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SOME CONSIDERATIONS ON THE PROBLEM OF TORSION
AND FLEXURE OF PRISMATICAL BEAMSt

by E. Reissner
Department of Applied Mechanics and Engineering Sciences

UNIVERSITY OF CALIFORNIA, SAN DIEGO
La Jolla, California 92093

Introduction. Recent considerations of the problem of the end-loaded
cantilever beam, with the conditions of loading prescribed in terms of dis-
placements rather than in terms of stresses, have lead to defining relations
for shear center and twist center location in terms of influence coefficients,
of a particularly simple nature (4,5]. It was furthermore shown that approxi-
mate values of these influence coefficients, leading to approximate expres-
sions for shear and twist center coordinates, could be obtained by using St.
Venant-type torsional and flexural stress distributions in a Rayleigh-Ritz
sense in conjunction with the principle of minimum complementary energy {4].
In what follows we extend these results in several directions.

We begin by making explicit the distinction between expressions for
shear and twist center coordinates in terms of flexibility coefficients (which
were previously considered) and in terms of stiffness coefficients (where it
is shown that for the case of principal centroidal coordinate axes the final
formulas are as simple as the formulas in terms of flexibility coefficients).

We supplement our earlier statement of a minimum complementary

energy equation for the case of prescribed rigid-body type in-plane end

*A report on work supported by the Office of Naval Research,




section displacements [4] by a statement of the associated minimum potential
energy equation. Furthermore, we consider, in addition to the case of prescribed
in-plane end displacements, conditions of loading in a somewhat unconven-

tional fashion, specifying the form but not the magnitude of these displacements

at the loaded end of the beam, and at the same time specifying the resultants

but not the distribution of in-plane stresses at this end. We find that it is a
simple matter to state a minimum potential energy equation in such a way as

to apply to the latter case, but we leave open the question of an appropriate
minimum complementary energy equation.

We use minimum potential and complementary energy equation statements
for the establishment of upper and lower bound relations for quadratic forms
involving flexibility and stiffness coefficients, respectively. We give both
types of bounds for stiffness coefficients, but a lower bound only for flexibility
coefficients, pending formulation of a minimum complementary energy equation
for the mixed displacement-stress boundary condition case described above.

In applying the principle of minimum potential energy for the approxi-
mate determination of flexibility and stiffness coefficients we utilize dia-
placement approximations which have previously been used for the analysis
of the problems of torsion and flexure with end-section restraint against
warping [1,7,8]. We think that it has not previously been recognized that
these approximations may be utilized, beyond allowing assessments of the
effect of end section restraint, for the purpose of deducing bound relations
for coefficients entering into the formulas for shear and twist center

coordinates.




In applying the principle of minimum complementary energy we signifi-
cantly modify our earlier procedure [4] by not departing from a St. Venant-
type shear distribution. Instead we utilize an approximation in which the dis-
tributions of both shear and normal stress over the cross section are deter-
mined through use of the variational equation. In so doing the problem is,
without special effort, solved for a more general class of cases than hereto-
fore, in a manner which is thought to represent a significant simplification
of the earlier work. 4

Remarkably, the approximate results for flexibility and stiffness coef-
ficients which are obtained on the basis of making quite disimilar approximative
assumptions in connection with the use of the minimum potential energy equa-
tion and of the minimum complementary energy equation lead to identical
approximate expressions for the coordinates of the center of shear and of
twist. This, in conjunction with our upper and lower bound relations, leads
to the conclusion that our approximate results are in fact exact, in the limit
of vanishing a/L, where a is a representative cross sectional width dimension
and L is the axial length of the beam, with the possibility ieft open to refine
the analysis so as to account for the (generally small) effect of finite values
of a/L.

A Formulation of the Problems of Torsion and Flexure. We consider a

body with boundaries defined by a cylindrical surface f(x,y) = 0 and two planes
z=0and z = L. We designate displacements by u, v, w and stresses by
Ox' Txy' etc. and we assume that the normal three-dimensional homogeneous

equations of linear elasticity hold. We further assume that the boundary




portion f = 0 is traction free and that the boundary portion z = 0 is fixed.
In regard to the boundary portion z = L. we assume the absence of
normal tractions, in conjunction with a rigid body translation and rotation

distribution of tangential displacements, that is, we stipulate the conditions

72 = L; oz=0,u-U-y6,v=V+x9 ’ (1)

We now observe that in writing cquation (1) we may, or we may not, stipulate
additionally the magnitudes of U, V, ©. If we do, as we have done earlier

in conjunction with applications of the principle of minimum complementary

energy [4,5], then equations (1) are a complete statement of loading conditions.

