”~ AD=A059 048 LOCKHEED MISSILES AND SPACE CO INC PALO ALTO CALIF PA==ETC =/6 12/1
SPARSE SYMMETRIC MATRIX PROCESSING.(U)
MAY 78 P S JENSEN: J K REID F49620=7 .-0003
UNCLASSIFIED LMSC/D626184 : AFOSR-TR-78~-1149 NL

: A '

COPY.

DDC FILE ¢

~—

A

ADAO 59048

SUBSIDIARY

SEP 25 1078
CJ{(J}iL‘é—])l]'U'['_-T

@_Ennﬂaﬂ

OF LOCKHEED AIRCRAFT CORPORATION

Approved for public release;
distribution unlimited,

e L o T R ey

T

T

T

f » .
|
|
:
|
|
|
1
g Y T RIS AN T ST ST A S £
{
"‘
v'l.
t
H
4
i
4
¢
z
g §
"
4 ,;

G A O b il

TICRIO FORCE r U105 OF SOTAPTIFFTARALAUREOJAFSC)

! NOTIGE OF TR:VINITTAL TO DDC

This technicusl r ;- =t . tooa reviewgdignd is
approved for pull.. relcase LAR AR 199732 (7b).
Distributioa is uaiimited.

A. P. BLOSE ,
Technieal Inforwation Offiecer

——

m Whtte Soction

) Wit Sectie [:
MANROUNCED D

POSTIFICATION.

R ey

SISTRIBETION/AVAILABILITY €00E

Rlat. AVAIL, and/or SPEGIL

LEVE

&

O,

/' SPARSE SYMMETRIC MATRIX PROCESSING ,

ﬁh‘f;ﬂa-ul Se /Jensen ; [
Y :/(/ John K. /Reid / / 4

———

4

()l |

{
(15

Report for AFOSR Contract [F49620-76-C- 1003

" MA0 59048

DDC FILE coPY

i CA R |/ /
164 <27 |

W | —— s

/

ool el

Research sponsored by the Air Force Office of Scientific
Research (AFSC), under contract F49620-76-C-0003. The
United States Government is authorized to reproduce and
distribute reprints for governmental purposes notwith-
standing any copyright notation hereon.

DISTRIBUTION STATEMENT N

Approved for public release;
Distribution Unliiniied

\.
QLO ZLY
L}OCKHEED PALO ALTO RESEARCH LABORATORY

LOCKNEED MmissitLes L SPACE COMPANY, INC
A SUBSIDIARY OF LOCKHNEED AIRCRAFT CORPORATION

i e b bt ST i 5.

e s i S

P s

L

SEP 925 1978

W

TABLE OF CONTENTS

INTRODUCTION

A COMPAR{SON OF TWO SPARSE MATRIX PROCESSING TECHNIQUES,
P. S. Jensen :

A PACKAGE OF SUBROUTINES FOR SOLUTION OF VERY LARGE SETS
OF LINEAR FINITE-ELEMENT EQUATIONS, J. K. Reid

A FORTRAN VIRTUAL STORAGE SIMULATOR FOR NON-VIRTUAL
COMPUTERS, P. S. Jensen

s

INTRODUCTION

This report includes three autonomous articles pertaining to the
processing of large, symmetric, sparse matrices typified by those arising
in the finite element analysis of boundary value problems. The work and
computer programs discussed in this report resulted from a two-year
effort sponsored by the Air Force Office of Scientific Research under
contract F49620-76-C-0003.

The thrust of thic part of the effort was to develop a sparse matrix

processing system that could readily be incorporated in structural anal-

el Land

ysis computer programs to improve flexibility, computational efficiency

and to reduce storage requirements. The requirements for the system were:

i. The ability to reliably process very large (out of core)
problems, e.g., problems of order 15000; -

2. The ability to utilize user knowledge about a given problem

in order to reduce computational costs; |

3. It must not depend upon user input for efficient operation
and must be able to astutely "fill in" for incomplete user

input;

4. The ability to exploit inherent computational efficiency
resulting from repeated '"substructures'" appearing within a

problem; and

5. It must be written in a readily transportable FORTRAN code

for convenient adaptation to various computing machines.

w TR e

A prototype sparse matrix processing system satisfying the above cri-
teria was designed around the basic frontal technique augmented by a minimum-
degree algorithm. The design resulted in a reasonably "natural" substructur-
ing capability which was extended to satisfy criterion 4 above.

The prototype system was implemented and comparative tests were run
using a widely accepted, general purpose structural analysis program as
described in the first article of this report. The sparse matrix processing
scheme used in that program is a very efficient implementation of the profile
technique.

The second article in this report describes the new sparse matrix pro-
cessing system SPSYST in detail. The version of SPSYST used in the first
article differed slightly from the system described here in that a minimum
fill algorithm was used in place of the minimum degree algorithm. The
fundamental data management system used by SPSYST is based on a virtual
memory approach. Since many computer systems do not provide virtual mem-
ory, a special FORTRAN virtual memory system was implemented as described
in the third article of this report.

it idn.

ey

A COMPARISON OF TWO SPARSE

MATRIX PROCESSING TECHNIQUES

—

P. S. Jensen 26 May 1978 : | 3

ABSTRACT

The factor and solve capabilities of an established
profile matrix processing program and a new sparse matrix

prcgram package are compared for several finite element

analysis problems. The comparison tests were made on
CDC CYBER 175 and UNIVAC 1110 computing systems. The
problems run were analyses of reasonably simple shell
structures. Thé new program was found to enjoy the
greatest advantage for the more complicated problem geo-

metries.

A b 2ty 9 Tt 700 0

¥

&

Section 1
INTRODUCTION

For this study we focus our attention on sparse, symmetric problems
arising in structural analysis. Our objective is to gain a "feel" for
the relative merits of two techniques for factoring very large sparse,

symmetric matrices.

The profile technique, which evolved from band matrix techniques,
is reasonably effective and has been the accepted "workhorse" for general
structural analysis for many years. Basically, it is a band matrix tech-
nique that takes the semi-bandwidth of each row into account rather than
assuming a constant bandwidth. A number of implementations of the profile
technique are available including a convenient, unheralded version in a
Lockheed library. It should be noted that the apparent simplicity of the
profile technique is slightly deceptive and that subtle differences can
have a significant effect on the overall efficiency. To quote N. Wirth,
"the devil hides in detail".

General sparse matrix techniques [1, 3 and 4] are more recent and
considerably less established. Potentially, they have an unguestionable
advantage for very large problems because they involve fewer operations
and deal with a smaller volume of data. In addition, they (potentially)
are more flexible, e.g., they can factor certain perturbations of a given
matrix without repeating the whole process and can utilize user knowledge
of a problem to improve efficiency. The main weakness of the techniques
is their relative complexity. The implementation tends to be a fairly
large collection of complicated routines that require some skill on the
part of a user for effective application. Although a number of implementa-
tions of sparse matrix techniques have been constructed over recent years,

none appear to be suitable for very large problems that cannot be held in

AA

the high speed memory of a computer. Consequently, in collaboration with
Dr. John Reid, an implementation [2] that could be directly applied to im-
portant structural analysis problems was constructed for comparison with
the profile technique. This implementation is briefly described in Sec-
tion 2.

A widely used structural analysis program STAGS, briefly discussed
in Section 3, was used to generate most of the test problems. It is imple-
mented and normaliy run on CDC (Control Data Corporation) 6000 and CYBER
series computers. Consequently, that computational environment was chosen
for most of these tests. Specifically, the test runs were made on a CDC
CYBER 175 computer using operating system SCOPE 3.4 and the standard "ex-
tended" FORTRAN 4. The architecture of the CDC computer tends to suit the
profile technique somewhat better than the general sparse approach by vir-
tue of its parallelism for arithmetic and slightly cumbersome logic capa-
bilities. This natural bias arises from the facts that profile factoriza-
tion is normally a Crout decomposition which involves a sequence of ele-~

mentary vector operations (primarily dot product) on relatively long rows

whereas the sparse factorization is a Gaussian elimination process involv-

ing relatively short "partial" rows. =

|

{
) T LT Gy e

g — -

I

Section 2
SPARSE MATRIX ALGORITHM

We are concerned with the direct solution of very large sets of linear

equations
Ax = b (2.1)
where symmetric, positive-definite matrix A can be expressed as a sum

A =7 E(k) (2.2)

(k)

of matrices E with non-zeros in only a relatively small number of rows

(k)

and columns. Normally E is a stiffness matrix associated with a single

finite element; however, problems occurring in other applications can be

(k)

handled provided only that each E has relatively few non-zeros.

When we say that A is large we mean that we do not expect to be able

to hold it in high-speed memory, even in packed form. Indeed we expect

(k)

that sometimes one or more of the matrices E may contain too many non-

zeros to be packed into high-speed memory. We do however expect that
sufficient high-speed memory is available for a number of variables that is

a modest multiple of the order, n.

The method is a generalization of the frontal method [3]. Rather than

directly reordering the variables of x, we instead reorder the sequence

(g}

of (2.2) in order to reduce the total cost of factorization. Factor-

ization is carried out simultaneously with assembly (summing of the E(k)'s),

completing the factorization on each row as soon as it is fully assembled.
Note that if the results of the process through step k > 1 are saved, then

it can be readily completed for a certain variety of matrices E(k+1) ey

oy i viaci

P I T T A T

(m)

E without ever repeatiné the first k steps. This property is important

in the so-called "re-analysis" problem wherein a sequence of problems

)

involving changes in a few element matrices E must be solved.

The fundamental assemble/factor process is a pairwise operation,_i.e.,
two matrices are added together and the "internal" variables (fully assembled
rows) are eliminated before another pair of matrices are added together. The
order in which the matrices are combined is thus conveniently described by a
binary tree. On the basis of the topology (row/column position information
for the non-zero data) of each E(k), a "good" tree structure can be con-
structed for a given set {E(k)} that prescribes a summation order requiring
a minimal amount of computational cost. For economic reasons, one does not
seek to develop the best possible tree but, instead, obtains one that works
well and is not excessively expensive to construct. The present sparse
matrix program uses a '"min-fill" heuristic to construct the binary tree
which, of course, needs to be exercised only once for a variety of actual

o)

nonzero values in the matrices E

To further reduce the computational cost of constructing the binary

tree, which we shall hereafter call the preprocessing, a system has been

devised whereby the user can specify as much of the tree structure as he
wishes. This is particularly useful for the analysis ¢ physical problems
for which certain natural groupings of element matrices E(k) are very evi-
dent to the analyst. For example, in the analysis of a propellor, it is
natural to group the elements by blade for independent assembly. Such

a group of elements 1is often called either a substructure or a super-

element.

Summarizing some of the important benefits of the present sparse matrix

processing system, we have:

® User kncwledge of a problem can be readily utilized to reduce the
solution cost;

° The user can arrange the computation to permit variation of the

(k),

real data in a few E s and obtain associated solutions at

a minimal cost; and

e The process of substructuring is a natural function performed
by this system. In fact, a means of setting values for sub-
structure interface variables is provided so that solutions on
any substructure can be obtained independently of other sub-

structures.

Another convenient feature included in this sparse matrix factoriza-
tion system is applicable when different subsets of the E(k)'s in (2.2) are
related in that they share the same basic topology but are shifted and per-
muted with diagonal symmetry in the assembled matrix. This situation would
arise, for example, in modeling an assembly of just a few basic substruc-
tures as illustrated in Figure 2.1. In such a case, the factorization for
each basic substructure needs to be carried out only once. It is then
included in the analysis of the complete structure by a special same mech-

anism included in the computer program.

Figure 2.1. Illustration of a Simple Assembly

Data Management

A widely recognized "Achilles heel" of sparse matrix algorithms is the
general overhead in dealing with the real data which are physically stored
in esoteric ways to avoid the storage of zeros. This overhead is compounded
when the data are so voluminous that they cannot be held in high-speed mem-
ory.

Referring to the entire collection of data for a given problem as the
data space, we observe that at any point in time, the assemble/factor pro-
cess tends to be focused only on a localized portion of the data space. This
suggests that the adversity of a large data space can be relieved somewhat
by a virtual memory system [6] that tends to hold actively used data in a
high-speed memory buffer and move relatively inactive data to mass storage

in a natural way.

Since many computers do not have virtual memory systems built in (hard-
ware or software) a convenient, general purpose virtual memory system [7] was
written (mostly in FORTRAN) for this purpose. The numerical experiments des-
cribed in Sections 3 and 4 indicate that the virtual memory system is reas-

onably effective for the sparse matrix application. i

et

Section 3
TESTS USING STAGS

The problems for this test were generated by the STAGS (Structural
Analysis of General Shells) [5] program, which is widely used in the
United States and Europe. The nonlinear and transient analysis of branched
shells, which are common applications of STAGS, would appear to benefit
considerably from the sparse matrix technique (Sec. 2) because of the many
matrix factorizations required in each analysis and the fact that a branched

shell is rather natural for substructuring.

Several cylindrical shell configurations were used for this test
series. The basic "element" used for this STAGS discretization was the
32 freedom curved quadrilateral illustrated in Figure 3.1. It has seven

displacement freedoms at each corner and one at the midpoint of each side.

Figure 3.1. 32 Freedom STAGS Element. Seven freedoms
at each of the corner nodes A,B,C,D and
one freedom at each of the midpoint nodes

« 1,2,3,4.

L‘_M P LT - A e Tt R

] All problems in this test series were run on a Control Data Corporation
| CYBER175 computer system. In both the sparse matrix and the profile algo-
o b rithms, certain processes, e.g., vector inner product, vector copy and the
: general vector sum a X + ¥, were coded in assembly language. This fairly
simple innovation tends to emphasize the adverse effects of the overhead

costs inherent to the sparse matrix algorithms.

