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INTRODUCTION

This report includes three autonomous articles pertaining to the

processing of large , symmetric, sparse matrices typified by those arising
in the finite element analysis of boundary value problems. The work and

computer programs discussed in this report resulted from a two—year

effort sponsored by the Air Force Off ice of Scientif ic Research under
contract F49620—76—C--0003.

The thrust of thi~ par t of the effor t was to develop a sparse matrix
processing system that could readily be incorporated in structural anal-

ysis computer programs to improve flexibility , computational efficiency

and to reduce storage requirements. The requirements for the system were:

1. The ability to reliably process very large (out of core)

problems, e.g., problems of order 15000;

2. The ability to utilize user knowledge about a given problem
in order to reduce computational costs;

3. It must not depend upon user input for efficient operation

and must be able to astutely “fill in” for incomplete user

input;

4. The ability to exploit inherent computational efficiency

resulting from repeated “substructures” appearing within a
problem; and

5. It must be written in a readily transportable FORTRAN code

for convenient adaptation to various computing machines.
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A prototype sparse matrix processing system satisfying the above cri-

teria was designed around the basic frontal technique augmented by a minimum—

degree algorithm. The design resulted in a reasonably “natural” substructur—
ing capability which was extended to satisfy criterion 4 above.

The prototype system was implemented and comparative tests were run

using a widely accepted , general purpose structural analysis program as
described in the first article of this report. The sparse matrix processing

scheme used in that program is a very efficient implementation of the profile

technique.

The second article in this report describes the new sparse matrix pro-

cessing system SPSYST in detail. The version of SPSYST used in the first

article differed slightly from the system described here in that a minimum

fill algorithm was used in place of the minimum degree algorithm. The

fundamental data management system used by SPSYST is based on a virtual

memory approach. Since many computer systems do not provide virtual mem-

ory, a special FORTRAN virtual memory system was implemented as described
in the third article of this report.
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A COMPARISON OF TWO SPARSE

MATRIX PROCESSING TECHNIQUES

P. S. Jensen 26 May 1978

• ABSTRACT

The factor and solve capabiliUes of an established

profile matrix processing program and a new sparse matrix
prcgram paclcage are compared for several finite element

analysis problems. The comparison tests were made on

CDC CYBER 175 and UNIVAC 1110 computing systems. The

problems run were analyses of reasonably simple shell

structures. The new program was found to enjoy the

• - . greatest advantage for the more complicated problem geo—

metries.
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Section 1

INTRODUCTION

For this study we focus our attention on sparse, symmetric problems
arising in structural analysis. Our objective is to gain a “feel” for

the relative merits of two techniques for factoring very large sparse,

symmetric matrices.

The profile technique, which evolved from band matrix techniques,
is reasonably effective and has been the accepted “workhorse” for general
structural analysis for many years. Basically, it is a band matrix tech-

nique that takes the semi—bandwidth of each row into account rather than

assuming a constant bandwidth. A number of implementations of the profile

technique are available including a convenient, unheralded version in a
Lockheed library. It should be noted that the apparent simplicity of the

profile technique is slightly deceptive and that subtle differences can
have a significant effect on the overall efficiency. To quote N. Wirth,

“the devil hides in detail”.

General sparse matrix techniques [1, 3 and 4] are more recent and
considerably less established. Potentially, they have an uncuestionable
advantage for very large problems because they involve fever operations

and deal with a smaller volume of data. In addition , they (potentially)
are more flexible , e.g., they can factor cer tain per turbations of a given
matrix without repeating the whole process and can utilize user knowledge
of a problem to improve efficiency. The main weakness of the techniques 

-

is their relative complexity. The implementation tends to be a fairly

large collection of complicated routines that require some skill on the

part of a user for effective application. Although a number of implementa—

tions of sparse matrix techniques have been constructed over recent years,

none appear to be suitable for very large problems that cannot be held in

1



the high speed memory of a computer. Consequently, in collaboration with

Dr. John Reid, an implementation 1 21 that could be directly applied to its—
portant structural analysis problems was constructed for comparison with

the profile technique. This implementation is briefly described in Sec—

tion 2.

A widely used structural analysis program STAGS, briefly discussed

in Sec tion 3, was used to generate most of the test problems. It is imple-

mented and normall y run on CDC (Control Data Corporation) 6000 and CYBER

series computers. Consequently, that computational environment was chosen

for most of these tests. Specifically, the test runs were made on a CDC

CYBER 175 computer using operating system SCOPE 3.4 and the standard “ex-

tended” FORTRAN 4. The architecture of the CDC computer tends to suit the

profile technique somewhat better than the general sparse approach by vir-

tue of its parallelism for arithmetic and slightly cumbersome logic capa-

bilities. This natural bias arises from the facts that profile factoriza—

tion is normally a Crout decomposition which involves a sequence of ele—

mentary vector operations (primarily dot product) cn relatively long rows

whereas the sparse factorization is a Gaussian elimination process involv—

ing relatively short “partial” rows . -

2
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Section 2

SPARSE MATRIX ALGORITHM

We are concerned with the direct solution of very large sets of linear

equations

Ax = b (2.1)

where symmetric , positive—definite matrix A can be expressed as a sum

A = ~ E
(k) 

(2.2)

of matrices E(k) 
with non—zeros in only a relatively small number of rows

and columns. Normally E(k) 
is a stiffness matrix associated with a single

finite element; however, problems occurring in other applications can be
handled provided only that each ~~~ has relatively few non-zeros.

when we say that A is large we mean that we do not expect to be able

to hold it in high—speed memory, even in packed form. Indeed we expect

that sometimes one or more of the matrices E~~~ may contain too many non—

zeros to be packed into high—speed memory. We do however expect that

sufficient high—speed memory is available for a number of variables that is

a modest multiple of the order, n.

The method is a generalization of the frontal method [3]. Rather than

directly reordering the variables of x,we instead reorder the sequence

of (2.2) in order to reduce the total cost of factorization. Factor—

ization is carried out simultaneously with assembly (summing of the E~~~’s),
completing the factorization on each row as soon as it is fully assembled.

Note that if the results of the process through step k > 1 are saved, then
it can be readily completed for a certain variety of matrices E~~

W

3
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without ever repeating the first k steps. This property is important

in the so—called “re—analysis” problem wherein a sequence of problems

involving changes in a few element matrices ~~~ must be solved.

The fundamental assemble/factor process is a pairwise operation,~ i.e.,

two matrices are added together and the “internal” variables (ful ly assembled
rows) are eliminated before another pair of matrices are added together. The

order In which the matrices are combined is thus conveniently described by a

binary tree. On the basis of the topology (row/column position information

for the non—zero data) of each ~~~~ a “good” tree structure can be con-

structed for a given set {E~
’
~~} that prescribes a summation order requiring

a minimal amount uf Lomputational cost. For economic reasons, one does not

seek to develop the best possible tree but, instead , obtains one that works

well and is not excessively expensive to construct. The present sparse

matrix program uses a “mm —f ill” heuristic to construct the binary tree

which, of course , needs to be exercised only once for a variety of actual
nonzero values in the matrices Ecu ..

To further reduce the computational cost of constructing the binary

tree , which we shalihereafter call the preprocessing, a system has been
devised whereby the user can specify as much of the tree structure as he
wishes. This is particularly useful for the analysis ~~ physical problems
for which certain natural groupings of element matrices E

(k) 
are very evi-

dent to the analyst. For example, in the analysis of a propellor, it is

natural to group the elements by blade for independent assembly. Such

a group of elements is often called either a substructure or a super—

element.

Sununarizing some of the important benefits of the present sparse matrix

processing system, we have :

User knowledge of a problem can be readily utilized to reduce the
solution cost;

4
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• The user can arrange the computation to permit variation of the

real data in a few Em’s and obtain associated solutions at

a minimal cost; and

• The process of substructuring is a natural function performed

by this system. In fact, a means of setting values for sub-

structure interface variables is provided so that solutions on

any substructure can be obtained independently of other sub-

structures.

Another convenient feature included in this sparse matrix factoriza—

tion system is applicable when different subsets of the E~~~’s in (2.2) are

related 1.n that they share the same basic topology but are shifted and per—

muted with diagonal symmetry in the assembled matrix. This situation would -ì
arise, for example , in modeling an assembly of just a few basic substruc-

tures as illustrated in Figure 2.1. In such a case, the factorization for

each basic substructure needs to be carried out only once. It is then

included in the analysis of the complete structure by a special same mech-

anism included in the computer program.

Figure 2.1. Illustration of a Simple Assembly

5
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Data Management

A widely recognized t
~Achilles heel” of sparse matrix algorithms is the

general overhead in dealing with the real data which arephysically stored

in esoteric ways to avoid the storage of zeros. This overhead is compounded

when the data are so voluminous that they cannot be held in high—speed mem-

ory.

Referring to the entire collection of data for a given problem as the

da ta space , we observe that at any point in time, the assemble/factor pro-
cess tends to be focused only on a localized portion of the data space. This

suggests that the adversity of a large data space can be relieved somewhat

by a virtual memory system [6] that tends to hold actively used data in a =
high—speed memory buffer and move relatively inactive data to mass storage

in a natural way.

Since many computers do not have virtual memory systems built in (hard—

ware or software) a convenient, general purpose virtual memory system [7] was
written (mostly in FORTRAN) for this purpose. The numerical experiments des-

cribed in Sections 3 and 4 indicate that the virtual memory system is reas-

onably effective for the sparse matrix application.

6
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Section 3

TESTS USING STAGS

The problems for this test were generated by the STAGS (Structural

Analysis of General Shells) (51 program, which is widely used in the
United States and Europe. The nonlinear and transient analysis of branched

shells, which are common applications of STAGS, would appear to benefit
• considerably from the sparse matrix technique (Sec. 2) because of the many

matrix factorizations required in each analysis and the fact that a branched
shell is rather natural for substructuring.

Several cylindrical shell configurations were used for this test
series. The basic “element” used for this STAGS discre tization was the
32 freedom curved quadrilateral illustrated in Figure 3.1. It has seven

displacement freedoms at each corner and one at the midpoint of eaàh side.

4~~~~~~~~~~~~~~~~~~~~~~~~~ 2

Figure 3.1. 32 Freedom STAGS Element. Seven freedoms
at each of the corner nodes A,B,C,D and
one freedom at each of the midpoint nodes
1,2,3,4.
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All problems in this test ser ies were run on a Control Data Corporation
CYBER175 computer system. In both the sparse matrix and the profile algo—

rithms , certain processes , e .g . ,  vector inner produc t, vector copy and the

general vector sum a x + y, were coded in assembly language . This fairly

simple innovation tends to emphasize the adverse effects of the overhead

costs inherent to the sparse matrix algorithms.

3.1 Problem Set 1

This set of problems Involved a “square” cylindrical region having
3, 7 and 11 elements on each side. The resulting problem sizes were 137,

561 and 1273, i.e., the size is given by 9 mn + 8Cm ÷ n + 1) where m and n

are the number of elements in the two directions. Our objectives with this

set of problems were to:

1. Assess the trade—off between large and small page sizes in the

virtual storage system, keeping the high—speed buffer size

fixed ,

2. Compare the relative merits of the two subject algorithms on

an indicative range of sizes of this simplest form of problem,

and 
-

3. Compare the automatic element ordering algorithm (minimal fill)

with some astute orderings invoked by hand.

3.1.1 Page Size Trade—Off

The second problem (order 561) of this set was chosen to study the
effects of varying the virtual system page size with a fixed buffer size.

The fac tored sparse metrix for the problem had 22,975 non—zero elements
and involved 710,241 multiply/add operations. Thus, the size of the prob—

lem was sufficiently large to give indicative results without being need—

lessly large. The input/ouptut activity and the central processor (CP) time

8
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were studied during the factorization part of the processing for each of
several page sizes and the results are displayed in Figure 3.2.

As one would expect, the number of physical I/O accesses increases and

the I/O volume decreases with the number of pages in the fixed length buffer.

The CPU time is relatively unchanged. Note from Figure 3.2 that the I/O

volumes for 32 and 64 pages were approximately the same during factorization.

This appears to be a result of the fact that the element matrix (size 528)

was larger than the basic page size (448) in the 64—page case. Since the

factorization generally is the major part of the work, it is generally wise
• to have the page size larger than the average element matrix.

CR7 Time1.0 

Au~~li~~~~Sto::~~~~~~~~~~~~~~~~~~~~~~~7
Volune

0.8 - 
0~~~~~~~~~~

tn .

