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Invoking conditions utilized to obtain numerous “ideal” results
in nonlinear programming , this paper summarizes the development of a basis
for calculating the first partial derivatives of a Kuhn—Tucker triple and
the first and second partial derivatives of the optimal value function,
with respect to problem parameters. In the context of prior results, a
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and applications are indicated.
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THE GEORG E WASHINGTON UNIVERSITY
School of Engineering and Applied Science

Institute for Management Science and Engineering

NONLINEAR PROGRAMMING SENSITIVITY ANALYSIS RESULTS
USING STRONG SECOND ORDER ASSUMPTIONS

by

Anthony V. Fiacco

1. Introduction

Fiacco (15] recently obtained a theoretical basis for locally

characterizing the differentiability properties of a local solution and

the associated Lagrange multipliers for a large class of nonlinear pro—
- gramming problems with respect to general parametric variations and estab— V

lished the use of a penalty function method to estimate the parameter par-

tial derivatives. Independently, Robinson [22] obtained closely related

characterizations of the continuity properties of Kuhn—Tucker points ,

including bounds on these quantities, and applied his results to derive

convergence rates for a family of nonlinear programming algorithms . These

sensitivity results are generalizations of a result presented in Fiacco

and McCormick [16, Theorem 6] f or a particular class of parametric

perturbations.

Based on the results of [15],Armacost and Fiacco- [4] obtained

general expressions for the first and second derivatives of the optimal
value function and gave concire empressions for the f irst  derivatives of

V a Kuhn—Tucker triple, along with approximations of these quantities by way

of penalty function calculations. Subsequently, Armacost and Fiacco [5]

- .__ _  _ _ _ _ _ _ _ _S r.
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T—3 77

particularized these results for right hand side constraint perturbations,

and Armacost [2] and Armacost and Fiacco [7] showed the applicability of

other (than the usual penalty function) methods in calculating sensitivity

informa tion as a bypr~ Iuct of normal algorithmic calculations. In particular ,

the approach was shown to apply readily to exact penalty function and aug-

mented Lagrangian algorithms. Buys and Gonin [13] have also independently

shown the results for the latter.

The approach given in [153 was implemented computationally by Armacost

and Mylander [8].. Computational experience has been reported by Arinacost

and Fiacco (3], [6], and Armacost [2], [1].

This paper gives a concise summary of the development of the refer-

enced results, drawing heavily on the material presented by Armacost and
Fiacco in [4] . However , the derivation of the expression for the derivatives
of a Kuhn—Tucker triple is appreciably simplified , while a much more general

formula for the derivatives is obtained , and a more concise form is given

for the optimal value Hessian. Also, for completeness, we particularize the

results to the problem with right hand side constraint perturbations, to the

problem with constraints not involving the parameters, and to the unconstrained

parametric problem.

In Section 3 we give the relevant basic results. In Section 4 these

are applied to develop first and second order changes in the optimal value

function of a general class of parametric nonlinear programming problems,

with respect to general parametric variations. The usual Lagrange multiplier

sensitivity result and the indicated result given in Fiacco and McCormick [16]

are obtained , as particular instances. In Section 5 we derive a general

expression and a number of formulae, depending on problem structure for
computing the first partial derivatives of a Kuhn—Tucker triple. Section 6

indicates several extensions and gives a brief discussion of applications.

— 2 —
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2. Notation, Preliminaries, and the Problem

The following conventions will be used throughout the paper. En

denotes the usual n—dimensional Euclidean space. If xcE’~ , then x is
an n x 1 (column) vector in En . The superscript T denotes trans-

position. The symbols V and V2 denote the gradient and Hessian,

respectively , the subscript denoting the variables with respect to which
the derivatives are taken. The gradient of a scalar valued function is

assumed to be a row vector. Thus, if f:En x EI~ -‘ E
1 

is once differ-

entiable in E~ , then V f(x,c) = [af (x,c)/ax1,. . . ,3f(X ,e)/~x ]

a 1 x n vector. If f is twice differentiable in x , then

f E V ( V fT) denotes the n x n Hessian matrix of f(x,c) with

respect to x , whose ij—th element is given by a2f (x
~
c)/axj

axi

for i,j — l,...,n . Consistent with this, if g:E
n x Eh + Em is a

vector function whose components gi
(x ,c) are differentiable in x

then V
x 
g(x,c) denotes the Jacobian of g with respect to x , an

in x n matrix whose i—th row is given by V g ~ (x ,c) , I = l,...,m

Differentiation with respect to e is detoted similarly, of course.

Additionally, since there is ample occasion to differentiate such quantities
as f[x(C),c] with respect to c , the notation af/ae E (~ f/~c1,.. ~~~~~~~~
is introduced to indicate and emphasize partial differentiation with respect

to the “independent” variable c only as it-appears explicitly. Thus,

application of the chain rule for differentiation yields

V f[x(c)c] — V f  V
~
x(C) + af/ac , where f and af/~c are evaluated at

x(c) . Analogous to the gradient, if g[x(c),e] is an itt dimensional differ—

entiable veetor function on E’~ x Eh , then 3g/~ c Is an in by h matrix

where i—th row is ag1/ac , 
evaluated at x(c) . Arguments of functions

are often omitted to simplify the notation, when It is felt that no ambiguity

will result.

Turning now to the problem of interest, consider the problem of
obtaining a local solution x(c) of

— 3 —
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minimize f(x,c)
nx c E P (c)

subject to g
1

(x ,c) > 0 , i — 1,.. .,m

h~ (x~c) — 0 1 = 1’•~~ r

where c is a parameter in Eh and f , g~ , h~ are real valued functions.

We are interested in studying the behavior of a local solution x(e)

and Its associated (optimal) Lagrange multipliers u(c) , w(c) for small

changes in the parameter vector c , near a specified value of the parameter.