3.1 Problem Set 1

This set of problems involved a 'square' cylindrical region having

: 3, 7 and 11 elements on each side. The resulting problem sizes were 137,
561 and 1273, i.e., the size is given by 9 mn + 8(m + n + 1) where m and n
are the number of elements in the two directions. Our objectives with this

set of problems were to:

Tic Assess the trade-off between large and small page sizes in the
virtual storage system, keeping the high-speed buffer size
fixed,

2. Compare the relative merits of the two subject algorithms on
an indicative range of sizes of this simplest form of problem,

and

3. Compare the automatic element ordering algorithm (minimal fill)
with some astute orderings invoked by hand.

3.1.1 Page Size Trade-Off

The second problem (order 561) of this set was chosen to study the
effects of varying the virtual system page size with a fixed buffer size.
, The factored sparse metrix for the problem had 22,975 non-zero elements
and involved 710,241 multiply/add operations. Thus, the size of the prob-
lem was sufficiently large to give indicative results without being need-
| lessly large. The input/ouptut activity and the central processor (CP) time

were studied during the factorization part of the processing for each of

several page sizes and the results are displayed in Figure 3.2.

As one would expect, the number of physical I/0 accesses increases and
the I/0 volume decreases with the number of pages in the fixed length buffer.
The CPU time is relatively unchanged. Note from Figure 3.2 that the I/0
volumes for 32 and 64 pages were approximately the same during factorization.
This appears to be a result of the fact that the element matrix (size 528)
was larger than the basic page size (448) in the 64-page case. Since the]
factorization generally is the major part of the work, it is generally wise

to have the page size larger than the average element matrix.

CPU Time

1.0~ .
g \s /,
| . ‘\\ o ——— ’f
\\\ ‘/’ - 3
Auxiliary Storage --«“~
Volume
0.8
% A ‘
/l
—
E ,/ -~
a Ve \\\
B o6l 7/ Auxiliary
< 7/
7 Storage :
9 / Accesses
— 7/ 1
g . /’ X ‘
- ,/
é 0.4 | ‘
0.2
\ — i 1
16 32 64

NUMBER OF PAGES

Figure 3.2. The effects on I/0 processes during factorization resulting from
“ varying the number of pages (and thus page size) in the high-
speed memory buffer. Quantities are normalized by their maxima.
Solid lines represent results obtained during factorization and
dashed lines represent overall results. Buffer size = 28672.

9

o

~ As described in [7], a form of hashing algorithm is used to search the
page rable of the virtual memory system. Sone interesting statistics about
the search activity were recorded during these three tests and are summarized
in Table 3.1. :

Table 2.1
VIRTUAL SYSTEM OPERATIONAL STATISTICS FOR THREE TEST PROBLEMS
Pages in Buffer
16 . 32 64
Ratio: Virtual Accesses to Physical Accesses 49 27 20
Ratio: Virtual Volume to Physical Volume 3.77 | 4.21| 6.08
Average Table Search Steps per Page Find 1.34] 1.29| 1.33
Average Table Search Steps for No Find 0.62 | 0.54| 0.60

3.1.2 Algorithm Comparisons for Simple Problems

In this test we sought to compare the 'raw speed" of the sparse solver
SPSYST and the highly tuned profile factorization system used in the STAGS
structural analysis program. Since a number of efficiency improvements to
SPSYST are planned whereas the profile system is about optimal, results

favoring SPSYST here would be very encouraging.

The solution times for the three square panel test problems appear in
Table 3.2. We observe that the r.ofile factorization times were all better
for these problems and that the relative advantage decreases with problem
size. This trend substantiates the theoretical result which states that
the computational work inthe profile process grows at a higher rate (with
respect to-the problem size) than does the prbcess in SPSYST. Thus, there
exists a crossover point (greater than 1200) at which SPSYST would be faster
than the profile method for this problem. Efficiency improvements in SPSYST
will lower that crossover point; however, it is clear that the profile algo-

rithm works very well for this simple problem class.

10

L9°1 s8°0 cL 08 SL°OTT | 09°C78S€E| 8T°S8ZS 00°9 8%y LETT
€1°¢ 60°T 86°CC 6¢C°0¢ %T°01¢L L0°SS6 i G5 %0°1T 196
6C°S 66°T L8°T 88°C S%°92 0z 0%y %T1°0 80°0 LET
LSASdS 9TT30ad | 1SASdS 9TTJ01d | LSASdS | °TF3oad | 1SASdS |®TF30ad
(99s-0a0Tuw)
Quwy] uof3lexadp (s,000T UT) (s,000T UF) (929s) ?zTs
?3ea9Ay S0337-UON suor3eaadg auwy] 10308y warqoad

SWATI0Nd TANVd FIVADS ‘ATIWIS ¥0d SITNSTY TAIILVIVIWOD

¢ € 9Iqel

) P T R R TN ETR TR ya—mmesoree—.wyr

11

3.1.3 Alternative Equation Ordering Systems

Aside from improving efficiency by changes to the implementation of

SPSYST, we also wished to consider improvements by alternatives to the

minimal fill algorithm used internally to order the variables. The basic

substructuring capability of SPSYST provided a simple means for accom-
plishing this task, viz: the identification of certain groups of elements

as substructures in the problem specifications.

An alternative ordering roughly equivalent to nested dissection, as illus-
trated in Figure 3.3, was used for this test. This certainly is not in-
tended to represent a truly optimal ordering but simply to illustrate possi-

ble improvements.

IC
- —
(= L%

Figure 3.3. Substructuring used to obtain an alternative
: ordering for the 7x7 and 11x11 problems. The
numbered regions were made super-elements in

the order indicated.

12

Table 3.3

COMPARISON OF THE RESULTS USING THE
INTERNAL MINIMAL FILL ORDERING WITH THOSE

B USING THE ALTERNATE ORDERING
Problem
7x7 11 x 11
Min.Fill |Alternate| Ratio|Min.Fill|Alternate|Ratio
Factor Time 1.514 1.476 0.97 5.997 5.776 0.96
' Solve Time 0.219 0.224 .11.02 0.652 0.623 0.96
3 Nonzeros 22.98 21.74 |0.95 80.72 78.39 [0.97
(in 1000's)
Operations 687.71 595.88 0.87 |3502.96 |3206.95 0.92
(in 1000's)
Usec per Oper- 2.20 2.48 |1.13 1.71 1.80 |[1.05
ation

f < 13

m > G i b i o g it
'
:

Although the results in Table 3.3 indicate relatively small gains, they do

indicate a potential for further work on the internal ordering algorithm

3.2 Problem Set 2

This set of problems consisted of branched shells, i.e., assemblies
of smooth shell substructures (panels), where the joints may be "folds".
This type of problem is much more typical of problems arising in practical
engineering analysis than the simple square panels of the previous section.
It is natural in problems of this nature to carry out the upecification
and analysis panel by panel followed by incorporation of the joint condi-

tions for the complete structure.

This approach was applied to the "plus'" shaped five branch problem
illustrated in Figure 3.4. A small 20-element and a larger 57-element
(longer arms) configurations were used with superior results from SPSYST

in both cases.

Figure 3.4. Plus-Shaped Problem

14

- - - . e
: ” — i3 .
r—_ww_ e s — =

Normalizing the results with respect to the profile results, we obtained
the relative statistics in Table 3.4 for SPSYST. Unfortunately, the oper-
o & ation times were so small that the accuracy of the times is questionable.

This.is evidenced by the rather erratic-looking results.

Table 3.4
RESULTS OF APPLYING SPSYST TO TWO PLUS-SHAPED REGIONS

(Cost factors are given relative to those for the profile solver)

Case 1 Case 2 J
Elements 20. 57]
Problem size 308. 1009. 1
Nonzeros 0.40 0.47
Operations 0.16 0.19
Factor time 0.22 0.75
Solve time 0.08 0.34
Analysis time 0.50 1.90
Operation cost 5.12 3.95

It is evident that this slightly more complicated problem had a
strongly adverse affect on the profile algorithm relative to the general
sparse algorithm SPSYST and suggests that the advantages of SPSYST will
be most noticeable for the more complex "real life'" analysis problems.
It is also evident that reducing the basic cost per operation in SPSYST

is probably the most pfomising area of further research. 1

15

|
|
|
|
|
q
|

Section 4
TEST ON A UNIVAC 1110 COMPUTER

Because of the substantially different architecture of the UNIVAC 1110
computing system, it is interesting to obtain some comparative results on
that system. Unfortunately, the same tests as in Section 3 could not be
run on the 1110 because the STAGS analysis program was not operational on
it. Consequently, the sparse program was exercised in conjunction with an
analysis program called DIAL. The basic element used is illustrated in
Figure 4.1. The profile factorization used by DIAL is an adaptation of
that used in STAGS and so the comparison basis is reasonably close to
that of Section 3.

10 9 8 7
g —- *—]
11 ¢ . ® G

12 ¢ : ¢5

Ll

— B —&
2 3 4

Figure 4.1. Basic DIAL 12-node element used for
UNIVAC 1110 test. Two variables per
node are defined.

16

N . i P et
e b e eca i e = T Aondean s e T whi e

o

.

A simple 10 by 10 square panel (100 elements) with 561 node points
was analyzed, leading to a matrix equati®dn of order 1119. The results
obtained are given in Table 4.1. We notice that the ratio of 1.54 of the
basic operation cost is substantially lower here than on CDC equipment

where it ranged from 2-5 (see Tables 3.1 and 3.3).

Table 4.1

COMPARATIVE RESULTS FOR SOLVING
A 10x10 PROBLEM ON THE UNIVAC 1110 COMPUTER

Pnpofile SPSYST Ratio
Nonzeros (1000's) 95.12 56.94 0.60
Operations (1000's) 4200.00%* 1723.06 0.41
Factor time 32.49 15.99 0.49
Solve time 1.92 1.75 0.91
Analysis time 14.59* 1.90 0.13
Operation cost (usec) 6.02 9.28 1.54
* The analysis time for the profile technique includes the !
assembly. SPSYS®carries out assembly and factorization .5

simultaneously.

** Approximate opesation count.
9

17

Section 5
SUMMARY

The series of comparative tests that have been made for this study
are indicative but not conclusive of the relative merits of two sparse
matrix processing schemes for problems arising in structural analysis.
The tests in Section 3 were carried out on a CDC CYBER 175 computer
which permits a limited amount of parallel computation. The results
indicated slightly smaller computing costs for the profile techmnique
on square domains and substantially larger costs for it on irregular
(plus-shaped) domains. It is likely that a good bandwidth reduction
algorithm could improve matters for the profile technique but we con-
clude that the sparse matrix processor SPSYST is a strong contender

in this computing environment.

The test in Section 4 was carried out on a UNIVAC 1110 computer
which has a better instruction set for logical operations and less
facility for parallel computing. In this environment, SPSYST proved

to be substantially superior even for a square domain.

The approximate cost per operation will always appear to be more
for SPSYST than for the profile algorithm because of the greater com-
plexity of SPSYST. However, it is likely that it can be improved

somewhat by modifications of the implementation.

Of at least equal importance to the cost considerations alluded to
above are considerations related to ease of use and flexibility. Pre-
sently, SPSYST is fairly difficult to use because of certain implement-
ation details relating to data handling. With regard to flexibility,
however, it is definitely superior to the profile algorithm. It per-
mits substructuring in a natural way, efficiently handles the re-
analysis situation wherein a relative few element properties are
changed, and provides a powerful capacity for treating repeated sub-

structures.

18

= - e, R i i o Eotiis ORI RE NN ST TN 5t SRR M

Acknowledgments

The author expresses his thanks for the well written and documented
sparse matrix code provided by Dr. J. K. Reid which was the motivation
for this test effort. Thanks also go to Mr. F. A. Brogan who provided
the profile matrix processing code, an adaptation of the STAGS structural
analysis program suitable for conducting the tests of Section 3 and sub-
stantial help in carrying out the tests. Finally, thanks go to Mr. G.
Fergusson for adapting the sparse code for operation on the UNIVAC 1110

computer and running the test of Section 4.

REFERENCES

1 1. George, Alan, "A Survey of Sparse Matrix Methods in the Direct Solu-
tion of Finite Element Equations', Proc. 1973 Summer Comp. Councils, Inc.,
La Jolla, Calif. (July 17-19, 1973), pp. 15-20

2. Reid, John K., "A Package of Subroutines for Solution of Very Large
Sets of Linear Finite-Element Equations'", Article 2 of this report
and report AERE-M.2947, Atomic Energy Research Establishment, Harwell,
England (Feb. 1978)

3. Iroms, B. M., "A Frontal Solution Program for Finite Element Analysis",

Int. J. Numer. Meth. in Engr., 2 (1970), pp. 5-32

4, Eisenstat, S. C., M. H. Schultz, and A. H. Sherman, "Efficient

Implementation of Sparse Symmetric Gaussian Elimination", in Advances
3 in Computer Meth. for Partial Differential Equatiomns', AICA (1975),
pPp. 33-39

5. Almroth, B. 0., F. A. Brogan, and G. M. Stanley, "Structural Analysis
of General Shells", Vol. 3 (User Instructions for STAGSC), Lockheed
Missiles & Space Company, Inc. report, Sunnyvale, Calif. (Dec. 1975)

6. Denning, P. J., "Virtual Memory", (ACM) Computing Surveys, 2,3 (1970),
PP. 153-189

7. Jensen, P. S., "A FORTRAN Virtual Storage Simulator for Non-Virtual
Computers", article 3 of this report (March 1978)

A PACKAGE OF SUBROUTINES FOR SOLUTION OF VERY LARGE

E SETS OF LINEAR FINITE-ELEMENT EQUATIONS
J.K. Reid

February 1978 AERE-M.2947

Abstract

This report describes a package of subroutines designed to solve
efficiently very large sets of linear finite-element equations whose
matrix is symmetric and positive definite. It uses tree-search techniques
to organise frontal elimination so that input-output operations are not
excessive. It includes substructuring facilities and a good elimination

order is found automatically.

