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ABSTRACT

This paper presents an algorithm that rewrites into efficient form some

recursive functions that contain redundant calls (e.g. the Fibonacci function).

Burstall and Darlington have optimized such recursions via their unfold,
abstract, fold process [3]. This paper generalizes that method and eliminates
the need for the user intervention. We give formal definitions for the
optimization of functions for both linear and multi-dimensional data types.
The algorithm depends upon the arguments of the recursive function being
defined by a structural induction, and defines a measure of distance on argu-
ments that determines when and how the rewrite can be carried out. This paper
is not concerned with the implementation issues arising from the relative
efficiency of recursive and iterative mechanisms in programming languages, but

rather with restructuring the algorithms themselves.

1. Background

Intuitively, a function is recursive if it is defined in terms of itself.

More precisely, suppose we have known functions g and h, and write
f(x) = g(f(h(x)),

then f is said to be recursive. ‘The recursion takes the parameter value x,
modifies it in some way via h, applies f and then uses the result in some fur-

ther computation g. In a more familiar special case, we might have
f(x) = g(f(x-1))

where h merely subtracts one from the argument.
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The recursive formula, alone, is not sufficient to define f; we must
always have at least one basis case which is a value of f that is directly
computable without reference to f.

Programming languages implement recursion of this sort via procedures
in which each application of the definition consumes some time (and perhaps
space). In this environment, reducing the number of applications leads to
increased efficiency. This is the primary objective of this paper. There
has been a great deal written about transforming recursion into iteration
[e.g. 1,2] and the analysis of recursion [e.g. 3,4,6]. Burstall and
Darlington [3] introduced the concept of removing redundant recursive calls
from the computation altogether by transforming the program into an equiva-
lent, optimized form. This work is extended and formalized here.

We shall first define recursion formally for constructed data types,
and give some examples of recursive functions. We then formally define the
rewriting algorithms and the classes of recursions that can be rewritten to
reduce the number of function applications and give examples of such rewrit-
ings.

The domain D of a constructed data type consists of a set of constants A
and a set of constructor functions S together with all values from repeated
applications of constructor functions to the constants. Suppose Si is a
constructor function and x is in D. Then we define si(x) > X. The transitive
closure of the relation ">" defines a partial order (sometimes a total order)
on D. For example, if S = {successor} and A = {0}, then

D = {0,successor(0),successor(successor(0)),...} = Z, the non-negative integers.

The intuitive ordering of the non-negative integers is the same as the order
defined above.

|
{
|
|
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Assume that a and ai are constants, s and s; are constructor functions,

and x and X; are variables that can take on any value in the domain.
We define three types of functions:
1) Successor

s(x]) = Xy i.e. any constructor function.
2) Constant

c(x],...,xn) =a
3) Pick-out
p(x],...,xn) =K for any particular i, 1 < i <n. For

example, the identity function.
Two methods of building functions:
4) Composition
f(x],...,xn) = g(h](x],...,xn),...hm(x],...,xn)) where
g: 0™ > D
hy: D"+Dfor1=<ism
i.e. the function f is defined wholly in terms of the composition

of other functions.

5) Primitive Recursion: for n=>1,

f(a,xz,...,xn) = g(xz,...,xn) (basis case)

f(s(x]),xz,...,xn) = h(x],...,xn,

f(S](X]),XZ,. .. ’xﬂ)’

f(sm(x}),xz,...,xn)) (induction case)

where

si(x]) < s(x]) for 1 <i<m

While this definition of primitive recursion appears more general than usual




[7], it is merely a convenience and does not increase the power of primitive
recursion.

A primitive recursive function is defined for a basis value. One of the
arguments of f is used to "control" the computation. If it equals a basis
value, then the function is evaluated as a constant or as the value of another
function. 1If the value of the control variable x is not a basis value, then

f is expressed in terms of f applied to a smaller value than x.

We define the set of primitive recursive functions:

1) Successor, Constant, and Pick-out functions are primitive recur-
sive.

2) If f is composed of primitive recursive functions then f is
primitive recursive.

