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Summary

This paper is another in a series exploring the conditions under
which either differential or simple unit weighting of predictor variables
in prediction and/or decision studies will be appropriate. Some of the

difficulties of applying the ordinary least squares (OLS) regression

analysis to practical problems are described and an alternative regression

model called ridge analysis (RIDGE) is offered as a substitute to OLS.
The trouble with OLS is that when the predictor variables are inter-
correlated then the regression coefficients estimated by OLS are often
quite deviant from the "true" coefficients. They are often too large in
absolute value and the sign of the coefficient can be wrong. The RIDGE
solution to this is very simple: just add small positive values to the
main diagonal of the correlation matrix depicting the intercorrelations
between the predictor variables, and re-estimate the coefficients in the
usual manner. The resulting estimates are called ridge estimates and in
theory they will be superior to OLS estimates in the sense of producing
smaller error in cross validation samples. That is, when OLS and RIDGE
estimates are estimated in one sample of data, and then tested on a new
sample of data the RIDGE estimates will result in fewer errors of
prediction than the OLS estimates.

Several empirical studies were conducted using computer simulated
data for various prediction situations. The OLS and RIDGE models were
compared as to their efficacy in prediction and both models were compared
against the simplest model possible, that of unit weighting (UNIT), in

which no weighting is performed; the variables are simply added up and
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the sum used for prediction. The results of these studies indicate that
OLS and RIDGE, with one exception, always outperformed UNIT with respect
to producing smaller errors of prediction and, what is more important,
RIDGE always did better than OLS. The one exception in which UNIT did
better than OLS and RIDGE is for the case in which all the "true" co-
efficients are positive, not too far apart, and the sample size is
relatively small (< 50). This is a very restricted class of conditions.
The general conclusion is that UNIT weighting will be appropriate only
in unusual situations. Regression models are to be preferred as a way
of generating differential weights. Also, the ridge method of estimation
(RIDGE) always should be the preferred model over OLS. One practical
implication of this is that if an investigator does not have the Tuxury
to do cross validation then RIDGE estimation can be used as a substitute

for cross validation.
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Differential Weighting for Prediction
anc Decision Making Studies:

A Study of Ridge Regression

Introduction

A major problem in prediction and decision studies is how to 1

differentially weight relevant information and form a composite model

based on those weights which can then be used to make a decision and/or
prediction. The most widely used model for doing this is the multiple
regression model. However, this model is often overly compiex or Teads
to the wrong weighting scheme. Many investigators have suggested

replacing this model with a simpler one and the simplest model of all

is the so called unit weighting model. With unit weighting no attempt
is made to estimate what the optimal differential weights might be,
instead they are all assigned the same value, namely 1. This paper ]
is another ina series (Newman, Seaver, and Edwards, 1976; Newman, 1976) 7
designed to investigate under what conditions differential weighting
is appropriate.

The paper focuses on some of the properties of the regression model
that lead to difficulties in its use and how those difficulties can be
remedied thus allowing for easier and more productive use of the regression {

model. In particular I will discuss a modification of the regression

model called ridge regression. Before defining what ridge regression is




§ and how it works, however, I will first review briefly some of the basic

features of the regression model and its difficulties.

The regression model and its difficulties.

The regression model assumes that some criterion variable Y can be
preadicted from a set of predictor variables by forming the linear i

combination of the N predictor variables, i.e., in vector-matrix notation

we write
Y =XB+e (1)
; where Y' is a column vector containing N predicted values of another column
; vector containing the actual values of the criterion, B is a vector
of the regression coefficients, and X is a Nxp matrix of N observations

on each of p predictor variables, e is the residual vector containing

the deviations of the actual values of Y from the predictor values Y .

R

The vector B, of course, is unknown but assumed to have "true" values

in the population from which the observations in Y and X were taken.

In ordinary least squares theory (OLST) the vector B is estimated using |

o vy bl -

the least squares principle, i.e., by minimizing the sum of squares of

f N N ;

i residuals I ef =z (Y;Yi)z. If all the variables are transformed into
: i i=]

|

Z scores such that all have 0 mean and unit standard deviation then a
4 well known matrix solution to finding B the vector of estimated

i standardized coefficients,is: E

{ & "
§ By = Ryy™ ry; (2)
| where Rij- is the inverse of the simple correlation matrix containing

t the intercorrelation coefficients between each of the predictor variables i

and “yj is the vector of the correlations between each predictor and

the criterion variable (validity coefficients). The use of standardized

& 2 :
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values and the correlation matrix and validity vector does not restrict
generality of results since after the solution is obtained the reverse
transformation can also be made to obtain the "raw score" regression
coefficients. The transformation should always be made since that places
all variables on the same scale no matter what units they were originally
expressed in raw score form.

Once the regression coefficients are estimated, the regression model
can be used to predict the criterion variable on data that was not used
as the estimation data. As a matter of fact if the model is to be used
for making practical predictions or decisions such as selecting students
into profecsional schools, this procedure, called cross validation, should
be done often to see how well the model works. It is clear that the model
will not do as well on new data as it did on the data in which the
coefficients were estimated. This is so since the least squares
criterion minimizes the error in the estimating sample,much of the
predictability thus obtained could be due to chance fluctuations in
the sample data. There is no guarantee that the estimated coefficients
will stand up well when applied to new data.

If certain conditions pertain in the estimating sample, then the
estimated coefficients will not stand up well on cross validation.

Some of the conditions that will cause difficulty in initial estimation are:

(a) Poor sampling procedures leading to non-representative sampling.

(b) Small sample size relative to the number of predictors and thus

the number of coefficients that need to be estimated.

(c) The presence of measurement error in the variables, in particular

measurement error in the criterion variable.
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(d) The presence of "outliers" in the data, i.e., data points that
lie outside the normal range of the numerical values for the
variables.

(e) Intercorrelations between the predictor variables, a condition
sometimes referred to as multi-collinearity.

When some or all of these conditions exist in an estimating data
sample, the estimated coefficients are often poorly estimated, i.e., are
far removed from the true values of the coefficients in the population
from which the sample came. Of course any competent investigator will
do everything possible to adhere to sound sampling procedures, careful
study design, and so on, to control the above conditions as much as
possible. However, even in carefully controlled studies they are never
completely eliminated and the last condition, multi-collinearity, is
often a fact of 1ife and it is often difficult to reduce it. I will show
shortly that item (e), the problem of multi-collinearity, is very serious
for the regression model leading to very poor estimates of the regression
coefficients. Fortunately, its effect can be reduced considerably as
I will also show.

Before discussing that, it is of interest to review briefly how
investigators, at least in the behavioral science, have reacted to the
use of regression models that are known not to yield good predictive
results. Many investigators have argued that any differential weighting
model such as the regression model should be replaced with the simplest
model possible, i.e., a unit weighting model in which no attempt is made
to do differential weighting. The predictor variables are just added up
and this sum is used to predict the criterion variable. Although this

sounds counter-intuitive, there is a long and accumulating body of
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evidence that such unit weighting may be as good and in some cases better
than differential weighting. This evidence has a theoretical and analytic
underpinning as provided by the work of Wilks (1938), Gulliksen (1950,

Ch. 20), and more recently Einhorn and Hogarth (1975), Wainer (1976),
Wainer and Thissen (1976) and Green (1974). There have also been several
empirical studies as represented by the works of Lawshe and Shucker (1959),
Wesman and Bennett (1959), and Fischer (1972). There have been at least
three computer simulation studies (Schmidt, 1971, 1972; Claudy, 1972),

and the approach we take is similar to such simulations. In an important
review and analysis, Dawes and Corrigan (1974) argue cogently that simple
additive (unit weighting) models are quite appropriate and indeed
desirable in many decision making situations.

Recently, Newman, Seaver, and Edwards (1976) and Newman (1976)
investigated unit versus differential weighting and some of the conditions
in which one model might be superior to the other such as sample size and
measurement ervor. Their results strongly indicated that the differential
weighting via the regression model was always superior to unit weighting
except for small sample sizes. More recently Keren and Newman (1977),
arguing that unit weighting will be appropriate only in very restricted
conditions, demonstrate that there is a wide class of conditions in
which the regression model will always be superior to unit weighting

even for small sample sizes.

1 am now of the opinion in light of the evidence that unit weighting
is rarely appropriate in practical prediction or decision studies. 1 also
believe, however, that it should always be considered as possibly
appropriate because of its simplicity. Among other things it gets rid
of the problem of estimating what the appropriate weights should be.

‘.‘..&zﬁ«‘ ”
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It also relieves the investigator of the need for cross validation.
Since nothing is estimated from the data, there is no need for cross
validation. My sympathy for unit weighting, when it is appropriate, is
echoed ina remark by Ward Edwards who, in the context of applied decision

analysis, stated: "...if such an approximation (unit weighting) isn‘t too
bad, what an enormous simplification of elicitation methods it offers us!"
(Edwards, 1977, p. 339).

There is another reason for always considering unit weighting. It
represents the simplest model possible and therefore, constitutes a base
comparison against which all other, more sophisticated models, may be
compared. In the studies reported below this is always done.

These studies also use a simulation method, developed by me, and
described in detail in Newman, Seaver, and Edwards (1976). I digress

briefly to describe this method and the technique used for model

comparison.

Data Simulation

The simulation is a Monte Carlo simulation of a multivariate process.

The simulation generates a random variable vector X = (x], Xos ...xm) from
a multivariate normal distribution. The program uses as an input a
standardized variance-covariance matrix such as that given in Table 1
which depicts the intercorrelations between fourvariables. In Table 1,
variable 4 is the criterion and variables 1 - 3 are the predictors.

The program then generates a N x M data matrix with N rows depicting
observations, for example persons, and M columns depicting measurements

such as psychological tests. The elements of the data matrix represent a
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Table 1
Example of a Correlation Matrix

used as an input to the Simulation

Variable
1 2 3 4
e
2 .50 1
3 1,43 .45 1
4 .47 .81 .74 1

P TN
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random sample from a multivariate normal population having the correlation

structure given in Table 1 and thus simulate a "score" for each observation |

P e i

on each of the column variables. Using Table 1 as an input, for example,

each row of the simulated data matrix can be considered as a person being

e o g s
-

considered for admission to medical school. The first three columns of

the data matrix could represent the score a person received on three

v A s

tests being used for selection purposes and the fourth column could

represent some criterion for selection such as "success in medical school."