If we do not and leave the magnitudes of U, V, ©unspecified then we must,
in order to complete the statement of loading conditions prescribe additionally
the magnitude of two transverse force components P, Q, and of an axial

torque T, as follows
S f = = = .
z = L; [(1gr 7,088 = (P,@), (1 x -7 y)dS=T 2)

In view of the linearity and homogeneity of the problem we have that P,

Q and T will be combinations of U, V and ©, and vice versa, in the form

P:KPUU *vaV‘leee,
(3)
Q=KqyU+eeee, T=KpUd.oo +K 00,
and
VU=CypP *Cya * Cur™:
(4)
V=CypPteis, ©=CgqrP+... +Cq,T,
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with the KPU' etc. being stiffness coefficients, the CUP' etc. being flexibility
coefficients, and with the expectation of symmetry for the matrix of the K's
as well as for the matrix of the C's.

Having equations i3) and (4) we obtain the coordinates of the center of

twist, x y,r, as the coordinates x, y of that point in the end cross section

TI
for which u = v = 0 in equation (1) while at the same time P = Q = 0, that is,

in the form

YT = (U/e) X o=o (V/e)

P=Q=0’ T (5)

P=Q=0"

and we obtain the coordinates of the center of ahear,' , as the coordi-

*s* YVg

nates of the point of intersection of the lincs of action of the forces P, Q for
the case ©= 0, in conjunction with the torque T being solely due to the forces

P, Q, that is, upon getting in equations (3) or (4)

=0, T =st - Pys. (6)

It turns out that with these defining relations the simpler form of the

results appears through use of the flexibility coefficients, namely

i Cur - SN i QR n
i ’ e ’ T ’ S . e
T CGT S CGT T CeT CGT
with y T Ys and Xy = xs for the normal case of a symmetric g-matrix.

The corresponding relations in terms of the coefficients K in equation (3)
come out to be ratios of certain second order minors of the third order

determinant of the coefficient matrix in (3). It will be useful to note for




what follows that we have, on the basis of equations (5) and (3),

e Kpvge ¥ov¥re  _"pu®ae” ®qupe i
i KPUKQV B KQUKPV L KPUKQV i KQVKPV

again with ys = Yy and xs = x,r in normal circumstances, and with the im-

portant special-case formulas

K K
Yo = - _pé . = _Qe 9)
G KPU i KQV
which result upon assuming that va = KQU = 0.

Minimum Complementary and Potential Energy Equations for the

Problem of Torsion and Flexure. We now assume that the material of the

beam is such that its stress strain relations may be written in the alterna-

tive forms

Q
1

BA/ch, Txy = aA/avxy, Seeh (10a)

and

€

» BB/aox, Yoy " bB/B'rxy,.... (10b)

We then have for the case of grencr'\bed U= G, V= V. e-= 6 as minimum

complementary energy condition the variational equation 61. = 0, where

I =-”Bd5dz+ﬁpn“/o +@T, (11a)
8

In (11a) the stresses ox. 7xy' etc. must satisfy the differential equations of
equilibrium and all stress boundary conditions, and the variational equation

-6-
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is equivalent to all strain displacement relations and displacement boundary
conditions. We have earlier considered the application of this variational
problem for the approximate determination of flexibility coefficients in con-
junction with stress distributions corresponding to the solutions of the St.
Venant torsion and flexure problem [4, 5].

For an alternate formulation of the problem, within the context of the
principle of minimum potential energy, which we have not considered pre-
viously, we now prescribe P=P, Q -Q, T = T, in association with the end
displacement distribution (1). We then have that the appropriate form of the
principle of minimum potential energy is the variational equation 6Id =0

where
1, = J{ Adsdz - PU - Qv - Te, (11b)

In (11b) the strains €’ Yy’ etc. are given in terms of displacement deriva-
tives, the displacement components u, v, w must vanish for z = 0, and u, v

must be as in equation (1) for z = L, with no restrictions imposed on U, V, €.

The variational problem as stated has as Euler equations the differential
equations of equilibrium in the interior and all conditions of prescribed stress
on the surface.

Having previously used the variational equation Ms = 0 for the deter-
mination of flexibility coefficient approximations - without regard to the fact
that the form of equations (11a) and (3) indicates that it would be more natural
to use this relation for the determination of stiffness coefficients - we have

not previously used the relation dld = 0 which, it is apparent from (11b) and

aTs




(4), is anatural starting point for the approximate determination of flexibility
coefficients.