Introduction

Calls of input subroutines

&

2
2
2
2
C

A

1

1

Subroutine
Subroutine
Subroutine
Subroutine
Subroutine

Subroutine

INIT
INELV
INELR
INSUP
INSAME

FACTOR

3.2 Subroutine SOLVE

Storage

4.1 Sizes of arrays in COMMON

Summary of error conditions

CONTENTS

alls of factorization and solution subroutines

Descriptions of individual subroutines

Depth-first tree searches

FACTOR
SFACT
LOAD
ELIM
CKSAME
ANAL
SANAL
ANALY
SOLVE
CRSAME

6.12 Input-output subroutines

6.1

6.2 Subroutine
6.3 Subroutine
6.4 Subroutine
6.5 Subroutine
6.6 Subroutine
6.7 Subroutine
6.8 Subroutine
6.9 Subroutine
6.10 Subroutine
6.11 Subroutine
Acknowledgements
References

*kk

Page No,

1. Introduction
We consider the efficient direct solution of very large sets of

linear equations
Ax = b (1.1)

whose matrix A is symmetric and positive-definite and can be expressed

as a sum

A= § 8K (1.2)
k

of matrices B(k) with non-zeros in only a relatively small number of rows
ahd columns. Normally B(k) is a stiffness matrix associated with a
single finite element, but problems occurring in other applications can be
habgled provided only that each B(k) has relatively few non-zeros (indeed
we could express any matrix in this form by taking one B(k) for every
non-zero). :

We anticipate that the matrix A will often be so large that we are
not able to hold it in main memory, even in packed form. Indeed we
expect that sometimes one or more of the matrices B(k) may contain too
many non-zeros to be held in packed form in main memory. However we do
assume that the number of main storage locations available is a modest
multiple of thke order n. For instance we hold in main memory the right-hand
side b, an integer work vector of length n and about 8 times as many
integer pointers as there are matrices B(k).

It is our intention that our.code be easy to incorporate in an

existing program as a replacement for its present code for assembly (that

~is the summation (1.2)) and solution. To make the code portable we have

used Standard Fortran, checked by the PFORT verifier (Ryder, 1974).

& e e s B DU Aeanca s MLJ\L&— LY

Bl

A11 input-output operations are performed through small auxiliary
routines which request the reading or writing of an array of variables from
or to a given file. Entries in the files are addressed exactly as if the
file were a Fortran array. Indeed in the preliminary version described

here the files actually are Fortran arrays. Our eventual intention is to

replace them by a virtual memory system written in Fortran. Since most
calls are soon followed by another call for adjacent entries in the same
file, such a system will be efficient. For this reason the present code
will run on a computer with a built-in virtual memory without excessive i
page thrashing.

To give a convenient and flexible interface to user programs we
require the user to specify the problem by a series of subroutine calls.
For instance each B(k) requires two subroutines to be called; the Tist of
rows (and colurns) containing non-zeros is specified by a call of INELV
and the non-zeros themselves are specified by one or more calls of INELR.
The order in which these subroutines are called is left almost entirely to

~ the user's convenience, our only requirements being that the list of rows for

a matrix B(k) must be specified before its real data and if several calls of :
INELR are made for one matrix B(k) then these calls-must be consecutive.
The method used is a generalization of the frontal method (see for
example Irons, 1970). Rather than seeking to order the variables for
elimination we seek to order the assembly (1.2). Since addition and
subtraction are associative operations, the elimination step

(1) (81, 4(0) a’\”-lag) . (1.3)

34; ie” %2p

may be performed before all assembly steps

M

af41) « 2 f8) & ol (1.4)

are complete for aij’ provided assembly is complete for the pivotal row
" (row 2). Ve actually perform the elimination operations (1.3)

associated with the pivot agi) immediately after the R.th row is fully

assembled. It follows that the elimination order is determined from the
i order of assembly, apart from the ordering of rows that become fully

assembled simultancously. We represent the assembly order by a tree, an
example of which is shown in Figure 1, and refers to the finite elements é

whose geometry is shown in Figures2-5. The first assembly is of I
E elements 1 and 2 and we call their union superelement 7. Similarly elements 3
and 4 are assembled into superelement 8. The

geometry corresponding to this stage is shown in Figure 3. Next elements 5 and 6‘

1

are assembled into super-element 9,super-elements 7 and 8 are assembled into

super-element 10 (gee Figure 4) and finally 9 and 10 into 11 (see Figure 5).

Figure 1 A simple assembly tree.

7 8
6
Figure 2 Origi ig
riginal elements Figure 3 Superelements at

level one of tree

10 9 11
Figure 4 S 'g' i
g lgez?eésments at Figure 5 Final superelement -

In referring to a tree such as that of Figure 1 we will say that node A

js a"son" of node B and node B is the "father" of node A if node B is one level

jn the tree below node A and if the superelement corresponding to node B

contains that corresponding to node A. Further we assume that different sons
.have different ages and will always draw them from left to right in order of
decreasing age. For example node 10 in Figure 1 has elder son 7 and younger son 8
A node without a father (e.g. node 11 in Figure 1) is called a "root", and -

a node without a son (e.g. node 1 in Figure 1) is called a "terminal".

{
f
i
i
t
§
f
!
i
i
i
i

vy

In our simple example we performed assemblies in the order

7 ={1,2}, 8 = {3,4}, 9 = {5,6},10 = {7,8}, 11 ={10,9}. However we could
equally well have perforiied the assembly 10 = {7,8} immediately after 8

had been assembled. The arithmetic operations are exactly the same but\
there is an organisational advantage in that the need to store stiffness
matrices 7,8 and 9 simultaneously is avoided and a stack can be used to hold

intermediate results. Its contents will successively be the setsof

8 9
{7} {7} {10} {10} {1 .

Such an order can be found in general by a depth-first search of the

matrices

tree. In such a search we begin at the root and go from node to node as
follows:

a) 1if the current néde'has a son not yet passed, go to the

eldest such son

b) otherwise, if the node has a younger brother go to it

c¢) otherwise go to the father
until we return to the root. For Figure 1 the nodes would be passed in the
order 11,10,7,1,2,7,8,3,4,8,10,9,5,6,9,11. Each time we return to a node we
perform operations corresponding to assembling the stiffness matrices that
corresponé to its sons, performing all possible eliminations and storing
the resulting matrix.

Since no node of the tree in Figure 1 has more than two sons (i.e.
nodes linked to it from above) the way the assembly is to be performed is
specified completely. The user is at liberty to provide such a tree, but
we normally expect less detail than this and provide subroutines that fill in
the detail (see section 6). For example the propellor shown in Figure 6

might have its elements grouped into blades and hub, as shown in the tree

of Figure 7.

.

Figure 6 A propellor

5 6 7 8 9 10

24

”

27

Figure 7 Tree for propellor

111213 14 15 16

25

17 1819 20 21 2.

26

By the time a superelement is assembled, we can eliminate all
variables internal to it, i.e. contained in no other elements. It is
therefore advantageous to choose groupings with large numbers of internal
variables. \le believe that such groupings are often easily provided from

the user's knowledge of the geometry of the structure.

Another feature of large structures is that they often contain
repeating sub-structures. For example if the three blades in Figure 6
are identical then each (with suitable renumbering of the nodes) could
be represented by the tree of Figure 1. There are obvious advantages in
exploiting such features, and in these cases we join trees through "same
interfaces" as illustrated for our propellor in Figure 8. HMNotice that the

tree with root 32 represents any one of the blades,

9 10
28 29
31 30
32
AN R
7
PRl e
/ \ N
\ S
\ N
25 26

27

Figure 8 Trees and same interfaces for the propellor of Figure 6.

e

For each same interface the user must specify the
correspondence between the variable names used in the single .
original (local names) and the variable names used in its copy
in the overall structure (global names). For instance our propellor
blade might have variable names as illustrated in Figure 9. In the
overall structure blade l'might have the same names and in blade 2 the

names might correspond thus (2:22, 4:24, 5:21, 6:27, 7:28, 8:29,

9:32, 10:33, 11:30, 12:34).

S S
2 5 8 n
6 9 12

Figure 9 Variables of the original propellor blade :

Besides the obvious storage advantage implied by the use of same
interfaces, computing time may be saved by performing elimination
operations once instead of several times. Similar computing advantages
acrue if design changes are made in part of a structure, provided data
associated with the old structure is preserved. For example if changes only
in the hub of our propellor are made then everything associated with the
tree repré;enting the blades would still be valid and not need recomputing.
Same interfaces provide natural points for the storage of partially factorized
matrices and we give the user no other means of specifying such points.
HWe therefore recommend Athe user tﬁ‘:ktroduce extra same interfaces for
substructures that may remain unchanged from one run to another, even though

they may not be repeated in the overall structure.

We call each superelement that corresponds to “he root of a tree

a "root" superelement. Every same interface must point to a root
superelement and the overall problem must be one too. With each we
associate a (possible empty) set of variables called "boundary" variables.
If these variables are permuted to the end then the overall matrix A and

vector b take the form

(\” Alj (b‘> (1.5)
A b,

and the problem we actually solve is

(A4 Ayz) x]> = b (1.6)
e

given values for the boundary variables Xoe In a heat-conduction
praoblem, for example, the boundary variables might be measured
temperatures on the boundary of the region. We do not require the user
to make the permutation of equation (1.5), but do require him to
specify which variables are boundary variables.

For othur superelements a very similar role is played by any of its
variables that are included in other elements and superelements in the
overall §tructure and we call these boundary variables too. For
the blade of Figure 9 the variables 10,11,12 are boundary, for
example. In a root superelement that is used at same interfaces we
judge whether a variable is boundary according to its disposition
in the overall structure. We permit the solution of equations
associated with any root superelement, interpreting the summation in

equation (1.2) as being over those elements in the superelement. Thus

equations associated with sub-structures may be solved separately given

1"

values for the boundary variables.
The overall problem may also have an associated set of boundary

a variables, although we expect this to be unusual. The values of these
variables must be specified for a solution to be obtained. It may be
more convenient to do this than to eliminate them from the overall
problem, but the factorization will be slower and require more storage
because of the extra calculations associated with these variables. These
calculations are, of course, necessary if it is planned to keep the
factorization for later inclusion through one or more same interfaces in
a bigger overall problem.

We use numerical names for the elements and variables. Element and
superelement names must be distinct, although when same interfaces are in
use the same element may of course appear several times in the overall
structure. A1l the variables in the overall structure ﬁust have distinct
names, but local names used within a root superelement across a same
interface are regarded as private to that superelement and may be identical

' with names used globally.

2. Calls of input subroutines

3 To specify a problem, the user must first call INIT, an initializing
subroutine and then make a series of calls to the four subroutines:

1) INELV to specify which variables are associated with a given element

or are on the boundary of a root superelement.

2) INELR to specify the real data associated with an element (i.e. to

specify one of the matrices B(k) of equation (1.2)).

_INSUP to specify which elements and superelements belong to a given

superelement.

12

it it bcse et aiaateaic i

e

4) INSAME to specify that a given superelement is identical with a
given root supere]ement./ The correspondence between the "local"
names used for the variables in the original and the "global" names
used in the overall problem must also be specified.
The order in which calls of the subroutines INELV,INELR,INSUP and INSAME
are made is free to the user's discretion, except that & call of INELR may
not be made before the call of INELV for the same element and if several
calls of INELR are made to specify a single matrix B(k) then these must be
consecutive.
A11 our subroutines contain an integer argument FLAG, which is used
to indicate a prompt (positive values), a successful entry (zero value
or an error condition (negative values). The full list of error
conditions is given in section 5.
We now specify the action of the five input subroutines in detail.

2.1 Subroutine INIT

Subroutine INIT is called to specify the fi]es to be used and to
initialize data in main storage. A total of four files are used, two of
which are for permanent storage of data about the problem and two for
workspace. We have found it convenient to separate real and integer
storage, so one of the permanent files is for reals and one for integers
and simi]ar]y for the workspace files. It is our intention that these files
eventually be out of main storage and then INIT will be used to specify
their unit numbers. For the present COMMON blocks CRF,CIF,CRF2,CIF2 are
used for the permanent reals and integers and the working reals and
integers, respectively. Any four distinct integers are suitable for use

when INIT is called.

TR

The arguments and their purposes are as follows

SUBROUTINE INIT(MAXSUP,IIF,IRF,IRF2,LIIF,LIRF,LIIF2,LIRF2,FLAG).

Input-only variables

MAXSUP (INTEGER) must be set to the 1afgest numerical name to be used
for an element or superelement.

ITF,IRF(INTEGERs) must be set to the file numbers of the main files for
“integers and reals, respectively.

11F2,IRF2(INTEGERs) must be set to the file numbers of the work files
for integers and reals, respectively.

LIIF,LIRF,LIIF2,LIRF2 (INTEGERs) must be set to the lengths (in
Fortran storage units) of the four files (see sub-section 4.1 for
some guidance on these lengths).

Output-only variable

FLAG(INTEGER) ﬁeed not be set by the user. It is assigned the value 0
after a successful entry. If any of the other arguments is
negative or if MAXSUP is too large, then the initialization is not
performed and FLAG is set to -18.

2.2 Subroutine INELV

Subroutine INELV must be called for each element to specify which

variables it involves. It may also be called for root superelements to

'specify which variables are "boundary variables" (i.e. are on the boundary

of the overall problem or may be involved in'other elements and superelements
" when the root superelement is included at a same interface in a larger

superelement). The 1ist may not contain any repeated variables. It is

gi taken to be empty for any element or root superelement for which there has

been no INELV call since the last call of INIT. It replaces any list

previously input for the same element.