We are also interested in the “optimal value” f[x(c),c] of P(c)
Without loss of generality, we assume the specified value Is c — 0

In this paper, we assume conditions strong enough to guarantee the
existence and differentiability of x(c) , u (c) , w( c) near c = 0 . Key
ccnditions are the well known second order suff icient conditions for a locally
unique solution of Problem P(O). These may be found in Fiacco and

McCormick [16,Theorem4] and in numerous current booksand papers. For,

completeness , we state them here, in the context of Problem P(O).

Def ine the Lagrangian of P(c) as

L(x,u,w,c) f(x,c) — E u~g~(x,c) + E w~h~ (x~c) (2.1)
i—i j—l

Second order conditions are intended to mean conditions based on the

assumption that the problem- functions are twice ~continuous1y differentiable.

The iecond order sufficient conditions are said to hold for Problem P(O)
*atapoint x if

(i) x~ is a feasible point of P(O)

* * * T  * *(ii) there exist u — (u
i~ •••~

um
) and w — (w1,. . . ~w~) such

* * * * * *that V L(x ,u ,w ,O) — 0 , U
1 
g1(x ) — 0 and u1 > 0 for

i 1,...,m, and

= 4 -  

4
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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T—37 7

(iii) zT V~ L(x*,u*,w*,O)Z > 0 for every n -rnzero vector ZeE~ 
*satisfying Z V g~ (x ) > 0 for all I such that g.(x ) = 0

T * *Z Vg1(x ) = 0 for all I such that g
1
(x ) = 0 and u . > 0

T *and Z Vh~ (x ) 0 f or all j = 1,... ‘p

*If these conditions hold , then it follows that x is an isolated (i.e.,

locally unique) local minimum of P(O), with associated (not necessarily unique)

“optimal” Lagrange multipliers u ,w~ . Conditions (i) and (Vu ) require

first derivatives only and are known as the (first order) Kuhn—Tucker conditions.

* * *If (x ,u ,w ) satisfies (I) — (iii), it will be called a “Kuhn—Tucker

triple.”

A few facts concerning these conditions should be noted , since ~~~
have reference to interpreting the results that follow. If no constraints

are present, then If we suppress reference to the terms associated with the
constraints, the conditions reduce to

(i) x*cEn

(ii) V f (x *) = 0 and

(iii) zT V2f (x *) Z > 0

for every nonzero vector ZEEn , and the conclusion becomes x is an

isolated local minimum of f (x )  . Thus, the conditions reduce to the well
known second order sufficient conditions for an unconstrained local minimum

of f(x) . If the Problem P(O) is linear, then V2L 0 . In this case,

the sufficient conditions as stated cannot possibly hold , unless there are

no nonzero vectors Z satisfying the stipulated requirements, in which

instance there is no inconsistency in the given conditions. It can be shown

that the conclusion that x* is an isolated local minimum ‘still follows under
these circumstances. It may be observed that the nonexistence of any vector

Z as stated implies, in particular, that there is no nonzero vector

orthogonal to all the binding constraint gradients, hence, there must be

— 5 —
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n binding constraints whose gradients are linearly independent. This
*implies that x is a vertex of the polyhedron defining the constraint

*set, consistent with the conclusion that x is an isolated local minimum.
Whether the problem is linear or not, if there is no nonzero vector Z

satisfying the given conditions, then the second order requirement (iii)
is satisfied in a logical sense, and in fact it can be shown that the

*first order conditions (i) and (ii) are then suff icient to conclude that x
is an isolated local minimum. Finally, if P(O) is a convex programming

problem [16, Chapter 6] then, since a local solution of a convex problem is
*global, the sufficient conditions imply that x is the unique global solution.

3. First Order Changes in a Kuhn—Tucker Triple

The following result provides the basis for the development that

will be given here.

THEOREM 3.1 (CharacterizatIon of a Differentiable
Kuhn—Tucker Triple, Fiacco [15, Theorem 2.13)

If
(1) the functions def ining P(c) are twice continuously

*differentiable in (x ,c) in a neighborhood of (x ,O) ;

(ii) the second order sufficient conditions (Fiacco and

McCormick [16,Theorem 4]) for a local minimum of P(0)
hold 

a: 
X with associated Lagrange multipliers u’~

and w

(iii) the gradients V g ~ (x*,0) (for I such that

gi(x
*,0) — 0) and V h

j
(x*,O) (all j) are linearly

independent; and

(jv) strict complimentarity holds at (x*,0) with respect

to u~
’ 
, i.e., u~ > 0 when g~(x*,0) — 0 (i’.l,...,m)~

I
- 6 -
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then
(a) x* is a local isolated minimizing point of P(O) and

V the associated Lagrange multipliers u and w are

unique;

(b) for c in a neighborhood of 0 , there exists a unique

once continuously differentiable vector function

y (c) = [x( c)T, u(c) T, w(c) T]T (where T denotes trans-

position) satisfying the second order sufficient condi-

tions for a local minimum of Problem P(c) such that
*T *T *TTy(O) = (x ,u ,w ) and , hence, x( c) Is a locally

unique minimum of P(c) with associated Lagrange multi—

- pliers u(c) and w(c) ; and

(c) strict complementarity and linear independence of the

binding constraint gradients hold at x( c) for c
near 0.

