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SUMMARY

An investigation has been made of the fatigue behaviour of 32 mm thick 2L.65
aluminium alloy lugs loaded through 19 mm diameter steel pins. It Involved constant-
amplitude and program-toad tests at cyclic frequencies of approximately I liz.

At high alternating stresses, the constant-amplitude test results fall within the relevant
data band in ESDU• Data Sheet 72020. However, additional data a to clarify
the fatigue performance of thick tugs for lives exceeding about 5 x 0’ ycles.

Under program-loading, the cycles actually applied at two of the Intermediate stress
levels exceeded the maximum experimental endurances obtained under constant-amplitude
at the same stress levels. In addition, the actual lives of specimens under program-loading
were about 10 times those predicted from the constant-amplitude data using the simple
Pahngren-Miner hypothesis.

Static tests on about 20 of the fatigued pin-lug joints indicated that fatigue crack
geometry may have an important influence on the residual strength of such a connection.
A satisfactory theoretical treatment of this problem is thur of practical importance.

* Engineering Sciences Data Unit. / \
\
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1. INTRODUCTION

Pin joints are a common method of connecting members in aircraft structures , and a
considerable amount of research has been carried out to determine the fatigue characteristics
of this type of connection. Some of the resulting information (for aluminium alloy Jugs) is
summarised in the Engineering Sciences Data Unit Item no. 72020 (Ref. 1).

Most of the fatigue research on pin joints has involved specimens in the thickness range
of around 5 mm to 15 mm, and it has been quite common to adopt cyclic frequencies exceeding
30 Hz for the conduct of the fatigue tests. The extensive investigations at the Royal Aircraft
Establishment, England (Refs 2-4) and the Nationaal Lucht- en Ruimtevaartlaboratorium ,
Netherlands (Refs 5—7) typify this research.

Fatigue data for large lugs of aluminium alloy presented in Reference 1, and more recent
fatigue investigations on large lugs carried out at the Aeronautical Research Laboratories
(Ref. 8) indicate that their fatigue strengths may be much less than those of small lugs. In
addition , photoelastic work by Dixon (Ref. 9) and Meek (Ref. 10) has shown that the stress
distribution in the lug of a loaded pin-lug connection is affected by the thickness (t) of the lug
relative to the diameter (d) of the pin. As the lug thickness (relative to the pin diameter)
is increased, pin bending results in a maximum shear stress on the face of the lug at the hole
boundary higher than the average maximum shear stress through the lug.0 In order to study the fatigue behaviour of thick lugs further, an investigation was under-
taken on aluminium alloy lugs of about 32 mm (1 ~25 inch) thickness with pins of 19 mm
(0~75 inch) diameter (d/ t = 0~6): these were tested at cyclic frequencies of about 1 Hz. Both
the thickness and frequency are more closely representative of aircraft applications and service
loading conditions than most previous tests on pin-lug connections. This investigation included
both constant-amplitude and program-load fatigue tests and , together with supporting fracture
toughness and residual strength analyses, forms the subject of this report.

2. TESTING PROGRAM
2.1 Test specimens

All specimens used in this investigation—fatigue, tension and fracture toughness—were
taken from the gripping ends of 2L.65 aluminium alloy fastener specimens tested in a previous
fatigue investigation (Ref. 11) which involved two batches of extruded material designated

a B.! and CL. The general plan form of the original specimens, together. with the locations from
which the smaller specimens were taken , is shown in Figure 1. Details of the pin-joint fatigue
specimens and the fracture toughness specimens are given in Figure 2. According to Heywood
(Ref. 12) the theoretical stress concentration factor (nett area) for the configuration of loaded
pin joint adopted in this investigation is about 2~8. The work of Meek (Ref. 10)—see Appendix—
indicates that , because of pin bending, the maximum shear stress at the hole boundary of the
lug in this joint would be increased by about 50% relative to a joint in which no pin bending 00 0 occurred .

The faces of the specimens were not machined further and remained anod ised as they had
been when originally used in the previous investigation. However, the prior gripping of the 0

fastener specimens caused some surface damage, and to eliminate any effect of this damage on
the fatigue performance of the pin-joint specimens, a small chamfer was machined at each end of
the lug holes. Surface finish measurements were made as specified in British Standard 2634,
Part 1, 1974 in four of the reamed lug holes using a stylus traversing length of 4 mm with a
meter cut-off of 0~8 mm. Surface finish values ranged from 0~5 to 1 .4 ~m (l9 8 to 55~2 pinch)
CLA with an average of 0.9 ~zm (35~5 pinch).