3) If f is defined by primitive recursion in terms of only itself
and other previously defined primitive recursive functions then

f is primitive recursive.

Primitive recursive furctions always terminate since they are defined over
constructed data types and remove at least one level of structuring with each
recursive application.

The Fibonacci function defining the sequence 1, 1, 2, 3, 5, ... where

each new number is the sum of the preceeding two can be defined as follows:

§ i
1

fib(0)
fib(1)
fib(x+2)

fib(x+1) + fib(x)

using two basis cases and a primitive recursion. Or, suppose we have a domain

D where A = {empty_tree} and S = {graft: D x Z x D » D}. The constructed data

type is the set of binary trees with nodes having non-negative integer values.
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The function defined below sums the values of all the nodes of a tree.

sum(empty tree) = 0

sum(graft(t],v.tz)) = sum(t]) + v+ sum(tz)

2. Recursion Elimination

Recursive functions can be classified as 1inear or non-linear according

tom=1o0rm>1 in the definition of primitive recursion. The factorial

function, fact: Z - Z, defined by

fact(0) = 1

fact(n+1) = (n+1) * fact(n)

is linear. The Fibonacci function is non-linear.

Recursive functions can also be classified as redundant or not redundant
according to whether the function is ever applied more than once to the same
input in the course of evaluating some particular case. Factorial is not
redundant, and Fibonacci is redundant.

If a recursive function is redundant, there is the possibility of collaps-
ing the repeated function evaluations. In its simplest form, a course-of-values
induction [5], by saving all previous values, gives the model demonstrating
the possibility. Course-of-values induction requires, in general, an unbounded
amount of storage. The method presented here, when applicable, requires only
a bounded amount of storage. .

A Tinear recursion is never redundant since if a value were to be repeated,
the recursion would have been improperly defined, violating the condition that
the subcall be on a simpler argument than the original argument. Thus, we are

interested here only in non-linear redundant recursions. One way to make them

not redundant is to rewrite them as Tinear recursions.
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A function of n arguments can be defined as a predicate of n+l arguments
by letting the predicate stand for the relation between arguments and value.
Suppose F is a predicate that is true iff F(x,f(x)) for all x in the domain
of function f. Then F is a definition of f. Such predicates can be recur-

sively defined. For example, the predicate FACT(x,y) defined by:

FACT(0,1) «
FACT(x+1,(x+1)*y) « FACT(x,y)

gives the factorial function.

The implication "«" is used the same as the relation "=" in primitive
recursion, thus, we can extend our definition of primitive recursion to pred-
icates.

The function d(n) = 2" can be defined by

d(0) =1
d(n+1) = d(n) + d(n)

S s i e vl i

which is non-linear and redundant. In predicate form it becomes

D(0,1) «
D(n+1,y+y) < D(n,y)

which is linear (hence not redundant). This is the simplest case of recursion
elimination. Note that it did not depend upon the properties of "+";
d(n+1) = h(d(n),d(n)) for any function h becomes D(n+1,h(y,y)) « D(h,y).

More interesting is the Fibﬁnacci function for which a linearization was
found by Burstall & Darlington [3]. The definition presented previously gives
rise to the predicates

FIB(0,1) «
FIB(1,1) «
FIB(n+2,x+y) « FIB(n+1,x) A FIB(n,y)
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which are still non-linear and redundant. However, we modify the definition

of FIB to be
FIB(0,1,2) «
FIB(1,1,1) «
FIB(n+1,x+y,x) « FIB(n,x,y)

where @ denotes the value "undefined". The meaning of FIB is:
FIB(n,fib(n),fib(n-1)) for n = 0.

The new computation of Fibonacci is not redundant. This paper generalizes

upon the above method.

