
F *0—AUSe 615 SRI INTERNATIONAL ICtO PARK CA F~S ~~~ 1- A pRoOf oc THE CORRECTNESS OF A 50*1.! PARSER oc EXPRESSIONS SY— ETC(U)
1 75 P Y ULOCSS NOOO 1~ —75—C— OS16

I UNCLASSIFIED 5RI”TR 7

I
_ _ _ _

_ _

_

_ _
_

A ’I U _Ha auuuu~
__

END
D*Tt
“tub
—78
00c

- it 1~~~~~

O L~ 112.8 112.5
I. L

L
~~~ 111122
L ~~~

I I_~ J)J~J2.O

IIIII~111111.25 flhII~ iiw~
MICROCOPY RESOLUTION T EST CHART

NAIIONA L AURLAU 01 STAN OAFI LIS SAT A



4

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ )~~~Aug t78/ .

2 _ _ _ _
(L)

~A~~RooF oF THE ~çORRECTNESS OF A ,
~~IMPLE,~ ARSER OF ,~XPRESSIONS BY THE /
BOYER-MOORE SYSTEM . .1

i—
v

I,,,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

>— 
~~~
)

PAUL Y~43LOE~~
7 ~~~~~~~~~ ~~

~~~~~~~~~~~~ 
(

Sponsoredb;:
C..) OFFICE OF NAVAL RESEARCH

DEPARTMENT OF THE NAVY ID
ARLINGTON, VIRGINIA 22217

ONR Contract Authority NR 049-378

ONR Con~~~~~~~ft14~~~~~- 1 6  (
~4’ J~

Reproduction in whole or in pert is permitted for
any purpose of the United States Government.

‘~t II ~ 
t ,,~ 1’

0’ ~~~~~~~~ 
O~ 08 039

~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _


SECURITY CLASSIFiCATION OF THIS PAGE (When Data Entersd)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBEP 2. GOVT ACCESSION NO. 3. RECIPIENT ’S CATALOG NUMBER

N000 14—75—C— 08 16—SRI 7 ______________________________
4. TITLE (and SubtItle) 5. TYPE OF REPORT & PERIOD COVERED

A Proof of the Correctness of a Simple Parser of Technical Report
Expressions by the Boyer—Moore System

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)

8. CONTRACT OR GRANT NUMBER(s)
Paul Y. Gloess N000l4—75—c—08l6

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT . TASK
AREA & WORK UNIT NUMBERS

SRI International /
~~ 049—378333 Ravenswood Avenue

Menlo Park, CA 94025 12. REPORT DATE 13. NO. OF PAGES
11. CONTROLLING OFFICE NAME AND ADDRESS

August 1978 51Off ice of Naval Research 15. SECURITY CLASS. (of this report)
Depar tment of the Navy
Arlington , VA 22217 Unclassified

14. MONITORING AGENCY NAME & ADDRESS (If duff , from ControllIng Office)

iSa. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this report)
Reproduction in whole or in part is permitted for any purpose of the United
States Government. It may be released to the general public.

This document has been a’,orove]~~~for public rc~lx ’.c3 cmd ~~l~’.• :~
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If dIff.r.nt $‘~~1s~t!Mftjon is uflhj n~j te~•

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Contlnu. on revers, side If necessary and Identify by block number)

parser, program verification, theorem proving

~~~
‘— ~~0. ABSTRACT (Cont inu, on reverse side if necess ary and identify by block number)

_ The objective of this report is to convey the essential idea of a proof by the
Boyer—Moore Theorem Prover of the correctness of a parser. The proof required a
total of 147 definitions and lemmas——all of which have been listed in the appendix.

DD FORM
1 JAN 73 ______________________________________________________

EDITION OF 1 NOV 63 1$ OSSOLETE ECURITV CL4$SIFICATION OP ThIS PL~~ 
¶

ar(~Jts Entered)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  — - .- — 
—. 

~~~~~ — ‘ .  
.

.:..

SECURITY CLASSIFICATION OF THIS PAGE (When Data Enter ed)
19. KEY WORDS (Continued)

20 ABSTRACT (Continued)

Included in the following text are a description of the original problem submitted
to the Theorem Prover and a sketch of the resultant proof, together with a dis-
cussion of the reasons that induced us to introduce some auxiliary functions. The
report also contains the computer—generated proof of one of the main lemmas:
INIT.SEG. The complete proof is available from the author.

DD1 JAN 731473
_ _

EDITION OF 1 NOV 15 II OSSOLETE SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

ABSTRACT

The objective of this report is to convey the essential idea of a
proof by the Boyer—Moore Theorem Prover of the correctness of a
parser. The proof required a total of 1~$7 definitions and lemmas
——all of which have been listed in the appendix.

Included in the following text are a description of the original
problem submitted to the Theorem Prover and a sketch of the
resultant proof, together with a discussion of the reasons that
induced us to introduce some auxiliary functions. The report also
contains the computer—generated proof of one of the main lemmas:
INIT.SEG. The complete proof is available from the author.

1
b r

~4hite SeCtIOB
NTIS

~u1) Sect Iofl ~~
OOC 0
IJN~M~ O~~

CrD
—

A

~~~~~ ~~c~~L

i i i

-__ .-- . - - ~~~--~~~~~~~~~--
‘
~~~~

‘
~~~~~~~~~~~~ 

. . - ~~~~~~~~~~ — - . - — . —~-



CONTENTS

ABSTRACT ii

ACKNOWLEDGMENTS iv

I INTRODUCTION . . . .  1

II ThE PROBLE M  3
A. ~~~~ ReDresentation g,~ Trees .a~ . Ex nressions    .

B. ,fl~~, Function TREEP . . .  7
C. ,I~~~ Funption PRINT .      7

D. ,fl~~. Parser EVALEXPR . . .  8

III SKETCH OF THE PROOF . . . . . . . . 11

IV THE HANDWRITTEN AUXILIARY FUNCTIONS . . . . . . . . . 13
A. Decomoosition ~~ ~~~~ Ex oression ,~y, the Function ,Q~~ . . 13
B. j~flj Orderinz Relation INCLU P . . . 1~t

C. fl~ Initial-Seament Lemma ~~~ , ~~~ Function EXPRP . . . 15

V COMPUTER-PROOF OF THE INIT IAL— S EGMENT LEMMA . ‘18

APPENDICES

A FUNCTIONS AND LEMMAS . . . . . . . . . . . . . 26

REFERENCES . . . . . . . . . . . . . ~l7

H m:~
- -”~ _ _ _ _ _ _ _ _ _ _



ACKNOWLEDGMENTS

We would like to thank Robert S. Boyer and J Strother Moore for
their invaluable advice.

Our appreciation should also be expressed to the Theorem Prover for
its very accurate proofs and incredible patiencel

vii - ‘. I

-. __
. -- . 

_ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~ —



I INTRODUCTION ’

It seemed to us that a good way to learn something about the Boyer—

Moore Theorem Prover was to submit an example to it. Although the

specific nature of the example was of secondary impor tance to us in our

selection, it was apparent from the outset that the example actually

chosen presented potential difficulties. Our impression was indeed

confirmed subsequently as we proceed ed with the proof and found the

example not merely fraught with difficulty, but intrinsically

Interesting.

Of principal interest is the fact that we wrote the example knowing

little about the Theorem Prover ——so little that none of our recursive

functions could be proved as total. Nevertheless, we did succeed in

obtaining one or two proofs based on induction.

As It was clear that the system was inherently averse to assuming

totality and therefore exerted its efforts to make our proofs fail, we
became especially concerned with the problem of totality. Upon reading

Boyer and Moore’s work on using the logic of recursive functions (23,

we became convinced of the overriding importance of totality and

understood what the system required for proving it. To fill the

considerable gap between the original problem and the correctness

hypothesis, we began introducing several auxiliary total functions and,

consequently, a large number of lemmas. The hope that this procedure

would lead to successful termination has indeed been borne out in

practice.

There may conceivably exist a shorter path that could be utilized

by the system toward its goal , i.e., proof of the correctness of our

‘ The author was supported by a grant from IRIA , the French Institut de
Recherche d’Informatique et d’Automatique , Domaine de Yoluceau—
Rooquencourt , 78150 LE CHESNAY. 



parser. If a shorter path is ultimately found , it will probably not

require the inclusion of all these auxiliary functions. In any event,

the particular path we have used Is capable of successful termination

——and we present It herein as conceived and per formed by us.

_  

2 
. 

H
______ —



II ThE PROBLEM

The parse~’ we are concerned with is a parser of expressions such

as:

((A + B)’(— C)),
(A + (B + C)) ,
A ,. . .

Note that our operators are either unary or binary, and that we require

full bracketing and no more. For the parser, these are nonexoressions:

A + B,
(A + B + C),
— A ,
((A + B)).

The function of the parser, called EVALEXPR, is to distinguish

valid expressions from invalid , and to return a tree for every valia

expression. For example a representation of the tree corresponding to

the above first valid expression might be:

I
/ ~

+

/ \  /
A B C

To specify the correctness of the parser, we define a function

PRINT (similar to the one used by INTERLISP to print lists). For any
unary—binary tree such as the one above PRINT returns an expression.

For the above tree the printed expression is the one already mentioned:

( (A + B)’(— C)).

3 

--—--. 
— 

—. —-- - . _____-an___ -.. —

.‘~~ 
‘.-—,

~~~
, .-~

, ..,.. ,, 4 . , . - ..~

What we mea n by correctness of the parser is this: “parsing the

ex pression printed from every unary—binary tree restores the

original tree” . In a more formal way:

(TREEP X) :> (EVALEXP R “NIL” (PRINT X)) = X.

This is the precise statement of the theorem we have proved for

EVALEXP R’.

One can object that the above theorem does not signify the

correctness of the parser, preferring the observation that “for every

expression, the parser returns a tree that prints like the original

expression”. Alternatively, one might require the conjunction of both

theorems.

However, it was our intention to prove only the first theorem.

After doing so, we decided to name it “EVALE XPR. IS .CORRECT ” .

We shall now give our representation of trees and expressions and

explain the definitions of TREEP , PRINT and EVALEXPR .”

A. L~~~ Reoresentation ~~ Trees ~~~~ Exoressions

It is perhaps not yet clear to the reader that any significant

difference exists between trees and expressions. If this were true

there would be no real problem! In such examples as the proof of an

optimizing compiler t3), trees and expressions are used synonymously,

since one is only Interested in their semantics. In the present

context , however, we shall insist on a representation that

differentiates between them.

We could have represented trees with a new shell by using the

ADD.SHELL facility provided in the Theorem Prover. We thought that CONS

was convenient enough, so we did not do this.

~ As we can see EVALEXPR takes 2 arguments: the first one plays only an
internal role and when it is set to “NIL” the second one is the text to
parse .

All the functions or lemmas of our example are listed in the
appendix.

—— -
~~~~~~~~~~~~~~~~~ :T .. I . ~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~


The tree

I

A B C

is represented by the S—expression

‘((‘) ((+) A B) ((—) C)) ,

and is, in fact, precisely

(CONS (CONS “ “NIL”)
(CONS (CONS (CONS “+“ “NIL”)

(CONS “A” (CONS “B” “N I L ”)))
(CONS (CONS (CONS “— “ “NIL”)

(CONS “C” “NIL”))
“N I L ”))) .