Basis for model comparison.

o e

Rk

Mean square error. With data matrices generated by the simulation,

prediction models can be formed from the data and their efficacy in

W

predicting can be evaluated. For example, we can compare the regression
model against the simple unit weighting model to see which is best. One
‘ way to compare two such models is to calculate the mean square error (MSE)
for each model and the model with the smallest MSE can be considered best.
Since the simulation method enables the generation of as many samples of

i
i data as one chooses, this model comparison can be repeated any number of times.
f tonsider any two models 1 and 2. Then in comparing model 1 against

~ model 2 we can form
N

! MSE1 = 1 eZ/DF) (3)
| j=1 !
and
N o,
MSE2 = 1 e5/DF2 (4)
i=1 ;
where MSEi i=1,2 is the mean square error for model i, DFi is the degrees |
1 N 1
of freedom for model i, and R e2 is the sum of the squared residuals of the

i=1 i
ith model.
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The relative predictive efficiency of the two models may be assessed

by comparing the ratios of their mean squared errors:

N,
(DFZ)_E €
MSEl i=] (5)
MSE2 N o
(DF1) = e ]
j=1 2 1
which, since the criterion variable is the same in both models and 1-R2.

is equal to the mean squre error of residuals, 5 is re-expressed in the

convenient form

MSE] (DFz)(l-Rf) (6)
MSE2  TDF (I-RS)
R2 is the squared multiple correlation. When the ratio in (6) is less than

one, model 1 performs more accurately than model 2. When the ratio is
greater than one, model 2 will perform better than model 1. If model 2 is
the unit weighting model, then there is no loss indegrees of freedom, and
DF2 = N the number of observations. Thus, for this case, the ratio g%%ﬂ!>l,
therefore favoring unit weighting, This is so since DF1 = N-n-1, where n is
the number of regression coefficients estimated for model 1. This is a real
advantage for the unit weighting model and should be retained. One of the
nice features of unit weighting is that it does not “chew up" degrees of

freedom. If model 1 is the regression model, then (l-Rf)/(l-Rg) <1 on

initial fit, thus favoring the regression model. This is not a real

advantage and should not be retained. It is not fair to evaluate the
effectiveness of a model on the sample data used to estimate that model.
It is clear that the model will do best on the data which was used to fit
the model. For this reason (6) should only be calculated on cross

validation, i.e., on sample data not used for estimation.

' .i;;',glu.‘(; -




The loss function. Another way of comparing models is the expected

quadratic loss function E(LZ), defined as:

E(L%) = E[%
i1

where Bi is an estimated coefficient and bi is the "true" coefficient.

: 2
(bi & bi) (7)

0f course, in practice the "true" bi's are not known. With the simulation

method described above, however, we can always state what the "true" bi's

are since the input to the simulation can be considered as the true
correlation matrix in the population. Thus, equation 2 allows us to
calculate the "true" bi's.

In my opinion the best method of comparing models is the MSE
calculated in cross validation since it is a direct measure of how well
you will predict on sample data not used for estimation. Forming the
ratio of the MSE's as suggested by (6) for two competing models is also
direct but can be misleading. With the accuracy of computers,it is
possible for (6) to yield a very high percentage favoring one model over
another yet the two MSE's averaged over many replications could not be
very much different. Also, the loss function of (7), since it is
calculated on the sample being used for estimating the bi's, can favor

one model over another but the MSE calculated in the cross validation

sample may favor the other model. I will show examples of this condition

later. ;

An example of results: The effects of measurement error. As an

example of the use of the simulation and the model comparison we present
some results, not previously reported, about the effects of different

types of measurement error and sample size in comparing the efficacy of i

10




unit versus regression models. With Table 1 representing the input

matrix to the simulation four sample sizes 25, 50, 75 and 100 were
investigated. Also two types of measurement error were added to the
criterion variable: completely random or uniform error and Normal or
Gaussian error. For the former a value of the random variable defined

over the unit interval (0,1) was selected and added to the criterion
variable. For the Normal (Gaussian) error a value of the random variable
was selected from a normal distribution with 0 mean and standard deviations
ranging from .2 to 1.0 and added to the criterion variable. For completeness

we included the case of no error being added. Thus we had a four (sample

size)by seven (error condition) experimental design. For each of the

28 conditions 100 replications were made. At each replication a regression
model was formed and a unit weighting model was formed by simply adding

up the three predictor variables. The mean square errors (MSE) were
calculated and the ratio of (6) calculated for the purposes of tabulating
the number of times the regression model outperformed the unit weighting
model (or vice versa). Since the MSE for the regression model will

always be less than the MSE for unit weighting on initial fit, (6) was

used to compare the two models only on cross validated regression models.

This cross validation is accomplished sequentially in the sampling process;
that is, the coefficients estimated in sample 1 are used to predict the
actual values in sample 2; those estimated in sample 2 are used to
predict the values in sample 3, and so on.

The results are presented in Tables 2 and 3. Table 2 presents the
percentage of times the regression model outperformed the unit weighting

model using the ratio given in (6). Note that the case of no error or

11




Table 2

Percentage of Times Regression Model Outperforms
Unit Weighting Model for Various Sample

Sizes and Number of Variables with Uniform or Gaussian Measurement Error

6 < g A

Type of Measurement Error

Sample = Gaussian (p= 0,0 )b
f Size None Uniform 22 .4 .6 .8 1.0
% 25 89 82 86 66 46 34 16
: 50 98 94 94 92 90 66 56
ki - 75 99 98 9% 98 92 18 68
100 99 99 99 99 92 88 84

Note: Each percentage is based on 100 replications of each sample size
3selected over unit interval (0, 1)

: b selected from Gaussian distribution with mean 0 and standard
i | deviations ranging from .2 to 1.0

A e Ty e
T —
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Table 3

Average Squared Error (MSE) for the Two Models for

Various Sample Sizes (N) and Type of Measurement Error

N
25 50 75 100
Type of B o
Error (MSEU)  (SeR)  (MSEU)  (TiISER)  (MSEU)  (1SER)  (niSEU)  (MSER)
None .30 .20 .30 .19 .32 .20 .29 .18
Uniform? .35 .26 .36 .26 .36 .26 .35 .24
Gaussianb
2 .34 .25 .32 23 .32 .22 .32 .23
.4 .40 .36 .39 3 .40 .30 .40 .31
.6 .50 .45 .49 .42 .48 .42 .48 .4
.8 .57 .58 .59 .57 .57 .53 .58 .54
1.0 .65 .67 .64 .63 .66 .63 .64 .60

ase1ected over unit interval (0, 1)

bselected from Gaussian distribution with mean 0 and standard deviations
ranging from .2 to 1.0

13




uniform or moderate Gaussian error (S.D.=.2) that except for the smallest |
sample size (N=25), the regression model almost always outperforms the

unit weighting model. However, as the Gaussian error increases in

severity with increasing values of the standard deviation, the regression

model gets progressively worse when compared with unit weighting. Note

in particular the line for the smallest sample size (N=25) that for the
S.D0.=.6, the unit weighting model is actually outperforming the regression
model on a percentage basis. When the Gaussian error is most severe
(S.D.=1.0), the regression model is not doing well even for fairly

} large sample size (N=75). Actually error this severeis probably quite

E unrealistic. However, it does show the vulnerability of the regression

g model to error. Note that except for thesmallest sample size, adding

{ uniform error does not effect the regression model, i.e., it still

t outperforms the unit weighting model. This is because this is "gentle"

g error. It has the tendency to move the distribution of values to the

i right and also tends to flatten the distribution. But it does not create

| "outliers." Gaussian error with large S.D., on the other hand, tends to
push the tails of the distribution out or create "outliers" and this has
serious deleterious effect on the efficacy of the regression model since
outlying values result in estimated regression coefficients that are

far removed from the.true coefficients.

Table 3 presents the results using the mean squared error (MSE) as
the means for compariing the two models. Since each experimental condition
was repeated 100 times, the MSE's were themselves averaged and are
referred to as the average mean squared error (WSE) with (VSEU) for the

. unit weighting model and (MSER) for the regression model. The larger these

14




errors, the poorer the models are performing. The results in Table 3
confirm what has already been stated. Severe error results in poor
performance of the regression model when compared to the unit weighting
model and this is especially true for smaller sample sizes.

[ now turn to the problem of improving the regression model. One
improvement on ordinary least squares regression (OLS) is called Ridge

regression described in the next section.

15




Ridge Regression

The problem of multi-collinearity.

Ridge regression was first introduced by Hoerl (1962) who recommended
it as a considerable improvement over conventional regression. Hoerl
offered ridge regression as a possible solution to a vexing problem in
multiple regression. The problem: If there are intercorrelations between
the predictor variables (multi-collinearity) in a regression problem, then
the conventional least squares estimates of the regression coefficients
will often be far removed from the "true" regression coefficients. They
can be wrong in absolute value, typically being Targer in absolute value
than they should be, and the signs of the coefficients can even be wrong.
What happens when there are intercorrelations between the predictor
variables is that the correlation matrix is ill-conditioned, which in
matrix algebra terms means at least one of the eigenvalues of the
correlation matrix is close to 0. To illustrate what effect this has,
consider the correlation matrix given in Table 4. Table 4 was calculated
from the data given in Hoerl's (1962) paper. Hoerl actually postulated
a regression model which had the following form
+ 14

Y= 2X, & 3X2 + X

1 3
Note that all the regression coefficients are positive. However,
Table 4 indiciates a horribly il1-conditioned matrix with the intercor-
relations between the predictor variables being as high or higher than
their respective validity coefficients with the criterion (variable 4).

What this means in terms of eigenvalues is explained next.




Table 4

Correlation Matrix Used to

I1lustrate the Problem of Multi-Collinearity

Variable

1 1

2 .98 1

3 .94 -3¢ 1

4 .94 9 = 1
17

b
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Eigenvalues

Given a correlation matrix such as that presented in Table 4, there
exists a set of eigenvalues A such that,
AT - R| =0
where R depicts the correlation matrix, I is the unity matrix, and the
vertical lines | | depict the determinant of the matrix. For the simple
correlation matrix, depicting the correlations between the predictor

variables of Table 4, the above expression would be written as follows:

=Ty -r1s -r33
=ra21 Ao=F22 =fiog
-r3] ) A3=r33

where rij is the correlation between variables i and j.

The expansion of this determinant results in a polynomial function
f(x) of degree p, the number of predictors, in A. The equation f()) is
called the characteristic equation of R, the correlation matrix, and its

roots A\; , Az, A in this case,are called the characteristic roots or

p=3
eigenvalues of R. For an orthogonal matrix each eigenvalue would equal
one, and the sum of the eigenvalues would equal p the number of predictor

variables. For a nonorthogonal or ill-conditioned matrix of predictor

variables, the eigenvalues will not equal one. Instead, some will be
greater than one and others very much smaller than one. The worse the
the ill-conditioning, the greater the range of values. For example, the
eigenvalues for Table 4 are 2.9, .09, and .01 respectively. These sum
to p = 3, the number of predictors, but the first eigenvalue 2.9
represents 97% of the total variation. Other important features of

eigenvalues are:

s




The product of the eigenvalues equals the determinant (D) of the matrix
which for an orthogonal matrix will be equal to p. The higher the product,
the more orthogonal are the predictor variables. The smaller this product
and thus the smaller the determinant, the more ill-conditioned the matrix
is. And,

] 1/xi = IC

Hn~MZ

(b)

i
the sum of the reciprocals of the eigenvalues is also an index of matrix
ill-conditioning (IC). The higher the degree of intercorrelations between
the predictor variables, the smaller some of the eigenvalues will become
and therefore the larger the sum of their reciprocals. This has a direct
interpretation of what to expect by the degree of non-orthogonality or
ill-conditioning since Hoerl and Kennard (1970a) deomonstrated that

1) = | 5 (6.-b.)2J v 2k

. LI Lo S

where as before E(Lz) is the expected quadratic loss using 61 as the
least squares estimate of b;, the true coefficient, and ug is
the error variance. As an illustration of these ideas the determinant
(D) of the matrix of intercorrelations of the predictor variables in
Table 4 is .003, a value much smaller than p = 3. The sum of the
reciprocals of the eigenvalues is 37.15, more than ten times what it
would be for an orthogonal matrix. This is a most important point for
it indicates the extreme variability of conventional least squares

estimates of the regression coefficients when the simple correlation

matrix is ill1-conditioned.

The ridge method of estimation.

