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This paper is another in a series exploring the conditions under

which either differential or simple unit weighting of predictor variables

in prediction and/or decision studies will be appropriate. Some of the

difficulties of applying the ordinary least squares (OLS) regression

analysis to practical problems are described and an alternative regression

model called ridge analysis (RIDGE) is offered as a substitute to OLS.

The trouble with OLS Is that when the predictor variables are inter-

correlated then the regression coefficients estimated by 015 are often

quite deviant from the sitrue ll coefficients. They are often too large in

absolute value and the sign of the coefficient can be wrong. The RIDGE

solution to this is very simple: just add small positive values to the

main diagonal of the correlation matrix depicting the Intercorrelations

between the predictor variables , and re-estimate the coefficients in the

usual manner. The resulting estimates are called ridge estimates and in

theory they will be superior to OLS estimates in the sense of producing

smaller error in cross validation samples. That is, when OLS and RIDGE

estimates are estimated in one sample of data, and then tested on a new

sample of data the RIDGE estimates will result in fewer errors of

prediction than the OLS estimates.

Several empirica l studies were conducted using computer simulated

data for various prediction situations . The OLS and RIDGE models were

compared as to their efficacy in prediction and both models were compared

against the simplest model possible, that of unit weighting (UNIT), in 
•

which no weighting is performed; the variables are simply added up and

I
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the sum used for prediction. The results of these studies Indicate that

015 and RIDGE , wi th one exception , always outperformed UNIT w ith respect

to producing smaller errors of prediction and , what is more Important,

RIDGE always did better than OLS. The one exception in which UNIT did

better than OLS and RIDGE i s for the case in wh ich all the “true” co-

efficients are pos iti ve , not too far apart, and the sample size Is

relatively small (< 50). This is a very restricted class of conditions .

The general conclusion is that UNIT weighting will be appropriate only

in unusual s ituations . Regress ion models are to be preferred as a way

of generating differential weights. Also , the ridge method of estimation

(RIDGE) always should be the preferred model over OLS. One practical

implication of this is that if an Investi gator does not have the luxury

to do cross validation then RIDGE estimation can be used as a substitute

for cross validati on.
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Differential We ighting for Prediction

anc Decision Making Studies :

A Study of Ridge Regression

Introductiona
A major probl em in prediction and decision studies is how to

differentially weight relevant information and form a composite model

based on those weights which can then be used to make a decision and/or

prediction. The most widely used model for doing this is the mul tiple

regress ion model . However , this model is often overly complex or leads

to the wrong weighting scheme. Many investigators have suggested

replacing this model with a simpl er one and the simpl est model of all

• is the so called unit weighting model . With unit weighting no attempt

is made to estimate what the optimal differential weights might be,

instead they are all ass igned the same val ue, namely 1. This paper

is another m a  series (Ne~nan, Seaver, and Edwards, 1976; Newman, 1976) J
designed to investigate under what conditions differential weighting

is appropriate.

The paper focuses on some of the properties of the regression model

• that lead to difficul ties in its use and how those difficulties can be

remedied thus allowing for easier and more producti ve use of the regression •

model . In particular I will discuss a modification of the regression

model cal led ridge regression . Before defining what ridge regression is

1 
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and how it works , however , I will first review briefly some of the basic

features of the regression model and its difficulties .

The regression model and its difficulties.

The regression model assumes that some criterion variabl e V can be

preaicted from a set of predictor variables by forming the linear

combination of the N predictor variables , i.e., in vector-matrix notation

we write

V = XB + e (1)

where V is a column vector containing N predicted values of another column

vector containing the actua l values of the criterion, B is a vector

of the regression coefficients , and X is a Nxp matrix of N observations

on each of p predictor variabl es , e is the residual vector containing

the deviations of the actual values of V from the predictor values V .

The vector B, of course , is unknown but assumed to have “true ” values

in the population fr om which the observations in V and X were taken .

In ordinary least squares theory (OLST) the vec tor B is estimated using

the least squares principle , i.e., by minimizing the sum of squares of
N. , N

• residuals ~ e’ = E (V-V .) ’ . If all the variables are transformed into
i •‘ 1=1 1 1

Z scores such that all have 0 mean and unit standard deviation then a

wel l known matrix solution to finding B,the vector of estimated

standardized coefficients ,is :
• 

= R1~~ ryj 
(2)

where R 1~~
1 is the inverse of the simple correlation matrix containing

• the intercorrelation coefficients between each of the predictor variabl es

and ryj is the vector of the correlations between each predictor and

the criterion variabl e (validity coefficients). The use of standardized

2
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values and the correlation matrix and validit y vector does not restrict

generality of results since after the solution is obta ined the reverse

transformation can also be made to obtain the “raw score ” regress ion

coefficients. The transformation should always be made since that places

all variables on the same scale no matter what units they were originally

expressed in raw score form.

Once the regression coefficients are estimated, the regression model

can be used to predict the criterion variabl e on data that was not used

as the estimation data . As a matter of fact if the model is to be used

:1 for making practical prediction s or decisions such as selecting students

into professional schools, this procedure , called cross validation , should

be done often to see how wel l the model works. It is clear that the model

will not do as wel l on new data as it did on the data in which the

coefficients were estimated. This is so since the least squares

criterion minimizes the error in the estimating sampl e,much of the

predictability thus obtained could be due to chance fluctuations in

the sample data . There is no guarantee that the estimated coefficients

will stand up wel l when appl i ed to new data.

If certain conditions pertain in the estimating sampl e, then the

estimated coefficients will not stand up well on cross validation.

Some of the conditions that will cause difficulty in initial estimation are:

(a) Poor sampling procedures leading to non-representative sampling.

(b) Smal l sampl e size relative to the number of predictors and thus

the number of coefficients that need to be estimated .

(c) The presence of measurement error in the variab les , in particular

measurement error in the criterion variable.

3
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(d ) The presence of “outliers ” in the data , i.e., data points that

l ie outside the normal range of the numerical values for the

variables .

(e) Intercorrelations between the predictor variables , a condition

sometimes referred to as multi -collinearity .

When some or all of these conditions exist in an estimating data

sample, the estimated coefficients are often poorly estimated , i.e., are

far removed from the true values of the coefficients in the population

from which the sample came . Of course any competent investigator will

do everything possibl e to adhere to sound sampl ing procedures, careful

• study design , and so on , to control the above conditions as much as

possible. However, even in carefully controlled studies they are never

completely eliminated and the last condition , multi -collinearity , is

often a fact of life and it is often difficult to reduce it. I will show

shortly that item (e), the problem of multi -collinearity , i s very ser ious

for the regression model leading to very poor estimates of the regression

coefficients. Fortunately, its effect can be reduced considerably as

• I will also show.

Before discussing that, it is of interest to review briefly how

investigators , at least in the behavioral science , have reacted to the

use of regression model s that are known not to yiel d good predictive

results . Many investigators have argued that any differential weighting

model such as the regression model should be replaced with the simplest

model possible , i.e., a unit weighting model in which no attempt is made

to do differential weighting . The predictor variables are just added up

and this sum is used to predict the criterion variable. Although this

sounds counter-intuitive , there i s a long and accumula ti ng body of



—- ~~~~~~•——-•-- — •-•- —•- - - - - -—- • •~—- - -----— ,-~~~~~~~~
. 
~~~~~~~~~~~~~~~~~~~~~~

evidence that such unit weighting may be as good and in some cases better

than differentia l weighting . This evidence has a theoretica l and analytic

underp inning as provided by the work of W ll ks (1938), GulHksen (1950 ,

Ch. 20), and more recently [inhorn and Hogarth (1975), Wainer (1976),

Walner and Thlssen (1976) and Green (1974). There have also been severa l

• empirical studies as represented by the works of Lawshe and Shucker (1959),

Wesman and Bennett (1959), and Fischer (1972). There have been at least

three computer simulation studies (SchmIdt, 1971 , l972~ Claudy , 1972),

and the approach we take is similar to such simulations. In an important

review and analysis , Dawes and Corrigan ~.i974) argue cogently that simple

addit ive (unit weight ing ) models are quite appropriate and indeed

desirable In many decision making situations.

Recently, Newma n , Seaver, and Edwards (1976) and Newman (1976 )

i nvestiga ted unit versus differential weighting and some of the conditions

in which one model mi ght be superior to the other such as sample size and

measurement error. Their resul ts strongly indicated that the differential

weighting vi~ the regression mode l was always superior to unit wei ghting

except for small sample sizes . More recently Keren and Newma n ( 1977 ) .

arguing that unit weighting wil l be appropriate only in  very restricted

• conditions , demonstrate that there is a wide class of conditions in

which the regression model wi l l  always t~’ superior to unit wel ghtinq

even for small sample sizes .

I am now of the opinion in light of the evidence that unit weighting

Is rarely appropriate in practica l prediction or decision studies. I also

• bel i eve , however, that it should always be considered as possibly

appropriate because of its simplic ity. Among other things, it gets rid

of the proble m of estimating what the appropriate weights should be.
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It also relieves the investigator of the need for cross validation.

Since nothing is estimated from the data , there is no need for cross

validation. My sympathy for unit weighting, when it is appropriate, is

echoed m a  remark by Ward Edwards who, in the context of applied decision

analysis, stated: “...if such an approx imation (unit weighting) isn ’t too

bad , what an enormous simplification of elicitation methods it offers us!”

(Edwar ds , 1977, p. 339).

There is another reason for always considering unit weighting . It

represents the simplest model possibl e and therefore, constitutes a base

comparison against which all other, more sophisticated models, may be

compared . In the studies reported below this is always done.

These stud ies al so use a simulation method , developed by me, and

described in detail in Newman , Seaver, and Edwards (1976). 1 digress

briefly to describe this method and the technique used for model

compar i son.

Data Simulation

The simula tion i s a Monte Carl o s imulation of a mul tivar iate process.

The s imulation generates a random var iable vector X = (x 1, x2, . 

~
xm ) from

a mul tivariate normal distribution. The program uses as an input a

standardized variance-covariance matrix such as that given in Table 1

which depicts the i ntercorrelations between fotr variables . In Table 1 ,

variable 4 is the criterion and var~ables 1 - 3 are the predictors .

The program then generates a N x M data matrix wi th N rows depicting

• observations , for example persons , and M columns depicti ng measurements

such as psychological tests. The elements of the data matrix represent a

I

6
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Table l

Example of a Corre l ation Matrix

used as an input to the Simulation

Variable

1 2 3 4

1 1

2 .50 1

3 .43 .45 1

4 .47 .81 .74 1

I
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random sample from a multivariate normal population having the correlation

structure given in Table 1 and thus simulate a “score ” for eac h observa tion

on each of the column variables . Using Tabl e 1 as an input, for example,

each row of the simulated data matrix can be considered as a person being

• considered for admission to medical school . The first three columns of

the data ma trix could represent the score a person received on three

tests being used for selection purposes and the fourth col umn could

represent some criterion for selec tion suc h as “success in medica l school.”

Basis for model comparison.

•1 Mean square error. With data matrices generated by the simulation ,

prediction models can be formed from the data and their efficacy in

predicting can be evaluated . For example, we can compare the regress ion

model against the simple unit weighting model to see which is best. One

way to compare two such models is to calculate the mean square error (MSE)

for each model and the mode l wi th the smal lest MSE can be considered best.

Since the simulation method enables the generation of as many sampl es of

data as one chooses, this model comparison can be repeated any number of times .

Consider any two model s 1 and 2. Then in comparing model 1 against

model 2 we can form
N . ,

MSE 1 = E e~/DF1 (3)
i =1

and
N .,

MS~2 = E e~/DF2 (4)
i=l

where MSEi 1=1 ,2 is the mean square error for model 1 , DF1 is the degrees
N .,

of freedom for model i, and z e~ is the sum of the squared res iduals of the
i =1

ith model .

8
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The relative predictive efficiency of the two models may be assessed

by comparing the ratios of their mean squared errors:
N

(DF2) E e~
MSE1_ - = 

i=l (5)
tISE2 N 2(DF 1 ) Z e

1=1

which , since the criterion variabl e is the same in both models and

i s equal to the mean squre error of res iduals , 5 is re-expressed in the

conven ient form
• MSE1 

- 

DF2 (1- R~) (6)
MSE2 DFl~~~~~)

• R2 is the squared mul tiple correlation. When the ratio in (6) is less than

one, model 1 performs more accurately than model 2. When the ratio is

• greater than one , model 2 will perform better than model 1. If model 2 is

the unit weighting model , then there is no loss indegrees of freedom, and

DF2 = N the number of observations . Thus , for this case , the ratio 0F2=N > 1
• 

• 

. 
therefore favoring unit weighting . This is so since DF1 = N-n-i , where n is

• the number of regression coefficients estimated for model 1. This is a real

• advantage for the unit weighting model and should be reta ined . One of the

nice features of unit weighting is that It does not “chew up ” degrees of

freedom. If model 1 is the regress ion model , then (l-R~)/(1-R~) < 1 on

initial fit , thus favoring the regression model . This is not a real

advantage and should not be retained . It is not f a i r  to evaluate the

effectiveness of a model on the sample data used to estimate that model .

It is clear that the model will do best on the data which was used to fit

~~~~~~~~~ 

. the model . For this reason (6) should only be calculated on cross

val idat ion, i.e., on sample data not used for estimation .