The conditions of the theorem will be assumed throughout the

remainder of the paper. 
V

When y( c) is available, V y(c) (V
~

x(c) T, V u(c) T, V w(c) T)T

(an (n+m+p ) by k matrix) can be calculated by noting that the theorem

implies the satisfaction of the Kuhn—Tucker conditions for P(c) at

y(c) near c — 0 , i.e.,

V L [x( c) ,  u (c),  w( c) ,  c] — 0

u~ (c) g
1

[x( c),  ci = 0 , I — 1, . .  .,m , (3.1)

h~ [x(c)~ ci — 0 , i = 1, . . .  ,p

Since near c — 0 the Jacobian, M(c ) , of this system with respect to

(x,u,w) is nonsingular under the given assumptions, the total derivative

of the system with respect to c is well defined and must equal zero. This

yields
S 

M( c)V
~

y(c) — N(c) (3.2)

I
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where N( c) is the negative of the Jacobian of the Kuhn—Tucker system

with respect to c , and hence

V y(c) — M(c) 1N (c) . (3.3)

If there are no constraints present in P(0) then Theorem 3.1

reduces to the statement that if f(x,c) is twice continuously differentiable

in (x,c) near (x*,0), and if V f(x*,0) — 0 and V2f(x*,0) is positive

* *definite, the-i x is a local isolated unconstrained minimum of f(x ,0) ,
and there exists near c — 0 a unique once continuously differentiable

function x(c) satisfying V f’[x(e),c] — 0 , with V
2f [x(c) ,c] positive

definite and such that x(O) .— x~
’ 
. EquatIon (3.2) becomes

V2f (x (c) ,~ ] V x(g) +~f~ V f T[x(c) , c] = 0 (3.4)

and hence (3.3) becomes

V
~

x(c) — V2ffx(c),c]~~ _h VxfT~ c),cl . (3.5)

These calculations will be pursued in some detail in Section 5. First,

however, we give several results characterizing the optimal value function
f [x(c) , c] that follow immediately from Theorem 3.1.

4. First and Second Order Changes in
the Optimal Value Function

Because of important connections with Lagrange multipliers and duality

theory, first order changes in the optimal value function have traditionally
been analyzed with respect to variations in the “right hand side” of the con-

straint.. An extension to perturbations (of all problem functi ons) that are

linear in the problem parameters was obtained by Fiacco and Mc~..ormick [16].

Buys 112] also derives second order changes, in connection with an analysis
of the behavior of the optimal value of an associated augmented Lagrangian

function. Here, under the assumptions of Theorem 3.1, it is shown how first
and second order results follow immediately for the general class of para-

metric variations being considered. The referenced results are obtained as

special cases.

- 8 -
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Let y(c) = [x( c) T,u (c) T,w( c)T]T be a Kuhn—Tucker triple, where

x(c) solves Problem P(c) for c near 0 . The “optimal value function”
is defined as

f *(c) f (x ( c) , c3 , (4 .1)

and the “optimal value Lagrangian ” as

*L Cc) — L [x(c) , u ( c) , w(c) , c] . (4.2)

THE0R~i.i 4.1 (First and Second Order Changes in the OptimalValue Function of Problem P(c) , Armacost and
Fiacco (4, Theorem 3])

If the conditions of Theorem 3.1 hold for Problem P(c), then, in a

neighborhood of c = 0 ,

(a) f*() = L (c) , (4.3)

* 
m p

(b) V f (c) = ~L/ a c  = af/~ c — ~ u~ (c)[ag1/~ c] + E
C 

i—l j—l ~

(4.4)
= af / a€  — u(c) T (~g/ ac)  + w(c) T(~h/ac) ,

and hence also

(c) VZf*(c) = V [ ( ~L/ac)T] V

= V
x((aL/aE)

T
] V x(c) — E [3g

1
/ac]

T V u
1

(c)
i—i

+ E [~h / a j ’v w (c) ~~~~~~~ (4.5)
j—i

Proof: , Recall that in a neighborhood of c — 0 , u~(c)g~[x(c)~c] 0 , S

i — l,...,m , strict complementary slackness holds , h~ [x(c)~ c] 0

j — l,...,p , and y(c) — [x(c)T,u(c)T,w(c)TjI c C1
. It follows immediately

that 1
f[x(c),c] E L[x(c),u(c),w( c), c] , (4.6)

.,

— 9 —
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yieldVin~ (a). Furthermore, we can 4iffe~entiate (4.6) to obtain

V
c
f*(c) — V f[x(c),e] — V L *(c) — V

~
L[x(c) , u( c) ,w(c),c]

(4.7)

— V LV x(s) + V LV u(c) + V LV w(c) + aL/ac
U C V C

where L is evaluated as in (4.6).

Since the Kuhn—Tucker conditions hold at y(c) , it follows that

V
~
L — 0 . Complemex~tary slackness implies ui(O) or g~[~ç(O),0] = 0

i — l,...,m . Strict complementary slackness, continuity and differen-

tiability then imply one of two consequences, respectively:

(i) g~ [x(O)~O] > 0 , implying g~[x(c),c] > 0 for c

near 0 , implying u~ (c) 0 , implying V6u~(c) 
E 0 ; or

(ii) u
i

(O) > 0 , implying ui(c) > 0 for c near 0 , implying

g~ [x(c), c] E 0

From this, it follows that V L V u(c) — (—g1(x(c),c],. ..,
_g
m[x(c),c])

V
~
u(c) — 0 . Also,since h~ [x(c)~ c] 0 for c near 0

V
~

LV
~
w(c) — 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— (~ • We therefore conclude

from (4.7) that V f *(c) — aL/ac for c near 0 , proving (b).

Differentiation with respect to c of the result obtained in (b)

gives

V2f*(c) — V [aL/ac T ]v x(c) + V [aL/ac T]V u(e)

+ V [aL/3C
T
JV W(c) + 32L/a

2

S - Calculation of the derivatives yields (c).

