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ABSTRACT

A specialization of the dual simplex method is developed for solving
the linear programming (LP) knapsack problem subject to generalized upper
bound (GUB) constraints. The LP/GUB knapsack problem is of interest both
for solving more general LP problems by the dual simplex method, and for
applying surrogate constraint strategies to the solution of 0-1 "Multiple
Choice" integer programming problems. We provide computational bounds for
our method of O0(n(log n + log m)), where n is the total number of problem
variables and m is the number of GUB sets. In the commonly encountered
situation where the number of variables in each GUB set is the same, our
bound becomes O(n log n). These bounds reduce the previous best estimate
of the order of complexity of the LP/GUB knapsack problem (due to Witzgall)

and provide connections to computational bounds for the ordinary knapsack

problem.
fw
L White Sectien
™ e B
WANNOUNCED a
JRTIFIGATION........................
.

mnmmmﬁiﬂihiﬁ CO0ES

A/

. AVAIL. w0 /o 1AL




i NGBl s e L AEOGR  S a " —— -
e B e e e s, S L ISR A o2

1. INTRODUCTION

A good deal of attention has been given to standard LP knapsacks for
their role as relaxations in branch and bound methods for solving integer
knapsack problems [2, 5, 9]. Such problems have been studied as an end in
themselves, and also as surrogate constraint relaxations for more general
0-1 integer programming (IP) problems.

Many 0-1 IP problems, however, are of the "multiple choice" variety,
attended by the requirement that the variables of partitioned subsets sum
to one. Specialized IP methods for problems involving such generalized upper
bound (GUB) constraints have been proposed in settings of varied generality
(e.g., [3, 4, 6]), and recently some attention has been given to integer
knapsacks with GUB constraints [14, 15]. To solve these and more general
problems using LP and surrogate relaxations, it is important to be able to
solve LP/GUB knapsacks efficiently. It is also valuable to be able to solve

LP/GUB knapsack problems to accelerate the solution of ordinary LP/GUB prob-

lems by the dual simplex method, as pointed out by Witzgall [l6]. Conse-
quently, the goal of this paper is to develop an algorithm for the LP/GUB
knapsack problem that is both easily implemented and highly efficient.

Two earlier papers dealing with this problem (in slightly less general
form than tfented here) are worthy of special note. The paper by Sinha and
Zoltners [15] is the first to identify the characteristics of the undominated
solution space for the case in which the knapsack is an inequality constraint.
These authors then develop a method that is reported to speed the branch and
bound solution of the integer GUB knapsack problem. The second paper, due

to Witzgall [16], examines the case where the knapsack is an equality con-

;----lIlIIllIlllllIllIlllllIllllllIlllllllllllIlllIIIllllIIllllllllllllllllllllllll“i




straint spanned by the GUB sets. Witzgall's work is especially notable for

its geometric characterizations and the specification of "worst case" compu-
tational bounds for his algorithm. In particular, the algorithm of [16] is

shown to be of complexity O(n log n) + O(m(n-m)), where n is the number

of variables and m is the number of GUB sets. This is the first result that
bounds the complexity of the LP/GUB knapsack problem i{n this manner.

In this paper we use am~ alternative framework that focuses directly on
properties of the dual simplex method applied to the LP/GUB knapsack problem.
After specifying necessary and sufficient conditions for dual feasible bases,
we identify relationships that hold automatically in the application of the
dual simplex method. These relationships are then utilized to develop a
specialized version of this method which is shown to be of complexity at
most VO(n(log n + log wm)), or in the case where each GUB set contains the
same number of elements, O(n log n). These bounds are interesting not only
because they reduce the previous estimate of the order complexity of the LP/
GUB knapsack problem, but also because they reduce to the same form as one of
the standard algorithmic bounds for the ordinary LP knapsack problem without
GUB constraints, thereby establishing a connection between these more and

less general problems.

2. PROBLEM NOTATION

The LP/GUB knapsack problem may be written

Minimize l ¢ X )
JFN .] j




3
subject to }_' ax, = a 2)
JEN 33 o
E xj = 1; ke M= {1,...,m} (3)
Jed,
xj 20; 1 e = 11,...,n} (4)
where J NJ =P for p#qand J = U J CN,
P 1 b k
keM
There are no restrictions on any of the problem coefficients (ao. aj.
cj). except that we exclude the trivial situation in which aj = (0 for j ¢
N - J.

Two subcases of interest included by our results are for N = J (as in
Witzgall [16]) and for N - J = {n}, where xn is a slack or surplus variable
(as in Sinha and Zoltner [15]). We will comment on the specializations of
our results to these subcases at appropriate points.