Previous gencral considerations on upper and lower bound-determina-
tions for inf' :nce coefficients [2] indicate that the use of Is is associated with

the possibility of determining lower bounds for stiffness coefficients K and

that the use of [d gives the possibility of determining lower bounds for flexibility

coefficients C.

Furthermore, we know that the use of a potential energy function ld

defined by
1, - JJAdsaz, (12)

with 1% differing from I, by the stipulation thatinit U =0, V=V, €= €, will

d

be involved in the determination of upper bounds for stiffness coefficients.

d

In order to obtain upper bounds for flexibility coefficients we should
have a counterpart IB* to ls as defined in (11a), with G, V, e replaced by
P, Q, T, in such a way that the form of the tangential end displacement dis-
tribution remains prescribed in accordance with equation (1). We do not,
at this time, know the way in which to introduce these '""partial'" displacement
boundary conditions into the principle of minimum complementary energy.
Because of thia we do not here cstablish the appropriate form of l.,.r (which,
if symmetry considerations were the principal guides, ought to be given by
- [{Bds dz).

Upper and Lower Bound Relations for Influence Coefficients. Appro-

*
priate transformationa of the functiondls l., ld and ld , a8 defined in

.l




equations (11) and (12), lead to the upper and lower bound relations
~ proe A, ~ %
lasﬁ(UP+VQ*§T)s[d, (13)

-#(UP+VQ + ©T) <1 (14)

d’
with the missing left hand side of equation (14) making it evident that it could

*
be useful to have a functional Is as discussed at the end of the preceding

section. In equation (13) Is corresponds to the functional ls in (11a), with

~

any streases a’x’ , etc. which satisfy equilibrium differential equations and

>
Xy

~ %
stress boundary conditions, and Id

*
corresponds to I, in (11b), with any dif-

d

ferentiable displacement state u, v, w which satisfies the stipulated displace-

ment boundary conditions, with the same rules connecting Yd in (14) and Id
in (11b).

In order to see that (13) and (14) represent bound relations for stiffness
and flexibility coefficients respectively, we observe that Yd* as well as Ts will

be quadratic forms in 6, V and —9.. which may be written as

% U =2 U == U =2

xd = QKUUU + KUVUV § b ;yxeee (15a)
~ L =2 L =2
r' = QKUUU bove + *Keae' (15b)

At the same time the quantity which is bounded from above and below in equa-

tion (13) may be written, with the help of equations (3), as

- - - -2 —— =2 t
UP + VQ + €T = KPUU 1 (va 4 KQU)UV ¥ e & KTPQ (16)

where K =K

PU uvu’ Bk

= = ] s N te that
PV + KQU) va KQU KUV' etc e note tha

The author would like to acknowledge that the result expressed by equations
(13), (15) and (16) was found independently by S. Nair.

-9.
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when V = 6 -¢ equations (13), (15) and (16) specialize to a previously stated
result for the problem of flexure, within the framework of the theory of plane
stress [3]. Analogously, setting U =0and V =0 gives a simple explicit result

for the problem of twisting with end restraint against warping, which may not

have been stated previously. t We further note the evident simplifications
which occur in the above upon stipulating symmetry conditions which result
in bound relations for quadratic forms in two variables in place of the relations
for the general three-variable case.

We next consider equation (14), written in the form - Td 5}(U1-3 + VO + Pf’f).
In this, equation (11b) enables us to write with suitable coefficients CL,

LﬁZ LTZ

X, 2GS »cgoﬁﬁ»...+5cTT A (17)
At the same time, we have, through the use of (4), that
PU QY+ T@=C, P2 4(C,.  +Cy )PQ+... + Cg T (18)
uUpP uQ vpP er °
with the obvious consequences that
ck <c it 1 - €y 5 G (19)

pp = “urr Y00 *%va C1r1 *Cer

but with the determination of bounds for the coefficients CUQ + CVP' etc.
of the mixed terms, and therewith of bounds for the coordinates of the centers

of shear and of twist, depending upon the establishment of a bound functional

*
l‘ for the lefthand side of equation (14).

2
The result for twisting without restraint against warping ie contained in an
early fundamental paper by Trefftz [6].

-10-
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Approximate Determination of Shear and Twist Center Location Through

Use of Minimum Potential Energy Principle. Similar to what i ag been done

in earlier work on problems of combined twisting and bending of beams [1, 7,

8] we begin by stipulating as approximations for components of displacement
g = u(z) - yb6(z), v = v(z) + x0(z) . (20)
w = w (z) + xalz) 1 yB(z) + lx,y)\(z) (21)

In this ¢(x,y) is a function which is to be agsumed suitably, with the various
functions of z in (20) and (21) to be determined by the variational procedure,
with or without imposition of additional constraint relations.