I
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2.2 FatIgue tests

Figure 3 illustrates a specimen mounted in a Losenhausen UHS2O hydraulic pulsator which
was used for all the fatigue tests. The specimens were assembled dry—without lubrication—
using high tensile steel shoulder screws as the pins and with MoS, impregnated nylon shims fitted
between the specimens and the steel loading links. A slight clearance was maintained between
the specimens and the links. New shoulder screws were used for every specimen, the clearance
between the holes and the pins ranging from 0~0l5 mm (0~0006 inch) to 0~07 mm (0 0028 inch)
with an average of 0 043 mm (0~ 0017 inch). The clearances for the individual holes are included
in Table 1.

The PL4 control system of the fatigue machine provided a triangular saw-tooth wave shape
with a faster rate of unloading per cycle than of loading. All fatigue tests were carried out at
constant rates of loading (40 MPa/sec) and of unloading (130 MPa/see) and , as a consequence,
the cyclic frequency of the fatigue tests—expressed in terms of cycles per minute—was greater
at the lower stress amplitudes. A constant minimum stress on net area of 23~4 MPa (3,400 psi)
was used throughout the tests. At the four alternating net area stresses of ±21 .7 MPa (3,150 psi),
±41 4 MPa (6,000 psi), ±70~7 MPa (1O,25O psi) and ±96~5 MPa (l4 ,000 psi), the cyclic
frequencies were approximately O~7 Hz (42 cpm), 0~35 Hz (20 cpm), 0~2 Hz (12 cpm) and
0~17 Hz ( II  cpm) respectively. In addition to four specimens being fatigue tested under constant-
amplitude conditions at each of the above alternating stresses, four specimens were tested under
a ‘standard ’ program-loading sequence utilizing the same four cyclic stress levels. This program-
loading sequence is illustrated in Fig. 4(a). One specimen was tested under the ‘modified’ three-• load-range sequence shown in Fig. 4(b) .

2.3 Residual strength tests

Complete fracture at one end of the specimens usually terminated the constant-amplitude
fatigue tests. The residual strength of the ‘unbroken ’ end of each specimen was subsequently
determined by loading it statically in tension through a shoulder screw in a similar manner
to that in the fatigue test. For these tests the other end of the specimen was held in serrated
wedge grips.

Static residual-strength tests were also made on the program-load specimens which did not
fail during the fatigue tests. Each end was loaded successively using the pin joint and wedge
grip arrangement referred to above.

2.4 Fracture toughness tests

Fatigue pre-cracking and the determination of the Kw values of the compact-tension
fracture toughness specimens shown in Figure 2(b) were carried out in accordance with the
recommendations of ASTM Standard E399-72. During pre-cracking the maximum load of the
fatigue cycle for individual specimens ranged from between 6~3 kN (1,410 lbf) to 7~8 kN (1,740
lbf), with a minimum load of about zero. The first four specimens pre-cracked (nos CL26HS,

a CL29BS, BJ I 6JS and CL29BT) were pre-cracked in a 100 kN (lO-tonne) Amsler ‘Vibrophore’
at a cyclic frequency of about 60 Hz. About 70,000 to 105,000 cycles were required to produce
satisfactory cracks which , in these four specimens, were monitored optically. The remainder
of the specimens were pre-cracked in a 330 kN (75,000 lbf) MTS electro-hydraulic machine at
a cyclic frequency of about 30 Hz. For most of these, crack growth was monitored from the
output of a crack opening displacement (COD) gauge which also allowed the test to be auto-
matically discontinued when the appropriate crack length was reached. Between 43,000 and 78,000
cycles were required to pre-crack individual specimens.