To begin, we make a simple and well known observation concerning the

structure of basic solutions for this problem.

Remark 1. In every basic solution to the equations (2) and (3), m - 1 of the

sets J , k € M will have exactly one basic variable. The remaining Jk set

k‘

will have one basic variable {f there i{s a basic variable in N - J, and other-

wise will have two basic variables. (By convention we refer to a variable as
"in" a set if its subscript is in the set.)
To facilitate the subsequent development, we will introduce notational
conventions that will be useful for depicting the form of a typical basic
g solution within the framework of the dual simplex method. Throughout this

paper, we will let Jq denote the exceptional set that has two basic variables,

]
&
:
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when this situation applies, and in general, let x . denote the basic

k*
variable (or one of the basic variables) in set Jk' k € M. We will

suppose that k* is unique for each set Jk’ and call Xy the starred

basic variable for Jk' In the case of Jq, we will denote the basic vari- 3
able other than xq* by xq,. As will be seen, this convention will allow

us to associate different formulas with xq*

and xq,, though of course these
formulas yield equivalent expressions when q* and q' are interchanged.
Additionally when there exists a basic variable in N-J it is denoted by

xp. Finally, we introduce the objective function variable x = - J%% cjxj
whose maximization achieves the minimization of (1), and let NB denote the

index set of current nonbasic variables. (4)

Basic solution forms

Case 1. xp is basic in N - J.

g I T )

X + = 6

P j;;m VJXJ Yo iy

L + 2 xJ =1 keM (7)
jeNB(WJk

= - *
(Note, NBﬂJk Jk {k*}.)

Case 2. No variables are basic in N - J; xq. and x

are basic in J . ]
q* q
o JENB i Wk (8 : d
X! + 12%3 A 9)
S
x , + E (1-v,)x, + <« (-v,) x, =1-~-vw Q10)
£ JENBOI 37 JENB-J 3 5
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X, En xj='1 k € M- {q} (11)
JeENBMJ
k

For our subsequent development, we need to identify the precise con-
nections between the coefficients of the basis representations in Case 1

and Case 2 and the coefficients of the original problem representation (1)-

4).

To reduce all formulas to the same notation for both Case 1 and Case 2

= b a N "
when N # J, we define Jm+l (N=-J) U {n+1}, where X 41 is a "fictitious

variable, unrestricted in sign, with a = 0. We further specify

= ¢
n+1 n+l

that x is always the starred basic variable for the set J il.e.,

n+l m+l’

n+tl = (m+l)*. Although we are completely unconcerned about the value of

X ,» we may view x as definitionally equal to 1 - E: x, and indeed
nt+l ntl jEN-J
X 41 will receive this value by the prescriptions we will specify. Upon

defining MO = MU{m+1} when N # J and Mo = M otherwise, the GUB equations
of (3) therefore hold with M replaced by Mo' (That is, the existence ot

X would make Case 1 equivalent to Case 2 except for the fact that x

n+l n+l

is unrestricted.) In particular, then, the preceding equations for the
Case 2 basic solution may be regarded as also applicable to Case 1, for
q=m+1, q' = p and q* = n + 1, enabling subsequent formulas to be sim-
plified. However, we will on occasion find it usetul to discuss Case 1
and Case 2 on separate terms (when the unrestricted value of X +1 has
special implications).

By these conventions, the connections between the current basis co-

efficients and the original problem coefficients are expressed in the

following remark.
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Remark 2. Let a = ao -
keMo

and d, = ¢, - v, (c -Cc )
q' q*

J 3 3

Then the coefficients of (8) - (11) (with M replaced by Mo) may be expressed

in terms of those of (1) - (4) by:

v = a/d

o

vj = (aj - ak*)/d for j € Jk’ k € Mo
u, =d, - ¢ for j ¢ Jk’ k € Mo

] J k®

The derivation of the remark is immediate by the application of
Gaussian elimination. It may be noted, incidentally, that the arbitrary

designation of xq, and x ., implies that the coefficients of equation (10)

q*

can alternately be obtained from the expression for the v, coefficients in

j
Remark 2 by interchanging q' and q* in this expression.

3. PROPERTIES OF BASIC DUAL FEASIBLE SOLUTIONS

The goal of this section is to identify special properties of basic
dual feasible solutions to (1) - (4), as a foundation for initialing a dual
method. The following theorem (which slightly generalizes results of [15,
16]) accomplishes this by providing necessary and sufficient conditions for

a basis to be dual feasible--i.e., to yield u by 0, j € NB, in the expression

3

for x° in (5) and (8). For this result we keep Case 1 and Case 2 separate.

