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SOME CONSIDERATIONS ON THE PROBLEM OF TORSION
AND FLEXIJRE OF PRISMATICAL BEAMSt

by E. ReisBner
Department of Applied Mechanics and Engineering Sciences

UNIVERSITY OF CALIFORNIA , SAN DIEGO
La Jolla , Cal i fornia  92093

Introduction. Recent consideration s of the problem of the end-loaded

cantilever beam , with the conditions of loading prescribed in te rms of dis-

placements rather than in terms of stresses , have lead to defining relations

for shear center and twist center location in terms of in fluence coefficients ,

of a particularly simple nature (4 , 5J. It was fur thermore shown that approxi-

mate values of these influence coefficients . leadin g to approximate expres-

sions for shear and twist center coordinates , could be obtained by usin g St.

Venant-type torsional and flexural stress dis t r ibut ions in a Ray leigh -R i t z

sense in conjunction with the princip le of minimum complementary energy 141.
In what follows we extend these results in several direct ions .

We begin by making expl icit the d i s t in c t ton  b etween expression s for

shear and twist cente r coordinates in te rms of f lexibi l i t y coefficients  (which

were previously considered) and In te rms of stif fr ~ess coefficients (where it

is shown that for the case of principal  centroidal cor rdlnate axes the final

formulas are as simple as the fo rmula s in te rms of f l ex ib i l i t y coeff ic ients) .

We supplement our earlier statement of a minimum complementary

energy equation for the case of prescribed rigid-body type in-plane end

report on work supported by the Office of Naval Research.
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section disp lacement s [4 1 by a statement of the associated minimum potential

energy equation. Furthe rmore , we con side r , In addition to the case of prescribed

in-plane end disp lacement s , condit ion s of loading in a somewhat unconven-

tional fashion , specif ying the form but not the magnitude of these displacements

a t the loaded end of the beam , and at  the same time specifying the resul tants

but not the dis tr ibut ion of in-plane ,t resaes at this end. We find that it is a

simple matte r to state a m i n i m u m  potential energy equation In such a way as

to apply to the latter case , but we leave open the question of an appropriate

min imum comp lemen ta ry  e n e r g y  equation .

We use minimum potential and complementary energy equation statements

for the establishment of upper and lowe r bound relations for quadratic forms

involving flexibilit y and stiffness coefficient s, respectively. We give both

t ype s of bounds for s t i f fness  coefficients , but a lower bound only for flexib ility

coefficients , pendin g formulati  on of a minimum complementary energy equation

for the mixed disp lacement-stress boundary condition case described above.

In applying the principle of minimum potential energy for the approx i-

mate dete rm ination of flexib ilit y and s t i f fness  coefficients we utilize dis-

placement approximations which have previously been used for the analysis

of the problems of torsion and floxure with end-section restraint against

warp ing [1 , 7 , 81. We think that It has not previously been recognized that

these approximat ions may be util ized , beyond allowing assessments of the

effect of end section restraint , for the purpose of deducing bound relat ions

for coefficients entering into the formulas for shear and twist center

coordinates.
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In applying the principle of minimum complementary energy we sign ifi-

cantly modif y our earlier procedure [4J by not departing from a St. Venant-

type shear distribution. Instead we u t i l ize  an approximation in which the die-

tributions of both shear and normal stress over the cross section are deter-

mined through use of the variational equation. In so doing the problem is ,

without special effort , solved for a more general class of cases than hereto-

fore , in a manner which is thought to represent a significant simplification

of the earlier work.

Remarkably, the approximate results for flexibility and stiffness coef-

ficients which are obtained on the basis of making quit e disimilar approximativc

assumption s In connection with the use of the minimum potential energy equa-

tion and of the minimum complementary energy equation lead to identical

approximate expressions for the coordinates of the center of shear and of

twist. Thie , in conjunction with our upper and lower bound relations , leads

to the conclusion that our approximate results are in fact exact , in the limit

of vanishing a /L ,  whe re a is a representa t ive  cross  sectional wid th  d imension

and L is the axial length of the beam, with the possibility left open to refine

the analysis so as to account for the (generall y small) effect  of finite values

of a/L.

A Formulation of the Problems of Torsion and Fiexure. We consider  a
_ _ _ _ _ _ _

body with boundaries defined by a cy l indr ica l  surface f(x ,y )  = 0 and two planes

z = 0 and a = L.  We designate displacements by u , v , w and stresses by

a , , etc. and we assume that the normal three-dimensional  homogeneous
x xy

equations of linear elasticity hold. We further  assume that the boundary

S
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portion f = 0 is t ract ion free and that the boundary portion a = 0 is fixed.

In regard to the boundary portion z = L we assume the absence of

normal t r a c t i o n s , in conjunction with a rigid body translation and rotation

distr ibution of tangential  d isp lacements , that Is , we stipulate the conditions

a 0 , u~~~ i1 - y8, v = V + xO . ( I )

We now observe that in writing equation (1) we may, or we may not, stipulate

additionally the magnitudes of U , V , e. If we do , as we have done earlier

in conjunction with applications of the princip le of minimum complementary

energy [4 ,~ I, then equations ( 1)  a re  a complete statement of loading conditions.

