
699 COMPUTER SCIENC

CCOY, R MORTON
RAOC—TR—

96 9~
___ ___________________

.

______ ___ END

DAlI• lL ~EO

‘I
1

1.0 .~ ~2 8 ~~~~

~~~

I ‘ ‘ ~~~ DlH~°

itIiI’~ ~ Illht~ . HOI~
MICR O.A)PY RLSOLUTI tJ N T E ST CH~~ T

BURL A U 1



c
)—~RADC-TR-78-157

Fi nal Technical Report
August 1978

AUTOMATED CODE GENERATORS FOR COMPILERS

E. Chu
E. Haib
H. McCoy
R. Morton “.. (

Li ~~~~~~~~~~~~~~~~~~~

Computer Sciences Corporation

L oCT ~O 19Th

Approved for public release; distribution unlimited.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13.441



r

I

This report has been reviewed by the RAD C Information Office (01)
and is releasable to the National Technical Information Service (NTIS)
At NTIS it will be releasable to the general public, including foreign
nations.

RADC—TR— 78—l57 has been reviewed and is approved for publication.

APPROVED: ~~~~~~~~ .“)kj~~
RICHARD M. MOTTO
Project Engineer

APPROVED : ~~€~~fl

WENDALL C. BAUMAN
Chief , Information Sciences Division

FOR THE COMMANDER : ~~~~~~~~~ ~~~~
JOHN P. RUSS
Acting Chief , Plans Off ice

I

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee Is no longer employed by your organiza-
tion, please notify RADC (ISIS) Griffiss AFB NY 13441. This will assist
us In maintaining a current mailing list.

4
Do not return this copy. Retain or destroy.

— ~~~~~~~~~~~~~ —--—~~~~~~~~



UNCLASSIFIED ________

SE C U R ’~~~ t~A S S I F I C A T I O N  OF TN~ S P A S E  r i I . ~~ o r,~I. ~~~~~~~~

REPORT DOCUMENTATION PAGE B E F O R E  C O M P L E T I N G  F O RM

- G O V T  A C C E S S I ~~~~~N O  3 A E C EI S c ~~T A L OG~~~~ Me E ~~

RADC~TR_78j~~~’ 
N/A

4. T I T L E  (an d S.,btItte) / ~ T Y P E  O~ REP~)~~T ~ ~~j~Rl~3O Cov~~ €9

AUTOMATED CODE GENERATORS FOR COMPILERS ( ( / 4 Fin ~~ j  T e c h n i c a l  ,~~pwrt~
— 

~~~~~~~~ I Sep 76 — Mar 78 
—

1~- ~ €++Foø~~ii~~~ ~JT.4 BE

___ N/A
B~~~~2.~~L R A C T C R G R A N T NUMN~~ R

-
~~

E . / C h u , R . /
1Morton / .7 F3~6p2—76—C—O429~(

E./Halb. I J
H./McCoy - -

P- P’~~~~~~ 5~ TNO O R O A N I Z A T I O N N A M E A N D A O D R F S S
— IC P R O G R A ~.I E L ~~R T i

Computer Sciences Corporation ’ ,.
-

220 Continental Blvd 63728F
/ / ,-

El Segundo CA 90245 4~
555~b843

II . C O N T R O L L I N G O F F I C E NAME AN O A DDR ESS . _...y42 R EPORT DA T E

Rome Air Development Center (ISIS) Augus*~~~78 /
Griffiss AFB NY 13441 1 ~~~~~~~~~~~~~~~~~~~~~~~~~ /

_ _ _ _ _ _ _ __ _
18

14 MO N I T O R I N G A G E N C Y N A M E A A D D R E S S I I (d i l f ~ ,,nI IIn~
(
~~n I r ~ lI~

,,d f l t I~~~ 5. S E C U P L ’ V C ~. A S S

Same UNCLASSIFIED

I5~ O E C L A S S I I L E A ” ~~O~~ DO W N G P A : N E ,

___ j__N/~~~~~~~
I6 D I S T R I B U T IO N S T A T E M E N T ~oI I1U .~ R~ p o r I~

Approved for public release; distribution unlimited.