Theorem 1. A basic solution is dual feasible for (1) - (4) if and only if:

k* is selected so that d . = Minimum {d } keM- {w},
Jed,

k
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(where d, is as defined in Remark 2 and in Case 2, {w} = {q} and

]

{w} = @, otherwise).

<
ch/ah - cila1

where H = {h e N - J: a

Case 1. heH, 181

<0}, I ={icN=-J:a, >0} and p is selected to

h
be an h € H that yields the maximum ch/ah or to be an { € I that yields the

i

minimum cilai.

Case 2. q' is selected so that Cq' . cj for all j ¢ Jq such that a, = aq.

J

and
(cq, - Cr)/(aq' - ar). r € R (Cq' - cs)/(aq. - as). s €8S '
h ¢ H Ci/ ’

ch/ah. e T

a4

where R={reJ :a <a'}),S=({secJ:a >a,l.
q r q q 8 q

Then q* is selected to be an r € R that yields the maximum value of
all terms on the left of the foregoing inequality, or an s € S that yields
the minimum of all terms on the right of the inequality, provided this is
possible in consideration of the terms ch/ah and cj/ai. (Otherwise, the
choice of q' does not allow dual feasibility. Also, whenever H or I is

empty, the inequalities involving the corresponding h ¢ Hor {1 € I are

not applicable.)

Proof. The stipulations about k* and Case 1 are immediate from Remark 2,

noting that ¢ _ = aq* = 0 for Case 1. The stipulations about Case 2 are

qﬁ
derived as follows. When xq, and xq* are both basic, then there are dual 3

multipliers O for equation (2) and n for the Jq equation of (3) such that

————————————li




u - (Oa, +m) for j ¢ Jq. These multipliers must be selected to

. Wil i

yleldu  =u =0. Fromu , = 0 we obtain m = ¢ , - Oa ,, and hence
q q q q q

I + O(aq, - a,). The dual feasibility requirement u, > 0 yields

} J - i

} 2.8 ¢ =€

b q j

Thus, if a, = aq,. then cq, f c,., as first stipulated under Case 2. The al-

3 3

ternatives aj < aq. and a, > aq,. identified by J € R and j € S, respectively,

J
yvield

(4]
i

(cq—cr)/(aq.—ar) R (cq,-cs)/(aq,~as) r ¢ R, s

Dual feasibility requirements uj = c‘ - Oaj 20 for j € N - J further yield

fa. =82 e.ls heH, 1c¢

h' 8y, - 1'%

leading to the full set of inequalities stipulated for Case 2. Finally, the
condition uq = 0 requires that q* be selected so that O = (cq, - cq*)/

*

(aq, - aq*). This completes the proof.

Theorem 1 discloses what may also be argued by simple dominance consider-

K with tied aj

values except for one with the smallest Cj value, and second, that all elements

ations--first, that we may throw out all elements of a set J

of H and I may be discarded except those yielding the maximum ch/ah and the

. Thus N - J can be restricted to at most two elements. If

minimum ci/a1

both these elements exist, and ch/ah > ci/ai. then the prcoblem has an un-

bounded optimum. Otherwise, Case 1 of Theorem 1 provides an immediate start-
ing dual feasible basic solution whenever N - J is nonempty, by selecting

either xh or x, as a basic variable (according to which of these variables

|

exist). This observation also applies when N = J, because it is possible to

e




add an artificial variable X (for n increased by 1), yielding N - J = {n},
with ay = 1 and e large. (This variable is not to be confused with the

)

"f.ctitious" X 41
However, Theorem 1 also makes it possible to obtain starting dual

feasible solutions without resorting to the elementary Case 1 situation.

The following corollary indicates an easy way to do this when N = J and

N -J = {n}. We assume for this setting that a =1forN-J= {n}. In

addition, we will suppose cn = 0 for N - J = {n}, using Gaussian elimination

on the objective function to achieve this if necessary.

Corollary 1. When N =J or N - J = {n}, a Case 2 starting basic dual feasi-

ble solution can be obtained by designating any J to be Jq’ selecting q'

k

so that

a , = Minimum {a,}, ¢ , = Minimum {c }
jed 5 1 jeJ : a =a
q q 1 q

and selecting q* € S so that

¢ ,~-¢ ,)/(a,-a,)=Mnimnum (¢c_-c¢c ,)/(@a_ - a,)
' q* q' ¢ q* q' ses “s q' s q'
If S = @, then xq.= 1 (and the problem shrinks). If S # #, but

- = { = = o s T - I (78
N-J= {n} (with a 1 and c, 0), then Can < g or else, again X

~

A

(For this case ¢ Cq' for j ¢ Jq allows x, = 0.)