As regards stress strain relations we here consider a material pos-
sessing a limiting type orthotropy, in such a way that there is partial
rigidity, with each cross section translating and rotating as an entity.

Our limiting-type stress strain relations are three relations t‘x =€ =Y

y Y,

= 0, in conjunction with three relations of the form

g =ke ., = = -
z 2’ Txz Gsz' Tyz nyz fed]

With (22) we have as expression for the strain energy function A in equation

(11)

2 2
2A = Ee¢ + Gy * 1 Gy - (23)
z X7 yz

1"I'hia assumption is meaningful for sufficiently slender beams only, where
its approximate validity depends on the relative insignificance of the com-
ponents of stress oy, in comparison with the components o,, T

Tyz.

cyi Txy Xz’




where, on the basis of (20) and (21),

€, = wO' Fxa' +yB' + o)\, (24)

=2 LA ' S g J ’
Yo smu' #on- g0 e o Y +8+x0 *M’y- (25)

In introducing (23) to (25) into the strain energy integral we shall assume

that the origin of the x,y system of axes is at the elastic centroid of the cross

section, that is we stipulate the relations _r(x,y)EdS = 0, Furthermore, we

shall assume that ¢ is the warping function for St. Venant torsion of a homo-

geneous beam with the same cross section as the given beam, that is, we
shall assume that ¢ is determined through the relations VZ¢ =10, .f(¢ % ¥ ) ¥
+x)dS =(0,0), (-y + & x)dy -(x+ 9 y)dx = 0 along the boundary f = 0 of the

cross section, we shall set as an abbreviation
D = J.(¢ 2 + ¢ Z)dS = I(ya - x¢ )dS (26a)
2 » X 4 X 'Y

and we shall stipulate, as we may, that fE¢dS = 0. To be consistent with our

choice of ¢ we furthermore assume in what follows that G_= const. With this

we now obtain as expression for the approximation Id to the functienal

Id in equation (11)

~ .2 A
Id = i\f [SE(wO )+ lxx(a )

2
+1 (B)" +21 o'’
y‘,B) ey g
4r(x’)z+zr a'\' +2r B
x y

+ Gl + ) 4 (v 4 ) - 20" + )0’ fyds

«]12e




+2(v' +8)8 [xds + IP(O')Z + DA%

-2D\®')}dz - PU - QV - T® , (27)

where U = u(L), V =v(L), ® = 6(L), and
2 2 )
L =fx" +y)as (r,rx,ry) = [(1,x,y)¢Eds ,

1) =fa,%% xy, y)Edas . (26b)

'I II »
xx" ‘xy’yy

Sg

Inasmuch as we are concerned with approximate rather than exact
results, we shall now further assume that translational deflections due to trans-
verse shear may be neglected and that the entire transverse shear strain energy

is that due to twisting. Considering the form of (27)'the desired reduction will

be accomplished upon introducing the additional constraint relations
al=cul Bi=tv e B =0 (28)

Anticipating furthermore the result e 0, we will then have in place of equation

(27)

= l IIZ llz " ”
ld-z,f{lxx(u) +I () 420 "y

+ l'(e")z -2 8"u" - 2T @"v"
x y
+c(8%dz -PU -QV - TO , (29)

with C = G(Ip - D) being the conventional St. Venant torsional stiffness factor.
In evaluating the variational equation bfd = 0 we take account of the
constraint boundary conditions u(0) = v(0) = 8(0) =u’(0) =v’(0) = 8'(0) = 0.

The corresponding six conditions for the loaded end of the beams are the Euler

=] 3=




boundary conditions

B0 AT R T R DN S SO g
xy x

XX Xy x X X

o+ v -T 9 =0,1 v+l V"-r9"=-6 (30)
Yy Y Yy Yy

I
Xy Xy

P aDv 4P =0, T P 4T gl -7
x y x y

for z = L, with the Euler differential equations being

T T e g -

xx Xy x

I ok +1 vIV - e“’ =0 . (31)
xy Yy Yy

TV T Y ereY . cor-o

In order to solve the problem as stated, we begin by obtaining from

(31) the transformed differential equations

kalV =@ -r1 )", V@ -ra eV, (32)
Xyy Yy Xy y xx X Xy
YT e e (33)
where
Rl i «F . T ef-@5 bl +Tr yx (34)
XX yy Xy * x'yy y x xy X xx x
and from (30) the transformed constraint boundary conditions
W =0 , Ku=-1 P+1. Q+(1 T -1 I')6"
Yy xy Yy x xyy
(35)