To be perfectly clear about what is involved in calculating this

Hessian , we write Equation (4.5) in terms of the original problem functions.
We hava

I —

—10 —
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T— 377

V2f*(c) V
j(}9 

— 
~~~ ui

(c) (~) + 
~~~~ 

w~(c) (~~i)~~ • V~x( c)

— 

1!1{(
~~~)

T 

. 
~~~~U ( ~~ ) + E V w

j
(c)} . (4.8)

2m p
— E u~(C) 2 + E w (c)

(a c  i=l j=i. ~

Equation (4.4) reduces to previously established results when certain

problem structures are considered. The first corollary gives the well—known

“Lagrange multiplier sensitivity result,” and also establishes relations

for the Hessian of the optimal value function taken with respect to the

right hand side of the constraints. For this case, Problem P( c) reduces

H to

minimize f(x)

subject to g~ (x) > c
1 , I = 1, . . .  ,m , R( e)

h~ (x) E
j

~~~~~ i l,...,p

COROLLARY 4.1 (First and Second Order Changes in the Optimal
Value Function for Right Hand Side Perturbations ,
Armacost and Fiacco [4, Corollary 3.1])

If
(i) the functions defining R(c) in a neighborhood of

c — 0 are twice continuously differentiable in x
*in a neighborhood of x , and

(ii) conditions (ii) — (iv) of Theorem 3.1 hold,

then , in a neighborhood of c — 0

r u(c)~
(a) V f*(•)T — , ande Li-w(c)J

2* I Vu ( c ) 1  T
(b) 

~
‘
C~ 

(i : )  — 
£

L—v w( c)J
C

—1 1 —

- ~~~~~~~~~ - V - —-
- - -  

—w-V T.- ~~~~~~~~~~~~~~~ ~~~~~~~ — - —



T—3 77

Proof: We let f(x,e) — f(x) ; gi(x ,e) = gi(x) — c1 , 
i — 1,...,m

h~ (x~C) — hj (x) — C
j.f.m 

j — l,...,p , and apply the results of Theorem 4.1.

A second corollary is a generalization of the result established by

Fiacco and McCormick [16, Theorem 6] for the problem

minimize f(x)  + c0a0(x)

subject to g~ (x) + c1b~ (x) > 0  , I — l,...,m , ~ (c)

h~ (x) + cj .~~cj (x) — 0 , j  — l,...,p

COROLLARY 4.2 (First Order Changes, Fiacco and McCormick
(16, Theorem 6], Armacost and Fiacco [4, Corollary
3.2], and Second Order Changes in the Optimal
Value Function for Perturbations Linear in the
Parameters)

If
(i) the functions of Problem ~ (c) in a neighborhood of

— 0 are twice continuously differentiable in x
in a neighborhood of x~

’ 
, and

(ii) conditions (ii) — (iv) of Theorem 3.1 hold,

then, in a neighborhood of c — 0 ,

a~[x(C)]

—u1(c)b1(x( c)]
aO [x(c)]

(a) V~f
*(c)T — _U

m
(C)b

a
[X (C)] — —B[x(c)]u(c) , and

w~(c)c~[x (s)J C[x(c)]w(c)

V
p

(C) C
;

(X( C ) ]

-12~~

V .  
- —. •~ 5 V — 

V ‘~~~~~~~-‘:&- ~
- - -~ - _~~1
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V a 0(x(c)] Vx(~)

(b) V2f*(c) = —U(c) V b[x(c)] V x(c) — B[x(c)] V u(c)

W(c) V c[x(c)] V x(c) + C[x(e)] V w(c)

where

U diag(u~) , B diag(b~) , i — l,...,m

W E diag (w
i
) , C E diag(c~) , j — 1,... , p

b — (b1,...,b)
T and c — (c1,...,c~)

T

Proof: We let f(x,c) — f(x) + c0a0(x) , g~(x,c) — g~(x) + cjbi
(x)

i — 1,...,m, h~ (x~c) — h~(x) + Cj.~~Cj(x) , j  — l,...,p , and apply the

results of Theorem 4.1, having verified as in Corollary 4.1 that the condi-

tions of Theorem 3.1 are satisfied. In particular, with * denoting evaluation

at t — 0 , we have that

V f *(0) — (a
~
,_u

~
bt,.. .,_u*b~

,wtct,...,w*c )

the result obtained in ~l6,Theorem 6]. Conclusion (b) follows from differ—

entiation of (a).

A third corollary summarizes the well known results that follow in

the absence of constraints. Note that under the given conditions, the

corollary also applies if constraints are present in P(O) , but are not

binding at x~’

COROLLARY 4.3 (First and Second Order Changes in the
Unconstrained Optimal Value Function)

If f(z ,c) is twice continuously differentiable in (x,c) near
* * 2 *(x ,O) and if V

~
f(x ,O) — 0 and V

~
f(x ,O) is positive definite, then,

in a neighborhood of c — 0

- ,

~~~11~~~

V 
~~~~~~~ 

- 

- - 

V ~~~~~‘ . 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~
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* af(a) V f  (c ) — - ~~-—

and 2
(b) V2f (c) — -

~~~
— (V fT) V x(c) +

c C X ac

or equivalently,

(b) ’ V2f*(c) — — [1. (V~fT)] 
T 

V2f~~ [-

~~~~~ 

( V f T)] +

Proof: Suppress reference to all terms involving the constraints

in Theorem 3.1 to conclude the existence of x(c) satisfying the conditions

stated in the conclusions of the theorem and further interpreted in the
*paragraph just preceding Equation (3.4). Differentiate f (c) f[x(c),c]

with respect to c and use V f[x(c),c] — 0 to obtain (a). Differentiate

V f(x(c),c] — 0 to obtain (b) and use the fact that V2f [ x (c ) , c] is positive

definite and (3.5) to obtain (b)’.

It is interesting to note that if the constraints of P(e) are

independent of c , then application of the results of Theorem 4.1 yields
* 2*the same expressions for V

~
f (c) and V

~
t (c) as those obtained above

in (a), (b) and (b’), respectively , for the unconstrained problem.

Note from Theorem 4.1 that the values of the optimal value function

and its gradient can be calculated once the Kuhn—Tucker triple y(c) has

been determined. However, in general, the value of the Hessian matrix of

the optimal value function requires the determination of both the triple

and its first derivatives.

We next examine various aspects of calculating these derivatives.