14

The arguments and their purposes are as follows:
SUBROUTINE INELV(NAME,NUM,LIST,FLAG)

Input-only arguments

NAME (INTEGER) must be set to the numerical name of the element of
superelement.

NUM(INTEGER) must be set to the number of variables. If it is non-
positive then the 1ist is taken as empty.

LIST(INTEGER array of length NUM) must be set to contain the 1ist of
numerical variable names. Repetitions are not permitted.

Output-only argument

FLAG(INTEGER) need not be set by the user. It is set to zero after a
successful entry. If the name of the element or any of the names
of its variables is outside the permitted range, then a diagnostic is
printed and FLAG is set to -10. If a variable is repeated then a
diagnostic is printed and FLAG is set to -19. If the main integer

file is too short then FLAG is set to -5. Under all these error

conditions a message is printed and the list is ignored.

2.3 Subroutine INELR

Subroutine INELR must be called at least once for each element
in order to specify the associated matrix B(k) (see equation (1.2)). It
is assumed that B(k) has non-zeros only in those rows and columns that
correspond to the variable list previously input for the element and the
upper triangular part of the submatrix of these rows and columns is input
by rows. If, for instance, the 1ist is (3,7,1) then the non-zeros must
be input in the order b33,b37,b3].b77,b7],b]]. If the number of non-
zeros is very large, then the 1ist may be broken into parts and input by
consecutive calls of INELR. The break points may be chosen to the user's

convenience.

15

]

[y — S —

The arguments and their purposes are as follows:
SUBROUTINE INELR(NAME,ELEM,LEN,FLAG)

Input-only arguments

NAE(INTEGER) must be set to the numerical name of the element.

ELEM(REAL array of length LEN) must be set to contain the non-zeros being
input.

LEN(INTEGER) must be set to contain the number of non-zeros being input.
A non-positive value is taken to indicate an empty set of non-zeros.

'Outpyt-only argument

FLAG(INTEGER) need not be set by the user. It is set to zero after a
successful entry, and to one of the values -7,-10,-14,-16 in
the event of an error. Error conditions -7 (real file too small),

-10 (name of element out of range) and -14 (data for previous element

not complete) causes a diagnostic to be printed and the real data
to be ignored while error condition -16 (too much data for element)

causes a diagnostic message to be printed out but the data is stored.

2.4 Subroutine INSUP

Subroutine INSUP must be called for each superelement that the user
wishes to specify. Calls may be made in any order. For instance if one
superelement contains another it is not necessary for the inner superelement

to have already been specified. Each call must specify a set of members

to be added to a given superelement. Any that are present in another super-
element are removed from that sdperelement. - It is expected that normally
all the members will be specified in one call but several calls may be made. |
Repeated names are permitted, later occurrences being ignored. The user
may request that all elements and superelements not already included in a

t 4 . superelciient be taken, and in this case he does not specify any 1ist of

l names.

——

16

The arguments are as follows:
SUBROUTINE INSUP(NAME,NUM,LIST,FLAG)

Input-only arguments

NAME (INTEGER) must be set to the numerical name of the superelement
whose members are being specified,

NUM(INTEGER) must be set to the number of members of NAME being specified,
or to any non-positive value if all elements and superelements not
already in a superelement are wanted.

LIST(INTEGER array of length NUM). If NUM<O then this array is not
used, but otherwise it must be set to contain the numerical names
of the elements and superelements that are to be members of super-
element NAME.

Output-only argument

FLAG(INTEGER) need not be set by the user, It is set to zero after a
successful entry., If the name of the superelement or any of its
members is out of range then a diagnostic message is printed and
FLAG is set to -10, the names in LIST that are within range being
used even if one or more is out of range.

2.5 Subroutine INSAME

Subroutine INSAME is used to indicate that a given superelement is
identical with a given root element or superelement. The correspondences
between all the variable names used in the root-superelement -(local -
names) and the names used fqr’its copy in the larger superelement (global
nameé) must be.specified. Numeriéa] names used as local names are
regarded as private to the root superelement and may be reused as global
names. The element and superelement names, however, are not reusable,

We refer to the correspondence established as a "same

interface".

The arguments are as follows:
SUBROUTINE INSAME(NAME,NAM[OR,NUM,LIST,FLAG).

Input-only arguments

NAME (INTEGER) must be set to the numerical name of the superelement.
NAMEOR(INTEGER) must be set to the numerical name of the root super-

element to which superelement NAME is identical.

NUM(INTEGER) must'be set to the number of variables in the root super-
element,

LIST(INTEGER array of dimensions (NUM,2))must be set to contain the
.global variable names in LIST(I,1), I=1,2,...NUM and corresponding
local names in LIST(I,2), I=1,2,...NUM,

Qutput-only argument

FLAG(INTEGER) need not be set by the user, It is set to zero after
a successful entry., If NAME,NAMEOR or any of the variable names
in LIST is out of range then a message is printed and FLAG is set
to -10. If NAMEOR is not a root-superelement then a message is
printed and FLAG is set to -12. If neither of these errorsoccurs
the interface is stored and then a check is made as to whether the
root superelement NAMEOR contains any variables not included in
LIST(I,Z),I=1,2,...NUM. If it does then a message is printed and
FLAG is set to -13. If the check cannot be completed because
array ELVAR is too small then a message is printed and FLAG is set
to -4. &

3. Calls of factorization and solution subroutines

Ohce the matrix A of equation (1.1) has been specified by a series
of calls of the input subroutines a symmetric permutatior ¥ it may be

factorized as

|
|

PTAP = LU (2.1)
|

by a call of the subroutine FACTOR, provided it is associated with a
root superelement. If the superelement has p boundary variables (see
section 2.2) then U is upper triangular except in its last p rows and

columns and L is unit lower triangular with elements:

2ij =0, i<

Ly =1 (2.2)
lij = uji/ujj’ i>j, j<n-p

21‘3’ =0, i>j, j>n-p

Once this factorization is established, the equation (1.1) may be solved by

calling subroutine SOLVE which performs forward and backward substitution.
If there are any boundary variables then SOLVE requests their values

prior to back substitution,

Subroutine FACTOR begins by inserting extra superelements to ensure

|

that no superelement has more than two comanent elements. This is done usﬁ
a minimal degree criterion, described in section 6. No real data is i
required for this analysis and indeed we recommend that no calls of f
INELR be made until after -the first FACTOR call. It will then discover 5
what extra superelements are needed and calculate the number of non-zeros ;f
inU ana the number of real operations (multiplies and divides) necessary
to find it. These quantities are stored in COMMON (see section 4). It
then commences work on the.real numbers, returning control to the user !
whenever it wants real data.that is not available. The user is

expected to make the relevant call of INELR and then recall FACTOR. One

advantage of using this facility is that the real data will be stored

in the order that it is required, whereas it is likely for

essentially random access to be needed if it is all stored on file

beforehand. Another advantage is that an estimate of the work needed

is provided early and might be used to terminate the run if the estimate

is very high,

After FACTOR has been called, further calls of the input subroutines
may be made to specify other parts of the overall problem or change
existing parts. A subsequent call of FACTOR will not need to refactorize
matrices associated with root superelements unchanged since previously
factorized. MNote that a root superelement is factorized both by a direct
call of FACTOR anc by virtue of being included via a same interface in a

root superelement for which FACTOR is called.

We now specify the way subroutines FACTOR and SOLVE are called.
3.1 Subroutine FACTOR

Subroutine FACTOR factorizes the matrix associated with a root super-
element and has the following arguments.
SUBROUTINE FACTOR(NAME,FLAG).

Input-only argument

NAME (INTEGER) must be set to the numerical name of the root superelement to
be factorized. ’

Input-output argument

FLAG(INTEGER) must be set non-positive for initial entry. It has the
value zero after a successful entry and a negative value in the
range [-15,-1] in the event of an error (meanings are listed in

section 5). A positive value of FLAG indicates a request to the
user to lToad real data including that for element FLAG by one or more

calls of INELR and then recall FACTOR with FLAG unchanged.

20

—

3.2 Subroutine SOLVE |

Subroutine SOLVE solves the set of linear equations |

Ax = b i
associated with a root superelement. If the superelement has no boundary
variables then a single call suffices but if there are any boundary variables

then two calls must be made, one for the forward substitution operations and

one for the back substitution with the correct values for boundary variables
being set between the two calls., No change may have been made within the super-
element since a call of FACTOR for it or for a superelement that contains it
through a same interface.
The argumenté are as follows:
SUBROUTINE SOLVE (NAME,MAXV,NSOL,B,FLAG).

Input-only arguments

NAME (INTEGER) must be set to the numerical name of the root super-

element associated with A,
MAXV(IHTEGER) must be set as least as large as the largest numerical name

of a variable contained in superelement NAME,

NSOL (INTEGER) must be set to the number of columns in b.

Input-output arguments

B(REAL array of dimensions (MAXV,NSOL)). On initial entry (FLAG=0),

h

B(1,3)»3=1,2,...,NSOL must be set equal to the it row of b for

each variable i contained in superelement NAME. On second entry

th row of

(FLAG=1),B(1,3),3=1,2,:..,NSOL must be set equal to the i
x for each variable i on the boundary of superelement NAME and the
rest of B must be left unchanged sfnce return from the first entry.
On final return (FLAG=0), B(i,j),3=1,2,...,NSOL will be equal to the

ith row of x for all variables in NAME, No other components of array

B are altered.

21

- x o e -
! | ,

FLAG(INTEGER) must be set to zero before initial entry and is zero
after successful solution, It is set to 1 after forward substitution
if NAME has any boundary variables and in this case the values of
the boundary variablesmust be p]aéed in B and SOLVE recalled with
FLAG still equal to 1. Error conditions are indicated by the
following values of FLAG
-10 HAME out of range.

-15 There is a zero pivot,
=17 MAXV or NSOL is non-positive.

-20 NAME has not been successfully factorized.
4, Storage
Information about the problem is held in two COMMON blocks called
CRF and CIF which hold files of reals and integers, respectively and two
. COMMON blocks called CPOINT and SCALAR. This store is altered by the user
3 calling the input subroutines (see section 2) to specify his problem or the
! subroutine FACTOR (seg section 3) to factorize a matrix A associated with

it and store the factors. A run may be terminated and restarted later

provided that before termination these four COMMON blocks are filed and
restored before restarting. In addition the COMMON blocks CSTACK,CELVAR,
CA and CVAR are used for workspace and the COMMON blocks CRF2,CIF2 are
used for workspace files. On most computer systems the user may increase
the sizes of these arrays simply by declaring the required larger sizes

in his program, but for conforman;e to standard Fortran he must make the

i same changes everywhere the arrays appear.

22

The purposes of the variables in COMMON block SCALAR (a1l INTEGERs) are |

as follows

LSTACK,LPOINT,...LVAR hold the last dimensions of the arrays STACK,...VAR.
IF holds the file number of the main integer file. %1
IFFR holds the position of the first free element in this file. |
LIF holds the length in Fortran storage units of this file.

IF2,...LRF2 hold similar information for the integer work file, the

main real file and the real work file, respectively. [

INELRS holds the number of reals required to complete input of the !f
last element matrix. E%’

INELRN holds the name of the element whose real data was last input. ifa

NZ s sef By FACTOR to the number of reals it will add to the real file -;;
between original call (IFLAG=0)Iand final return (IFLAG=0). It is l

available on return with FLAG20. |

NOP is set by FACTOR to tHe numbers of real multiply and divide
operations FACTOR will perform (availability as for NZ).
"MAXLEN is set by FACTOR to the largest number of variables in an

element or on the boundary of a superelement (availability as for NZ).

o

MAXEL is the Targest name so far used for a generated superelement.

NSTACK is used by FACTOR when retuﬁning with FLAG>0.
The array POINT, contained in COMMON block CPOINT, holds four integer

pointers for each element and superelement. They are the following |4

23

— s . . sl " Py o At S S VTP USROS DY, W PRI, 1) 1, S STE WS o0 (NS

\

b) If negative: father in tree.

POINT(1,IE): a) If positive: next younger brother in tree.
c) If zero: root of a tree.

POINT(2,IE): a) If positive: eldest son in tree.
b) If negative: pointer to original (same super-element).

POINT(3,IE): Pointer to integer file (value one for a null pointer).

POINT(4,1E): Pointer to real file (value one for null pointer).
This is negated for elements not yet part of a factorized
superelement.

Entries on the main integer file in COMMON block CIF are

a) for elementsand root superelements

1. Number of variables in element or on boundary of superelement.

2. List of numerical names of these variables.

3. Pointers to the first and last entries on the real and
integer files corresponding to eliminations associated with this
root (supereiements only). They are in the order first real
first integer, last real, last integer.
b) for non-root superelements whose boundary 1list is shorter than the
union of the boundary Tists of its components.
1. Total number of variables.
2. List of numerical names of variables (internal names %irst).
3. Number of variables that are internal,
c) for same superelements
5 : 1. Number of variables in superelement.
2. List of global variable names.

3. List of corresponding local variable names.

Entries on the main real file in COMMON block CRF are: -
a) for elements and root superelements with non-empty boundary:
the upper triangular part of the stiffness matrix B(k) held by Eows.

b) for non-root superelements whose boundary 1ist is shorter than the

A union of the boundary lists of its two components: the rows of the

factor U that correspond to the elimination of the internal variables.
24 j

i . S . s b Sl e o R B e T - s £k i, il Salibiitol St) il Al

Eaatd o r e v v . ’ i o
!Fr W—— - . ‘ — T M

g Entrics of type b) assocfatcd with a particular tree are held T

‘ adjacently on béth the real and integer file in the order corresponding
to depth-first search of the tree, with one exception: whenever the
search encounters a same interface pointing to another tree that may

f involve eliminations (i.e. one that is not a simple element) a single
integer entry of -(root name) is inserted. A1l these entries may
therefore be regarded as a single large elimination entry associated with
the root, and entry a)3. for the root gives pointers to its beginning

and end.