J

When N = J in Corollary 1, replacing (2) by its negative leads to an
alternative application of the corollary, equivalent to picking aq' to be a
maximum and selecting q* € R to yield a maximum ratio.

We now turn to the main results of this paper, characterizing the re-

lationships of the dual simplex method applied to (1) - (4), and developing
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an efficient specialisation for this problem. As a by-product we will also
identify ways to generate other starting basic solutions that accord with

the conditions of Theorem 1.

4. SPECIALIZATION OF THE DUAL SIMPLEX METHOD

For convenience in the following development, we outline the steps of

the dual simplex method as follows.

Step 0. Begin with a dual feasible basis.

Step 1. Select any equation, other than the L equation, with a negative
constant term. (If none exists, the current basic solution is optimal.)
Represent this equation in the form of (9) (thereby identifying the out-

going variable as xq,):

PR =v, (v, <0

V,X
JENB 3

Step 2. Let NB = {} ¢ NB: vy < 0). If NB is empty, the probiem has no

feasible solution. Otherwise, select the incoming variable X 1 ¢ NB™

to ylield

= Maximum {u /v, }

u,/v
JENB™ 3

i1

where the u, coefficients are those of the current xo equation (8).

3

Step 3. Execute a basis exchange (pivot) step that replaces xq. by Xy in

the basis. The updated form of the pivot equation (9), which becomes the

new x, equation, is

X

{ + ‘\_, (v /vi)x

Tt e el




where NB® {a the new aet of nonbasic vaviablea (veplacing | by q') and
vq. = 1 (an fwmplicit tn (D). The updated form of all remalning equations
ia obtained by Gauasian elimination (or equivalently, direct aubatitution)

using the x, equation to remove x, ftrvom the othey equationa, Then return

i i

to Step 1,

The toregoing demcription of the dual wmethod {a entively pgeneval and
not wpecitfic to the LP/GUR knapaack problem except tor the notation linking
the curvent pivot equatfon to (9) and the X equat fon to (8), By means of this
notat fonal link, however, we may now make additional observationa concerning
the rolution path of the dual afmplex wmethod for this problewm,

Note fivat of all that the convention of representing the pivot equation
fn the form of (V) (s entively permisanible {n the veatvicted aetting ot the
LP/GUR knapaack problem since we may always {ntevchange the voles of xq. and

X as necessary to allow this vepresentat{on. Cleavly, too, at wmoat one of E |

QW
the two equationa (V) and (10) can have a negat ive constant tevm and theveby
qualify aa the pivot equation, Thun, vepreaenting the pivot equation in the
torm of (9) merves to uniquely fdentity the indexes q' and q*.  In tact, using

the connectfona of Remark 2, we may inmediately express the conditions tov

Al

fdent{tying v. = 0 and the maximum rvatfo of Step 0 of the dual method in tevms

|

of the original problem coetticients,

Remark V. It a , * a then
)

\ q*'

| \ K*

and (t tn addittion v‘ ¢ 0, v\ YO for fed Wit J“ (posaibly v = u), then

| \

w. /v D ou /v L and ondy (1t O « 9
‘/ ‘ \h/ h d oonly (1t Jok \‘“.*

v, o= Ot and only (t o a ~ a (W] 1

(R}

wheve (), = ‘Vf - va)/(ar - a“\. 1t aq. <a then the divection of the second

ty L




inequality in (12) and in (13) is reversed.

Although this remark follows directly by substituting the coefficient
identities of Remark 2 into Remark 3, its implications are quite useful.
This is due to the somewhat surprising fact that the application of the dual
simplex method assures that if aq, > aq* holds at one iteration, then aq, >
aq* (for other indexes q' and q*) at all iterations. This relationship and
others associated with it are expressed in the following main result of this

section.

Theorem 2. Let Jt denote the set containing the incoming variable x, deter-

mined in Step 2 of the dual simplex method. If t = m+ 1 (i.e., if 1 € N-J),
then the pivot must yield an optimal solution. If t X m, and if the pivot does
not yield an optimal solution, then upon representing the next pivot equation
also as (9), all of the following hold:

(a) Jt becomes the new Jq

(b) X, % becomes the new outgoing variable xq.

(c) Xy becomes the new xq*

(d) the ratio values 0O j € J , remain unchanged for all k € Mo - {t}

jk*’ k
(e) aq, > aq* before the pivot if and only if aq, > aq* (for the new

q' and q*) after the pivot.