/~ ~~~~~~~~~~~~,
~.1~

0.6 - 

~‘Auxi1iary
/ Storage /‘Accesse

,/~

0 — I
16 32 64

NUI!BFE OF PA(~S

Figure 3.2. The effects on I/O processes during factorizatiott resulting from
4 varying the number of pages (and thus page size) in the high—

4 speed memory buffer. Quantities are normalized by their maxima.
Solid lines represent results obtained during factorization and
dashed lines represent overall results. Buffer size 28672.
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- As described in [7], a form of hashing algorithm is used to search the
page rable of the virtual memory system. Sone interesting statistics about
the search activity were recorded during these three tests and are summarized

in Table 3.1.

Table ~.l

VIRTUAL SYSTEM OPERATIONAL STATISTICS FOR THREE TEST PROBLEMS

Pages in Buffer
16. 32 64

Ratio: Virtual Accesses to Physical Accesses 49 27 20
Ratio: Virtual Volume to Physical Volume 3.77 4.21 6.08

Average Table Search Steps per Page Find 1.34 1.29 1.33

• Average Table Search Steps for No Find 0.62 0.54 0.60

3.1.2 Algorithm Comparisons for Simple Problems

In this test we sought to compare the “raw speed” of the sparse solver

SPSYST and the highly tuned profile factorization system used in the STAGS

structural analysis program. Since a number of efficiency improvements to

SPSYST are planned whereas the profile system is about optimal, results

favoring SPSYST here would be very encouraging.

The solution times for the three square panel test problems appear in

Table 3.2. We observe that the r ...-ofile factorization times were all better

for these problems and that the relative advantage decreases with problem

size. This trend substantiates the theoretical result which states that

• the computational work in the profile process grows at a higher rate (with

respect to.the problem size) than does the process in SPSYST. Thus, there

exists a crossover point (greater than 1200) at which SPSYST would be faster

than the profile method for this problem. Efficiency improvements in SPSYST

will lower that crossover point ; however, it is clear that the profile algo—

• rithm works very well for this simple problem class.

10
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3.1.3 Alternative Equation Ordering Systems

Aside from improving efficiency by changes to the implementation of

SPSYST, we also wished to consider improvements by alternatives to the

minimal fill algorithm used internally to order the variables. The basic

substructuring capability of SPSYST provided a simple means for accom-

plishing this task, viz: the identification of certain groups of elements

• as substructures in the problem specifications.

An alternative ordering roughly equivalent to nested dissection , as illus-

trated in Figure 3.3, was used for this test. This certainly is not in-

tended to represent a truly optimal ordering but simply to illustrate possi-

ble improvements.

—
~~~~~~~~~~~~~~ -- ~~~~~~~~ 

—
~~~~~~~~~~~~~~

—

1 3 2
—~~~~~~~~~~~-- ~ -4 —~~~~-~~~~~---

— — — — —
5

—

—
~~~~~~~~~~~— — —~~~~~~~~~~~

—

• 4 6
—~~~-.~~~~--- — —~~~~~~‘—

Figure 3.3. Substructuring used to obtain an alternative
• ordering for the 7x7 and llxll problems. The

numbered regions were made super—elements in
the order indicated.
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Table 3.3

COMPARISON OF THE RESULTS USING THE
INTERNAL MINIMAL FILL ORDERING WITH THOSE

USING THE ALTERNATE ORDERING

Problem
_ _ _ _ _ _  

7 x 7  
____  _ _ _ _ _ _  

li x i l  
____

Min.Fill Alternate Ratio Min.Fill Alternate Ratio

Factor Time 1.514 1.476 0.97 5.997 5.776 0.96

Solve Time 0.219 0.224 . 1.02 0.652 0.623 0.96

Nonzeros 22.98 21.74 0.95 80.72 78.39 0.97
(in 1000 ’s )

Operations 687.71 595.88 0.87 3502.96 3206.95 0.92
(in 1000 ’s)

~isec per Oper— 2.20 2.48 1.13 1.71 1.80 1.05
ation

4 . .

13



Although the results in Table 3.3 indicate relatively small gains , they do
indicate a potential for further work on the internal ordering algorithm

3.2 Problem Set 2

This set of problems consisted of branched shells, i.e., assemblies

of smooth shell substructures (panels), where the joints may be “folds”.

This type of problem is much more typical of problems arising in practical

engineering analysis than the simple square panels of the previous section .

It is natural in problems of this nature to carry out the ~.pecification

and analysis panel by panel followed by incorporation of the joint condi-

tions for the complete structure.

This approach was applied to the “plus” shaped five branch problem

illustrated in Figure 3.4. A small 20—element and a larger 57—element

(longer arms) configurations were used with superior results from SPSYST

in both cases.

• — — —

— — —

Figure 3.4. Plus—Shaped Problem
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Normalizing the results with respect to the profile results, we obtained
the relative statistics in Table 3.4 for SPSYST. Unfortunately, the oper—
ation times were so small that the accuracy of the times is questionable.

This~is evidenced by the rather erratic—looking results.

Table 3.4

RESULTS OF APPLYING SPSYST TO TWO PLUS—SHAPED REGIONS

(Cost factors are given relative to those for the profile solver)

Case 1 Case 2

Elements 20. 57.
Problem size 308. 1009.
Nonzeros O;40 0.47
Operations 0.16 0.19
Factor time 0.22 0.75
Solve time 0.08 0.34
Analysis time 0.50 1.90
Operation cost 5.12 3.95

It is evident that this slightly more complicated problem had a

strongly adverse affect on the profile algorithm relative to the general

sparse algorithm SPSYST and suggests that the advantages of SPSYST will

be most noticeable for the more complex “real life” analysis problems.

It is also evident that reducing the basic cost per operation in SPSYST

is probably the most promising area of further research.

• 15
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Section 4

TEST ON A UNIVAC 1110 COMPUTER

Because of the substantially different architecture of the UNIVAC 1110

computing system, it is interesting to obtain some comparative results on

that system. Unfortunately , the same tests as in Section 3 could not be

run on the 1110 because the STAGS analysis program was not operational on

it. Consequently, the sparse program was exercised in conjunction with an

analysis program called DIAL. The basic element used is illustrated in

Figure 4.1. The profile factorization used by DIAL is an adaptation of

that used in STAGS and so the comparison basis is reasonably close to

that of Section 3.

10 9 8 7

11 . 6

12

1 2 3 4

Figure 4.1. Basic DIAL 12—node element used for
UNIVAC 1110 test. Two variables per
node are defined.

‘ 4 -
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A simple 10 by 10 square panel (100 elements) with 561 node points

• was analyzed , leading to a matrix equat1~n of order 1119. The results

• obtained are given in Table 4.1. We notice that the ratio of 1.54 of the

basic operation cost is substantially lower here than on CDC equipment

where it ranged from 2—5 (see Tables 3.1 and 3.3).

Table 4.1

• COMPARATIVE RESULTS FOR SOLVING
A ]0x10 PROBLEM ON THE UNIVAC 1110 COMPUTER

P~~file SPSYST Ratio

Nonzeros (1000 ’s) 95.12 56.94 0.60
Operations (1000’s) 4200.OO** 1723.06 0.41
Factor time 32.49 15.99 0.49
Solve time 1.92 1.75 0.91
Analysis time 14.59* 1.90 0.13
Operation cost (iisec) 6.02 9.28 1.54

* The analysis time for the profile technique includes the
assembly. SPSYS*carries out assembly and factorization
simultaneously.

** Approximate op~~ation count.
4

a

*

4

I
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Section 5

SUMMARY

The series of comparative tests that have been made for this study

are indicative but not conclusive of the relative merits of two sparse

matrix processing schemes for problems arising in structural analysis.

The tests in Section 3 were carried out on a CDC CYBER 175 computer

which permits a limited amount of parallel computation . The results

indicated slightly smaller computing costs for the profile technique

on square domains and substantially larger costs for it on irregular

(plus—shaped) domains. It is likely that a good bandwidth reduction

algorithm could improve matters for the profile technique but we con-

clude that the sparse matrix processor SPSYST is a strong contender

in this computing environment.

The test in Section 4 was carried out on a UNIVAC 1110 computer

which has a better instruction set for logical operations and less

facility for parallel computing. In this environment, SPSYST proved

to be substantially superior even for a square domain.

The approximate cost per operation will always appear to be more

for SPSYST than for the profile algorithm because of the greater corn—

plexity of SPSYST. However, it is likely that it can be improved

somewhat by modifications of the implementation.

Of at least equal importance to the cost considerations alluded to

above are considerations related to ease of use and flexibility. Pre-

sently, SPSYST is fairly difficult to use because of certain implement-

ation details relating to data handling. With regard to flexibility,

however, it is definitely superior to the profile algorithm . It per—

mits substructuring in a natural way, efficiently handles the re—

analysis situation wherein a relative few element properties are

changed, and provides a powerful capacity for treating repeated sub’-

structures.

18
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A PACKAGE OF SUBROUTINES FOR SOLUTION OF VERY LARGE

SETS OF LINEAR FINITE’-ELEJ~1ENT EQUATIONS

J .K.  Reid

February 1978 AERE—M .2947

Abstract

This report descr ibes a package of subroutines desi gned to so lve

eff iciently very large sets of linear finite-element equations whose

matri x is symmetric and positive definite . It uses tree-search techniques

to organise frontal elimination so that input-output operations are not

excessive. It includes substructuring facilities and a good elimination

order is found automatically. 
- 
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1. Introduction

We consider the efficient direct solution of very large sets of

l inear equations

A x = b  (1.1)

• whose matrix A is symrrietric and positive-definite and can be expressed

as a sum - -

A ~ 8(k) (1.2)
k

of matrices B (k) with non-zeros in only a relatively small number of rows

and columns. Normally B (k) is a s t iffness matr ix assoc iated wi th a

single fini te  element , but proble ms occurr in g in other applicat ions can be

~ t hab~d1ed provided only th at each B (k) has relatively few non-zeros (indeed

we could ex press any matr ix in this form by taking one 8(k)  for every

non-zero).

We anticipate that the matrix A will often be so large that we are

not able to hold it in main memory , even in packed form. Indeed we

expect that sometimes one or more of the matrices B(k) may contain too

many non-zeros to be held in packed form in main mem ory. However ~.e do

assume that the number of main storage locations ava i la b le  i s a  modest

multipl e of tP’e order n. For instance we hold in main memory the right-hand

side b, an lntegt r work vector of length n and about 8 times as many

integer pointers as there are matr ices ~~~~
It is our intent i on that our.code be easy to incorporate in an

• existing program as a replacement for its present code for assembly (that

is the sumation (1.2)) and solution. To make the code portable we have

used Standard Fortran, checked by the PFORT verifier (Ryder , 1974).
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All input-out put operations ai’ r~ per form ed th rou gh smal l  aux i l iary

routines which request the reading or writing of an array of variables from

or to a given file. Entries in the files are addressed exactly as if the

file were a Fortran array . Indeed in the prel iminary version described

here the files actually are Fortran arrays. Our eventual intention is to

replace them by a virtual memory system written in Fortran. Since most

cal l s  are soon fol lo w ed by another call for adjacent entries in the same

file , such a system will be efficient. For this reason the present code

will run on a computer with a built-in virtua l memory without excessive

page thrashing.

To give a convenient and flexible interface to user programs we

require the user to specify the prob lem by a series of subroutine calls.

For instance each ~~~ requires two subroutines to be called ; the list of

rows (and col umns) contain ing non-zeros is specified by a call of INELV

and the non-zeros themselves are specified by one or more calls of INELR .

The order i n wh ich these subrout ines are calle d is left almos t ent i rely to

the user ’s conveni ence , our only requirements b~ing that the list of rows for

a ma tr ix ~~~ must be specified before its real data and if severa l calls of

IN ELR are ma de for one matr i x B (k)  then these calls must be consecutive.

The method used is a generalization of the frontal method (see for

exampl e I rons , 1970). Rather than seeking to order the variables for

elimination we seek to order the assembly (1.2). Since addition and

subtraction are associative operations , the elimination step

(~+l) - ~~~ a~~ a a ~~ (1 3)a~~ — a ~~ .

~~~ ~~~~ 
-

may be per formed before a l l  assem bl y steps

t

~ 

. - - ~- -  
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= ~~~ + ~~~ (1.4)

are compl ete for a 13 , provided assembly is complete for the pivotal row

(row L). We actually perform the elimination operations (1.3)

associated with the pivot ~~~ ir’niediately after the £th row is fu l ly

assembl ed. It fol lows that the elimination order is determined from the

order of assembl y, apart from the orderin g of rows that become fu l ly

• 
• assembled simultai~ieously. We represent the assemb ly order by a tree, an

exampl e of which is shown in Figure 1 , and refers to the f in ite el emen ts

whose geometry is shown in Figur~~2—5. The f i rs t  assembl y is of

elements 1 and 2 and we call their union superelement 7. Similarly elemenls 3

and 4 are assembled into superel ement 8 . The

geometry corresponding to this stage is shown in Figure 3. Next elements 5 and 6

are assembl ed into super-element 9, super-elemen ts 7 and 8 are assembl ed into

super-element 10 (see Figure 4) and finally 9 and 10 into 11 (see Figure 5).