I l . D I S T R I B UT I O N S TA T E M E N T (o f eh, .b~~r,~ r t .nI~ ,.d in Sl eek 20 . i f d j f (e , . n 1 f ree . R.por~ ,

Same

18 SUPPLEMENT AR ~i NOTES

RADC Project Engineer:
Richard M. Motto (ISIS)

IS KE Y W O R O S (ConI ino ~ on I~~’~ r O . .~d. 1 ~~~~~~~~~~ ~rnJ ,.fe r ~r I f I ’ b. b l o c k nun,b.rI

JOVIAL
Comp ilers

F Code Genera tors

2~Q A B S T RA C T (ContInue en ,e.e,,, d d e If ce~~~ery nr.d f d , o l l f v I.. b l o c k nomb~ ,’
This project was undertaken with the intent of devising a method or tool for
automa ting the production of the code generator portion of compilers. The main
objective was to develop a Quick Code Generator (QCC) that would be capable of
producing JOVIAL comp ilers in less than 3 months. This generator would develop
0b*1oose~

J
code for an interim compiler. This effort resulted in developing the

Machine Independen t Macro Instruction Code (MIMIC) language. This language
consisted of 113 macros & a QCG was successfully produced for the

DD ‘
~l3 1473 EDITION OF I N OV A S IS O B S O L E T E UNCLASSIFIED

S E C U R I T Y C L A S S I F I C A T IO N OF TIII S PA G E If?,,,. fle~, F~~ r..-

34’ ~~ Y’t~/ , c)

LI
J

UNCLASSIFIED
SECURIT Y CLASSIFICATION OF THIS PAGE(Wf t edI Data Entered)

20 (Cont ’d)

HIS 6000 system. However, the effort fell short by not producing macro
definition files for other target machines. It should be noted that RADC’s
JOVIAL Compiler Validation System was executed with the original JOCIT
compiler ~&~- the QCG JOCIT compiler ~ the differences in compilation time,
execution \time b~ 1the total code;produced were insignificant.

LL.

I

-

UNClASSIFIED
SICUR ITY CLASS IF ICATION OF THIS PAOE(Wk. n Data Ent...d)

~~~~~~ - - - - --..- -~~~~--~~~~~~ - 
...: ~~~~~~~~~~~~~~~ —, —-



-

~~~~~~~

Evalua tion

1. This effort , entitled ‘Automated Code Generators for

Compilers ” is an attempt to produce a Quick Code Generator (QCG)

for an interim compiler which will permit the use of this

compiler until a permanent , more effi cient code generator is

developed. The output of the QCG is assembly language for the

target machine rather than the object code normally associated

w it h co de genera tors. RADC ’s JOCIT JOVIAL Compiler was the

sut~ject of this effort and the approach taken was to replace

the JOCIT Code Generator and Editor with a QCG and Macro

Assem bler (MAS), respectively. Communication between these

two phases was accomplished via the macro language , MIMIC.

MIMIC i s an acron ym for Mac hi ne Ind e pen d en t M acro Ins truc ti on

Code and is a gener~ 1ized assembly -type language , designed

to eas ily map into most existing assembly languages. The user

Is required to write a Macro Definition File (MDF) that is to

interface with MIMIC.

2. Th is effort was successful in developing a QCG for JOC IT

for the HIS 6000 Series, but several problems are still to

be resolve d. Mainly, the QCG will not operate with the JOCIT

Optimizer , nor w ill the compiler function correctly if a

cross-reference l isting is requested or the DIRECT Code Option

is used. Pro blems still exist with internal data repre sentations,

but it should be noted that tests comparing the original JOCIT

Iii

•~~% a

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _



• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

JOVIAL Compiler and the QCG JOCIT Compiler revealed the difference

In com pilation time , execution time and total code produced

was insignificant.

R ARD M. MOTTO
Project Engine er

iv

___________________________



INT RODUCTION AND SUMMARY

The “Automated Code Generators for Compilers” contract F30602—76-C-0429 was
begun in September, 1976. It was one of a series of contracts to provide the Air
Force with an advanced JOVIAL (J3) compiler capability. Earlier contracts have
resulted in a system called JOCIT which is an acronym for JOVIA L Compiler Imple-
mentation Tool. JOCIT consists of a JOVIAL compiler , a SYMPL compiler ,
GENESIS processor and an executive which interfaces with the host operating system
(in this case, Honeywell 6000 GCOS). Most of the modu les of the JOVIA L compiler
and the SYMPL compiler are written in the SYMPL language. SYMPL is a p rocedure-

oriented programming language whose emphasis is on ease of expression of “System ”
programs. SYMPL is in many ways similar to both FORTRAN and JOVIAL GENESIS
is a Computer Sciences Corporation proprieta ry system for producing language syntax
tables suitable for use in certain types of syntax— directed compilers from a convenient
syntax description language.