Note that we have adopted the convention that a tree should be a P—list
(the CDR of a tree is “NIL” or a list)’. We also have adopted the
convention of representing operators (such as “+“, ““', ...) by lists
of one element. Operators are thus distinguished from the terminals
“A” , “B”, “C”, ... represented by atoms. Although not absolutely
necessary, this convention is consistent with our definition of
expressions.

We also use lists to represent expressions. But here the length of
the list is arbitrary. First of all, to avoid any confusion between the
brackets of expressions and the lisp—brackets, we use “< “ and “> “

instead of “(“ and “) “ . For example, the expression

((A + B) ‘(— C))

is represented by the S—expression

‘ It is actually the Theorem Prover that made us alter our first
definition of TREEP by showing us a counterexample (the parser returning
only P—list trees).

5

____________ - - -- - - - - - -- —~~~~~~~~~~~~~ --

- ~~. - -.~ . - ‘-—‘ -

‘(< < A (+) B > (I) < (~) C > ~) ,

and is precisely

(CONS “<“
(CONS “<“

(CONS “A”
(CONS (CONS “+“ “NIL ”)

(CONS “B”
(CONS “>“

(CONS (CONS “‘“ “NIL”)(CONS “<“
(CONS (CONS “— “ “NIL”)

(CONS “C”
(CONS “>“

(CONS “> “

The Theorem Prover told us to exclude “<“ from atoms . On the ether

hand “NIL” and ev en “>“ are perfectly valid atoms. Thus:

((“+“) “NIL” “>“)

is a valid tree and the corresponding expression

(“<“ “NIL ” (“ + “) “>“ “> “)

is valid and well parsed by EVALEXPR , whereas

(“<“ ‘~<“ (f t ~~~I) “A” “>“)

is recognized as a nonexpression.’

Finally our predicate ATOMP for recognizing atoms is defined by

(DEFN ATOMP (X) (NLISTP X) & (X i “ < “)) .

Our predicate CONNECTP recognizes operators and is defined by

Although such special cases may seem relatively unimportant and are
therefore easily overlooked, the Theorem Prover will remind the user of
his negligence by noticing them Immed iately.

6

- . - . —-- - - —‘-I.-~~~~~~---- —- - —
- ‘..- “ -q~.-4 -- - - ~~~~~~~~~~~~

. -

(DEFN CONNECTP(X) (LISTP X)).

Thus an operator might be any list, since we do not veriry that it

contains only one atom. We found that this test led to longer proofs,

but that it was not essential to our purpose.

B. The Function TREEP

This predicate recognizes trees and should be obvious from the

previous discussion:

(DEFN TREEP(X)
(IF (NLISTP X)

(ATOMP X)
(IF (CONNECTP (TOPOFTREE X))

(IF (UNARY X)
(TREEP (SUBTREE1 X))
(IF (BINARY X)

(AND (TREEP (SUBTREE 1 X))
(TREEP (SUBTREE2 X)))

F))
F))).

The nonrecursive functions TOPOFIREE , SUBTREE1 , SUBTREE2 , UNARY and

BINARY are given in the appendix and their meanings should be clear.

For example TOPOFTREE Is CAR and SUBTREE2 is CADDR.

C. The Function PRINT

This function (see appendix) is very simple. If the input I is a

nonhist, PRINT returns (CONS X “NIL”). If X is a unary tree, PRINT
returns the concatenation

(“ < “)U (TO PO FTREE X)H (PRINT (SUBTREE 1 X))H(”>”),

where (for readability) the “ H ” operator stands for APPEND, called

CONCATCH throughout the appendix.

•1

- — ---—-- (~~~~~~‘- -~~‘ ~
— —

D. The Parser EVALE XP R

EVALE XP R is the most complicated function in this problem . It

takes two arguments L (J.,eft) and R (~ 1.ght) . L is always set to “NIL” in
an external call to EVALEXPR and R contains the text to parse.’

The algorithm we use is quite simple , but very inefficient. The

main work of EVALEXPR is to try to decompose the input. Of course, when

the text to parse is reduced to a list of one atom , nothing needs to be

done. Otherwise the task of decomposition consists in finding the main

operator of the expression, according to the pattern:

(“<“) lleft_sub_exp_or_emptyl hnairLop right_sub_exp (“>“).

When the element immediately following the initial “<“ is an
operator , decomposition has already been accomplished .

Otherwise EVA LE XP R skips one elem ent (moving to the right) by

adding the first elem ent of B to the end of L , as signified by the
recursive call”

(EVALEXPR (APPEND L (CONS (CAR H) “NIL”))
(CDR R)).

Then EVA LE XP R will continue skipping until L and H are such that (COR I..)

——i. e . , left sub_exp_or_empty —— is an expression and (CAR H) is an
operator ——i . e . , main_op—— . The search will eventually cease . For
exampl e , if (CDR L) happens to be an expression whereas (CA R H) is not
an operator: EVALE XP R will return “<“ to mean that L and R do not

‘ The necessity of two arguments derives from the impossibility of
defining a system of mutually recursive functions , as suggested by the
classical LL (1) grammar of expressions.

For greater clarity we have substituted APPEND , CAR , CONS and CDR in
place of our CONCATCH , FIRSTCH , CIIARCHAIN and R~ IAIN .

8

_ _ _ -~~~~ - -~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- ‘— ~~-

comprise an expression.’

Once the decomposition is obtained , the left part L starts with a

“<“ followed by either an empty list or an expression (called
left_sub_exp_or_empty above); R starts with an operator (called
main...pp). So all EVALEXPR needs to do now is to:

* check that the last element of H is a closing bracket ,
i.e.:

(LAS TCH R) :

* check that the elements between mai n...op and the last
element of H form an ex pression , i.e.:

[EVALE XPR “NIL” (BEGIN (CDR H))] i “<“ ;

* return either “<“ or the adequate parse—tree obtained by
CONSIng the main operator , the parse—tree resulting from
the left subexpression (if any) , the one resulting from the
right subexpression (which is always present), and “NIL”
(to form a P—list) .

EVALEXP R contains three different recursive calls. The first of
these is

(EVALE XP R (APPEND L (CONS (CAR R) “NIL ”))
(CDH R)),

which corresponds to skipping one element; the second is

(EVALE XP R “NIL ”
(CDR L)),

for the left operand; the third call is

(EVALE XPR “NIL”
(BEGI N (CDR R))),

‘ Until very late in our proofs, we had chosen “NIL” as a return value
for nonex pressions ; when we introduced the auxiliary predicate EXPHP and
submitted a lemma relating EXPEP to EVALE XP H , the Theorem Prover foumd
that (“NIL ”) was a valid expression according to EXPR P , but not with
respect to EVALE XPH . So we chose “<“ which is the only nonlist excluded
by A TOMP.

9

_ _ _ - - - _ _ _ _ _ _ _ _- ~~~~ - - _ _______---

— - . - - - -
- - - — - - —

-
—

S.—. - -

corresponding to the right operand .

The totality of EVALE XP R stems from the fact that either the sum of

the leng ths of L and B decreases as in the second recursive call , or
remains unchanged as in the first call; in the latter case the length of

R decreases in both the first and third recursive calls.

Note that LASTCH (which returns the last element of a list) and
BEGIN (which returns the list of all but the last elements of a list)

are recursive functions. Therefore , some lemmas dealing with the

manipulation of objects resembling character strings will be necessary.

10

- -- -- - - - - -
- , _ _ - _

-~

-
- -

- . _~ 4_ __ -

III SKETCH OF THE PROOF

The theorem we want to prove is:

EVALE XPR. IS .CORRECT:
(TREEP X) => (EVALEXP R “NIL ” (PRINT I)) = X .

This conjecture suggests an induction on the variable X according

to the schema of TREEP, which is what the system does. Three

interesting cases are to be considered :’

* The base case : the tree X is red uced to a leaf ,

* The unary case: X has only one branch , so that (PRINT I) is
the list

(APPEND (CONS “<“ “NIL”)
(APPEND (CONS (TOPOFTREE I) “NIL”)

(APPEND (PRINT (SUBTREE 1 I))
(CONS “>“ “NIL”)))),

constituting an expression of the form

< operator operand >,

which is easily parsed by EVALEXPR. The “pointer” moves
only once to the right and the expression is immediately
decomposed into its left part (“<“) and right part
operatod I operand I I (“>“). The induction hypothesis

(EVALEXP R “NIL” (PRINT (SUBTREE 1 X))) = (SUBTREE1 I)

and the expansion of (EVALE XP R “NIL ” (PRINT X)) resolve
this case.

* The binary case: here, of course, resides the entire
difficulty of the problem . A simple expansion of EVA LEXPR
is insufficient, since the “pointer” must skip a variable

* The Theorem Prover considers five cases, whereas the schema itself
contains only two cases ——the base case and the general case, which
includes two induction hypotheses (corresponding to SUBTREEI and
SUBTREE2)—— • The general case splits into four oases because the
conjecture is an implication.

11

- . —-~~~~~~~~~~~~~ - -- --_____w- -- —

number (n + 1) of symbols if n is the length of the
subexpression that commences after the initial bracket.
Precisely, (PRINT X) is here the list

(APPEND (CONS “<“ “NIL”)
(APPEND (PRINT (SUBTREE1 X))

(APPEND (CONS (TOPOFTREE I) “NIL”)
(APPEND (PRINT (SUBTREE2 X))

(CONS “>“ “NIL.”))))).
Therefore, the proof consists in showing that the “pointer”
must skip until past (PRINT (SUBTREE 1 I)) (which is an
expression by virtue of the induction hypothesis and the
fact that X, being a tree, cannot be “<“). In other words,
(PRINT (SUBTREE 1 X)) must be the smallest subexpression
starting after the initial “<“.

Finally the proof of the whole problem is mainly based on the

following lemma:

“Any proper initial segment of an expression is not itself an
expression.”

Let us call this the “initial—segmen t lemma ,” the computer proof of
which is presented in Section V.

This kind of generalization requires the creation of auxiliary

functions. Consequently, it is far beyond the system ’s capacity .

12

— — --~~,-..~~~~ —-----—-—-~———~~~

IV THE HANDWRITTEN AUXILIARY F UNCTIONS

After several unsuccessful attempts it was evident that all the
lemmas in the world could not solve our problem.

Without a significant generalization (involving new functions) , the
intrinsic schema of EVALEXP R could never be used . The general induction
principle of Boyer and Moore (1] requires that all measured arguments
of a function call whose schema contributes to the induction be

variables.

Furthermore , the function EVALE XP R appeared especially difficult
for two reasons. First , as we saw in subsection D of Section II , it
contains three different recursive calls, but one of these ——namely the
shift of one position to the right—— seems to precede the other two

chronologically. The second negative aspect is that some of the

recursive calls “govern” (see (1]) others.

All these reasons led us to introduce the function CLif, then INCLUP

and , fi nally, EXPRP. Although this idea did not emerge easily, at least
for the first function, it appears now that these functions have a

common cha racteristic: each of them reflects a specific part of the
complex schema of EVALE XP R and is thus “ simpler” than EVALE XPR .

A. Decomoosition
~~ ~~ Exoression ~y. ~Jie.

Function .QIIL

The goal achi eved by this function is to move the “ pointer” to the
right until it splits the input expression into two segments

< le.!1t right

whose CONS is returned as the value of C(TF . The “pointer” stops (in the
general case where the expression begins with a “<“) as soon as “left”

13

- -—~-—— . — c-z——-—

is the empty list and “right ” begins with an operator (unary case) , or
“left” is an expression (binary case). Note that CUT does not check the

right part , except to stop the “pointer” in the unary case .