1 2 3 4

5
7 8 6

10 - 9

11
Figure 1 A simpl e assembly tree.
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1 3 5 
. 

5
• .  7 8

2 4 6
6

Figure 2 Original elements Figure 3 Superelements at
level one of tree

10 9 11

Figure 4 Superelements at Figure 5 Fina l superelement -

In referring to a tree such as that of Figure 1 we will say that node A

is a”son ” of node B an d node B is the “father” of node A if node B i s one level

in the tree below no de A an d if the su perelemen t corres pon di ng to node B

contains that corresponding to node A. Fur ther we assu me tha t d i fferen t sons

•have different ages and will always draw them from left to right in order of

decreasing age. For exampl e node 10 in Figure 1 has elder son 7 and younger son 8

- 
A node without a father (e.g. node 11 in Figure 1) is called a “root”, and

a node without a son (e.g. node 1 in Figure 1) is called a “terminal” .

4
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In our simple example we performed assemblies in the order

7 = (1,2), 8 = {3,4) , 9 = {5 ,6),lO = (7 ,8), 11 ={l0,9}. However we could

equally well have performed the assembly 10 = (7,8) imedia tely after 8

had been assembl ed. The arith metic operations are exactly the sarre but

there is an organisationa l advantage in that the need to store stiffness 
-

matrices 7,8 and 9 simultaneously is avoi ded and a stack can be used to hold

intermediate results. Its contents will successively be the setsof

matrices

181 19!
(7) J• 7J { 10} U0! (11)

Such an order can be found in general by a depth-first search of the

tree. In such a search we begin at the root and go from node to node as

follows:

a) if the current node has a son not yet passed , go to the

el dest such son

b) o1~herwise , if the node has a younger brother go to it

c) otherwise go to the father

-
• 

until we return to the root. For Figure 1 the nodes would be passed in the

order 11 ,10,7,1 ,2,7,8,3,4,8,10,9,5,6,9,11. Each time we return to a node we

perform operations corres ponding to assemblin g the stiffness matrices that

correspond to its sons, performing all possibl e eliminations and storing

the resulting matrix.

Since no node of the tree in .Figure 1 has more than two Sons (i.e.

nodes linked to it from above) the way the assembly is to be performed is

specified compl etely. The user is at liberty to provide such a tree, but

we normally expect less detail than this and provide subroutines that fill in

the detail (see section 6 ). For example the propellor shown in Figure 6

• might have -its elements grouped into blades and hub, as shown in the tree

of Figure 7.

7 
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21 22

19 20

17 18

Figure 6 A propellor

1 2 ~ 4 5 6 7 8 9 10 11 12 13 14 1516  17 1819 20 21 2~

23 ~~ 24 
25 26

- 27 -

Figure 7 Tree for propellor 
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By the time a superelement is assembled , we can el iminat e  all

variabl es internal to it , i.e. contained in no other elements. It is

-~ ~~_ 

~~
‘ therefore advantageous to choose groupin gs with large numbers of internal

variables. tie believe that such group ings are often easily provided from

the user ’s knowl edge of the geometry of the structure.

Another feature of large structures is that they often contain

repeating sub—structures. For examp le if the three blades in Figure 6

are identical then each (with sui table renumbering of the nodes) could -

be represented by the tree of Figure 1. There are obvious advantages in

exploi ting such features , and in these cases we join trees through “same

interfaces ” as illustra ted for our propellor in Figure 8. Llotice that the -

tree wi th root 32 represents any one of the blades .

5 6 7 8

1 2

\ \ - 1  1
‘ \ I / ‘ %
-‘  

~~~~~~~~~~,I  I.v ~ I /
~~~ , I

\ \ I J
’ , I

24 - 25 26
- 23

4 -

27

Figure 8 Trees and same interfaces for the propellor of Figure 6.
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For each same interface the user must specify the

correspondence between the variable names used in the single

origina l (local names) and the variable names used in its copy

in the overall structure (global names). For instance our propellor

blade might have variable names as illustrated in Figure 9. In the

overall structure blade 1 might have the same names and in blade 2 the

names might correspond thus (2:22, 4:24 , 5:21, 6:27, 7:28, 8:29,

9:32, 10:33, 1 1:30, 12:34).

2~~~~~~~~~~~~~~~~~~~
U

Figure 9 Variables of the original propellor b lade -

Besides the obvious storage advantage implied by the use of same

interfaces , comput ing time may be saved by performing el imina tion

operations once instead of several times . Similar computing advantages

acrue if design changes are made in part of a structure , provided data

associated with the old structure is preserved. For exampl e if changes only

in the hub of our propellor are made then everythin g associated with the

tree representing the blades would still be valid and not need recomputing.

Same interfaces provide natural points for the storage of partially factorized

matrices and we give the user no other means of speci fying such points.

We therefore recommen~~ i,e user t~~~ntr oduce extra same interface s for

substructures that may remain unchanged from one run to another, even thoug h

they may not be repeated -In the overall structure.

I
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We call each superelemen t that corresponds to ~he root of a tree

a NrootN superelement. Every same interface must point to a root

superelement and the overall probl em must be one too. Wi th each we

associate a (poss ible empty) set of variables called “boundary” variables. 
-

If these variables are perm uted to the end then the overall matrix A and

vector b take the form

/A A \  fb\11 12 ( 1
) (1.5)

\A21 A22J

and the problem we actually solve is

(A 11 A12) (xi
’
~ = b1 (1.6)

\X 2J

given values for the boundary variables x2. In a heat—conduction

prob’e~n, for examp le , the boundary variables might be measured

temperatures on the boundary of the region. We do no t require  the user

to make the permutation of equation (1.5), but do requ ire him to

specify which variables are boundary variables.

For other superel ements a very similar role is played by any of its

variables that are included in other elements and superelernents in the 
-J

overall structure and we call these boundary variables too. For

the blade of Figure 9 the variables 10,11,12 are boundary , for

example. In a root superelement that is used at same interfaces we

judge whether a variable is boundary according to its disposition

in the overall structure. We permit the solution of equations

associated with any root superelement, interpreting the surnation in

equation (1.2) as being over those elements in the superelement. Thus

equations associated with sub-strictures may be solved separately given

11
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values for the boundary variables.

The overall probl em may also have an associated set of boundary

variables , althoug h we expect this to be unusual . The values of these

variables must be specified for a solution to be obtained . It may be

more convenient to do this than to eliminate them from the overall

problem , but the factorization will be slower and require more storage

because of the extra calculations associated wi th these variables. These

calculat ions are , of course , necessary if it is planned to keep the

factorizat ion for later inclu sion throu gh on e or more same in terfa ces in

a bigger overal l problem.

We use numerical names for the elements and variables. Element and

supere lement names mus t be dist inc t, al thoug h when same interfaces are in

use th e same el ement may of course ap pear several t imes in the ov erall

structure. All the variables in the overall structure must have distinct

names , but l ocal names used with in a root su perele men t across a same

interface are regarded as pr ivate to that supere lem ent and may be id entica l

with names used globally.

2. Calls  of inpu t subrou tines -

To specify a problem , the user must f i r st call  INI T , an ini ti a l i z ing

subroutine and then make a series of calls to the four subroutines:

1) INELV to specify which variables are associated with a given element

or are on the boundar y of a root supere lement.

2) INEIR to specify the real dat~a associated with an element (i.e. to

specify one of the matrices B (k) of equation (1.2)).

3) - 
INSUP to specify which elemen ts and superelemen ts belong to a given

superelement. 
- -
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4) INSANE to specify that a given superelement is identical with a

given root superelement. The correspondence between the “local ”

names used for the var iable s in the or ig inal and the “global ” names

used in the overall problem must also be specified .

The order in which calls of the subroutines INELV ,IU ELR ,INSUP and IN SAN E

are made is free to the user ’s discr etion , except that a call of INELR may

not be made before the call of I flELV for the same elemen t an~ if several

calls of INELR are made to specify a single matrix B~
1
~ then these must be

consecutive. -

All our subroutines contain an inte ger argu ment FLAG , wh ich i s used

to indica te a prompt (positive values), a successful entry (zero value

or an error condi tion (negative values). The full list of error

condit ions is given in section 5.

We now speci fy the act ion of the five input sub rou ti nes in deta i l.

2.1 Subroutine INIT

Subroutine INIT is called to specify the files to be used and to

initialize data in main storage. A total of four files are used , two of

which are ~or permanen t storage of da ta about the probl em an d two for

workspace. We have found it conveni ent to separate real and integer

storage, so on e of the permanen t f i les is for reals and one for in tegers

and similar ly  for the works pa ce fi les. It is our inten tion that these f i les

eventually be out of main storage and then INIT will be used to specify

their unit numbers. For the present COMMON blocks CRF ,CI F ,CRF2 ,CIF2 are

used for the permanent reals and integers and the working reals and

integers , respectively. Any four d istinct integers are suitable for use

when INIT is called .

- 

_



The arguments and their purpo~~s are as follows

SUBROUTINE IN I T(MAXSUP J IIF ,IRF ,IRF2 ,I I I F ,LIRF ,LIIF2,LI RF2 ,FLAG).

Input-only variables

MAXSUP (INTEGER) must be set to the largest numerical name to be used

for an element or superelement.

IIF ,IRF (INTEGERs) must be set to the file numbers of the main files for

integers and reals , respectively. -

11F2,IRF2(INTEGERs ) must be set to the fi’e numbers of the work files

for integers and reals , respectively.

LII F ,LIRF ,LIIF2 ,LIRF2 (INTEGERs) must be set to the lengths (in

Fortran storage units) of the four files (see sub-section 4.1 for

some guidance on these lengths).

Output-only variabl e

FLAG (INTEGER) need not be set by the user. It is assigned the value 0

after a successful entry. If any of the other arguments is

negative or if MAXSUP is too large, then the ini tialization is not

performed and FLAG is set to -18.

2.2 Subroutine INELV

Subroutine INELV must be called for each element to specify which -

variables it involves. It may also be called for root superelements to

‘specify which~variables are “boundary variables ” (i.e. are on the boundary

of the overall problem or may be involved in other elements and superelements

when the root superelement is included at a same interface in a larger

superelement). The list may not contain any repeated variables. It is

taken to be empty for any element or root superelement for which there has

been no INELV call since the last call of INIT. It replaces any list

previously input for the same element.

14
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The arguments and their purposes are as follows:

SUBROUTINE INELV(NN.IE,NUM ,LI ST ,FLAG)

Input-only arguments

N AM E (II~1TEGER) must be set to the numerical name of the element of~

superelement.

NUM (INTEGER) must be set to the number of variables. If it is non—

positive then the list is taken as empty.

LIST (INTEGER array of length MUM) must be set to contain the list of

numerical variable names. Repetitions are not permitted .

Output-only argument -

FLAG(INTEGER) need not be set by the user. !t is set to zero after a

successful entry. If the name of the element or any of the names

of its variables is outside the permitted range, then a diagnostic is

printed and FLAG is set to -10. If a variable is repeated then a

diagnostic is printed and FLAG is set to —19. If the main integer

file is too short then FLAG is set to -5. Under all these error

conditions a message is printed and the list is ignored.

2.3- Subroutine INELR

Subroutine INELR must be called at least once for each element

in order to specify the associated matrix B(k) (see equation (1.2)). It

is assumed that B (k) has non-zeros only in those rows and column s that

correspond to the variable list previously input for the element and the

upper triangular part of the submatrix of these rows and columns is input

by rows. If, for instance , the list is (3,7,1) then the non-zeros must

be input in the order b33,b37,b31,b77,b71, b11. If the number of non—

zeros is very large , then the list may be broken into parts and input by

consecutive calls of INELR . The break points may be chosen to the user’s

convenience.

15 
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The arguments and their purposes are as follows :

SUBROUTINE INELR (NAM E,ELEM ,LEN ,FLAG )

j~put-only arguments

NA IE (INTEGER) must be set to the numerical name of the element.

ELEM (REAL array of length LEN) must be set to contain the non-zeros being

input.

LEN (INTEGER) must be set to contain the number of non-zeros being input.