The ridge solution is to reduce ill-conditioning in the simple

19
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correlation matrix by the procedure of adding a small positive

value (k), typically between 0 and .4, to the main diagonal of the simple
correlation matrix. For example, to apply ridge just add a small
positive value to the first three diagonal elements of Table 4 and re-
estimate the regression coefficients from the correlation matrix using
traditional methods. The resulting coefficients are called ridge
estimates.] The question immediately arises as to what that value of

k should be?

The choice of k.
There is now a growing list of methods for "optimally" selecting k.
Some of these will be mentioned below. In my opinion, however, it is still
desirable that an investigator using any correlation matrix for developing
a regression prediction model follow the suggestion of Hoerl and Kennard (1970a) and
Hoerl and Kennard (1970b)and display graphically what is called a RIDGE
TRACE. In constructing a RIDGE TRACE it is recommended that you start with
0 and increase the value of k, the positive constant, in small increments

and plot each set of estimated coefficients as a function of k. To

]The term "ridge" was chosen by Professor Hoerl because of its similarity
to a type of mathematics called "ridge analysis." In a personal
communication, Professor Hoerl had the following to say:

Ridge analysis originally was developed as a method of interpreting
quadratic response functions in p-variables over a bounded domain.
The term relates to the technique of tracing paths (ridges and
inverted ridges) of ascent and descent as one moves out from the
center point. In the special case of regression (an unbounded
domain) the only important one is the path of steepest descent

from the center point. b' = (0, 0, ---0), defined by k = = and the
least squares point 8, by k = 0. Since the concept of ridge analysis
was applied to regression the latter terminology was chosen.
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illustrate, consider Table 4 which is based on Hoerl's (1962) paper.

With k = 0, the least squares regression coefficients are .824, -.618,
and .771, respectively. Note that the second coefficient has a negative
sign even though in the true model that Hoerl had formed all coefficients
were positive. With any k-0 added to the first three diagonal elements
of Table 4, we can obtain ridge estimates of these coefficients. For
example if k = .1, the ridge estimates of the regression coefficients are
.303, .091 and .549, respectively. Continuing in this way, adding k in
increments of .1 to the main diagonal of the simple correlation matrix
and estimating the coefficients each time, we generate a RIDGE TRACE as
depicted in Figure 1. Note in Figure 1 the three regression coefficients
are plotted as a function of k, the positive constant. When k = 0, we
have the conventional least squares estimates. For any k'0 we have

ridge estimates. It is recommended that a value for k should be chosen
at that point where the curves for the three coefficients "flatten out."
For example, in Figure 1 at k = .20 the curves are no long changing much
and therefore k = .20 should be chosen as the final value. This may seem
arbitrary, but there are now algorithms to obtain k from data. Lindley
and Smith (1972), arguing within the framework of Bayesian statistics,

recommend the value of k be calculated from the data as

k = -5 (8)

where 05 is the error variance (MSE) of the regression model and o.2 is
b
the average variance of the regression coefficients. Hoerl Kennard, and

Baldwin (1975) recommend:

. 2, & R
k-poe/BB (9)
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where p is the number of predictors, B is the vector of estimated least
squares coefficients, and B' is the transpose of B. Lawless and Wang
(1976) recommend: 2

k=1/F=—25 (10)

where F is the familiar F ratio, °reg2 is the variance due to regression
in the least squares solution to regression.

Discussions aboutthe proper choice of k are given by Price (1977)
and Dempster, Schatzoff, and Wermuth (1975). I have not yet decided
what is the best way to estimate k, if indeed there is a best way. I

am investigating this problem and will report the results at a later date.

Properties of ridge estimates.

Ridge estimates of the regression coefficients are biased in the
sense that their expected values do not equal the true regression
coefficients in the population, i.e.,

E(b*) = b
where b* is the ridge estimate, b is the true value, and E denotes the
expected value. At first blush this seems horrible. Who needs biased
estimates? However, it is easy to demonstrate that while ordinary least
squares (OLS) estimates are unbiased, they also have much higher standard
errors than do ridge estimates. We will show shortly that ridge estimates
hold up much better, that is, will result in lower mean-squared-error
(MSE) than least squares estimates on cross validation. Since every
prediction equation should be cross validated, this has the implication
that ridge estimates are to be preferred over least squares estimates.

In ridge regression as k increases, the mean-square-error (MSE) for the
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regression equation in the estimated sample increases. For this reason

k is called the bias constant. This is illustrated in Figure 2, which
plots MSE calculated from Table 4 as a function of k. However, as k

increases, the Variance Inflation Factor (VIF) for each regression

coefficient decreases.
An appreciation for what the VIF's can do to increase the variability
of estimated coefficients is to consider the well known formula for the

standard error of a regression coefficient given as:

e YMSE " C.. (11)
j JJ

SE

where SEbj is the standard error of the regression coefficient bj, and
ij equals the values in the diagonal of the inverse of the simple
correlation matrix. Thus the VIF's are the diagonal elements of the
inverse of the simple correlation matrix between the predictor variables.
The VIF's for each coefficient in the regression model measures the
collective impact of these simple correlations on the variance of the
coefficient inthe model. This is depicted in Figure 3 which plots VIF
for three regression coefficients calculated from Table 4 as a function
of k. Note that the VIF curves drop rapidly and seem to asymptote out
for a k = .20.

I should emphasize that things are not always so poorly il1l-
conditioned as Table 4. For example, the correlation matrix given in
Table 1 which is actually more realistic is not too poorly ill-conditioned.
The VIF's for Table 1 for OLS (k = 0) are 1.434, 1.466, and 1.349, respec-
tively. Not too bad! Using ridge estimation with the bias constant k
being greater than 0, will reduce these VIF's, but there is not too much

room for improvement. I will present evidence for this shortly.
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Bayesian interpretation of ridge regression.

Several investigators, Hoerl and Kennard (1972), Lindley and Smith
(1972), Marquardt and Snee (1975), Dempster, Schatzoff, and Wermuth (1975)
have noted that ridge regression fits nicely into Bayesian statistical
theory. Concentrating on reducing the VIF's is equivalent to introducing
a "tight" prior distribution around the regression coefficients. Ordinary
least squares (OLS) regression assumes a relatively flat prior distribution.
OLS concentrates on reducing the MSE in the estimating sample. Ridge
estimation allow this MSE to be higher than OLS, but in concentrating on
reducing the VIF's, ridge estimation is paying attention to how well
the prediction equation will do on future samples of data not used for
estimation. This is equivalent to having a predictive posterior distribution
over the estimated coefficients that is much more precise, i.e., has smaller

variance for Ridge estimation than OLS estimation. This is nicely

illustrated in the Marquardt and Snee (1975) paper (page 5).




Simulation Studies

In this section I present several studies comparing ridge regression
(RIDGE) with ordinary least squares regression (OLS). I will compare
both methods of estimation with that of unit weighting (UNIT) or no

estimation at all.

A study of sign reversal.

One of the most disturbing aspects of conventional least squares
regression is that the sign of the estimated coefficient is the opposite
of what it should be. Of course, there is no guarantee that the ridge
estimates of the coefficients will yield the correct sign. There is no
analytic way, that I know of, that enables one to demonstrate, which
estimation procedure will be more apt to yield the correct sign. However,
the effects of adding k, the biasing constant to the main diagonal, is
to reduce the absolute magnitude of the estimated coefficients. As k gets
very large, the overall effect is to drive all the coefficients to zero.
This would seem to suggest that the ridge estimates would be less likely

to be wrong in sign. The following study was designed to investigate this.

The input matrix.
For this particular study I chose an input matrix the intercorrela-
tional structure of which yields all positive regression coefficients.

The matrix is given in Table 5 which is taken from Guilford (1965, p. 395).2

]I am indebted to McGraw Hill Publishing Company for permission to

reproduce Table 5.
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Table 5

Intercorrelations among Five Variables

X] x2 x3 x4 Y

A

X2 .562

X

3 401 .396

X4 P L7 IRER R L

Y 465 .583 .546 365

N=174

X] = Arithmetic test in Ohio State
Psychological Examination

X2 = Analogy test in £he same examination

X3 = An average grade in high school work

X4 = Student interest inquiry (measuring
breadth of interest)

Y = An average grade for first semester

in the university
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The correlations in Table 5 are between four predictors of College

grades and the criterion was the average grade point average for the first
semester of 174 students. The "true" regression coefficients for the four
predictors were calculated from Table 5 and are .1039, .3703, .3022 and

.1607, respectively.

Design and method of analysis.

Using the simulation method described previously sets of data were
generated as if those data came from a population having the correlational
structure given in Table 5. Four sample sizes of 25, 50, 100 and 200 were
chosen. For each sample size either no error, low error, or high error
was added to the dependent variable. The added error was Gaussian and
low error was defined as a Gaussian with mean 0, standard deviation of .2
and high error was defined as a Gaussian with standard deviation of .4.
Thus we had 4 (sample sizes) X 3 (error levels) = 12 simulated experimental
conditions. For each of these conditions the ordinary least squares model
(OLS) was fitted to the data, a ridge model (RIDGE) was fitted and a unit
weighting model was formed (UNIT). The biasing constant k for fitting
RIDGE was estimated from each sample size generated using the Lawless
method, i.e., k = 1/F, where F is the F ratio calculated after the
conventional least squres regression model was fitted to the data.

For measures of performance three indices were calculated: (a) the
mean square error (MSE) calculated on cross validation for each model,

(b) the number of sign reversals; i.e., since all the "true" coefficients
were positive, every time an estimated coefficient received a negative

sign in the estimating sample, a tally was made (this was done for OLS and

30

|




(o

it Al R o M N o B T b B B> P

3
§

{

RIDGE); and (c) the quadratic loss function, L2 =

~ 2 3 ~
: (bi - bi) , with b,

n™~™Mo

1
the estimated coefficient and bi being the "true" coefficient, was calcu-

lated for each estimation procedure OLS ard RIDGE.

For each of the simulated conditions, 100 replications were made.
Sequential cross-validation was accomplished, i.e., the estimated
coefficients on sample 1 were applied to sample 2, those estimated in

sample 2 were applied to sample 3, and so on.

Results.

Table 6 presents the average MSE (MSE), the average LOSS (fz), and
total number of sign reversals for the three models OLS, RIDGE, and UNIT
where appropriate. There are no sign reversals for the UNIT model. Also
for the UNIT model the average LOSS can be calculated once and for all

2

4
since there is no estimation and L™ = ¢ (1 - bi)2 = 2.391. Consider the

smallest sample size (N = 25) first. &;le that the MSE for UNIT is always
smaller than either OLS and RIDGE and therefore UNIT is outperforming the
differential weighting models. Note also that RIDGE MSE is always less
than the OLS MSE and thus is doing better than OLS. The advantage of
RIDGE over OLS is even more dramatic if we use average LOSS (fz) as our
criterion for comparing the models singe E2 is considerably smaller for
RIDGE than OLS and both RIDGE and OLS are much better than UNIT since it

has a huge fz

= 2.391 relative to the other two models. This disadvantage
is of little consequence for actual prediction however, and we can see why
UNIT does so well when we look at the number of sign reversals for OLS and
RIDGE. With OLS, for N = 25, these are 47, 50, and 66, respéctively, for

measurement error ranging from none to high. The total number of sign
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Table 6

Average Mean Square Error (MSE), Average Loss ([2), and Number of Sign Reversals
for Ordinary Least Squares Regression (OLS), Ridge Regression (RIDGE), and Unit Weighting (UNIT)

for Different Sample Sizes and Degree of Error

Sample Size

25 50 100 200
ERROR

None Low High None Low High None Low High None Low High

oLS <860  .593 .65% .B76  .598 693 .53B SB69 607 @ .B25 .651 .596
RIDGE .546 .564 .604 .538 .592 .588 -.533 (556 .587 .52% .58] .596
UNIT 532 536 .517 .53 570 . .B83 . .534  .563 .603 - .5268 566 .613

Loss (tz)
' OoLS 170 178 .17 .076 .080 .082 .028 .028 .035 .014 .017 .019
RIDGE 101 .105 .070 .050 .050 .063 .023 .024 .030 .013 .016 .017

Total Number ofd
Sign Reversals

oLs 47 50 66 37 43 34 10 20 25 3 11 17 .
RIDGE 36 32 30 29 33 24 6 16 19 2 10 14

Note: Number of replications = 100 ;

3Total number over all four estimated coefficients
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reversals for RIDGE are always less than OLS being 36, 32, and 30 for the
case of the smallest sample size. The number of sign reversals for UNIT,
as already mentioned, is zero. This is the primary reason why UNIT does
so well for this case since it nevers gets the sign of the estimated
coefficient wrong!