v’ =0 , Kv"=-1. Q+1 P+ T -1 I)e”
XX xy XXy Xy x

-14-




8" =0, I6”-co’~-1-q [ -1 T)p/K-@ I -1 THAK) , (36)

for z = L.
Fquations (33) and (36), in conjunction with the conditions 6(0) = 6°(0) =0,

give as expression for 6,

L=+ e -rIx = r‘xxx-r.xlx--
9(7,)—.;T+ ulth yzlP+ Y ZYQ
§ it L 2
= XX yy Xy XX Xy xy
z  s8inbhAL - sinhA(L - 2) i ©
: E J AL cos hAL P A E f‘; = (37)

Having 0 as in (37), we find u and v from equations (32) and (35) in the

form

Pr__ - 61x el S\ Ea -T1
= B s M .S 4
u(z) = ¥y ZY g i + 2 6(z) ,
) ) O LI =%
xXXyy  xy xx'yy xy
Al (38)
lex plxx Lz z3 E Ixx i l..xlxx 0
v(z) = 3 - il + 2 (z) .
| .. I -1
XX yy xy xx yy xy

We use equations (37) and (38) in particular in order to obtain the values
of ® = 6(L), U =u(L), V = v(L) in terms of F. 6, ?, so as to obtain from equa-

tions (24), as approximate expressions for flexibility coefficients

c L(, - tan hAL c e I‘xlyy B r‘y!xy 1 tanhAL
s T . a8 2 S
XX yy Xy

-15-




2

C ) L3 Iyy " L er y rLIxy 1 tan h)\L (39)
-5 o i T e g
UP 3 Rk IZ (] 5 o Al
XXyy X xx'y Xy

etc. Introduction of these expressions into the defining relations (7) for the
coordinates of the center of shear and of twist then give as approximations

for these coordinates

rxr -T1 r o= l"xlx
i - XYY Y Xy 5 L EREX DX XY
Yo = ¥m = ) Xg ¥ Xy = im . (40)
CHRRY e Iz S T EEaR Iz
xxXyy Xy XXyy Xy

We note that in the event that the x, y-axes in the cross section are
principal elastic axes we have lxy =0, and equations (40) reduce to the simplified
formx =-I'/I ,y =T /1 . For the case of a constant modulus E, these

8 Y Yy ‘¢ X xx
latter formulas agree with the results previously obtained in the classical
Weber-Trefftz considerations, as well as with our earlier approximate results
which followed from a determination of flexibility coefficients through use of
the principle of minimum complementary energy in conjunction with approxi-
mations for stresses as given by the St. Venant theory of torsion and flexure [4].

An interesting special case of the above is the case of a solid circular
cross section for which ¢ = 0, throughout, We then have that the location of the
shear center coincides with the elastic centroid of the cross section, for all
possible variations of E, as long as it is assumed that G does not vary. This
result should he compared with the well-known result for a uniform semi-
circular cross section which may be interpreted as the case of a complete

circular cross section with vanishing E and G over one-half of the section.

-16-




For this case we have as the distance of the centroid from the straight portion
of the cross sectional boundary curve % = 4a/3n ™~ 0.42a, while at the same
time the distance of the shear center is given by x, = 8a/5m = (0.51a, with the
differences in assumptions concerning the distribution of G for the two cases
evidently being responsible for a significant effect on the location of the center

of shear and of twist.

Approximate Determination of Stiffness Coefficients Through Use of

Minimum Comglementarx Energx Princigle. We now consider the use of the

variational equation 61’l = 0 with Is given in equation (1la), with o= (:vy =

Txy = 0, and with complementary energy density
1. 2 2
B = i(c°/E + ri/G +1./G) (41)
wherte o =g ., ¢ 2¢F¢ . T =T .
z" % xz' 'y yz

We have previously considered the application of this principle, for
the case of cross sections with the x-axis an axis of symmetry, and with E

independent of x and y [4], on the basis of stipulating a St. Venant distribution

1,0 = FQL -2y (42)

T = t = - -
# Q(x+x'#4ﬂr[y,fy Quy x.J Tnx (43)
with X and ¥ as stress functions, with tx and ty as particular solutions of

I (t +t -Ey=0, 44
Lp A YnY) y oy

and with X | ¥, Q and T to be determined by the variational equation in conjunc-
tion with the boundary condition Txdy - ‘rydx = 0 along f(x, y) = 0.