(f) Over a series of pivots, as the index k is periodically selected as t,

the elements A will only change in descending sequence if aq, > a

and will only change in ascending sequence if aq, < a

q*

q*

Proof. Each of the assertions is a direct outcome of applying the dual simplex

method. First, the x, equation of Step 3 of the dual method must have a posi-

i

s

i i




are negative), and cannot qualify

tive constant term (since both L and v1
L

as the new pivot equation. However, this equation currently has the form

of (9) (since xt* and not x is the current starred basic variable for the

i
set Jt). Thus, equation (10) is the only possibility for the new pivot
equation, in which case it may be put in the form of (9) by interchanging the
roles of { and t*. The interchange of 1 and t* {s unnecessary if 1 € N-J
because X is the unrestricted variable X+’ and an optimal solution is al-
ready obtained. Otherwise, if the current solution is not feasible (the
solution value ot x1 exceeds 1), the interchange immediately establishes

(a), (b) and (c¢) of the theorem. Next, since Jt is the only set Jk in which

the identity of x . changes by the pivot, it also follows that the values

k
Ojk* change only for k = t, establishing (d). The condition aq. > aq* before
the pivot is equivalent to stipulating a < a., in consideration of the fact

that vl < 0 (Remark 3). But since t* becomes the new q' and i becomes the

new q%*, this yields (e). Finally, (f) follows directly from (e) and Remark

3, completing the proof.

We will henceforth suppose for simplicity that “q' > uq* on all iterations,

understanding that the directions ot inequalities specified in the following
discussion may have to be reversed {{ this {s not the case. (Alternatively,

it is always possible to assure “q' > uq* by the device of replacing equation

)

(2) by its negative in case nq, < a ,.) With this understanding, Theorem 2

q*

directly implies

Corollary 2. (For aq. > aq*): If the maximum ratio R s given by
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R = Mz:zi:um {ojk*} (14)

aj\"k*
is known for each set Jk' k € Mo' together with the index 1(k) such that

Rk = Ojk* for j = 1(k), then the incoming variable x, is identified by

i

i = i(t) where R = Maximum {Rk} (15)
t
k € Mo

and the pivot step leaves ail Rk except Rt unchanged for the determination of
the new Rt by (15) at the next pivot. (If aq. < aq*, the maximum in (14)
is replaced by a minimum over aj > ak*.)

The significance of Corollary 2 is twofold. First of all, it allows
the dual simplex method to be implemented for the LP/GUB knapsack problem
without ever explicitly calculating the uj and vJ coefficients. Secondly,
it allows the Rk values to be efficiently stored in a heap, with the maximum
Rt at the top. Then as Rt is removed, and replaced with a new value, the un-
changed values of the remaining Rk enable the heap to be reconstituted with
minimal computation (on the order of O(log m)).

The issue remaining before giving a detailed specification of the steps of
a specialized dual algorithm, is the efficient determination of Rk by (14).
Since each time a new Rk is found, the variable xi(k) will become the new
X (the next time k is selected as t by (15)), all of the j ¢ Jk such that
aJ 2 al(k) may immediately be dropped, since they will be of nc further interest.
This approach by itself, as will be shown, leads to a specialized method whose

worst case computational bound is superior to that of [16) when the number of

GUB sets exceeds the number of elements in each set. (This generally occurs




in practical applications of an "assignment' nature, where the number of
items to be assigned generally far exceeds the number of possible assignments
per item.) However, an even better approach from the standpoint of worst

case bounds results by a simple preliminary pass through each set Jk’

eliminating in advance the elements that do not qualify to be selected as

k*. Since the elements that are left will be visited in descending order

of the the a, values (for aq, > aq*), it follows that each sucessively smaller

A

aj will be the next a s and the task of identifying a maximum by (14) is

eliminated.

()
K of Jk whose elements

are linked by a predecessor/successor ordering, where the immediate successor

Specifically, then, we seek to identify a subset J

o
k

as k* after j, and the immediate predecessor p(j) of j identifies the element

s(J) of an index j € J, identifies the next element that qualifies to serve

of Jz that qualifies to serve as k* immediately before j. Initially, of

course, s(j) and p(j) just arrange the elements of J 1in descending (ascending)

k

order and we will suppose that in the process of creating such a linking that

duplicate a, values are removed by retaining only the one associated with the

i

smallest cj value. The process of dropping an element from Jk in the construc-

tion of J: can be accomplished simply by linking its immediate predecessor to
its immediate successor.
Under this predecessor /successor linking, (l14) can be written

= > =
Rk Oik* bt Ojk* for all successors j of 1 i(k)

Then 1 will become the new k* (except tor the first i selected as k¥*). Thus,
in particular, since we may eliminate the situation of tied maximum ratios by

selecting the one with the smallest a, coefficient (which has no tied successors),

i

L




and since dropping superfluous elements will yield k* = p(i), the identify-

ing characteristic of J: becomes

in(i) >0 p(1) (16)

J

for all successors j of 1 and for all 1 € 32. where 3: is Jz stripped of its

first and last elements, which respectively have no predecessors or successors.