If we do not and leave the magnitudes of U , V , eunspecified then we must ,

in orde r to complete the statement of loading conditions prescribe additionally

the magnitude of two transverse force components P, Q, and of an axial

torque T, as follows

z L; , ~ )dS (P ,Q), f(r x - r y)dS = T . (2)
xz yz yz xz

In view of the l inearity and homogeneity of the problem we have that P,

Q and T will be combinations of Ii , V and e, and vice versa , in the form

P = K pu U f %~~V + Kpee,
(3)

Q = K
QU

U+...., T= K TUU+... +KTee,

and
Ii ~~~~ + CUQ

Q + C UT T ,

(4)
V C ~pP+...., e=C0~P+... +COT

TI

-4- F 

~- - - -~~ -~~~--- ~- - -



with the K PU . etc. being stiffness coefficients , the C~~ , etc. being flexibility

coefficients , and with the expectation of symmetry for the matrix  of the K’ s

as well as for the matrix of the C’s.

Having equation. (3) and (4) we obtain the coordinates of the center of

twist , X
T~ ~T’ as the coordinates x , y of that point in the end cross section

for which u = v = 0 in equation (1) while at the same time P Q = 0, that is ,
in the form

= (u/e)~~Q0. X
T 

= - (v/e)~~Q0 . (5)

and we obtain the coordinates of the center of shear, x~ , 
~
“

~~
‘ a. the coordi-

nates of the point of Intersection of the lines of action of the forces P, Q for

the case e= 0, in conjunction with the torque T being solely due to the forces

P, Q, that Is , upon setting In equations (3)  or (4)

e= 0, T = Qx
~ 

- 

~
‘
~“s

’ (6)

It turns out that with these defining relations the simpler form of the

results appear, through use of the flexibility coefficients, namely

CUT Cep CVT eQ 7)- 

~~~ 
~~~~ - 

~~~~~~~~~~~ 
X
T 

- CeT’ 
X
5~ 

- - CeT

with y 
T = y5 and X T = 

x~ for the normal case of a symmetric  C-matrix.

The corresponding relations In terms of the coefficients K in equation (3)

come out to be ratios of certain second order minors of the third order
I

determinant of the coefficient matrix in (3). It will be usefu l to note for

-5-



what follows that  we have , on the ba sia  of equation s (5) and (3) ,

- 

KPvKQe KQvKPO - 

KpUKQe KQUKPe 8
KPUKQV - KQU KPV

’ X
T KPUKQV - KQVKPV

again with = and x~ X
T 

in normal circumstances , and with the im-

portant spe c ia l -ease  formulas

- 

Kp~ 
KQe

~ T K~~11 
X
T~~~KQv~

which  resul t upon a s sum i n g  that  0.

Minimum Complementary and Potential Energy Equations for the

Problem of Torsion and Flexure. We now assume that the material of the

beam is such that its stress strain relations may be written in the alterna-

tive forms

a ~A/~e , i = ~A/~y 
( lOa )

x x zy xy

and

= , y = (lOb )
x x xy xy

We then have for the case of p~e.cribed U = Ii, V = V , ~ = as minimum

complementary energy condition the variational equation 61, O~ where

I = - j’,fBdSdz + UP + VQ +~~~T. (Ha )

In (H a )  the stresses a , , etc. mus t  satisf y the differential equations of
x xy

equilibrium and all stress boundary conditions , and the var iational equat ion

-6-

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



is equiva lent to all s t ra in  displacement re lat ion,  and disp lacement boundary

conditions. We have earlier considered the application of this variational

problem for the approximate determination of flexibility coefficients In con-

junction with stres, distributions corresponding to the solutions of the St.

Venant torsion and flexure problem [4, 51.
For an alternate formulation of the  problem , wi th in  the  context of the

principle of minimum potential e n e r g y ,  whic h we have not considered pre~

viously. we now prescribe P = 1 , Q - 
~~~ T = 1’, in association with the end

displacement distribution ( 1) .  We then have that the appropr ia te  form of the

principle of minimum potential energy is the variational equation 61d 
0

where

- PU - ~~V - T~~. ( l i b )

In ( l i b)  the strains Cx ? 
~
‘xy ’ etc. are given in t e rms  of displacement deriva-

tives , the displacement component s u , v , w must vanish  for  z 0 , and u , v

must be as in equation ( I )  for z = L, with no res t r ic t ions  irpposed on ~~ V, ~~
‘.

The variational problem as stated has as Euler equation s the differential

equations of equilibrium in the in ter ior  and all  conditions of prescribed s t ress

on the surface.

Having previously used the variational equation 61 0 for the deter-

mination of flexibility coeffic ient approximation s - without regard to the fact

that the form of equations (h a) and (3) indicate s that it would be more natural

to use this relation for the determination of stiffness coefficients - we have

not prev iously used the relation 61
d = 

o which , it is apparent from (I Ib) and

-7-



(4 ) ,  is a w a t u r ~t l  s t a r t i n g  point fo r  the approximate determination of flexibility

( O C f f j C iC f l t S .

Previous general considerations on upper and lower bound-determina-

tions for inf’ ~nce coeff ic ients  12 1 ind ica te  that the use of I, is associated with

the possibi l i t y of dete rmining  lower bounds for st iffness coefficients K and

tha t the uce of 1(1 g ive s  the poss ib i l i ty  of dete rmining lower bounds for  flexibil~~~

coefficients C.