4.1 Sizes of arrays in COMMON

The package uses workspace in arrays in COMMON blocks and the
purpose of this section is to explain briefly how each is used and what
size is likely to be adequate. Throughout the package checks are made
that array bounds are not exceeded and error messages are output and
FLAG is set negative (see section 5) if any are exceeded.

The blocks with their default sizes are as follows

] © 1) COMMON/CSTACK/STACK(100)
‘ INTEGER STACK

This array is used to hold a stack of node numbers beginning
with the root and stretching through successive sons, sons of sons,
etc. including cases where same interfaces are passed. Its length
must therefore exceed the total number of tree levels. A (usually
pessimistic) bound on the neéessary size is the total number of
elements, root superelements and same interfaces.
| 2) COMMON/CA/A(10000)

. REAL A g
INTEGER ISUP, ISVAR,LLVAR 4
EQUIVALENCE (A(1),ISUP(1),ISVAR(1),LLVAR(1))

The array A is used as real workspace by subroutines FACTOR and 1

SOLVE. A sufficient size is three times the greatest size of any

- P - e il }

3)

4)

element or super-element (which size is recorded in MAXLEN of
COMMON/SCALAR/), but for efficiency much greater sizes are

recommended.

The equivalent {nteger array ISUP is used by ANAL1 to insert
extra nodes in any part of the tree that consists of a father and
several sons, and the way storage is used is explained in section
6.9. Storage may Here be a problem if any node has an excessive
number of sons. Further calls of INSUP to split the tree manually
is an alternative to increasing the array size.

The equivalent integer arrays ISVAR and LLVAR are used
by subroutines SFACT and SANAL (see sections 6.3 and 6.8) and must

have length at least the greatest numerical name used for a variable.

COMMON/CPOINT/POINT (4,250)
INTEGER POINT

Array POINT holds - four pointers for each trée node, i.e. for
each element and super-element (see earlier in this section for
details). Therefore its dimension must be at least as big as the
biggest numerical name ever used for an element or super-element.
The user specifies that his names lie in the range [1,MAXSUP] and

extra names used for tree nodes created by the package begin at

MAXSUP+1. The number created cannot exceed MAXSUP+(number of elements

for which static condensation takes place). A safe size for the
second dimension of POINT is therefore 3*MAXSUP.

COMMON/CELVAR/ELVAR(300)
INTEGER ELVAR

Array ELVAR is used for holding 1ists of variables associated
with elements and super-elements and performing merges between them.
A length of three times the longest such 1ist (MAXLEN of
COMMON/SCALAR/) is always sufficient. It is also used for a buffer

26

by SOLVE so there is some advantage in increasing its size beyond this

lowest limit.

5) COMMON/CVAR/VAR(200)
INTEGER VAR

Array VAR is used to perﬁit the rapid manipulation of lists of
variable names. All its elements are set to zero by subroutine INIT and
are normally reset to zero after use by any other subroutine. It is used,
for example, by subroutgne INELV to check for duplicate variable names.

For each name M in the 1ist, VAR(M) is checked for the value zero and is

then recet to 1; if VAR(M) is non-zero when it is checked then variable

M must have already occurred in the list. When all names have been

checked the 1ist is scanned again to reset the non-zeros values back to

zero. The work performed is thus proportional to the length of the list.
VAR must have length at least the largest numerical name used for

" * avariable. This is checked by subroutine INELV.

- 6) COMMON/CIF/IFL(5000)

| COMMON/CRF/RFL6000)

=7 COMMON/CIF2/1IFL2(1000)
COMMON/CRF2/RFL2(1000)
REAL RFL,RFL2
INTEGER IFL,IFL2 ¢

Arrays IFL,RFL,IFL2,RFL2 hold thé main integer file, main

real file, integer work-file and real work file, respectively. The
amount actually wused in each can be monitored by inspecting
IFFR,IF2FR,RFFR,RF2FR in COMMON/SCALAR/ since they point to the first
free location in each array. We.recomend the user to adjust sizes
in the 1ight of his exnerience on his class of problems.

The largest array is aimost always the main real file since

this has to hold all the original element stiffness matrices and
the factorized forms. The number of reals added to the file by

FACTOR is givén in NZ and is available on an intermediate return

el

" —— i s i Deae B vl

.kFLAG>O). The real wofk file can usual]y.be s{éafficantly shorter,
. say by a factor of 5. The main integer file can also usually be

shorter than the main real file. The ratio depends on the sizes of

the original elements. With 60 viriables in a typical element we

have found it to be less than a tenth of the length, and with

12 variables in a typical eiement to be less than a quarter of the
length. The integer work file is even smaller so is unlikely to

~ cause problems.

i) 5. Summary of error conditions

If any of the subroutines detects an error, then a diagnostic
is printed and its argument FLAG is set to a negative va]ue.l The
following is a full list of such error conditions.

-1 Array STACK is too small.
-2 Array A is too small.

-3 Array POINT is too small.
-4 Array ELVAR is too small.

-5 Main integer file is too small.

-6 Integer work-file is too small.

-7 Main real file is too small,

-8 Real work-file is too small.

-9 FACTOR called with FLAG out of range.

=10 A name'is out of range.

=11 Real data not given to FACTOR when requested.

-12 Name used in call of FACTOR or for original of same set

of superelements is not a root superelement,

P i co o i e s i i ittt B cgneit % S

-13 Faulty same interface (one or more variables missing).
-14 Real data is incomplete for an element.

-15 A zero pivot has been found,

=16 Too much real data supplied for an element.

=17 MAXV or NSOL non-positive on call of SOLVE.

-18 Faulty call of subroutine INIT.

-19 Variable repeated on call of INELV,

=20 Call of SOLVE for superelement that has not had a successful
call of FACTOR.

6. Descriptions of individual subroutines -

Our purpose in this section is to give brief descriptions of the
way the subroutines work. The initialization subroutine INIT and the
input subroutines INELV,INELR,INSUP énd INSAME are straightforward and
need no description beyond that already given in section 2. The task
performed by FACTOR, however, is complicated and we have found it
convenient to subdivide it into a total of eight subroutines. Separate
descriptions of these are given in sub-sections 6.2 to 6.9, following a
descfiption in Sect%on 6.1 of how the many depth-first searches used by

these subroutines are coded in Fortran. SOLVE and the small subroutine

it calls also deserve some description and we do this in sub-sections 6.10

and 6.11. Almost all subroutines include calls to subroutines
I0GETI,IOGETR,IOPUTI,IOPUTR to get from or put on file integer or real
.data, and these are described in sub-section 6.12.

6.1 Depth-first tree searches

Most of our subroutines perform one or more depth-first tree searches

and the purpose of this sub-section is to explain how this is done.

‘.._ T e,

TP AT T T T Ty Ty

TRy T

Figure 10 Tree for propellor with some additional super-elements.

We illustrate with the tree shown in Figure 10, which is that of Figure 8
with additional nodes inserted so that each root node has one son and no

node has more than.two sons, Such additional nodes are automatically

inserted by ANAL1, called through FACTOR. The tree is stored in
POINT(1,*) and POINT(2,-), as detailed in section 4. The values of these
pointers for part of the tree of Figure 10 are shown for illustration in

Table 1.

27

IE POINT(1,IE) POINT(2,IE)

1 2 0
2 -34 0

3 g 0

4 -35 0

23 24 34

, ; 24 -36 -32
25 26 -32

; 26 -37 -32

s 28 29 5
29 -31 7

Table 1 Some of the pointers corresponding to Figure 10

To perform a depth-first tree search without crossing same

interfaces (which for the example of Figure 10 would involve nodes
27,38,36,23,34,1,2,34,35,3,4,35,23,24,36,37,25,26,37,38,27) involves code |
of the form F

3 TE=NAME
DO 70 NSCH=1,LPOINT
1=POINT(2, IE)

1F(1)20,30,10
C .
C IE IAS I AS SON {
10 IE=I

GO TO 70 ,
c
¢ IE IS A SAME INTERFACE POINTING TO ROOT SUPERELEMENT -I.
20 GO 70 40
C
C IE IS AN ELEMENT |
30 GO TO 40 :

BROTHER IS FOUND
0 DO 60 J=1,LPOINT
TIE=POINT(1,1E)

C ¢

C BACKTRACK UNTIL A NODE WITH A YOUNGER
C

4

IF(1E)50,80,70
50 IE= -IE
60 CONTINUE
c
70 CONTINUE
80

DO loops are used so that the loop structure is apparent. It is not
expected that they will ever reach termination since LPOINT is the

maximum number of tree nodes. The main loop DO 70 is executed once for

each tree node. If the node has a son then it is replaced by the son.
Otherwise the loop DO 60 is used to backtrack through successive fathers
until a node with a younger brother or the root is reached.

Code of this kind appears in many places. The exact action taken
as each node is passed varies from place to place but the overall
structure remains.

Some modification is needed if we wish to cross same interfaces
because we do not store at root super-elements any 1ist of same
interfaces in which they are involved. In this case we use the array

STACK to hold a stack of integers consisting of the current element, its

father, its father's fsther,..., the root. We regard the father-son

relation as (temporarily) holding across any currently active same |
interfaces. The backtrack step then consists of popping the stack |
rather than using POINT(1,-).

6.2 Subroutine FACTOR

Subroutine FACTOR performs two depth-first tree searches. The
first checks whether any node has more than two sons, whether any root
node has more.than one son or has a son that is an element or same
interface. Any of these conditions indicate that additional nodes need to
be inserted. The actual insertion is done by subroutine ANAL1, which is
called through subroutine ANAL. Therefore a flag (IANAL) is set during
the depth-first search if any suéh additional noﬁes are nceded and ANAL

is called at the end of the search if this flag is set.

This depth-first search also sets positive the signs of POINT(3,-)

and POINT(4,-), which are used as flags at various places. An
important example is that a negative value is placed in POINT(4,NAM§)
during any call of INELV,INELR,INSUP or INSAME for node NAME to indicate
that information stored in association with it has (probably) changed.
Any root super-element whose tree contains such a node (even indirectly
throughvsame interfaces) will require associated matrix factorization
operations to be performed. Therefore during this first depth-first
search any node with a son having a negative value for POINT(4,-) has
its real file pointer replaced by ihe dummy value -1. Since this
pointer is itself held in POINT(4,-), the negative value will result in
the same action occurring for all its ancestors. In particular this will
happen for all root super-elements containing the change and hence we can
~ recognise where refactorization is needed.

On completion of this search, if POINT(4,-) is positive for the
root of the tree being treated, then no change can have taken place since
the last call of FACTOR and so an immediate RETURN is possible. Otherwise
a call of ANAL is made if necessary and then a second depth-first search
is executed. Each same interface encountered is checked by calling
CKSAME (described in sub-section 6.6) and the interface is crossed only
if the value of POINT(4,°) for its root indicates that it needs
treatment. On returning to a same interface that has been crossed or on
returning to the original root super-element the subroutine SFACT is
called. This performs the actual factorization of the matrix associated
with a root super-element on the assumption that the matrices associated
with root super-elenents contained in it through same interfaces have
been factorized. Calling SFACT during a depth-first search ensures that

this condition holds. SFACT itself is described in sub-section 6.3.

33

If called for root node IR, it leaves a positive value in
POINT(4,IR) to act as a flag to prevent refactorization if the same root
super-element is encountered later in the depth-first search.

6.3 Subroutine SFACT

Subroutine SFACT is called by FACTOR and factorizes the matrix
associated with a root super-element on the assumption that all root
super-elements contained in it through same interfaces have been
factorized. If such an embedded fﬁot super-element has m boundary
variables then a stiffness matrix having m rows and columns is associated
with it and can be treated as if it were a stiffness matrix associated
with an original element (apart from the change from local to global
variable names). It follows that depth-first searches are possible
using the tree pointers stored in array POINT, as in the code of sub-
section 6.1, and that the code is little more complicated than it would be
- for a super-element containing simple component e]éments.

' The first task of SFACT is to identify the pivotal sequence. The .
order in which elements (or super-elements) are amalgamated into larger
super-elements is determined by a depth-first tree search during which
an amalgamation is pérformed every time a father is reached from his
youngest son.- These amalgamations are first performed symbolically using
index lists only. A stack is used to hold thoseAlists that have been read
or constructed.but are not required immediately. As each terminal
node is reached the index list of the corresponding element is loaded
onto the top of the stack. At each back-tracking step to a father from
his youngest son, the top two lists on the stack correspond to his two
. sons. These lists are removed from the stack, then merged and components
.'corresponding‘to variables internal to the resulting super-element are

removed. The resulting 1ist is placed on the top of the stack. A variable

34

e s ittt b s

CREE I

.stack we use the integer working file.

can be identified as internal by the fact that it does not appeér . | "*‘!
elsewhere in‘the stack nor in the lists of elements reached later in the
search nor in the boundary list of the root. A preliminary tree search
is therefore necessary to find the last occurrence of every variable and
it is convenient to regard the boundary list of the root as the last list
encountered. It is also necessary to have a pointer for each variable
to its first occurrence on the stack. As each variable is found to be
internal to a super-element, it is placed next in the pivotal sequence

so that the complete sequence is known at the end of the search.