The only recursive call contained in CUT ’s definition is

(CUT (APPEND L (CAR R))
(CDR R)) ,

where 1. and H are the arguments.

The most interesting property of CUT is

CLJ1~.HELPS.EVALEXPR:(EQUAL (EVALE XP R (CAR (CUT L. H))
(COB (CUT L R)))

(EVALE XP R L.
R)).

The proof of EVA LE XPR. IS .CORRECT is thus reduced to the proof of

(E QUAL (CUT “NIL ”
(APPEND (CONS “<“ “NIL ”)

(APPEND EXP 1
(APPEND (CONS OP “NIL”)

(APPEND EXP2
(CONS “)“ “NIL”))))))

(CONS (CONS “<“ EXP1)
(CONS OP (APPEND EXP2 (CONS “>“ “NIL”))))),

where EXP1 and EXP2 are expressions and OP is an operator.

B. ~~~ Ordering Relation INCLU P

This function takes the four arguments Li , Ri , L2 and R2 and checks
a logical relation between the ordered pair <L1,R1> and the ordered pai r

<L2,R2>, as best expressed by the following schema:

Li R i
, I
I I

I I I
I

L2 R2

11~

____________________ - —~~ -~~ -.-~~~~~ .—--- — -—- —
- .4

Li , Ri , L2, R2 are lists. The relation (INCLU P Li R i L2 R2) holds when

(APPEND Li R i) = (APPEND L2 R2)

and Li is an initial segment of L2. However , INCLUP is not defined that
way ; it uses the same recursive call as CUT.

Of course , the INCLUP relation holds between CUT ’s arguments and
CUT ’s result , as signified by the lemma

INCLUP.L R.CUTL.R :
(INCLUP I.. B

(CA R (CUT L. H)) (CDR (CUT L R))) .

This lemma , joined to the preceding ones , reduces the proof of
EVALEX P R. IS .CORRECT to that of the central lemma we formulated in

Section III: “Any proper initial segment of an expression is not itself

an expression.”

C. jfl~ Initial—Seament Lemma j~~ ~~~ Function EXPEP

Let us remind the reader that EVA LE XP R assigns to nonex pressions
only the value “<“. Hence , a possible statement of the initial—segment
lemma is:

(IMPLIES (AND (NOT (EQUAL (EVA LE XP R L (APPEND R S))

(LISTP S))
(EQUAL (EVALE XP R L H)

This is actually a slightly more generalized form of the lemma , since
“NIL ” has been replaced by the variable L. Although it allows an

induction using the schema of EVALEXPR , the proof fails. The essential
reason for this is that EVALEXPR does not suggest the right induction

——at least the one we had in mind • Furthermore, it seems that the
argument L, however necessary from the induction viewpoint, is
misleading . So we decided to define another function : EXPRP . As we
shall see , EXPRP negates the first argument , 1.

15

__________________________ ________ —

‘- -- 5—
- . - - - - — - - - — -—--—

- - - S - - -~~~~

The proof we conceived of and subsequently checked with the system

is as follows. Suppose that S is a list, and R and BUS are both

expressions. It is obvious that H has to start with a “<“. It can be
proved that each decomposition -—of H and BUS—— will have the same left
part i.e., the lemma CITr.CONCATCH. Since R is an expression, the search
for the main operator will stop at least two elements before the end
(see lemma TWO.ELEME N TS), beca use the right part must start with an
opera tor and finish with a “>“ . Hence , since we know that this search
does not depend on the right part (except , perhaps, for the first
element ;th~.~ h is the mai n operator [see subsection A]) , the search will

certainly not depend on S, which is after the final “)“ of B. So we

have the situation :

R: < left....part operator right_sub ...exp >
B U S : < leftpart operator right_sub_ex p_and_more >.

right_sub_exp_and_more must be an expression, but this is not possible

(by induction hypothesis), since right_sub_exp is an expression and a
proper initial segment of right_sub_exp_and...~ore.

Note that the variable L plays no role in this proof. At first

glance the induction

(p right_sub_exp S) => (p H S),

on B only, seems sufficient.

A second more careful look shows that the variable S of the

induction hypothesis need s to be instantiated , according to the schema:

(p rlght..sub_exp (CONS “>“ (BEGIN 8))) => (p B S),

so as to take into account the final bracket of’ R, but omit that of
o I 0’fl II~~ .

As the system does not instantiate tho se variables that do not
participate in the induction , we used an artifice to force the

* Remember that BEGIN returns the list S minus its last element.

16

-
______ -~~~~~~~~~~~— ~~~~~~~~~~~~~~~

- t - ’4~—-5- .-~ - - -

instantiation of S in the induction hypothesis: the adjunction of the
dummy argument DUMMY to the auxiliary function EXPRP. Otherwise R would
have been its only argument.

The only recursive call contained in the definition of EXPRP is

(EXP B P (BEGIN (CDR (COB (CUT “NIL ” H))))
(CONS “>“ (BEGIN DUMM Y))) ,

where the first argument represents the right subexpression of H when B

is an expression. Note that EXPRP does not refer to the left

subexpression of R, whereas EVALEXPR does. Also note that EXPR P does
not depend on DUMMY (see appendix) .

Expressed in terms of EXPRP, the initial—segment lemma becomes

(IMPLIES (AND (EXPRP (APPEND R S) S)
(LISTP S))

(NOT (EXPRP B S))).

Naturally we had to prove that EXPRP recognizes the same set of

expressions as EVALEXPR , i.e., the lemma :

EXP RP .EQ UAL .EyAL,~X PR:
(EQUAL (EXPRP H DUMMY)

(NOT (EQUAL (EVAL.EXPR “NIL” B)

17

______________________________ — ——-- -.—-- -—..~~~~~~~ .——----- --- - —- — —
S

~~~~~~~~~ ~-



V COMPUTER—PROOF OF THE INITIAL—SEGMENT LEMMA

The system has proved a contrapositive form of the initial-segment
lemma :

INIT.SEG:
(IMPLIES (AND (LISTP B)

(EXPRP A B ))
(NOT (EXPRP (CONCATCH A B) B].

Remember that

* CONCATC H is a synonym of APPEND

* LASTCH returns the last element of a list

* BEGIN returns the input list minus its last element.

The beginning of the proof shows what ind uction schema was chosen
from the function EXPRP . The schema contains five base cases and one
general case. In the remainder of the proof the five base cases split

into six , numbered from eight to three. The general case bisects into
cases no. 2 and no. 1, because the induction hypothesis is an

implication. Case 2 is comparatively barren. Case 1 is the interesting

one of the pair.

From this point , the system first expands the hypothesis “(EXPRP A

B)”, which is not useful and necessitates the additional lemma

REBUILD.EXPRP.FRaI. EXPANSION.

Then the hypothesis resulting from the induction (i.e., the

conclusion of the induction hypothesis) is transformed into

(NOT (EXPRP (OONCATCH (CDR (COB (CUT “NIL” A)))
(BEGIN B))

(CONS “)“ (BEGIN B)))),

owing to the four linked technical lemmas CONCATCH.BEGIN.CONS.LASTCH,

~~~~~~~~~~~~~~~~~~~~ 
_ _

TWO.ELEMENTS, LASTCH. CUT and LISTP.CDR.CUT given in the appendix. For
example , LASTCH.CUT asserts that the last element of “(CUT L B)” is the

last element of B if H is a list.

The next step is the elimination , as usual, of (IAR A) and (COB A).

Finally, the funct ion EXPRP in the conclusion expands by virtue of
the lemma EXPRP.CONCATCH.EXPANDS. The other lemmas cited contribute to

the new form of the conclusion ,

(OR conclusion_of_inductionjiypothesis
(NOT (EQUAL (LASTCH B) “>“))) ,

which is not visible since this conjecture is immediately red uced to
(TRUE).

Note that the l emma CU T.CONCATC H (already mentioned in subsection C
of Section IV) , although not cited in the present proof, plays an
important role in the transformation of the conclusion. This lemma

affirms the equality of the left subexpressions of expressions A and

(CONCATCH A B), i.e., in a slightly stronger form:

CIJT.CONCATCH
(IMPLIES (NOT (EQUAL (EVALEXPR U A) “<“))

(EQUAL (CUT U (CONCATCH A B))
(CONS (CAR (CUT U A))

(CONCATCH (CDR (CUT U A))
B)))).

The computer proof of INIT.SEG starts on the next page. All cited

lemmas (except for the basic axioms dealing with the shell (CONS, CAR,
CDR , LISTP]) and functions are listed in the app ’ndix.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

20

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _----
~~~

----
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

——--—-.-—--—.------ - .--.—..•~~~ .—-——-—--- —
- ~tMI- ’-. -... 5 -

_PBOVE. LEMMA(INIT.SEG (REWRITE)
(IMPLIES (AND (LISTP B) (EXPRP A B))

(NOT (EXPRP (CONCATCH A B) B)))
NIL NIL)

Name this ‘1.
S Of course , when all else fails (and it has), induct on

something!

There are two plausible inductions. They don ’t merge. And ,
neither is clean! And they appear equally likely. So the
one which will probably lead to eliminating the nastiest
expression was picked. We will induct according to the
following schema:

(AND (IMPL IES (NOT (LISTP (CDR (CUT “NIL” A))))
(p A B))

(IMPLIES (NOT (LISTP A)) (p A B))
(IMPLIES (NOT (LISTP (COB A)))

(p A B))
(IMPLIES (NOT (EQUAL (CAR A) “<“))

(p A B))
(IMPLIES (NOT (LISTP (CA R (CDR (CUT “NIL” A)))))

(p A B))
(IMPLIES (AND (LISTP (CDR (CUT “NIL ” A)))

(LISTP A)
(LISTP (COB A))
(EQUAL (CAR A) “<“)
(LISTP (CAR (COB (CUT “NIL” A))))
(p (BEGIN (CDR (CDR (CUT “NIL” A))))

(CONS “>“ (BEGIN B))))
(p A B))).

The inequalities BEGIN.CDR.LNG.LESSP, CDR.CUT.LESSEQP and
EXPRP.IS .TOTAL establish that the measure (LNG A)
decreases according to the well—founded function LESSP in
the induction step of the schema . This produces eight new
conjectures:

8 (IMPLIES (AND (NOT (LISTP (CDR (CUT “NIL” A))))
(LIST P B)
(EXP RP A B))

(NOT (EX PRP (CONCATCH A B) B))),
which simplifies, using the lemmas CAR.N L ISTP ,
CAR.CONCATCH.LI STP and CDR.CONCATCH.LISTP, and unfolding
EXPRP and CONCATCH, to:

‘:(r RuE) .

7:(IIIPt.IEs (AND (NOT (LISTP A))
(LIST P B)
(EXP R P A B))

(NO T (EXPRP (CONCATC H A B) B))) .
I This simplifies, expanding the definition of EXPRP , to:

21

- . - - - .

.
- -

- _1—
-
~“~~~

- -
-

-
. - -5’~~~~~~~~~ (.?t . -

‘I(TRUE).

6RIMPLIES (AND (NOT (LISTP (CDR A)))
(LISTP B)
(EXP RP A B))

(NOT (EX PRP (CONCATCH A B) B))) ,
l which simplifies, applying the lemmas CAR .CONS and
CDR.CONS, and expanding the definitions of EXPRP and
CONCATC H, to:

‘I (TRUE).

5 (IMPLIES (AND (NOT (EQUAL (CAR A) “<“))
(LISTP B)

I (EXPR P A B))
(NOT (EXPRP (CONCATCH A B) B))) ,

which simplifies, rewriting with CAR .CONCATCH.LISTP and
I CDR.CONCATCH.LISTP, and expanding the definitions of

EX PR P and CONCATC H , to:

‘I(TRUE)

141(IMPLIES (AND (NOT (LISTP (CAR (CDH (CUT “NIL” A)))))
(LISTP B)

I (EXPRP A B))
(NOT (EX PR P (CONCATC H A B) B))) ,

which we can simplify, applying CAR.CONCATCH.LISTP and
I CDH.coNcATcH.LIsTP, and expanding the functions EXPRP
land CONCATCH, to:

• (TRUE).

31(IMPLIES (AND (LISTP (COB (CUT “NIL” A)))
(LIST P A)

— (LIST P (COB A))
(EQUAL (CAR A) “<“)
(LISTP (CAB (CDR (CUT “NIL” A))))
(NOT (LISTP (CONS “>“ (BEGIN B))))
(LIST P B)
(EXP RP A B))

(NOT (EXPRP (CONCATC H A B) B))),
which we can simplify, using the lemma LISTP.CDR.CUT, to:

*l (TRUE).

21(IMPLIES
(AND (LISTP (CDR (CUT “NIL” A)))

• 1 (LISTP A)
(LISTP (CDR A))
(EQUAL (CAR A) “(“)
(LISTP (CAR (COB (CUT “NIL” A))))
(NOT (EXPRP (BEGIN (COB (CDR (CUT “NIL ” A))))

.

~

.
-

~~~~~~~~ 
- .