Fur thermore , we know thai the use of a potential energy function

def ined by

(1 
- JJ AdSd z , ( 12)

with 1d d i f f e r i n g  f rom t
d 

by the sti pulat ion that in it U = T~, V = V , e= e, will

be involved in the determinat ion of upper bounds for stiffness coefficients.

In ordi r to obtain upper bounds for f lexibi l i t y coefficients we ehould

have a counterpart  I to I as defined in ( l i z ) ,  with U , V , e replaced by

P, Q, T, in such a way tha t the form of the tangential end displacement dis-

tribution remains  prescribed in accordance with equatIon ( 1) .  We do not ,

at this t ime , know the way in which to in t roduce  these “par t ia l”  displacement

boundary conditions into the pr inci ple of minimum complementary energy.

Because of thie  we do not here eetab lieh  the appropriate form of l~~ (which ,

if symmetry consideration s were the principal guides , ought to be given by

- J,fBdSdZ).

Upper and Lower Bound Relation, for Influence Coefficients. Appro-

priate transformations of the functionils ~. 
1
d 

and 1d ’  as defined In

-8-



equations ( 1 1 )  and ( 12 ) ,  lead to the upper and lower bound re la t ions

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
( 13)

- ~ (UP + VQ + ~~~~~~~ 
~ ‘d ’ ( 14)

with the miss ing left hand sid e of equat ion ( 14 )  making it evident that it could

be useful to have a functional I~~ as discussed at the end of the preceding

section. In equation (1 3)  1 corresponds to the funct ional  I in ( 1 I a ) ,  wi th

any st reaees  
~~~~~

‘ 
~~X~~

’ etc. which sa t i s f y equil ibr ium d if fe ren t ia l  equations and

stress boundary conditions , and t d corresponds to 1d in ( l ib ) ,  with any di f-

ferentiable displacement state ~, , which satisfies the st ipulated displace-

ment boundary conditions , with the same rules connecting in ( 1 4 )  and

in (hib).

In order to see that (13) and (14) represent bound relations for stiffness

and flexibility coefficients respectively, we observe that t d as well as I will

be quadratic forms in U , V and e, which may be written as

+ -I ... 4 ~K~~~P
2 (15a)

i
s = 3K~~~J

tT + ... 4 ~~~~

At the same time the quantity which is bounded from above and below in equa-

tion ( 1 3 )  may be wr i t ten , with the hel p of equat i on s ( 3 ) , as

UP + VQ + ET = Kpu U 2 
4 (Kp.~, + K

0~1)UV 4 ... + 
~~~~~~ 

(16)
t

where = Kuu~ ~(Kpv + KQU) K
~ v 

= K
QU 

C Kuv • etc. We note that

The author would like to acknowledge that the result expressed by equation .
(13). (15) and (16) was found independently by S. N a ir .
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when V - (1 equ. t ions (1 3~ , ( I ’ )  and (1 1’) 8pecialize to a p r e v i o u s l y  stated

resul t  for the problem of f l e x u r e . w i t h i n  th e  f ramework  of the theory of plane

stress [3] . Analogousl y ,  s e t t i n g  U 0 ~ tuI V = 0 gives  a s imple exp l ic i t  r e s u l t

for the problem of t w i s t i n g  w i t h  end r e st r a in t  against warp ing, which may not

have been stated p r e v i o usl y .  We tu r t h e r note the evident aimph ificat ions

which  occur in the above upon sti p t iht ing  symmetry  conditions which result

in bound rela t ions for  quadra t ic  fo rms  in two variables in place of the relations

for  the general  t h r e e -v a r i a b l e  case.

We next consider equation ( 14) ,  wr i t ten  in the form - 1
d 

�~~( UP + VQ + PT).