The task of weeding out elements of J to assure this relationship is made easy

k
by the following.

—0
Jk
and for j = s(i).

Remark 4. The inequality (16) holds for all i € and for all successors j

of 1 if and only if it holds for all i € jz

Proof. We need only show that for any h, i, j, r (taking the roles h = p(i),

j = s(1) and r = s(j)) such that a > a > aJ > a_, the two "successive' in-

equalities Oih > and O i > Or imply oih >0 _,. First, for the coefficients

CBh i i rh

> >
as ordered, we note that Oih th is equivalent to th Oji

i 1 | + + > + + o B
these inequalities reduce to cha1 ciaj Cjah ciah cja1 chaj Similarly,

» since both of

S € C > " & > > € > 0 >
0‘11 Orj is equivalent to Orj Ori Hence we obtain Oih th Oji (rj

A > - > . §

Oriand in particular th Orj' which is equivalent to Orj Orh Consequently,
oih > Orh' completing the proof.

To make convenient use of this observation we introduce a dummy index 0
to "start" and '"terminate" the predecessor/successor linking, where 0 is treated

as the immediate predecessor of the largest a, and the immediate successor of

J
the smallest aj. The procedure for modifying the initial linking on Jk so that
it becomes a linking on J: is then as follows.
0. To start, let h, 1 and j be the "first three'" elements of J , that is,

k
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h=1s(0), 1 =s(th), J =s(). (f Jk has less than three elements, then

Jz - Jk and nothing is to be done.)

1. Compare Oih to th.

(a) If Oih >0, , set h = { and go to Step 2.

jh
) = —) < ) -
(b) If (1j th or ifLih (jh and p(h) 0, drop 1 and go to
to Step 2.

(c) If Oih < 0,, and p(h) # 0, drop i, set i = h, and h = p(i).

jh
Then return to the start of Step 1.
2. Set i =3 and J = s(d). If j = 0, the procedure stops and the

linking correctly identifies the ordered elements of J:. Otherwise,

return to Step 1.

The validity of the foregoing procedure is an immediate consequence of
Remark 4. Note that the index j never "backs up'" to a predecessor value,
but remains unchanged in Step 1 and is set to its successor at Step 2. Con-

Ty 2 times, where nk is the number

of elements in Jk' Whenever the method does not go to Step 2, the index 1 is

dropped at 1(c), which can occur at most nk - 2 times (since i1 is never the

sequently Step 2 will always be executed n

first or last element), for a total number of iterations of the procedure
equalling at most 2(nk - 2). This procedure is patterned after one due to
Witzgall [16] (who obtains a different iteration count) except that Witzgall's

approach is based upon a geometric determination of the locations of points

on or below line segments, rather than on a direct comparison of ratios as
afforded by Remark 4. !

It should also be noted, in contrast to the less general situation ex-

(8]

amined in [16]), that the elements of Jk

may not all qualify to be basic in a
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dual feasible solution. If N ¢ J, it is additionally necessary that the
ratios in(i) be bounded by the limiting ratios from N - J, as shown in

Theorem 1. This means that some of the initial and final elements of J:
(under the predecessor/successor linking) may also drop out of consideration.
Rather than bothering to check for this situation in advance, however, the
first and last relevant elements of J: can be determined automatically by
starting from some initial basic dual feasible solution and simply executing
the specialized dual algorithm.

In general, these observations lead to the following Corollary as an

extension of the options available from Corollary 1 for obtairing an initial

dual feasible basis.

Corollary 3. The set of Case 2 dual feasible bases, any one of which provides

an acceptable starting basis for the specialized dual simplex method, can be

generated by selecting an arbitrary JE to be J:, and selecting any element i
from this set (other than the first element) such that in(i) satisfies the

limiting bounds from N - J (identified in Theorem 1). Then i and p(i) may
respectively serve as q' and q*. If no such element i1 exists, then some other

o o
set must serve as Jq , and whatever element of the "unacceptable” J. thereby

k

enters the basis in the starting solution is compelled to be basic in all dual
feasible bases (hence, the associated variable may be fixed at the value 1).

The elements q' and q* found in Corollary 3 may need to be interchanged,
so that the first pivot equation can be represented by (9). (In this case,

the aq, > aq' assumpt ion must be replaced by the aq* > aq. assumption, re-

versing the roles of the predecessor/successor links.) If a Case 1 basis is

used as the start, then ap >0 (for xp the basic variable in (5)) implies




on all iterations (since p takes the initial role of q' with

a > a
q'

aq* 4 nn+1

large) will select the first ("largest a

q*
= (), whereas an artificial start (with p = n, . 1 and cn
j") element of each Jk as the
initial aa

The specialized dual simplex method based on the foregoing results may

now be described as follows.