_

~~~~,-*


(CONS “>“ (BEGIN B))))
(LIST? B)
(EXPRP A B))

(NOT (EXPRP (CONCATCH A B) B))).
This simplifies, rewriting with LISTP.CDR.CUT, and
hanfolding EXPRP, to:

• ‘UTRUE).

1 (IMPLIES
I (AND
I (LIST ? (COB (CUT “NIL” A)))
I (LIST? A)
1 (LIST ? (COB A))
1 (EQUAL (CA B A) “<“)
1 (LISTP (CAR (CDR (CUT “NIL” A))))
1 (NOT

(EXP BP (CONCATCH (BEGIN (CDR (COB (CUT “NIL” A))))
I (CONS “>“ (BEGIN B)))

(CONS ~1>
~

(BEGI N B))))
1 (LISTP B)

(EXPRP A B))
1 (NOT (EXPRP (CONCATCH A B) B))) ,
l which we can simplify, rewriting with LISTP.CDR.CUT and
ILASTCH.CDR .LISTP.ELIM, and expanding the definitions of
LASTCH, EXPRP and CONCATCH, to:

11 (IMPLIES
(AND

I (LIST? A)
1 (LIST ? (CDR A))
I (EQUAL (CAR A) “<“)
I (LIST? (CAB (CUR (CUT “NIL” A))))
1 (NOT
I (EXPRP (CONCATC H (BEGIN (CDR (COB (CUT “NIL” A))))

(CONS “>“ (BEGIN B)))
(CONS “>“ (BEGIN B))))

1 (LIST ? B)
I (EXPRP (BEGIN (CDR (CUR (CUT “NIL” A))))

(CONS “>“ (BEGIN B)))1 (EQUAL (LASTCH (CDR A)) “>“))
I (NOT (EXPRP (CONS (CAR A) (CONCATCH (CUR A) B))

B))),
1 which we can again simplify, applying
I CONCATCH. BEGIN.CCNS. L.ASTCH, NO.ELD4ENTS , LJISTCH. CUT ,
ILISTP.CDR.CUT and LASTCH.CDR.LISTP.ELIM, and expanding
LASTCH, to:

U(IMPLIES
1 (AND

I (LIST P A)
I (LIST ? (CDH A))

23 j

_________________________ ______ — _____ _ S•__•__-1.5-I~~~~~~~~~
•__________ —.

. -~~ 5’ - _ .
, • _ ,~~•, ‘--~~~~ -I~~~-5

I (E QUAL (CAR A) “<“)
(LIST ? (CAR (CUB (CUT “NIL” A))))
(NOT (E X P R P (CONCATC H (CUR (CUE (CUT “NIL” A)))

(BEGIN B))
(CONS “>“ (BEGI N B))))

(LIST ? B)
I (E X P RP (BEGIN (CDR (CDR (CUT “NIL” A))))

(CONS “>“ (BEGIN B)))
(EQUAL (LASTC H (CDH A)) “>“))

1 (NOT (EXPRP (CONS (CAR A) (CONCATCH (CUR A) B))
I B))).
lEliminate the undesirable expressions (CUR A) and

(CAR A) , by using the lemma CAR/CDR.ELIM backwards
land then generalizing. We thus obtain:

1 1 (IMPLIES
I (AND
I (LISTP (CONS Z X))
1 (LISTP X)
I (E QUAL Z “<“)
I (LIST P (CAR (CDR (CUT “NIL” (CONS Z X)))))
I (NOT
1 (EX PRP

(CONCATC H (CDR (CUE (CUT “NIL ” (CONS Z X))))
(BEGIN B))

(CONS “>‘~ (BEGI N B))))
1 (LIST ? B)
I (EXP BP

(BEGIN (CDR (CDB (CUT “NIL” (CONS Z X)))))
(CONS “>“ (BEGI N B)))

• I (E QUAL (LASTC H X) “>“))
I (NOT (EXPRP (CONS Z (CONCATCH X B)) B))).
This can be further simplified , applying the

Ilemmas CDR .NLISTP , CAR .CONS , CDR .CONS ,
IEX PRP .CONCA TC H. EXPANDS ,
I REB UIL.D.EX PRP.FR CtI. EXPANSION ,
LISTP.CAR.CDRCUT.CONCATCH and
EXPBP.CONCATCH.EQUAL.CQIMON, and expanding the

I functions CONCATCH, EVALEXPR and CUT, to:

‘I (T R U E) .

Ha! That finishes the proof of ‘1.

• Q.E.D.

Load average during proof: 2.85517’~Elapsed time: 271.8i4 seconds
CPU time (devoted to theorem proving): 99.956 seconds

24

__ -S

4- . - ~—•—- ,• - -
, •

10 time: 2.802 seconds
CONSes consumed : 122298

PROVED

—

25

- ~~-.,-_ • -~/1 ~~~ ~~~~-.. M~~~* - • ,- - - ,.~~~~._ - _ • 4-
- •~~~~~~~~~~

Appendix A

FUNCTIONS AND LEMMAS

_ _ - —~~~~~~~~~~~~~ ---
-

.••S
- ~~~~~~ ~

-•
~•~

- -
,

-~
. -

-
• .-~ •- -

-
4 --I~~~~~ .._•*ri- —

Appendix A

FUNCTIONS AND LEMMAS

(FILECREATED “ 1—Jun—78 03: 13: 12” <GLOESS>HISTO..51 285~8

changes to: THM

previous date: “30—May—78 22:1$1:51~” <GLOESS>HISTO..50)

(PRETTYC OM PRINT HISTOC CMS)

(RPA QQ HISTOC OMS (HISTO RY .STATU S THM))

(B?AQQ HISTORY.STATUS NIL)

(RPAQQ THM ((PBOVE.LEMMA SUB 1X.LESSP.PLUSYX (REWRITE)
(IMPLIES (AND (NUMBERP X)

(NUMBERP Y)
(NOT (EQUAL X 0)))

-• (LESS? (SUB 1 X)
(P LUS I X)))

NIL NIL)
(PROVE.LEMMA CAR.LESSEQP (INDUCTION)

(IMPLIES (NOT (E QUAL (COUNT (CA R X))
• (COUNT X)))

(LESSP (COUNT (CAR I))
(COUNT X)))

NIL NIL)
(PROVE.LE*IA CDR.LESSEQP (INDUCTION)

(IMPLIES (NOT (EQUAL (COUNT (CDR X))
(COUNT X)))

(LESS? (COUNT (CUR X))
(COUNT X)))

NIL NIL)
(DEFN NLISTP (X)

(NOT (LIST? X))
NIL .)

(DEFN NULL? CX)
(EQUAL X “NIL ”)
NI L)

(DEFN LEFTPA R NIL “<“ NIL)
(DEFN LEFT ?ARP (X)

(EQUAL X (LEFTPA R))
NIL)

(DEFN ATOM? (X)
(IF (NL.ISTP X)

H._ -

29

_

• - - S
~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ - - & ‘~~~~g—.~’-



(IF ( LEFTPARP X )
F T)

F)
NIL )

(DEFN CONNECTP (X)
(LIST? X)
NIL )

(DEFN TOPOFT HEE (X )
(CAR X )
NIL )

(DEFN UNARY (X)
(IF (NLIST P (CUR X ))

F
(NULL? ( CDDR X ) ) )

NIL )
(DEFN SUBTBEE 1 (X)

(CAUR X )
NIL )

(DEFN BINARY CX )
(UNARY ( CDR X ) )
NIL )

(DEFN SUBTREE 2 (X )
(CADDR X)
NIL )

(DEF N
TREE?
(X )
(IF (NLISTP X)

(IF ( ATOMP X )
T F)

(IF (CONNECT? (TOPOFTREE X))
(IF (UNARY X )

(TREE? (SUBTREE1 X))
(IF ( BINARY X)

(AND (TREE? (SUBTREE1 X))
(TREE? (SUBTREE2 X)))

F))
F ) )

NIL)
(DEFN CHARCHAIN CX )

(CONS X “NIL”)
NIL)

(DEFN CONCATCH (X Y )
(IF (NLISTP X)

V

(CONS (CA R X)
(CONCATCH (CUR X)

Y ) ) )
NIL)

(DEFN RIGHTPA R NIL “>“ NIL )
(DE FN

PRI NT

30

S — ~~~~~~~~~~~~~~~~~ ~~~~ — — -S —- -•--——--
~~~~-—-

• -
-

~~~~~~ S -. -~~~~~~~~ • *



(X )
(IF

( NLISTP X )
( CHARCHA IN X )
(IF (UNARY X)

( CONCATC H (CHARCHAIN (LEFT?AR ))
(CONCATCH (CHARCHAIN (TOPOFTREE X))

( CONCATCH (PRINT (SUBTREE 1 X ))
( CHARCH AIN (R I G H T P A R ) ) ) ) )

(CONCATCH (CHARCHAIN (LEFTPA R))
( CONCATCH
(PRINT (SUBTREE1 X))
(CONCATCH (CHARCHAIN (TOPOFTREE X))

(CONCATCH (PRINT (SUBTREE2 X))
( CHARCHAIN (RIGHTP AR ) )) )

NIL)
(DEFN FIRSTCH (X)

(CAR X)
NIL)

(DEFN REMAIN CX)
( CUB X )
NIL )

(DEFN G CX )
X N IL)

(DEFN ONEOBTW O (X Y)
(IF (LEFTPA R? X)

(CONS V “NIL”)
(CONS X (CONS V “N I L ” ) ) )

NIL )
(DEFN LASTCH CX )

(IF (NLIST? (REMAIN X))
(FIRSTCH X)
(LASTCH (REMAIN X)))

NIL)
(PR OVE .L.E*IA LASTCH.CON S (REWRITE )

(IMPLIES (LISTP I)
( EQUAL (LASTC H ( CONS X I) )

(LASTCH I)))
NIL NIL)

(DEFN PLISTP CX )
(IF (LIST? X)