3. TEST RESULTS

3.1 FatIgue and residual strength tests
Detailed results of the fatigue tests are given in Table 1, and the constant-amplitude data

are also presented in the S/N diagram , Figure 5. The average S/ N curve was derived from a
least-squares anal ysis of the data with the assumptions of a log-normal distribution of lives

2

L J ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 
._

~~ — -~~~~~~~~~ ~~~~~~~ .. -



F! - ----,----- .
~

, _____________________ 
_ _

and that the S/ N curve could be adequately defined by a polynomial function. The best-fit curve
shown is a second-order curve. With the exception of a fifth program-load specimen (no. CL25DB)
which failed at 978~5 programs under the modified 3-load-range program, all the “standard”

O program load tests detailed in Table 1(b) were terminated at between 600 and 700 applications
of the program. Figure 6 indicates the general method of classifying the various origins and
geometries of the fatigue cracks which are listed, for each specimen, in Table 1(a).

All of the fractures resulting from the static residual strength tests were photographed so
that the extent of the fatigue cracking could be accurately assessed. The areas of fatigue cracking

TABLE 1(a)
Cumtaat-amplltude results

(S,~~ = 234  MPa (3,400 psi))

Pin/hole clearance Fatigue Fatigue

Specime~’ failure crack

number End I End 2 classification
H -

mm ins mm ins cycles end

Sa = 96~5 MPa( l4 ,000 psi)
Snw.x = 2l6~5 MPa (31,400 psi)
BJ 1OG B 0~033 0~00l3 0 043 0~0017 7,086 1 a, d, i, m
BJI6JB 04)51 04)020 04)28 0 0011 7,607 1 a,e,g,l
CL23GB 04)51 04)020 04)15 0~0006 7,811 2 a, e, f, i, k
CL21CB 0 066 0.0026 04)51 0~0020 9,229 2 a, d, h, k
log, average life = 7,895
std. deviation of log, life = 0~049

S~ = 707 MPa (10,250 psi)

• Smax = 164~8 MPa (23,900 psi)
BJ91A 04)53 0~0021 0’030 0’0012 16,494 1 a,d,h,l
CL29BB 04)23 0’0009 04)33 0~00l3 18,571 2 a,h,m
BJI5CB 04)33 0~0013 04)55 04)022 20,816 2 b,f,h,m
CL29GB 04)43 0 0017 0’048 0.0019 30,971 2 b,d,g,j
log, average life = 21,080
std. deviation of log, life = 0’ 119

Se = 4 1 4  MPa (6,000 psi)
S,,ox = 106’2 MPa (15,400 psi)
BJI9BB 0’058 0-0023 0~046 0~00l8 58,362 2 b,g,l
BJ17DB 0’038 0~0015 0~053 0 0021 65,840 2 b,i,k
BJIOGA 0’033 0 0013 0’036 0’0014 82,440 1 b,h
CL26HB 0•058 0~0023 0’048 0 0019 120,866 1 b,f,h
Jog, average life = 78,662
std. deviation of log, life = 0 139

Se = 21.7 MPa(3,l5O psi)
S,,..~ = 66’9 MPa (9,700 psi)
CL24HB 0~030 0-0012 04)48 0’0019 268,785 1 c,h
BJ7BB 0’030 0 0012 0-033 0 0013 479,224 1 c,g,k
CL28.JB 0’055 0~0022 0-071 0’0028 606,213 2 c,1
CL22EB 0-046 0 0018 0 043 0-0017 682,283 2 c,k
log, average life = 480,433
std. deviation of log. life = 0180

3
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were then carefully traced from 4X enlargements—referring to the original fracture surfaces as
required, and these are reproduced in Figure 7. Details relating to the failing loads, areas of

— 
fatigue cracking and residual stresses for each specimen are given in Table 2. Three of the four
ends without fatigue cracks (and also CL24HB-2 which contained a very small fatigue crack)
failed in a way typified by Figure 8. All the other specimens failed essentially across the plane
of minimum section through the hole.

3.2 Fracture toughness and tensile properties

Table 3 presents the results of the fracture toughness tests on 14 of the 17 specimens tested.
The results from the remaining three specimens were, according to the requirements of ASTM
E399.72, invalid.

The tensile properties of the two batches of material (B.!  and CL) are given in Table 4.

4. DISCUSSION
4.1 Constant-amplitude fatigue test results

• Table 1(a) indicates that, within the limits of the S/N data, there is a progressive increase
in the standard deviation of log, life with increasing mean life. This confirms similar findings
of previous investigations (Refs 11, 13). In addition , the number of apparently independent
fatigue crack origins decreases from an average of 4 at the highest maximum stress to 2 at the
lowest maximum stress, and this observation also supports those made previously (Refs 8, 11, 14).