An array (ELVAR) in main storage is used to perform the merging of
index lists, and it is convenient at times to regard it as the top
member of the stack. Each element index list is first read into ELVAR
and is transferred to the stack itself only if another stack entry on
top of it is anticipated. Similarly once a merged 1ist has been
constructed in ELVAR and variables corresponding to internal variables

have been removed, it is left there until a stack entry on top of it is

expected. If, on the other hand, the next operation is another merge
then the top entry of the actual stack (which is really the second stack

entry) is also loaded into ELVAR ready for the merge. For the actual

On the completion of these'operations the position in the pivotal
sequence 6f any variable M involved will be stored in VAR(M) and the
numbe} of eliminations associated with tree node IE will be stored
(temporarily) in POINT(3,IE).

The actual elimination is performed during a final tree search. A

stack of reals is held in the real work file. As each terminal node is

reached the associated stiffness matrix is permuted to pivotal order and

loaded onto the top of the stack by subroutine LOAD (see sub-section 6.4) and

"""""lllli--..__ ——— — ' — —_— . : Sl
‘ as each father node is reached the associated assembly and elimination

operations are performed by subroutine ELIM (see sub-section 6.5). Also
whenever a terninal node that is a same interface is reached then an entry
on the main integer file is made consisting of the single integer which is

} the negation of the name of the root super-element involved, unless this is

i a simple element. This permits the forward and back substitution operations
of subroutiﬁe SOLVE to be performed under the control of file entries

without a tree search.

6.4 Subroutine LOAD

t Subroutine LOAD is called by subroutine FACTOR to read an element
stiffness matrix, permute it to correspond with the pivotal order and place
it on top of the stack.. The stack itself is held in the form of integer
entries on the integer work file and real enfries on the real work file.

" The first task of LOAD is to read the length, LEN, of the list of

variables associated with the element under considevation, then read the

list itself, permute it to pivotal order and output the permuted 1ist to the

integer work file. To permit successive entries to be later read from the
top of the stack without storing additional pointers, the value of LEN itself
is written immediately after the permuted 1ist. During the sort the
original positions of the variables in the'permuted list are stored, for use
when permuting the reals.

The reals ﬁust now be permuted without necessari]y there being enough
workspace to hold them all. The upper triangular part of the matrix is held

by rows on file and to find all elements of a particu]ar'row of the matrix,
i th

say row i, requires a scan of the i column of the upper triangle as well é

th

as the i row (see Figure 11). We have chosen to keep LEN locations in

36

¢—— LEN ——

Figure 11 Scanning the elements of a whole row

work-array A iree for creating the permuted rows and another LEN locations

free for reading the corresponding unpermuted row, while using the rest to

hold as much as possible of the unpermuted matrix. We read each row
explicitly from file only if it is not already stored in A. For each element
of the permuted row we determine whether it is held in A and read it
explicitly from file ff it is not. The rows are written out one-by-one.

It can be seen that the efficiency depends on ample space being available in A,
but execution can continue provided it has length at least 2*LEN.

6.5 . Subroutine ELIM

Subroutine ELIM is called to perform the assembly and e]imination'
operations assbciated vith a node of the tree. The node may have a single
son, in which case no assembly is necessary, but eliminations (corresponding
to static condensation) are probably required. = Normally, however, the node

has two sons and assembly of the corresponding matrices is required.

37

—

The index 1ist of the elder (or only) son is first reéd.‘ Iﬁ tﬁe sihéle
son case no merging of integers or of reals is necessary, but to give
consistency with the result in the two-son case the reals are copied
across from the work file (which holds the stack) to the main real file.

In the two-son case the second index list is read and is merged with
the first. During this merge the original index lists are overwritten by
the positions of the corresponding variables in the merged 1ist, since
these are required for the merging of the reals. Note that both index
lists will be in pivotal order since this‘is how they are always left by
LOAD and ELIM, so a single merge (without a sort) is adequate.

For the actual merge the array A is divided into three parts of equal
length. The first part is used to accumulate rows of the merged matrix and
the others hold rows of the original matrix. The merging is performed
row by row. If there is not enough room for the whole of a row of the
merged matrix, then those rows that have been constructed are output.
Similarly if the whole of the corresponding row of either of the original
matrices is not available, then as much as possible of the remaining matrix
is read in. The resulting merged matrix is written to the real file.
Notice that in a large case the records read and written will be long and,
apart'from a little overlap between reads, there is no unnecessary reading
or writing.

The actua{ elimination operation§ are performed in several passes
during each of which as many eliminations as the size of array A permits are
executed. Each begins by copying the matrix from the main file to the
stack. During the sequence of eliminations data is read from the stack
and the modified data is written to the main file. The pass begins by
reading as much of the matrix as possible into array A, and each row in turn

has‘a11 relevant elimination operations applied to it. If all the rows

38

i e Ml it i il R R s o e, - o

to be used as pivotal are available at this time, and there is enough
additional space for at least one more row, then the pivotal rows are written
out once they have been calculated but are.he]d at the front of the array.
The rest is used as a buffer for processing the remaining rows. If

howéver not all these pivotal rows can be held at once then only as many

. pivotal operations as the above procedure permits are performed.

Subsequent operations are performed on later passes. The final pass
merely copies the uneliminated matrix across to the work file.

6.6 Subroutine CKSAME
Subroutine CKSAME is called by INSAME and FACTOR to check the 1ists of

variables associated with a same interface and if necessary reorder them

so that the boundary variables head the 1ist and are in the correct order.

It begins by performing a depth-first search of the tree whose root is at the
interface to see if it involves just those variables that are in the
associated list. It is assumed that terminal nodes of this tree that are

themselves same interfaces have correct lists of variables. It then

checks that the boundary variables are in their correct positions. If they
* are not then it sorts them and writes the sorted lists out to the main %
integer file.

- 6.7 Subroutine ANAL

Subroutine ANAL is called by FACTOR if it has found that extra nodes need
to be inserted anywhere in the trees involved. FACTOR sets the signs of
POINT(3,) and POINT(4,-) positive but does not indicate which tree requires

further nodes because it is not expensive to rediscover this. Any root

super-element with an associated stiffness matrix certainly does not
require such extra nodes, so we begin with a depth-first search in which
all other réot super-elements a}e marked for checking by setting
POINT(3,-) negative. As each is checked this fiag is reset positive so

that it is checked only once.

39

A second depth-first search is performed to call subroutine SANAL

for each such root super-element.

6.8 Subroutine SANAL

Subroutine SANAL is called for each root super-element whose tree
1 may require extra nodes. It does not cross any same interfaces.

It begins with a depth-first search during which the last occurrence
of every variable is recorded in array VAR, A second depth-first
establishes lists of variables active at each node. Whenever a father node
is reached from its youngest son the index lists of all its sons will
have been established. Its own 1ist is constructed by merging these
lists and removing all variables internal to the corresponding super-element.
Such variables must be involved only in elements associated with nodes
which are descendants. These can be recognised by keeping a record of
thellowest tree Tevel at which each variable has so far appeared (in LLVAR) as
well as the record of its last occurrence in array VAR. If the
current node is at a lower tree level than the lowest at which a variable

has appeared and that variable appears nowhere later in the search then it

is ripe for elimination. The array LLVAR holding tree levels for
variables is initialized in the first tree search 'to 1 for variables on
“the boundary of the root super-element and to a large'integer for other
variables and_is kept up-to-date during the second search.

A third tree search is used to call ANAL1 (seé sub-section 6.9) for
each node that has more than two sons, or has a son that is a terminal
node, or is a root with more than one son. ANAL1 works with a father
node and its sons, héving index 1ists for all of them available. It is

called for a node having a terminal node for a son in case static

condensation is suitable for this son, for our data structure does not

permit eliminations at terminal nodes, so static condensation can take place

only if a node is an only son. Similarly we do not permit eliminations
at root nodes, so these should alway$s have just one son.

A fourth and final search checks that boundary lists of root super-
elements contained through same irterfaces are complete. During previous
work within ANAL (and ANAL1) the whole 1ist of global names at the interface
will have been used and it is to be expected that stétic cbndensation
will have taken place here to eliminate all internal variables. Therefore the
boundary of the root super-element should contain all the variables in
the 1ist belonging to its father (or to itself if no static condensation
has taken place). For robustness we thereforg check this 1ist and correct
it if it is wrong. Note that ANAL calls ANAL] for a root super-element
as soon as it reached in the depth-first search, so that this check is
made before the boundary 1ist is used in the contained tree.

6.9 Subroutine ANAL1

Subroutine ANAL1 treats a part of the tree that consists of a node and
its sons, assuﬁing that 1ists of variables are available for all of them.
It checks for any son having one or more variables not in the 1ist of the
father or any other son. Here static condensation is appropriate so a new
nbde is created with the original son as its only son aind the father as its
féther. Next ANALT considers 211 pairs of sons having one or more
vaTiab1es in common and chcoses that pair which together have ieast variables
t&:be sons of a new node having the original father as its father. The
variable 1ist for this new node is the union of the lists of its sons, less
@hqse not in the 1ist of the father or any other son. The alcorithm

'

cortinues until the original father has a single son. Notice that it is

v
0

41

dtmicinc i i i iRk i b K Sl b AR

_ o — - ; " -
R SRS et . : - . i

essentially a minimal degree algorithm because at each stage the freshly
constructed element has minimal number of variables before any eliminations
are performed.

“r We illustrate with the .propellor blade of Figures 6 and 9, shown in

Figure 12 with elements names shown circles and variable names shown circled

4 7
o : 10

e 12

b Figure 12 The elements and variables of the propellor blade.

and variable names shown without circles. The variables 10,11,12 are also
included in the hub element and will be recognised as boundary variables
because of appearing in the list associated with the father node. A1l the

otper variables appear in two or more elements so no static condensation

occurs. The progress of the algorithm is summarized in Table 2. It begins with

]

all pairs of adjacent elements, of which (5,6) contains the least

e 1o age

f va?iab]es, namely 2,4,5;6. Elements 5 and 6 are therefore combined into
e}ément 28 with variables 4,5,6 (since 2 can now be eliminated). This

| g{ves the new pairs of elements (28,7) and (28,8), each with 5 variables,
é ' ih.pIace of the first five pairs'but leaves the remaining six pairs

g uﬁaffected. We take (28,7) as the next pair for amalgamation into

element 29 with variables 5,6,7,8 and new pairs (29,2),(29,9),(29,10)

42

r— -

replace all but the last three pairs. Continuing, we establish the tree

? shown in Figure 13.
«r E;:?ﬁ"tsg;sElg?intvazgéblesE;:?gntva§?$b1esElgwﬁntvarg;b}esgzg?i"tvaﬁgéb!ess]eme"t

5,6 4* 28 : |
57 4 W)y P 29 [
5,8 6 288 5 29,8 5% 30 |
6,7 6 - '
68 5 =
7,8 6 . o —
7,9 6 . . 29,9 6 30,9 5% 31
7,10 7 . ‘e 29,10 7 30,10 5 31,10 B 32
8,9 7 . . . - -
8,10 6 2 . 5 5 N
9,10 6 - -

Table 2 Progress of the algorithm on Figure 12 problem.

' Figure 13 Tree established for Figure 12 problem

43

The céde to implement this efficiently is quite long and we will not

describe it here, except to remark that the array ISUP (equivalenced to
array A) requires storage for
i) super-variables, each of which is a set of variables all of which
belong to every element of some set of e1eménts
: ii) a list of pairs of adjacent elements.
Each entry in the first list requires two integers and each entry in the
second list requires five integers. The storage requirement may
therefore be great if there are a large number of elements (nodes). We
envisage that the userwill normally provide enough groupings of elements

into super-elements for no node of the tree to have a very Targe number of

sons, so do not expect this problem to be severe.

6.10 Subroutine SOLVE

Subroutine SOLVE is called directly by the user ?o solve one or

more sets of equations associated with a root super-element that has already

SNPPEFINSIEY. S50

been successfully factorized, and the arguments have already been
specified in section 3.

Forward substitution is performed under the control of the large |
elimination entries on the files which are associated with each tree (see

explanation of data structure at end of section 4). As much as possible of

the integer entry is read into array ELVAR and as much as possible of the
real entry is read into array A, and the forward elimination continues

until a same interface is reached, the arrays ELVAR and A being refilled
whenever necessary. At a same interface the right-hand side vectors must be

permuted so that forward substitution can continue using names local to

ottt e i

the contained tree. - This permutation is performed by subroutine CRSAME,
described in sub-section 6.11, then elimination operations corresponding
to the contained tree are performed in just the same way as those for the
original tree, including the possibility of crossing a'othe: same
interface. Whenever operations for a containcd wree are completed, the

same interface at its root must be crossed in the reverse direction, so

“ SN . A i LY "SRG T e, 7 RN e a il v }

3 * CRSAME is called for the inverse permutation and then operations in the

containing tree can continue. Eventually operations for the original tree
3 . are completed and this means that forward elimination is finished.

If the root super-element for which SOLVE has been called has any
boundary variables their values must be set after the forward substitution
t operations have been completed. This corresponds to their values being
found by further forward substitutions in a containing tree and back-

substitutions in that same tree. Their values cannot be input at the

original call of SOLVE because then the forward substitution operations
would corrupt them. This is a price that has to be paid for the
facility of being able to call SOLVE for any root super-element and for
being able later to embed any root super-element in larger structures
through same interfaces. |

: ~ ; Back-substitution is performed by reading the same file entries, but
essentially in reverse direction and again using CRSAME to permute the -
vectors whenever a same interface is crossed. |

6.11 Subroutine CRSAME

[Subroutine CRSAME is called by SOLVE whenever forward or backward
substitution involves crossing a same interface. It permutes a vector

of reals under the control of pairs of integers (the local and global

i | variable names). Its aim is to set all the numbers which are in
i 1
3 B(FROM(I)), I=1,2,...,N on entry into B(TO(I)), while being reversible in

é the sense that a further call with the vectors TO and FROM reversed will

restore the whole of B. We expect the length of B to be usually much
‘ greater than N and wish to perform only O(N) operations.
f | If K=TO(I)=FROM(J) for a pair of values I,J in the range [1,N] then it
1 is necessary for the value of B(K) to be moved bofore it is overwritten.

i | In fact it is appropriate to chain the moves. An examp]é is given by the

g | . FORTRAN statements

45

i
B(10) = B(21)
B(21) = 3(7;
B(7) = B(11

for the case where 21,7 appear in both of arrays TO and FROM, 10 appears
only in TO and 11 appears only in FROM. Without further action the
original contents of B(10) would be lost and two copies of the original
B{11) will bg left. We therefore add extra statements to give the

cyclic permutation

T = B(10)
B(10) = B(21)
B(21) = B(7)

B(7) = B(11)
B(11) = T

which will be reversed if TO and FROM are interchanged.