In th is , equation ( l i b )  enables us to wri te  with suitable coefficients

- ~~~~~~~~ (‘~~QPQ 4- ... + ~C~~TT 2 . ( 17)

At the sam e U i-n.. , we h a v e , th roug h Lii ’ ’  i i 9 e  of ( 4 ) , that

öv ?e= c~~ i~ + (C 1J Q 
4 C vp )PQ 4- ... + C~~ .T , (18)

wi th the obvious consequences that

C
~~p~~~

Cup . C
QQ

< C VQ. C
~~T~~~

CeT~ 
(19)

but with the determination of bounds for the coefficients CUQ + Cvp~ 
etc.

of the mixed terms , and therewi th of bounds for the coordinates of the centers

of shear and of twist , depending upon the establishment of a bound functional

for the lefthand side of equation ( 14 ) .

•t
The result for twist ing without res t ra in t  against warp ing is contained in an
early fundamental paper by Treff t z 161.

-10- 4,



Appr oximate Determ ination of Sliear and Twist Center Location Thro ig hi

Use  of Min imum Potential Energy Pr inc ip le .  S imilar  to what 1 as been done

in ear l ie r  work  on problems of combined t w i s t i n g  and bending of beams ( 1 , 7 ,

8] we begin by sti pula t ing  as app rox ima t ions  for  component s  of d isp lace m ent

= u (z)  - y B (z ) ,  V — v ( z )  I x 8 ( z)  (2 0 )

w = w ( z )  4 xor (z ) I y~ ( z )  + Ø(x , y ) k ( z )  ( 2 1 )

In this  Ø(x , y )  is a function which is to he assumed suitabl y, with the var ious

fu nc t ion s  of z in (20) and (21) to be d e t e r m i n e d  by the var ia t iona l p r o c e d u r e ,

with or without imposition of addit ional  constra int  re la t ions .

As regards str ess s t ra in  re la t ions  we here  c o n s i d e r  a mat e rial pos-

sessing a l imit ing type or thot ropy ,  in such a way that  the re  in p a r t i a l

r igidi ty ,  with each cross section t r ans la t ing and ro ta t ing  as an ent it y.

O u r  li m i t i n g - t y p e  s t ress  s t ra in  re la t ion s  a re  three  r e l a t ions  = =
= 0, in conjunction with three relations of the form

~ = E (  • ‘r = , i = Gy . ( 2 2 )
Z Z xz xz yz yz

With (2 2)  we have as expression for the s t ra in  energy function A in equation

( 1 1 )

2A = E€ 
2 

4 G y 
2

, (23 )
z xz yz

~This assumption is meaningfu l for suff ic~ent1y slender beams only,  where
its approximate validity depends on the re la t ive  ins ign i fi cance  of the com-
ponents of stress a,~, 0y’ Txy In comparison with the components c~~, r,~~,

— I I —



where , on the basis of (20) and ( 2 1 ) ,

€ = w
0

’ I- xe’ + yØ ’ + .X’, (24)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~= v ’ + e + x e ’ + X ø ~~. (25)

In introduc ing (23 )  to (25) into the strain energy Integral we shall assume

that the origin of the x, y system of axes is at the elastic centroid of the cross

section, that is we stipulate the relations f(x , y )EdS = 0. Furthermore, we

shall assume that ~ is the warping function for St. Venant torsion of a homo-

geneous beam with the same cross section as the given beam, that is , we

shall assume that 0 is determined through the relations V 2
0 = 0, f (~ - y, 

~ y

+ x)d S = (0 , 0), 
~~~~~ ~~ - (x + 0 )dx a 0 along the boun da ry £ 0 of the

cross section , we shall set as an abbreviation

D = J o ~
2 

+ 0~~~
2 dS $(y0~~ - x0~~ )dS (26a)

and we shall sti pulate , a s we may.  that  SEOdS = 0. To be consistent with our

choice of ~ we furthermore assume in what follows that 0. conet. With this

we now obtain as expression for the approximation ‘d 
to the func t iona l

in equation (11 )

~1 ESE (wO
’)2 

+ I
xx

(O ’)2 + I
yy

(~~’)
2 

+

4 r(x ’)2 
+ zr ~‘x ’ 4 zr B’x’

* y

+ G[(u’ + )
2 

+ (v ’ 4 8)
2 

- 2(u ’ + ~,8’r~dS

-1 2-



+ 2(v ’ + e)e’!xds + I (8l )
2 

+ DX
2

- 2DX9~~~dz - Pu - QV - ‘re , (27)

where U = u(L),  V = v(L), e = O(L), and

I = J’(x 2 
+ y

2)dS 
- 

(r.rx.ry) J’( l .x , y)OEdS

(SE P Ixx P Ixy~ I
yy

) =J ’ ( l , x2 , xy , y 2 ) EdS . (26b)

Inasmuch as we are concerned with approximate rather than exact

resu lt s , we shall now fur the r assume that t ransla t ional  cleflect ions due to trans-

verse shear may be neglected and tha t the enti re t ransverse  shear s t rain energy

is tha t due to twisting. Considering the form of (27) the desired reduction will

be accomplished upon introducing the additional constra int  relations

= -u ’ , 8 = -v ’ , X = 8’ 
• (28)

Anticipating furthermore the result w 0, we will then have in place of equation

(27)

- !j~~ (u”)
2 

+ I (v ” )
2 

+ 21 u ” v ”
d 2 xx yy xy

+ r(e”) 2 
- ar e” t~” - 2~ O”v”x y

+ c(e ’) 2 laz - P13 - QV - TO , (29)

with C = G(I~ - D) being the conventional St . Venant torsional stiffness factor .

In evaluating the variational equation 6
~d = 0 we take account of the

constraint  boundary conditions u(0) = v(0) = 8(0) = u ’(O) = v ’(O) = 8’(O) = 0.

The corresponding six condition. for the loaded end of the beams are the Euler

—1 3-



bo unda ry condil ions

I ‘I ” I I v ” — r e” — 0 , I ii ”’ -
~ I v ”1 

— r e’.’
xx mI y x X X  x

+ ~ ~~
“ - r e” = o , ~ a” + I V ”1 

— r e”’ = -
~~~ 

(30)
xy yy y Xy yy y

r ,1 +r~~~~re = o . -r ii ”’ - r v ”’ + re”’-ce” =- ?
x y x y

for  z L, with  the Euler d i f ferent ia l  equations being

IV IV ,,IV
I u + 1  v - F~~ =0xx xy x

i u
1V

+ 1  vW _ r e I
~~~o (31)

xy yy y

x y

In o rder  to solve the problem a~ stated , we begin by obtaining from

(31) the t r ans fo rmed  d i f fe ren t ia l  equations

KU IV (F ~ - r I )8~
’, Kv~~

’ (F I — F I )e~” , (32)
x yy y x y  y x x  x x y

r~e” - C8” = 0 , (33)

where

K = I I - ~
2 

, r = 1’ - (r2I - zr r i + F
2I )/K , (34)

xx yy xy * x yy y x xy x xx

and from (30) the transformed constraint boundary conditions

u ” = 0  , Ku”’= — I  P +I  Q+ (I r - iyy xy y y x  x y y
(35)

v” ~ 0 . Kv”’ = -I Q + I  P+(I F - I  r )e”’xx xy x x y  x y x

-14-
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= o , r e’” - ce ’ = -T - (1 F - i r ) ( P / K)  - ( I  r - ~ r )(Q/K) (36)
* y y x  x y y  x x y  x y x

* for  i L.