The broken curves in Figure 5 are taken from Figure 1 of ESDU Data Sheet no. 72020
(Ref. 1) and represent the scatter band enclosing 95% of the experimental results- for large hole
lugs, d greater than 19 mm (0’747 inch), made of solution treated and artifically aged aluminium
alloys. It is clear that the current results lie within these bands for the stress limits considered,
although most of the data in the ESDU Data Sheet are for d/ t ratios exceeding 1 ‘5. In only

TABLE 1(b)
Program-load results

(Smin = 23’4 MPa (3,400 psi))

Pin/hole clearance Fatigue failure
Specimen
number End 1 End 2 0 _____________

mm ins mm ins programs end

Si andard prog ram—4 load range (Fig. 4a)

BJI8IB 0’033 0’0013 0’033 0-0013 605 (unbroken) —
[Control system malfunction at 461 programs added 7,400 cycles to stage 1 and
9,800 cycles to stage 2 of this particular program]

BJI3CB 0’020 00008 04)55 O’0022 615 (unbroken) —
BJ9IB Not measured 654 (unbroken) —• CL28GB 0’025 0 0010 0 030 0 0012 697 (unbroken) —

Modified progr am—3 load range (Fig. 4b)

CL25D B 0-1 55 0’0061 0 046 0’00l8 978’5 2

4
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one of the sets of data on which the ESDU Data Sheet was based was the thickness of the lug
greater than 25 mm (one inch), and this was the only case where the ratio dli was less than one;
i.e. 0’61, which is equal to that adopted in the current investigation. Although these particular
ESDU data related to S~ of about 10 MPa (1 ,400 psi) and fatigue lives of about I ’S  x 10’ to

• 6 x 10’ cycles they, and similar results from large lugs given in Reference 8, appear to lie below
• the projected lower limit of the S/N band shown in the ESDU figure.

Thus, in view of the increasing importance of accurately estimating the effects of low-

TABLE 2
Static residual strengths

(Average uncracked failing stress = 486 MPa (70,500 psi))

• Failing load Fatigue cracks Nominal failing stress
Specimen End — _____ — ___________ _____ — —— _____

number Total area % of % of
kN lbf No. un- MPa psi Un-

mm 2 in 2 cracked cracked

Constant-amplitude
BJ I OGB 2 324 72,800 4 30’4 0’047 3’83 424 61,500 87
BJI6JB 2 298 67,000 4 2l’l 0’033 2’66 386 56,000 79
CL23GB 1 285 64,000 3 99’7 0’155 12’56 411 59,500 84
CL21CB 1 339 76,100 3 21’3 0’033 2’68 439 63,600 90
BJ9IA 2 251 56,500 4 167’6 0’260 21’12 401 58,200 82
CL29BB 1 303 68,000 3 59’2 0~092 7’46 412 59,800 85
BJ 1 5CB 1 365 82,000 3 4’7 0’007 0’59 462 67,000 95
CL29GB 1 391 88,000 No fatigue cracks 0 492 71,600 —
BJI9BB 1 217 48,800 2 15 1’3 0’236 194)7 338 49,100 69

• BJI7DB 1 365 82,000 1 10’6 0’0l6 1’34 466 67,500 96
BJIOGA 2 182 41,000 2 217’6 0’337 27’42 316 45,900 65
CL26HII 2 215 48,400 2 282’8 0’438 35’64 421 61,100 86
CL24HB 2 389 87,500 1 0’7 0’OOI 04)9 490 71,200 101
BJ7BB 2 367 82,500 1 3’8 0’006 048 464 67,400 95
CL28JB I 365 82,000 2 34~7 0’054 4’37 481 69,700 99
CL22EB I 235 52,800 2 187’6 0’291 23’64 388 56,200 80

Program load (standard 4 load range)

BJI8IB 1 378 85,000 No fatigue cracks 0 476 69,100 —
2 386 86,700 No fatigue cracks 0 486 70,500 —

BJI3CB 1 356 80,000 4 5’S 0.008 0’69 452 65,500 93
2 390 87,200 No fatigue cracks 0 491 70,900 —