A non-positive value is taken to indicate an empty set of non-zeros.

Output—only argument

FLAG (TUTEGER) need not be set by the user. It is set to zero after a

successful en try, and to one of the values -7,—lO ,-l4 ,—l6 in

the event of an error. Error conditions -7. (real file too small),

—1 0 (name of element out of range) and -14 (data for previous element

not complete) causes a diagnostic to be printed and the real data

to be ignored while error condition -16 (too much data for element)

causes a diagnostic message to be printed out but the data is stored .

2.4 Subroutine INSUP

Subroutine INSUP must be called for each superelernent that the user

- wishes to specify. Calls may be made in any order. For instance if one

superElement contains another it is not necessary for the inner superelement

to have already been specified . Each call must specify a set of members

to be added to a given superelement. Any that are present in another super—

element are removed from that superelement. - It is expected that normally

all the members will be specified in one call but several calls may be made.

Repeated names are permitted , later occurrences being ignored . The user

may request that all elements and superelements not already included in a

supere 1~uent be taken , and in this case he does not specify any l is t  of

names.

16 
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The arguments are as fol lows:

SUBROUTINE INSUP (HAME ,MUM ,LIST ,FLAG )

Input-only argumen ts 
-

NAt-IE (IMTEGER) must be set to the numerical name of the superel ement

whose members are being specified .

NUM (IFITEGER) must be set to the number of members of NAME being specified ,

or to any non—positive value if all elements and superelernents not

already in a superel ement are wanted .

LIST(INTEGER array of length MUM). If NUM�O then this array is not

used , but otherwise it must be set to contain the numerical names

of the elements and superelements that are to be members of super-

element NAt-IE .

Output-only argument -

FLAG (INTEGER) need not be set by the user. it i~ set to zero after a

successfu l entry. If the name of the superelement or any of its

members is out of range then a diagnostic message is printed- and

FLAG is set to —10 , the names in LIST that are within range being

used even if one or more is out of range.

2,5 Subroutine INSAME

Subroutine INSANE is used to indicate that a given superelement is

identical with a given root element or superelement. The correspondences

between all the variabl e names used in the root-su perelement .(local -

names) and the names used -for its copy in the larger superelement (global

names) must be specified . Numerical names used as local names are - -

regarded as private to the root superel ement and may be reused as global

names. The el er~ent and superel ement names, however , are not reusable.

We refer to the corres pondence establishe d as a “same

interface ”.

L _
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The arguments are as follows :

SUBROUTINE IMSAtIE (NAME ,NAM [OR,NUM ,LI ST ,FLAG).

- - Input-only arguments -

NAME (INTEGER) must be set to the numerical name of the superelement.

NAMEOR (INTEGER) must be set to the numerical name of the root super—

- element to which superel ement NAME is identical.

NUM(INTEGER) must be set to the number of variabl es in the root super—

element. -

I1ST (INTEGER array of dimensions (NUM,2))must be set to contain the

global variable names in LIST(I,l ) ,  I=1 ,2,...NUM and correspond ing

local names in LIST(I,2), I= l ,2,...NUM.

Output—only argument

FLAG(INTEGER) need not be set by the user. It is set to zero after

a successful entry. If NAME,NAMEOR or any of the variable names

in LIST is out of range then a message is printed and FLAG is set

to -10. If NAMEOR is not a root-superelement then a message is

printed and FLAG is set to -12. If neither of these errors occurs

the interface is stored and then a check is made as to whether the

root superelemen t NAMEOR contains any variables not included in

LIST( I ,2),I=l ,2,...NUM. If it does then a message is printed and

FLAG is set to —13. If the check cannot be compl eted because

array ELVAR is too small then a message Is printed and FLAG is set

to -4.

3,, Calls of factorization and solution subroutines

Once the matrix A of equation (1.1) has been specified by a series

of calls of the Input subroutines a sym metric permutatior ~ i t  may be

factor ized as

in

— --~~ ,-- - -— -- -~~ —~~~~~~~~~~~~ -~~~~~~~~~~~~~ -~~~~~~~~~~ -~~~~~~~--



PTAP = LU (2.l)~

by a call of the subroutine FACTOR , provided it is associated with a

root superelement. If the superelement has p boundary var iabl -s (see

sect ion 2.2 ) then U is upper triangu lar except in its last  p rows and

columns and I is unit lower triangular with elements~

=0, i<j

= 1 (2.2)

= u~1/u~~, i>j, j�n-p -

21j = 0, i>j, j>n-p

Once this factorization is established , the equation (1.1) may be solved by

calling subrou tine SOLVE which performs forward and backward substitution.

If there are any boundary v~riab1es then SOLVE requests their values

prior to back substi tution.

Subroutine FACTOR begins by inserting extra superelements to ensure

that no superel ement has more than two component elements. This is done usil

a minimal  degree criterion , described in section 6. No real data is

required for this analysis and indeed we recommend that no calls of

IFIELR be made until after - the first FACTOR call.. It will then discover

what extra superelements are needed and calculate the number of non-zeros -~

in U and the number of real operations (multiplies and divides ) necessary

to find it. These quantities are stored in COMMON (see section 4 ). It

then comniences work on the. real numbers , returning con trol to the user

whenever it wants real data that is not available. The user is

expected to make the relevant call of INELR and then recall FACTOR. One - 
-

advantage of using this facility is that the real data will be stored

In the order that it is required , whereas it is likely for

essentially random access to be needed if it is all stored on file

~ 
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beforehand . Another advantage is that an estima te of the work needed

Is provided early and might  be used to te rminate the run if the estimate

is very high.

After FACTOR has been calle d , fur ther cal ls  of the input subroutines

may be made to spec ify other parts of the overall problem or change

exist ing parts . A subsequent call of FACTOR will not need to re-factorize

matr ices associated with root superelements unchanged since previously

factorized . Note that a root superelement is factorized both by a direct

call of FACTOR an’ by virtue of being included via a same interface in a

root superelement for which FACTOR is called .

We now specify the way subrou tines FACTOR and SOLV E are called .

3.1 Subroutine FACTOR

Stibroutine FACTOR factorizes the matrix associated with a root super—

element and has the following arguments.

SUBROUTINE FACTOR(NAM E,FLAG).

Input-only argument

NAME(INTEGER) must be set to the numerical name of the root superelement to

be factorized.

Input—output argumen t -

FLAG(INTEGER) must be set non—posi tive for initial entry. It has the

value zero after a successful entry and a negative value in the

range [—l5 ,—l ] in the event of an error (mean ings are listed in

section 5 ). A posi tive value of FLAG indicates a request to the

user to load real data including that for element FLAG by one or more

calls of INELR and then recall FACTOR wi th FLAG unchanged .

20
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3.2 Subroutine SOLVE

Subroutine SOLVE so lves the set of linear equations

A x = b
‘p

associated with a root superelement’. If the superelement has no boundary

var iables then a single call suffices but if there are any boundary variables

then two ca lls must be made , one for the forward substitution operations and

one for the back substitution with the correct values for boundary variables

being set between the two calls. No change may have been made within the super’

element since a call of FACTOR for it or for a superelemen t tha t con tains it

through a same interface.

The arguments are as follows :

SUBROUTINE SOLVE (NAME ,MAXV ,NSOL ,B,FLAG).

Input-only arguments

NAME (INTEGER) must be set to the numerical name of the root super-

element associated with A.

IIAXV (J UTEGER) must be set as least as large as the largest numerical name

of a variable contained in superelement NAi1~1E. -

NSOL(INTEGER) must be set to the number of columns in b.

Inpu t-output arguments

B (REAI array of dimensions (MAXV ,NSOL)). On initial entry (FLAG~0),

B(i,j),j=l,2,...,NSOL must be set equal to the ~th row of b for 
-

each variable i contained in superel ement NAME . On second entry

(FLAG=l),B (i,j),j=1,2,;..,NSOL mus t be set equal to the ~th row of

x for each variable I on the boundary of superelement NAME and the

rest of B must be left unchanged since return from the f irst entry.

On final return (FLAG=O), B(I ,j ),j=l ,2 ..., NSOL will be equal to the

~
th row of x for all var iables in NAME . No other components of array

B are altered.

0 ~~- .  21
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FLAG(IHTEGER) must be set to zero before initial entry and -is zero

after successful so lution. It is set to 1 after forward substitution

if NAME has any boundary variables and in this case the values of

the boundary variabl~~mu st  be placed in B and SOLVE recalled with

FLAG st ill equal to 1. Error conditions are indicated by the

fol l owing values of FLAG

—10 MANE out of range.

— 15 There is a zero pivot. -

—1 7 MAXV or NSOL is non-positive. 
- 

-

—20 MANE has not been successfully factorized . -

4. Storage

Information about the problem is held in two COMMON blocks called

CRF and CIF ~‘ihich hold files of reals and integers , res pectively and two

- COMMON blocks called CPOINT and SCALAR . This store is altered by the user

calli ng the input subroutines (see section 2) to specify his p roblem or the

subroutine FACTOR (see section 3) to factorize a matrix A associated with

it and store the factors. A run may be terminated and restarted later

provided that before termination these four COMMON blocks are filed and

restored before restarting. In addition the COMMON blocks CSTACK ,CELVAR , 
-

CA and CVtR are used for workspace and the COMMON blocks CRF2,CIF2 are

used for work~pace files. On most computer systems the user may increase

the sizes of these arrays simply by declar ing the required larger sizes

in his program, but for conforni~nce to standard Fortran he must make the

same changes everywhere the array~ appear. 
-

22
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The purposes of the variab les in COMMON block SCALAR (all INTEGERs) are

as follows 
- 

—

LSTACK ,LPO INT ,...LVAR hold the las t d imensions of the arra ys STACK ,...VAR.

IF holds the file number of the main integer file.

IFFR holds the position of the first free element in this file.

h F  holds the length in Fortran storage units of this file.

1F2 ,....LRF2 hold simila.r information for the integer work file , the

main real file and the real work file , respectively.

INEIRS holds the number of reals requ ired to complete input of the

last element matrix.

INELRN holds the name of the element whose real data was last input.

NZ is set by FACTOR to the number of reals it will add to the real file

between origina l call (IFLAG=O) and -final return (IFLAG=O). It is

avail able on return with FLAG�O.

MOP is set by FACTOR to the numbers of real multiply and divide

operations FACTOR will perform (availability as for NZ).

MAXIEN is set by FACTOR to the largest number of variables in an

element or on the boundary of a superelement (availabilit y as for NZ).

MAXEL -is the largest name so far used for a generated superelement.

NSTACK is used by FACTOR when retur-ni ng with FLAG>O. 
.

The array POINT , contained in COMMON bl ock CPOINT, holds four integer

pointers for each element and superelement. They are the following

_ _  

- -  
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PO INT( l ,IE): a If positive: next younger brother in tree. -

b If negative: father in tree.
c If zero: root of a tree.

POINT(2,IE): a) If positive: eldest son in tree.
b) If negative : pointer to original (same super-element).

POINT(3,IE): Pointer to integer file (value one for a null pointer).

POINT(4,IE): Pointer to real file (value one for null pointer).
This is negated for elemen ts not yet part of a factorized
superel ement. 

-

Entries on the main integer file in COMF~1ON blo ck CIF are

a ) for element sand root sup ere lemen ts

1. Number of vari ables in element or on boundary of superelement.

2. list of numerical names of these variables.

3. Pointers to the first and last entries on the real and

inte ger f i les correspondin g to el im i na tions asso cia ted wi th this

root (superelements only). They are in the order first real

fjrst integer, las t rea l , last integer.

b) for non—root superel ements whose boundary list is shorter than the

un ion of the boundary lists of its components .

1. Tota l number of variables. -

2. List of numerical names of vari ables (internal names first).

3. Number of variables that are internal .

c) for same superelements

1. Number of variables in superelement.

2. list of globa l variable names.

3. List of corresponding loca l variable names. -

Entries on the main real f i l e  in COMMON block ’CRF are :

a) for elements and root superelements with no n-empty boundary:

the upper triangular part of the stiffness matrix B(k) held by rais.

j 
b) for non—root superelements whose boundary list is shorter than the

un ion of the boundary lists of its two components: the rows of the

factor U that correspond to the elimination of the internal variables.
24
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Entries of type b) assoc lat -:! with a particular tree are held

adjacently on both the real and integer file In the order corresponding

to depth—first search of the tree , with one except ion: whenever the

search encounters a same interface pointing to another tree that may

involve eliminations (i.e. one that is not a simple element) a single

integer entry of -(root name ) is inser ted . All the se en tr ies may

therefore be regarded as a single large el im ina t ion en try assoc iated with

the root , and entry a)3. for the root gives pointers to its beginning

and end .