It was found in (4], with the help of transformations of some complexity,

=17=




that the result so obtained, comes out to be X =%, = 'ry“yy and an analogous
outcome may be anticipated for the problem without an axis of symmetry, as
long as the analysis is restricted by the assumption that E is independent of

x and y.

In what follows we consider the derivation of a different approximate
result, of independent interest and—insofar as our subsequent bound calcula-
tions are concerned—associated with slightly better results than would follow
from the use of an equation equivalent to (42).

Our starting assumption is now, in place of equation (42), the relation

O =(L-zT o+ Ty.y) {45)

where, as in (43), Tx and 1"r are independent of z and subject to the constraint

boundary condiﬁon
f x,y) = 0 H T d ~-Tdx =0 - 46

An introduction of (45) and (46) into (41) and (11a) leaves, upon carrying

out the integration with respect to z, the approximate energy expression

L =JJT-y®)1 + (V+xB)T

3
L 2 L 2 2
- — T - — { .
6E (Tx,x 3 Yo y’ 2G (Tx i Ty)]duy 5

The variational equation 6?. = 0, with the stipulation that 87 dy - brydx -0 for

f =0, has as Euler equations two differential equations for rx and Ty' of the form

T 2 [T T e
Tx  Lo(Txx'Tyy) | U-y®
G -3 E g Ty 1

18-
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T 2T + T = a
2 . V + xO
z-‘-—“a(”s ) s (48)
Y

Equations (48) may be simplificd by deducing from them the relation

(), (),

8
-ZE - (49)

it

which, in turn, implies as expressions for ‘l’x and fy in terms of an arbitrary

function ?(x,vy),

T G(¢.x -8y/L) , TY = c.(¢'y +Ox/L) . (50)

Introduction of equations (50) into (48) then gives further

¢ Ei (m-x)Lx ; (Gw-y)-y o .6_ + L_Z. _.LL__LY.XG ko é
,x 3 E < o 3 E ne *

(51)

Lz((ccb' x)' o (GG’ y).y)
® = =
» Y 3 E

y

While it is possible to continue the analysis for variable G, the results

of not doing this become sufficiently simpler to justify a restriction from here on

to the case G = const. With this restriction, and with observation of the condi-

tion IFMdS = 0, we recadily obtain from (51), as a second order differential

equation for @,
2 2 — -
¢ - (GL /3E)V ¢ = Ux/L + Vy/L . (52)

Equation (52) differs significantly from the corresponding equation for
the theory of torsion and flexure in accordance with St. Venant by the appearance

of the first term on the left. We note that for slender beams, with representa-

-19-




tive cross sectional dimension a < L this term will be small compared to the
second term, of relative order Eaz/GLZ, and that considering the form of the
differential equation, we may take account of this term by an iterative procedure.
The physical reason for the occurrence of the first term in (52) is evidently the
stipulation of a condition of no cross sectional warping at the fixed end of the
beam. While this condition is disregarded in the St. Venant formulation, it is
taken account of, approximately, in the present approximate solution through
use of the principle of ininimum complementary energy.

In order to obtain approximate expressions for flexibility coefficients

we now consider the solution of (52) to consist of three parts,
 =80g/L + (UP /L + V8 /L)/G (53)

with the functions ¢e, ¢u' ¢v subject to the differential equations.

(vz i —2%)“9' ¢u' wv) % -3—%(0' M. 5 e
GL L

and to the boundary conditions
f=0 ; ¢9'xdy - Go.ydx :ydy + xdx (55a)
and
£=0 3 - 2 &
; (¢u'x. ¢v,x)dy (@u. v Ov'y)dx 0 (55b)

With Oe. ¢u and ¢v dete rmined through equations (54) and (55), we then
have as expressions for cross sectional forces P, Q and torque T, on the

basis of equations (2) and (50),

PL = Gef“o,x - y)dS + U.]‘ﬁu'xds + vj'ov 35 (56a)
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with a corresponding expression for Q, and
.8 2 2
TL = C,GJ‘(xQ)e’Y - y8g  tX +y)ds

" Uf(x'ﬁ“'y - ¥9, )45 + V‘r(x¢v'y -y®, JdS . (56b)

A comparison of equations {56) with equations (3) gives as approximate

expressions for stiffness coefficients

“ -1
Kpy = L f’bu'de.va-L j'¢v'xds .

e

Kpg = CL J‘(%,x-y)ds,.... (57)
3

KTU =L ,f(x¢".y - y¢u.x)ds.... .

4 : 3
Kpg = GL I(x¢e'y-y¢e'x+x +y)das .