3. Method

We make the following assumptions about the functions we are trying to
optimize. Any exceptions to these assumptions will be noted explicitly in
the various cases. Descriptions of criteria are in terms of @ function f

whose recursive formulas are expressions:

f(x) = g(f(x]),...,f(xn)),n > 2,9 not dependent on f

1. Recursion based on decomposition. The recursive calls to the function

should have inputs that are substructures of the original input, i.e. the
result of peeling away at least one level of constructor applications.§ For
example,

sum(graft(ty,r,ty)) = sum(ty) + r + sum(ty)

- - - - - - - -

A11 that is really essential is that the domain be countable and have
a lower bound. If that is the case, a structural construction can be defined.
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satisfies recursion based on decomposition for binary trees since t] and t2

are substructures of the original. However, the function
f(2*i) = f(i) + f(i+1)

on natural numbers does not satisfy the constraint, since the breakdown of
input 2*i is not based on the constructor, successor, for natural numbers.

This latter example would also fail condition 3 below.

2. Multiple, simpler calls. The recursive definition of the function

should make two or more subcalls to the function, each of which has an input

simpler than the original, i.e.

f(x) = g(f(x7)5f(xp),...,f(x,)) where

X > xi,l < i =n.

For convenience, it may also be assumed that Xy # X5 if i#3. If
redundancy of this sort occurred, one could remove it by replacing function

g by function g' that computes the same mapping, but accepts fewer arguments.

E.g. if f(s(n)) = g(f(n),f(n)) where g(x,y) = x2+y, then we could
rewrite f: f(<(n)) = g'(f(n)) where g'(x) = x2+x.

3. Bounded span. Intuitively, span is the structural distance between

two data objects, i.e. the amount of construction required on the second
argument to obtain the first. E.g. where g is a constructor
span(g(g(x,y),z), y) = 2 since y‘is a subterm of g(g(x,y), z), inside 2 levels
of construction.

Given constant b and constructor c, span is formally defined:

span(b,y) = = for b # y
span(x,x) = 0

k
span(c(Xqs...,x.)sy) = 1+qn'?(span(x1 »y))
'|=
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For example, span(g(x,g(x,y)),x) = 1, demonstrating the disambiguation if the

subterm in question appears twice.

The requirement for bounded span, means that there is a bounded distance
from the original call of the recursive function to each of the inputs of its
subcalls, i.e. for function f to satisfy this criterion, there exists an inte-

ger, I, that is constant for f such that for

f(x) = g(f(x))s...,f(x)))

@gx(span(x,xi)) = 1.
i=1
The importance of bounded span is that it implies that there is a finite limit
to the amount of previous knowledge required at any point to compute f.
If a subcall is not a bounded distance from a call, but is a bounded dis-
tance from the basis, then we may want to revise the function definition to
include these bottom cases, by replacing the recursive calls to those cases

by their computed values.

4, Single constructor. Our definition of primitive recursion made no

requirement that there be a single constructor function. All of the data types
we have seen have a single constructor, e.g. successor for natural numbers and

graft for trees. This criterion will be varied later.

5. Linearly constructed objects. A linear constructor takes a single

argument. A1l objects built from a linear constructor, c, have the form ck(b)
where b is a basis constant and k = 0. Binary trees are not linearly construct-

ed. This criterion will also be varied later.

- A i et -
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6. Single parameter functions. At the beginning of this section, f is

described as a function taking only one argument. That argument is the one

that drives the recursion. Variations on this criterion will be discussed

later.

7. Single recursive formula. The definition for f may contain cnly one

recursive formula. The following function, g, would be excluded:

g(0) = |
g(s(x)) = g(x) if x odd {
g(s(s{x))) = g(x) + g(s(x)) if x even |

|

This criterion will be varied later.

Case 1. Simplest case: assumes all of the above. Let the single con-

structor be c. As a shorthand notation, let\E(c...E}x)...) be denoted x+m.
Then m

f(x) = g(f(x1),--.,f(xn)) can be rewritten as

Flxtky) = 9" (F(xtkn 1) F(xkp)  Fxtkg ), (X))

where ki > ki' if 1>1" s = kn' I.e. the arguments to the sub-

n
calls of f are in decreasing order, j = max(span(x, X )), and g' similar to
i=1

e i el e A L

-

g but with reordered arguments.

Knowing the values of f applied to the j previous values less than x may

not be a necessary condition for.computing f(x), but it is a sufficient one.