Aside from their use in calculating the optimal value function Hessian,

they are of considerable importance in other applications, e.g., in charac-
terizing the stability of the solution subject to perturbation and in pro-

viding a first order estimate of Kuhn—Tucker triples of problems involving

different values of the parameters, once one such triple has been determined.

The analy sis leads to a study of the Jacobian M(c) of the Kuhn—Tucker

system (3.1) .

— 14 —
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5. Computation of First Order Chang~~
in the Kuhn—Tucker Triple

Our task is to calculate V y(c) for Problem P(c) when the

conditions of Theorem 3.1 hold. As noted , once y(c) is available,

V y(c) can be calculated by using (3.2) or (3.3). Appreciable efficiencies

in computation can be introduced by analyzing the various possibilities.

Conclusio’~ (c) of Theorem 3.1 implies that, near c = 0 , u.(c) > 0

if u
1(0) 

> 0 and, using Assumption (i), we can also conclude that

~~[x(c)~c] > 0 for all i such tha t g
1

[x(0) ,O] > 0 , which in turn implies

that u~(c) E 0 whenever g~(x(O).0] > 0 . Using these facts essentially

allows us to eliminate those terms associated with constaints that are not

binding at x~
’ 
, and also allows us to divide out the positive u1

(c) from
the corresponding complimentary slackness equations.

This leads to a considerable simplification of the Kuhn—Tucker

conditions (3.1), which must hold near c — 0 . Without loss of generality,

assume that the first r inequality constraints are binding. We are thus

lead to studying the system ,

V L [x (c) , u(c) , w(c),c] 0

= 0 (5.1)