4.1 Sizes of arr ays in CO~1f1ON

The package uses workspace in arrays in COMMON blocks and the

purpose of this section is to explain briefly how each is used and what

size is l ikely to be adequate. Throughout the packa ge checks are made

that array bounds are not exceeded and error messages are output and

FLAG is set negative (see section 5) if any are exceeded .

The blocks with their default sizes are as follows

1) COMMONICSTACK/STACK(1 00)
INTEGER STACK -

This array is used to hold a stack of node numbers beginning

with the root and stretching throug h successive sons , sons of sons ,

etc. including cases where same interfaces are passed. Its length

must therefore exceed the total number of tree levels. A (usually

pessimistic ) bound on the necessary size is the total number of

elements , root superelements and same inter-faces.

2) CONMON/CA/A(l 0000)
REAL A
INTEGER ISUP, ISVAR ,LL V AR
EQUIVALENCE (A(1), ISUP(l ), ISVAR(l) , LLVAR( l))

The array A is used as real workspace by subroutines FACTOR and

SOLVE. A suff icient size is three times the greatest size of any 
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element or super-element (which size is recorded in MAXLEN of

COMHOU/SCALAR/), but for efficiency much greater sizes are

recomended .

The equivalent integer array ISUP is used by ANAL 1 to insert

extra nodes in any part of the tree that consists of a father and

several Sons , and the way storage is used is explained in section

6.9. Storage may here be a probl em if any node has an excessive

number of sons. Further calls of INSUP to split the tree manually

is an alternative to increasing the array size. -

The equivalent in teger arrays ISVAR and ILVAR are used

by subroutines SFACT and SANAL (see sections 6.3 and 6.8) and must

have length at least the greatest numerical name used for a variable.

3) COMMON/CPOINT/POINT (4,250) -

INTEGER POINT

Array POINT holds - four pointers for each tree node, i.e. for

each element and super-element (see earlier in this section for

details). Therefore its dimension must be at least as big as the

biggest numerical name ever used for an element or super—element.

The user specifies that his names lie in the range [1,MAXSUP] and

extra names used for tree nodes created by the package begin at

MAXSUP÷1 . The number created cannot exceed MAXSUP+(number of elements

for which static condensation takes place). A safe size for the

second dimens ion of POINT is therefore 3~~AXSUP.

4) COMMON/CELVAR/ELVAR(300) 
-

INTEGER ELVAR

- 

Array ELVAR is used for holding lists of variables associated

with elements and super-elements and performing merges between them.

A length of three times the longest such list (MAXLEN of

CO1’IMON/SCALAR/) is always sufficient . It is also used for a buffer

26
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by SOLVE so there is some advantage in increasing its size beyond this

lowest limit.

5) COMMON/CVAR/ VAR (200)
INTEGER VAR

Array VAR is used to permit the rapid manipulation of lists of

variable names. All its elements are set to zero by subroutine INIT and

are normall y reset to zero after use by any other subroutine. It is used ,

for exam pl e, by subroutine INELV to check for dupl icate variabl e names.

For eac h name M in the list , VAR (M) is checked for the value zero and ‘is

then reset to l;ifVAR (M) is non—zero when it is checked then variable

M must have already occurred ‘in the list. When all names have been

checked the list is scanned again to reset the non—zeros values back to - -

zero. The work performed is thus proportional to the length of the list.

VAR must have length at least the largest numerical name used for

.a variable. This is checked by subroutine INELV .

•~6) COMMON/CIF/IFL(5000)
COW~N/CRF/RFL (6000)• C Ol’ IM ON / C I F2 / I F L2 ( l00 0 )
COMMON/CRF2/ RFL2 (1000)
REAL RFL ,RFL 2
INTEGER IFL,IFL 2

Arrays IFL,RFL ,IFL2 ,RFL2 hold the main integer file , ma in

real fi le , integer work-file and real work file , res pectivel y . The

- . 
amount actually used in each can be ~ionitored by inspecting

IFFR ,IF2FR ,RFFR ,RF2FR in COMMON/SCALAR/ since they point to the first

free location in each array . We .recommend the user to adjust sizes

- -~n the light of his exterience on his class of problems .

The largest array is almost always the main real file since

this has to hold all the or iginal element sti ffness matrices and

-

- the -factorized forms . The number of reals added to the file by

FACTOR i s g i v~n m H Z  and is ava i la ble on an intermed iate retur n - 

- -
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(FLAG>O). The real work file can usually be significantly shorter,

-
- say by a factor of 5. The main integer file can also usually be

shorter than the main real file. The ratio depends on the sizes of

the original elements. With 60 variables in a typical element we

have found it to be less than a• ten th of the len gth , and with

12 variables in a typical &iement to be less than a quarter of the

length. The integer work file is even smaller so is unlikely to

cause probl ems.

5. Summary of error conditions

If any of the subroutines detects an error, then a diagnostic

is printed and its argument FLAG is set to a negative value. The

following is a full list of such error conditions.

-l Array STACK is too small.

• -2 Array A is too small.

-3 Array POINT is too small.

-4 Array ELVAR is too small.

- -5 Main integer file is too small. -

—6 Integer work—file is too small .

—7 Main real file is too small.

—8 Real work—file is too small.

-9 FACTOR called with FLAG out of range. 
- 

-

— 10 A name is out of range.

— 11 Real data not given to FACTOR when requested.