The following predicate form of the function f carries along the last j

R

values computed. Then to compute f(x+1), all required information is con-

tained in f(x), so a single recursive call is required. Al1l except the oldest

w— T

of the j values is passed along to be stored with x+1 for use in the next

computation.

PSSP * . :
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Now to formalize the construction of the optimized predicate:

if for basis constant a

f(a) = a
f(atl) =
f(a+J 1) = a,

i-1
Fx43) = ' (Flxrky _1)s.0nafxtky) o Fxtky ), F(x))
then define predicate F taking j+1 arguments:
F(a,ao,g,...,ﬂ) *=
F(a+1,a],a0.9,...,9) «

F(a+2,a2,a],a0,9,...,9) -

F(a+J ]an EXE 931 930) <
F(x+j sg"(zj_] se e sz'l 920) ’zj-] se e aZ]) =
F(x+j-],zj_],...,z],zo)

g" is a function similar to g but it takes exactly j arguments which is possibly

more than the number required by g. The added values are simply ignored.
For example, consider the original example that motivated this kind of

optimization, Fibonacci.

fib(0) =1
fib(1) =1
fib(x+2) = fib(x+1) + fib(x)

The new predicate is:

FIB(0,1,8) «
FIB(1,1,1) «

FIB(x+2,z]+zz,z1) «
| FIB(x+1,21,22)

— -5 - o
_ m.—..._ya.‘ﬁ ‘\f’ )\:":’ ;&‘ '.—' & L




Modulo Optimization of Case 1. In the previous case, we have kept the

results of f applied to all values over the full span, even though some may
never be needed. The reason to keep all values is to guarantee that values

needed further up the chain will exist. For example,
f(x+3) = f(x+1) + f(x)

does not need f(x+2), but that value needs to be kept so it can be passed on,
because the computations of f(x+4) and f(x+5) require it. f

If we had some way to guarantee that certain values would never be needed,

we could optimize the predicate form. For example,

f(0) = a
f(1) = a,
f(2) = a,
f(3) = as

f(x+4) = f(x+2) + f(x)

Then values of f on even input will be used only for larger even values and
similarly for odd values. So long as the shift distance between any two j
successive increments, i.e. the ki's, and between kn-l and j, is a non-zero |
multiple of a given constant, then we can reduce the chain of temporaries.

In general, given definition of f as follows:

f(0) = a,
f(1) = a]‘

f(3-1) = ay |
flxrkp) = g(fxtky 7). .0 f(xtky),F(x)) 1

where ki > ki' i i1 ad ki >0 for all i, and j = kn'




we define

modulo(f) = gcd(kn,kn_1,...,k])

where "gcd" denotes greatest common divisor. Letting m denote modulo(f), then

we can represent f as predicate F, described semantically:
F(x+kn,f(x+kn).f(x+(kn—m)),...,f(x+2m),f(x+m))

F takes p+1 arguments where p = j/m.

The full definition for F is:
Termination cases, for 0 < t =< j-1:

F(t,ak’ak-m,-.-gak mod m,sz,...,ﬁ) e

Recursive formula:

F(x+j Sg'(ZPQ'- . ,Z]),Zp,.. . ’22) b o

F(x+j-m,zp,zp_1,...,z])

where g' is a function similar to g, but it takes, perhaps, more arguments,
since every m_th value between x and x+j is included.

For example, given f:

f(0) = 0

f(1) =10
f(2) = 20
f(3) = 30
f(4) = 40
f(5) = 50

f(x+6) = f(x+2) + f(x)
span(x+6,x) = 6

modulo(f) = gcd(6,2) = 2

# arguments = (6/2)+1 = 4
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and F is:
F(0,0,2,2) «
F(1,10,2,2) «
F(2,20,0,2) «
F(3,30,10,8) «
F(4,40,20,0) «
F(5,50,30,10) «

F(x+6,(zz+z]),z3,22) «

F(x+4,z3,zz,z])

If we had not done this optimization, we would have needed six values of f in

the predicate rather than three.