E quat ions  (3 1)  ~nd ( I I . ) ,  in  con junc t ion  wi th  the conditions 9(0) = 9’(o) = 0,

give as ex pression for  8,

8(z) + 
“x’yy 

- 

~y~xy ~ + 
~~~ - ~~~

xx yy xy xx x y  xy

x [
~ 

- A1: cos hXL 
- 
z)] ~

2 
= (37)

H a v i n g  8 as in ( 3 7 ) ,  we f ind u and v from equations (32) and (35) in the

f o r m

PT - QI / 2 3~ r i  -r ~
- 

yy xy (i~~._ ~~~~~~~ x y y  y x y 8uz 

~ ~ ~~i
2 \~ 2 

- 

6 /
+ 
I I ~2 

~
xx yy xy xx yy xy

(38)
~

•
I_ -~~ I 2 3 ~~I -F~

v( z ) = 

- 

- ••L XX X X Y 9 ( )

XX yy xy xx yy xy

We use equations (17) and (38) In pa rticular in order to obtain the values

of 0 9(L), Ii = ‘i(L), V v(L)  in  terms of P, Q, T, so as to obtain from equa-

tions (24), as approximate expressions  for  flexibility coefficients

tan hAL\ 
- 
L 

r i  - r i 1 tanhAL\
OT C \ - 

XI. ) . C01~ - ~ I I - 12 t\’ 
- 

~L )
xx nr xy

- 15-



r

3 1r r \2/
- 
L 

1yy 
~ 
L( x’~yy y’xy) (1 

tan 
39- 

~ I I - 1
2 C\1 ~ - i

2 / \ Ar. /xx yy xy xx yy xy

etc. Introduction of these expressions into the def in ing  re la t ions  (7) for  the

coordinates of the center of shear and of twist  then give as approximations

for these coordinates

F t - r i  ri - r i
- 

x y y  y x y  
- - 

y x x  x x y  
40)YS~~- Y T - 

I I ~~~ 
. XS

_ X
T~~~ I Ixx yy xy xx yy xy

We note tha t in the event that the x , y-axes in the c ross  section a re

principal elastic axes we have ~~ 0 , and equations (40) reduce to the simplified

fo rm x = -r it , y = r /1 . For the c ase  of a constant  modulus  E , these
5 )‘ )~3f 8 X xx

lafter formulas agree with the results previously obtained in the c la s s i ca l

Weber-Treff tz considerations , as well as with our earlier approximate results

which followed from a determination of flexibilit y coefficients th roug h use of

the principle of minimwn complementary energy  in conjunction with approxi-

mations for stresses as given by the St. Venant  theory of tor sion and ( lext i re  14).

An interesting special case of the above is the case of a solid c i r c u l a r

cross section for which 0 = 0 , throughout. We then have that the location of the

shear center coincides with the elasti c centrold of the cross section , for all

possible variations of E, as long as it is assumed that C does not va ry .  This

result  should be compared with the w e l l - k n o w n  resu lt  for a uniform semi-

circula r cross section which m a y  be I n t e r p r et e d  an the case of a complete

circula r cross section wi th  van i sh ing  E anti G over one -ha l f  of the sec t ion .

— U,—



For this case we have as the distance of the centroid from the straight portion

of the cross sectional boundary curve X 4a/3 1r ~ 0.42a , while at the same

time the distance of the shear center  is given by x = 8a / 5w ~ 0. Sla , with the

differences in assumptions concerning the distribution of C for the two cases

eviden tly being responsible for a significant effect on the location of the center

of shear and of twist.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We now consider the use of the

variational equation 61 0 with I given in equa tion (h a), with a = a
y

= 0 , and  with complementary energy density

B — ~(a2/E + ‘T~~/G + r
2

/G) (41)x y

w h e r e a a ~~ , 1~ e~~ , ‘r ~ r
z X XZ y yz

We have previously considered the application of this principle , for

the case of cr ose sections with the x-axis an axis of symmetry ,  and with E

independen t of x and y (4 ) ,  on the ba sis of sti pulating a St. Venant distribution

EQ(L - z)y , (42)

~~ 
= Q ( t,~ + X  .~

) + T$~~ . r ,~ = Q t ~ - X
~~
) - Tt

~~ (43)

with )( and $ as s t ress  functions , with t and t as particular solutions of
x 1”

I (I + t ) - Ey = 0 , (44)
vy x , x ~r ,y

and with X , $ Q and ‘r to be dete rmined by the variational equation in conjunc-

tion w i t h  the bounda ry condit ion T d y - 1d x  = 0 along f(x , y) 0.

ft was  found In (4h  wi th  the hel p of t ransformations of som e complexity.
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that the resul t so obtained , comes out to be x = x -r /1 and an analogous
S t Y YY

outcome may be anticipated for the problem wi thout  an axis of sym m e t r y,  58

long as the analysis is restricted by the assumption that E is independent of

x and y .

In what follows we consider the d e r i v a t i o n  of a d i f f e r e n t  approximate

result , of independent Interest and—insofa r as our  subsequent  bound calcula-

tions are concerned—associated with s l ight l y better results tha n would follow

from the use of an equation equivalent to (42).

Our starting assumption is now , in place of equation (42),  the relation

a = (L - z)(T 4. r ) (45)
x, x y,y

where , as in (43), ‘r and I are independent of z and subject to the c o n s t ra i n t

boundary condition

f(x , y) = 0 ; r d y - I dx = 0 . (4 6)
x y

An introduc tion of (45) and (46) Into (4 1) and ( I l a )  leaves , upon c a r r y i n g

out the integration with respect to z , the approximate energy expression

I = 111(0 - y~ )T + (V + x O ) r