• . 9 •
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The loss function. Another way of comparing models is the expected

quadratic loss function E(L2), defined as:

:. E(L 2) = 
E[~~ (b1 

- b1)
2
~ (7)

where b
~ 

is an estimated coefficient and b~ is the “true” coefficient.

Of course , in practice the “true” b 1
1 s are not known . With the simulation

method described above, however , we can always state what the “true ” b. ’s

are since the input to the simulation can be considered as the true

correlation matrix in the popu lation. Thus, equation 2 allows us to

calculate the “true ” b1 s.

In my opinion the best method of comparing models is the MSE

• calculated in cross validaticrn since it is a direct measure of how wel l

you will predict on sample data not used for estimation. Forming the

ratio of the MSE ’ s as suggested by (6) for two competing models is also

direct but can be misleading . With the accuracy of computers,it is
V

possible for (6) to yield a very high percentage favor ing one mode l over

another yet the two MSE’s averaged over many replications could not be

very much different. Al so, the loss function of (7), since it is

calculated on the sample being used for estimating the b
~

’s
~ 

can favor

one model over another but the MSE calculated in the cross validation

sample may favor the other model . I will show examples of this condition

later .

An example of results: The effects of measurement error. As an

example of the use of the s imul ation and the model compar i son we present

some results, not previously reported, about the effects of different

types of measurement error and sample size in comparing the efficacy of

10
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unit versus regression models. With Table 1 representing the input

matrix to the simulation four sample sizes 25, 50, 75 and 100 were

investigated . Al so two types of measurement error were added to the

criterion variable: completely random or uniform error and Normal or

Gaussian error. For the former a va l ue of the random variabl e defined

over the unit interval (0,1) was selected and added to the criterion

variable. For the Normal (Gaussian) error a value of the random variable

was selected from a normal distribution with 0 mean and standard deviations

ranging from .2 to 1.0 and added to the criterion variable. For completeness

we included the case of no error being added. Thus we had a four (sampl e

size) by seven (error condition) experimental design. For each of the

28 conditions 100 replications were made . At each replication a regression

model was formed and a unit weighting model was formed by simply adding

up the three predictor variabl es. The mean square errors (MSE) were

calculated and the ratio of (6) calculated for the purposes of tabulating

the number of times the regression model outperformed the unit weighting

model (or vice versa). Since the MSE for the regression model will

always be less than the MSE for unit weighting on initial fit , (6) was

used to compare the two mode l s only on cross va lid ated regress ion models.

Thi s cross va li dation i s accomp lished sequentially in the sampling process;

that is, the coefficients estimated in sample 1 are used to predict the

actual values in sampl e 2; those estimated in sample 2 are used to

predict the values in sampl e 3, and so on.

The resul ts are presented in Tables 2 and 3. Table 2 presents the

percentage of times the regression model outperformed the unit weighting

model using the ratio given in (6). Note that the case of no error or

11
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Table 2

Percentage of T imes Regress ion ~1odel Outperforms

Unit Weighting Model for Various Sample

Sizes and Number of Var iab les w ith Uni fo rm or Gauss ian Measurement Error

Type of Measurement Error

Sample a Gaussian (u O~a )
b

Size None Uniform .2 .4 .6 .8 1.0
25 89 82 86 66 46 34 16

50 98 94 94 92 90 66 56

• 75 99 98 98 98 92 78 68

100 99 99 99 99 92 88 84

Note: Each percentage is based on 100 replications of each sample size
aselec ted over unit interval (0, 1)
b selected from Gaussian distribution wi th mean 0 and standard

• deviation s ranging from .2 to 1.0
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Table 3

Average Squared Error (
~~

) for the Two Models for

Va rious Sampl e Si zes (N ) and Type of Measurement Error

N

25 50 75 100

Type of 
_ _ _  _ _ _  _ _ _  _ _ _  _ _ _

Error (MSEU) (flS i~) --_
(fISEU ) (~iSER) (!-1SEU) (J~3ER) (~SEU) (M5ER)

None .30 .20 .30 .19 .32 .20 .29 .18

Uniforina .35 .26 .36 .26 .36 .26 .35 .24

• Gauss ianb
.2 .34 .25 .32 .23 .32 .22 .32 .23

.4 .40 .36 .39 .31 .40 .30 .40 .31

.6 .50 .45 .49 .42 .48 .42 .48 .41

.8 .57 .58 .59 .57 .57 .53 .58 .54 :
1.0 .65 .67 .64 .63 .66 .63 .64 .60

aselected over unit interval (0, 1)
b l t d  from Gaussian distribution with mean 0 and standard deviations
ranging from .2 to 1.0

13
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uniform or moderate Gaussian error (S.D.~ .2) that except for the smallest

sample size (N=25), the regression model almost always outperforms the

unit weighting model . However, as the Gaussian error increases in

severity with increasing values of the standard deviation , the regression

model gets progressively worse when compared with unit weighting . Note

in particular the line for the smallest sample size (N=25) that for the

S.0.= .6, the unit weighting model is actually outperforming the regression

model on a percentage basis. When the Gaussian error is most severe

(S.D. 1.O), the regression model is not doi ng well even for fairly

large sample size (N=75). Actually error this severe is probably quite

unrealistic. However, it does show the vulnerability of the regression

model to error. Note that except for th~smaIlest sample size, adding

uniform error does not effect the regression model , i.e., it still

outperforms the unit weighting model . This is because this is “gentl e”

error. It has the tendency to move the distribution of values to the

right and also tends to flatten the distribution. But it does not create

“outliers .” Gaussian error with large S .D. , on the other hand , tends to

push the tails of the distribution out or create “outliers ” and this has

serious deleterious effect on the efficacy of the regression model since

outlying values resul t in estimated regression coefficients that are

far removed from the true coefficients .

Table 3 present~ the results us ing the mean squared error (MSE) as

the means for compar~ing the two models. Since each experimental condition

was repeated 100 times , the MSE’s were themse l ves average d and are
referred to as the average mean squared error (~TSt) with (~SEU) for the •

‘

unit weighting model and (MSER) for the regression model . The larger these
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errors , the poorer the models are performing . The results in Table 3

* 
confi rm what has already been stated . Severe erro r resul ts in poor

performance of the regression model when compared to the unit weighting

model and this is especially true for smal ler sampl e sizes.

I now turn to the problem of improving the regression model . One

improvement on ordinary least squares regression (OLS) is called Ridge

regression described in the next section.

15
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R idge Regress ion

• The probl em of multi -collinearity .

Ridge regression was first introduced by Hoerl (1962) who recommended

it as a considerable improvement over conventional regression. Hoerl

offered ridge regression as a possible solution to a vexing problem in

multiple regression. The probl em: If there are intercorrelations between

the predictor variables (multi-collinearity ) in a regression problem , then

the conventional least squares estimates of the regression coefficients

will often be far removed from the “true ” regression coefficients . They

can be wrong in absolute value , typically being l arger in absolute value

than they should be , and the signs of the coefficients can even be wrong .

What happens when there are intercorrelations between the predictor

variables is that the correlation matrix is ill-conditioned , which in

matrix algebra terms means at least one of the eigenval ues of the

correlation matrix is close to 0. To illustrate what effect this has ,

consider the correlation matrix given in Table 4. Table 4 was calculated

from the data given in Hoerl ’s (1962) paper. Hoerl actually postulated

a regression model which had the following form

Y = 2X1 +3X 2 +5X 3 + lO

Note that all the regress ion coeffic ients are pos iti ve. However ,

Tabl e 4 indiciates a horribly ill-conditioned matrix wi th the intercor-

relations between the predictor variabl es being as high or higher than

their respective validity coefficients wi th the criterion (variable 4).

What this means in terms of eigenvalues is explained next.

16
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Table 4

Correlation Matrix Used to

Illustrate the Problem of Multi -Collinearity

Variable

1 2 3 4

1 1

2 .98 1

3 .94 .92 1

4 .94 .9~ .97 1

17
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Ei~envalues

Gi ven a correlation matrix such as that presented in Table 4, there

ex ists a set of eigenvalues A such that,

IXI - RI  =

where R dep icts the correla tion matr ix , I is the unity matrix , and the

vertical lines f depict the determinant of the matrix. For the simple

corre l ation matrix, depicting the correlations between the predictor

var iables of Table 4 , the above expression would be written as follows :

— r 12 —r 33

• —r 21 x 2 —r 22

-r 31 -r 3~

where r.~ i s the correla tion between var iab les i and j.

The expansion of this determinant results in a polynomial function

f(x) of degree p, the number of predictors , in A. The equation f(A) is

called the characteristic equation of R, the correlation matrix , and its

roots x~ , x~~, in this case ,are called the characteristic roots or
• eigenvalues of R. For an orthogonal matrix each eigenva lue would equal

one, and the sum of the eigenvalues would equal p the number of predictor

variabl es. For a nonorthogonal or ill-conditioned matrix of predictor

variables , the eigenvalues will not equal one . Instead , some w i ll be

greater than one and others very much smaller than one. The worse the

the ill-conditioning , the greater the range of values. For example , the

elgenvalues for Table 4 are 2.9, .09, and .01 respectively. These sum

to p = 3, the number of predictors , but the f i r s t  eigenvalue 2.9

represents 97% of the total variation. Other important features of

eigenvalues are:
p

(a) ii x = D

_ 
T 
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The product of the elgenvalues equals the determinant (D) of the matrix

which for an orthogonal matrix will be equal to p. The higher the product ,

the more orthogonal are the predictor variab les . The smaller this product

and thus the smaller the determinant , the more ill-conditioned the matrix

is. And ,
N

(b) E 1/ A .  = IC
1=1 1

the sum of the reciprocals of the ei genvalues is also an index of matrix

ill-conditioning ( IC). The higher the degree of intercorrelations between

the predictor va r i ab l e s , the smaller some of the eigenvalues will become

and therefore the larger the sum of their reciprocals. This has a direct

interpretation of what to expect by the degree of non-orthogonality or

ill-conditioning since Hoerl and Kennard ( l970a ) deomonstrated that
2 r P  2’ 2 p

E ( L  ) E ~ (b. - b.) I ~ ~1 1 e 1=1 1

where as before E( 12 ) is the expected quadratic loss using b~ as the

least squares estimate of b~. the true coefficient , and is

the error variance. As an illustration of these ideas the determinant

(0) of the matrix of intercorrelations of the predictor variables in

Table 4 is .003, a value much smaller than p = 3 .  The sum of the

reciprocals of the eigenvalues is 37.15 , more than ten times what it

would be for an orthogona l matrix. This is a most important point for

It Indicates the extreme variability of conventional least squares

estimates of the regression coefficients when the simple correlation

matrix is ill-condit ioned .