Case 2. Use above assumptions except that more than one recursive formula

is allowed in the definition of f. Define:

span(f) = the maximum of the spans of the individula formulas
modulo(f) = the greatest common divisor of the modulos of the

individual formulas

Then construct an F predicate for each recursive formula (plus basis cases,
of course) but use these general definitions of span andlmodulo for each indi-
vidual formula. Then add necessary basis cases that will fill in for formulas
with smaller spans.

The following example shows two recursive formulas and their corresponding

predicate. Since the basis cases are handled the same as before we have not
bothered to include them here. Function f has two recursive formulas dl and
d2’ (The two formulas may provide alternate methods of computation, perhaps
based on some case breakdown, e.g. a criterion on the input. Presumably, they

do not allow different answers for a given input.)

ElaseTr e e



R Ty

= -~ i -
e canls o

Q| N

A et i

15

dy: fx+6) = g(f(x))

dy:  f(x+9) = g'(f(x+6),f(x))

span(f) = max(span(d,),span(d,))
= max(6,9) = 9

modulo(f)

ged(modulo(d, ) ,modulo(d,))
gcd(6,3) = 3

Then the two recursive predicates are:
F(x+9,9(2,),25,2,)
F(x+6,z3,22,z])
F(x49,9'(23527)52352,) «
F(x+6,z3,22,z1)

Now since we have increased the lowest value which the recursive case can take
as input from 6 to 9, we need to add basis cases:

F(69g(a0) ’33330) W
F(7,9(ay),a4,3) «
F(8,9(ay),ag,a,) «

where a; = f(i) for basis cases at least as high as 5.

Case 3. Multiple parameter functions. In our definition of primitive

recursion we allowed multiple arguments to the functions, but only one argument
drove the recursion. For our pufposes here, additional arguments are simply
carried along, i.e. if f(y) maps to F(y]....,yk), then f'(x],...,xn.y) maps to

F'(x],...,xn,y],....yk) where the arguments XpseeesX are passed from one call

n
of F' to the next.

However, consider the possibility that more than one argument drives the
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recursion, e.qg.
fx+1,y+1) = h(f(x+1,y),f(x,y+1),f(x,y))

There clearly is redundancy here, since f(x,y) will be called as a subgoal by
each of f(x+1,y) and f(x,y+1). However, we do not optimize here because there
is no way to define a total ordering on pairs of natural numbers such that for
all x and y there exists some constant I such that:

(x+1,y+1) > (x+1,y) > (x,y)
and

(x+1,y+1) > (x,y#1) > (x,y)

and
span((x+1,y+1),(x,y)) = I.
Therefore, the example fails the hypotheses.

There are some functions that appear to be driven by multiple arguments
but could easily be mapped onto functions that are driven on a single argument.

For example,

f(x+1,y+1) = h(f(x,y))
could be described

f((x,y)+1) = h'(f'(x,y))

where the ordered pair is incremented as a unit. And in fact, this is key to
the decisions 1) of whether a function driven by multiple arguments is primi-
tive recursive or 2) of the applicability of our reduction procedures.

In general, a functional description whose recursion is driven by n
arguments is primitive recursive if there is a total ordering on n-tuples of
the data-type such that the input of the goal is strictly greater than each

of its subgoals. Then replace each reference to an n-tuple by a reference to




? its index in the ordering. That makes the description follow the syntax of

primitive recursion.

If one wants to remove redundancy in such a function, one maps it onto a
| function on the natural numbers through the enumeration of its n-tuples, then

proceeds as for single parameter functions.

Case 4. Multiple constructors. When there is more than one constructor

function, the definitions get complicated to the extreme. It also may be too
far-fetched to consider except in some particular uses of combinations.

If constructors are used only in certain combinations, it might be pos-
sible to rephrase in terms of a single constructor.
; } If multiple constructors are used but never mixed, it may be possible to

use the simplification techniques on each constructor separately.

E
& Otherwise, there is no method given for removing the redundancies with
|

i which we are concerned here.