BJ9IB 1 375 84,200 3 I’S 0’002 0.19 473 68,600 97
2 369 82,900 2 2’6 0 004 0’33 466 67,600 96

CL28GB 1 372 83,700 3 8-5 0’013 107 474 68,800 97
2 220 49,400 3 I16~2 O’180 14’64 325 47,000 67

Program load (modif ied 3 load range)

CL25DB 1 383 86,000 • 4 3’7 04)06 0’47 485 70,300 100

5
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TABLE 3
Fracture toughness of material

Specimen number
MPa m4 ksi in4

BJ I5 CS 25’9 23’6
BJ15CT 25’8 23’5
BJ 16JS 25’9 236
BJ16JT 25’6 23’3
BJ18!S 26’8 24’4
BJI9BS 25’6 233
BJI9BT 25’8 23’5
Average 25’9 23’6
Std. dcv. 0’4l 0’37
Coeff. variat. 04)16 0 016

CL2ICS 31’4 286
CL2ICT 30’O 27’3
CL23GS 3l ’O 28’2
CL26HS 30’7 27’9
CL26HT 30’9 28’l
CL29BS 3l’O 28’2
CL29BT 3l’3 28’S
Average 309 28’l
Std. dcv. 0’46 0’43
Coeff.variat. 04)15 04)15

TABLE 4
Tensile properties of material

Material No. 0’1~ .. PS 0’2°~ PS UTS Elong. o ’l ° -PSbatch ol ( o n
tests MPa psi MPa psi MPa psi 2”) UTS

Specification BS L.65 (minimum)
432 62,700 494 71,700 8 [0.87]

83 1 2 5
Average 457 66,300 463 67,200 510 74,000 11’5 090
Stand. deviat. 12 1,700 13 1,900 10 1,400 1’O
Coeff.variat. 04)26 04)26 04)28 04)28 0 019 04)19 0 081

CL 12
Average 469 68,000 476 69,100 526 76,300 124) 0’89
Stand. deviat. 9 1,300 9 1,300 6 900 I 4)
Coeff.variat. 04)19 0’019 04)19 0 019 0011 0’OIl 04)766
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amplitude freq:~ent1y-occurring loads on the f~tigue life of aircraft structures, there is a definite
need for accurate data on the fatigue properties of thick lugs at low alternating stresses corres-
ponding to fatigue Jives exceeding about 5 x 10’ cycles.

4.2 Spectrum-load fatigue tests—~ life estimation
None of the eight pin/ lug ends tested under the standard program failed during fatigue

testing. Subsequent residual static tests (see Table 2 and Fig. 7) indicated that in three of the
ends no fatigue cracks we re present, and in four of the remaining five the cracks were relativel y
small, in only one end (CL28GB-2) was the crack development such that fatigue failure might
have been anticipated within, perhaps, the next 50 programs. Thus the minimum actual life may
have been close to 750 programs.

It is of interest to note, at this point, that even the shortest life ‘standard-program’ specimen
(BGI8IB)—for which the test was terminated at 605 programs—represented the application of
totals of 605, 31,460, 242,000 and 526,350 cycles respectively at each of the four individual
alternating stress levels, and that, for the two intermediate stresses, the cycles actually applied
exceeded the maximum experimental endurances obtained in the constant-amplitude tests at
these stress levels—see Table 1(a).

An estimate of the average test life under program loading can be made by directly using
the constant-amplitude test results. For the four constant-amplitude stress ranges the average
difference between the log, average lives and the log, minimum test lives is I 4)5 times the standard
deviation of log, life; and the average standard deviation of log, life for this data is 0’ 122. If
one assumes similar values for these parameters under program loading, then based on a minimum
test life of 750 programs under the ‘standard’ program-loading sequence, the average test life
would be:

antilog flog 750 + (1 4)5 ~ O ’ 1 22)J — 1,000 programs.

The simple Palmgren-Miner linear cumulative damage hypothesis (sn/N = 1), in conjunc-
tion with the calculated log, average lives at each of the four constant-amplitude stress ranges,
was used to make an estimate of the average f atigue Jives under both of the program-loading
sequences. As indicated in Table V, the lives so estimated were 105 ‘4 programs for the standard
program and 156’ 1 programs for the modified program. For the standard program therefore ,
the average life estimated directly from the test results is approximatel y 10 times that calcu lated
using the Palmgren-Miner hypothesis. For the sing le test result under the modified program,
the ratio of that life to the calculated average life is approximately 6’S.