Now consider the larger sample sizes. For N = 50, the UNIT model
is still outperforming both OLS and RIDGE in terms of having smaller MSE.
RIDGE still outperforms the other two models with respect to fz. and
outperforms OLS with respect to the number of sign reversals. (UNIT will
never lose its advantage in this respect.) Now when we consider the
larger sample sizes of 100 and 200, the UNIT model no longer has the

distinct advantage over OLS and RIDGE with respect to the prediction

criterion of MSE. With N = 100, RIDGE is now superior to both OLS and
UNIT. With N = 200, OLS and RIDGE are equivalent with respect to MSE
and both are doing better than UNIT. Note also that with respect to fz
and number of sign reversals OLS and RIDGE are almost equivalent with
RIDGE doing slightly better than OLS. Overall, the results presented in
Table 6 clearly indicate that OLS is the worst estimating procedure. It

is not surprising that UNIT weighting does so well for the small sample

sizes. As mentioned previously, the model is impervious to the vagaries

of sampling error that are so prevalent in small samples. It is surprising,
at least to me, that UNIT does as well as it does for the larger sample
sizes. There is just not much difference between the MSE's for the three
models at sample sizes of 100 and 200. For the strong advocates of unit
weighting mentioned earlier in this report, these results should be i

encouraging at least for the case investigated here.
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The reader may be curious about how the sign reversals distributed
themselves over the four coefficients being estimated. This is presented
in Table 7 which displays the number and percent of sign reversals for
each estimated coefficient for the different sample sizes and degree of
error. Table 7 indicates that sign reversal is restricted for the most
part to one or two coefficients in the smaller sample sizes. It is
virtually eliminated for the case of sample sizes 100 and 200 with no
error and is only present in one coefficient for the cases of high error
and the largest sample size (N = 200).

We turn now to a study in which unit weighting does not fare well

at all.

Study 2. An example of low variance inflation factor (VIF).

The input matrix. In this study we used as the input to the
simulation program the correlation matrix given in Table 1. This is the
matrix in which the multi-collinearity is not too bad as indicated by
the fact that the variance inflation factors (VIF) are not large. We
would not expect under these conditions for RIDGE to be significantly
better than OLS. However, the results to be presented shortly will

demonstrate that RIDGE and OLS are much superior to UNIT.

Design and method of analysis.

Two sample sizes of 25 and 50 were chosen. Preliminary study
indicated nothing to be learned by choosing larger sample sizes. Also,
as in the previous study, the degree of error measurement added to the
dependent variable increases from none to high in two steps as defined

in the previous study. Thus we have 2 X 3 = 6 experimental conditions.
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Table 7

Number (%) of Sign Reversals for Each Estimated Regression Coefficient

for Different Sample Sizes and Degree of Error for OLS and RIDGE

Sample Size

25 50 100 200
ERROR
None Low High None Low High None Low High None Low High
oLs
Coefficients
TRt BN T oue SN See 6 wu =0 LA
i 38 0 0o 0 0 & 0 60
v 8 £ 8 0 S 0 0 o0 0 o o
R SRl LEL e PG T 4 gl @ 0 B h
RIDGE
Coefficients
B MW Teon W g W1 P oW
bt 1 g2 0 o 0 0 0o 0 0 0 0
bt 5 KB 0 0o o0 0 b 0 60
AR R e e 4 A 0 5 8

Note: The number of replications = 100. Thus the numbers on

table can be interpreted as frequencies or percentages.
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Each experimental condition was replicated 100 times. For each repli-
cation, as in the previous study, the OLS, RIDGE were fitted to the data
and a UNIT model was formed. For k, the bias constant, a constant value
of .15 was chosen and all ridge estimates of the regression ceofficients
were made using this value added to the main diagonal of the simple
correlation matrix. Preliminary study indicated that k = .15 was close
to optimal for this situation. For each replication the MSE was calcu-
lated for each model. For OLS and RIDGE this MSE was only calculated on

cross-validated samples of data.

Results.

The results are presented in Table 8 using as the criterion for model
comparison the average mean square error (MSE). As can be seen from Table
8, although the RIDGE model is doing slightly better than OLS for all
practical purposes these two models are doing about the same with respect
to their respective MSE's. However, both OLS and RIDGE are doing very
much better than UNIT.

The reason that UNIT does not do well under this particular condition
can perhaps be explained by looking at the "true" regression coefficients
which can be calculated from Table 1. These are -.0452, .6155, and .4825,
respectively. The coefficient for variable 1 has a negative sign but
for all practical purposes is 0. Assigning a value of 1 to this, which
UNIT does, is clearly "way off".

The fact that one of the "true" coefficients had a negative value,
as in this case, brings up an interesting case in regression analysis.
This is the case in which all the correlations between the variables are
positive 1in the population but the structure of these correlations are
such that one or more of the regression coefficients can have a negative
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Average Mean Square Error (MSE) for the Three Models

Table 8

for Two Sample Sizes and Degree of Measurement Error

Sample Size

25 50
Error None Low High None Low High
Model
oLS .230 .255 .336 .200 .230 .310
RIDGE  .227 .252 .333 .196 .227 .309
UNIT .303 .328 .392 .306 +325 .368
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sign. This is a type of suppressor variable condition called net or
negative suppression (Cohen and Cohen, 1975). This type of situation is

investigated more extenseively in the next study.

Study 3. A study of suppressor variables.

The classical definition of a suppressor variable is a variable
that has zero correlation with the criterion variable but, due to its
correlation with other predictors, its inclusion inthe regression equation
has the effect of raising the multiple correlation coefficient, thus
increasing predictability. It accomplishes this, presumably, by
“suppressing out" error variance in the predictor variables thus enhancing
their ability to predict the criterion. Recently, Conger (1974) and
Cohen and Cohen (1975) have noted the possible presence of two other
types of suppressor variables. A second type called net or negative
suppression occurs when all the correlations between the variables are
positive, but one or more of the calculated regression coefficients turn
out to be negative. Or to put it another way, if any variable is
positively correlated with all predictors and also has a positive
validity coefficient, but its regression coefficient turns out to be
negative, that variable is serving as a net suppressor. A third type of
suppression is called cooperative or reciprocal suppression. This will
occur when predictors correlate positively with each other but negatively
with the criterion (or, equivalently, the reverse). Another way of
discovering cooperative suppression is to note whenever a variable in
cooperation with other predictors has a standardized regression coeffi-
cient which exceeds in absolute value its validity coefficient but retains

the same sign.
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It is generally noted, correctly so, that classical and cooperative
suppressors are very rare, at least in the behavioral sciences. Net or
negative suppressors are not, however, necessarily rare and indeed might
be fairly common (Darlington, 1968). It has been suggested by Keren
and Newman (1977) that investigators might be able to improve prediction
using regression models if they found such variables which could be
included in the analysis. In any event the following study was designed
to investigate the effects of suppressor variables with respect to

comparing OLS, RIDGE, and UNIT models.

Input matrices.

In this study we used three predictor variables and one criterion
variable. The simple correlation matrix contained as elements a constant
correlation of .50. The correlations of each predictor with the
criterion, however, changed in a way to define different types of
suppressor variables. As an example, consider the two matrices labeled

a and b below:

1.00 1.00

.50 1.00 .50 1.00

.50 .50 1.00 .50 .50 1.00

.50 .50 0 1.00 70 N0 % 1.0
(a) (b)

With matrix a we have the classical suppressor (variable 3) which
correlates zero with the criterion (variable 4). With matrix b, on the

other hand, we have net or negative suppressor with variable 3 now
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correlating .30 with the criterion. Since, in simulation, such matrices
can be considered the "true" correlations in the population the "true"
regression coefficients can be calculated. These are for matrix a:

.5, .5, and -.5, respectively for the three predictors. For matrix b

the three regression weights are .35, .35, and -.06 respectively.

Design and method of analysis.

Only one sample size was investigated (N=25). Preliminary investi-
gation indicated nothing to be learned by choosing larger sample sizes
for investigation. As in the previous studies we had three error
conditions with the degree of error of measurement added to the criterion
variable increasing from none to high. Nine different patterns of
validity coefficients for the two predictors and the suppressor
(variable 3) defined the other experimental condition being manipulated.
Examples of two of these patterns are given in matrices a and b above.
The remaining seven are given in the results. Each experimental con-
dition was replicated 50 times. For each replication, the OLS, RIDGE,
and UNIT models were formed. The choice of k, the bias constant for
ridge estimation, was chosen by the Lawless method as in study 1, i.e.,

k = 1/F, where F is the F ratio calculated after the original least
squares model is fitted to the data.

The MSE was calculated for all three models for each replication.

As in the previous studies the MSE for OLS and RIDGE was calculated
only on cross validated samples and the cross validation was accomplished

in the same manner as in the previous studies.
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Results.

Table 9 presents the average mean square error (MSE)for UNIT, OLS,
and RIDGE as a function of the validities of both the suppressor (vari-
able 3) and the two predictors. The results in Table 9 are for the high
error condition only. This was the condition for which the simplest
model UNIT did the best, i.e., the MSE for UNIT was the smallest for
this condition. The major result and conclusion evident in Table 7 thus
is only strengthened by considering the low and no measurement error
conditions.

Note that with the exception of one case (Ex. No. 3) OLS is doing
better than UNIT but, what is more important, RIDGE is outperforming
both OLS and UNIT by a considerable margin. It seems safe to conclude
at least for the conditions investigated here that unit weighting will
not be appropriate when a suppressor variable is present. Also while
OLS does better than UNIT we can also conclude that RIDGE should be used
instead of OLS since it does best of all.

Discussion

On the issue of equal or unit versus differential weighting, the
results reported in this paper lend strong evidence on the side of
differential weighting. If unit weighting is to be compared to some
model designed to produce optimal differential weights such as multiple
regression then it is the rare case when unit weighting will do as well
or better than the regression model. This assumes, however, that there

is a well defined criterion variable available for prediction and that
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Table 9

Average Mean Square Error (MSE) for UNIT, OLS and RIDGE as a Function
of the Validities of Both the Suppressor (Variable 3)
and the Other Predictors

Validities MSE
b vy orw e WU o5 e
5 8 0 .858 .642 .596
Z. 5 5 o1 .835 .714 .665
3. 5 5 .3 75 .790 .730
4. 6 .6 0 .798 .455 .418
S 6 .6 1 71 .546 .501
6. 6 .6 .3 .701 .654 .593
7. 7 “h 0 .719 .222 .206
8. 7 ol .1 .691 .332 .304
9. 7 & .3 .691 .475 .433

Note: Each MSE is based on 50 replications. Sample size was N=25, and
high error was added to the criterion variable.
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the assumptions of the regression model are not grossly violated. Poor
sampling procedures, large amounts of measurement error, two few data points
relative to the number of predictors, multi-collinearity are some of the
conditions that can degrade the ordinary least squares model and thereby
make unit weighting look good by comparison. Also, if all the "true"
regression coefficients should have a positive sign then unit weighting
can outperform regression models, since the latter have a tendency to assign
the wrong, i.e., negative sign, in estimation. This is particularly true
for small sample sizes.