h[x( c) , c] = 0

where ~ — (g
1,•

~~~, g ) T and h = (h1,...,h~)T • (The minus sign before g

leads to notational siinplifications.)

It is assumed in the following development that the analysis is

confined to a neighborhood of C — 0 where the conclusions of Theorem 3.1

V 
are valid.

Differentiating (5.1) with respect to £ according to the chain

rule yields

M(c) V y’(c) — ~(c) 
(5.2)

— 15 —
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where the Jacobians M and —N of (5.2) with respect to (x,u,w) and

C are , respectively , S

rv 2L ~T1
M (5.3)

L~ 0 J
and

—
~~ 

[( a (v ~LT)/ aC) T ,_ (a ~ / aE) T , (ah/ ac) T]T 
, (5.4)

V 

where
-T TTP = (_ V g , V~h )

y(c) = (x(c) ,u(c) ,w(c) )

V 
and

~i(c) = ~~~~~~~~~~~~~~~~

Under the given conditions, it is known that the Jacobian M(c) of

(3.1) with respect to (u ,v,w) is nonsingular, and hence it follows that M

def ined in (5.3) is nonsingular , for c near 0 . Thus ,

V (c) = ~ (c) ’ ~(c) . (5.6)

Clearly, any method for solving the linear system of Equation (5.2)

is applicable for calculating V
~

y(c) , and i~ need not be inverted as in

(5.6) . However, under the given assumptions , the work involved in calculating

can be significantly reduced , as will presently become evident.

Consider the various possibilities: (1) V2L 1 exists; (2) V 2L 0

(3) r + p — ii (i.e. , there are n binding constraints), or (4) r + p < n

Brief reflection will indicate that all possibilities are covered by these

conditions (in fact, under the given assumptions , either (3) or (4) must

be true, but (1) and (2) are also specified since they introduce further

siaplifications) .

—16 —
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Letting

1 
A11 A12

M( c) = , (5.7)
A21 A22

where A11 is n x n , we can obtain the block components A
13 

for each

case delineated, requiring at most the inversion of an n by n matrix.

The first three cases follow readily from a straightforward manipulation of

(5.3) .

2 —lCase 1. V L exists.x

Since the assumptions of Theorem 3.1 guarantee that [PV~L
lPT]

_l 
exists,

it is easily shown that

A V~C [I_PT(PV2L
_l
PT)

_l
PV2L~~]11 x x x

A AT = V2L 1PT [PV 2L 1PT]
_l 

(5.8)12 21 X X

A22 - _ (PV~~C
l

P
T

]~~~

Case 2. V2L — O .

There are two possible situations: there are r + p < n , or
r + p — n linearly independent binding constraint gradients. If there are

less than n , Assumption (ii) of Theorem 1 is violated (and it is easily

seen that M(c) 1 does not exist) ,  so this is not allowed under the
present assumptions. When there are n linearly independent binding con-

straint gradients, then we have a special instance of the third circumstance

which follows.

Case- 3. There are n linearly independent
binding constraint gradients.

The n x n Jacobian P of the n constraints with respect to x

must be nonsingular. Hence,

—17 —
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A11 = 0

- V A12 = ~—l (5.9)

A ~—T V2L P 1
22 x

Note that if V2C1 exists, (5.9) follows from (5.8); however, here the

existence of V2C’ is not assumed. Also, the remaining possibility men-

tioned in Case 2 above gives A11 = A22 = 0 and A12 = 
41 

= P 1 
. (It

— may be of interest to note that this last situation characterizes conditions

that hold at a nondegenerate solution of a linear programming problem, with

n linearly independent -b inding constraint gradients and V2L = 0 .)

Case 4. r + p < n and V L 0x

This is the least structured , and hence most general, situation that
can be encountered under the given assumptions. Many representations of

are possible, depending on how the data are organized. However, a

general representation that is tailored to the assumptions we are making

here was obtained by McCormick [20 ] and will serve our purpose extremely

aptly. We follow his development here rather closely.

First , note that assumptions (ii) and (iii) imply that, at

(x*,u*,w*) with c 0 , we must have Z1V 2 LZ > 0 for all Z ~ 0 such

that PZ = 0 , where P (_V~gT,V~h
T
)
T 

, the (r+p) y n mat rix defined in

(5.5). Hence, if $ is any n by [n— (r+p)] matrix that generates the

• null space of P , then Z — Sy for some y in EU (~~1
~ implies that

PZ — 0 (since PS—0) and also that Z # 0 if y — 0 (since we are

tacitly aasumfng that S has full column rank [n— (r+p~.]) and hence ,

ZTV2LZ — ~
TsTv~~sy > .0. , providing that y ~ 0 .  We conclude that D — STV 2LS

is a positive definite (n— (r+p)] by (n— -(r+p)] matrix. Further , since P has
rank r + p by Assumption (iii), an n by (rip) pseudo—inverse of P

— 18 —
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exists, i.e., a rank (r+p) matrix P
#satisfying PP#P = P . These

$ constructs and observations lead to a general representation of the block

components A1~ of ~j1 .

As indicated in [20 1, P# and S are assumed in practice to be

generated by some matrix technique which relates these quantities by the

expression I~ P~P = SW , where W is some [n— (r+p)] by n matrix. Also,

T * T * T  * T Tsince PP = I and (3.1) gives V
~

f (x ,0)= _P [(u ) ,(w ) ] at optimality,

it may be of interest to note that

f U *
1 # T  *

LI  = —(P ) V f (x ,O)

This motivates the widely used estimation _ (p#)
T 

V f  for the Lagrange

multipliers in algorithms involving these constructs.

The result (equivalent to that given in 120 1), in forms of the block

components A .~ of , follows readily and is given by

A11 = SD 1S
T

= 4~ 
[I—A11V~ L]P# , (5.10)

A = — A  V2 LP# .22 2 1 x

There are many good techniques currently available for calculating

S and P~ , motivated by various numerical efficiency, stability and

algorithmic considerations [201. We mention two here for completeness and

because they are precisely tailored to the calculations associated with two

important families of mathematical programming algorithms, reduced gradient

V and projected gradient type algorithms.

The first technique is associated with the reduced gradient or
variable reduction type algorithms for nonlinear programming, and is a

crucial part of the simplex method for linear programming. It is based on 
- - -

the simple observation that the linear independence assumption implies the

19 -
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existence of an V(r+p)  by (r+p) nonsingular submatrix of P . Assuming

for simplicity that the first r + p columns of P are linearly independent ,

we can partition P as P = 
~D
’
~~I~ 

‘ 
where P

1 
is an (r+p) by [n—(r+p)]

matrix. This induces a natural decomposition of the variable x = (x~,4)
T

and since g(x ,O) = 0 and h(x ,O) = 0 , allows application of the
implicit function theorem to conclude that there exists a twice differentiable

vector function x~(x
1
) such that g[x~ (x

1
), x

1,
O] E 0 and h [x~ (x

1
) , x

1
,O] E 0

* * * *near x1 
= x1 , and (x

D
(x
I
) ,x

I) 
= ~c . The and x1 may be thought of

as “dependent” and “independent” variables, respectf ully, hence, the choice
of indices. Once the binding constraints are identified, it suffices to
minimize f [x.~(x1), 0] over x1 using any appropriate unconstrained method,

* *to determine x1 , and hence x . The indicated algorithms actually invoke

the linear independence assumption S for all feasible boundary points , and
hence at any given iteration can either reduce f(x) without encountering
constraints, or will be In a situation completely analogous to the one
described at the outset , and can proceed to minimize f over the currently

independent variables in the space of currently binding constraints.

Returning to the determination of S and P# for this type of
algorithm, we observe that S (S~,S~)

T must satisf y

= 
D,
P
I~~~~~~~~

T 
= 0 , 80 S

D 
P; P1

S1 and hence

s
~ t u

s1 .

Similarly, since PP~P — P , def ining p# ((p )
T (p)T)

T gives the

result-

~~
#

u u u( p ) f; ] +  f I ] P 2
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In terms of the quantities defined, the block components A ..
—1 13

of N are therefore given by (5.10), where

,, 1~-l1
S = T S  , p = 1  1+ T P

I [
~~

j  2

and T = 
L 

.~ J , an n by [n—(r+p)] matrix with rank [n—(r+p)) ,

S1 is any [n— (r+p) ]  square nonsingular matrix, and P2 is any [n— (r+p)]

by (r+p) matrix.

For the projected gradient type algorithms, the gradients of
binding constraints are again assumed linearly independent at feasible
boundary points , with the data being organized mainly to accommodate a

projection matrix of the farm, P~ = I — pT(ppT) 1p , used to project a

given direction vector into the linear subspace associated with the cur-

rently binding constraints. Here , the rows of P would represent the

gradients of the constraints current ly deemed to remain binding in the

next- iteration, and ~~~ is an (r+p) by (r+p) matrix , nonsingular under

t~e linear independence assumption. We find that P1 
= pT(ppT)

_l 
satis-

fies the requirements for a pseudo—inverse of P , and it follows easily

that a suitable choice for S is any matrix SR formed by selecting any

[n—(r+p) ] linearly independent columns of . The block components of

for gradient proj ection type calculations are therefore the same

as (5.10) , with S = SR and p# pT (ppT)
_l

Therefore, returning to the calculation of the derivatives of the

Kuhn—Tucker triple we evaluate (5.6) for the representation (5.7) of

and the expression (5.4) of ~ to obtain

— 21 —
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V 

~(V LT)
p 

—A11 ~~ + A12 
~~V x(c) — i-—

V ~ (c) = M(c)~~ i~(c) = — , (5.11)

a(V LT)

- V w(c) 
—A21 ~ 

+ A22 
— j

the ~~~ being given by (5.8) , (5.9) or (5.10), depending on the respective

conditions that apply and depending on how the data are organized.

The Hessian V2f*(c) (4.5) of the optimal value function may also

be readily calculated once (5.11) has been evaluated. To do this efficiently,

first note that we may rewrite (4.5) as

V f *(E) — a2L/a~
2 + [(a(V LT)/ac) T , _ (ag/ ac) T (ah/ac) T] V y(c) . (5.12)

Denoting by V~f* the “reduced Hessian” that results from eliminating terms V

associated with nonbinding constraints, and using the previous notation, we
obtain the concise expression,

2 * ( )  32L/ a 2 
— ~

T
V

_
( )  , (5.13)

or equivalently,

— a2Jjac2 — ~Tj~ —l ~ (5.14)

The Hessian can now be calculated from the given problem data and (5.13)
or (5.14) , using (5.11), evaluating the A1~ as given in (5.8), (5.9) or

(5.10), dsp.nding on which conditions apply.

b r  Problem 1(t), (5.11) simplifies considerably, as shown by
Arascost and Fiacco [5]. It is easy to verify that for this problem,

¶

- 
- 