Simple Fortran of this kind illustrates the permutations but our
actual code uses indirect addressing. The array VAR is assumed to contain
all zeros and the code begins by setting VAR(TO(I))=FROM(I), I=1,2,...,N.

A second loop negates these entries except where they correspond to the head

of a chain. The final loop pérforms the actual permutation as a sequence

of cycles, using indirect addressing. It also resets VAR to zero.

6.12 Input-output subroutines

Input and output is carried out by four subroutines IOGETR,IOGETI,
IOPUTR,IOPUTI to get from file or put on file real or integer data
respectively. Each has four arguments

ARY is an INTEGER (for IOGETI/IOPUTI) or REAL (for IOGETR/IOPUTR)

-array of length N used to transmit the data. .

N is an INTEGER giving the number of reals or integers to be

transmitted.

46

is an INTEGER indicating the file involved, having one
of the values:

1. Main integer file
2. Iateger work file.
3. Main real file

4. Real work file.

is an INTEGER indicating the position within the file,
addressing as if the file were a Fortran array, that corresponds

to ARY(1).

These four subroutines presently merely transfer data to and from
arrays in the common blocks CIF,CIFZ,CRF,CRFZ, respectively. The
intention is that they be replaced by a virtual memory system that
genuinely reads and writes to files out of main memory. The present
subroutiﬁes will be quite effective on a computer system with a built-in
paging system. 'Because of the way calls to these subroutines are organised,
page thrashing is unlikely to occur. For instance during a call of SOLVE
~ entries corresponding to each tree involved are‘together and are read once

forwardé and once (essentia11y)_backwards.

7. Acknowledgements

This work would not have been undertaken without the initial interest
expressed by P.S. Jensen and his continuing encouragement. I would like
to express my thanks to him for this, and for his participation in the
design and testing of the package and for his reading this document and
éﬁggesting two important addit%ons. I would also 1ike to thank the |
U.S. Air Force who have partially supported the work under contract
F49620-76-C-0003; I.S. Duff who has read the draft of this report and
suégested many improvement to the presentation; and the finite-element _
gréups at Lockheed Palo Alto Laboratory and Boeing Computer Services, Seattle,

with whom I have had very useful and stimulating conversations.

47

SO - “ i ' s i Lot it O s+ o

(

"8. References

Irons, B.M. (1970). A frontal solution program for finite element

analysis. Int. J. Numer. Meth. Engrg., 2, 5-32.
Ryder, B.G. (1974). The PFORT verifier. Software Practice and
Experience, 4, 359-377. '

A FORTRAN Virtual Storage

Simulator for Non-Virtual Computers

Paul S. Jensen

Revised 4 March 1978

ABSTRACT

A software package called VMSYST for virtual t:pe storage processing on
a variety of computing systems is described. It utilizes a paging system for
which the page and page buffer sizes can be conveniently adjusted to suit the
application. For generality, the page buffer is held in a labeled common area.
Except for the input/output routines, the package is written in standard FORTRAN
for transportability. A gauche FORTRAN version of the input/output system is

provided for simple testing but is not recommended for general use.

VWMSYST was designed to support a sparse matrix package using a generalized
frontal scheme. It proved very effective in that application but has also
gained popularity in two other applications. It is currently operational on

CDC 6000 series and Univac 1100 series computers.

et e i i

s

1. INTRODUCTION

The concept of providing a high speed word addressable (core) memory
of practically unlimited size has intrigued computer developers since the
mid71950's. Since economics has continuously forced rather severe limita-
tions on the actual size of HSM (high speed memory), the concept of virtual
memory evolved in which the unlimited size effect was achieved by judicious
use of auxiliary storage devices. It was accomplished by hardware design
in the late 1950's and appeared in the Burroughs B5500. It is also the

standard design of the IBM 370 series computers.

Over the past decade, a great deal of experience in the operation
characteristics of virtual memory systems has been gathered and there is
a wealth of literature on the subject. (See [3, 6 or 14] for a general
discussion.) Not all of the results have been desirable, in fact, in some
scientific applications the results were almost disastrous [2, 5 and 12].
Other authors [7, 8, 9, 11, 13], however, provide glowing reports on

virtual memory for scientific computation.

As a rule, it appears that if many small records are to be processed,
a virtual system has some important advantages whereas for very large
records, direct transfer to/from mass storage is more cost effective.
Consequently, for scientific problems involving very large quantities of
data it is often advantageous to have both, i.e., "virtual" mass storage
files for parameters, indexes and tables, and '"direct" files for large

data blocks such as matrices.

In this paper we describe a system VMSYST of fairly simple FORTRAN
subroutines which can conveniently be used to simulate virtual file opera-
tion. Unfortunately, the FORTRAN language does not have facilities for a
number of specific, random access file manipulation processes that are
needed and so certain support routines described in Section 6 must be

provided for the use of VMSYST.

2. DATA BUFFERING SYSTEM

2.1 Page Buffer

The system presented here utilizes a page buffer array in a labeled
common block for the actual data (in pages) held in the HSM (high speed
memory). It is likely that this buffer would more appropriately be main-

tained in an extended or supplemental core storage on computing systems

offering such a feature. Even high speed drum storage could conceivably be
used for this purpose, particularly if a direct data path between the drum

and mass storage is available.

For security and control, the contents of the buffer can only be
modified by the virtual system routines. Thus, when an application pro-
gram requests data resident in mass storage, it is first moved to the
buffer and then to the array provided by the application program. This
double movement of data is the major price paid for the benefits of the

virtual system,

A1l data in the virtual system is partitioned into pages, which are
blocks of consecutive data words of a fixed page size. Pages residing in

the buffer are called active pages. Inactive pages are resident in

auxiliary storage only.

2.2 Page.Table

The buffer storage is partitioned into blocks, each being the size
of one page. Corresponding to each of these blocks is one column of control
information (see Table 2.1) in a page table residing in a distinct labeled
common block. The page table is the key mechanism for keeping track of

what data is in the buffer and its status.

3. STORAGE CONTROL SYSTEM

An application issues the 1/0 requests which are either file manage-

ment or data transfer requests. Data transfer requests are used to move

ey P
. : —— St e

TABLE 2.1

Control Information Maintained in Column j

of the Page Table for an Active Page of Class ¢

ITEM PURPOSE

1 Next older active page of class c¢ (or o)

2 Youngest active page of class j (or o)

3 Virtual mass storage location of this active page
(64-Virtual address + File No.)

4 Physical location of this active page in mass
storage (physical units, e.g., sectors)

5 Next younger active page of class ¢ (or c +
total no. of active pages)

6 Next older active page (or o)

7 Next younger active page (or o)

el e s D ot e it o St S e gt e T Al D

sk

S N

data between a specified array and mass storage at a specified virtual

location.

When a data transfer request is issued, the following steps

define the fundamental transfer process:

1.

7.

Determine if the page corresponding to the
virtual location is active. If it is,

denote it by P and then

Look for an empty active page. If one

is found, denote it by P and then

Find the "oldest" active page P. If it
does not differ from its corresponding

inactive copy, then

Copy P to its virtual location in mass

storage (bump the page)

Enter the control information of the page
corresponding to the virtual location of
the data to be transferred in the page

table column for page P.

If the data transfer is input from mass
storage or the transfer data does not
include all of page P, and if there is an
inactive copy of the page P in mass
storage, then transfer the inactive copy

to the buffer, thereby making P fully

active.

If the data transfer is input from mass
storage, then copy that portion of the

transfer data contained in P to the

application program array.

go to step 7

BO to step 5

BO to step 5

8. If the data transfer is output to mass storage, then
copy that portion of the transfer data for page P

from the application program array to P.

9. If not all of the transfer data has been copied,
then update the virtual location and size to

reflect the remaining transfer data and gO to step 1

10. Job complete.

It should be noted that step 3 defines the so-called "paging algorithm"
discussed widely in the literature. It is the criteria used to determine
which page (or pages) is to be'bumped". Here we use the simple criterion
of "age'". Substantially more complicated criteria have been devised (1

with varying success, depending upon the application.

The search of the page table required in step 1 has also received con-
siderable attention [10). In VMSYST, an approach similar to hashing without
the possibility of conflicts is used. Each page p is assigned to an equiva-
lence class cp =pmodm+ 1, where m is thg page capacity of the page
buffer. In this way, only the active pages of class cp need to be checked
in step 1 for any page p. A bidirectional linked list is maintained for

the active pages of each class to facilitate the search.

When a large block of data is to be transferred, it is possible for the
fundamental process described above to bump pages that will subsequently be
needed for the transfer. This eventuality is overcome by paritioning the
data block according to page destination and first transferring those parti-

tions corresponding to active pages.

This innovation always has a beneficial effect on the actual input/out-
put volume to mass storage, however, at the cost of considerably more page

table scanning. Statistical evidence has not yet been gathered to indicate

the overall cost impact.

4, FILE MANAGEMENT

The processes of establishing communication with auxiliary storage
devices, cataloging them for permanent retention of data, locating speci-
fic data on previously cataloged files, etc., are very machine dependent.
Consequently, machine independent routines for such file management opera-

tions cannot be generated. However, a file access table which can provide

sufficient descriptive data for a great variety of auxiliary storage equip-

ment can be devised and used by "transportable" FORTRAN computer code.

The information retained for each file used in this virtual memory
system is outlined in Table 4.1. It takes into account the fact that data
in auxiliary storage is normally in blocks of standard computer words
(SCW's) which are called physical block units (PBU's) here. The SCW is
taken to be the standard addressing unit of high speed memory in a com-
puting machine, e.g., 32 bits on IBM computers, 60 bits on many CDC com-

puters and 36 bits on Univac computers.

The file identifier is also a machine dependent form which is often
an alphanumeric. The sixth and seventh words in the information list are
currently provided for the identifier with the eighth unassigned, making
an expansion to three words simple if needed for some computing systems.
For convenience, each file is referenced by its column number in the file
table rather than its identifier. The last item is used as an access key
to help prevent accidental data loss. Presently it is initially set to

one of "get", "put" or "both".

> » - . > » A
i = E WIS s FOSEIRNUPOR W-VET WL 1T TR 5 P SRR, SO _t..__-,&h._._j

TABLE 4.1

File Information Maintained in the File
Access Table for Each File (Auxiliary
Storage Unit) Defined

PBU - Physical Block Units (Sectors)
SCW -~ Standard Computer Word

ITEM PURPOSE UNITS
1 No. of PBU's per page
4 4 : &
2 Current position PBU
f - 3 Next free position PBU
| 4 Capacity SCW
:
5 PBU (Physical block unit) size SCwW
6, 7 File Identifier (zero if inactive)
8 Not presently used
3
9 Access key ("get", "put", or "both")

5. FORTRAN ROUTINES

when the virtual memory system is operational on a computer system,
the following fourteen processors are all that an application program will

-

have occasion to reference:

I0SET

I0STAT

100PEN (FILEID ,FILENO,FILINF)
10CLOS (FILENO)

10PUTx (A,NA ,FILENO,VLOC)
TOGETx (A ,NA ,FILENO,VLOC)
TOCLRx (A ,NA ,FILENO,VLOC)
IOADDx (A ,NA ,FILENO,VLOC)
10SCLx (A ,NA ,FILENO, VLOC)

where x is either I or R depending upon the type of data in A. The
first eight routines pertain to file handling and the movement of data and

the last six provide special numerical operations on data in virtual memory.

5.1 Initialization

Initial values for the tables and parameters of the system are estab-

lished by one call of the form

CALL IOSET.

This subroutine sets the parameter values as indicated in Table 5.1 and
clears the FILE, PAGE and BUFFER tables.

R PR SRpaT e e |

Auxiliary storage files are opened by a call of the form

CALL IOOPEN(FILEID,FILENO,FILINF),

1 FILEID is a two word alphanumeric file name supplied

[by the application program,

FILENO is a file reference integer for the file P
4 - supplied by IOOPEN,

FILINF is a five word integer file description array,
see Table 5.2

IOOPEN calls upon a special routine DMDAST (See Section 6) for establishing
an auxiliary file via executive requests. If a routine of this nature is
not available at a particular installation, a suitable modification of

IOOPEN will be required.