The Specialized Dual Simplex Method

1. Initialization.

o
k

to be the set containing the elements (at

(a) Create the predecessor/successor linkings and the J sets, k ¢ Mo.

o
(For N # J, define Jm+1

most two in number) with limiting ratios identified by Theorem 1.)
(This step can be deferred or applied in conjunction with Step 1(b),
using the starting basis there to reduce the range of elements

considered for inclusion in the J: sets.)

(b) Create a starting dual feasible basis (as by Theorem 1 and Corollary 1
or Corollary 3). Compute the initial Ve value by computing
\

S W
keM

a .y and v = u/(aq. - aq*)

1f v, 2 0 and either q' €¢ N - J or v, S 1, then the current basic
= = - = - - j

solution (xq. Vor Xqu 1 vy anq Xex = LkeE M {q}) 1is op

timal. Otherwise, interchange q' and q* if necessary so that A i

0. For what follows we suppose aq, > a (If not, the word

qr’

"maximum" should be replaced by "minimum," and the successor “wahol

s8() should be replaced by the predecessor symbol p().)




(c) Identify the ratios Rk = for each k € Mo' (If s(k*) = 0,

Os(k*)k*
the ratio Rk does not exist, and is bypassed. For the case k = m + 1

where by convention k* = n + 1, we define s(k*) to be the first

). Hence

element of J° excluding the current q' (if q' € Jm+1 .

m+l

R = cj/a for j = s(k*), if this element j exists.) Put these

m+l 3

ratios in a heap, with the maximum at the top.

2. Identify the incoming basic variable and the new basis composition.

Pick the maximum ratio from the top of the heap and denote it Rt' (If
the heap is empty, there is no feasible solution.) The current variable
X , leaves the basis and xs(t*) enters the basis. If s(t*) € N - J, the

current basic solution is optimal for q' = s(t*) and : il a/(-aq.) (where

& is unchanged from its previous value). Otherwise, the current X, %

becomes the new xq., while xs(t*) is the new xq*; i.e., set q' = t* and

q* = tk = s(t*).

3. Update the current basic solution.

Update a and % by setting § = aq. - aq*. a=qa+ § and LS af/§. If
7 2 0, the current basic solution is optimal. Otherwise, identify the

new value of Rt = (for the new t*). If the ratio does not exist

os(t*)t*
(s(t*) = 0), reform the heap for the ratios still in it. Otherwise, add

Rt back to the heap. Then return to Step 2.

An analysis of the maximum amount of computation required by this method
is an follows. The creation of the predecessor/successor linkings (that ini- : |

tially arrange the a, coefficients in descending/ascending order for each Jk)

3

requires on the order of O(nk log nk) computation for each set, or an effort




of at most L O0(n,_ log n,) < O(n log n). (For the case where each GUB
keM, k k

set has the same number of elements, n/m, we may refine this to O(n(log n -

log m)).)

The work to modify the linking to identify the J: set involves at most

an - 4 iterations of the procedure based on Remark 4, or 2n - 4m iterations
over all sets, requiring computation or order O(n - m) £ O(n). Creating the
starting feasible basis requires an effort of at most 0(n) (including the ef-

fort of generating and selecting the minimum d, values) while computing the

A
initial L value is O(m). Finally, computing the R.k ratios requires 0(m)
computation, while putting them in a heap is an effort of order O(m log m).
Thus, the total initialization effort of Step 1 can be expressed as O(n log n)
+ O(m log m).

For Steps 2 and 3, at most n - m - 1 elements (the successors of the k¥

o
k

k € Mo and so these steps will require at most n - m - 1 iterations. Exclu-

elements, excluding the initial q') remain to be examined in the J  sets,
sive of reforming the heap, these two steps require a handful of "if checks,"
assignments, a couple of additions and 1 division. Reforming the heap re-
quires an effort of 0(log m), hence in total the amount of effort required at
Steps 2 and 3 is 0((n - m)log m). Putting these together with the effort

required at initialization we can state

Theorem 3. The computational complexity of the LP/GUB knapsack problem is of

order at most
O(n log n) + O0(n log m)
or

0(n(log n + log m))
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We have stated these order bounds separately instead of simply giving
the O(n(log n + log m)) bound, because of the overestimate involved in the
O(n log n) term. In particular, as previously noted, this term can instead
be expressed as O(n(log n - log m)) for the situation in which each GUB