-
~~~~~~~~ ~~- - V
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3(V LT)/ ac . 0 , ~g1~ c = [—1 ,0] and ah/ac — [0 ,— I ]  . Therefore, (5.11)

becomes
- - r r-r 0

V x(€)  1
A12 LV ~(c) = — 

— 
0 I 

(5.15)
C ::;~~~

1 

* 

L22 
[
~ ~3

The general formulas for V f (c) also simplify for Problem R(c)

Observe that for this problem, V2L/~ c2 
— 0 and N = 

[o ,[ 
I 

0]] 

T 

Hence,

using the form (5.13) we obtain

V21*çc) = - 
[o 

, [
~ 

~

]]{

~1~~

] 

=

which essentially agrees with the result obtained in Corollary 4.1, and

using the form (5.14) we obtain the interesting result ,

—
* 1-’ 01 1-I 01

— A 
2 • (5.16)

Lo i~ 
2 [ o  rJ

Aside from the considerable computational simplifi cation compared
to the general problem, these results provide additional insights into the

structure of the solution, since we have explicit relationships for the

various parameter—derivatives in forms of quantities associated with the

original problem functions. For example, noting the result (5.16) and

the various possibilities for A22 given in (5.8), (5.9) or (5.10), we

can see directly that f*(c) (associated with R( c ))  is convex in a
neighborhood of c — 0 if the Lagrangian L(y,c) of R(c) is convex

in x • This well known fact and several related and less well known

-23 - V
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inferences associated with Problem R(c) can be shown explicitly using the

given formulas. For additional details and results, see the paper by

Armacost and Fiacco [51.

6. Discussion of Results and Extensions

The nontrivial computational considerations associated with checking

whether all the conditions are satisfied, as required by the assumptions

of Theorem 3.1 and further compounded by the refinements associated with

the appropriate calculation of the A
u 

, are typical of analogous verif i—

cation problems confronted by most numerical procedures. Additional diff i—

culties are , of course, associated with the (typical) requirement to essen-
tially know the solution before the conditions required to solve the problem

can be verified or the solution analyzed. Such concerns are outside the

scope of the presentation, that is primarily concerned with the existence
and characterization of relationships that hold at a solution. However, a

few relevant comments can be offered.

As stated briefly at the outset, a method for estimating solution

sensitivity information by using penalty function methods was established
by Fiacco [l5], implemented on the computer by Armacost and Mylander [8]
and extended aud applied by Armacost and Fiacco [3] — [6]. This
approach is based on the fact that the local solution matrix of first par—

tial derivatives VCx(e) , the optimal value f*(c) and the gradient
* 2 *

5
f (c) and Hessian V f  (c) of the optimal value function, are component

by component limits of the parameter—derivatives of the penalty function

minimizing point, optimal penalty function (parameter) gradient and Hessian,

respectively, under the given conditions. In effect, a class of algorithms
was shown to generate a trajectory that both terminates at a solution and