—1 2 Name used in call of FACTOR or for orig inal of same set

of superelements is not a root superelement.

~~~T~~~~~
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— 13 Faulty same- interface (one or more variables missing). 
-

— 14 Rea l data is incomplete for an element .

— 15 A zero pivot has been found.

—16 Too much real data supplied for an element.

—17 MAXV or NSOL non-positive on call of SOLVE.

—18 Faulty call of subroutine INIT.

—1 9 Variable repeated on call of INELV .

—20 Call of SOLVE for superel ement that has not had a successful

call of FACTOR.

6. Descriptions of individual subroutines

Our purpose in this section is to give brief descriptions of the

way the subroutines work. The initializat ion subroutine INIT and the

input subroutines INELV ,IN ELR ,INSUP and INSAM E are straightforward and

need -no description beyond that already given in section 2. The task

performed by FACTOR , however, is complicated and we have found it

convenient to subdivide it into a total of eight subrout ines. Separate

descr iptions of these are given in sub-sections 6.2 to 6.9 , fol lowing a

descri ption in section 6.1 of how the many depth-first searches used by

- these subroutines are coded in Fortran. SOLVE and the small subroutine

it calls also deserve some description and we do this in sub—sections 6.10

and 6. 11. Almost all subroutines include calls to subroutines

IOGETI,IOGETR ,IOPU TI ,IOPUTR to get from or put on file integer or real

data , and these are described in sub-section 6.12.

6.1 Depth-first tree searches

Most of our subroutines per form one or more depth-first tree searches 
- 

- -

-— 

and the purpose of this sub-section is to explain how this is done. 
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We illustrate with the tree shown in Figure 10, which is that of Figure 8

with additional nodes inserted so that each root node has one son and no

node has more than-two sons. Such additional nodes are automatically

insert€d by ANAL l , called through FACTOR. The tree is stored in

P01111(1,- ) and POINT (2,- ), as detailed in section 4. The values of these

pointers for part of the tree of Figure 10 are shown for illustrat ion in

Table 1. - - 
-

5 6 7 8

28 29 9 10

31 30

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

36

38

27 -

Fi gure 10 T~-ee for propellor with some additional super-elements .
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IE P OINT (l ,IE ) PO INT (2,IE) -

1 2 0
2 -34 0
3 4 0
4 -35 0

23 24 34
24 -36 -32• 25 26 -32
26 —3 7 -32

- 

28 2 9 .  5
29 -31 7

Table 1 Some of the pointers correspond in g to Figure 10

To perform a depth-first tree search without crossing same

interfaces (which for the example of Figure 10 would involve nodes
27 ,38,36,23,34,1 ,2,34,35,3,4,35,23,24 ,36,37,25,26 ,37,38,27) involves code

of the form
IE=NAM E
DO 70 NSCH=l ,LPOINT
I=POINT(2 , IE)
IF(I)20,30,lO

C
C JE HAS I AS SON
10 IE=I

GO TO 70

C JE IS A SAME INTERFACE POINTING TO ROOT SUPERELEMENT -I -

20 GO 10 40
C
C IE IS AN ELE MENT
30 GO TO 4O

C BAC KTRACK UN TIL A NODE WITH A YOUN GER
C BROTHER I-S FOUND
40 DO 60 J=l ,LPO INT

IE=POINT (l ,IE)
IF(IE)50,80,70

50 IE= -IE
60 CONT I NU E
C
70 CONTINUE
80

S -

31
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DO loops are used so that the loop structure -is apparent . It is not -

expected that they will ever reach termination since LPOINT is the

maximum number of tree nodes. The main loop DO 70 is executed once for

each tree node . If the node has a son then -it is replaced by the son.

Otherwise the loop DO 60 is used to backtrack through successive fathers

until a node with a younger brother or the root is reached.

Code of this kind appears in many places. The exact action taken

as each node -is passed varies from place to place but the overall

structure remains. -

Some riodification is needed if we wish to cross same interfaces

because we do not store at root super-elements any list of same

interfaces in which they are invol ved. In this case we use the array

STACK to hold a stack of integers consisting of the current element , its

father , its father ’s f~ther ,..., the root. We regard the father- son

relation as (temporarily) holding across any currently active same

interfaces. The backtrack step then consists of popping the stack

rather than using POINT(l ,.).

6.2 Subroutine FACTOR -

Subroutine FACTOR performs two depth-first tree searches. The

first checks whether any node has more than two sons, whether any root

node has more than one son or has a son that is an element or same

interface. Any of these conditions indicate that additional nodes need to

be inserted. The actual insertion is done by subroutine ANAL1 , which is

called through subroutine ANAL. Therefore a flag (lANAI ) is set dur ing

the depth-fi rst search if any such additional nodes are needed and ANAL

is called at the end of the search if this flag is set.
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This depth-fi rst search also sets positive the signs of PO INT (3,-~)

and POINT (4 ,.), whi ch are used as flags at various places. An

important example is that a negative value is placed in POINT (4,NAME)

during any call of INELV ,IFIE LR ,IUSUP or INSAME for node NAME to indicate

that information stored in association with it has (probably) changed .

Any root super-el ement whose tree contains such a node (even ind irectly

through same interfaces) will require associated matrix factorization

operations to be performed . Therefore during this first depth-first

search any node with a son having a negative value for POINT(4,-- ) has

its real file pointer replaced by the dummy value -1. Since this

pointer is itself held in POINT(4,.), the negative value wi l l  result in

the same action occurring for all its ancestors . In particular this will

happen for all root super-elements containing the change and hence we can

- 
recognise where refactorization is needed .

On completion of this search , if POINT (4,.) is positive for the

root of the tree being treated , then no change can have taken place since

the last call of FACTOR and so an immediate RETURN is possible. Otherwise

a call of ANAL is made if necessary and then a second depth-first search

is executed. Each same interface encountered is checked by calling

CKSAi’IE (described in sub-section 6.6) and the interface is crossed only

if the value of POINT(4,~) for its root indicates that it needs

treatment. 6n returning to a same interface that has been crossed or on

returning to the orig inal root super-element the subroutine SFACT is

called . This performs the actual factorization of the matrix associated

with a root super-element on the assumption that the matrices associated 
-

with root super-elen ents contained in it through same interfaces have

been factorized . Calling SFACT during a depth-first search ensures that

this condition holds. SFACT itself is described in sub-section 6.3.

33 
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If called for root node IR, i t  leaves a - posit ive value in

POINT (4 ,IR) to act as a flag to prevent refactorization if the same root

super-e lement -is encountered later in the depth-first search.

6.3 Subroutine SFACT -

Subrout ine SFACT is called by FACTOR and factorizes the matrix

assoc iated with a root super-element on the assumption that all root

super—el ements contained in it through same interfaces have been

factorized . I-f such an embedded root super-element has m boundary

variables then a stiffness matrix having m rows and columns is associated

with it and can be treated as if it were a stiffness matrix associated

with an original element (apart from the change from local to global

variable names). It follows that depth--first searches are possible 
-

using the tree pointers stored in arr ay POINT , as in the code of sub-

section 6 .1, and that the code -is li ttle more complicated than it would be

• for a super-element containing s imple component elements.

The first task of SFACT is to identify the pivotal sequence. The -

order in which elements (or super-elements) are amal gama ted into lar ger

super-elements is determined by a depth-first tree search during which

an amal gamation is performed every time a father is -reached from his

youngest son.- These amalgamations are first performed symbolically using 
-

index lists only. A stack is used to hold those lists that have been read

- 

- 
or constructed but are not required immediately . As each terminal

• node -is reached the index list of the corresponding element is loaded

onto the top of the stack. At each back-tracking step to a father from

his youngest son, the top two lists on the stack correspond to his two

• sons. These lists are removed from the stack, then merged and components

- corresponding to variables internal to the resulting super-element are

removed. The resulting list is placed on the top of the stack. A variable
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can be identified as internal by the fact that f t  does not appear

elsewhere in the stack nor in the lists of elements reached later in the

searc h nor in the boundary list of the root . 
- 

A preliminary tree search

is therefore necessary to find the last occurrence of every variable and

-f t is convenient to regard the boundary list of the root as the last list

encountered . It -is a lso necessary to have a pointer for each variable

to its fi rst occurrence on the stack. As each variable is found to be

internal to a super-element , it is placed next in the pivotal sequence

so that the complete sequence is known at the end of the search.

An array (ELVAR) in main storage is used to perform the merging of

index lists , and -it is convenient at times to regard it as the top

member of the stack. Each element index list is first read into ELVAR

and is transferred to the stack itself only i f another stack entry on

top of it is antici pated . Similarly once a merged l ist has been

constructed in ELVAR and variables corresponding to internal variables

have been removed , it is left there until a stack entry on top of it is

expected . If , on the other hand , the next operat ion is another merge

then the top entry of the actual stack (which is really the second stack

entry) is - also loaded into ELVAR ready for the merge. For the actual

,stack we use the integer working file.

On the completion of these operations the position in the pivotal

sequence of any variable M involved will be stored in VARQ1) and the

number of eliminations associated with tree node IE will be stored

- 
(temporar ily) in POlNT(3,IE). - - 

- 

- 

—

The actual elimination is performed during a final tree search. A

stack of reals is held in the real work file. As each terminal node is

reached the associated stiffness matrix is permuted to pivotal order and

: loaded onto the top of the stack by subroutine LOAD (see sub-section 6.4) an t
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as eac h father node is reached the associated assembly and elimination

operations are performed by subroutine ELIM (see sub-section 6.5). Al so

whenever a terninal node that is a same interface is reached then an entry -

on the main integer file is made consisting of the single integer which is

the negation of the name of the root super-element involved , unless this is

a simpl e element. This permits the forward and back substitution operations

of subroutine SOLVE to be performed under the control of file entries

~;ithout a tree search. -

6.4 Subroutine LOAD -

Subroutine LOAD is called by subroutine FACTOR to read an element

stiffness matrix , permute it to correspond with the pivotal order and place

it on top of the stack.. The stack itself is held in the form of integer

entries on the integer work file and real entries on the real work file.

The first task of LOAD is to read the length , LEN , of the l is t  of

variables associated with the element under consideration , then read the

list itsel f , permute it to pivotal order and output the permuted list to the

integer work file. To permit successive entries to be later read from the

top of the stack without storing additional pointers; the value of LEN itself

is written immediately after the permuted list. During the sort the

original positions of the variables in the permuted list are stored, for use

when permuting the reals.

The reals must now be permuted without necessarily there being enough

workspace to hold them all. The upper triangular part of the matrix is held

by rows on file and to find all elements of a particular row of the matrix ,

say row 1, requires a scan of the 1
th column of the upper triangle as wel l

as the row (see Figure 11). We have chosen to keep LEN locations in

t
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Figure 11 Scanning the elements of a whol e row 
-

work-array A iree for creating the permuted rows and another LEN locations

free for reading the corresponding unpermuted row , while using the rest to

hold as much as possible of the unpermuted matrix. We read each row

explicitly from file only if it is not already stored in A. For eac h element

of the permuted row we determine whether it is held in A and read it

explicitly from file if it is not . The rows are written out one-by-one .

It can be seen that the eff iciency depend s on ample space being avai lable in A,

but execution can continue provided it has length at least 2*LEN. -

6.5 • Subroutine ELIM

Subroutine ELIM is called to perform the assem bly and elimination

operat ions assoc iated with a node of the tree. The node may have a single

son, in which case no assembly is necessary , but eliminations (corresponding

to static condensation ) are probably required . • Normally , however , the node

has two sons and assembly of the corresponding matrices is required .
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. . ~~~~~~~~The index list of the elder (or only) son is first read . In the single

son case no merging of integers or of reals is necessary , but to g ive

consistency with the result in the two-son case the reals are copied

across from the work file (which holds the stack) to the main real file.

In the two-son case the second index list is read and is merged with

the first. During this merge the original index lists are overwritten by

the positions of the corresponding variables in the merged list , since

these are required for the merging of the reals. Note that both index

lists will be in pivotal order since this is how they are always left by

LOAD and ELIM , so a single merge (without a sort) is adequate .

For the actual merge the array A is divided into three parts of equal

length. The first part is used to accumulate rows of the merged matrix and

the others hold rows of the original matrix. The merg ing is perform ed

row by row. If there is not enough room for the whole of a row of the

merged matrix , then those rows that have been constructed are output.

Similarly if the whole of the corresponding row of either of the original

matrices is not avai lable , then as much as possible of the remaining matrix

is read in. The resulting merged matrix is written to the real file.

Notice that in a large case the records read and written will be loi~g and ,

apart from a little overlap between reads , there is no unnece ssary readin g

or writing. 
•

The actual elimination operations are performed in several passes

during each of which as many eliminations as the size of array A permits are

executed. Each begins by copying the matrix from the main file to the

stack. During the sequence of eliminations data is read from the stack

and the modified data Is written to the main file. The pass begins by -‘

reading as much of the matrix as possible into array A , and each row in turn

has all relevant elimination operations appl ied to it. If all the rows

- 38
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to be used as pivotal are available at this time , and there is enough

additional space for at least one more row, then the pivotal rows are written

• out once they have been calculated but are held at the front of the array.

The rest is used as a buffer for processing the remaining rows. If

however not all these pivotal rows can be held at once then only as many

- pivotal operations as the above procedure permits are performed .

Subsequent operations are performed on later passes. The final pass -

merely cop ies the uneliminated matri-x across to the work file.

6.6 Subroutine CKSAM E

Subroutine CKSAM E i s called by IN SAME and FACTOR to check the lists of

variables associat ed with a same interface and if nece ssary reorder them - —

so that the boundary variables head the list and are in the correct order.

It beg ins by performing a depth-first search of the tree whose root is at the

interface to see if it involves just those variables that are in the

assoc iated list. It is assume d that terminal nodes of this tree that are

themselves same interfaces have correct lists of variables. It then