5.2 Data Transfer

The fundamental data transfer operations are GET data from virtual
memory and PUT data into virtual memory. Data transfer is accomplished by

calls of the form

CALL IOGET x (A,N,VF,VL)
and
CALL IOPUT x (A,N,VF,VL),
where
x is "R" or "I" for real or integer

data transfer,

T R

A is an array of length N and type

corresponding to x above,

VF is an integer file number established
by IOOPEN and

VL is a virtual location (in standard

computer words) on VF,

%)
TABLE 5.1.
VMSYST Key Parameters (Integer)
NAME BASE ’ PURPOSE
: VALUE
! NFIL 8 Maximum number of simultaneously opened
files (no. columns in file table array
FILET)
NBUFR 22400 Size of buffer array
PAGESZ 896 Size of each page (common multiple of
auxiliary file sector sizes, e.g.,
Univac-28, CDC-64)
INPRE 1 No. of integers per real (standard
machine word
NBPIN 35 No. of bits available for positive ;
: integers (log2 IMAX, where IMAX is
the largest machine representable
3 ¢ integer)
TABLE 5.2
File Descriptor Array FILINF (see also Sec. 6.3)
|
E _ ITEM PURPOSE SPECIFICATION
| 1 Equipment type -1 Tape |
0 Disc
3 Extended Core |
2 Permanency option 0 Temporary E
3 Existing
6 New Permanent
3 Capacity In standard machine words
Tape reel 1D If appropriate
5 Access "GET" Read only
"PUT" Write only !
"BOTH" Gencral

The actual movement of data is handled in units of standard computer
words., Thus if A is an integer array in a system having integer words

shorter than standard, then

INPRE-(1+[(N-1) /INPRE])

integers will actually be transferred, where INPRE is the number of integers

per real (see Table 5.1) and [x] is the largest integer not exceeding x.

The transfer of data between auxiliary storage and the buffer is
handled by special "position", "read" and "write" utilities DMPAST,

DMRAST and DMWAST described in Section 6.

5.3 System Status

It is helpful in large processes to obtain a brief summary of the
I0 activity from time to time. VMSYST maintains a number of statistics

in this regard which are displayed by a call of the form

CALL IOSTAT.

5.4 File Release

When operations involving a specific file are finished, the file may

be released from the system by a call of the form
CALL IOCLOS (FILNO)

Where the absolute value of FILNO is the reference number established by
IOOPEN.

All of the active pages corresponding to the file that may differ
from the inactive ones are transferred to the file. If FILNO is positive,
then the entry in the file table FILET for the file is deleted, and the
file is also released (made inactive if permanent or purged if temporary)
from the executive operating system by means of special support routine
DMFAST (see Section 6).

5.5 Special Functions

Three special arithmetic processes are included for numerical appli-
cations. The inclusion of these processes in VMSYST had almost no impact
on the implementation, but are of tremendous value to numerical applica-

-

tion programs.

To clear an area of virtual memory (i.e., to set the contents to
one prescribed value), a call of the form

CALL IOCLR x (A, N, VF, VL)

is used where scalar A is the prescribed value and the other arguments

are as described in Section 5.2.

A scaled vector s A may be added to the contents of an area in

virtual memory by a call of the form

CALL IOADD x (A, N, VF, VL),

where the scalar s is held in AN+1).

Finally, the contents of an area in virtual memory may be multiplied

by a scalar constant A by a call of the form

CALL IOSCL x (A, N, VF, VL) .

6. AUXILIARY STORAGE INTERFACE

Unfortunately, there are no standard facilities in the FORTRAN language
for dealing with general auxiliary storage media. Consequently, a set of
FORTRAN subroutines called DMGASP [4] with facilities for the necessary
communication with the executive operating system has been constructed at
the Lockheed Research Laboratory to fill this gap. Several of these are

used in support of the virtual memory system VMSYST discussed here.

In this section we describe the functions performed by these support
routines so that approximate duplicates may be constructed elsewhere for
support of VMSYST. This description is intended to be minimally sufficient
and interested readers are urged to refer to [4] for a comprehensive des-

cription.

For this discussion, we shall frequently refer to an "auxiliary storage
device" which we abbreviate to ASD. We specifically exclude the normal
user input (card reader, teletype, etc.) and output (printer, plotter, etc.)
as ASD's. In the broad sense, of course, these are also ASD's, but their

management is best relegated to the operating system.

6.1 Fundamental Operations

DMGASP performs the following five fundamental auxiliary storage
operations, where we include alternative nomenclature for the operations

in parentheses:

1. Declare (assign, attach, activate, open) an ASD,
2. Free (release, deactivate, close) an ASD,

3. Write (store, put) data on an ASD,

4, Read (copy, get) data from an ASD and

5. Position an ASD.

The write and read operations always transmit data directly between an ASD
and a storage block in HSM. Thus the user program is not burdened with con-

siderations of hidden buffering that often impedes high volume I-O.

13

6.2 Device Reference System

In operations 2-5 above, the ASD is designated by its LDI (logical
device index), which is an integer in the range 1, 2, ... , MAXLDI*.
b . 1f an ASD is also given an (external) alphanumeric name, the connection
(equivalence) of that and the LDI is established in the declaration opera-

tion.

The declaration is always the first operation performed on an ASD.
When an ASD is declared, its attributes (see below) are entered in an
auxiliary storage table (AST) to facilitate all succeeding operations.
They remain there until a free operation is performed. After an ASD is
thus deactivated, its LDI may be used in another declaration with another
ASD.

6.3 Storage Device Attributes

b The four attributes:
TYPEX ASD type index (-1 to 3)
OPTX ASD option index (0 to 12)
LIMIT ASD capacity (in words) and
REEL Tape reel identifier

are maintained for each declared ASD. The typical default condition is to
set all four attributes to 0. That yields a temporary, sector addressable
mass storage device with a system determined default capacity. If a tape
ié declared (TYPEX=-1),then REEL=0 implies the use of a new blank tape.
A previous reserved tape is declared (mount request) by setting REEL to

’ the literal (alphanumeric) tape identifier, e.g., REEL="12 3 4 5 6",

i : The interpretation of the remaining type and option indexes are provided 4

in Tables 6.1 and 6.2

* MAXLDI is an internal parameter set at the installation. It is generally
g larger than 32. 3

14

Y —————

TABLE 6.1

Type Index for Auxiliary Storage Devices

Index
(TYPEX)

Type of Equipment

Magnetic tape (7/9 track)

Sector-addressable, high-capacity mass storage
Sector-addressable, high-speed mass storage
Word-addressable mass storage

Extended corc storage

_

TABLE 6.2

Option Index for Auxiliary Storage Devices (ASD's)

Option Suitable
(OPTX) Type Interpretation
0 All Temporary ASD
1 -1, -2 Write enable reserved tape
2 All Identify previously assigned ASD
3 0 Access previously cataloged ASD
4 0 Exclusive access to previously cataloged ASD
5 0, -1, -2 Permanent tape or disc file (private)
6 0 Permanent disc file (public)
7 0 Permanent disc file (private, read only)
8 0 Permanent disc file (public, read only)
9-12 0 Like 5 - 8 but permanency conditional upon
job completion

15

6.4 'Operation Naming Convention

The six ASD operations performed by DMGASP are indicated by the

first letters in their names as indicated in Table 6.3.

TABLE 6.3

Auxiliary Storage Operation Designators

E Designator Operation
D Declare (assign, attach, activate, open) 9
F Free (release, deactivate)
P Position
W Write (store, put)
R Read (copy, get)
E End file (tape)
L . List DMGASP operational data

The operations are carried out by subroutine calls to entry points in

DMGASP having the form
CALL DMxAST(L, M, N)

where x 1is any of the letters DFPWREL. There are always three arguments

which serve operation dependent functions. Table 6.4 lists the defined

functions of the arguments. : é

3
's
;i
,
J
1
|
|
|
?
|
!

16

TABLE 6.4
: Functions Served by the Three Arguments
L, M, and N of a DMGASP Operation
DMxAST (L, M, N)
(Operation designator x is one of DFPWREL,
see Table 6.3)
Argument Operation Function
Designator
:
i 1
L LOSD-List Operation Status Descriptors
L if non-zero - §
All Others LDI-logical bevice Index
D EDNAME-External Device Name (Optional)
F DELETE-O:release, 1l:decatalog
P LOC-Location (Disc),
Tape File Number (TFN), or
M 4096 (TFN-1)+Record-1
W, R ARRAY-HSM (Core) Data, Block
Ignored (dummy)
LPKT-List (LPKT+1) words of the file 3
information table
D DDPARS-4 word attribute table
F, E Ignored (dummy)
b
P MODE-0 sectors from start
1 words from start 5 (Disc)
N -1 words from current pos.
W, R SIZE-Array Size
4 L LTAB-List Auxiliary Storage Table
if non-zero

17

i @74 A RIS -3 D TR Gt I, . P S

6.5 Supplemental Operations

In addition to the operations discussed in Section 6.4, there are

some supplemental operations related to those of DMGASP. Notable among

these is accessed by

LSECT = IMSECT (LDI)

which provides the sector size of the declared disc file with logical

device index LDI.

6.6 Operations Used in VMSYST

The operations DFPWR (Table 6.3) and the supplemental operation
(Section 6.5) are referenced by VMSYST. These references are confined to
four VMSYST subroutines as indicated in Table 6.5 Adaptations of VMSYST to
coﬁputing systems not having DMGASP may be made either by simulation of
the operations of Table 6.5 or by suitable modificafion of the VMSYST

subroutines listed in Table 6.5

TABLE 6.5

DMGASP References in VMSYST

Subroutin. ! DMGASP Operations g
I00PEN i D,P,LMSECT
10CLOS F,P,W
IOPAGE R,P,W

7. ACKNOWLEDGMENTS

The author expresses his thanks to Dr. John K. Reid for several help-
ful suggestions used in the design of VMSYST. In particular, Dr. Reid's

suggestions for page table searching were most helpful.

18

il o o it Wl i i v G S NN e 5l

!

% : References

! 1. Belady, L. A., "A Study of Replacement Algorithms for a Virtual
Storage Computer,'" IBM Syst. Jnl. 5, 2 (1966)

2, Coffman, E; G. and L. C, Varian, “Further Experimental Data on the
Behavior of Programs in a Paging Environment," Comm. ACM 11, 7 (1968)
471-474

; 3. Denning, P. J., "Virtual Memory," (ACM) Computing Surveys 2, 3 (1970)
- : 153-189

4, Felippa, C. A., "The Input-Output Manager of the Nostra Data Manage-
ment System, Univac 1100-Series Version Reference Manual,'" Report
IMSC-D556430, Lockheed Palo Alto Research Lab (1977)

5. Fine, G. H., et al., "Dynamic Program Behaviecr under Paging," Proc.
ACM 21st Nat. Conf., Thompson Book Co., Washington, D.C. (1966)
223-228

6. Goldberg, R. P., "Virtual Machine Systems,'" Report MS-2687, MIT §
Lincoln Laboratory (Sept 1969)

7. Hatfield, D. J. and J. Gerald, "Program Restructuring for Virtual
Memory," IBM Systs. Jnl. 10 (1971) 168 |

8. Kortzeborn, Robert N., "Virtual Computing and Its Importance to
Scientists," Repert 320-3308, Palo Alto Scientific Center, IBM Data
Processing Division (Nov 1972) 127 p

9. Kortzeborn, R. N. and P, J. Friedl, "The Advantages of Using the IBM
System/360 Computers for Large Scale Scientific Problems," Report
320-3233, Palo Alto Scientific Center, IBM Data Processing Div.

(Oct 1967)

10. Maruyama, K., and S. E. Smith, "Analysis of Design Alternatives for
Virtual Memory Indexes," Com.of the ACM, 20, &4 (1977) 245-253

11. McGrath, M., "Virtual Machine Computing in an Engineering Environment,"
IBM Systs. Jnl. 11 (1972) 131

12, McKellar, A. C. and E., G. Coffman, Jr., "Organizing Matrices and Matrix
Operations for Paged Memory Systems,' Comm. ACM 12, 3 (1969) 153-165

13. Parmelee, R., "Virtual Machines: Some Unexpected Applications,"
Proc. of the 1971 IEEE Int. Comp. Soc. Conf., Boston, Mass.

14. Parmelee, R. P., T. I. Peterson, C. C. Tillman and D, J. Hatfield,
"Virtual Storage and Virtual Machine Concepts,'" IBM Systs. Jnl., 11
(1972) 99

19

Ve

R

hﬂv-—...
N A ~ ’ o
UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Uulul!",'lrvr.wl)
fod H READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE ; | BEFORE COMPLETING FORM
1. REPCRT NUMBER VT ACCESSION NO,| 3. RECIPIENT’S CATALOG NUMBER
N N 2 - / |
AFOSR-TR- 8~ i1497 | ‘
4. TITLE (and Subtitle) | s. TYyPE GF REPORT & PERIOD COVERED
SPARSE SYMMETRIC MATR!X PROCESSIHNG I interim
- [6. PERFORMING 026G. REPORT NUMBER
LMSC-Dh26184
7. AUTHOR(s) 3. CONTRACT OR GRANT NUMBER(S)
3 L S v/
Paul S. Jensen and John K. Reid F49620-76-C-0003
|
3. PERFORMING ORGANIZATION NAME AND ADDRESS 0. PROGRAM ELEMENT, PROJECT, TASK

/ AREA @ WORK UNIT NUMBERS
Lockheed Palo Alto Research Laboratoryv/

325] Hanover Street 61102F 2304/A3

Palo Alto, California 94304
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE **
May 1978
Air Force Office of Scientific Research/NM 13. NUMBER OF PAGES
Bolling AFB, Washington, DC 20332 S

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

UNCLASSIFIED

15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

s

DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

AR R AN U T I8 e MR A

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

8. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Sparse matrices, wave front, factorization, virtual, camparison, testing

——
20. ABSTHADT ‘ue on reverse side if necessary and identify by block number)

b ;
'ﬂ.)‘$£w*”"5[x1en5|ve report describing a new sparse matrix processing system for

very large symmetric matrices.Xf includes a description of a virtual memory
system used in support of the system and results from comparison tests with a
profile matrix processor on problems arising from finite-element analyses

of structures.

A L e NGLASS I F1ED

[} , D CLASSIFICATION OF THIS PAGE (When Data Entered) |

oS |