For the particular fatigue testing conditions outlined above—large pin joints in repeated
tension under program-loading with a relatively small number of load cycles per program—the
simple Palmgren-Miner hypothesis apparently provides a very conservative estimate of fatigue life.

In terms of theoretical fatigue damage, the maximum load range of the program-load
sequences makes an insi gni ficant contribution. However, it is well k nown (Refs 15, 16) that the
intermitten t application of high tensile loads can cause crack growth retardation and, as a
consequence result in an increase in fatigue life. Furthermore Heywood (Refs 17, 18) has reported
that, for lug specimens of the same aluminium alloy as that used in this investigation , the appli-
cation of a high tensile load at regular intervals during an otherwise constant-amplitude fatigue
test sequence can cause a substantial improvement in fatigue life. As an example of Heywood’s
results, when a high load of magnitude equal to about 59 MPa (8,550 psi) greater than the
maximum load of the constant-amplitude sequence was applied as follows:

— at commencement of test, and every 20,000 cycles to 500,000 cycles
— then every 50,000 cycles to 1,000,000 cycles
— then every 100,000 cycles to 2,000,000 cycles
— then every 200,000 cycles to 4,000,000 cycles
— then test continued to failure without further overloading,

the life was increased from an average of 124 ,000 cycles to over 7 x 10’ cycles.
For the standard program in the current series of tests, the peak load was applied at intervals

of 1323 cycles, the magnitude of the corresponding maximum stress being 5l7 MPa (7,500 psi)
greater than the next highest maximum stress of the sequence. The significant increase in fatigue

7
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life under program-loading compared with constant-amplitude loading appears to be directly
attributable to the effects of this intermittent load application.

The question arises as to the mechanism by which the intermittent application of a high
load causes an increased life in a pin joint configuration. Two possiblities which might be
considered arc stress redistribution associated with preferential strain hardening at the potential
crack nucleation sites and, secondly, a modification in the development of fretting damage.

A well-developed pattern of fretting was evident on the surface of all holes at positions
corresponding to the bearing areas of the pins. As shown in Figure ~~, the fretting was more severe
adjacent to the faces of the lugs (where the shear stresses associated with pin bending were
a maximum) than at the centre. The origins of the fatigue cracks in every specimen were just
inside the circumferential boundaries of the fretted regions. In the constant-amplitude tests
the crack initiation sites (Fig. 6) were either at or very close to the faces of the Jugs, whereas in
the program-load tests they were predominantly within the hole and between 2 ’5 mm (0’ 1 inch)
and 6 mm (0-25 inch) from the corner.

An apparent consequence of the program-load testing sequence was thus to change the

TABLE S
Life estimates, standard and modified programs

Sa, MPa n N E n/N per Damage
(psi) program (%)

Standard program
96’S 1 7,895 0.0001266 I’33
(14,000)

70’7 52 21,080 0 0024668 26 ’OO
(10,250)

41’4 400 
— 

78,662 0’0050850 53 ’59
(6,000)

21’7 870 480,433 0’0018109 19-08
(3,150)

Totals 1323 0 0094893 100

Estimated average life = 105’4 programs

Mod~/1ed program
96’S 1 7,895 0 0001266 1’98

(14,000)

70’7 52 21,080 0-0024668 38’SO
(10,250)

41-4 300 78,662 0-0038138 59’52
(6,000) -

Totals 353 0~0064072 100

Estimated average life = 156’ 1 programs

8
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initiation sites of the fatigue cracks. Fretting has been postulated (Ref. 19) to result from repeated
reversed shearing actions in the surface layers of the materials in contact which leads to the
developmen t of fat igue cracking under what are , essentially, high strain conditions. It is con-
jectured that t~e occasional hi gh alternating load in a multi-load-level fatigue test sequence
could cause actual relative movement (or slip) between the contacting surfaces, rather than greater
reversed shear in the surface layers. Associated with the slip between the surfaces could be a
separation of the fretted regions before the extensive development of ‘fretting damage’, and
the elimination or retardation of further damage and crack development in those particular
regions. Upon further fatigue cycling at lower loads, the frett ing process wou ld need to re-
establish itself in the same or in other locations.

Because of the differences in the crack initiation sites under constant-amplitude and program-
loading, the relevance of using constant-amplitude data to predict the lives of pin joint assemblies
under a multi-load-level sequence is questionable.