set has n/m elements. Thus, in this case we have

Corollary 4. When each GUB set contains the same number of elements, the
computational complexity of the LP/GUB knapsack problem is at most O(n log n).
The bound of Witzgall is given in [16] as O(n log n) + 0((n - m)m),
where the O(n log n) term is essentially the same as that of Theorem 3, and
also can be replaced by 0(n(log n - log m)) for GUB sets with n/m elements.
The primary difference between the bound of [16] and that of Theorem 3 is
therefore the contrast between O((n - m)m) and O(n log m). For easier com-
parison, let g = n/m (so that g is the number of elements in each GUB set if
each set has the same cardinality). Then these terms can be respectively
written 0((g ~ 1)m’) and 0(g(m log m)). Since g 2 2 in any meaningful
problem (or else there are GUB sets with only 1 element), the latter term
clearly represents a smaller order of effort than the former, particularly as
m or g (hence n) becomes larger. This difference appears to stem from the
fact that our procedure specializes the dual simplex method directly, whereas
Witzgall's instead carries out preliminary "topological reductions" (corres-
ponding to those obtained via Remark 4) but otherwise leaves the dual method
primarily to its own devices (for the case J = N). (Sinha and Zoltner's pro-
cedure and Witzgall's procedure appear closely related in this respect.)

It is interesting to note the type of order bound that results for our

method when the initialization effort of setting up the predecesor/successor




o
k

The modifications for this approach are as follows.

links and adapting them to the J sets is not employed.

Alternative method. (Omitting the initial ordering of the aj coefficients by

the predecessor/successor links, and the creation of the J: sets.)

1. Initialization.

(a) Deleted
(b) As in the previous method, except that Corollary 3 is not used as
a strategy for creating an initial basis. In addition, drop the

index k* from each Jk.

(c) Instead of setting Rk =0 «» examine each j € Jk (for Jk as

s(k*)k

currently constituted). If a, .

5T e

not compute the ratio Ojk*’ saving the minimum of these computed

a then drop j from Jk’ and if

ratios as Rk. (Then s(k*) denotes the j that gives this minimum

ratio.)

2. Identify the incoming basis variable and the new basis composition.

As in the previous method.

3. Update the current basic solution.

As in the previous method, except for setting Rt = Instead,

Os (t#) e+’

first drop t* from Jt' and for each remaining j € Jt (as currently con-

stituted) carry out the operation indicated in 1(c) for k = t.




The type of analyses applied to the computations for the previous

method allows us to state

Corollary 5. When each GUB set has the same number of elements g = m/n,
the computational effort required by the Alternative Method for the LP/GUB

knapsack problem is of order

0O(n) + 0((n = m)log m) + O((n - m)g)
or

O(n) + O((n - m)(g + log m)

Again we have written the bound in different ways to facilitate comparison
with the other bounds. The 0O(n) term here is comparable to a 0(n) term that
was previously assimilated into O(n log n) in both our approach and in Witz-
gall's. Thus, for a clearer comparison, the bound of Corollary 4 can be re-
written
0(n) + 0(n log n)

and that of Witzgall can be written

O(n) + O(n log g) + 0((n - m)m).
While the worst case bound of Corollary 4 appears generally superior to the
other two, note that the bound for the Alternative Method appears more attrac-
tive than that of [16] for g = m, and becomes increasingly attractive as m
becomes larger relative to g, due to the fact that increases in log m are
dwarfed by increases in m. (The value of m is often several fold greater
than g in practical applications. For example, in the applications of [8,
11, 12, 13), m ranges from 4g to 50g.) Coupling this with the fact that the

Alternative Method requires less '"set up" effort than the other methods makes




it an appealing alternative for problems in which worst case bounds are ex-

pected to be overly pessimistic. In this context, any attempt to consider
"likely" cases instead of worst cases must also account for the advantages
that may derive from initiating a specialized dual algorithm from an ad-
vanced starting basis, rather from an "extreme end" of the dual feasible
region (as in [15] and [16]).

Finally, it is interesting to consider the specialization of these bounds
to the ordinary knapsack problem. In this problem, the number of variables
before adding slacks to give GUB constraints is m = n/2 (i.e., the addition
of slacks yields g = 2). Bounds of both previously indicated versions of
the Specialized Dual Simplex Method (from Corollary 4 and Corollary 5) re-
duce to O(m log m) in this case, which is a standard bound for algorithms for
the knapsack problem. Recently, however, Balas and Zemel (1] have developed
an improved bound of O(m) for m variable knapsacks. This raises the interest-
ing question of whether it is possible to find a method for the gemeral LP/
GUB knapsack problem whose worst case computational effort specializes to
0O(m), yet that maintains advantages for the general case. We conjecture that

this is not possible.
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