The primary purpose of this contract was to further automate the task of pr oducing
a JOCIT-built compiler code generator. There was no expectation that the cod e
generator produced by this effort would equal the quality or efficiency of the code
generators produced by an experienced compiler wr iter . However , if the result
of this effort could rigidly and inexpensivel y produce a code generator of acceptable
(not defined) quality , then a significant advance would be made to the state-of-the-
art . The code generators thus produced would presumably be used temporaril y in
new operational environments until a more permanent , eff icient code generator was
written for the particular target computer.

A number of approaches were Investigated , but the final design consisted of the
“code generator ” producing macros for an assumed very basic computer . For
example, the computer was assumed to have one accumulator , one index register ,
one single precision floating point register , etc . The macro code file thus gen-
erated Is machine Independent or nearly so. This macro code file is then processed
by the “macro assembler ” which essentially takes the place of the editor in a con-
ventional compiler. The “macro assembler ” Itself Is also machine independent 



but accesses a machine-dependent “macro definition file ”. Each new target machine

requires the production of its macro—definition file.

The macro definition file essentially defines each of the macros which can be pro-

duced by the “code gener ator ” in terms of assembly language attributes of the tar-

get machine. The macro assembler , then , as it processes the macro code file,

produces a new output file of a target machine assembly language program. This

assembly language program can then be assembled on the target machine to produce

objec t code for execution.

Therefore , in order to produce a new “code generator ” for a target machine , an

individu al would have to have a good working knowledge of the assembly language of

the target machine and the purpose for each of the macros that are possible. Cur-

rently, the “code generator ” can produce approximately 113 macros. However ,

many are similar in nature and would require only minimal changes in their defini-

tions.

The final result of this contract is a working “quick code generator ”. A macro

defini tion file for the Honeywell 6000 series computer was wr itten and sever al test

programs were run through the new code generator . Assembly language programs

were produced and subsequently assembled by the GMA P assembler at RADC and

executed. There was not sufficient time to generate macro definition files for

other possible target machines. However , it is believed that a person familar with

a target machine and some study of the Automated Code Generator User Manual

could produce a macro defi n ition file in less than three months.

The “quick code generator ” was integrated into JOCIT , so that one JOVIAL com-

piler can use either the “quick” or the “normal” code generator . This Is accom-

plished by the use or non-use of the QUICK option In the JOVIAL control card. It

is also possible to select four different macro definition files , if they are available ,

to produce code for different target machines.

In order to complete a working version of the new code gener ator in the time avail-

able , a number of features permitted with the normal code generator are not possi—

ble currently with the “quick” code generator . These include “direct code” and
2



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~. - ~~~~~~- —- ~~~-.

- global optimizations. Furthermore , the cross—reference capability cannot be
correctly executed. During the course of this contract a parallel effort was per-
formed on JOCIT to add double precision capability. This complicated the effort
on the “quick” code generator , but the double precision capability Is operational
now for the “quick” option as well.

3

r ~~~

-

~

—

~~~~~~~

• .-

~~~

- - -

AUTOMATED CODE GENERATORS FOR COMPI LERS

The pu rpose of the JOCIT Automated Code Generator (ACG) is to help automate the
retargeting of the JOCIT compiler. The ACG provides a means for the rapid develop-
ment of a new compiler “back end”, producing code for a desired target machine.
The goal is to make a compilation facility available early, so that a user considering
the use of the JOVIA L High Order Language (HOL) will not have to wait up to a year
for the handc rafti ng of a code generato r to fit his needs. If a high degree of code
efficiency is importan t , then a special code generator has to be constructed , but at
least a coding and checkout environment will be available through the ACO several
month s before the fi nal code generator is ready.

The fi rst design decision made for the ACG was to output assembly language code
for the target machine ’s assembler , rather th an to produce binary code. The reason
for this decision was the elimination of the target machine ’s relocatable format and
linker requirements fro m consideration in the retargeting effort , as well as internal
instruction and data representations.