Case 5. Use original assumptions except that the constructed objects may

be multi-dimensional, i.e. non-linear. For example, consider the data-type

i

E' Family Tree. The simplest family tree is a person; so the set of constants is

%3 the set of people. We use constructor function gr, which is similar to graft |
E% used previously, with added semantics that the left sub-tree is the mother's ﬁ
L i sub-tree and the right sub-tree is the father's sub-tree. |
E , The expression gr(gr(Amy,Ann,Ted),Sue,Jack) denotes the family tree shown

E in Figure 1.

F Sue

F Ann Jack

? 2 Amy Ted

Figure 1: Sue's family tree.
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Now we define a Fibonnaci-like function on family trees.

i flgr(gr(x,y,z),u,v)) = n(f(gr(x,y,z)),f(x))

That is, f is a function that is called recursively on the mother's sub-tree
and the maternal grandmother's sub-tree. ;

We remove the redundancy here in predicate F having semantics

F(gr(gr(x,y,z),u,v),f(gr(gr(x,y,z),u,v)),f(gr(x,y,z))),
i.e. F(x,f(x),f(x's mother))

{ and formally define the recursive component of F as:

Flar(x,y,2) sh(w, ,uy) 5w,) «
Fxswy,w)

Example 2 is only slightly different from the first.

flar(gr(ty,ry.ty).rysar(ts,ra,t,)))

y: h(f(gr(t] sr] ’tz))a f(gr(t3sr3’t4))!f(t])af(t3))

The input is shown in tree-form in Figure 2, and arrows point from the goal

20,

Figure é: Dependency relationships in Example 2.

to its sub-goals.
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In this example, the sub-goals Tower than level one that need to be remembered

k| _ are all first arguments, i.e. mothers. So, we only need to change the newly
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computed value in the last version of F and add a recursive call for the second

argument to get the F for this new function, i.e.
F(gr(x,y.z).h(wz,w4,w1,w3),w2) «
F(x,wz,w])
A F(z,w4.w3)

The resulting recursion is still non-linear, but the redundancy is gone. The
multiple calls at the sub-goal level are on disjoint objects, i.e. the origi-
nal input gr(x,y,z) is partitioned into three objects, x, y, and z, and recur-
sive calls are made on x and z.

In general, if a function on a constructed object c(x],...,xn) is defined
in terms of recursive calls to XyseeosXp and no other objects, then the struc-
ture has been cleanly partitioned and there is no redundancy of the type we
are concerned with here., It is when the sub-goal inputs overlap that the

redundancy occurs.

Considering another example, Example 3:
flgr(gr(tysrysty)rysgr(tysrsst,)))

illustrated in Figure 3.

Figure 3: Dependency relationships in Example 3.
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In this case, the values below level one that must be remembered are in both
argument positions, i.e. a first argument (t]) and a second argument (t4).
Since when we compute f on any given input we don‘t know how that input may
be called from other places, we need to remember all potentially required

values. So, F in this case semantically is:
F(x,f(x),f(x's mother),f(x's father)) i

Formally:

F(gr(x,y,z),h(w3,w6.w2,w4),w3,w6) «
F(x,W3,W,,W;)

A F(z,ws,ws,w4)

Example 4:
f(gr(t],r],gr(gr(tz,rz,t3),r3,t4)))
= h(f(t] ) 9f(gr(gr(t2 :rz :t3) ’r3at4)),f(t2) ¥s

as shown in Figure 4.

Figure 4: Dependency relationships in Example 4.

In this case, we need only remember a left descendant, but we have to remember

IR WA TS A e Ay g ]
e R s o 3L T LS




g s

. iy @R S Ay
P L g S b ‘ e P T D R
d 4 e o P i b Liham o ol Py

it two levels away. Semantically F is:

F(x,f(x),f(x's mother),f(x's maternal grandmother))

Formally:

F(gr(x,y,z),h(w3,w6,w4),w3,w2) -
F(x,W35Wy W)

A F(z,w6,w5,w4)

Notice that in each of the four examples, above, the optimized form is
not only more computationally efficient, but also has added clarity, since
the input argument is, in each case, either a basis object (not shown) or
the simplest form of constructed object, i.e. only the outer structure must
be shown in the function definition.