The ridge method of estimation.

The ridge solution is to reduce Ill-conditioning In the simple

19
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correlation matrix by the procedure of adding a small positive

value (k), typically between 0 and .4, to the main diagonal of the simpl e

correlation matrix. For example, to apply ridge just add a smal l

posi tive value to the first three diagonal elements of Table 4 and re-

estimate the regression coefficients from the correlation matrix using

traditiona l methods. The resulting coefficients are called ridge

estimates .1 The question immediately arises as to what that value of

k shoul d be?

The choice of k.

There is now a growing list of methods for “optimally ” sel ecting k.

Some of these will be mentioned below. In my opinion, however , it is still

des i rabl e tha t an investigator using any correlation matrix for developing

a regression prediction model fol l ow the suggestion of Hoerl and Kennard (1970a) and

Hoerl and Kennard (1970b) and display graphically what is called a RIDGE

TRACE. In constructing a RIDGE TRACE it is recommended that you start wi th

o and increase the value of k, the positive constant , in small increments

and plot each set of estimated coefficients as a function of k. To

1 The term “ridge ” was chosen by Professor Hoerl because of its similarity

to a type of mathematics called “ridge analysis. ” In a persona l

communica tion, Professor Hoerl had the following to say :

Ridge analysis originally was developed as a method of interpreting
quadratic response functions in p-variables over a bounded domain.
The term relates to the technique of tracing paths (ridges and
i nverted ridges) of ascent and descent as one moves out from the
center point. In the special case of regression (an unbounded
domain) the only important one is the path of steepest descent
from the center point b’ = (0 , 0, ---0), defined by k = and the
least squares point ~~~, by k = 0. Since the concept of ridge analysis
was applied to regression the latter termi nology was chosen .

20
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• illustrate , consider Table 4 which is based on Hoerl ’ s (1962 ) paper.

With k = 0, the leas t squares regress i on coeffic ients are .824, -.618,

and .771, respectively. Note that the second coefficient has a negative

• sign even though in the true model that Hoerl had formed all coefficients

were positive. With any k-~O added to the first three diagona l elements

of Table 4, we can obtain ridge estimates of these coefficients . For

• example if k = .1 , the ridge estimates of the regression coefficients are

• .303, .091 and .549, res pectively. Continuing in this way , add ing k in

increments of .1 to the main diagonal of the simple correlation matrix

and estimating the coefficients each time , we generate a RIDGE TRACE as

depicted in Figure 1. Note in Figure 1 the three regression coefficients

are plotted as a function of k, the positive constant. When k = 0, we

have the conventiona l least squares estimates . For any k O  we have

• ridge estimates . It is recommended that a value for k should be chosen

at that point where the curves for the three coefficients ‘flatten out.”

For example, in Figure 1 at k = .20 the curves are no l ong changing much

• and therefore k = .20 should be chosen as the final value. This may seem

arbitrary , but there are now algorithms to obtain k from data . Lindley

and Smi th (1972), arguing within the framework of Bayesian statistics ,

recommend the value of k be calculated from the data as

2

• k = _ e
2 (8)

where is the error variance (MSE) of the regress ion model and ~~ ise b
the average variance of the regression coefficients . Hoerl Kennard , and

• Baldwin (1975) recommend :

k pc,2/B ’~~ (9)

22 
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• where p is the number of predictors , B is the vector of estimated least

squares coe ff ic ients , and B’ Is the transpose of B. Lawless and Wang

(1976) recomend : 2

- 
- k = 1/ F = —-- --

~~~
-
~~ ( 10)

°reg

where F is the familiar F ratio, Oreq
2 is the variance due to regression

in the least squares solution to regression .

• •~ Discussions aboutthe proper choice of k are given by Price (1977)

and Dempster, Schatzoff, and Wermuth (1975). I have not yet decided

what is the best way to estimate k, if i ndeed there is a best way . I

am investigating this problem and wil l  report the results at a later date.

Properties of ridge estima tes.

• Ridge estimates of the regression coefficients are biased in the

sense that their expected values do not equal the true regression
- 

coefficients in the population , I.e. ,

E(b*) b

where b* is the ridge estimate, b is the true val ue, and E denotes the

expected value . At first blush this seems horrible. Who needs biased

es timates? However , it Is easy to demonstrate that while ordinary l east

• squares (OLS) estimates are unbiased , they also have much higher standard

errors than do ridge estimates . We will show shortly that ridge estimates

hold up much better, that is, will result in lower mean-squared-error

• (MSE) than least squares estimates on cross validation. Since every

prediction equation shoul d be cross validated , this has the implication

• that ridge estimates are to be preferred over least squares estimates.

In ridge regression as k increases , the mean-square-error (MSE) for the

L 
23
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regress ion equat ion in the es timated sampl e increases . For this reason

k is called the bias constant. This is illustrated in Figure 2, which

plots MSE calculated from Table 4 as a function of k. However, as k

increases , the Var iance Inflation Fac tor (V IF) for each regress ion

coeffic ient decreases .

An appreciation for what the VIF’s can do to increase the variability

of estimated coefficients is to consider the well known formula for the

standard error of a regression coefficient given as:

SEb ‘~~~~~~T~ (11 )
3 33

where SEb is the standard error of the regression coefficient b., and
3 3

C~ equals the values in the diagonal of the inverse of the simple

correl ation matrix. Thus the VIF ’s are the diagonal elements of the

inverse of the simple correlation matrix between the predictor variables .

The V IF ’s for each coeffic ient in the regress ion model measures the
• 

- col lective impact of these s impl e correl ations on the var iance of the

coefficient in the model . This is depicted in Figure 3 which pl ots VIF

for three regress ion coeffic ients ca l culated from Table 4 as a function

of k. Note that the VIF curves drop rapidly and seem to asymptote out

for a k = .20.

I should emphasize that things are not always so poorly ill -

conditioned as Table 4. For example , the correlation matrix given in

Table 1 which is actually more realistic is not too poorly ill-conditioned .

The V IF ’s for Table 1 for OLS (k = 0) are 1.434, 1.466, and 1.349, respec-

tively. Not too bad l Using ridge estimation wi th the bias constant k

being greater than 0, will reduce these VIF’ s, but there i s not too much

room for improvement. I will present evidence for this shortly.
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Bayesian interpretation of ridge regression.

Several inves tigators , Hoerl and Kennard (1972), Lindley and Smith

(1972), Marquardt and Snee (1975), Dempster, Schatzoff, and Werm uth (1975)

have noted that ridge regression fits nicely into Bayesian statistical

theory. Concentrating on reducing the VIF ’s is equivalent to introducing

a “tight” prior distribution around the regression coefficients . Ordinary

leas t squares (OLS) regress ion assumes a rel ati ve ly flat prior di stribution.

OLS concentrates on reducing the MSE in the estimating sample. Ridge

estimation allow this MSE to be higher than OLS, but in concentrating on

reducing the VIF’ s, ridge estimation is paying attention to how well

the prediction equation will do on future samples of data not used for

estimation . This is equivalent to having a predictive posterior distribution

over the estimated coefficients that is much more precise , i.e., has sma ll er

variance for Ridge estimation than OLS estimation . This is nicely

illustrated in the Marquardt and Snee (1975) paper (page 5).
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Simulation Studies

In this section I present several studies comparing ridge regression

(RIDGE) with ordinary least squares regression (OLS). I will compare

both methods of estimation with that of unit weightin g (UNIT) or no

estimation at all.

A study of ~Jg~ reversal.

One of the most disturbing aspects of conventional least squares

regression is that the sign of the estimated coefficient is the opposite

of what it should be. Of course, there is no guarantee that the ridge

estimates of the coefficients will yield the correct sign. There is no

analytic way, that I know of, that enables one to demonstrate , which

estimation procedure will be more apt to y ield the correct sign. However ,

the effects of adding k . the biasing constant to the main diagonal , is

to reduce the absolute magnitude of the estimated coefficients . As k gets

very large, the overall effect is to drive all the coefficients to zero.

This would seem to suggest that the ridge estimates would be less likely

to be wrong in sign . The following study was designed to investigate this.

The input matrix.

For this particul ar study I chose an input matrix the intercorrela-

tional structure of which yields all positive regression coefficients .

The matrix is given in Tabl e 5 which is taken from Guilford (1965, p. 395)~2

1 i am indebted to McGraw Hill Publishi ng Company for permission to

reproduce Table 5.
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Tabl e 5

In tercorrelations among Five Variabl es

X 4 Y

x l

.562

X3 .401 .396

.197 .215 .345

V .465 .583 .546 .365

N= l 7 4

= AritP~netic test in Ohio StatePsychological Examination

= Anal ogy test in the same examination

= An average grade in high sc hoo l work
= Student interest inquiry (measuring

breadth of interest)

V = An average grade for first semester
in the university

4’
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The correlations in Table 5 are between four predictors of College

grades and the cri terion was the average grade point average for the first

semester of 174 students . The “true” regression coefficients for the four

predictors were calculated from Table 5 and are .1039 , .3703, .3022 and

.1607, respectively.

Design and method of analysis.

Usi ng the simulation method described previously sets of data were

generated as if those data came from a population having the correlational

structure given in Table 5. Four sample sizes of 25, 50, 100 and 200 were

chosen. For each sample size either no error, low error , or high error

was added to the dependent variable. The added error was Gaussian and

low error was defined as a Gauss ian w i th mean 0, standard deviation of .2

and high error was defined as a Gaussian wi th standard deviation of .4.

Thus we had 4 (sample s i zes ) X 3 (error leve ls) = 12 simulated experimental

conditions . For each of these conditions the ordinary least squares model

(OLS) was fitted to the data , a ridge model (RIDGE) was fitted and a unit

weighting model was formed (UNIT). The biasing constant k for fitting

RIDGE was estimated from each sample size generated using the Lawl ess

method, i.e., k = 1/F, where F is the F ratio calculated after the

conventional least squres regression model was fitted to the data .

For measures of performance three indices were calculated : (a) the

mean square error (MSE) cal culated on cross va lid ation for eac h model ,

(b) the number of sign reversals; i.e., since all the “true” coefficients

were positive, every time an estimated coefficient received a negative

sign in the estimating sample, a tally was made (this was done for OLS and

30 
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• RIDGE); and (c) the quadratic loss function , L’ 

~ 
(b~ - b~~~ ) , with b~1=1

the estimated coefficient and b
~ 

being the “true” coefficient , was calcu-

lated for each estimation procedure OLS and RIDGE .

For each of the simulated conditions , 100 replications were made .

Sequential cross-validation was accomplished , i.e., the estimated

coefficients on sampl e 1 were appl ied to sample 2, those estimated in

sample 2 were appl ied to sample 3, and so on.

Results.

Table 6 presents the average MSE (~~!), the average LOSS (E~), and

total number of sign reversals for the three models OLS , R IDGE , and UNIT

where appropriate. There are no sign reversals for the UNIT model . Also

for the UNIT model the average LOSS can be calculated once and for all
~ 2since there is no estimation and L’~ = 

~~ (1 - b
~~~