Stiffness Coefficients Expressed in Terms of Warping Function for

St. Venant Torsion. It is convenient to designate the warping function for

St. Venant torsion within the present context by ¢50)' with this function being

the solution of the boundary value problem.

2_(0) (0) (0) i
v ¢a =0 ; (¢9'xdy - ¢9.ydx)b = (xdx + ydy)b . (58)

We then have*

J'(ogo’x - yds = Jo? 4 x)as =0

a' y » (59)

and

J‘(xqs‘eo’y : y¢‘9°’x $2° 4748 1-D=C

. (60)

t
See, for example, Love's Treatise, Fourth Edition (1934), pp. 311-313.
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We note, specifically, on the basis of equations (59) that ¢(em is associated
with vanishing values of the coefficients er and KQG and that therefore
equation (58) represents an inadequate approximation to the contents of equa-

tions (54) and (55) insofar as the determination of 06 is concerned. We resolve

this difficulty by considering the improved approximation
09 =95 + o)) (61)

with ¢(e” determined from the relaticns

2 (1) 3E ,(0) (1 (1) 5
v ¢e = -——GLZ ¢o 3 (¢e'xdy - ¢9. ydx)b =0 . (62)

We now obtain, upon observation of (62),

_=lp(1)
Kpg = GL J'¢o'xds
.S (1) (1) 3E__ 40
= LI[(’wa,x),x + (’wo,y)(y - Zx¢° ]dS
GL

.G (1) (1 3 {eea(®)

= L§x(¢o.xdy - ¢e'ydx)ds - L3JEx¢9 ds

. -3L‘3jzx¢‘9°’ds ; (63a)
with a corresponding relation

Kqe - -3 eyl as (63b)

and with KTO given, on the basis of (60) and (57), by

-1
KTO =GL C . (63c)

In evaluating the remaining stiffncas coefficients, we may use the
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(0)

approximations $ = d‘u and ¢ = ¢(0), with the boundary conditions (55b) and
u

-2
the differential equations V (@‘m ¢(0) = -3EL (x,y). With this we obtain
a0
KPU = I¢u'xd5

-1 (0) (0) -z 2
L I[(xqsu’x)_x 4 (x(bu.y) y +IEL X las

L '0x@® gy - o 4y + 317 NP as
", x u,y
31" 3 Ex®as (64a)

and, ;lnalng()usly,

3% -3p 2
Kpy = Kqy = 3L [Exyas , Kqy = 3L JEy“ds . (64b)

Evidently, these results are such that the effect of transverse shear deforma-
tion is not included, and it is apparent that the calculations including this effect
will depend on a consideration of functions GU), ¢“) in approximations ¢u =
¢flo) 4 ¢fj”, etc, with ¥ 't“) -(3E/GL )¢(0)' etc.

in such a way as to express

(0)

these quantitites in terms of integrals involving the function ¢o , if possible.

It remains now to evaluate KTU and KTV'

This is accomplished as follows., We now use, in the defining relation

=1 (0) (0)
K'l‘ll i I(xﬁu'y : y¢u,x)ds z (65)

Green's theoremn, involving Ol(:)) and w‘o(” and appropriate relations satisfied

by these functions, in the form

o0 4© o 40,

Jt %, 0,v 0,y

)ds

(0) (0) (0) (0)52,(0)
é'b ¢|.xdy ry ¢u.ydx) g JbO : ¢u o
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=31 %[Exolas . (66)

In order to see that the left-hand side of (66) is in fact what we wish to have,

in place of the right-hand side in (65), we now make use, in place of '\b(:). of
the associated torsion stress function ‘I’(O), defined by \P(Oy) - (b(eo)x - y and
(0) _ 4(0) : oly® . (0) (0) -
W,x = ¢9,y - x, and therewith by V ¥ - -2 and (\P'Ydy + \ll'xdx)b = 0.
We then have
I(ﬁ(o) ¢(0) + 0(90) ¢(0) )ds
X u,x Yy 1,y

- (0), .(0) (0) . (0)

Sty + W - o WTHO 0 Jas

= Liye'® - x0'? yas + Jou!Ve! |y D@ )4y (67)

u, x u,y yY U,y X o,y

A second application of Green's theorem, now to the second integral on the
right, and observation of the properties of W(o) shows that this integral vanishes.