(PLISTP (CDR X))
(EQUAL X “NIL”))

NIL)
(?ROVE .LErIMA LASTCH.CONCATCH (REWRITE)

(IMPLIES (AND (LIST? U)
• (LIST? V))

(EQUAL (LASTCH ( CONCATC H U V ))
( LASTCH V ) ) )

NIL NIL)
(PROV E .LEPfI A LISTP.CONCATC H (REWRITE )

31

--a
_________________________________. — —

~~ -.—.~~~~~ —-——~~

- - ~~~~~~~~~~~~~~ - 
- 5 - -



(IMPLIES (LIST? X )
(LIST? (CONCATC H X Y)))

NIL NIL)
(PROVE.LE MMA CONCATCH.PLISTP (REWRITE GENERALIZE)

(IMPLIES (PLISTP B)
(PLISTP (CONCATCH A B)))

NIL NIL )
(DEFN INCLU P (L i Ri L2 R2)

(IF (EQUAL Li L2)
(E QUAL R i R2 )
(IF (NLISTP R i)

F
(INCLUP (CONCATCH Li (CONS (CAR Ri)

“NIL”))
(CUB H i )
[.2 R2)))

NIL)
(PROVE .LEHM A INCLUP . LISTPL 1.NLIST?L2 (REWRITE )

(IMPLIES (AND (LIST? Li)
(NOT (LIST? L2)))

(NOT (INCLUP Li R i  L2 R 2 ) ) )
NIL NIL)

(PROVE .LEHM A INCLUP.CDRL1.CDRL2 (REWRITE)
(IMPLIES (AND (LISTP L i )

(LIST? [.2)
(E QUAL (CAR L i )

(CAR L2)))
(EQUAL (INCLU? Li H i  L2 R2 )

(INCL.UP (COB Li)
Hi
( COB L2)
R2)))

NIL NIL )
(PROVE. LEMMA INCLUP.CONCATCH (REWRITE)

(IMPLIES (AND (?LISTP D)
(?LISTP L))

(INCLUP L (CONCATCH U R)
(CONCATCH I. D)
R ) )

NIL NIL)
(PROVE . LEMM A INCL UP .CONCATCH .CROI( (REWRITE )

(IMPLIES (AND (EQUAL (CONCATCH Z “NIL”)
Z)

(EQUAL (INCLUP (CONCATCH Z A)
Ri
(CONCATCH Z “NIL”)
R2 )

(INCL.UP A Ri “NIL” R2)))
(EQUAL (INCL.UP (CONCATCH Z A)

Ri Z R2)
(INCLUP A Ri “NIL” R2)))

NIL NIL)

32

S.— _______ •_
~
, - __

~__~~
__

~
_‘ - — — — —5- —“.5...—

~5__• 4.’, • -- S - - - S - _—~-‘ -- ____ __ 4— 5 -



(PROVE. LEMMA INCLUP.CONCATC H . ELIM (REWRITE )
(EQUAL (INCLUP (CONCATCH Z A)

Hi
( CONCATCH Z B)
R2)

(INCLUP A R i B R2 ))
NIL NIL)

(PROVE . LEMM A CONCATCH. NIL. WGICAL (REWRITE )
(EQUAL (EQUAL (CONCATCH Z “NIL”)

Z)
(?LISTP Z))

NIL NIL )
(PROVE. LEMMA INCLUP.CONCATCH. ELIM. NIL (REWRITE)

(IMPLIES (PLISTP Z)
(EQUAL (INCLUP (CONCATCH Z A)

Hi Z R2)
(INCLUP A Hi “NIL” R2)))

NIL NIL )
(PROVE. LEMMA INCLUP. IS.TRANSITIVE (REWRITE)

(IMPLIES (AND (PLISTP [.3)
(INCLUP Li Ri L2 R2)
(INCLUP L2 R2 L3 R3))

(INCLU P L i H i L3 R3))
NIL NIL)

(DEFN BEGI N CX )
(IF (NLISTP (REMAIN X))

“NIL ”
( CONS ( FIRSTCH X)

( BEGIN (REMAIN X ) ) ) )
NIL)

(?ROVE .LEMMA BEGIN.LESSP (INDUCTION)
(IMPLIES (LISTP X)

(LESS? ( COUNT (BEGIN X ))
( COUNT X ) ) )

NIL NIL)
(?ROVE.LE *IA BEGIN .CONCATC H (REWRITE )

(IMPLIES (PLISTP U)
(EQUAL (BEGIN (~ONCATCH U (CONS V “NIL”)))U ) )

NIL NIL)
(PROVE. LEMMA TREE? . IMPLIES. ?LISTP. PRINT (GENERALIZE REWRITE )

(IMPLIES (TREE? X)
(PLIST? (PRINT X)))

NIL NIL)
(DEFN RI GH TPAR ? CX )

(EQUAL X (RI GHTPA R))
NIL )

(DEFN LNG CX)
( IF (NLISTP X )

0
( AUD i (LNG (COB X ) ) ) )

NIL )

33

-~~~ 
_ _  _ _ _ _  _ 

I S
- - , 

• • • • ‘ “ - 
5

-
— 

- 4 5•5*•5 • •, - -



(DEFN LNG2 (X Y)
(PLUS (LNG X)

( LNG Y ) )
NI L)

(PBOVE .LEMM A LNG2 .EXP R .GOES. DOWN (INDUC TION )
(IMPL IES (LIST? H )

(LESS? (LNG2 “NIL” (CDR L))
(LNG2 L B)))

NIL NIL)
(PROVE. LEMMA LNG2.EXPR.GOES. DOW N2 (INDUCTION)

(IMPLIES (LIST? H )
(LESS? (LNG2 “NIL” (BEGIN (CUR B)))

(LNG2 L B ) ) )
NIL NIL )

(PROVE .LEMM A LN G2.EX PR. SVAYS.EVEN (INDUCTION )
(IMPLIES (LIST? H)

(EQUAL (LNG2 (CONCATCH L
(CONS (CAR R)

“NIL”))
( CUR R ) )

(LNG 2 L R ) ) )
NIL NIL)

(PBOVE. LEMMA BEGIN. LESSEQP (INDUCTION)
(IMPLIES (NOT (EQUAL (COUNT (BEGIN X ))

( COUNT X ) ) )
(LESS? (COUNT ( BEGIN X ) )

( COUNT X )) )
NIL NIL)

(DEFN
EVALE XPR
(L B)
(IF
(NLISTP H)
(LEFTPAR )
(IF

(NLISTP 1)
(IF (NLIST? (REMAIN R))

(IF (ATOM P (FIRSTCH R ) )
( FIRSTCH R )
(LEFTPAR))

(EVALE XP R (CONCATCH L (CONS (CAR H)
“NIL”))

( CDR R ) ) )
(IF

(LEFTPAR? (FIRSTCH L ) )
(IF
(OR (AND (CONNECTP (FIRSTCH H))

(NLISTP (R EMAIN I..)))
(NOT (LEFTPARP (EVAL E XP R “NIL ” (REMAIN L ) ) ) ) )

(IF
( AND ( CONNECT? ( FIRSTCH B ))

(NOT (LEF TPARP (EVALE XP R “NIL ”

34

5.-, - .~_ _ - ~
-_-,- - 

S - - 
- 4—.’ —5. - ... â4



(BEGIN (REMAIN B)))))
(B IGHTPARP (LASTC H B ) ) )

(G (CONS (FIRSTC H B )
(ONEO RTWO (EVALE XPR “NIL ” (REM AIN L ) )

(EVA LE XP R “NIL”
( BEGIN (REMAIN H ) ) ) . ) )

(LEFT ?AR))
(IF (NLISTP (REMAIN B))

(LEFTPAR )
(EVA LE XP R (CONCATCH L (CHARCHAI N (FIRSTCH H ) ) )

(REMAIN B ) ) ) )
(LEFTPAR )) ) )

NIL )
(PR OVE .LE*IA EVALEXPH.OF . UNARY (REWRITE )

(IMPLIES
( AND (CONNECT? U)

(LIST? OP1)
(PLISTP OP i )
(NOT (LEFTPABP (EVALE XPR “NIL” OPi))))

(EQUAL (EVALE XPB (CONS “<“ “NIL”)( CONS U
( CONCATCH OP1

( CONS “>“ “NIL”)
) ) )

(G ( CONS U (CONS (EVALEXPR “NIL” OP1)
“ N I L ” ) ) ) ) )

NIL NIL )
(PROV E.LEWIA EVALE X PR. TO .ThE. RI GHT (REWRITE )

(EQUAL (EVA LE XP R “NIL ” ( CONS “<“ B))
(EVALE XP E ( CONS “<“ “NIL ” )

B ) )
NIL NIL )

(DEFN CUT CL R )
(IF (OR (NLISTP (REMAIN H))

(IF ( LISTP L)
(NOT (LEFTPARP (FIRSTCH L)))
( ATOM ? (FIRSTCH B ) ) )

(AND (CONNECT? (FIRSTCH H))
(NLISTP (REMAIN L ) ) )

(NOT (LEFTPARP (EVALE XP H “NIL” ( REMAIN L ) ) ) ) )
(CONS L B)
(CUT (CONCATCH L (CHARCHAIN (FIRSTCH H)))

(R EMAIN R ) ) )
NIL)

(PROVE .LE*IA CUT.HEL?S.EVALE XP R (REWRITE )
(EQUAL (EQUAL (EVALEXPR (CAR (CUT L R))

(CUR (CUT L H ) ) )
( EVA LE XPR I.. H ) )

T) -4

NI L NIL )
( PROVE .LE*IA CUT .CONCAT CH (REWRITE)

(IMPLIES (NOT (LEFT?ARP (EVA L.EXP R U L ) ) )

35 

4

_________________________________- ____________ ‘ ‘  - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

•

~~ 

• ‘•-~~~~~~~~ J” I--~
,’ T TI L



(E QUAL (CUT U ( CONCATCH L R ) )
( CONS ( CAR (CUT U L ) )

(CONCATCH (CUR (CUT U L))

NIL NIL )
(PROVE.LEMM A INCLUP.LESSP (REWRITE)

(IMPLIES (AND (NOT (EQUAL. Hi  R 2 ) )
(IN CLUP L i H i L2 R 2 ) )

(LESS? (LNG R2)
(LNG H i ) ) )

NIL NIL )
(PROVE .LEMMA LNG.NOT.EQUAL (REWRITE)

(IMPLIES (NOT (EQUAL (LNG Ri)
(LNG R 2 ) ) )

(NOT (EQUAL Ri 82)))
NIL NIL)

(PROVE .LEMMA INCLUP.LESSEQP (REWRITE)
(IMPLIES (AN D (EQUAL R2 R2 )

(NOT (EQUAL ( LNG R2)
(LNG R i ) ) )

(INCLUP L i H i L2 R 2) )
(LESSP (LNG R2 )

(LNG H i ) ) )
NIL NIL )

( PROVE . LEMM A BEGIN. CUR. LNG. LESS? (INDUCTION REWRITE)
(IMPL IES (LIST? X )

(LESS? (LNG (BEGIN (CDR X) ) )
(LNG X ) ) )

NIL NIL )
(PROVE LEMM A CDRCUT . LE SSEQP.STEP (REWRITE )

(IMPLIES
( AND (NOT (E QUAL (LNG (CDR (CUT “NIL ” R ) ) )

(LNG B ) ) )
(INCLUP “NIL” B (CAR (CUT “NIL” H))