STRUCTURE OF TIlE ACG

Structurally, the ACG consists of (1) a modified version of the Code Generator phase,
called the Quick Code Generator (QCG), (2) a new phase in lieu of the Editor phase,
cal led the Macro Assembler (MAS) , and (3) a group of procedures supplied by the
retargettor , called the Macro Defirition File (MDF).

QUIC K CODE GE NE RATOR

Providing a suitable set of MDF procedures is the principal effort of retargetting ;
each of these procedures has a specified task in the production of the assembly code
output. In determining what these tasks should be, many computers and their assem-
bly languages were studied. Among the architectural featu res considered were
addressibility , register usage, word sizes, and alignment requirements. Assembler
considerations included format s, naming conventions, special features, pseudo—ops,
etc. The result of these studies was the MIMIC (Machine Independent Macro Instruc—

4


~~~~~~~ -~~~-~~~~~~~~~ -~~~~~~~~- 

tion Code) “langu age”, which drives the generation of the outpu t assembly code.

MIMIC is the internal language (IL) form of the program produced as output by the

QCG. Essentially, it Is “machine code ” for a hypothetical and very simple computer.

The architecture of the MIMIC computer has been careful ly chosen to avoid present-

ing any impossible situations in representing its functions on a real compute r. The

MIMIC machine has the following characteristics:

• Single address instruction format

• One fixed point or integer accumulator register

• One single precision float ing point accumulator register

• One double precision floating point accumulator register

• One index register

• Access to all types of data

• Arithmetic operations in integer , single floati ng, and double

floating modes

• Comparisions in integer , single floa ting, and double floating

modes

• Full word addressing with optional index register address

modification

• Although difierent MIMIC instructions are used to Load each

of the three accumulator registers, the QCG assumes that

these registers overlap, so that a load of any one of them

destroys the contents of the others.

The full MIMIC language is documented elsewhere, but an example , is appropri ate

here. A simple JOVIAL replacement statement might produce the following sequence

of MIMIC instructions:

5

_  _



LOAD operand AA (Load the integer accumulator)

SCLL 2 (Scale left by 2)

ADDI operand BB (Add to the integer accumulator)

STORE operand CC (Store the integer accumulator)

The QCG generates into the Code File a sequence of MIMIC instructions represent-

ing the executable part of the source program , together with MIMIC pseudo-ops

declaring data reservations , external references and definitions , etc. , obtained

by scanning the JOCIT Symbol Table.

The task of the retargetto r is to determine , for each MIMIC “macro ” (instruction

or pseudo-op), w~’at lines of assembly code should be produced for the target machine.

This includes the related design task s of determining how to use the target machine’s

registers, what linkage conventions will be followed in procedure calla , how the

target machine assembler ’s location counters Will be used , etc. Then the user

must supply , in the MDF module, a procedure entry point for each MIMIC macro.

An early design decision was made to have these MDF procedures coded in SYMPL.

The alternative was to pro vide a new language, with a preprocessor to conv ert the

new language into an interpretable form. A new language was indeed designed and

studied , but was rejected on two grounds. First , its advantages over SYMPL as a

coding language were not felt to be striking enough to justify the effort and expense

of producing an additional processo r and interpreter. Second, it was a less power-

ful language th an SYMP LI and it was not clear that anything less powerful than a

full algorithmic language could be guaranteed to solve any unforseen problems

which might arise in a specific retargetting effort. Using SYMPL, the MDF proS -

grammer is free to hav e global variables which pass information from one MIMIC

macro procedure to another , as well as lower—level procedures for common functions.

In deciding how to Implement the Quick Code Gene rator (QCG) , several alternative

approaches were considered for various aspects of the design. The first , and

most critical alternative concerned the overall approach. Here , the options were:

1, Write a completely new code generator, or

2. Create new modules using existing code generator modules. 

-rn



_ _ _ _  