- 
~~~~~~~~~ 

+ 1 )
2 

- (1
Z 

+ r2
)Jd*d y . (4 7 )

The variational equation aT = 0, with the sti pulation that bI dy - ôT dx - 0 for

I = 0, has as Euler equations two different ia l  equations for ‘r and I , of the form

2/I + 1  —
x L I x. x Y~Y I  - 

U - y
E / - 

L
.x

-Is-



r Z j r  + T  \ — —
~l 

L (  X~~X 
~‘•)‘ V +xe (48)

C 3 \  E / L

Equations (48) may be simplified by deducing from them the relation

(
~ 

- 

~ 
= -~~~~~~~~~~~~ ‘ (49)

w hich , in tu r n , impl ies as expressions for I and I in te rms of an arbi tra ry

function ø(x,y),

- Oy I L )  = G(0~~ +OxIL) . (50)

In t roduct ion of equations (50) into (48) then gives further

L~~~~~~ , x )
, x + (Gø~~,) )~\ - 

j i  ~,Z (xC~~ - ë
~, x 3~~ E / L + 3~~ E / L

(51)

0 L2(~~
ø x) x 4. (G0

1,
)

1,\ 
- 

~~ 1,2 (xC,~~~ - YG\~~~~ ~~
• v ~~ 3~~s~ E / 1

L~~ 3 \  E /~~ L

While it is possibl e to continue the analysis for variable G the result.

of not doing this become sufficiently simpler to justify a restriction from he re on

to the case fJ const. With  this restriction , and with observation of the condi-

tion j ’EOcis 0 , we readily obtain from (SI), as a second order differential

equation for  ~~~,

0 - (riL2/3E)V20 = Ux/L + Vy/L . (52)

Equation (52) d i f f e r s  s ignif icantly from the corresponding equation for

the theory of torsion and flexure in accordance with St. Venant by the appearance

of the f i rs t  te rm on the left , We note that for slender beams, with represent.-

-19-
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tive cross sectional dimension a ~~ L this term will he small c ompared to the

second te rm , of relative order Ea 2
/GL

2 , and tha t conside r ing  t h e f or m of the

differential equation, we may take account  of t h i s  t ern~ by an i t e r a t i v e  proc edure .

The physical reason for the occur rence  of the f i r s t  t e rm in (S.~) is evidentl y the

sti pulation of a condition of no cross sect ional  wa rp in g at tiw f i xed  end of the

beam. Wh i le  this condition is disrega rded in the St. Vena nt f o r m u l a t i o n , i t is

taken account of, approximately, in the present  approximate  solution th roug h

use of the principle of minimum comp l e m e n t a r y  e n e r g y .

In orde r to obtain approximate expressions for flexibility coe f f i c i e n t s

we now consider the solution of (52) to consist of three parts .

0 00 IL + (00 IL + V O IL)IG (53 )8 u

with the functions 0 , 0 , 0 subject to the d i f f e rential equat ions .8 u

(
~ z 

- 

ci~2)( 09~ 
Ou~ ~~~ 

= _
~~I(0

, x , y) , ( 5 4 )

and to the boundary conditions

( * 0  
~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. (SSa)

and

f = 0 ; (0 , 0 )d y - (0 , 0 )d x = 0 (SSb)
u,x v,x u.y v,y

With 
~~~~~

‘ u 
and 0 determined throug h equations (54) and (55). we then

have as expressions for cross sectional forcei P, Q and torque T , on the

basis of equatIons (2) and (50),

PL = GOS(0e 
- y)dS + IJJ’0~1 ~~~ 

+ vS0
~~~

dS . (56a)
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with a corresponding expression for Q, and

TL G85(x08 y 
- 

~~~~ + x2 
+ y

2)dS

f iJJ’(x~ 11~~ - YO~~~
)dS +VJ’(x0~~~ - YO

~~~
)dS . (56b)

A c o m p a r i s o n  of equat ions  (56) wi th  equations (3) gives as approximate

exp res a ions for stiffness coefficients

K pu = L ’J
~~~~~

dS Kp~;j = L
~~S0V X dS

K~~~~= G L ’J’(08~~~~~y)dS . (57)

= L ’
~
f(X0u y  - yO0~~

)clS 

= GL ’J’(x0 9 - 