The previous examples provide examples of 1) span and 2) breadth. Span
is the same as before: the distance from the input to the smallest sub-goal.
The formal definition given in section 3 still holds. Breadth is defined

informally as the collection of parameter positions of the sub-goals that are

deeper than level one.
Given f(c(x],...,xn)) = h(f(y]),.--,f(yk))

Breadth(f) = {i[B(c(x],...,xn),yj,i) for some j, 1 < j < k}

where

B(C(x],---,xn),xi;i) «1l<is<n

B(c(x],...,xn),yj,1) ¥y # X foranym, 1 <=m=<n
A B(x, ,yj,i)
B(c(xi,...,xn),yj,1) * ¥ # x, foranym, 1 =m=n

A B(xn’yj’i)

o i B A
-
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Then the sec of remembered values required is a tree of depth = (span-1)

and branching determined by breadth. For example, if Breadth = {1,2,4}, and

span = 3 then the tree of temporaries is as shown in Figure 5.

S sl il e S it

Figure 5.

1 For Example 4, Breadth = {1}, Span = 3. The tree of temporaries is of

depth 2 and does not branch, i.e. as in Figure 6.
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b
t Figure 6.
i
-j? The semantic description of F in general is:
R

F(x,f(x), tree of history including all descendants indexed
by Breadth, (Span-1)deep).
3 ' Formally, the recursive case of F is:
' Fle(xyaeeesXp)sh' (F(x))uTy wen £(x)0T,)0T) «
 1 F(x1,f(x]),T]) A REMOVE_LEAVES(T],T1')

A F(xn,f(xn),Tn) A REMOVE_LEAVES(Tn,Tn')
A Construct_;ree(f(x]),T]',f(xz),TZ',...f(xn),Tn',T)

N e e
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and the basis cases are defined appropriately as far as there is history, and

2, the value "undefined", is used to fill out the tree to the leaves.

Case 6. Up to this point we have restricted discussion to definition

of a single function. We now extend it to the case of multiple functions

being computed simultaneously on a single input. There are two cases; one is

substantially easier than the other.

In the first case, the functions are independent, i.e. they are defined
recursively but not in terms of each other, and the parameters for the sub-
goals are identical. For example, assume the data type of binary trees of

integers, and define two functions, one of which finds the sum of the nodes of

the tree and the other computes the product.
sum(empty tree) = 0

sum(graft(t],v,tz)) = sum(t]) +Vv+ sum(t2)

and

prod(empty tree) = 1

prod(graft(t1,v,t2)) = prod(t]) * oy % prod(tz)

We can compute both functions with one pass over the tree using predicate

SUMPROD (empty_tree,0,1) «

SUMPROD(gr'aft(t:],v,tz),z.| + 25,2y * z4) -
SUMPROD(t],Z],ZZ)

A SUMPROD(t2,23,z4)

Formally, for functions f],...,fn such that for the recursive formulas of the fi's:

fi(x) o3 hi(fi(y1)9---)fi(ym))

fi(x) = hs(F(y)anensfylyp))

for all ¥, j, 1 =i, j <n, and for all x, Yis 1<k=sm
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and the domain of the fi's contains only constant a, then construct predicate F:

F(a,f](a),...,fn(a)) -
F(x,h](z]1,...,zm]),...,hn(z]n,...,zmn)) -

/.\F(y],zn.-...zm)

A F(YpsZpy e 2Zpn)

24

Now consider the case where the functions are either not independent or

they don't generate exactly the same parameters to the subgoals, e.g. consider

functions fact and factlist:

fact(0) = 1

fact(n+1) = (n+1) * fact(n)

factlist(0) = [fact(0)]
factlist(n+1) = fact(n+l) ® facth‘st(n)§

We can compute the functions together in predicate F, having semantics

F(x,fact(x),factlist(x)), as follows:
F(O,1,81]) «
F(ntl,z,z ® 22) .
F(n,zy52,)

AZ ='(n+1) * 7

® denotes an infix "cons" of an object to a list.
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Formalizing this mapping, assume a set of functions S = {f]....,f |

and n recursive definitions:
Fi(x) = hi(9570y59) 5000095, (y5)
where gij €S, and Yij = x and if yij = x, then gij = fm where m < i.