~~~~~~~~

-

~~~~~
- — -

~~~~

-

~~~~

I
CSC ’s decision was to use the existing modules as a base on which the QCG would
be built , since this approach (1) would yield a code generator which was very similar
to the existing code generator, (2) would save considerable time , and (3) would
simplify mainten ance, In making this transformation, several previously—undetected
errors in the compiler were found and corrected,

A second major consideration concerned the handling of direct code. The options
considered were:

1, Modifying all of the current modules which handle direct
code processing.

2. Prohibit the inclusion of direct code by the QCG.

In arriving at our decision to prohibit direct code, we took into consideration several
factors:

1. In any retargetting effort , the direct code must be rewritten
for the target machine and could , therefore be called as an

external subroutine instead of appearing in line,

• 20 The existing programs which process the IL would require

modification to pass source code through to the QCG.

3. The new optimizer under concurrent development would have
been impacted.

• 4. The total benefit as weighed against the implementation time required
was minimal.

The QCG contains a set of predetermined code sequences for produci ng frequently
used functions. For example, the JOVIA L statement A = B could cause a LOAD
macro and a STORE macro to be generated. The code sequences are table driven
and register dependent. For example , given the statement A = B + C, if either

B or C already exists in a register based on a previous computation , the QCG
recognizes the fact and, instead of loading the register , uses the already computed
value to generate the ADD and STORE instructions. The type of register to be used

7



r 
-~~~~~~~~~~~~~ 

~~~~
-
~~~~-

is one of the pa rameters passed; therefore , only one sequence exists , and it is

• valid for integer , single precision , and double precision data . This single code
sequence of the QCG is a depa rtu re from the regular code generator which uses a
separate set of sequences for integer , single precision , and double precision data.

The processing of character data is also slightly different from the regular code
generator. The MIMIC language does not provide for string manipulation macros
and , therefore , all character data is handled through subro utine calls to the run—

time library . This approach required that a set of arguments be generated to

adequately define the data for the subroutin e so tha t the subroutine could operate
properly . This approach was taken to relieve the macro writer of the burden of

developing string handling mac ros. &ich macros can be come quite complex when
imp lemented on word oriented hardware. To facilitate the retargetability of these
subroutin es, they were written in JOVIAL. The regular code generator produced
in—line code , when possible , to handle character data. When this was not possible,
subroutine calls were generated.

Near the end of the project , it was discovered that some test cases would not com-
pile correctly through the ACG if the Opti mizer was requested. Rather than spend

the short time remaining on solving the problem , it was decided that optimization
would not be allowed if the ACG was to be run. The two major reasons for this
were: fi rst , the new optimizer being developed had not yet been interfaced with the

ACG and similar problems would lik ely appear there as well , causing fu rther delays
in the project; second , given the limited scope of use of the ACG (i. e., as a “stop
gap” measure during the writing of a target machine dependant code generator), and

given the limi ted characteristics of the hypothetical machine upon which MIMIC is
based , optimi zation would have little or no major affect on the code produced. Ad-
ditionall ’,’ , the quality of code is to a great extent , dependent upon the level of ex-
nertise of the mac ro writer.

8



r

Because of its more general design the QCG generates more tempo rary space for the

computation of intermediate results, The management of thi s space is critical in

keeping the size of this temporary space to a minimum. Also , failure to release

temporary space when no longer needed often results in compiler errors , incorrectly

allocated space, or both. Persons maintaining this compiler must be aware of this

critical area so tha t compi ler errors are not introduced.

MAC RO ASSEMBLER PHASE

Th e MAS phase consists of two levels : a driver f .r  the MDF procedures , and a

group of utilities to serve the MDF procedu res. The driver level , after initiali zation ,

reads the MIMIC macros from the Code File in sequence and , for each , invokes the

corresponding MDF procedure , passing the MIl~IIC operand as an argument , In the

initialization step, the MDF programmer has an opportunit~ to specify a number  of

parameters of his assembler , e. g. , the character which introduces a comment , the

maximum name length , etc. This information will be used by the M~~ uti l i t y proce-

du res. The MDF p rog rammer can also specify the order in which he want s to pro-

cess the various segments of the program , such as code, local data , external declai’-

ation s, etc.

The MAS utilities available to the MDF programmer fall into three groups. The first

group consists of editing procedures which assist him in bui lding his output lines by

performing such functions as adding a string of characters to a partially built Line ,

tabbing to a specified position in a line , and ou tpu tting a line and reinitializing. These

uti lities handle most of the work of character manipulation and line formatting .

The second group of utilities gives the MDF programmer access to information in

the JOCIT Symbol Table , such as the allocated size of an item , or whether or not

an item is signed. The third group provides such miscellaneous services as generat-

ing unique Labels for use if loca l branches are needed .in thc assembly code.

The MAS also provides error checking to assist it ‘he debugging stage of a new MDF.

The editing utilities detect such errors as runaway line length , and print the current

output line. The symbo l table utilities trap an invalid symbol table pointer and

9

a 