rather faithf ully reflects the per turbation behavior (subject to parameter

• changes) of the solution, as the solution is approached. Furthermore, the

calculations required to determine the sensitivity information turn out to

be of the same form as the calculations required by the algorithm to gen—

crate a solution trajectory. Thus, for such algorithms applied to problems

—24 —

- V 
- —--

~~~~--~~



T—3 77

satisfying the appropriate conditions , increasingly accurate estimates of

the sensitivity information is available with little extra effort, as the
solution is approached, i.e., the solution need not be known in advance
of easily determining certain aspects of its behavior. (Another example

of this sort of result is the calculation of error bounds in solving sys-

tems of equations. For an application to nonlinear programming, see the

paper by Robinson [22].)

A second theoretical advantage of the penalty function approach to

estimating solution sensitivity involves the calculation of the ~~ defining

(5.7) and is worth noting. Under the assumed conditions, the Hessian

of the penalty function is positive definite near a solution. (See Fiacco

and McCormick [16, Theorem 12) and Fiacco [15]). The stationarity condition

• of the penalty function at the minimizing point essentially approximates

(with appropriate interpretation) the information given in (3.1) , and the

• result is a single formula (obtained by Fiacco (15]) for the approximation

of V y(c) . Thus, there are no alternative calculations such as (5.8) , (5.9),

or (5.10) that depend on the status of the solution. (Armacost and Fiacco (4]
provide a detailed treatment of the penalty function estimates.)

The latter advantage has been shown to extend to augmented Lagrangian

functions by Armacost and Fiacco f 7],  Armacost [2] , and Buys and Gonin [13].
Indeed , it is clear that unique formalas for V

~
y( E)  will obtain for that

family of generalized Lagrangians and exact penalty functions that are struc-

tured such that their Hessians are positive definite at a Kuhn—Tucker triple

under the conditions of Theorem 3.1. A large class of such Lagrangians was

developed by Arrow , Gould and Howe [9]. Essentially, if the extended

Lagrangian is denoted by 4’ then, since the role of 4’ is precisely analogous

to the role of the usual Lagrangian L , and since V
~4’ 

0 and V~4’ is

positive definite at a Kuhn—Tucker triple, it follows that 4’ can replace

L in the results given. In particular, it follows that the ~~ that

determines M~ are uniquely given by (5.8), with 4’ replacing L in

those formulas.

— 25 —
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It is also clear that, if the Lagrange multipliers (of such an

extended Lagrangian) are sufficiently smooth functions of the problem

parameters that converge to (locally) optimal multipliers, then the
associated minimizing point of the Lagrangian function, along with the

parameter—derivatives of the minimizing point, will converge respectively

to x(e) and V
~
x(c) , and the optimal *alue, gradient and Hessian of

* * 2*the Lagrangian will converge to f (c) , V
~

f (c) and V
~

f (c) , respec-

tively. Thus, these functions also give rise to techniques for estimating

sensitivity information prior to the determination of a solution, analogous
to those obtained for penalty functions. An extension of the class of

algorithms that can be so utilized should continue to be an interesting

subject of future research.

In the other direction, that of using solution sensitivity information

to characterize algorithmic behavior, interesting examples are the proof
by Meyer (21] of convergence of a family of algorithms and the determination

by Robinson (-22~i of the convergence and rate of convergence of a large
class of algorithms.

Finally, though we have concentrated on sensitivity analysis and
developed neighborhood results, some of these results may be expected to 

V

extend to parametric nonlinear programming, where the parameters are per-

mitted to range in a prescribed set. A characterization and sensitivity

and stability analysis of parameter—dependent solutions will undoubtedly
be a subject of sustained future investigation. It seems apparent that

results “in the large” will depend critically on neighborhood results such
as those presented here.

An immediate application of the sensitivity analysis results

obtained here is a calculation of first order estimates of a Kuhn—Tucker
tripl, of a problem with parameter changes, and first and second order
estimates of the optimal value function, using Taylor ’s series expansions.
If x(O) is a solution of Problem P(O) satisfying the conditions of
Theorem 3.1, then a first order estimate V

of th. optimal value function,
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f
*

(C) f(x(c),~ ] , for c in a neighborhood of 0 , is given by

* * *f (c) f (0) + y E  (0)~ , (6.1)

and a second order estimate is given by

* * * 1 T 2  *f (c) = f (0) + V f  (0)c + C V f (O)c (6.2)

* * * 2 *where f (0) = f(x ,0) and 
~ C

1 (c) and V f  (c) are defined by (4.4) and (4.5),

respectively. A first order estimate of the Kuhn—Tucker triple y(c) is

given by

y(C ) = y(O) + V
~

y(O)c

x~1 
-

= u~~ + M~~(0)N(0)c , (6.3)

*1vi

where we have used Conclusion (1) of Theorem 3.1 and Equation (3.3).

An ever important general application of sensitivity analysis is the

determination of those parameters to which a solution is the most sensitive.

In the context of mathematical programming, if the optimal value or one or

more components of a solution vector or any of the constraints can change 
V

erratically for small changes in a parameter, there is little comfort in

having a particular solution at hand for the given data, if the data is (as

usual) subject to errors or alterations that can exceed these “small changes.”

A sensitivity analysis can thus lead to the more likely sources of instability

in the model and to a further study of data inaccuracy (e.g., suggesting

more observations to reduce the variance of sample estimates, as in a chance

constrained formulation of a problem studied by Armacost and Fiacco [3]). It

can also suggest reformulating the model to eliminate various instabilities

(e.g., by refraining from expressing an equality constraint as two inequal-

ities, the consequences of which are easily seen to make singular the Jacobian

M of the Kuhn—Tucker system (3.1) , the computational implications being

dramatically conveyed by Robinson [23]) or introducing “regularizations,”
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i.e., estimates or perturbations that introduce stabilities (e.g.,
replacing nondifferentiable functions by differentiable approximations

or perturbing a function so that the Hessian of the perturbed function is
nonsingu.Lar in an appropriate domain , as in the various definitions of
augmented Lagragians).

The sensitivity information for the optimal value function and the

Kuhn—Tucker triple can also be used to drive various “cyclic” procedures

for solving problems involving optimization, e.g., in solving

~~~ 
sexy F(x,y) by cycling between descent moves in x—space and ascent

moves in y—space, where the parameter c of P(c) would essentially momen-

tarily correspond to that subset of variables that are considered to be

“independent” for a given iteration. An excellent discussion of this sort

of method may be found in a paper by Hogan (17] and a recent application

using penalty function approximations mentioned earlier and validated in (15]

was given by de Silva [14]. The latter involves the solution of an implicitly

defined optimization model of U.S. crude oil production.

For Problem R(e) , where the parameters are the right—hand side of

the constraints, the Kuhn—Tucke r triple derivatives (5.15) and the Hessian

of the optimal value function (5.16) are relatively easy calculations and

should have powerful application in solving large—scale problems by intro—

ducing Newton—type techniques in the various established decomposition pro-

cedures. Problems of this type are also intimately involved in much of

duality theo ry and sensitivity information may have useful application in

defining and accelerating algorithms for solving R(0) by various dual

metho ds . Sensitivity results for Problem R( c) are treated in considerable

detail by Armacost and Fiacco [5]. Potential applications are abundant.

We have presented a number of basic results for a locally rather

ideally behaved class of nonlinear programming problems . Resul ts involving
the general behavior of the opt imal value function and a given solution or
solution set, under less stringent assumptions, have been known for some

time, and numerous significant refinements , extensions , - and generalizations
have been obtained only recently. The subject of sensitivity and stability

— 28 —

- - ________________________— -
~ 

- -- •~ 4
V - ~~~~~ 

- 
V ‘ - - ‘S-— V - - —~~~~~



T—377

analysis in nonlinear programming is finally receiving the attention it

deserves. The reader interested in pursuing the subject further may make an

excellent start by studying the articles [17], [18},and [19] by Hogan and

consulting the numerous references therein.

j 
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