check s that the boundary variabl es are in their correct positions. If they

— are not then it sorts them and writes the sorted lists out to the main

integer file. -

• 6.7 Subroutine ANAL

Subroutine ANAL is called by FACTOR if it has found that extra nodes need

to be inserted anywhere in the trees involved . FACTOR sets the signs -of

POINT (3,-.) and POINT(4 ,.) positive but does not indicate which tree requires 
-

further nodes because it is not expensive to rediscover this. Any root

super-element with an assoc iated stiffness matrix certainly does not

require such extra nodes , so we begin with a depth-first search in which

all other root super-elements are marked for checking by setting

POINT (3,.) negative. As each is checked this flag is reset positive so

that It Is checked only once. -
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A second depth-first searc h is performed to call subroutine SANAL —

-for eac h such root super-el ement.

6.8 Subroutine SANAL

Subroutine SANAL is called for each root super-element whose tree

may require extra nodes. rt does not cross any same interfaces.

It begins with a depth-first search during which the last occurrence

of every variable -Is recorded in array VAR . A second dept h--first
— establishes lists of variables activ& at each node. W henever a father node

is reached from its youngest son the index lists of all its sons will

have been established . Its own list is constructed by merging these

lists and removing all var iables internal to the corresponding super_element .

Such variables must be invo lved only in elements associated with nodes

which are descendants. These can be recogn i sed by keepin g a record of

the lowest tree level at which each variable has so far appeared (in LLVAR ) as

well as the record of its last occurrence in array VAR. If the

current node is at a l ower tree l evel than the l owest at whi ch a var iable

has appeared and that variable appears nowh ere la ter in the search then it

is ripe for elimination . The array LLVAR holding tree levels for

variables is initialized in the first tree search -to 1 for variables on

the boundary of the root super-element and to a large integer -for other

variables and is kept up—to-date during the second search.

A third tree searc h is used to call ANAL1 (see sub-section 6.9) for

each node that has more than two sons , or has a son that is a terminal

node, or Is a root with more than one son. ANAL1 works with a father

nod e and its sons , hav ing  index lists for all of them available. It is

ca lled for a node having a terminal node for a son in case static

condensation is suitable for this son , for our data s t ructure does not

permit eliminations at terminal nodes , so static condensation can take pl ace

Llp_ 
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only if a node is an only son . 
- 
Similarly we do not permit eliminations

at root nodes , so these should alway~ have j ust one son.

A fourth and final search checks that boundary lists of root super-

elements contained through same interfaces are comp lete. During previous

work within ANAL (and ANAL1 ) the whole list of global names at the interface

will have been used and it is to be expected that static condensation

wil l have taken place here to eliminate all internal variables. Therefore the

boundary of the root super-element should contain all the variables in

the list belonqinçy to its -father (or to itself if no static condensation

has taken place). For robustness we therefore check this list and correct

it if it is wrong. Note that ANAL calls ANAL1 for a root super-element

as soon as it reached in the depth-first search, so that this check is

made before t he boundary list is used in the contained tree’.

6.9 Subroutine ANAL 1

Subroutine At4AL 1 treats a part of the tree that consists of a node and

its sons , assuming that lists of variables are available for al l of them .

It checks for any son having one or more variables not in the list of the

fdther or any other son. Here static condensat ion is appropriate so a new

node is cre~ted with the original son as its only son dOd the father as its

father. Next ANAL1 considers all pairs of sons havinq one or more

variables in common and chooses that pair which together have least variables

to- be sons of a new node having the ori ginal father as its father. The

variable list for this new node is the union of the lists of its sons , less

those not in the list of the father or any other son. The al9orithm

- 
continues until the original father has a sing le son. Not ice that it is 

-
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essentially a minimal degree algorithm because at each stage the fresl-~ly

constructed element has minimal number of variables before any eliminations

are performed.

We i l lus trate with the -p~opellor blade of Figures 6 and 9, shown in

Figure 12 with elements names shown circles and variable names shown circled

7 
_ _ _ __ _ _ _ _  

_ _ _

/
2(
” - 8 ___~ll

6 12
9

Fi_gure 12 The elements and variables of the propellor blade .

and variable names shown without circles. The variables 10,11,12 are also

included in the hub element and will be recognised as boundary variables

because of appearing in the list associated with the father node. All the

otner variab les appear in two or more el ements so no static condensation

occurs. The progress of the algorithm is summarized in Tabl e 2. It begins wi th

all pairs of adjacent elements , of which (5,6) contains the least

variables , name ly 2,4,5,6. Elements 5 and 6 are therefore combined into

e}ement 28 with variabl es 4,5,6 (since 2 can no~ be eliminated). Thi s

gl~ves the new pairs of e’ements (28,7) and (28,8), each with 5 variables ,
in place of the first five pairs but 1eaves the remaining six pairs

unaffected. We take (28,7) as the next pair for amalgamat ion into

element 29 with variables 5,6,7,8 and new pairs (29,~~),(29,9),(29,1O)
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replace all but the last three pairs. Continuing, we establish the tree

shown in Figure 13.

EiementVlrsE1ementvariablesE1ement variables El1t11entva~ ; L 1 e l ementvar4-,i,~
(
~,-
Element

5 6  4* 28

5,7 5 2R ,’ 5* 29
5,8 6 28,8 5 , 29 ,8 5* 30

6,7 6  — 
—

6 ,8 5 — 

-

. 
-

7 ,8 6 —

7,9 6 • 29,9 6 30,9 5* 31

7,10 7 . 29,10 7 30,10 5 31 ,10 5* -
. 32

8,9 7  •

8,1 0 6  . - —

9,1 0 6  - . .

Tab le 2 Progress of the algorithm on F i gure 12 probl em.

28 \/
7

- 29~~~~~~~~~~ 8

31 /0

. 32

Figure 13 Tree established for Figure 12 probl em
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‘ The code to ~rnp 1ernent t h i s  eff iciently is quite iong and we wi l l  not

describe it here, except to remark that the array ISUP (equivalenced to

array A) requires storage for -

- 
- 

--  
1) super—variabl es, each of which is a set of variables all of which

belong to every element of some set of elements -

ii) a list of pairs of adjacent elements. -

Each entry in the first list requires two integers and each entry in the

second lis t requires five integers. The storage requ irement may

therefore be great if there are a large number of elements (nodes). We

envisage that the use-will normally provide enough groupings of elements

into super-elements -for no node of the tree to have a very large number of

sons , so do not expect this problem to be severe.

6.10 Subroutine SOLVE 
- 

-

Subroutine SOLVE is called directly by the user to solve one or

more sets of equations associated with a root super-element that has already -

been successfully factorized , and the arguments have already been

specified in section 3.

Forward substitution is performed under the control of the large

elimination entries on the files which are associated with each tree (see - :

explanation of data structure at end of section 4). As much as possibl e of

the integer entry is read into array ELVAR and as much as possibl e of the

real entry is read -Into array A and the forward elimination continues

until a same interface is reached , the arrays ELVAR and A being refilled

whenever necessary. At a same interface the right-hand side vectors must be

permuted so that forward substitution can continue using names local to

the contained tree. - This permutation is performed by subroutine CRSAME,

described in sub-section 6.11, then elimination operations corresponding

to the contained tree are performed in just the same way as those -for the

original tree, including the possibility of crossing a~,othe” same

Inter-face. Whenever operations for a conta~r..~ ~Ic !  are completed , the

same interface at its root must be crossed in the reverse direction , so
44
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CRSAME is call ed for the inverse permutation and then operations in the

containing tree can continue . Eventually operations for the original tree

are completed and this means that forward eliminatio n is finished .

If the root super-element -for which SOLVE has been called has any

boundary variabl es their values must be set after the forward substitution

operations have been completed . This corresponds to their values being

found by further forward substitutions in a containing tree and back—

substitutions in that same tree. Their values cannot be input at the

ori ginal call of SOLVE because then the forward substitution operations

would corrupt them. This is a price that has to be paid for the

facility of being able to call SOLVE for any root super-element and for

being able later to embed any root super-element in larger structures

through same interfaces. - 

-

- 
Back—substi tution is performed by reading the same file entries , but

essentially in reverse direct ion and again using CRSAM E to permute the

vectors whenever a same interface is crossed.

- 6.11 Subroutine CRSANE 
- 

- 
-

- - 
- Subroutine CRSAM E is called by SOLVE whenever forward or backward

subst itution involves crossing a same interface. It permutes a vector

- ; 
- of reals under the control of pairs of integers (the local and global

variabl e names). Its aim is to set all the numbers which are in

B(FROII(I)), I=1 ,2,...,N on entry into B(TO(I)), while being reversible in

the sense that a further call with the vectors TO and FROM reversed will

restore the whole of B. We expect the length of B to be usually much

greater than N and wish to perform only 0(N) operations.

If K=T0 (I)=FROM (J) for a pair of value s t,J in the range [l,N 1 then it

Is necessary for the value of B(K) to be moved before it is overwritten.

In fact it is appropriate to chain the moves. An exampl e is given by the

- FORTRAN statements
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B(10) = B(21) - 
-

-

8(21) = B(7 -

B(7)- = B(ll

for the case where 21,7 appear in both of arrays TO and FROM , 10 appears

only in TO and 11 appears only in FROM. Without further action the

original contents of B(1O) would be lost and two copies of the original 
-

B~ll) will be left. We therefore add extra statements to give the 
-

cyclic permutation 
- 

.

1= 8(10) 
-

B(lO) = 8(21)
B(2l) = B(7)
B(7) = B (11)

- 

B (ll)= T

which will be reversed if TO and FROM are interchan ged .

Simple Fortran of th is kind i l lustr ates the permuta tions bu t our

actual code uses indirect addressing. The array VAR is assumed to contain

all zeros and the code begins by setting VAR (TO (I))=FROM(I), 1=1 ,2,.. .,N.
A second loop negates these entries except where they correspond to the head

of a chain. The final loop performs the actual permutation as a sequence

of cycles , using indirect addressing. It also resets VAR to zero.

6.12 Input-output subroutines

Input and output is carried out by four subroutines IOGETR ,IOGE T I ,

IOPUTR ,IOPUTI to get from file or put on file real or integer data

respectively. Each has four arguments - 
-

ARY is an INTEGER (for IOGETI/IOPUTI) or REAL (for IOGETR/IOPUTR)

array of length N used to transmit the data. 
-

Fl - 

is an INTEGER giving the number of reals or integers to be

transmitted. -
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IFILE is an INTEGER indicating the file involved , hav ing one

of the values : -

1. Main integer file
2. L-iteger work file -,

- 3. Main real file
4. Real work file.

K is an INTEGER indicating the position within the file ,

address in g as if the f i le were a Fortran array, that corres ponds

to ARY (l). -

These four subroutines presently merely transfer data to and from

arrays in the common blocks CIF~CIF2~CRF~CRF2~ respectively. The

intention is that they be replaced by a virtual memory system that

genuinely reads and writes to files out of main memory. The present

subroutines will be quite effective on a computer system with a built-in

pag ing system. Because of the way calls to these subroutines are organised ,

page t~washin g is unlikely to occur. For instance durin g a call of SOLVE

entries corresponding to each tree invol ved are together and are read once

forwards and once (essentially) backwards.
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- A FORTRAN Virtual Storag e

Simulator for Non-Virtual Compu ters

Paul S. Jensen

Revised 4 March 1978

- ABSTRACT

A software package called VMSYST for virtual t:-ve. storage process ing on

a variety of computing systems is described. It utilizes a paging system for

which the page and page buffer s izes can be conveniently adjusted to suit the

application. For generality , the page buffer is held in a labeled common area.

H Except for the input/output routines , the package is written in standard FORTRAN

for transportability. A gauche FORTRAN version of the input/output system is

provided for simple testing but is not recommended for general use.

- VMSYST was designed to support a sparse matrix package using a generalized

frontal scheme. It proved very effective in that application but has also

gained popularity in two other applications. It is currently operational on

CDC 6000 series and Univac 1100 series computers.

.

~1

_ _ _  _ _  -~~~~~ _ _



r w r  .

— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1. INTRODUCTION

The concept of providing a high speed word addressable (core) memory

of practically unlimited size has intrigued computer developers sinc e the

mid-1950’ s. Since economic s has continuously forced rather severe limita-

- tions on the actual size of USM (high speed memory), the concept of virtual

memory evolved in which the unlimited size effec t was achieved by judicious
use of auxiliary storage devices. It was accomplished by hardware des ign

in the late 1950’s and appeared in the Burroug hs B5500 . It is also the

standard design of the IBM 370 series computers .

Over the past decade, a great deal of experience in the operation
characteristics of virtual memory systems has been gathered and there is

a wealth of literature on the subject. (See [3, 6 or 141 for a general
discussion.) Not all of the results have been des irable , in fact, in some

scientific applications the results were almost disastrous [2, 5 and 12].

Other authors [7 , 8 , 9 , 11, 13] , however , provide glowing reports on
virtual memory for scientific computation.

As a rule, it appears that if many small records are to be processed ,

a virtual system has some important advantages whereas for very large

records , direct transfer to/from mass storage is more cost effective.
Consequently, for scientific problems invo1vin~ very large quantities of
data it is often advantageous to have both , i.e., “virtual” mass storage

files for parameters , indexes and tables , and “direct” files for large
data blocks such as matrices.

In this paper we describe a system VMS?ST of fairly simple FORTRAN

subroutines which can conveniently be used to simulate virtual file opera-

tion. Unfortunately, the FORTRAN language does not have facilities for a

number of specif ic , random access file manipulation processes that are
needed and so cer tain support routines descr ibed in Sec tion 6 mus t be
provided for the use of VMSYST.

1
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2. DATA BUFFE RING SYSTEM

2.1 Page Buffer

The system presented here utilizes a page buffer array in a labeled

common block for the actual data (in pages) held in the HSM (high speed
memory). It is likely that this buff er would more appropr iately be main-
tam ed in an extended or supplementa l core storage on computing systems

offering such a feature . Even high speed drum storage could conceivably be

used for this purpose, particularly if a direct data path between the drum
and mass storage is available .

For security and control , the contents of the buffer can only be

modified by the virtual system routines. Thus, when an application pro-

gram requests data resident in mass storage, it is first moved to the

buffer and then to the array provided by the application program. This

double movement of data is the major price paid for the benefits of the

virtual system.

All data in the virtual system is partitioned into pages, which are

blocks of consecutive data words of a fixed p
~~~ 