) 2.391 . Consider the
i =1

small est samp le s ize (N = 25) first. Note that the RSt for UNIT is always

smaller than either OLS and RIDGE and therefore UNIT is outperformi ng the
- differential weighting models. Note also that RIDGE MSE is always less

than th~ OLS ~~ and thus is doing better than OLS. The advantage of

RIDGE over 015 is even more dramatic if we use average LOSS (t2) as our

criterion for comparing the models since is considerably smaller for

RIDGE than OLS and both RIDGE and OLS are much better than UNIT since it

has a huge = 2.391 relative to the other two models. This disadvantage

Is of little consequence for actual predi ction however, and we can see why

UNIT does so well when we look at the number of s ign reversals for OLS and

RIDGE. Wi th OLS, for N = 25 , these are 47 , 50, and 66, respectively, for

measurement error ranging from none to high . The total number of sign

31
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Tabl e 6

Avera ge Mean Square Error ~~~~ Average Loss (U2), and Number of S ign Reversal s
for Ordinary Least Squares Regression (OLS), Ridge Regression (RIDGE), and Unit Weighting (UNIT)

for Diff erent Sampl e Si zes and Degree of Error

I
Sample Size

25 50 100 200
ERROR

None Low High None Low High None Low High None Low High

OLS .560 .593 .651 .576 .598 .593 .538 .559 .607 .525 .551 .596 
-

RIDGE .546 .564 .604 .538 .592 .588 .533 .556 .587 .525 .551 .596

UNIT .532 .536 .577 .533 .570 .583 .534 .563 .603 .528 .566 .613

Loss (t2)
OLS .170 .178 .117 .076 .080 .082 .028 .028 .035 .014 .017 .019

RIDGE .101 .105 .070 .050 .050 .063 .023 .024 .030 .013 .016 .017

Total Number 0fa
Sign Reversals

ois 47 50 66 37 43 34 10 20 25 3 11 17

RIDGE 36 32 30 29 33 24 6 16 19 2 10 14

Note: Number of replications = 100 i •

aTotal number over all four estimated coeffic ients
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reversals for RIDGE are always less than OLS being 36, 32, and 30 for the

case of the smallest sample size. The number of sign reversals for UNIT ,

as al ready menti oned , is zero. This is the primary reason why UNIT does

so well for this case since it nevers gets the sign of th~ estimated

coefficient wrong!

Now consider the larger sample sizes. For N = 50, the UNIT model

Is still outperforming both OLS and RIDGE in terms of having smaller MSE.

RIDGE still outperforms the other two model s with respect to U2, and
outperforms OLS wi th respect to the number of si gn reversals. (UNIT w ill

never lose its advantage in this respect.) Now when we consider the

larger sample sizes of 100 and 200, the UNIT model no longer has the

distinct advantage over OLS and RIDGE wi th respect to the prediction

criterion of MSE. With N = 100, RIDGE is now superior to both OLS and

UNIT. With N = 200, OLS and RIDGE are equivalent wi th respect to MSE

and both are doing better than UNIT. Note also that wi th respect to L2

- 

- 
and number of s ign reversals OLS and RIDGE are almost equi valent w ith

• 

. RIDGE doing slightly better than OLS. Overall , the results presented In

Table 6 clearly indicate that OLS is the worst estimating procedure. It

Is not surprising that UNIT weighting does so wel l for the small sample

sizes. As mentioned previously , the model is impervious to the vagaries

• of sampling error that are so prevalent in small samples . It is surprising ,

at least to me, that UNIT does as well as It does for the larger sampl e

sizes. There is just not much difference between the MSE’s for the three

models at sampl e sizes of 100 and 200. For the strong advocates of unit

weighting mentioned earlier in this report, these resul ts should be

encouraging at least for the case investi gated here.
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The reader may be curious about how the sign reversals distributed

themselves over the four coefficients bei ng estimated . This is presented

in Tabl e 7 wh ich displays the number and percent of s ign reversal s for

each estimated coefficient for the different sample sizes and degree of

error. Table 7 indicates that sign reversal is restricted for the most

part to one or two coefficients in the smaller sample sizes . It is

virtually eliminated for the case of sample sizes 100 and 200 wi th no

error and is only present in one coefficient for the cases of high error

and the largest sample size (N 200).

We turn now to a study in which unit weighting does not fare well

at all.

• Study 2. An example of low variance inflation factor (VIE).

The lnput matrix. In this study we used as the input to the

simulation program the correlation matrix given in Table 1. This is the

• matrix in which the multi -collinearity is not too bad as indicated by

the fact that the variance inflation factors (VIF) are not large . We

would not expect under these conditions for RIDGE to be significantly

better than OLS. However , the resul ts to be presented shortly will

demonstrate that RIDGE and OLS are much superior to UNIT.

Design and method of analysis.

Two sample sizes of 25 and 50 were chosen . Preliminary study

Indicated nothi ng to be learned by choos ing larger sample s i zes . Also ,
as in the previous study, the degree of error measurement added to the

dependent var iab le increases from none to high in two steps as defined

in the previous study. Thus we have 2 X 3 = 6 experimental conditions .

34
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Tabl e 7

Number (%) of Sign Reversals for Each Estimated Regression Coefficient

for Different Sampl e S i zes and Degree of Error for OLS and RIDGE

Sample S i ze

25 — 
50 100 200

_______ 
ERROR

None Low High None Low High None Low High None Low High

OL S
Coefficients

b1 21 20 36 25 30 22 6 14 21 3 11 17

b2 4 3 5 0 0 0 0 0 0 0 0 0

b3 6 6 8 0 0 2 0 0 0 0 0 0

16 21 17 12 13 10 4 6 2 0 0 0

RIDGE
Coefficients

b1* 15 14 14 19 21 15 2 10 18 2 10 14

b2* 1 2 2 0 0 0 0 0 0 0 0 0 H
b3* 5 4 2 0 0 0 0 0 0 0 0 0

b4* 15 12 12 10 12 9 4 6 1 0 0 0

Note: The number of replications = 100. Thus the numbers on the body of the

tabl e can be interpreted as frequencies or percentages.

4



Each experimental condition was replicated 100 times . For each repli-

cation, as in the previous study , the OLS , RIDGE were fitted to the data

and a UNIT model was formed. For k, the bias cons tant, a constant value

of .15 was chosen and all ridge estimates of the regression ceofficients

were made using this value added to the main diagonal of the simple

correlation matrix. Preliminary study Indicated that k = .15 was close

to optima l for this situation . For each replication the MSE was calcu-

lated for each model. For OLS and RIDGE this MSE was only calculated on

-‘ 
cross-validated samples of data.

Resul ts.

The resul ts are presented In Ta b le 8 us ing as the criter ion for model

comparison the average mean square error (~iS!). As can be seen from Table

• 8, although the RIDGE model is doing slightly better than OLS for all

practical purposes these two models are doing about the same with respect

to their respec tive MSE ’s. However, both OLS and RIDGE are doing very

much better than UNIT.

The reason that UNIT does not do well under this particular condition

can perhaps be explained by looking at the “true” regression coefficients

• which can be calculated from Table I. These are - .0452 , .6155 , and .4825 ,

respectively. The coefficient for variable 1 has a negative sign but

- 

• 

for all practical purposes is 0. Assigning a value of 1 to this , which

UNIT does , is clearly “way off” .

The fact that one of the “true” coeff ic ients had a negati ve value ,

as In this case, brings up an interesting case in regression analysis.

This is the case in which all the correlations between the variables are

positive in the population but the structure of these correlations are

• . such that one or more of the regression coefficients can have a negative
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Tabl e 8

Average Mean Square Erro r (MSE ) for the Three Model s
for Two Sample Sizes and Degree of Measurement Error

Sample Size

25 50

Error None Low High None Low High

Model

OLS .230 .255 .336 .200 .230 .310

RIDGE .227 .252 .333 .196 .227 .309

UNIT .303 .328 .392 .306 .325 .368
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sign. This Is a type of suppressor variable condition called net or

negative suppression (Cohen and Cohen , 1975). This type of situation is

investigated more extenselvely in the next study .

Study 3. A study of suppressor variables .

The classical definition of a suppressor variable is a variable

that has zero correlation with the criterion variable but, due to its

correlation with other predictors , its inclusion in the regression equation

has the effect of raising the multiple correlation coefficient , thus

increasing predictability . It accomplishes this , presumably, by

“suppressing out” error variance in the predictor variables thus enhancing

their  ability to predict the criterion . Recently, Conger (1974) and

Cohen and Cohen (1975) have noted the poss ib le presence of two other

types of suppressor variables . A second type called net or negative

suppress ion occurs when a ll the correlat ions between the var iabl es are

positive, but one or more of the calculated regression coefficients turn

out to be negative . Or to put it another way , if any variable is

positively correlated with all predictors and also has a positive •

validity coefficient, but its regression coefficient turns out to be

negative, that variable is serving as a net suppressor. A third type of

suppression -Is called cooperative or reciprocal suppression . This will

occur when predictors correlate positively with each other but negatively

wi th the criterion (or, equiva l ently, the reverse). Another way of

discovering cooperative suppression is to note whenever a variable in

cooperation with other predictors has a standardized regression coeff I-

cient which exceeds in absolute value its validity coefficient but retains

the same sign.
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It i s genera l ly noted, correc tly so , that class ical and cooperati ve

suppressors are very rare , at leas t in the behav ioral sc iences . Net or
negati ve suppressors are not, however , necessar ily rare and Indeed might
be fairly co~mnon (Darl ington, 1968). It has been suggested by Keren

and Newman (1977) that investigators might be able to improve prediction

us ing regress ion models if they found suc h var iables wh ich could be
included in the analys is. In any event the follow ing study was des igned

to investigate the effects of suppressor variables with respect to

compar ing OLS , RIDGE , and UNIT mode ls.

Input matrices.

In this study we used three predictor variables and one cri terion

• variable. The simple correlation matrix contained as elements a constant

correlation of .50. The correlations of each predictor with the

cri terion , however , changed in a way to define different types of

•1 suppressor variables . As an example, consider the two matrices labeled

a and b below:

1.00 1.00

.50 1.00 .50 1.00
-

• .50 .50 1.00 .50 .50 1.00

.50 .50 0 1.00 .70 .70 .30 1.00

(a) (b )

With matrix a we have the classica l suppressor (variable 3) which

correlates zero with the criterion (variable 4). With matrix b, on the

other hand , we have net or negative suppressor with variable 3 now
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correlating .30 with the criterion . Since , in simulation , such matrices
- •

. 

can be considered the “true” correlations in the population the “true”

regression coefficients can be calculated. These are for matrix a:

.5, .5, and - .5, respectively for the three predictors . For matrix b

the three regression wei ghts are .35, .35, and -.06 respectively.

Desigfl and method of analysis.

• Only one sample size was investigated (N=25). Preliminary investi-

gation indicated nothing to be learned by choosing larger sample sizes

for investigation . As in the previous studies we had three error

conditions with the degree of error of measurement added to the criterion

• variable increasing from none to high . Nine different patterns of

validity coefficients for the two predictors and the suppressor

(variable 3) defined the other experimenta l condition being manipulated.

Examples of two of these patterns are given in matrices a and b above.

The remaining seven are given in the results . Each experimental con-

clition was replicated 50 times . For each replication , the OLS , RIDGE ,

and UNIT models were formed. The choice of k, the bias constant for

ri dge estimation , was chosen by the Lawless method as in study 1, i.e.,

k = 1/F, where F is the F ratio calculated after the original least

squares model is fitted to the data .

The MSE was calculated for all three models for each replication.

As in the previous studies the MSE for 015 and RIDGE was calculated

only on cross validated samples and the cross validation was accomplished

in the same manner as ~n the previous studies .
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• Results.

Table 9 presents the average mean square error (~t~~)for UNIT , OLS ,

and RIDGE as a function of the validities of both the suppressor (vari-

able 3) and the two predictors. The results in Table 9 are for the high

error condition only. This was the condition for which the simplest

model UNIT di d the best, i.e., the MSt for UNIT was the smallest for

this condition . The major result and conclusion evident in Table 7 thus

is only strengthened by considering the low and no measurement error

conditions .