(CUR (CUT “NIL” H))))
(LESSP (LNG (CUB (CUT “NIL” H)))

(LNG R)))
NIL NIL )

(PROVE.L E MM A INCLUP .LR .CUT LR (REWRITE )
(IMPLIES (PLISTP L )

(INCLUP L R (CAR (CUT L H))
I -  (CUR (CUT L B))))

NIL NIL )
( PRO YE • LEMM A

BEG IN.CDR.CDRCUT.B BIDGE
(REWRITE )
(IMPLIES (AND (IMPLIES (NOT (EQUAL (LNG (COil (CUT “NIL.” R)))

( L.NG R ) ) )
(LESSP (LNG (CUR (CUT “NIL” H)))

(LNG B ) ) )
(LESS? (LNG (BEGiN (COB (COB (CUT “NIL.” R)))))

( LNG (CUR (CUT “NIL.” H ) ) ) ) )

36

~

- - “ - -

~

- - -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ --

- 
- 

•~ 4 .•  ‘ 1 ”~~~’ —. - .  
4 - 

“~~*— -. -
~~~ 

-S
~
_

~
_ —.

(LESS? (LNG (BEGIN (CDR (CDR (CUT “NIL ” H)))))
(LNG B)))

NIL NIL)
(PRO VE .LEMM A CDH.CUT .LESSEQP (REWRITE INDUCTION)

(IMPLIES (NOT (EQUAL (LNG (CUR (CUT “NIL” H)))
(LNG H)))

(LESS? (LNG (CDR (CUT “NIL” R)))
• (LNG B)))

NIL NIL)
(PR OVE .LEMM A LIST? .CDR .CUT (REWRITE)

(IMPLIES (LISTP R)
(LIST? (CDB (CUT L R))))

NIL NIL)
(PROVE .LEMMA ADD1.LNG.CDR (REWRITE)

(IMPLIES (LISTP U)
(E QUAL (ADD i (LNG (CDH U)))

(LNG U)))
NIL NIL)

(PROVE. LEMMA EXPRP. IS. TOTAL (INDUCTION)
(IMPLIES
(LIST? B)
(LESS? (LNG (BEGIN (CUR (CDH (CUT “NIL ” H)))))

(LNG R)))
NIL NIL)

(DEFN
EXP B P
(R DUMMY)
(IF

(NLIST P B)
F
(IF

(NLISTP (REMAIN R))
(ATOM? (FIRSTCH R))
(IF (LEFTPABP (FIRSTCH H))

(IF (CONNECT? (FIRSTCH (CDR (CUT “NIL” R))))
(IF (EXPRP (BEGIN (REMAIN (CUR (CUT “NIL” B))))

(CONS “)“ (BEGIN DUMMY)))
(BIGHTPARP (LASTCH H))
F)

F)
F)))

NIL)
(PROVE. LEMMA BEGIN.CONCATCH. LIST? (REWRITE)

(IMPLIES (LIST? V)
(EQUAL (BEGIN (CONCATCH U V))

(CONCATCH U (BEGIN V))))
NIL NIL)

(PROVE .LEMt4A CAR.CONCATCH.L ISTP (REWRITE)
• (IMPLIES (LISTP A)

(EQUAL (CAR (CONCATCH A B))
(CAR A)))

NIL NI L)

37

-“—. -i—- m u i ~ — -- ---- - - “ —-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- — ‘ ___________________

• ‘. 4’  ‘- . 5



(PROVE. LEMM A CDR .CONCATCH.L.ISTP (REWRITE )
(IMPLIES (LIST? A)

(EQUAL (CDR (CONCATCH A B))
(CONCATCH (CUR A)

B)))
NIL NIL)

(PROVE. LEMMA CONCATCH.BEGIN.CONS. LASTCH (REWRITE)
(IMPL IES (EQUAL (LASTCH A )

“)“)
(EQUAL (CONCATCH (BEGIN A )

(CONS “>“ B))
(CONCATCH A B)))

NIL NIL )
(PB OVE .LE MMA EVALEXPR.TO. ThE. RIGHT2 (REWRITE)

(IMPLIES (LIST? (REMAIN B))
( EQUAL. (EVAL E XP R “NIL” R)

(EVAL E X?R (CONS (CA R R )
“NI L.”)

( CUR H ) ) ) )
NIL NIL )

(PROVE. LEMMA
EVA LE XPE . EQUAL. LEFTPAR
(REWRITE )
(IMPLIES (AND (LIST? (CA R (CUT L R ) ) )

(LEFTPARP (FIRSTCH (CAR (CUT L H))))
(LIST? (REMAIN (CAR (CUT L B))))
( LEFTPARP (EVA LE XP R “NIL”

(REMAIN (CAR (CUT L H))))))
(NOT (LIST? (REMAIN (CUR (CUT I.. H))))))

NIL NIL )
(PROVE.L EMH A LISTP.CAB.CU T (REWRITE )

(IMPLIES (LIST? L )
(LIST? (CAR (CUT L H))))

NIL NIL)
(PROVE.LEMM A III (REWRITE)

(IMPLIES (CONNECT? X)
(EQUAL (EVA LE XP H “NIL ” ( CONS X Z ) )

• (EVA LE XP R ( CONS X “NIL ”)
2 ) ) )

NIL NIL )
(PROVE .LEMM A III2 (REWRITE )

(IMPLIES (CONNECT? X)
(EQUAL (EVALE XP R “NIL” ( CONS X 2))

(LEFTPAR )))
NIL NIL)

(DEFN BEGIN? (X Y)
(IF (NLISTP X)

T
(IF (EQUAL (CAR X)

(CAR Y))
(BEGINP ( CUR X)

( CUB Y ) )

-- -S 

~~~~~~~~~~~~~~~~ 

— -

5 ’ -

F))
NIL)

(PROVE. LEMM A BEGINP.CONCATC H (REWRITE)
(IMPLIES (BEGIN? (CONCATC H X Y)

2)
(BEGIN? X 2))

NIL NIL)
(PROVE . LEMMA INCLAJP. IMPLIES.BEGINP (REWRITE)

(IMPLIES (INCLUP Li Hi L2 H2)
(BEGIN? Li L2))

NIL NIL)
(PROVE . LEMM A BEGINP .CON S. CONS. EQUAL (REWRITE)

(IMPL IES (BEGIN? (CONS X XP)
(CONS V VP))

(EQUAL (EQUAL V X)
T))

NIL NIL)
(PROVE .LEMMA BEGINP. IS.REFLEXIVE (B~WRITE)

(BEGIN? X X)
NIL NIL)

(PROVE . LEMMA BEGIN?. CONS. EQUAL. CAR (REWRITE)
(IMPLIES (AND (EQUAL X X)

(BEGIN? (CONS X Z)
Y))

(EQUAL (CAR Y)
X))

NIL NIL)
(PROVE . LEMM A BEGIN ? .CAR. EQUAL (REWRITE)

(IMPLIES (AND (LIST? X)
(E QUAL X X)
(BEGIN? X Y))

(EQUAL (CAR 1)
(CAR X)))

NIL NIL)
(PROVE.L EMM A EQ UAL.C AR .CUT .CR OK (REWRITE)

(IMPLIES (AND (LISTP L)
(BEGIN? I. (CAR (CUT L. B))))

(EQUAL (CAR (CAB (CUT I. R)))
(CAR L)))

NIL NIL)
(PROVE.LEMMA BEGIN?.CAR.CUT (REWRITE)

(BEGIN ? L (CAR (CUT I.. B)))
NIL NIL)

(PROVE.LEMM A EQ~JAL.CAR.CAR.CUT (REWRITE)(IMPLIES (LIST? L)
(EQUAL (CAR (CAR (CUT L H)))

(CAR L)))
NIL NIL)

(MOVE.LEMMA NEW.CUT.HELPS.EVALEXPR NIL CUT.RELPS.EVALEXPR NIL)
(PROVE . LEMM A LEFTPARP .EVALE XPR.BR IDGE (REWRITE)

(IMPLIES (AND (LEFTPARP (EYA LE~~R (CA R (CUT L H)) 4
(COB (CUT I. H))))

(EQUAL (EVALEXPR (CAR (CUT L H))
(CUR (CUT L H)))

(EVALE XP R L H)))
(EQUAL (EQUAL (EVA LE XP R L B)

H T))
NIL NIL)

(PROVE . LEMMA
NOT. LEFTPARP . EVALEX?R • BRIDGE
(REWRITE)
(IMPLIES (AND (NOT (LEFTPARP (EVALE XP E (CAR (CUT L H))

(COil (CUT 1.. R)))))
(EQUAL (EYA LE XP R (CAR (CUT L H))

(CDR (CUT L. B)))
(EVA LE XPR L R)))

(NOT (EQUAL (EVALEXPR L H)

NIL NIL)
(PROVE . LEMMA
LEFT?ARP. EVALEXPR. CUT
(REWRITE)
(IMPLIES (AND (LIST? (CAB (CUT LL R H)))

(LEFTPARP (CAR (CA R (CUT LL R R))))
(CONNECT? (FIRSTCH (COB (CUT IL RB))))
(LEFTPABP
(EVALEXPR “NIL”

(BEGIN (REMAIN (CUE (cUT LL RE))))))
)

(EQUAL (EQUAL (EVA LE XP R (CAR (CUT IL RH))
(CDR (CUT LL RR)))

“<“)
T))

NIL NIL.)
(PRO YE . LEMMA
EVALEXPR. CONNECTP.CUT
(REWRITE)
(IMPLIES (AND (LIST? L)

(NOT (CONNECTP (FIRSTCH (Coil (CUT I. H))))))
(EQUAL (EQUAL (EVA LEX?R (CAR (CUT L B))

(CUR (CUT L H)))

T))
NIL. NIL)

¶ (PROVE .LEMMA
LEFT. ALREADY .CHECKED
(REWRITE)

4 (IMPLIES
(AND (LEFTPARP (FIRSTCH (CAR (CUT L H))))

(LIST? (CAR (CUR (CUT L R))))
(NOT (LEFTPARP (EVA LE XPE “NIL. ”

(BEGIN (COil (COB (CUT L R)))))
))

40

-~~~~~~ -

- - .
- -

~~~~~~~~~~~~ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

-

~~~~~~ ~ •7~• - •-~



(RIGHTPAB? (LASTCH H ) ) )
(NOT (EQUAL (EVALE XP R (CAR (CUT L H ) )

(COB (CUT L B ) ) )
• “ < “ ) ) )

NIL NIL )
( PROVE .LEMM A EVALE X ?R.RIG H TPARP.LASTCH (REWRITE )

(IMPLIES (AND (LIST? L)
(NOT (RIGHT?ARP (LASTCH H))))

(EQUAL (EQUAL (EVALEXPR L R)

T))
NIL NIL)

(MOVE .LEMM A SAMEAS .CUT .HELF S.EVALEXPR (REWRITE )
CUT.HEL?S. EVALEXPR NIL)

(PROVE.LEMMA EXPH?.EQUAL .EVALEXPB (REWRITE)
(EQUAL (EXPR ? A DUMMY )

(NOT (EQUAL (EVA LE XP R “NIL ” A)

NIL NIL )
(?ROVE.LEMMA EXPRP.IIIPLIES.EVALEX?R (REWRITE)

(IMPLIES (EXPRP A DUMMY )
(NOT (EQUAL (EVALE XP R “NIL ” A)

NIL NIL )
(PROVE. LEMMA EXPRP. IMPLIES. EVALEXPR. LEFTPAR (REWRITE)