~~~~~~~~~~~ • , • •~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • .~~~~~~~~~~


identify the called procedure. An erro r limit may be supplied by the user, to stop
processing after a specified numbe r of MAS errors have been detected.

a tes t of the system , an MDF module was designed and imp lemented to produce
code for the current host machine. A number of programs were compiled , assembled

by GMA P, and successfully execu ted. However , as noted later , some problems
remain even with this “reta rgetting ”.

A programmer assigned to the MDF portion of a retargetting effort must be very
familiar with his target machine, its assembler , and its variou s system conventions.
He must also have a working knowledge of the SYMPL language , in which he will be
coding. Then , he must unde rstand the meaning and intent of each MIMIC macro and
its operand , which 1L~ ~y involve some understanding of JOVIA L semantics (although
an under standing of JOVIA L sunta x is not required). Finally, he mu st become
fami liar with the MAS inter face an~ the various utilitie s at his disposal.

The other major effort in retargetting JOCIT is converting the JOVIA L Run—Time
Library . Investiga tion has shown that the non—I/O library modules can successfully

be written in JOVIA L, and thus are reLt rgettable like any other program. Simple

machine dependencies , such as word and byte size , are handled by JOVIAL D E FIN E

declarations , and must be changed in the source to suit the ta rget machint ’ character-
istics. However, the I/O package is so strong ly permeated with system and machine

dependencies tha t it requires a complete recoding in assembly Language for each new
target.

A number of pro blems encountered during the performance of the work remai n un-
solved. This situation is due in large part to the schedule const raints, and the fact

that several other JOCIT enhancement activities were going on concurrentl y , some

with higher priori ties than the ACG. These problems were mai nly In the area of
incompleteness of JOCIT conversion.

The QCG part of the ACU is essentially an effo rt to retarget the JOCIT code generator
to the hypothetical MIMIC machine. To a large extent this was successful. However ,
the interac tions between the code gene rator and certai n other non—essential (bu t

10

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



T~1

• certainly useful) compiler functions have not been resolved. Specifically , the QCG
cannot be run with the Optimizer , nor will the ACG compiler function correctly if
a map or cross—reference listing is requested. Although in principle it should be

even easier to handle target machine DIRECT code whe n the compiler itself outputs
assembly language, the necessary modifications have not been made, and the ACG
compiler will not accept DIRECT code.

Unfortunately , a successful reta rgetting of JOCIT requires more than Code Generator
work. A specific unsolved problem area outs ide the scope of the Code Generator is
the questio n of interna l data representations, The current “f ront-end ” of the compiler
converts numeric constants, such as preset values, to Honeywell machine forms.

On the one hand, this seems only reasonable if the compiler, fo r example , is to do
constant arithmetic on the host machine, On the other hand, however , considerable

difficulties arise in the MAS and MDF in trying to go from a Hon eywell bit pattern
to a meaningful source-language constant in a foreign assembly language.

Differences in word size may also invalidate some of the compiler ’s host -oriented
conversions and operations. This area clearly needs much investigation to produce

a viable solution.

To facilitate ret.argettthg and rehosting effo rts in the fu ture , the compiler should be
carefully examined and generalized parameters should replace all machine dependent
values currently hard coded in the programs.

11 

-

~~~~~~


-
~~~

MISSION
of

Rome Air Development Center

RAX plans and conducts research, exploratory and advanced
developaent p rograa in cir~~and, control, and co.mnznications
(C3) activities, and in the C3 areas of information sciences
and intelligence. The principal tecM.ical mission areas
are conriunications, electromagnetic guidsnce and control,
surveillance of ground and aerospace objects , intslligence
da ta collection and handling, information system technology ,
ionospheri c propagation, solid state sciences, m.icro~~v

• physics and electronic reliability, aaintain.bilitil and
compatibility.

I??. .131*

- — 
_



I