However, it seems that the strong proponents of unit weighting such
as Dawes and Corrigan (1974) and Wainer (1976) have overstated their case.
In particular, Wainer, in giving a proof of a so-called equal weights
theorem, states that in many circumstances "almost no loss in accuracy"
will obtain when least squares coefficients are replaced by equal weights.
Laughlin (1977) refutes this strong statement and also demonstrated that
the Wainer paper had a serious error. Laughlin showed that the loss in
explained variance by substituting equal weights for optimal regression
weights is twice as great as Wainer concluded. Still, there will be occasions
when equal or unit weights might be appropriate. In a thoughtful paper
Einhorn and Hogarth (1975) have provided guidelines to follow to determine
when ordinary least squares weights may be replaced by equal weights.

This paper has also demonstrated that the ordinary least squares
(OLS) model can be improved upon considerably. Ridge regression, herein
called the RIDGE model, always outperformed OLS in the studies reported
here. These results are in complete agreement with those reported by
Lawless and Wang (1976), Hoerl, Kennard, and Baldwin (1976), Price
(1977), and Dempster, Schatzoff, and Wermuth (1976). The Dempster et al.
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paper is particularly interesting in the sense that it reports on an

investigation of 56 alternatives to OLS and the general conclusion was
that RIDGE was the best regression procedure. It is not true that RIDGE
will always outperform OLS. However, I am willing to make the following

statement: with proper choice of k, the bias constant, RIDGE will always

7%; be better than OLS when there are intercorrelations between the predictor

l\J variables and will do as well as OLS when the intercorrelations between

the predictors are zero or near zero. On the basis of what has been dis-

covered so far, it is now clear that OLS should not, in general, be used

— . vmm,
i e it

by behavioral scientists.

My strong recommendation of RIDGE over OLS has a practical as well
as theoretical and empirical basis. In practical prediction and decision
making studies we do not always have the Tuxury of cross validating the
model we are using for prediction and/or decision. The results presented

here and elsewhere, however, have demonstrated that RIDGE is very rcbust

N il under cross validation and certainly much more robust than OLS. Thus

if you are using a regression model and you do not have the time, energy
or data to do cross validation then you will be safer, more conservative,
and are apt to be closer to being "correct" in applying the regression
model if you use ridge estimation of the coefficients. Thus if you are
in a bind and cannot cross validate use RIDGE as a substitute for

cross validation.
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What Is a Public Policy Issue? 69

Summary

In summary this paper indicates some of the basic
conditions of public policy research and some of the mis-
conceptions or institutional constraints on doing such
public service. The paper offers optimistic advice in that
the understanding of these conditions and constraints will
facilitate useful good work. There are enormous opportun-
ities to benefit the public through the successful address
of the policy issues. While you may not know how to do it
now, with the proper mind set there is a good chance you
can learn and can be effective in working the vague, shift-
ing, uncertain policy terrain. It may, therefore, be
appropriate to end this advisory essay to those who would
give advice with A Garland of Precepts by Phyllis McGinley:

Though a seeker since my birth.
Here is all I've learned on earth,
This the gist of what I know:

Give advice and buy a foe.

Random truths are all I find
Stuck like burs about my mind.
Salve a blister. Burn a letter.
Do not wash a cashmere sweater.
Tell a tale but seldom twice.
Give a stone before advice.

Pressed for rules and verities,

All I recollect are these:

Feed a cold to starve a fever.

Argue with no true believer.
Think-too-long is never-act.

Scratch a myth and find a fact.

Stitch in time saves twenty stitches.
Give the rich, to please them, riches.
Give to love your hearth and hall.

But do not give advice at all.

NOTE

Several people have usefully commented on earlier drafts of
this paper, their successes in my education can be best
attributed to their insightful and salient criticism. Their
failures are due to my opacity and intransigence.

These benefactors include John Gilmore, Jack Nilles, Dennis
Little, Don Kash, Jack White, Dennis Miller, Dorothy Nelkin,
Anton Schmalz and Vary Coates.
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Technology for Director
Dubious: Evaluation and
Decision in Public Contexts

Ward Edwards

In preparing this paper, I had the enormous advantage
of having read the companion paper prepared by Mr. Joseph
F. Coates, of the Office of Technology Assessment, U.S.
Congress. Mr. Coates's incisive and provocative analysis of
the nature of public policy decision making and the difficul-
ties that experts have in providing useful inputs to that
process merits extravagant admiration. It is a frank,
penetrating review of virtually all of the issues that
bemused academics like myself who have fluttered around the
fringes of the Federal policy community for many years have
vaguely sensed as being characteristic of policy making.

I would like to underline a few points made by Mr.
Coates, as a preliminary to some suggestions about what
might be done to address them. Perhaps his most important
single point is that policy is not made in a problem-
oriented vacuum. Instead, it is made in an embattled arena,
usually by a man or an organization upon whom are focused
the efforts of a wide variety of conflicting stake holders,
each having his own perception of both problems and issues--
often with his own collection of "facts" to back up that
perception. As Mr. Coates says, "The key issue or issues
are not obvious, since they usually have not been presented
in a clear, cogent, or neutral way by any of the parties
concerned. It is not in their interest to do so." 1In such
an embattled context, "The resolution of an issue in almost
all cases must be a compromise rather than a clear victory
for any party to the conflict." This gladiatorial atmos-
phere presents problems to the would be policy-influencer,
because "In general experts cannot deal with tradeoffs which
are the essence of public policy. Experts cannot deal with
compromise situations and conflict, as experts."

If one looks for the underlying issues of any conflict,
they seem to fall into two categories: probabilities
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Technology for Director Dubious 71

(measures of uncertainty) and utilities (measures of values).
Concerning probabilities, Mr. Coates says "The future course
of every public policy issue of necessity is involved in
uncertainty. Much uncertainty is not accidental but intrin-
sic, and cannot be eliminated for several reasons. First,
the future is not fully anticipatable; second, we do not
have adequate models of social change; and third, many of
the consequences of actions associated with policy cannot be
understood until the actions themselves are taken." I would
add that often those consequences cannot be understood even
after the actions have been taken. As a result, Mr. Coates
says that "Another primary task for government is to manage
uncertainty, i.e., to take those measures that in one way or
another eliminate, hedge, reduce, or compensate for uncer-~
tainty so as to permit the institutions of society to move
ahead in an organized fashion." From my own point of view,
such measures for uncertainty management have a necessary
preliminary: first one must measure uncertainty.

The other issue that Mr. Coates identifies as crucial
is the one that he calls value, but I would prefer for
history-of-science reasons to call utility. He says, "The
subject of values has engendered an alarming amount of
intellectual trash, useless discussion, uninformed delibera-
tion, and pointless hand wringing.... Values are difficult
to discern. Individuals often cannot see their own; when
they can see them, they cannot give weights to them. Values
are often ill formed. They are latent, they are dark, they
cannot necessarily be related to public decisions without a
great deal of intermediate work."

On the question of measuring values, Mr. Coates seems
to me to be somewhat ambivalent. At cne point he says,
“Since values are heterogeneous and overlapping among the
parties of interest, it is difficult to identify and sort
them into tidy bundles. An effective way to reveal the
values of the parties to the conflict is important. That
revelation is not likely to result from simple direct
inquiry." At another point, he derides"... the false con-
clusion that making those values explicit is a worthwhile
activity in all public policy processes.... Many private
motives are in conflict, are latent, are dark, uncongenial,
and even unspeakable. Consequently the universal call for
making them explicit in public is really an invitation to

hypocrisy."

From reading Mr. Coates's paper, one can formulate a
picture of two different Federal Government policy-~-makers,
whom I shall call Director Devious and Director Dubious.
Mr. Coates describes Director Devious quite well. "The
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72 Ward Edwards

crucial question facing public policy in any given time is
striking a fresh balance among conflicting forces. . .

The search for information is often a delaying tactic. It
can be a mechanism for apparently taking action while taking
no action. . . Even those most intimately associated with
the issues. . . often find it to their advantage not to con-
front (them), not to define them, not state them clearly,
and not use them as a basis for discourse, analysis, evalua-
tion, and decision making. . . There is a tendency to
misunderstand the role of the elected official and the senior
decision maker in wanting him to make the values explicit.
For him to make his values explicit would be a travesty.

The decision maker's role is to adjudicate and to keep his
values internal so he can affectively adjudicate the value-
laden material put forward to him by others."

I have much more difficulty in finding in Mr. Coates's
paper a description of Director Dubious. Mr. Coates says
"Government is not a religion and bureaucrats are not moral
athletes." But I believe that, in this as in other areas
of performance, a desire for athletic excellence is built
into many of us, whatever the level of our capabilities for
fulfilling that desire. My image of Director Dubious is
that he is perplexed by the multiplicity of the uncertainties
and the value orientations with which he must cope. W®While
he recognizes the necessity of functioning as a middle-man
mediating among conflicting stake holders with conflicting
values, in the face of technological and political realities
that are often rather vaguely and uncertainly defined, he
genuinely would like to perform this function as best he
can, and would welcome tools that might help him to do so.
Nor, I think, would he endorse Mr. Coates's advice that he
should keep his own values deeply hidden from others, and
perhaps even from himself. 1If some of his values are, as
Mr. Coates says, dark, uncongenial, and even unspeakable,
he wishes they weren't. He would like to have some way of
inspecting values, both his own and those of others, and
attempting to make some kind of moral sense out of them in
their relation to the facts of the problem.

If I may lapse for a moment into psychoanalytic jargon,
perhaps Director Devious might be taken as a representation
of the ego of one kind of elected official or senior
decision maker. If so, perhaps Director Dubious is a
representation of the same person's superego.

I feel reasonably confident that Mr. Coates would
regard the tools that I am going to propose for use as
idealistic and naive, and therefore unlikely to be of much
use to a public policy maker. Contexts exist in which I
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Technology for Director Dubious 73

would agree with him. Nevertheless, each of the two major
tools I plan to discuss is in fact in current use in signif-
icant public decision making contexts. Unfortunately, I will
not present examples of the actual application of those tools
to public decisions. For one thing, many of the details of
those applications as they now are in:progress are classified
or otherwise confidential. For another thing, even if they
were not, the character of each detailed application is
typically so complicated that any attempt to present the
basic ideas at appropriate length would inevitably fail.
Consequently, I will talk about two relatively simple tools,
both currently in use, in contexts in which they obviously
bear on public policy, and could be used by public policy
makers, but so far have not been.

Evaluating Radiologic Efficacy by Bayesian Methods

My first tool is addressed to the first of the two key
problems that Mr. Coates identified: the problem of uncer-
tainty. The work that I will be reporting comes from the
Efficacy Study of the American College of Radiology, and is
a collaborative effort involving Lee Lusted, Russell Bell,
Harry Roberts, David Wallace, and myself, among a good many
others. The funds supporting it came from the National
Center for Health Services Research of the U.S. Public
Health Service. (For a report on the results so far, see
Lusted, Bell, Edwards, Roberts, and Wallace, in press.)