Note that with the exception of one case (Ex. No. 3) OLS is doing

better than UNIT but, what is more important, RIDGE i s ou tperform ing

both OLS and UNIT by a considerable margin. It seems safe to conclude

at least for the conditions investigated here that unit weighting will

not be appropriate when a suppressor variable is present. Also while

OLS does better than UNIT we can also conclude that RIDGE should be used

instead of OLS since it does best of all.

Discuss ion

On the Issue of equal or unit versus differential weighting, the

results reported in this paper lend strong evidence on the side of

differential weighting . If unit weighting is to be compared to some

model designed to produce optimal differential weights such as multipl e

• regression then it is the rare case when unit weighting will do as well

or better than the regression model . This assumes, however , that there

is a well defined criterion variable available for prediction and that
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Table 9

Average Mean Square Error (J~E) for UNIT, OLS and RIDGE as a Function
of the Validities of Both the Suppressor (Variable 3)

and the Other Predictors

Val idities
Ex.No. r14 r24 r34 UNIT OLS RIDGE

1. .5 .5 0 .858 .642 .596

2. .5 .5 .1 .835 .714 .665

3. .5 .5 .3 .775 .790 .730

4. .6 .6 0 .798 .455 .418

5. .6 .6 .1 .771 .546 .501

6. .6 .6 .3 .701 .654 .593

7. .7 .7 0 .719 .222 .206

8. .7 .7 .1 .691 .332 .304

9. .7 .7 .3 .691 .475 .433

Note: Each ~~r is based on 50 replIcations. Sample size was N25 , and
high error was added to the criterion variable.
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the ass~nptions of the regression model are not grossly violated . Poor

sampling procedures, large amoun ts of measuremen t error , two few data points -
•

relative to the number of predictors , multi -collinearity are some of the

i~

j  

conditions that can degrade the ordinary least squares model and thereby

make unit weighting look good by comparison. Also, if all the “true”

regression coefficients should have a positive sign then unit weighting

can outperform regression models , since the latter have a tendency to assign

• the wrong, i.e., negative sign , in estimation . This is particularl y true

for small sample sizes.

• However, it seems that the strong proponents of unit weighting such

as Dawes and Corrigan (1974) and Wainer (1976) have overstated their case.

In par ticular , Wa i ner , in giving a proof of a so-called equa l weights

theorem , states that in many circumstances “almost no loss in accuracy”

will obtain when least squares coefficients are replaced by equal weights .

Laughlin (1977) refutes this strong statement and also demonstrated that

the Wainer paper had a serious error. Laughlin showed that the loss in

explained variance by substituting equal weights for optima l regression

weights is twice as great as Wainer concluded. Still , there will be occasions

when equal or unit weights might be appropriate . In a thoughtful paper

Einhorn and Hogarth (1975) have provided guidelines to follow to determine

when ordinary least squares Weights may be replaced by equal weights .

This paper has also demonstrated that the ordinary least squares

(OLS) model can be improved upon considerably. Ridge regression , herein

calle d the RIDGE model , always outperformed OLS in the studies reported

here. These results are in complete agreement with those reported by

Lawless and Wang (1976) , Hoerl , Kennar d , and Baldwin (1976), Price

(1977), and Dempster, Schatzoff, and Wermuth (1976). The Dempster et al.
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- i paper is particularly interesting in the sense that it reports on an

• 
investigation of 56 alternatives to OLS and the genera l conclusion was

that RIDGE was the best regression procedure. It is not true that RIDGE

will always outperform OLS. However, I am willing to make the following
I

statement: wi th proper choice of k, the bias constant , R IDGE w ill a lways

be better than OLS when there are intercorrelations between the predictor

variables and will do as well as OLS when the intercorrelations between

the predictors are zero or near zero. On the basis of what has been dis-

covered so far, it is now clear that OLS should not, in general , be used

by behavioral scientists.

My strong reconinendation of RIDGE over OLS has a prac ti cal as we l l

as theoretical and empirical basis. In practical prediction and decision

making studies we do not always have the luxury of cross validatin g the -
•

model we are using for prediction and/or decision . The results presented

here and elsewhere, however , have demonstra ted that RIDGE i s very robust

under cross val idation and certa inly much more robus t than OLS . Thus

if you are using a regression model and you do not have the time , energy

or data to do cross validation then you will be safer, more conservative ,

and are apt to be closer to being “correct” in apply ing the regression

model If you use ridge estimation of the coefficients . Thus if you are

in a bind and cannot cross validate use RIDGE as a substitute for

cross val idation .
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Summary

In summary this paper indicates some of the basic
conditions of public policy research and some of the mis-
conceptions or institutional constraints on doing such
public service. The paper offers optimistic advice in that
the understanding of these conditions and constraints will
facilitate useful good work. There are enormous opportun-
ities to benefit the public through the successful address
of the policy issues. WhiLe you may not know how to do it
now, with the proper mind s’~t chere is a good chance you
can learn and can be effective in working the vague, shift-
ing, uncertain policy terrain. It may, therefore, be
appropriate to end this advisory essay to those who would
give advice with A Garland of Precepts by Phyllis McGinley;

Though a seeker since my birth.
Here is all Ive learned on earth,
This the gist of what I know:
Give advice and buy a foe .
Random truths are all I find
Stuck like burs about my mind.
Salve a blister. Burn a letter.
Do not wash a cashmere sweater.

-
~ Tell a tale but seldom twice.

Give a stone before advice.

Pressed for rules and verities, 
-

All I recollect are these: ‘ -

Feed a cold to starve a fever.
Argue with no true believer.
Think—too—long is never-act.
Scratch a myth and find a fact.
Stitch in time saves twenty stitches.
Give the rich, to please them, riches.
Give to love your hearth and hail.
But do not give advice at all.

Several people have usefully commented on earlier drafts of
this paper, their successes in my education can be best
attributed to their insightful and salient criticism . Their
failures are due to my opacity and intransigence.

These benefactors include John Gilmore, Jack Nilles, Dennis
Little , Don Kash, Jack White, Dennis Miller , Dorothy Nelkin,
Anton Schmalz and Vary Coates.
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Technolo gy for Director
Dubious : Evalu ation and
Decision in Public Contexts

‘I
Ward Edwards

In preparing this paper, I had the enormous advantage
of having read the companion pape r prepared by Mr. Joseph
F. Coates , of the Office of Technology Assessment , U.S .
Congress. Mr. Coates’s incisive and provocative analysis of
the nature of public policy decision making and the difficul-
ties that experts have in providing useful inputs to that
process meri ts extravagant admiration. It is a frank ,

• penetrating review of vir tually all of the issues that
bemused academics like myself who have flut tered around the
fringes of the Federal policy community for many years have
vaguely sensed as being charac teristic of policy making.

I would like to underline a few points made by Mr .
Coates, as a preliminary to some suggestions about what
might be done to address them . Perhaps his most important

• single point is that policy is not made in a problem—
orien ted vacuum . Instead, it is made in an embattled arena ,
usually by a man or an organization upon whom are focused
the efforts of a wide variety of conflicting stake holders,
each having his own perception of both problems and issues--
often with his own collection of ‘~f acts” to back up that
perception. As Mr. Coates says , “The key issue or issues
are not obvious , since they usually have not been presen ted
in a clear , cogent, or neutral way by any of the parties
concerned . It is not in their interest to do so.” In such
an embattled context, 5The resolution of an issue in almost
all cases must be a compromise rather than a clear victory
for any party to the conflict. ” This gladia torial atmos-
phere presents problems to the would be policy-influencer ,
because “In general experts cannot deal with tradeoffs which
are the essence of public policy. Experts cannot deal with

• compromise si tuations and conflict , as experts .~

If one looks for the underlying issues of any conflict ,
they seem to fall into two categories : probabilities
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(measures of uncertainty ) and utilities (measures of values ) .
Concerning probabilities, Mr. Coates says “The future course
of every public policy issue of necessity is involved in
uncertainty. Much uncertainty is not accidental but intrin-
sic, and cannot be eliminated for several reasons. First,
the future is not fully anticipatable; second , we do not
have adequate models of social change; and third , many of
the consequences of actions associated with policy cannot be
understood until the actions themselves are taken.” I would
add that often those consequences cannot be understood even
after the actions have been taken. As a result, Mr. Coates
says that “Another primary task for government is to manage

H uncertainty , i.e., to take those measures that in one way or
another eliminate, hedge , reduce, or compensate for uncer-
tainty so as to permit the institutions of society to move
ahead in an organized fashion .” From my own point of view ,
such measures for uncertainty management have a necessary
preliminary : first one must measure uncertainty .

The other issue that Mr. Coates identifies as crucial
is the one that he calls value , but I would prefer for
history—of—science reasons to call utility. He says, “The
subject of values has engendered an alarming amount of
intellectual trash, useless discussion , uninformed delibera-
tion , and pointless hand wringing.... Values are difficult
to discern. Individuals often cannot see their own ; when
they can see them , they cannot give weights to them. Values
are often ill formed. They are latent , they are dark , they
cannot necessarily be related to public decisions without a
great deal of intermediate work.”

On the question of measuring values, Mr. Coates seems
to me to be somewhat ambivalent. At one point he says,
“Since values are heterogeneous and overlapping among the
parties of interest, it is difficult to identify and sort
them into tidy bundles. An effective way to reveal the
values of the parties to the conflict is important. That
revelation is not likely to result from simple direct
inquiry .” At another point, he derides” .., the false con—
elusion that making those values explicit is a worthwhile
activity in all public policy processes.... Many private
motives are in conflict, are latent , are dark , uncongenial ,
and even unspeakable. Consequently the universal call for
making them explicit in public is really an invitation to
hypocrisy.”

From reading Mr. Coates’s paper, one can formulate a
picture of two different Federal Government policy-makers ,
whom I shall call Director Devious and Director Dubious.
Mr. Coates describes Director Devious quite well. “The 
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crucial question facing public policy in any given time is
• striking a fresh balance among conflicting forces. . .

The search for information is often a delaying tactic. It
can be a mechanism for apparently taking action while taking
no action. . . Even those most intimately associated with
the issues. . . often find it to their advantage not to con-
front (them) , not to define them , not state them clearly,
and not use them as a basis for discourse, analysis , evalua-
tion, and decision making. . . There is a tendency to
misunderstand the role of the elected official and the senior
decision maker in wanting him to make the values explicit.
For him to make his values explicit would be a travesty.
The decision maker ’s role is to adjudicate and to keep his
values internal so he can affectively adjudicate the value-
laden material put forward to him b~ other s. ”

I have much more difficulty in finding in Mr. Coates ’s
paper a description of Director Dubious. Mr. Coates says
“Government is not a religion and bureaucrats are not moral
athletes. ” But I believe that, in this as in other areas
of performance , a desire for athletic excellence is buil t
into many of us, whatever the level of our capabilities for
fulfilling that desire. My image of Director Dubious is
that he is perplexed by the multiplicity of the uncertainties
and the value orientations with which he must cope. While
he recognizes the necessity of functioning as a middle—man
mediating among confli’-i-ing stake holders with conflicting

— values, in the face of technological and political realities
that are often rather vaguely and uncer tainly defined, he
genuinely would like to perform this function as best he
can , and would welcome tools that might help him to do so.
Nor , I think, would he endorse Mr. Coates’s advice that he
should keep his own values deeply hidden from others, and
perhaps even from himself. If some of his values are, as
Mr. Coates says, dark , uncongenial , and even unspeakable ,
he w ishes they weren~t. He would like to have some way of
inspecting values , both his own and those of others, and
attempting to make some kind of moral sense out of them in
their relation to the facts of the problem.

If I may lapse for a moment into psychoanalytic jargon ,
pe rhaps Director Devious might be taken as a representation
of the ego of one kind of elected official  or senior
decision maker. If so, perhaps Director Dubious is a
representation of the same person ’s superego.