(IMPLIES (AND (LIST? X)
(EXPRP ( CONS “<“ X )

DUMM Y ))
(NOT (EQUAL (EVALE XPR (CONS “<“ “NIL” )

X)

NIL NIL)
(MOVE. LEMMA NEW. EX?RP. EQUAL. EVALEXPR NIL EXPR P. EQUAL. EVALEXPR

NIL )
(PROVE. LEMMA

EXPRP. CONCATCH . EXPANDS
(REWRITE )
(IMPL IES
(LIST? (CAR (CUR (CUT (CONS “(“ “NIL”)

(CONCATCH X 8)))))
(EQUAL

(EXPR? (CONS “ “  ( CONCATC H X B) )
B)

(AND (EXPRP (BEGIN (CUR (CDR (CUT (CONS “<“ “NIL” )
( CONCATCH X B ) ) ) ) )

(CONS “>“ (BEGIN B)))
(RIGHTPARP (LASTCH (CONS “ “  (CONCATCH X B)))))))NIL NIL)

(PROVE . LEMMA
EXPEP.CONCATCH. EQUAL.CCtIMCN
(REWRITE)
(IMPLIES

41

. 1

_ 
_ _ _ _ _   

J

____________________________________ — —-—--4•—-~~~~ .-——- --— —-—- —S.-



( AND (LIST? X )
(LIST? B)
(EXPR? (CONS “<“ X)

B))
(EQUAL (EXPH ? (BEGIN (CDR (CDR (CUT (CONS “<“ “NIL”)

( CONCATCH X B ) ) ) ) )
( CONS “>“ (BEGIN B)))

(EXPR? (CONCATC H (CUR (CUR (CUT (CONS “<“ “NIL.”)
X )) )

( BEGIN B))
( CONS “>“ (BEGIN B)))))

NIL NIL)
(PROVE • LEMMA LASTCH. CDR . LIST?. ELIM ( REWRITE )

(IMPLIES (LIST? (COB U))
(EQUAL (LASTCH (COB U ) )

(LASTCH U)))
NIL NiL)

(?ROVE .LEMMA LASTCH.CUT (REWRITE )
(IMPLIES (LISTP V)

(EQUAL (LASTCH (CUT U V))
( LASTCH V ) ) )

NIL. NIL )
(PROVE .LE*IA TWO.ELEMENTS (REWRITE)

(IMPLIES (AND (LIST? (CAR U))
( NLISTP (LASICH U ) ) )

(LIST? (COB U)))
NIL NIL )

(PROVE. LEMMA
REBUILD. EX? R P. FROM. EXPANSION
(REWRITE )
(IMPLIES (AND (LIST? X)

(LIST? (CAR (CDR (CUT (CONS “<“ “NIL” )

(EXPRP (BEGIN (COB (CUR (CUT (CONS “<“ “NIL” )

( CONS “>“ (BEGIN B ) ) )
(EQUAL (LASTCH X)

“ >,‘) )

(EXPRP (CONS “<“ X )
B ))

NI L. NIL)
(PROVE. LEMMA LIST?.CAR. CDRCUT .CONCATCH (REWRITE )

(IMPLIES (AND (EXPRP ( CONS “<“ X )
B)

(LIST? X)
(LIST? (CAR (COB (CUT (CONS “(“

“NIL”)

• (LIST? (CAR ( COB (CUT ( CONS “(“ “NIL” )
( CONCATC H X B ) ) ) ) ) )

NIL NIL. )
(PROVE.LE*IA INIT.SEG (REWRITE)

42 

I-
— 

•.a* 

— 

_.
~4. 4 -4, 

— — 
~~~~~

1 _ _ .. ~ ~~~~~~~~~~ ~~~‘

(IMPLIES (AND (LIST? B)
(EXPBP A B))

(NOT (EXPRP (CONCATCH A B)
B)))

NIL NIL)
(PBOVE .LEMM A

• I NI T.SEG.EVALEXP R .BR I DGE
(REWRITE)
(IMPLIE S
(AND (EQUAL (EXPR? A B)

(NOT (LEFTPARP (EVA LEXPB “NIL” A))))
(EQUAL (EXPRP (CONCATC H A B)

B)
(NOT (LEFTPARP (EVALEXPR “NIL” (CONCATCH A B))))

(NOT (LEFTPARP (EVALE XPR “NIL” A)))
(LIST? B))

(E QUAL (EVAL E XP R “NIL ” (CONCATC H A B))
“<“))

NIL NIL)
(MOVE. LEMMA SAMEAS. EXPRP. EQUAL. EVALEXP R (REWRITE)

EX PRP.EQUAL.EVA LE XP R NIL)
(PHOVE.LE MM A INIT.SEG.EVALE XP R (REWRITE)

(IMPLIES (AND (NOT (LEFT?AR? (EVALEXPR “NIL” A)))
(LIST? B))

(EQUAL (EVALEXPR “NIL” (CONCATCH A B))

NIL
(INIT. SEG. EVALEXPR .BRIDGE

SAMEAS. EXPRP. EQUAL. EVALEXPR))
(DEFN MINUS (A B)

(IF (NLIST? A)
A
(IF (NLISTP B)

A
- (IF (EQUAL (CA R A)

(CA R B))
(MINUS (CUR A)

(CDR B))
A)))

NIL)
(?BOVE .LEMM A MINUS .EQIJAL (RE WRITE)

(EQUAL (EQUAL (MINUS X Y)
(MINUS V X))

(EQUAL X Y))
NIL NIL)

(?ROVE.LEMM A
INIT.SEG.MINUS.BRIDGE
(REWRITE)
(IMPLIES (AND (NOT (LEFTPARP (EVA LEXPR “NIL” A)))

(EQUAL B (OONCATCH A (MINUS B A)))
(LEFT ?ARP (EVA LE XPR “NIL ”

43

- - ---—-5.-

~ 5
5-” - -- - — - - —~~~~~~~~~~~~~~~~~~~ --- - - —

- ,•,_._4.•_ - , - ~~~~~~~~ _ _ _ _ ~~
_

- -S.-—

(CONCATCH A (MINUS B A)))))
(EQ UAL (EVALE XP E “NIL” B)

(LEFTPAR)))
NIL
(USE • NO • LEMMA. TO • GO • FASTER))

(MOVE. LEMMA NEW. INCLUP. IM?LIES.BEGIN? NIL INCL.UP. IMPLIES.BEGINP
NIL)

(PROVE .LEMM A II13 (REWRITE)
(IM?LIES (AND (INCLUP V R i X R2)

(CONNECT? (CA R I))
(BEGIN? Y X))

(EQUAL (EVALEXPR “NIL” X)
(LEFT P AH)))

NIL NIL)
(MOVE . LEMMA SAM EAS. INCLIJP. IMPLIES.BEGINP (REWRITE)

INCLUP . IMPLIES.BEGINP tilL)
(DEFN BEGIN2P (X Y)

(IF (NLISTP x)
T
(IF (LIST? Y)

(IF (E QUAL (CA R X)
(CA R Y))

(BEGIN2? (CUR X)
(CUR Y))

F)
F))

NIL .)
(?ROVE.LEMMA BEGIN2P.MINUS.CONCATCH (REWRITE)

(IMPLIES (BEGIN2P A B)
(EQUAL (EQUAL B (CONCATCH A (MINUS B A)))

T))
NIL NIL)

(PHOYE.LEMM A INIT.SEG.WITH.BEGIN2P (REWRITE)
(IMPLIES (AND (NOT (LEFTPARP (EVALEXPR “NIL” A)))

(BEGIN2P A B)
(LIST? (MINUS B A))
(E QUAL B B))

(EQUAL (EVAL .E XP R “NIL ” B)

NIL
(INIT.SEG.MINUS.BBIDGE INIT.SEG.EVALEXPR

BEGIN2P.MINUS.CCNCATCH))
(PR OVE .LEMMA INCLU ?.INIT .SEG (REWRITE)

(IMPLIES (AND (NOT (LEFTPARP (E VA LE XP R “NIL” A)))
(INC LU? (CONCATCH A (CONS U Y))

Ri B R2)
• (BEGIN2P A B)
• (LIST? (MIN US B A)))

(E QUAL (EVA LE XP R “NIL ” B)

NIL NIL)
(?ROVE .LEtIIA INCLJJ?.CONS. INIT .SEG (REWRITE)

44

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~~~~ -4

— S  - • -,_ — - -



(IMPLIES
(AND (NOT (LEFTPARP (EVALEXPB “NIL” A)))

(INCLUP (CONS X (CONCATC H A (CONS U V)))
Hi
( CONS V B)
R2 )

(BEGIN2P A B)
(LIST? (MINUS B A)))

(E QUAL (EVALE XP R “NIL ” B)

NIL NIL )
(PROVE. LEMMA BEGIN2P. LISTP.MINUS .CONCATCH (REWRITE)

(IMPLIES (AND (BEGIN 2P (CONCATCH A B)
C)

(LIST? B)
(EQUAL A A))

(LIST? (MINUS C A)))
NIL NIL)

(PROVE. LEMMA INCLUP.CONCATCH. L.ISTP.MINUS (REWRITE)
(IMPLIES (AND (INCLUP (CONCATCH A B)

Ri 2 R2)
( BEGIN2P ( CONCATC H A B)

Z)
(LIST? B ))

(LIST? (MINUS z A ) ) )
NIL NIL )

(PROVE. LEMMA ItICLIJP • CONS • CONCATCH. LIST? .MItIUS (REWRITE)
(IMPLIES (AND (INCLUP (CONS X (CONCATCH A B))

Ri
( CONS V 2)
R2 )

(BEGIN2 P (cONCATCH A B)
2)

(LISTP B ))
(LIST? (MINUS 2 A ) ) )

NIL NIL )
(PROVE. LEMMA BEGIN2?.CONCATCH (REWRITE)

(IMPLIES (AND (BEGIN2P (CONCATCH A B)
C)

( EQUAL. A A ) )
(BEGIN2P A C))

NIL NIL )
(PROVE .LEMM A IN CLUP.C ONCATCH .BEGIN2P (REWRITE )

(IMP LIES ( ND (INCLU? ( CONCATC H P1 Q)
Ri ?2 R2 )

(BEGIN2P (CONCATCH P1 Q)
P 2 ) )

( BEGIN2P ?i P2))
NIL NIL.)

(PROVE .LEMMA INCUJ?.CONS.COWCATCH.BEGIN2P (REWRITE)
(IMPLIES (AND (INCLUP (CONS Li (CONCATCH P1 Q))

Ri

45

_ _ _ _  _ _ _ _ _ _ _ _ _  _ _  _ _ _ _ _ _ _ _  

4 -
5— 

‘—‘——.~~~~~~
-- ‘5 - - - — - ‘-— - - ‘ - 

~~~~~~~~~~~~~~~~~~~~~ 
-- ‘ ‘_

- ‘ r - s - ‘~w - ~~~~~~~~~~~~~~~ - - -

(CONS L2 P2)
R2)

(BEGIN2P (CONCATCH P1 Q)
P2))

(BEGIN2P P1 P2))
NIL NIL)

(PROVE.LE*IA BEGIN2P.CAR. EQUAL (REWRITE)
(IMPLIES (AND (LIST? A)

(BEGIN2P A B))
(EQUAL (CAR A)

(CAR B)))
NIL NIL)

(P B OVE. LEMM A INCLUP. IMPLIES .BEGIN2P (REWRITE)
(IMPLIES (AND (INCLUP Li Hi L2 R2)