Therewith, and with (66) and (65), we then have as expression for KTU in terms

0)
of Oo -
2 -3 (0)
Kpy = =31 JExpg'das . (68a)
An analogous reduction gives
7 -3 (0)
Kpy = -3L IEy¢e as . (68b)

We note from (68) and (63) that our stiffness coefficients do satify, as they

should, the symmetry relations KTU = er and KTV = KQO' and we also note

that we have previously used a similar transformation as in going from (65) to

(68a), in expressing the approximate value for Xg = x.. in [4) for cross sections

T

symmetric about the x-axis in terms of St. Venant's torsional warping function.
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Having equations (60), (63), (64) and (68) for stiffness coefficients,
we now see from equations (8) for the coordinates of the centers of twist and
of shear in terms of these coefficients, in conjunction with the defining rela-
tions (26), that upon identifying aSg” with the function ¢ in (26) the present
approximate analysis by means of the principle of minimum complementary
energy does in fact lead to the same equations (40) for the location of the
centers as obtained through use of the principle of minimum potential energy.
It 18, however, worth noting in this connection that while in the complementary
energy calculations the function ¢(60) appears as a logical consequence of the
analysis, it's corresponding appearance in the potential energy calculations
depends on a fortuitous ad hoc assumption in the displacement approximation
equation (21), and that no agreement between the two types of results would
have occured if instead of defining ¢ in equation (20) as St. Venant's torsional

warping function some other definition had been used.

Some Explicit Bounds for Influence Coefficients. A return to our
consideration of bound relations in equations (17) to (19) indicates that the
set of approximate flexibility coefficients C, in equations (37) to (39), is in
fact also a set of lower bound coefficients CL. In this connection, we particu-
larly note the factor 1 - (AL)~ ' tan hAL in equations (39) which makes these
coefficients smaller than they would be without this factor.

Furthermore, we may utilize the analysis in equations (Zd) to (38) for
the purpose of solving the analogous problem, with U = G. V= V.O =0 as
constraint conditions for z = I,, instead of the conditions P = E. Q= 6. T =
?, and with Id in (11b) replaced by I: in (12), in such a way that the values
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ok — o
of P, Q, T which occur in Zld =UP + VQ +©OT are the saine combinations

of loaded-end values of derivatives of u, v, 8 as occur in the expressions for

P, Q, T in equations (30). It follows from this that the upper bound stiffness

coefficients KU in equations (15a) are in fact the elements of a matrix KU which

is the inverse of the matrix CLwhich is implied by equations (37) to (39).

Having thus obtained an upper bound quadratic form for the coefficients
K of the matrix K, in accordance with equations (15a) and (13), we next observe
that our analysis in equation (45) to (57) is of such nature as to make the ele-
ments K in equations (57) effectively lower bound coefficients KL, in accordance
with equations (15b) and (13). Evidently, equations (53) to (57) no more than
enable us to calculate these coefficients KL. However, considering the form
of the differential equation (52) and the order of magnitude considerations leading
from (54) to (58), (61), (62) and (64), we have that the explicit approximations
for the coefficients K in equations (63), (64) and (68) are in fact the values of
the lower bound coefficients KL, except for additive terms of relative order
(a/le.

We may associate this conclusion, with another one which will result

from a consideration of the upper bound coefficients KU obtained by inversion

of the matrix QL. This complementary conclusion is that the upper bound

coefficients KU obtained in this manner also agree with the approximate coef-

ficients in equations (63), (64) and (68), except for terms of relative order

(a/L)z. This being the case it is then possible to state that the approximate

values of the coefficients K in (63), (64) and (68) arc in agreement with the

exact values, except for terms of relative order ia/L)z. It follows then further

(o




that equations (40) for the coordinates of the centers of twist and of shear
represent the location of these centers—as defined by equations (5) and (6), in
association with the described mixed boundary value problem in three-dimen-
sional linear elasticity theory—exactly, except for terms of relative order
(a/L)Z. We may, if we wish, obtain improved bounds KL, including terms

of relative order (a/L)Z. by extending the calculations based on equations

(53) to (57) to the extent of determining, by iteration, the functions ¢(60) +

m(e” + ¢(92), ¢f,0) + ¢‘(ll). ¢E,0) + 0)‘(,”. We may also obtain improved bounds

KU by carrying out the analysis based on the displacement approximations

(20) without imposing the constraint relations (28). In contemplating such a
program it must, however, be born in mind that the present analysis is based
on the assumption of a medium for which the axial stress (7z results in no
lateral contraction effects in x, y-planes. Consideration of this lateral contrac-
tion effect would mean greatly increased complexity of the calculations leading
to the values KU. Such calculations may be expected to leave the first-approxi-
mation bound results unchanged, while at the same time being responsible for
second-approximation bound results involving additional terms of relative order

a/L as well as of order (a/L)Z'
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