I feel reasonably confident that Mr. Coates would
regard the tools that I am going to prop ose for use as
idealistic and naive , and therefore unlikely to be of much
use to a public policy maker. Contexts exist in which I

- -  - ~~~~~~ • 
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would agree with him. Nevertheless, each of the two major
tools I plan to discuss is in fact in current use in signif—

-: icant public decision making contexts. Unfortunately, I will
not present examples of the actual application of those tools
to public decisions. For one thing , many of the details of
those applica tions as they now are in~progress are classified
or otherwise confidential. For another thing , even if they
were not, the character of each detailed application is
typically so complicated that any attempt to present the
basic ideas at appropriate length would inevitably fail.
Consequently , I wil l  talk about two relatively simple tools,
both currently in use , in contexts in which they obviously
bear on public policy, and could be used by public policy

4 makers , but so far have not been.

Evalua ting Radiologic Ef f icacy by Bayesian Methods

My f i r s t  tool is addressed to the f i r st of the two key
problems that Mr. Coates identified : the problem of uncer-
tainty. The work that I will be reporting comes from the
Efficacy Study of the American College of Radiology, and is

— a collaborative effort involving Lee Lusted , Russell Bell ,
Harry Roberts , Dav id Wallace, and myself , among a good many
others. The funds supporting it came from the National
Center for Health Services Research of the U.S. Public
Health Service. (For a report on the results so far, see
Lusted , Bell , Edwards , Rober ts, and Wallace, in press.)

The essential purpose of the Efficacy Study is to
explore the usefulness of the very large number of X-rays
and other radiologic diagnostic procedures being car ried out
in the United States. This particular report is based on
7,976 case studies in various emergency room settings. The
study is ongoing ; ul timately , it hopes to explore something
on the order of 60,000 cases in a very wide variety of
settings for radiological practice.

Back in 1971 the American College of Radiology set up
a Committee on Efficacy. Among its motives were a finding
by Bell and Loop (1971) that an X-ray examination of the
skull following a trauma was quite unlikely to show skull
fracture unless certain signs and symptoms were present ,
and that the probability was even lower that the radiographic
findings would affoct patient management or the final out-
come. Bell and Loop estimated that society was paying
$7,650.00 per skull fracture found in patients X—rayed under
those conditions, and they questioned whether the benefits
were worth the cost. More generally, the ACR’s Board of
Chancellors had been concerned because the demand for
radiolocjic services was, and is, growing faster than the 
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supply, even though costs were also increasing . No rational
basis existed at that time, or now, for setting priorities

-
• - for available radiologic services. Customarily the radiolo-

gist performs the radiographic examination that the attend—
ing physician requests whether or not the request is appro—
priate. Although some data do exist suggesting what X-ray

- 
- examinations are appropriate under what conditions , most

radiologists know that on occasion a physician will request a
radiologic examination that appears unnecessary and the

- I radiologist receiving the request is likely to meet it.

At its first meeting in 1971, the ACR committee on
Ef f i cacy , chaired by Professor Lee Lusted of the University
of Chicago, attempted to formulate the problem of what
efficacy was and how it might be measured . Three different
conceptions of efficacy were proposed, varying both in
relevance to the long range problem and in measurability.
The most relevant, but also hardest to measure , has come to
be called Efficacy—3. Efuicacy—3 is long run efficacy from
the patient’s point of view; that is, a diagnostic procedure
is Efficacious-3 if the patient is, in the long run, better

~ff as a result of that procedure and its consequences than
he would have been had it not been performed. Obviously,
knowledge of long run outcomes is difficult to obtain, and
knowledge of hypothetical long run outcomes for sequences
of diagnostic and therapeutic procedures other than the one

• actually carried out is even more difficult to obtain .
Consequently, we next considered Efficacy—2. A diagnostic
procedure is Efficacious-2 if and only if the course of
subsequent therapeutic action taken by the attending
physician is different as a result of performance of the
procedure than it would have been otherwise.

Obviously Efficacy-2 is easier to neasrue than Efficacy
-3 , since it refers only to events in the immediate future.
However , one must still discover what would have been done
had constraints existed that did not in fact exist, and that
too presents measurement difliculties. So, as a final fall-
back position, we proposed Efficacy-l. A procedure is
Efficacious—l if and only if the procedure influences the
diagnostic thinking of the attending physician . This
definition turns out to lead to relatively straightforward
measurements. All one must do is to discover what the
attending physician was thinking at the time he ordered the
X—ray, what he thinks at the time he receives the result,
and compare the two; if they are different, the procedure
is Efficacious—l , and the size of the difference measures
the amount of efficacy.

How does one measure what the attending physician is

- — -~-~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - — —-~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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thinking? Our procedure was to collect judgments of the
probabilities of possible diagnoses prior to the X-ray , and
another set of judgments posterior to it. Then, by using
Bayes ’s theorem , one can calculate the extent to which
opinion has been changed as a result of the X—ray . Bayes’s
theorem is a trivially simple fact about probability , and
can be represented for our current purposes by the following
equation: LFO = LI0 + LLR. In this equation , LIO stands
for Log Initial Odds, LFO stands for Log Final Odds, and LLR
stands for Log Likelihood Ratio. The logarithmic form of

‘
~ Bayes ’s theorem is used here in order to make the relation-

ship additive, and in order to make the measure of diagnostic
eff icacy,  LLR , symmetric around 0. The mathematical details
by means of which this form of Bayes ’s theorem can be
translated into other forms , and by means of which probabil-
ity judgments can be related to this equation, can be found
in many places , for example, Edwards , Lindman, and Phillips
(1965) .

Obviously, at the time he orders an X—ray an attending
physician may be considering many hypotheses about what is
wrong with the patient. To reduce this large set to a more

• manageable set, we chose to define two diagnoses . One of
them was the most important diagnosis , the one that the
attending physician would be most eager not to miss. In the
cases we will be discussing that would be a fracture or some
other medically unpleasant state of affairs. The other
diagnosis was the diagnosis considered most likely ; very
often that was “normal” .

A pretest of procedures for measuring Efficacy-l is
reported in Thornburg, Fryback, and Edwards (1975).

Figure 1 shows the front of a typical data collection
form. This was filled out by the attending physician as
a part of the process of ordering an X—ray . Figure 2 shows
the back of that same form, which was filled out by the
same physician when the result of the X—ray was returned
to him. I must emphasize that the attending physicians in
this study were not specially chosen for expertise in
probability. The study was geographically very widely
distributed ; radiological settings in emergency rooms all
over the country were used. Radiologists who were willing
to cooperate in the study were brought from those settings
to Chicago where they received roughly two days worth of
training about the nature of the study and about some rather

• elementary rules for assessing probabilities. When they
returned to their native heaths, they recruited attending
physicians from among those who frequently requested them
to perform radiological services. They trained the
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Table I
Dis tribut ion of Cases Over Procedures

PROCEDURE til°EER ~ CASE

CERVICAl.. SPINE 862
CHEST 2353

4 

ABD~EN 839
INTRAVENOUS PYELOGRNI 278
LLPFAR SPINE 708
EXTREMITIES 1878

TOTAL 7876
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attending physicians in how to estimate probabilities. Under
the circumstances we have been delighted with the relatively

- ‘ high quality of the probability estimates that we have
obtained.

The sampling procedure used in this study, like that
used in many other studies of medical practice , has one
overriding principle : those who participated were those who
were willing to participate. We make no apologies for this,
since we know of no very satisfactory way of proceeding
otherwise. Nevertheless, such sampling does present possi-
bilities of bias in generalization to a national population
either of radiologists or of attending physicians. Conse-
quently, pending the outcome of further detailed analyses

- ‘/ we are performing to explore the possibility of sample bias ,
generalizations from our results to such national populations
should be done with extreme caution and nontrivial amounts
of skepticism.

Various procedures explained in detail in Lusted et al.
(in press) were used to spread cases widely over 47 d i f f e ren t

- 
‘

• emergency rooms and about the same number of radiologists,
between large and small hospitals, between teaching and
non—teaching hospitals, and over a wide variety and number
of attending physicians.

As of July,  1976 , the data base was distributed over
X-ray procedures as is shown in Table 1.

As usual in any kind of statistical study, there are
- 5 technical problems , and I must discuss one : the truncation

effect. Some respondents responded in probabilities and
some responded in odds, but either way most of them worked
with relatively small numbers of discrete levels of the
quantities they were estimating. In the middle range of
uncertainty , this hardly matters , but the extreme ends of
the scale required particular attention. The problem is
more severe for clinicians who reported in probabilities.
Many of these, in spite of emphatic attempts to train them
otherwise, made estimates of 0 or 1; both of those numbers
are uninterpretable in Bayesian arithmetic . We adopted an
editing convention of calling 0, .0001 and calling 1, .9999.
These rounding conventions, combined with the fact that
most attending physicians responded in probabilities and
used only discrete sets of numbers, produced ra ther peculiar
structures in the analyzed data. Figure 3 presents a
scatter plot of log likelihood ratio against log initial
odds over all procedures. You can see several parallelogram
patterns that correspond to different common truncation
l imits  used by groups of attending physicians, or imposed
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by us since we could not work with estimates of 0 or 1. We
have , of course , devised methods of analysis that are insen-
sitive to what happens at the extremes of the probability
scale. For a more detailed discussion of this technical
topic , see Lusted et al. (in press).

Although the study is far from complete, it is possible
to base some reasonably convincing conclusions on the data

- ‘ so far . First , the procedure is feasible; that is, such
probabilistic assessments can be made in an orderly way
and do provide information about the diagnostic thinking of
attending physicians. We base this conclusion less on data
analysis than on informal contact with the physicians who in
fact made the assessments.

Our second conclusion is that the impact of X-ray exam-
inations on diagnostic thinking was evident in the vast ma-
jority of cases and was substantial in most. Overall, not
more than 10% of examinations seemingly had no influence on
diagnostic thinking (that is , produced a 0 log likelihood
ratio). A more detailed and refined analysis of the data
suggest that the actual percentage of 0-information X-rays
may be less than 5%.

Our third conclusion is that at the time X-rays were
requested , the requesting physician was normally uncertain
about the correctness of his tentative diagnosis. About 4
times in 5, however , the probability of the tentative most
important diagnosis was assessed at less than 1/2; over
half the time, it was assessed at less than about .15. In
other words , the most important diagnosis often had the
character of a not—very—likely medical disaster.

Our fourth conclusion is that about 3/4 of the examina-
tions produced a lowering of the clinician ’s initial probab-
ilities for the tentataive most important diagnosis. In
other words , on the whole , the effect of radiology in the
emergency room setting tends to be one of reassurance rather
than one of confirming alarm. This conclusion has implica-
tions for the rc~ationship between Efficacy—i , diagnostic
efficacy, and Efficacy-2, treatment efficacy. Reassurance
is clearly just as appropriate , from the point of view of
Efficacy—l, as would be confirmation of one ’s worst fears.
On the other hand, it seems quite likely that this finding
might imply that X—ray procedures that are highly Effica-
cioua-l may not be especially Efficacious—2. We propose to
attack that question in later studies , if we succeed in
establishing that our current rather tentative ideas about
how to measure Eff icacy-2 are in fact workable .

~

- ~ -~~~~~~~~~ 0 - ~~~~~——- --‘ - 
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Our fifth conclusion is that the major effect of X—raysis to reduce uncertainty. This was no surprjs5~ Even afterexamination, however nearly 40% of clinicians assess prob-abilities for the most important tentative diagnos~5 at more

than .02 but less than .98. This sugge~~5 that a substan-tial fraction of diagnostj~ decisions in the emergency roomsetting are based on weight of evidence rather than proofbeyond reasonable doubt. Table 2 shows for various X-rayprocedur~~ the percentage of cases with log odds that areeither less than -1.75 or greater than +1.75. Those numj~~rs
correspond to probabilities of .02 and .98 respectively.

