonably readable walkhack . For code generated
without diagnostic data , the walkback system gives diagnostics in term s of octal locations.

To avoid ambiguities with partially constructed activation records , the address of
the latest currently completed mark stack is kept in the register R9.

9.4 REPRESENTATION OF FILES

Text files are represented in the system standard “SDFF” file format. These can be
read by the majority of the system processors , such as the editor. The Pascal system can
read files produced by any system processor . by FORTRAN-formatted write statements.
or by syrnbionts. If the file is in Fieldata code, it will be translated to ASCII by the file
handler. The maximum record length allowed is 132 characters.

Any other data file is written in a system chosen format with a block length which
is an integra l number of sectors long. The format of each record is shown in figure 9.3.

NELl ELTSIZE

DATA

NELl: NUMBER OF ELTS IN THIS BLOCK

ELTSIZE: IF POSITIVE . ELEMENT SIZE; IF NEGATIVE . -

ELEMENTS PER WORD

Figure 9 .3. Binary file forma t.

23

r - - --

~~~~~~~~~~~~~~

- --

~~~~~~~~~~~~~~~

--

~~~

- --- -

~~~~~~

- - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~~~~~~~~~~~

The length of the block , except for the last block in the file, can be computed from
nelt *eltsize rounded to the next multiple of I I 2 words.

The end of file is den oted by a block wi t h ne lt <0. On tape. a hardware file mark
wil l follow tO allow copying using J~(~)•~_J R.

9.5 MISCELLANEOUS TOPICS

9.5. 1 NON- I 110 CODE GENERATION

Pascal 1100 was developed on a Univac 1110 , which has slight differences from
other computers in the 1100 series, in particular , the real arithmetic on some computers
other than the 1110 creates a “residue ” stored in the register above the register named in
the operation . in order to generate correct code for these machines , the compiler can be
instructed via the “E” option to take this residue into account when generating real in-
structions. To simplify matters for installations without an 1110 . t h ere is a l so a con sta n t
“UNIVAC 1 110” in the compiler , which if false will cause the “E” option to be defaulted
to “E+”.

The compiler itself does not use any real expressions which will be affected by this
option , so that this is strictly a convenience for the final user.

9.5.2 STANDARD FUNCTION REFERENCES

References to the standard functions such as “sin” and “cos” generate a “Lii”
refe rence to the mathematical function common bank “RMATH$” . This is optimum for
the Univac 1110 , but involves considerable overhead for other members of the 1100 series
(approximately 15 1 microseconds on the I I 08.) If the system is installed on a machine
other than an 1 11 0 , and these functions are expected to see heavy use, it would pay to
change the compiler to generate “LMJ” references.

24

-- - - -—--——— -

~

, . - — --- - - - ~~~~~~~ ,— - ~~~~~~~~ —.--- ,- - -