size. Pages residing in

the buffer are called active pages. Inactive pages are resident in

auxiliary storage only.

2.2 Page Table

The buffer storage is partitioned into blocks , each being the size

of one page. Corresponding to each of these blocks is one column of control
information (see Table 2.1) in a 

~~~~ 
table residing in a distinc t labeled

common block. The page table is the key mechanism for keeping track of

what data is in the buffer and its status.

3. STORAGE CONTROL SYSTEM

An application issues the liQ requests which are either file manage-
or data trans fer requests. Data transfer requests are used to move

2
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TABLE 2 . 1  -

Control Information Maintained in Column j
of the Page Tabl e for an Active Page of Class c

ITEM PURPOSE

1 Next older active page of class c (or o)

2 Younges t ac tive page of class j (or o)

3 Virtual mass storage location of this active page
(64 Virtual address + File No.)

4 Physical location of this active page in mass
- storage (phys ical units , e.g., sec tors)

5 Next younger active page of class c (or c +
total no. of active pages)

6 Next older active page (or o)

7 Next younger active page (or o)

S
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data between a specified array and mass storage at a specified virtual
location. When a data transfer request is issued, the following steps
def ine the fundamental transfer process :

1. Determine if the page corresponding to the

virtual location is active . If it is,

denote it by P and then ~~ to st~~ 7

2. Look for an empty active page. If one

is found, denote it by P and then £2. to st~~ 5

3. Find the “oldest” active page P. If it

does not differ from its corresponding

- inactive copy , then £2. to step 5

4. Copy P to its virtual location in mass

storage (bump the page)

5. Enter the control information of the page

corresponding to the virtual location of

the data to be transferred in the page

table column for page P.

6. If the data transfer is input from mass

storage or the transfer data does not

include all of page P, and if there is an

inactive copy of the page P in mass

storage , then transfer the inactive copy
to the buffer , thereby making P fully
active.

7. If the data transfer is input from mass

storage , then copy that port~f on of the
transfer data contained in P to the
application program array.

4
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8. If the data transfer is output to mass storage , then

copy tha t portion of the trans fer data for page P
from the application program array to P.

9. If not all of the transfer data has been copied ,

then update the virtual location and size to

reflect the remaining transfer data and ~~ to ~~~~ 
1

10. Job complete.

It should be noted that step 3 defines the so-called “paging algorithm”

discussed widely in the literature. It is the criteria used to determine

which page (or pages) is to be”bumped” . Here we use the simple criterion

of “age”. Substantially more complicated criteria have been devised [11
with varying success, depending upon the application.

The search of the page table required in step 1 has also received con-

siderable attention [10). In VMSYST, an approach similar to hashing without

the possibility of conflicts is used . Each page p is assigned to an equiva-

lence class c~, = p mod m + 1, where m is the page capacity of the page

buffer. In this way, only the active pages of class c~, need to be checked

in step 1 for any page p. A bidirectional linked list is maintained for

the active pages of each class to facilitate the search.

When a large block of data is to be transferred , it is possible for the

fundamental process described above to bump pages that will subsequently be

needed for the transfer. This eventuality is overcome by paritioning the

data block according to page destination and first transferring those parti-

tions corresponding to active pages .

This innovation always has a beneficial effect on the actual input/out-

put volume to mass storage, however , at the cost of considerably more page
table scanning. Statistica l evidence has not yet been gathered to indicate

the overall cost impact.

5
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4. FILE MANAGEMENT

The processes of establishing communication with auxiliary storage
devices, ca taloging them for permanent retention of data, locating speci-
fic data on previously cataloged files , etc., are very machine dependent.
Consequently, machine independent routines for such file manageu~nt opera-

tions cannot be generated . However, a file access table which can provide

sufficient descriptive data for a great variety of auxiliary storage equip-

ment can be devised and used by “transportable” FORTRAN computer code.

The information retained for each file used in this virtual memory

system is outlined in Table 4.1. It takes into account the fact that data

in auxiliary storage is normally in blocks of standard computer words

(SCW’s) which are called physical block units (PBU’s) here. The SCW is

taken to be the standard addressing unit of high speed memory in a com-

puting machine, e.g., 32 bits on IBM computers, 60 bits on many CDC com-

puters and 36 bits on Univac computers.

The file identifier is also a machine dependent form which is of ten
an alphanumeric. The sixth and seventh words in the information list are
currently provided for the identifier with the eighth unassigned , making

an expansion to three words simple if needed for some computing systems.

For convenience, each f ile is referenced by its column number in the file
table rather than its identifier. The last item is used as an access key

to help prevent accidental data loss. Presently it is initially set to

one of “get”, “put” or “both”.

6
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TABLE 4.1

- File Information Maintained in the File
Access Table for Each File (Auxiliary
Storage Unit) Defined

PBU - Physical Block Units (Sectors)
SCW - Standard Computer Word

ITEM PURPOSE UNITS

1 No. of PBU’s per page

2 Current position PBU

3 Next free pos ition PBU

4 Capac ity SCW

5 PBU (Physical block unit) size SCW

6, 7 File Identifier (zero if inactive)

8 No t presen t ly used

9 Access key (“get”, “put”, or “both”)

7
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5. FORTRAN ROUTINES -

When the virtual memory system is operational on a computer system ,
the following fourteen processors are all that an application program will
have occasion to reference:

- IOSET

IOSTAT
IOOPEN (FILE ID ,FILENO ,FILINF)
IOCLOS (FILENO)
IOPUTx (A ,NA ,FILENO ,VLOC)

IOGETx (A ,NA ,FILENO ,VLOC)

IOCLRX (A ,NA ,FILENO ,’TLOC)

IOADDx (A ,NA ,FILENO ,VLOC )

IOSCLx(A ,NA ,FILENO ,VLOC)

where x is either I or R depending upon the type of data in A . The

first eight routines pertain to file handling and the movement of data and

the last six provide special numerical operations on data in virtual memory .

5.1 Initialization

Initial values for the tables and parameters of the system are estab-

lished by one call of the form

CALL IOSET.

This subroutine sets the parameter values as indicated in Table 5.1 and

clears the FILE, PAGE and BUFFER tables.

Auxiliary storage files are opened by a call of the form

L 

- 
CALL IOOPEN (FILEID ,PILENO ,FILINF) ,

where

8
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FILEID is a two word al phanumeric f i le name supp lied

by the application program,

FILENO is a file reference integer for the f i le

supplied by IOOPEN ,

FILINF is a five word integer file description array ,
- see Table 5.2

IOOPEN calls upon a special routine DMDAST (See Section 6) for establishing

an auxiliary file via executive requests. If a routine of this nature is

not available at a particular instal lat ion, a suitable modification of

IOOPEN will be required.

* - 5.2  Data Transfer

The fundamental data transfer operations are GET data from virtual

memory and PUT data into virtual memory . Data transfer is accomplished by

calls of the form

CALL IOGET x (A ,N ,VF ,VL)
and

CALL IOPUT x (A ,N ,VF ,VL) ,

where
x is “R” or “I” for real or integer

data transfer ,

- - 
A is an array of length N and type

corresponding to x above ,

VF is an integer file number es tablished
by IOOPEN and

VL is a virtual location (in standard
computer words) on VF.
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TABLE 5. 1-

VMSYST Key Parameters (Integer)

NAME BASE - 
PURPOSE

VALUE

NFIL 8 Maximum number of simultaneously opened
files (no. columns in file table array
FILET)

NB 1JFR 22400 Size of bu f f e r  array
PAGESZ 896 Size of each page (common multiple of

auxiliary file sector sizes , e.g.,
Univac-28, CDC-64)

INPRE 1 No. of integers per real (standard
machine word

NBPIN 35 No. of bits available for positive
- integers (log2 IMAX , where IMAX is

the largest machine repre~ entable
integer)

TABLE 5.2

File Descri ptor Array FILINF (see also Sec . 6.3)

ITEM PURPOSE SPECIFICATION

1 Equipment type -l Tape
O Disc

_________ _______________________ 
3 Extended_Core

2 Permanency option 0 Temporary
3 Existing

_________ ____________________ 
6 New_Permanent

3 Capacity In standard machine words

4 Ta pe reel ID If appropriate

5 Access “GET” Read only
“ PUT” Write only

__________ ________________________ 
“BOTH”_ General

— 10
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k ~~ The actual movement of data is handled in uni ts  of standard computer

words. Thus if A is an integer array in a system having integer words

shorter than standard, then

INPRE~(1+[(N—l)/INPRE]) -

integers will actually be transferred , where INPRE is the number of integers
per real (see Table 5.1) and [xJ is the largest integer not exceeding x.

The transfer of data between auxiliary storage and the buffer is

handled by special “position”, “read” and “write” utilities DMPAST,
DMRAST and DMWAST described in Section 6.

5.3 System Status

It is helpful in large processes to, obtain a brief summary of the

10 activity from time to time. VMSYST maintains a number of statistics

in this regard which are disp layed by a call of the form

CALL IOSTAT.

5.4 File Release

When operations involving a specific file are finished , the file may
be released from the system by a call of the form

CALL IOCLOS(FILNO)

Where the absolute value of FILNO is the reference number established by

IOOPEN.

All of the active pages corresponding to the file that may differ

from the inactive ones are transferred to the file. If FILNO is positive,

then the entry in the file table FILET for the file is deleted , and the
file is also released (made inactive if permanent or purged if temporary)

from the executive operating sys tem by means of special suppor t rout ine
DMFA ST (see Section 6). 

-
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5 . 5  Specia l Functions -

Three special arithmetic processes are included for numerical appli-

cations. The inclusion of these processes in VMSYST had almost no impact

on the implementation , but are of tremendous value to numerical applica-

tion programs.

To clear an area of virtual memory (i.e., to set the contents to

one prescribed value), a call of the form

CALL IOCLR x (A , N , VF , VL)

is used where scalar A is the prescribed value and the other arguments

are as described in Section 5.2.

A scaled vector s .A may be added to the contents of an area in 
-

virtual memory by a call of the form

- 
CALL IOADD x (A, N, VF , VL) ,

where the scalar s is held in A(N+l).

Finally, the contents of an area in virtual memory may be multiplied

by a scalar constant A by a call of the form

CALL IOSCL x (A , N , VF , VL)

A
12
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6. AUXILIARY STORAGE INTERFACE

Unfortunately, there are no standard facilities in the FORTRAN language

for dealing with general auxiliary storage media . Consequently , a set of - 
-

FORTRAN subroutines called DMCASP [4] with facilities for the necessary

communication with the executive operating system has been constructed at

the Lockheed Research Laboratory to fill this gap. Several of these are

used in support of the virtual memory system VMSYST discussed here.

In this section we describe the functions performed by these support

routines so that approximate duplicates may be constructed elsewhere for

support of VMSYST. This description is intended to be minimally sufficient

and interested readers are urged to refer to [4] for a comprehensive des-

cription.

For this discussion , we shall frequently refer to an “auxiliary storage

device” which we abbreviate to ASD. We specifically exclude the normal

user input (card reader , tele type , etc.) and output (printer, plo tter , etc.)
as ASD’ s. In the broad sense, of course , these are also ASD’s, but their

management is best relegated to the operating system.

6.1 Fundamenta l Operations

DMGASP performs the following five fundamental auxiliary storage

operations , where we include alternative nomenclature for the operations

in parentheses:

- 
1. Declare (assign, attach , activate , open) an ASD,

2. Free (release, deactivate, close) an ASD,
3. Write (store, put) data on an ASD ,

4. Read (copy , get) data from an ASD and

5. Posi tion an ASD .

The write and read operations always transmit data directly between an ASD

and a storage block in HSM. Thus the user program is not burdened with con-

siderations of hidden buffering that often impedes high volume 1-0.

- 

13 
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6.2 Device Reference System

In opera t ions 2-5 above , the ASD is designated by its LDI (logical

device index), which is an integer in the range 1, 2, ... , MAXLDI*.

• If an ASD is also given an (external) alphanumeric name, the connection

- (equivalence) of that and the LDI is established in the declaration opera-

tion. 
--

The declaration is always the first operation performed on an ASD.

When an ASD is declared , its attributes (see below) are entered in an
auxiliary storage table (AST) to facilitate all succeeding operations.

They remain there until a free operation is performed. After an ASD is

thus deactivated , its LDI may be used in another declaration with another

ASD.

6.3 Storage Device Attributes -

The four attributes :

TYPEX ASD type index (-1 to 3)

OPTX ASD option index (0 to 12)
LIMIT ASD capacity (in words) and

REEL Tape reel identifier

are maintained for each declared ASD. The typical default condition is to

set all four attributes to 0. That yields a temporary , sector addressable

mass storage device with a system determined default capacity. If a tape

is declared (TYPEX=-l), then REEL O implies the use of a new blank tape.

A previous reserved tape is declared (mount reques t) by setting REEL to
the literal (alphanumeric) tape identifier , e.g., REEL = ”l 2 3 4 5 6”.

The in terpretation of the remaining type and option indexes are provided

in Tables 6.1 and 6.2

* MAXLDI is an internal parame ter set at the installation. It is generally
larger than 32.

L - :•
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TABLE 6.1
Type Index for Auxiliary Storage Devices

Index 
- 

Ty pe of Equipment
(TYPEX)

-1 , -2 Magnetic tape (7 /9  track)
0 Sector—addressable , high-capacity mass storage
1 Sector-addressable , high-speed mass storage
2 Word-addressable  mass storage
3 Extended core storage

TABLE 6.2

Option Index for Auxiliary Storage Devices (ASD’s)

Opt ion Suitable
(OPTX) Type Interpretation

O All Temporary ASD
1 —1 , -2 Write enable reserved tape
2 All Identify previously assigned ASD
3 0 Access previously cataloged ASD
4 0 Exclusive access to previously cataloged ASD
5 0, -1 , —2 Permanent tape or disc file (private)
6 0 Permanent disc file (public)
7 0 Permanent disc file (private , read only)
8 0 Permanent disc file (public , read only)

9-12 0 Like 5 - 8 but permanency conditional upon
job comp letion

15 
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• 6.4 Operation Naming Convention

The six ASD operations performed by DMGASP are indicated by the
first letters in their names as indicated in Table 6.3.

• 

- 
TABLE 6.3

Auxiliary Storage Operation Designators

Designator Operation

D Declare (assign , attach , activate , open)
F Free (release , deactivate)
P Position
W Write (store, put)
R Read (copy , get)
E End file (tape)
L - List DMCASP operational data

The operations are carried out by subroutine calls to entry points in

DMGASP having the form

CALL DMxAST (L, H, N)

where x is any of the letters DFPWREL . There are a lways three arguments

which serve opera t ion dependen t functions . Table 6.4 lists the defined

functions of the arguments.

16
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- TABLE 6.4
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Functions Served by the Three Arguments
L, M , and N of a DMCASP Operation

DHxAST (L,M ,N)
(Operation designator x is one of DFPWREL,
see Table 6.3)

Argument Operation Function
Designator

L LOSD-List Operation Status Descriptors
L 

___________ 
if non-zero

_____________ 
All Others LDI-Logical Device Index

D EDNAME-External Device Name (Optional)

F DELETE O release , 1 :decatalog

P LOC-Location (Disc),
Tape File Number (TFN), or

M 
___________ 

4096(TFN-l)+Record-l

W, R ARRAY-ESM (Core) Data . Block

E Ignored (dummy) -

L LPKT-List(LPKT+1) words of the file
_____________ —-_________ information table

D DDPARS-4 word attribute table

F, E Ignored (dummy )

P MODE-0 sectors from start
I words from start ( (Disc)

N 
___________ 

-1 words from current pos . I

W , R SIZE-Array Size

L LTAB-List Auxiliary Storage Table
if non-zero

- 17
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6.5 Supplemental Operations

In addition to the operations discussed in Section 6.4, there are

some supplemental operations related to those of DMGASP. Notable among

these is accessed by

LSECT = UISECT (LDI)

which provides the sector size of the declared disc file with logical

device index LDI.

6.6 Operations Used in VMSYST

The operations DFPWR (Table 6.3) and the supplemental operation

(Section 6.5) are referenced by VMSYST. These references are confined to

four VMSYST subroutines as indicated in Table 6.5 Adaptations of VMSYST to

computing systems not having DMGASP may be made either by simulation of

the operations of Table 6.5 or by suitable modification of the VMSYST

subroutines listed in Table 6.5

TABLE 6.5

DMCASP References in VMSYST

Subroutir~. 
DMGASP Operations

__i

- 
IOOPEN D,P,UISECT

ICCLOS F,P,W
IOPACE R,P,W
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