I.e. the functions are mutually defined and if any function has a subgoal
whose input is not decreased, then the function of that subgoal must be com-

puted first. E.g. in the above example, fact(n) must be computed before
factlist(n).

Given the above hypotheses, we construct predicate F having semantics

F(x,f](x),...,fn(x)) as follows:
F(a,f](a),...,fn(a)) «

F(x,w],...,wn) «

A E(y1203700 0 52qq,)

s F(ynm’znml’“"znmn)

AWy = hll(zlll”“’znmn)

A Wy = hz'(zlll""’znmm’wl)

AW = b (2 s esZ oWy s oW )

where hi' is similar to hi but may accept, and ignore, extra arguments. What,

in reality, should happen is that the original hi's are used and applied to

the relevant subset of values.

The previous two constructions allow simultaneous computation of multiple




functions. Many redundancies are automatically omitted, but we may be able

to further optimize by treating the resulting predicates as functions D - p"

e g,

and applying improvements described in cases 1-5.

Conclusions

We have defined some concepts of optimizing redundant recursion and
given algorithms to perform the optimization. One result is that the computa-
tion of the function runs faster, (perhaps exponentially), and the recursive

structure is simplified.




e T © L e s + 5. X - cx

g

e At

REFERENCES

27

Auslander, M.A. and Strong, H.R. Systematic Recursion Removal. Comm. ACM

21,2 (February 1978), 127-134.

Bird, R.S. Notes on Recursion Elimination. Comm. ACM 20,6 (June 1977),
434-439,

Burstall, R.M. and Darlington, J. A Transformation System for Developing
Recursive Programs. D.A.I. Research Report No. 19, Dept. of

Artificial Intelligence, University of Edinburgh (1976).
Manna, Z. and Waldinger, R. Structured Programming with Recursion.
Rpt. STAN-CS-77-640, Comp. Sci. Dept., Stanford University

(1978).

Mendelson, E. Introduction to Mathematical Logic. D. van Nostrand Co.,

Princeton, N.J. (1964).

Morris, James H., Jr. Another Recursion Induction Principle. Comm. ACM

14,5 (May 1971), 351-354.

Yasuhara, Ann. Recursion Function Theory & Logic. Academic Press,

New York (1971).




A AL g

OFFICIAL DISTRIBUTION LIST

Contract NOQO14-76-C-0682

Defense Documentation Center
Cameron Station

Alexandria, VA 22314

12 Copies

Office of Naval Research
Information Systems Program
Code 437

Arlington, VA 22217

2 Copies

Office of Naval Research
Code 200

Arlington, VA 22217

1 Copy

Office of Naval Research
Code 458

Arlington, VA 22217

1 Copy

Office of Naval Research
Branch Office, Boston
Bldg. 114, Section D

666 Summer Street
Boston, MA 02210

1 Copy

Office of Naval Research
Branch Office, Chicago
536 South Clark Street
Chicago, ILL 60605

1 Copy

Office of Naval Research
Branch Office, Pasadena
1030 East Green Street
Pasadena, CA 91106

1 Copy

Naval Research Laboratory
Technical Information Division
Code 2627

Washington, D.C. 20375

6 Copies

Dr. A. L. Slafkosky

Scientific Advisor

Commandant of the Marine Corps (Code RD-1)
Washington, D.C. 20380

1 Copy

Naval Ocean Systems Center

Advanced Software Technology Division
Code 5200

San Diego, CA 92152

1 Copy

Mr. E. H. Gleissner

Naval Ship Research & Development Center
Computation and Mathematics Department
Bethesda, MD 20084

1 Copy

Captain Grace M. Hopper (008)
Naval Data Automation Command
Washington Navy Yard

Building 166

Washington, D.C. 20374

1 Copy