~~~~~~ 
+ x2 

+ y
2)dS

ft ients Ex r t s se  In Terms Wa p%rig Funcft o f

St. Venant Torsion. It is convenient to designate the warping function for

St. Venant  tors ion wi th in  the present  context by ~~~~ with this function being

the solution of the boundary  value problem. 
-

~ 2 0 )  0 ; (4°~~dy - 40
~~

dx) b (xdx + ydy)
b (58)

$
We then have

- y)dS = J(40) + x)dS = 0 , (59)

and

- y4 °~ + x~ + y
2

)dS = I - D = C . (60)

See , for example , Love ’s Trea t ise , Fourth Edition (1934), pp. 31 1-313.
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We note , specifically, on the basis of equations (59) that 40) is associa ted

with vanishing values of the coefficients and KQe and that there fore

equation (58) represents an Inadequate approximation to the contents of eqtia-

tions (54) and (55) insofa r as the determination of 08 
is con ce rn ed . We res olve

this difficulty by considering the improved approximat ion

0~ o~
o
~ . 

( ( 1 )

with determined from the relations

a .2.~.4°) (4l)
~~y - 0

~~~
dx)

b 
= 0 (62)

We now obtain , upon observation of (62),

Kpe GL 1.f0~~ ds

+ (~4 ’ç)~ -

= ~ .~~x(4’~~dy - 4~~ dx)ds - —~~j Ex4°~dS

= -3L. JEx4°~dS , (63a)

with a corresponding relation

KQ$ = -3L~
3J’Ey4°~dS , (63b)

and with KTO given, on the basis of (60) and (57), by

KTe GL 1C . (63c)

In evaluat ing  the remain ing  st i l lness  co e ff i c i en t s , we may use the
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.4pp r O V i i n a t i o I 5 ~ ~(O) and ~ = ~~~ with  the boundary conditions (55b) and

the differen tial equati:ns ( 01 , 0 ( O ) ) = -3EL
2

(x ,y). With this we obtain

K~~11 = L ’S0~°~~dS

= L 
1J [(x 0~

0
~ ) 4 (x0~

01 
) + 3EL

2
x

2
)dSu , x . x u ,y  . y

= L 1
~~x(0~

0
~ d y - ~(0) dx) 4- 3L 3fEx2dSu . x .1 , y

- 31 
3J’Ex

2
dS , (64a)

and . analogu ’ial y,

KQU = 31; 3!Exycis K~~~ 3L
3
,fEy

2dS . (64b)

Ev i den t l y,  these resu l t s  are suc h that the effect of transverse shear deforma-

t ion is no t inc lu ded , and it is apparent tha t the calculations including this effect

wil l  depend on a conside ration of functions 0~~~ , o~’~ in approximations 0~ =

~(0) 
, ~( 1)

, etc .  w i th  = -(3E/GL 2)0~
0
~, etc .

It r emains  now to evaluate and KTV, in such a way as to express

these qu a n t i t i t e s  in terms of i n t e g r a l s  involving the function 40), if possible.

Th i s  is a con ’p li~ herl as fo l lowu . We now use , in the defining relation

K .r t p  ~ 

1
j~ x0~

0
~ - y0~

01 )dS , (65)

t;rep n ’s thvr ,r ep , , , in v o l v i n g  and 40) and appropriate relation, satisfied
by these fi i n - t i nn a , in the lo n-u

,~(Ø(0) o(0) + o (0) o(0) )dS
Lx u,x $,y u ,y

- 0~
0
~~dx) - j’4°~V 2

O~
°1ds
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= 3L J’Ex4~~dS . (66)

In order to see that the left-hand side of (66) is in  fac t  what  we w i s h  to have ,

in place of the r ig ht -hand side in (65),  we now make  use , i n  p lace of 40). ~~
(0) (0) (0)the associated torsion s t ress  funct ion 4’ def ined by 4’ -, 0 - y and,y  5, x

4,(O) 
= 

_~ (0) 
- x , and therewith by v Z

4’
(O) = -2 and (4’~

°1dy + ‘P~
°

~dx) 0.
,~~~ e,~, .y  , x b

We then have

S(0~°~ 0~~ + Ø (~ ) ~(0) )dS
Lx u,x 8,y u,y

= $I (~ f - (x +

= 1(0
(0) 

— x0~
0

~ )dS + 
r($ (fl)0 (0) 

- )dS ~~7)
u,x u,y .y 1 .y . X u.y

A second application of Green ’s theorem , now to the second i n t e g r a l  on the

right , and observation of the properties of 4t (~ ) shows that this i n t e g ra l  van ishes .

The rewith , and with (66) and (65), we then have as express ion  for K T(J in t erms

of

= -3L~
3J’Ex0~~~dS . (bSa)

An analogous reduction gives

K TV = ~3L~
3
5Ey40 1dS . (68b)

We note from (68) and (63) tha t our s t if fness  coeff ic ients  do s at i i f y, as they

should , the symmetry  relations = and K TV = KQe. and we also note

tha t we have previously used a similar t ransformat ion as in going from (65) to

(68a), in expressing the approximate value for x
5 = X

T 
in [4) for cross  sections

symmetric about the x-axis in te rm s of St. Venant ’ s torsional warping function.
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I h i v i n g  equat ions  (60) . (63),  (64) and (68) for stiffness coefficients,

we now see f rom equations (8) for  the coordinates of the centers of twist and

of shea r in t e rms  of these coeff ic ients , in conjunction with the defining rela-

t i o n~ (2 6) ,  t h a t  upon iden t i f ying  with  the function 0 in (26) the present

approx ima te anal ys is  by m e a n s  of the principle of minimum complementary

e n e r g y  does in f a c t  lead to t h e  same equat ions  (40) for the location of the

c e n t e r s  as oI,ta inecl t h r o u g h use of t he p r i n c iple of minimum potential energy.

It i s , however , wo rth  no t ing  in this  connection tha t while in the complementary