The essential purpose of the Efficacy Study is to
explore the usefulness of the very large number of X-rays
and other radiologic diagnostic procedures being carried out
in the United States. This particular report is based on
7,976 case studies in various emergency room settings. The
study is ongoing; ultimately, it hopes to explore something
on the order of 60,000 cases in a very wide variety of
settings for radiological practice.

Back in 1971 the American College of Radiology set up
a Committee on Efficacy. Among its motives were a finding
by Bell and Loop (1971) that an X-ray examination of the
skull following a trauma was quite unlikely to show skull
fracture unless certain signs and symptoms were present,
and that the probability was even lower that the radiographic
findings would affect patient management or the final out-
come. Bell and Loop estimated that society was paying
$7,650.00 per skull fracture found in patients X-rayed under
those conditions, and they questioned whether the benefits
were worth the cost. More generally, the ACR's Board of
Chancellors had been concerned because the demand for
radiologic services was, and is, growing faster than the
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74 Ward Edwards

supply, even though costs were also increasing. No rational
basis existed at that time, or now, for setting priorities
for available radiologic services. Customarily the radiolo-
gist performs the radiographic examination that the attend-
ing physician requests whether or not the request is appro-
priate. Although some data do exist suggesting what X-ray
examinations are appropriate under what conditions, most
radiologists know that on occasion a physician will request a
radiologic examination that appears unnecessary and the
radiologist receiving the request is likely to meet it.

At its first meeting in 1971, the ACR committee on
Efficacy, chaired by Professor Lee Lusted of the University
of Chicago, attempted to formulate the problem of what
efficacy was and how it might be measured. Three different
conceptions of efficacy were proposed, varying both in
relevance to the long range problem and in measurability.
The most relevant, but also hardest to measure, has come to
be called Efficacy-3. Efficacy-3 is long run efficacy from
the patient's point of view; that is, a diagnostic procedure
is Efficacious-3 if the patient is, in the long run, better
off as a result of that procedure and its consequences than
he would have been had it not been performed. Obviously,
knowledge of long run outcomes is difficult to obtain, and
knowledge of hypothetical long run outcomes for sequences
of diagnostic and therapeutic procedures other than the one
actually carried out is even more difficult to obtain.
Consequently, we next considered Efficacy~2. A diagnostic
procedure is Efficacious-2 if and only if the course of
subsequent therapeutic action taken by the attending
physician is different as a result of performance of the
procedure than it would have been otherwise.

Obviously Efficacy-2 is easier to measrue than Efficacy
-3, since it refers only to events in the immediate future.
However, one must still discover what would have been done
had constraints existed that did not in fact exist, and that
too presents measurement difriculties. So, as a final fall-
back position, we proposed Efficacy-l. A procedure is
Efficacious-1 if and only if the procedure influences the
diagnostic thinking of the attending physician. This
definition turns out to lead to relatively straightforward
measurements. All one must do is to discover what the
attending physician was thinking at the time he ordered the
X-ray, what he thinks at the time he receives the result,
and compare the two; if they are different, the procedure
is Efficacious-1, and the size of the difference measures
the amount of efficacy.

How does one measure what the attending physician is
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thinking? Our procedure was to collect judgments of the
probabilities of possible diagnoses prior to the X-ray, and
another set of judgments posterior to it. Then, by using
Bayes's theorem, one can calculate the extent to which
opinion has been changed as a result of the X-ray. Bayes's
theorem is a trivially simple fact about probability, and
can be represented for our current purposes by the following
equation: LFO = LIO + LLR. In this equation, LIO stands
for Log Initial Odds, LFO stands for Iog Final Odds, and LLR
stands for Log Likelihood Ratio. The logarithmic form of
Bayes's theorem is used here in order to make the relation-
ship additive, and in order to make the measure of diagnostic
efficacy, LLR, symmetric around 0. The mathematical details
by means of which this form of Bayes's theorem can be
translated into other forms, and by means of which probabil-
ity judgments can be related to this equation, can be found
in many places, for example, Edwards, Lindman, and Phillips
(1965) .

Obviously, at the time he orders an X-ray an attending
physician may be considering many hypotheses about what is
wrong with the patient. To reduce this large set to a more
manageable set, we chose to define two diagnoses. One of
them was the most important diagnosis, the one that the
attending physician would be most eager not to miss. In the
cases we will be discussing that would be a fracture or some
other medically unpleasant state of affairs. The other
diagnosis was the diagnosis considered most likely; very
often that was "normal".

A pretest of procedures for measuring Efficacy-1 is
reported in Thornburg, Fryback, and Edwards (1975).

Figure 1 shows the front of a typical data collection
form. This was filled out by the attending physician as
a part of the process of ordering an X-ray. Figure 2 shows
the back of that same form, which was filled out by the
same physician when the result of the X-ray was returned
to him. I must emphasize that the attending physicians in
this study were not specially chosen for expertise in
probability. The study was geographically very widely
distributed; radiological settings in emergency rooms all
over the country were used. Radiologists who were willing
to cooperate in the study were brought from those settings
to Chicago where they received roughly two days worth of
training about the nature of the study and about some rather
elementary rules for assessing probabilities. When they
returned to their native heaths, they recruited attending
physicians from among those who frequently requested them
to perform radiological services. They trained the
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Patient Name Patieat L D,

Date of Birth Sex Cuse Number

AMERICAN COLLEGE OF RADIOLOGY FFICACY STUDY: SKULL - EMERGENCY

PART [ (TO 88 COMPLETRED BY CLINICIAN BEFORF RADIOLOGIC PROCEDURE)
(See CLINICIAN'S HANDROOK for guidance tn completing this form )

. NN, T oEguivocal, NANot Ascectained)

A, ClUnical Data: For each entry check one dox, (Y Y

N }* IND WAS REPORTED Y IN ] IND WAS FOUND
Revent Trauma Physical Evidence of Injury
Nevent Pata or Hendache erupted or Detormed Boae
Focal Weakness ar Numbness Focal Somatic Neurst Defect
Setaure or Unconsciouanves Bruit or Altered Pulee
Abnormal Mentation Absormal Menlation
Deafiena, Tinnitus, Vertigo Discatored Eardrum or Olocrhea
Recent Visnal Prodiems Eye Signn of Bratn Prodblem
Delective Speech or Expression Other Crantal Nevve Dysfunction
Recen) Nausen ar Vomiting Abnormal Tendon Reflex
Other Othee

Specityl 3 ¢ TS ———

B, What is your patient's PROBLEM that causes you to request this examination®

C. 1) For the prodlem in B, state the most (mpottant gecapective DIAGNOSIS which prompts this
procedure.,

2} What are your odds or probabllity estimate that the diagnosia tn 'Co1" will prove coceeot®

D. 1) For the prodlem 1o B, state the most likely prospective DIAGNOSIS ("normat” may te ceed) which
prompts this procedure (only \f different lﬁm the diagnosia tn C}

1) What are youe odds or probability that the diagnosts 1a "D-1" will prove correct”

E. What is the one major reason for this procedure” (Check one box only)
D Prove part normal D(‘\\nnrm 0o change D Inatitutional poticy
D Confirm diagnosts D Show change (n dinease or hesling D Teaching or research

D {nvestigate dtitiae suspicions D Anxsess longth, position, 1o D Medical -legal

Other

¥, Are you preseatly aware of patient's medical (nsurance status?
Nat Aware [} Belteve pattent ta: Insured 3  Netweured )

Your Name and/or ACR 1D Number Date ¥illed Out

RETURN TO RADIOLOGY AFTER COMPLETING PART |1
NOT A PART OF MEDICAL RECORD

Figure 1. Collection Form: Front Side
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PART Il TO BE COMPLETED BY CLINICIAN AS SOON AS RADIOLOGIC RESULTS ARE KNOWN
G.  Knowing the X-ray findings, now estimate the odds or probability that the:

1) “most important” diagnosis stated in "C-1" of Part | {s correct

2) “most likely" diagnosis stated in "D-1", if any, of Part | is correct

H. Enter below any NEW diag bused on rad gical I gn?
1) most important new diagnosis Code: AT L )
2) most likely new diagnosia (include normal) Code: fa PR VT B |
Your Name and/or ACR L. D. Number Date Filled Out
ease nt

SIGNIFICANT RADIOLOGIC FINDINGS (To be filled out by radiologiat or referring physician):

TO BE COMPLETED BY RADIOLOGY

RADIOLOGIC DIAGNOSES CODES Oxt __ = bx__ _ .
RS e el o o Lo o
SETTING (check one) D Screening D Inpatient

D Emergency D Outpatieat

RETURN TO Dr. IN RADIOLOGY AFTER COMPLETING PART ||

NOT A PART OF MEDICAL RECORD

Figure 2. Collection Form: Back Side

i v

s
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Table 1

Distribution of Cases Over Procedures

PROCEDURE

SkuLL

CervicaL SPINE

CHeST

ABDOMEN

INTRAVENOUS PYELOGRAM
LuMBAR SPINE
EXTREMITIES

TOTAL

NUBER OF CASES

958
362
2353
339
278
708
1878

7876

et 01 bl Rt S P




i

e . il s s

ot Vo it 8

A
s i

&
3
|

Technology for Director Dubious 79

attending physicians in how to estimate probabilities. Under
the circumstances we have been delighted with the relatively
high quality of the probability estimates that we have
obtained.

The sampling procedure used in this study, like that
used in many other studies of medical practice, has one
overriding principle: those who participated were those who
were willing to participate. We make no apologies for this,
since we know of no very satisfactory way of proceeding
otherwise. Nevertheless, such sampling does present possi-
bilities of bias in generalization to a national population
either of radiologists or of attending physicians. Conse-
quently, pending the outcome of further detailed analyses
we are performing to explore the possibility of sample bias,
generalizations from our results to such national populations
should be done with extreme caution and nontrivial amounts
of skepticism.

Various procedures explained in detail in Lusted et al.
(in press) were used to spread cases widely over 47 different
emergency rooms and about the same number of radiologists,
between large and small hospitals, between teaching and
non-teaching hospitals, and over a wide variety and number
of attending physicians.

As of July, 1976, the data base was distributed over
X-ray procedures as is shown in Table 1.

As usual in any kind of statistical study, there are
technical problems, and I must discuss one: the truncation
effect. Some respondents responded in probabilities and
some responded in odds, but either way most of them worked
with relatively small numbers of discrete levels of the
quantities they were estimating. In the middle range of
uncertainty, this hardly matters, but the extreme ends of
the scale required particular attention. The problem is
more severe for clinicians who reported in probabilities.
Many of these, in spite of emphatic attempts to train them
otherwise, made estimates of 0 or 1l; both of those numbers
are uninterpretable in Bayesian arithmetic. We adopted an
editing convention of calling 0, .0001 and calling 1, .9999.
These rounding conventions, combined with the fact that
most attending physicians responded in probabilities and
used only discrete sets of numbers, produced rather peculiar
structures in the analyzed data. Figure 3 presents a
scatter plot of log likelihood ratio against log initial
odds over all procedures. You can see several parallelogram
patterns that correspond to different common truncation
limits used by groups of attending physicians, or imposed
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Technology for Director Dubious 81

by us since we could not work with estimates of 0 or 1. We
have, of course, devised methods of analysis that are insen-
sitive to what happens at the extremes of the probability
scale. For a more detailed discussion of this technical
topic, see Lusted et al. (in press).