An interesting sixth conclusion , at least from the study
so far , is that the influence of X-ray examinations on diag-
nostic thinking was broadly Similar for interns, residentphysicians in training, and Practicing Physicians Alsoothe r characteristics , such as the distribution of ini tialprobabj lit~~~ for diagno~~ 5 and the use of odds or probabil_
three groups.
ities in the expression of uncertainty were similar for the

Some other conclusion s can be reached from the da ta ,Particularly having to do with the question of how wellattending Physicians Used the probabilities they estimated

4 

to express their uncertainty Since these are highly tech-nical in character, I will not review them . i will only addthat in general, attending physicians tend to overassessthe Probability of the relatively unlikely medical disasters
that were usually taken as most import~~~ diagno~~5 Exactly
the same kind of finding , of overassessnent of the probabjj

• ility of highly undesirable events, has occurred in a number
of other contexts in whith Probability estimators have theopportunj~y to confuse their judgment of Probability with

- - 

their assessmen ts of the value of the consequence of theevent whose Probability was being judged. (See Kelly andPeterson , 1971)

A final implication of the study may surprise some. One
• of the questjo~5 asked on the initial form was whether or not

the X-ray study was being performed for medical_legal rea-sons . This box was someti~~s checked and sometimes not.Though minor differences between the results when it waschecked and when it was not did occur , we were quite sur-prised at how small they were. In genera’, X-rays taken for
medical...1~~ aj reasons are fully as Efficacious..1 as X—raysfor which the attending physjcj~~ does not indicate thathe has such reasons in mind.

How does this study bear on public policy? At the
moment , it has no direct bearing. it does suQgest that the
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methodology used is in fact useable, and yields s igni f icant
information about the behavior of the individuals performing
socially important and policy-relevant functions. It is
conceivable that refinements of the same methods, combined
with methods for measuring Efficacy-2 and perhaps even
Efficacy-3, might lead to policy-relevant recommendations
about the conditions under which it is or is not most advis-
able to recommend that X-rays be taken. If such a happy
result were to occur , the potential for improving the dis-
tribution of health care services might be signif icant.

Beyond that, however , there is a much more general im-
plication of the study. It shows that decision makers , in
this case attending physicians, can and will , with a li ttle
training and encouragement , make probability assessments
concerning the issues with respect to which they are making
decisions. Since uncertainty enters into every decision and
probability is the appropriate metric by means of which to
quantify uncertainties , this means that the hope of assess—
ing the probabilities that enter into decisions affecting
public policy may not be a vain one.

I need not rest this assertion solely on this partic-
ular study. Many other decision makers besides physicians
must deal with uncertainty , and are in process of f inding
the explicit use of probabilities a helpful tool for

• doing so. We are all acquainted with the fact that probab-
ilistic weather forecasting is coming to be more and more
widely performed. (See for example Murphy and Winkler ,
1974. ) Even more interesting , at least to me , is the growth
in use of explicit probabilities among public officials
responsible for providing informational input to decision
makers concerned with vast issues of global public policy.
For public discussions of relevant technology , see Edwards ,
Phillips, Hays , and Goodman (1968), Kelly and Peterson (1971),
Barclay and Randall (1975).

In sum , then , Director Dubious, eager to come to terms
not only with his own uncertainties but with the uncertain-
ties of those who advise or attempt to influence him , has
available to him a quite elaborate technology, based on
explicit assessment of probabilities . That technology is
already in use, and its generality and simplicity invites
optimists like me to suppose that that use may extend and
spread into other contexts. Perhaps Director Dubious can be
helped to become at least somewhat less dubious about un-
certainties.

• - -~~~~~~~~~~~~~~- ~~~~~
- - - - -
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Multiattribute Utility Measurement as a Tool for

the Explication and Aggregation of Social Values

As I read Mr. Coates’s discussion of the latent , dark
uncongenial, and even unspeakable nature of private motives ,
I was quite unclear whether he considered this to be desir-
able, deplorable , or simoly a fact of life. But since I
don ’t believe Mr. Coates ’s premise about the unattractive
character of private motives , whether that premi:4e is desir-
able or deplorable seems to be beside the point. Most
motives, public or private, are mundane , ordinary, and
reasonably well organized toward the problem at hand . My
own motives in deciding what to include in this paper , for

• example are to present two intellectual tools that I think
may be useful to public decision makers in as effective a
light as I can manage , and in the process to be entertaining
and perhaps to get a gentle argument going with Mr. Coates.

- 
•

5 Behind those surface motives , I may well have better—con-
cealed motives to the effect that if the technologies
that I am advocating are in fact perceived as useful , I
may gain in prestige , in research funding , in opportunities

- I for consultancies, and the like. None of these motives
seem too latent , dark , or uncongenial ; and I can guarantee
that they are not unspeakable, since I just spoke (or at
any rate wrote) about them. Many , perhaps most, of the
motives that affect ordinary executives in their working
lives have essentially this character.

Mr. Coates made eloquent reference in his paper to the
two real problems about motives. One is thatdifferent
people , and especially different pressure groups, have
dif ferent  motives , whereas the decision maker must make a
decision that is responsive both to wishes of those whom he
serves and to the technological facts of his problem . The

— other is that any single person ’s mot ives , whether private
or public and whether latent or explicit, are vir tually
always in conflict. And , of course , every public policy
decision requires value tradeoffs. In order to do better
with respect to some dimensions of value , we must do worse
with respect to others. But what are the appropriate ex-
change rates?

A new tec h*ology of value tradeoffs has been develop-
ing very rapidly over the course of the last nine years. It
is called multiattr ibute u t i lity measurement , and it is
particularly prominent in the writings of Howard Raiffa ,
Ralph Keeney, R.A.Howard , and myself. Relevant references
include R a i f f a  (1969), Keeney and Raiffa (1976), Howard
(1973), and Edwards (1977, in press).
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The essential idea of mul tiattribute u tility measurement
is that every significant value can in effect be partitioned
into a set of sub-values on each of a number of dimensions.
Technological devices exist for ascertaining what those
dimensions are, for locating each one of the actions , ob-
jects, or whatever is being evaluated on each of these dimen-
sions for judging how important each dimension is to the
aggregate value of the thing being evaluated , and then for
performing the aggregation. Details of this technology vary
substantial ly from one of its advocates to another , but the
description as I have just given it would probably be agreed
to by all.

As in the case of probabilities, I intend to review an
application that has potential public policy relevance
rather than an application in being. There are in fact
several applications already in being , and they have been
described in open literature. However they are quite com-
plicated. Two examples are: Chinnis , Kelly , Minckler , and
O’Connor (1976); and O’Connor , Reese , and Allen (1976). See
also Edwards , Cuttentag , and Snapper (1975 ), and Keeney and
Raiffa (1976). The particular application that I intend to
discuss is to the selection of nuclear waste disposal sites.
The work was performed in collaboration with Dr. Harry J.
Otway, who is Director of the Research Project on Technolo-
gical Risk Assessment , sponsored by the International Atomic
Energy Authority and the International Institute for Ap-
plied Systems Analysis. For a more complete report of this
study , see Otway and Edwards (in press).

Otway ’s project has two main goals. One is to measure
the attitudes of various publics toward the risks associated
with various modern technologies in general , and with
nuclear power production technology in particular. The other
is to explore methods by means of which the technological
decision makers who must manage nuclear power activities
can be aided in taking public attitudes into account in
their decisions. This particular study was addressed to the
latter question. The study was conducted during the course
of an international meeting of high level technologists con-
cerned with the problem of nuclear waste disposal. The ten
participants included representatives from eight countries
with advanced nuclear energy programs. Since the conference
was in part about problems of risk assessment and risk man-
agement in nuclear waste disposal, they were very much con-
cerned with the problem and very cooperative. Otway planned
the study . enlisted the cooperation of the respondents , and
collected the data. I did not attend the meeting.

____  —- —-~~~~~~~~~~~~~~~~~~~~
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The first task , of course , was to f ind  wha t dimensions
of value were relevant to the problem of selecting waste

• - disposal sites. Since Otway ’s goal was to demonstra te how
to take social attitudes toward those sites into account in
the decision process , obviously social attitudes had to be
one such value dimension , and indeed it was the first one

- - listed.

Elicitation of value dimensions was done by simply ask-
ing all the respondents, together in a room , to identif y
what issues seemed to them important in making such deci-
sions. Table 3 shows value dimensions and measures for six

- ;  sites. After Otway had suggested social attitudes as the
f i rs t  such dimension, there was some question about how such
attitudes should be scaled , and it was agreed that for the
purpose of this demonstration a simple 0 to 100 scale would
be appropriate with 100 as a highly favorable attitude and
0 as a highly unfavorable one.

The next dimension , proposed by one of the partici-
• pants, was remoteness of the waste disposal site from a pop-

ulation center , measured in km. 160km . was considered as
having a value of 100 and 0 km. was considered as having a
value of 0. The third dimension was the geospheric path
length in km. Roughly, that is the distance a radio-

— active particle must travel, typically through the ground ,
- - 

4 to reach the nearest point used by people. Again 160 km.
-

• 
scores 100 and 0 km. scores 0. The fourth dimension was
proximity of the waste disposal site to natural resources
such as mines. 160 km. scores 100, 0 km. scores 0. The
fifth dimension was geological disturbance probability--
the probabi1it-’~ of one or more significant-sized earth-
quakes in a year. 10—6 (one chance in a million) scores 100
and 1 scores 0. The sixth dimension was the relative migra-
tion rate of the critical nuclide, in the geological forma-
tion , a1l~~ ing for adsorption and desorption , compared with
the rate of movement of ground water (assumed constant at
0.3

5
m/day). Since this dimension is a ratio, it has no units;

10 was scored as 100 and 1 was scored as 0. The seventh
dimension , elicited from the respondents only after a great
deal of struggle and effort, was transportation distance
between the nuclear plant and the waste disposal site. Zero
km. scores 100 and 1.600 km. scores 0.

Note that all dimensions are transformed onto the 0
to 100 scale in such a fashion that higher scores are pre-
ferable to lower ones. The scaling of the dimensions was
chosen in such a way that the respondents seemed likely to be

________ 
~~~~~~~ -~~~---~~~
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willing to treat the single dimension utilities as linear
with the physical measures involved--and indeed they were.
In the case of dimension S and dimension 6 this linearity is,
o~ course , with the exponent rather than with the number
itself .

In retrospect, several fea tures of the scaling of the
dimensions were questionable. The most obvious is the use
of 1 as the highest probability of an earthquake in a year .

-
- 

- No one would seriously propose a nuclear waste disposal site
with so high a probability of an earthquake ; a lower prob--

~~~ ability should have been used as the upper bound.

It is important to emphasize that all sites were as-
sumed to have the same biological characteristics , and tha t

- ‘ use of any of them was assumed to fall within appropriate
budget constraints.

The value model to be used in this particular exercise
was a simple weighted average model . Such value models are
qu ite common , and have been exposed to a great deal of
cri ticism by decision anal ysts (e.g. Keeney and Raif fa, D76)

- 
- who complain , quite correctly, that they do not capture sub-

leties in the value structure that people may bring to a
problem. Those, like myself, who like to use simple struc-
tures , and who feel that the simplicity of eliciting numbers
built around those structures is more important than getting
the model structure just right at the cost of enormously en—
hanced complexity of elicitation technique, are happy that
a number of approximation theorems show that value struc-

- - tures elicited in this way will , under conditions such as
prevailed in this experiment, often be very close approxi-
mations to much more elaborate and sophisticated value
structures that would have required very much more diffirult ,
complicated and socially unacceptable judgments. (See
Yntema and Torgerson , 1961; Dawes and Corrigan , 1974,
Wainer , 1976; and von Winterfeldt and Edwards , 1973(a), 1973
(b).)