4.3 Residual strength of cracked lugs

Reference was made in Section 3.1 to the difference in the fracture paths in specimens which
were uncracked and those containing fatigue cracks. The influence of only very small cracks in
changing the fracture mode in lug ends of this configuration should be noted ,

The residual static strengths of the cracked lugs are summarised in Figure 10, the various
points being firstl y categorised by the particular batch of material (BJ or CL) and then by the
major fatigue crack development in each case. The differences in fracture toughness between
the two batches of material (BJ:  25’9 MPam~ (23’6 ksi in k) and CL: 309 MPam’ (28’ 1 ksi
ink)) is possibly reflected by a trend toward higher residual strengths for the CL material. How-
ever, a complicating factor is that there appears to be some correlation between the residual
strength and the type of fatigue crack development, in that types 1 and 2 cracking appear to
lie on the ‘low’ side of the data and types 4 and 5 on the ‘high’ side. This may be associated
with differences in the resolved stress situat ion at the crack fron ts for the various configura tions
of cracks , e.g. comparing cases 2, 4 and 5; but no analytical solution was found in the literature
to predict the residual strength of pin/Jug connections with cracks covering all of the different
shapes and sizes found in this investigation.

Because of the potentiall y significant effects of crack configuration on the residual strength
when a more complex situation than a single corner crack is involved , it would appear that
a satisfactory theoretical treatment of this problem is of practical importance.

5. CONCLUSIONS
From an anal ysis of the tests reported herein , the following conclusions emerge.
I. At high altern at in g stresses , the constant-amplitude fatigue test results fall within the

releva nt data band for thick lugs presented in ESDU Data Sheet no. 72020, but additional
dat a are required to clarify the fati gue performance of thick lugs at lives exceeding about
5 x 10’ cycles.

2. Under program-loading, the cycles act ually applied at two of the intermedia tr stress
levels exceeded the maximum experimental endurances obtained under constant-alT plitude
at th e same stress levels.

3. The actual lives of the specimens under program loading were about 10 times those
predicted from the constant-amp litude data using the simple Palmgren-Miner hypo-
thesis , thus indicating that this hypothesis provides a very conservative estimate of life
under the particular fatigue testing conditions employed.

4. It is suggested that the long fatigue lives under program loading can be attributed to
the application of the peak load at regular intervals during the fatigue test. Two possible
mechanisms are firstl y, stress redistribution associated with preferential strain hardening
at crack initiation sites , and secondly, modifications in the development of fretting
damage in which slip between the contacting surfaces at the highest load requires the
fretting process to re-establish itself after each such load application.

9
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5. Static strength tests on fatigued pi~ “ug joints showed that fatigue crack geometry may
have an important influence on the residual strength of such a connection. It would
appear that the derivation of a satisfactory theoretical treatment of this problem is
of practical importance.
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APPENDiX

Stress distribution In hip

The plan dimensions of the photoelastic specimens used by Meek (Ref. 10) are similar
to the aluminium alloy Iugs shown in Figure 1, and the ratios diD and Hid almost identical.
One of the specimens used by Meek had a dli ratio of 067 which was also almost identical
to that adopted for these fatigue tests. In addition , Meek investigated the effect of radiusing
the corners of the hole, and compared the effects of using loading pins of the same modulus
of elasticity as the lug material with those having a modulus of three times that of the lug. -
Both investigations are very relevant to the configuration of the pin/lug assembly used in the
present investigation.

Although the work of Dixon (Ref. 9) indicates that pin bending could cause the maximum
shear stress at the boundary of the lug in such a joint to be increased by 15%, Meek’s work
suggests a value closer to 50%. Radiusing the corner of the hole resulted in a further increase
of shear stress—estimated to be about 25%—whereas the use of a high modulus pin was estimated
to reduce the shear stress by about 20%. Thus, for the configuration of the aluminium alloy/steel
pin connection used in the present investigation, it was estimated that the maximum shear stress
at the hole boundary in the lug would be about 50% greater than the average maximum shear
stress through the lug.
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FIG. 9 FRETTING PATTERNS IN LUG HOLES
(a) Constant amplitude, specimen no. BJ1OGA (end 2)
(b) Program load, specimen no. CL28GB (end 2)
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