Although the study is far from complete, it is possible
to base some reasonably convincing conclusions on the data
so far. First, the procedure is feasible; that is, such
probabilistic assessments can be made in an orderly way
and do provide information about the diagnostic thinking of
attending physicians. We base this conclusion less on data
analysis than on informal contact with the physicians who in
fact made the assessments.

Our second conclusion is that the impact of X-ray exam-
inations on diagnostic thinking was evident in the vast ma~
jority of cases and was substantial in most. Overall, not
more than 10% of examinations seemingly had no influence on
diagnostic thinking (that is, produced a 0 log likelihood
ratio). A more detailed and refined analysis of the data
suggest that the actual percentage of O-information X-rays
may be less than 5%.

Our third conclusion is that at the time X-rays were
requested, the requesting physician was normally uncertain
about the correctness of his tentative diagnosis. About 4
times in 5, however, the probability of the tentative most
important diagnosis was assessed at less than 1/2; over
half the time, it was assessed at less than about .15. 1In
other words, the most important diagnosis often had the
character of a not-very-likely medical disaster.

Our fourth conclusion is that about 3/4 of the examina-
tions produced a lowering of the clinician's initial probab-
ilities for the tentataive most important diagnosis. 1In
other words, on the whole, the effect of radiology in the
emergency room setting tends to be one of reassurance rather
than one of confirming alarm. This conclusion has implica-
tions for the relationship between Efficacy-1, diagnostic
efficacy, and Efficacy-2, treatment efficacy. Reassurance
is clearly just as appropriate, from the point of view of
Efficacy-1, as would be confirmation of one's worst fears.
On the other hand, it seems quite likely that this finding
might imply that X-ray procedures that are highly Effica-
cious-1 may not be especially Efficacious-2. We propose to
attack that question in later studies, if we succeed in
establishing that our current rather tentative ideas about
how to measure Efficacy-2 are in fact workable.

it
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Our fifth conclusion jg that the major effect of X-rays
is to reduce uncertainty. Thig Was no surprise. Even after
eéXamination, however, nearly 40% of clinicians assess prob-
abilities for the most important tentative diagnosis at more
than .02 but less than .98, This suggests that a substan-
tial fraction of diagnostic decisions in the emergency room
setting are based on weight of evidence rather than proof
beyongd reasonable doubt, Table 2 shows for various X~ray

An interesting sixth conclusion, at least from the study
So far, is that the influence of X-ray examinations on diag-~
nostic thinking was broadly similar for interns, resident
physicians in training, anqg pPracticing physicians. Also
other characteristics. such as the distribution of initial
Probabilities for diagnoses and the use of odds or Probabil-
ities in the expression of uncertainty, were similar for the
three groups.

Some other conclusions can be reached from the data,
particularly having to go with the question of how well
attending physiciang used the pProbabilitjeg they estimateq
to express their uncertainty. Since these are highly tech-
nical in character, 1 will not review them. I will only add
that in general, attending Physicians tend to overassess

that were usually taken as most important diagnoses, Exactly
the same kind of finding, of overassessment of the probabijl-
ility of highly undesirable events, has occurred in a number
of other contexts in which probability estimators have the

event whose probability was being judged. (See Relly and
Peterson, 1971)

checked and when it was not dig occur, we were quite sur-
prised at how small they were. In general, X-rays taken for
medical-legal reasons are fully as Efficacious-1 as X-rays
for which the attending Physician does not indicate that

he has such reasons in ming.

How does thig study bear on public policy? At the
moment, it has no direct bearing. 1t does suagest that the
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methodology used is in fact useable, and yields significant
information about the behavior of the individuals performing
socially important and policy-relevant functions. It is
conceivable that refinements of the same methods, combined
with methods for measuring Efficacy-2 and perhaps even
Efficacy-3, might lead to policy-relevant recommendations
about the conditions under which it is or is not most advis-
able to recommend that X-rays be taken. If such a happy
result were to occur, the potential for improving the dis-
tribution of health care services might be significant.

Beyond that, however, there is a much more general im-
plication of the study. It shows that decision makers, in
this case attending physicians, can and will, with a little
training and encouragement, make probability assessments
concerning the issues with respect to which they are making
decisions. Since uncertainty enters into every decision and
probability is the appropriate metric by means of which to
quantify uncertainties, this means that the hope of assess-
ing the probabilities that enter into decisions affecting
public policy may not be a vain one.

I need not rest this assertion solely on this partic-
ular study. Many other decision makers besides physicians
must deal with uncertainty, and are in process of finding
the explicit use of probabilities a helpful tool for
doing so. We are all acquainted with the fact that probab-
ilistic weather forecasting is coming to be more and more
widely performed. (See for example Murphy and Winkler,
1974.) Even more interesting, at least to me, is the growth
in use of explicit probabilities among public officials
responsible for providing informational input to decision
makers concerned with vast issues of global public policy.
For public discussions of relevant technology, see Edwards,
Phillips, Hays, and Goodman (1968), Kelly and Peterson (1971),
Barclay and Randail (1975).

In sum, then, Director Dubious, eager to come to terms
not only with his own uncertainties but with the uncertain-
ties of those who advise or attempt to influence him, has
available to him a quite elaborate technology, based on
explicit assessment of probabilities. That technology is
already in use, and its generality and simplicity invites
optimists like me to suppose that that use may extend and
spread into other contexts. Perhaps Director Dubious can be
helped to become at least somewhat less dubious about un-
certainties.




il Pt

W g

e 3

T e g

. ‘;_._ﬁ-u

Technology for Director Dubious 85

Multiattribute Utility Measurement as a Tool for

the Explication and Aggregation of Social Values

As I read Mr. Coates's discussion of the latent, dark
uncongenial, and even unspeakable nature of private motives,
I was quite unclear whether he considered this to be desir-
able, deplorable, or simply a fact of life. But since I
don't believe Mr. Coates's premise about the unattractive
character of private motives, whether that premise is desir-
able or deplorable seems to be beside the point. Most
motives, public or private, are mundane, ordinary, and
reasonably well organized toward the problem at hand. My
own motives in deciding what to include in this paper, for
example are to present two intellectual tools that I think
may be useful to public decision makers in as effective a
light as I can manage, and in the process to be entertaining
and perhaps to get a gentle argument going with Mr. Coates.
Behind those surface motives, I may well have better-con-
cealed motives to the effect that if the technologies
that I am advocating are in fact perceived as useful, I
may gain in prestige, in research funding, in opportunities
for consultancies, and the like. None of these motives
seem too latent, dark, or uncongenial; and I can guarantee
that they are not unspeakable, since I just spoke (or at
any rate wrote) about them. Many, perhaps most, of the
motives that affect ordinary executives in their working
lives have essentially this character.

Mr. Coates made eloquent reference in his paper to the
two real problems about motives. One is that different
people, and especially different pressure groups, have
different motives, whereas the decision maker must make a
decision that is responsive both to wishes of those whom he
serves and to the technological facts of his problem. The
other is that any single person's motives, whether private
or public and whether latent or explicit, are virtually
always in conflict. And, of course, every public policy
decision requires value tradeoffs. In order to do better
with respect to some dimensions of value, we must do worse
with respect to others. But what are the appropriate ex-
change rates?

A new tec mology of value tradeoffs has been develop-
ing very rapidly over the course of the last nine years. It
is called multiattribute utility measurement, and it is
particularly prominent in the writings of Howard Raiffa,
Ralph Keeney, R.A.Howard, and myself. Relevant references
include Raiffa (1969), Keeney and Raiffa (1976), Howard
(1973) , and Edwards (1977, in press).
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The essential idea of multiattribute utility measurement
is that every significant value can in effect be partitioned
into a set of sub-values on each of a number of dimensions.
Technological devices exist for ascertaining what those
dimensions are, for locating each one of the actions, ob-
jects, or whatever is being evaluated on each of these dimen-
sions for judging how important each dimension is to the
aggregate value of the thing being evaluated, and then for
performing the aggregation. Details of this technology vary
substantially from one of its advocates to another, but the
description as I have just given it would probably be agreed
to by all.

As in the case of probabilities, I intend to review an
application that has potential public policy relevance
rather than an application in being. There are in fact
several applications already in being, and they have been
described in open literature. However they are quite com-
plicated. Two examples are: Chinnis, Kelly, Minckler, and
O'Connor (1976); and O'Connor, Reese, and Allen (1976). See
also Edwards, Guttentag, and Snapper (1975), and Keeney and
Raiffa (1976). The particular application that I intend to
discuss is to the selection of nuclear waste disposal sites.
The work was performed in collaboration with Dr. Harry J.
Otway, who is Director of the Research Project on Technolo-
gical Risk Assessment, sponsored by the International Atomic
Energy Authority and the International Institute for Ap-
plied Systems Analysis. For a more complete report of this
study, see Otway and Edwards (in press).

Otway's project has two main goals. One is to measure
the attitudes of various publics toward the risks associated
with various modern technologies in general, and with
nuclear power production technology in particular. The other
is to explore methods by means of which the technological
decision makers who must manage nuclear power activities
can be aided in taking public attitudes into account in
their decisions. This particular study was addressed to the
latter question. The study was conducted during the course
of an international meeting of high level technologists con-
cerned with the problem of nuclear waste disposal. The ten
participants included representatives from eight countries
with advanced nuclear energy programs. Since the conference
was in part about problems of risk assessment and risk man-
agement in nuclear waste disposal, they were very much con-
cerned with the problem and very cooperative. Otway planned
the study. enlisted the cooperation of the respondents, and
collected the data. I did not attend the meeting.
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The first task, of course, was to find what dimensions
of value were relevant to the problem of selecting waste
disposal sites. Since Otway's goal was to demonstrate how
to take social attitudes toward those sites into account in
the decision process, obviously social attitudes had to be
one such value dimension, and indeed it was the first one
listed.

Elicitation of value dimensions was done by simply ask-
ing all the respondents, together in a room, to identify
what issues seemed to them important in making such deci-
sions. Tabkle 3 shows value dimensions and measures for six
sites. After Otway had suggested social attitudes as the
first such dimension, there was some question about how such
attitudes should be scaled, and it was agreed that for the
purpose of this demonstration a simple 0 to 100 scale would
be appropriate with 100 as a highly favorable attitude and
0 as a highly unfavorable one.

The next dimension, proposed by one of the partici-
pants, was remoteness of the waste disposal site from a pop-
ulation center, measured in km. 160 km. was considered as
having a value of 100 and 0 km. was considered as having a
value of 0. The third dimension was the geospheric path
length in km. Roughly, that is the distance a radio-
active particle must travel, typically through the ground,
to reach the nearest point used by people. Again 160 km.
scores 100 and O km. scores 0. The fourth dimension was
proximity of the waste disposal site to natural resources
such as mines. 160 km. scores 100, 0 km. scores 0. The
fifth dimension was geological disturbance probability--
the probability of one or more significant-sized earth-
quakes in a year. 10~® (one chance in a million) scores 100
and 1 scores 0. The sixth dimension was the relative migra-
tion rate of the critical nuclide, in the geological forma-
tion, allowing for adsorption and desorption, compared with
the rate of movement of ground water (assumed constant at
0.3_m/day). Since this dimension is a ratio, it has no units;
10"° was scored as 100 and 1 was scored as 0. The seventh
dimension, elicited from the respondents only after a great
deal of struggle and effort, was transportation distance
between the nuclear plant and the waste disposal site. Zero
km. scores 100 and 1.600 km. scores 0.