In order to perform a simple evaluation of th~~ kind ,
the next necessary step is to obtain the weights tha t are to
be associated with the various dimensions. My preferred pr~~cedure for doing this is to ask each respondent , workinq
separately , first to rank the dimensions in order of impor—
tance, from most to least important. Then he arbitrarily
assigns an importance weight of 10 to the least important
dimension , and then moves up through the dimensions making
ratio judgments about the relative importances of each of
the more important dimensions compared with the least impor-
tant dimension . Since he can also make ratio judqments of
the var ious dimensions to one another , he can obtain a great

•~~~~~~~
•‘ 
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many in ternal consistency checks to make sure that he is in
fact not unduly succumbing to whole number tendencies or any
of the other vices to which this kind of judgmental pro-
cedure is subject. This was done for each respondent.

Final ly , in order to see whether the apparatus that

-
‘ thus had been developed for assessing the attractiveness of

waste disposal si tes was appealing to the respondents, it
was necessary actually to consider some waste disposal
sites. So f a r , the entire process had been carried out
without reference to any specific site. However , a number
of sites that have been proposcd as possible ones for nuclear
waste disposal were used as the basis for judgment on the
seven relevant dimensions , and the result is shown in Table
3. The ranges of the various dimension~ that were actual ly
encountered in the sites were much smaller than the ranges
that had been anticipated as possible; this fact has
important methodological consequences which I will discuss
in a moment.

So far as the respondents were concerned , the f inal
procedure was to ask them to make holistic evaluations ,
which means ratings or; a 0 to 100 scale , of each si te , for
comparison with the multiattribute utility evaluations.

Otway asked each respondent to judge the importance
weights of the seven value dimensions twice and consequently
we could calculate test—retest reliabilities of these judg-
ments. Correlations between first and second judgments were
very high ; the mean was .93. For convenience , all sub-
sequent calculations used the second set of weights. The
interrespondent agreement about importance weights was, as
you would expect, much lower. Correlations among second
judgment weights between pairs of respondents range from
+.97 to -.27 , wi th a mean of +.39. Actua l ly ,  this is a
somewhat higher level of inter—judge agreement than has
been found in some other applications of this particular
technique (e.g. the OCD example in Edwards, Guttentaq , and

- 
- Snapper , 1975). I have argued elsewhere (Edwards , 1971 ,

in press; Edwards, Guttentag and Snapper , 1975) that indi-
vidual differences in values should show up primarily in
assessments of the importance of value dimensions. Single-
dimension utilities are often technical judgments rather
than value judgments.

Obviously , the question that would be of primary
interest to Mr. Coates, and also to me , is: How do we go
about reducing , removing or otherwise dealing with these
individ ual differences in values?
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At this point, unfortunately , t ime pressure problems

arose. The best way to do it would be to normalize the
importance weights for each individual separately, to aver-
age then, to calculate the ratios of importance weights
specified by the averages, and then to feed those ratiosback to the judges, sitting as a group , and ask them todebate them until they reach some form of agreement abouta final set of such judgments that they were willing toallow to be used in a decision process. We did indeednazmalize and average , but Otway could not feed back andreconcile differences. In a different context , i have
tried this process of feeding back and reconcililtg differ-ences , wi th quite good results. (See Edwards, in press.)And I would anticipate that some procedure of that sort
would be the essential ingredien t in any large—scale appli-cation of this technology to decisions over which there aremajor social conflicts. In the contexts in which the tech-nology has so far been applied , however , the issues involvedhave been so profoundly technological that such a procedure
has not generally been used. Instead , the experts on each

- 
- 

of the kinds of numbers were asked to reach consensus about
the numbers within the field of their expertise , and wereusually able to do so quite well. Perhaps this technology

- • is more easily applicable to fields in which this kind oftechnological resolution of conflict is appropriate than itis to contexts involving broader kinds of social conflicts.

Now we must turn our attention to the range problem
that I mentioned earlier. Consider , for example , dimens ion3, geospheric path length. Its actual range covers only
22.5% of the range that originally had been assigned to it.This can easily happen in situations, such as this one , inwhich the evaluation scheme is developed before the entitiesto be evaluated are known. Yet exactly that must often hedone .

The reason why this presents a problem is that the
range of utility values of a value dimension is in a sense
a kind of importance weight. A dimension whose utility
values range from 0 to 50 is effectively only half as impor-tant in controlling evaluation as one having the same weightwhose utility values range from 0 to 100.

This problem can be solved only by judgmental methods.However , some mathematical techniques exist that help toput it into perspective. it is possible to transform bothof the single—d jmensjo~ utility values and the importance’
weights in such a fashion as to preserve unchanged the pre--ference ordering over the options and the utility spacino
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Table 4

Rescaled single-dimension utilities and aggregate utilities
at six nuclear waste disposal sites
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between options , while putting all of the single-dimension
utility functions on a scale whose minimum in fact falls at
O and whose maximum in fact falls at 100. Table 4 shows the
result of doing so. Inspection of that table will show
that no one could possibly pick site 3. In technical jar-
gon , site 2 dominates site 3; that is, site 2 is at least
as good as site 3 on every dimension , and def in itely better
on at least one. No other site is dominated. Also note
that site 6, although evaluated as best by the weighted
ut i l i ty  criterion , does not dominate site 3; site 3 is better
than site 6 on the dimensions of proximity to natural re-
sources and transportation distance.

The transformations which I have discussed permit ex-
ploration of the extent to which the scaling of the single
dimension utility functions influences the ultimate outcome.
I won’t go into the details, but I can say that in this
particular instance, which is rather extreme in deviations
of the actual from the anticipated ranges, the e f fect on
preference orderings was extremely modest. In other words,

4 this procedure is rather robust to errors of anticipation
of that sort.

Finally, consider the relation between the holistic
ratings for the other sites by the respondents and the multi-
attribute ut i l i ty  ratings. The mean correlation in holist ic4 ratings between pairs of correspondents is -‘-.20, and the

- J range is from +.97 to -.55. Note that the respondents
are even less in agreement ab oit holistic ratings than they
were about importance weights. That too is a common finding
in appljcatjom of this method. The correlation between
mean holistic ratings and multjattribute utility ratings is4.58. Both procedures consider site 6 to be best and site
3 to be worst. This correlation between multiattribute
utilities and holistic ratings is somewhat high compared
with most other such correlations in the nlultiattrjbute

4 utility literature , although it still shows that the two4 
procedures do lead to different results. That on the whole
is gratifying. After all , there would be no point in pro-
cedures like multiattribute utility measurement if direct

- - numerical assessments produced exactly the same results.

Except for various technical details having to do with— intercorrelations among dimensions, both in value and in
physical characteristics, and with the effect of these on
scaling procedures, that ’s the end of the story of this
particular study, except for one important addition. Harry
Otway informs me that the respondents thoroughly enjoyed the
study , found the importance weights that they had judged
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extremely enlightening , and requested him to be prepared to
repeat the study at their next meeting, with a considerably
more realistic setting and paying considerably more attention
to the details of how the study is done.

As I have said before , much more sophisticated and com-
plicated versions of exactly the same technology have been
used and are now being used to make major socially important
decisions. Several have been published in unclassified
sources. For example, one (Chinnis et al , 1976) has to do
with the selection of the winning bidder from among a number
of bids in a very largerscale procurement of an important
and expensive item of military hardware. The additional com—
plexities of the method were concerned primarily with the

- ;  much larger number of dimensions that were taken into
account, the use of a hierarchical value model rather than
the simple value model I have presented here, and the intro- 4

ductiom of scenarios and scenario probabilities as a tool
* for the assessment of values. While these technological

details are all of fundamental importance to real applica-
tions, nothing in them changes the basic idea I have pre-

4 sented in this rather simple-minded exposition.

Nor are all the examples military. In one published
application , (Edwards , Guttentag , and Snapper , 1975) a
technique of essentially this character was used to help

- - a major agency within the Department of Health , Education ,
and Welfare to make decisions about the allocation of its
research budget for a year. In another application , now
in progress, the same kind of technology is being used in
planning the rate at which a government agency should en-
courage a boom town to boom. Still another application now
in progress is to the National Program for Decriminalization
of Status Offenders. A great deal of data has been collected
by Professor Solomon Kobrin and his collaborators at the
Social Science Research Institute of USC on the impact of
this program both on the juveniles with whom it deals and on
the criminal justice and related agencies who must deal with
these juveniles. We are now collecting multiattribute
utility measurements from a number of experts on juvenile
delinquency , crime, the juvenile justice system, and the
like , and expect to use these judgments in the process of
assessing what the overall effects of this major national
pr ogram in fact have been , and whether those effects are
good or bad , and how good or how bad.

5
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Conclusion

This paper , after some initial questioning of the as-
sertion that major issues of public policy are inaccessible
to technological tools, has attempted to illustrate the
nature of two technological tools, and to suggest how they
can be and are being used in the course of making major
social policy decisions. Obviously, I would not want toj  claim that these tools are optimal, that they are fully
developed, or that they should be used for all such deci—
sions. Their applicability is quite limited , as I have
attempted to suggest in the course of sketching their
nature . Within that area of applicability, however , I
believe that they can help those charged with responsibility
for social policy in dealing with the two key problems that
Mr. Coates identified : uncertainty, and difficulties in

* assessing and reconciling values.

As Mr. Coates correctly pointed out , no technological
tool is likely to be of very great use to Director Devious .
His conception of his function , and his goal structure ,
makes him essentially uninfluenceab].e by the technology of
decision making . Indeed , only the part of that technology
that has to do with budgeting and the assessment of costs is

-
~~ likely to get very much of his attention.

On the other hand , as I suggested at the beginning of
this paper, Director Dubious is less impervious , mostly

I because he is less convinced that social policy making
must continue to be done in the way in which it always has

— 
been done. I conceive of Director Dubious as a skeptical
but open—minded man , interested in technological innovation

- and willing to explore the possibility that a particular
• technological innovation may have something useful to of fer

-
. him. I have suggested two possible candidate technologies
- for his attention.

.4
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. quite deviant from the “true ” coefficients . They are often too large in
absolute value and the sign of the coefficient can be wrong. The RIDGE
solution to this is very simple: just add small positive values to the main
diagonal of the correlation matrix depicting the intercorrelations between

‘ the predictor variables , and re-estimate the coefficients in the usual
manner. The resulti ng estimates are called ridge estimates and in theory
they will be superior to OLS estimates in the sense of producing smaller
error in cross validation samples. That is , when OLS and RIDGE estimates
are estimated in one sample of data , and then tested on a new sample of data
the RIDGE estimates will result in fewer errors of prediction than the
OLS-7estimates .

~~ Several empirical studies were conducted using computer simulated
data for various prediction situations . The OLS and RIDGE model s were
compared as to their efficacy in prediction and both models were compared
against the simplest model possible , that of unit weighting (UNIT), in
which no weighting is performed ; the variables are simply added up and
the sum used for prediction. The results of these studies indicate that
OLS and RIDGE, with one exception , always outperformed UNIT with respect
to producing smaller errors of predicti on and , what is more important,
RIDGE always did better than 0LS.~~The one exception in which UNIT did bette
than OLS and RIDGE is for the casè”\in which all the “true” coefficients
are positive , not too far apart, an~ the sample s ize i s rel atively small
(< 50). This is a very restricted c~ass of conditions. The general

• conclusion is that UNIT weighting wil\~ be appropriate only in unusual
situations. Regression models are to\~e preferred as a way of generatingdifferential weights . Also, the ridge\method of estimation (RIDGE)
always should be the preferred model ov~r OLS. One practical implication
of this is that if an investigator does ‘pot have the luxury to do cross
validation then RIDGE estimation can be è~sed as a substitute for crossvalidation.
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