(EQUAL Li Li))
(BEGIN 2P L i L2))

NIL NIL)
(PROVE.LEMMA INCLUP.CONSL1.CONSL2.BEGIN2P (REWRITE)

(IMPLIES (AND (INCLU P (CONS Li P1)
Hi
(CONS L2 P2)
R2)

(BEGIN2P (CONS Li P1)
(CONS L2 P2)))

(BEGIN2P P1 P2))
NIL N IL)

(PROVE. LEMMA SUBSLR4ES. 1NCUJP .COIISLJI .COt4SL2.BE01N2P (REWRITE)
(IMPLIES (INCLUP (CONS Li P1)

Ri
(CONS L2 P2)
R2)

- (BEGIN2P Pi P2))
NIL NIL)

(PROVE. LEMMA SUBSUMES. INCLUP.CONCATCH.BEGIN2P (REWRITE)
(IMPLIES (INCLU P (CONCATC H A U)

R i B R2)
(BEGIN2P A B))

NIL NIL)
(PROVE.LEMM A SUBS(RIES.INCLUP.CONS.CONCATCH.BEGIN2P (REWRITE)

(IMPL IES (INCLUP (CONS X (CONCATC H A P))
Hi
(CONS V B)
R2)

(BEGIN2P A B))
NIL NIL)

(PROVE . LEMMA ThCWP.EVALEXP~. CUT (REWRITE)
(IMPLIES

(AND (LIST? R2)
(LEFT?ARP (CAR L2))
(INCLUP Li Ri L2 R2)
(NOT (LEFTPABP (EVALEXP B “NIL” (CDR L2)))))

(EQUAL (EQUAL (CUT LI R i)

46

— —_—--~~-4-~~~~ --—— -S..— —5

‘ ‘.4. 1.

p

(CONS L2 R 2))
T))

NIL
(CAR/CDR. ELIM CDR.NLISTP CAR . NLISTP CDR.CONS

CAR.CON S CONS.EQIJAI..
IN CLUP .CDRL 1 • CDRL2
CAR.CONCATCH. LIST? I1I3
SAMEAS. INCLUP. IMPLIES.BEGINP
INCLUP . INIT .SEG
INCLUP. IMPLIES.BEGIN2?
INCLUP. CONCATCH. LISTP.MINUS
SUBSUMES. INCLUP .CONCATCH .BEGIN2P
INCLUP. CONS. INIT. SEG

SUBSUMES . INCLUP .CONSLi .CONSL2.BEGIN2P
INCLUP.CONS.CONCATCH. LISTP.I4INUS

SUBSUMES. INCLUP.CONS.CONCATCH.BEGIN2P))
(PROVE. LEMMA CONCATCH. NIL. ?L.ISTP (REWRITE)

(IMPLIES (PLIST? X)
(EQUAL (CONCATCH X “NIL”)

X))
NIL NIL)

(MOVE.LEMM A SRUTOFF.INCLUP.CONCATCH NIL INCLU?.CONCATCH NIL)
(PROVE . LEMM A INCLU?.CONS.CONCA TCH.BRIDGE (REWRITE)

(IMPLIES (AND (INCLUP L (CONCATCH D H)
(CONCATCH L U)
H)

(E QUAL (CONCATC H L U)
(CONS U D)))

(INCLUP L (CONCATCH U H)
(CONS U D)
H))

NIL NIL)
(MOVE. LEMM A SAMEAS. INCLUP.CONCATCH (REWRITE)

INCLUP.CONCATCH NIL)
(MOVE . LEMM A SHUTOFF. INCL J .JP.CDRL 1 .CDR L2 NIL INCLUP.CD RL1.CDR L2

NIL)
(PROVE.LEMM A INCUJP.CONS.CONCATCH (REWRITE)

(IMPLIES (AND (?LISTP L)
(?LISTP D)
(EQUAL (CONCATCH L. U)

(CONS U D)))
(INCLUP L (CONCATCH U R)

(CON S U U)
R))

NIL NIL)
(PROVE .LEMMA WHICH. APPLIES .MCBE. OFTEN. ThAN. CUT . HELPS. EVA LEXPR

(REWRITE)
(EQUAL (EVALE XPR (CAR (CUT L B))

(CUR (CUT L H)))
(EVA LE XPR L H))

NIL
(SAMEA S.CUT.HELPS. EVA LEXPR))

47

S -~~~~~~~~~ -— - — - —.•-•-——-•--——.---I—’•~~~~~—-•-—- —S.- —~~~~
—

- ,--—~~ .- - - --4 ,
-

- -
-4 -

-
~~~~~~~



(PROVE . LEMMA
IMPLIES. EQUAL. ECA. ECB. EQUAL. BA • EB
(REWRITE )
(IMPLIES

(EQUAL
(E VALE XPR

(CAR (CUT (CONS “<“ “NIL”)
(CONCATCH D (CONS V

(CONCATCH Z
( CONS “>“ “NIL ”)))

)))
( CDR (CUT ( CONS “<“ “NIL”)

(CONCATCH U (CONS V
( CONCATCH 2

(CONS “>“ “NIL”)))

( CONS V (CONS (EVA LEXPR “NIL” U)
(CONS (EVALE XPR “NIL” 2)

“NIL”))))
(EQUAL (EVALE XP R (CONS “<“ “NIL ”)

( CONCATCH D
( CONS V

(CONCATCH 2
( CONS “>“ “NIL ”))

( CONS V (CONS (EVALEXPR “NIL” U)
(CONS (EVA L,EXPB “NIL” Z)

“NIL”)))))
NIL
(WHICH. APPLIES. MORE . OFTEN. ThAN. CUT. HELPS. EVA LEXPR ))

( MOVE. LEMMA SHUT . OFF2.SAM EAS. CUT. HELPS • EVALEXP R NIL
SAMEAS.CUT .HELPS .EVALEXPR NIL )

(MOVE. LEMMA
SR UT. CFF.WHICH.AP PLIE S.MORE .OFTEN. THAN .CUT .HELPS.EVALEXP R NIL

WHICH .APPLIES.MORE.O F TEN.T HAN.C UT .HELPS.EVALEXP R NIL )
(PROVE. LEMMA TREE?. IMPLIES. NOT. LEFT?ARP (REWRITE)

(IMPLIES (AND (TREEP X)
(EQUAL V X ) )

(NOT (EQUAL V
NIL NIL )

(PROVE. LEMMA TREE?. AND • EQUAL. IMPLIES. NOT. LEFTPARP (REWRITE )
(IMPLIES (AND (EQUAL 22 Z)

(TREEP 2 ))
( NOT (EQUAL 22 “< “ ) ) )

NIL NIL )
(PROVE. LEMMA
EQUAL. CUT • CONS. BRIDGE
(REWRITE )
(IMPLIES (AND (EQUAL (CUT Li R i )

( CONS ( CONS “<“ D)
(CONS V (CONCATCH 2

( CONS “>‘ “NIL” ))

48

-- - -— ~~ —— -  - - - -
~~~~~

-- :4’
~T - T,_., T

p

(EQUAL (EVALEX?R (CONS “<“ D)(CONS V
(CONCATCH Z

(CONS “>“
“NIL”))))

(CONS V (CONS (EVALE XPH “NIL” U)
(CONS (EVALE X?R “NIL ” 2)

“NIL”)))))
(EQUAL (EQUAL (EVALEXP R (CAR (CUT Li Hi))

(COB (CUT Li Hi)))
(CONS V

(CONS (EVALEX?R “NIL” D)
(CONS (EVA LE XPR “NIL” 2)

“N IL ”))))
T))

NIL
(CAR.CONS CDR.CONS))

(PROVE. LEMMA EVALE XPH . IS. CORRECT (REWRITE)
(IMPLIES (TREE? X)

(EQUAL (EVALE XPR “NIL” (PRINT X))
X))

NIL NIL)))
(DECLARE: DONTCOPY

(FILEMA? (NIL)))
STOP

49

- _ _
~ -_‘_s---- -‘4.- S.

- “•~~~~~~ - .4 - 4~ -~.- -S - .

REFERENCES

i • Robert S. Boyer and J Strother Moore, “A COMPUTATIONAL LOGIC”,
unpublished pa per , SRI International , Menlo Park , California (Ma y
i978) .

2. Robert S. Boyer and J Strother Moore , “Mechanizing the Mathematics
of Computer ño~i~~ Analysis using the Logic of’ Recursive
Functions” , unpublished paper , SRI International , Menlo Park,
California (Dec 1977) (initial version of (1]) .

3. H. Boyer and J Moore , “A COMPUTER PROOF OF ThE CORRECTNESS OF A
SIMPLE OPTIMIZIN G COMPILER FOR EXPRESSIONS ” , Technical Report 5,
Contract N000 11e—75—C—0 8i6 , SRI Project ~O79 , Stanford Research
Institute , Menlo Park , California (Jan 1977) (NTIS Number AD—A036
12i/2WC) .

51

- 4

~~~~~~~~~~~

- -

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-
5 - ‘s ’

~~~~
- - 

_:1_i - .  ~~~~~~~~~ ~
- 

- —~



S

DISTRIBUTION LIST

The below listing is the official distribution list for the technical,
annual, and final reports for Contract N00014—75—C—0816.

Defense Documentation Center 12 copies Office of Naval Research 1 copy
Cameron Station Code 455
Alexandria , VA. 22314 Arl ington , VA. 22217

Office of Naval Research 2 copies Office of Naval Research 1 copy
Information Systems Program Code 458
Code 437 Arlington, VA. 22217
Arlington, VA. 22217

Naval flee . Laboratory Center 1 copy
Office of Naval Research 6 copies Advanced Software Tech. Div.
Code 1021P Code 5200
Arlington, VA. 22217 San Diego, CA. 92152

Office of Naval Research 1 copy Mr. E. H. Gleissner 1 copy
Branch Off ice, Boston Naval Ship Res. & Dev. Center
495 Summer Street Computation & Math . Dept.
Boston, MASS. 02210 Bethesda, MD. 20084

Office of Naval Research 1 copy Captain Grace M. Hopper 1 copy
Branch Office , Chicago NAICOM/MIS Planning Branch
536 South Clark Street (OP—9].6D)
Chicago, ILL. 60605 Office of Chief of Naval

Operations
Office of Naval Research 1 copy Washington , D.C.  2035U
Branch Office , Pasadena
1030 East Green Street Mr. Kin B. Thompson 1 copy
Pasadena, CA. 91106 Technical Director

Information Sys . Div . (OP—91T)
New York Area Off ice 1 copy Off ice of Chief of Naval
715 Broadway — 5th Floor Operations
New York, N.Y. 10003 Washington, D.C. 20350

Assistant Chief for 1 copy Officer—in—Charge 1 copy
Technology Naval Surface Weapons Center

Off ice of Naval Research Dahlgren Labora tory
Code 200 Dahlgren , VA~ 22448
Arlington, VA. 22217 Attn : Code KP

Naval Research Laboratory 6 copies
Technical Information Div.,
Code 2627
Washington , D.C. 20375

Dr. A. L. Slafkosky 1 copy
Scientific Advisor
Commandant of the Marine 

-Corps (Code RD—l)
Washington, D.C. 20380

_ _ _ _ _ _ _ _ _  - 5-S-_•--_~~~~~ -~~~~~~~~~——--—_ 5— - —~~~-.- ~~~~~~~ 
- - - — — 

- 

- - , —- —