Note that all dimensions are transformed onto the 0
to 100 scale in such a fashion that higher scores are pre-
ferable to lower ones. The scaling of the dimensions was
chosen in such a way that the respondents seemed likely to be
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willing to treat the single dimension utilities as linear
with the physical measures involved--and indeed they were.

In the case of dimension 5 and dimension 6 this linearity is,
of course, with the exponent rather than with the number
itself.

In retrospect, several features of the scaling of the
dimensions were questionable. The most obvious is the use
of 1 as the highest probability of an earthquake in a year.
No one would seriously propose a nuclear waste disposal site
with so high a probability of an earthquake; a lower prob-
ability should have been used as the upper bound.

It is important to emphasize that all sites were as-
sumed to have the same biological characteristics, and that
use of any of them was assumed to fall within appropriate
budget constraints.

The value model to be used in this particular exercise
was a simple weighted average model. Such value models are
quite common, and have been exposed to a great deal of
criticism by decision analysts (e.g. Keeney and Raiffa, ©76)
who complain, quite correctly, that they do not capture sub-
leties in the value structure that people may bring to a
problem. Those, like myself, who like to use simple struc-
tures, and who feel that the simplicity of eliciting numbers
built around those structures is more important than getting
the model structure just right at the cost of enormously en-
hanced complexity of elicitation technique, are happy that
a number of approximation theorems show that value struc-
tures elicited in this way will, under conditions such as
prevailed in this experiment, often be very close approxi-
mations to much more elaborate and sophisticated value
structures that would have required very much more difficult,
complicated and socially unacceptable judgments. (See
Yntema and Torgerson, 1961; Dawes and Corrigan, 1974,
Wainer, 1976; and von Winterfeldt and Edwards, 1973(a), 1973
(b).)

In order to perform a simple evaluation of this kind,
the next necessary step is to obtain the weights that are to
be associated with the various dimensions. My preferred pro-
cedure for doing this is to ask each respondent, working
separately, first to rank the dimensions in order of impor-
tance, from most to least important. Then he arbitrarily
assigns an importance weight of 10 to the least important
dimension, and then moves up through the dimensions making
ratio judgments about the relative importances of each of
the more important dimensions compared with the least impor-
tant dimension. Since he can also make ratio judgqments of
the various dimensions to one another, he can obtain a great
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many internal consistency checks to make sure that he is in
fact not unduly succumbing to whole number tendencies or any
of the other vices to which this kind of judgmental pro-
cedure is subject. This was done for each respondent.

Finally, in order to see whether the apparatus that
thus had been developed for assessing the attractiveness of
waste disposal sites was appealing to the respondents, it
was necessary actually to consider some waste disposal
sites. So far, the entire process had been carried out
without reference to any specific site. However, a number
of sites that have been proposed as possible ones for nuclear
waste disposal were used as the basis for judgment on the
seven relevant dimensions, and the result is shown in Table
3. The ranges of the various dimensions that were actually
encountered in the sites were much smaller than the ranges
that had been anticipated as possible; this fact has
important methodological consequences which I will discuss
in a moment.

So far as the respondents were concerned, the final
procedure was to ask them to make holistic evaluations,
which means ratings on a 0 to 100 scale, of each site, for
comparison with the multiattribute utility evaluations.

Otway asked each respondent to judge the importance
weights of the seven value dimensions twice and consequently
we could calculate test-retest reliabilities of these judg-
ments. Correlations between first and second judgments were
very high; the mean was .93. For convenience, all sub-
sequent calculations used the second set of weights. The
interrespondent agreement about importance weights was, as
you would expect, much lower. Correlations among second
judgment weights between pairs of respondents range from
+.97 to -.27, with a mean of +.39. Actually, this is a
somewhat higher level of inter-judge agreement than has
been found in some other applications of this particular
technique (e.g. the OCD example in Edwards, Guttentag, and
Snapper, 1975). I have argued elsewhere (Edwards, 1971,
in press; Edwards, Guttentag and Snapper, 1975) that indi-
vidual differences in values should show up primarily in
assessments of the importance of value dimensions. Single-
dimension utilities are often technical judgments rather
than value judgments.

Obviously, the question that would be of primary
interest to Mr. Coates, and also to me, is: How do we go
about reducing, removing or otherwise dealing with these
individual differences in values?
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At this point, unfortunately, time pressure problems
arose. The best way to do it would be to normalize the
importance weights for each individual separately,
age them, to calculate the ratios of importance weights
specified by the averages, and then to feed those ratios
back to the judges, sitting as a group, and ask them to
debate them until they reach some form of agreement about
a final set of such judgments that they were willing to
allow to be used in a decision process. We did indeed
noxrmalize and average, but Otway could not feed back and
reconcile differences. In a different context, I have
tried this process of feeding back and reconciling differ-
ences, with quite good results. (See Edwards, in press,)
And I would anticipate that some procedure of that sort
would be the essential ingredient in any large-
cation of this technology to decisions over which there are
major social conflicts. In the contexts in which the tech-
nology has so far been applied, however, the issues involved
have been so profoundly technological that such a procedure
has not generally been used. Instead, the experts on each
of the kinds of numbers were asked to reach consensus about
the numbers within the field of their expertise, and were
usually able to do so quite well. Perhaps this technology
is more easily applicable to fields in which this kind of
technological resolution of conflict is appropriate than it
is to contexts involving broader kinds of social conflicts.

to aver-

scale appli-

Now we must turn our attention to the range problem
that I mentioned earlier. Consider, for example, dimension
3, geospheric path length. Its actual range covers only
22.5% of the range that originally had been assigned to it.
This can easily happen in situations, such as this one, in
which the evaluation scheme is developed before the entities

to be evaluated are known. Yet exactly that must often be
done.

The reason why this presents a problem is that the
range of utility values of a value dimension is in a sense
a kind of importance weight. A dimension whose utility
values range from 0 to 50 is effectively only half as impor-
tant in controlling evaluation as one having the same weight
whose utility values range from 0 to 100.

This problem can be solved only by judgmental methods.
However, some mathematical techniques exist that help to
put it into perspective. It is possible to transform both
of the single-dimension utility values and the importance
weights in such a fashion as to preserve unchanged the pre-
ference ordering over the options and the utility spacing
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between options, while putting all of the single-dimension
utility functions on a scale whose minimum in fact falls at
0 and whose maximum in fact falls at 100. Table 4 shows the
result of doing so. Inspection of that table will show

that no one could possibly pick site 3. In technical jar-
gon, site 2 dominates site 3; that is, site 2 is at least

as good as site 3 on every dimension, and definitely better
on at least one. No other site is dominated. Also note
that site 6, although evaluated as best by the weighted
utility criterion, does not dominate site 3; site 3 is better
than site 6 on the dimensions of proximity to natural re-
sources and transportation distance.

The transformations which I have discussed permit ex-
ploration of the extent to which the scaling of the single
dimension utility functions influences the ultimate outcome.
I won't go into the details, but I can say that in this
particular instance, which is rather extreme in deviations
of the actual from the anticipated ranges, the effect on
preference orderings was extremely modest. In other words,
this procedure is rather robust to errors of anticipation
of that sort.

Finally, consider the relation between the holistic
ratings for the other sites by the respondents and the multi-
attribute utility ratings. The mean correlation in holistic
ratings between pairs of correspondents is +.20, and the
range is from +.97 to -.55. Note that the respondents
are even less in agreement ab ait holistic ratings than they
were about importance weights. That too is a common finding
in applicatiors of this method. The correlation between
mean holistic ratings and multiattribute utility ratings is
+.58. Both procedures consider site 6 to be best and site
3 to be worst. This correlation between multiattribute
utilities and holistic ratings is somewhat high compared
with most other such correlations in the multiattribute
utility literature, although it still shows that the two
procedures do lead to different results. That on the whole
is gratifying. After all, there would be no point in pro-
cedures like multiattribute utility measurement if direct
numerical assessments produced exactly the same results.

Except for various technical details having to do with
intercorrelations among dimensions, both in value and in
physical characteristics, and with the effect of these on
scaling procedures, that's the end of the story of this
particular study, except for one important addition. Harry
Otway informs me that the respondents thoroughly enjoyed the
study, found the importance weights that they had judged

DR e —
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extremely enlightening, and requested him to be prepared to
repeat the study at their next meeting, with a considerably
more realistic setting and paying considerably more attention
to the details of how the study is done.

As I have said before, much more sophisticated and com-
plicated versions of exactly the same technology have been
used and are now being used to make major socially important
decisions. Several have been published in unclassified
sources. For example, one (Chinnis et al, 1976) has to do
with the selection of the winning bidder from among a number
of bids in a very largerscale procurement of an important
and expensive item of military hardware. The additional com-
plexities of the method were concerned primarily with the
much larger number of dimensions that were taken into
account, the use of a hierarchical value model rather than
the simple value model I have presented here, and the intro-
duction of scenarios and scenario probabilities as a tool
for the assessment of values. While these technological
details are all of fundamental importance to real applica-
tions, nothing in them changes the basic idea I have pre-
sented in this rather simple-minded exposition.

Nor are all the examples military. In one published
application, (Edwards, Guttentag, and Snapper, 1975) a
technique of essentially this character was used to help
a major agency within the Department of Health, Education,
and Welfare to make decisions about the allocation of its
research budget for a year. In another application, now
in progress, the same kind of technology is being used in
planning the rate at which a government agency should en-
courage a boom town to boom. Still another application now
in progress is to the National Program for Decriminalization
of Status Offenders. A great deal of data has been collected
by Professor Solomon Kobrin and his collaborators at the
Social Science Research Institute of USC on the impact of
this program both on the juveniles with whom it deals and on
the criminal justice and related agencies who must deal with .
these juveniles. We are now collecting multiattribute
utility measurements from a number of experts on juvenile
delinquency, crime, the juvenile justice system, and the
like, and expect to use these judgments in the process of
assessing what the overall effects of this major national
program in fact have been, and whether those effects are
good or bad, and how good or how bad.
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Conclusion

This paper, after some initial questioning of the as-
sertion that major issues of public policy are inaccessible
to technological tools, has attempted to illustrate the
nature of two technological tools, and to suggest how they
can be and are being used in the course of making major
social policy decisions. Obviously, I would not want to
claim that these tools are optimal, that they are fully
developed, or that they should be used for all such deci-
sions. Their applicability is quite limited, as I have
attempted to suggest in the course of sketching their
nature. Within that area of applicability, however, I
believe that they can help those charged with responsibility
for social policy in dealing with the two key problems that
Mr. Coates identified: uncertainty, and difficulties in
assessing and reconciling values.

As Mr. Coates correctly pointed out, no technological
tool is likely to be of very great use to Director Devious.
His conception of his function, and his goal structure,
makes him essentially uninfluenceable by the technology of
decision making. Indeed, only the part of that technology
that has to do with budgeting and the assessment of costs is
likely to get very much of his attention.

On the other hand, as I suggested at the beginning of
this paper, Director Dubious is less impervious, mostly
because he is less convinced that social policy making
must continue to be done in the way in which it always has
been done. I conceive of Director Dubious as a skeptical
but open-minded man, interested in technological innovation
and willing to explore the possibility that a particular
technological innovation may have something useful to offer

him. I have suggested two possible candidate technologies
for his attention.

st
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