ene rgy  ca l cu la t ions  the funct i on  appears as a logical consequence of the

a n a l y s i s , i t ’ s c o r r e s p o n d i n g  appearance in the potential energy calculations

depends  on a fo r tu i tou s  ad hoc assumption in the displacement approximation

equa tion (2 1 ) ,  and that no ag reemen t  between the two types of results would

have occu red if instead of de f i n ing  0 in equation (20) as St. Venant’s torsional

w a r ping  func t ion  some othe r definition had been used.

Som~ ~~ licit ounds for  Influenc e Coefficients . A return to our

cons idera t ion  of bound relat ions in equations (17) to (19) indicates tha t t h e

set of approximate flexibili t y coefficients C , in equations (37) to (39) , is in

fact also a set of lower l~~’ind coeff icients cL. In this connection, we particu-

larl y note l i i i  facto r I - (Al ~~ t a n  hAL in equations (39) which makes these

c o e f f i c i e n t s  imal le.r than they ~~~t ild be without this factor.

Furthermore , we m a y  ut i l ize  the analysis in equations (20) to (38) for

the purpose of solving the analogous problem , with U = 13, V = Y , O =~~~ as

co ns t r a in t  conditions for  z L , instead of the conditions P = P. Q Q, T =

T , and wi th in ( l lb )  replaced by I~ in (12),  in such a way that the values
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of P, Q, T which occur in 2i~’ = + VQ 4- OT a re  the same combinations

of loaded-end values of derivatives of u , v , e as occur  in the exp ress ions  fo r

P. Q, T in equations (30). It follows f rom this that the upper bound s t i f fness

coefficients K
U in equations (15a) are in fact  the elements of a matr ix  K U which

is the inverse of the matrix CLwhich is implied by equations (37 ) to (39) .

Having thus obtained an upper bound quadrat ic form for the coeff ic ients

K of the matrix K , in accordance with equations ( iSa )  and ( 1 3 ) ,  we next observe

that our analysis in equation (45) to (57) is of such nature as to make the ele-

ments K in equations (57) effectively lower bound coefficients KL , in acco r da nce

with equations (l5b) and (13). Evidently, equations (53) to (57) no more than

enable us to calculate these coefficients KL. However , consideri ng the form

of the differential equation (52) and the order of magnitude considerat ions leading

froni (54) to (‘58), (6 1), (62) and (64),  we h av e  th t a t the exp it ( 1 t  a h ) l ) rox i ,1~~ b u s

for the coefficients K in equations (63). (64) and (68) are in fact the values of

the lower bound coefficients K L, except for addit ive term s of relative order

(alL,)
2.

We may associate this conclusion , with anothe r one which will re sult

from a consideration of the uppe r bound coefficients KU obtained by inversion

of the mat rix This complementary conclusion is tha t the upper bound

coefficients K~ obtained in this manner also agree with the approximate coef-

ficients in equations (63), (64) and (68), except for  terms of relative order

2 .
(a/L) . This being the case it is then possible to state that the approximate

values of the coefficients K in (63h (64) andJ68) are in agreement with the

exact values, except for te rms of relative order (a/L)
2. 

It follows then further
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that equations (40) for  the coord ina tes  of the centers of twist  and of shea r

re present  the houat ion of th~~ r’ :enters—as defined by equations ( 5) and (6 ) , in

association wi th  the described mixed bounda ry value problem in three-dimen-

sional linea r elasticity theory—exactly, except for term s of relative order

2 . . L(a/L)  . We may, if we wish , obtain Improved bounds K , including terms

of relative order  ( a lL) 2
, by extending the calculations based on equations

(53) to (‘57) to the extent  of d e t e r m i n i n g ,  by iteration , the functions 0~~~ +

~( l )  
~ 

~(2) 
o

(0) 
+ ~~~ ~

(0) 
÷ ~~~~ We may also obtain improved bounds

K 13 by c a r r y ing out the ana lysis  based on the displacement approximations

(20) without imposing the constraint  relations (28). in contempla ting such a

program it must , however , be born in mind tha t tt~ present analysis is based

on the assumption of a medium for which the axial stress results in no

late ral contract ion effects in x , y-planes. Consideration of thi s lateral contrac-

tion effec t  would mean great l y inc reased complexity of the calculations leading

to the values K 13. Such ca lculat ions  may be expected to leave the first-approxi-

mat ion hound resul ts  unchanged , while at the same time being responsible for

second-approximat ion hound results  involving additional terms of relative order

2a l L  as well as of orde r (alL)
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