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ABSTRACT

A specialization of the dual simplex method is developed for solving

the linear programming (LP) knapsack problem subject to generalized upper

bound (CUB) constraints. The LP/GUB knapsack problem is of interest both

for solving more general LP problems by the dual simplex method, and for

applying surrogate constraint strategies to the solution of 0—1 “Multiple

Choice” integer programming problems. We provide computational bounds for

our method of 0(n(log n + log m) ) ,  where n is the total number of problem

variables and m is the number of GUB sets. In the consuonly encountered

situation where the number of variables in each GUB set is the same, our

bound becomes O(n log n). These bounds reduce the previous best estimate

of the order of complexity of the LP/GUB knapsack problem (due to Witzgall)

and provide connections to computational bounds for the ordinary knapsack

problem.
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1. INTRO DUCTION

A good deal of attention has been given to standard LP knapsacks for

their role as relaxations in branch and bound methods for solving integer

knapsack problems (2 , 5, 9J. Such problems have been stud ied as an end in

themselves , and also as surrogate constraint relaxations for more general

0—1 integer programming (IP) problems.

Many 0—1 IP problems, however , are of the “multiple choice” variety,

attended by the requirement that the variables of partitioned subsets sum

to one. Specialized IP methods for problems involving such generalized upper

bound (CUB) constraints have been proposed in settings of varied generality

(e.g., (3, 4, 6]), and recently some attention has been given to integer

knapsacks with CUB cons traints ( 14 , 151. To solve these and more genera l

problems using LP and surrogate relaxations , it is important to be able to

solve LP/GUB knapsacks efficiently . it is also valuable to be able t o  solve

LP/GUB knapsack problems to accelerate the solution of ordinary LP/CIIB prob-

lems by the dual simplex method , as pointed out by Witzgall [16]. Cc’nsc—

quen tly ,  the goal of this paper is to develop .11 algorithm for the LP/~UB

knapsack problem that is both easily implemented and highly efficient .

Two earlier papers deal ing with this problem (in slightly less gener:~l

form than treated here) are worthy ot  special n~ te. The paper by Sinha and

Zoltners (15] is the first to identify the characteristics of the undominated

solution space for the case in which the knapsack Is an inequality constraint .

These authors then develop a method that Is reported to speed the branch and

bound solution of the integer CUB knapsack problem. The second paper , due

to Witzgall [16], examines the c~se where the knapsack is an equality con-
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straint spanned by the CUB sets. Witzgall’s work is espec ially no table for

its geometric characterizations and the specification of “worst case” compu-

tational bounds for his algorithm. In particular , the algorithm of [16] is

shown to be of complexity O(t i  log n) + O (m(n—m)), where n is the number

of variab les and m is the number of CUB sets. This is the first result that

bounds the complexity of the LP/CUB knapsack problem in this manner .

In this paper we use a’ alternative framework that focuses directly on

properties of the dual simplex method applied to the LP/GUB knapsack problem .

After specifying necessary and sufficient conditions for dual feasible bases,

we identify relationships that hold automat ically in the application of the

dual simplex method . These relationships are then utilized to develop a

specialized version of this method which is shown to be of complexity at

most i.) (ii (log n + log u) ) , or In the  &.~se whcre cach CUR set contains the

same number of elements , O(n Log n). Thest’ bounds are interesting not only

because they reduce the previous estimate of the order complexity of the LP/

CUB knapsack problem , but also because they reduce to the same form as one of

the standard algorithmic bounds for the ordinary LP knapsack prob lem without

CUB constraints , thereby establishing a connection between these more and

less general problems.

2 . PROBL~~ NOTAT ION

The LP/CU B knapsack p roblem may be wr itt en

Minimize ~ c
1
x

1 
(1)

jrN - 

--



‘~~ V~ ~~~

subject to a x - a (2)
jcN ~~

~~ 
X
1 

1; k M ( I ,... ,m} (3)
jeJ

k

x~ ~ 0; j c N — Ii ,... ,n ) (A)

where i (‘LI O for p~~~ q and J U J c N .
p q kcM k

There are no restrictions on any of the problem coefficients (a , a
1
,

c
1
), except that we exclude the trivial situation in which a

1 
— 0 for j ~

Tvo subcases of interest  included by our results are for N J (as in

Wt tzga l l  1161) and for  N — J ( n I , where 
~ 

is a slack or surplus variable

(as in Sinha and Zoltner [15]) .  We will comment on the specializations of

our results to these subcaaes at appropriate ’ poInts .

To begin , we make a simp le and well known observation concerning the

s t ruc ture  of basic solutions for this problem.

Remark 1. In every bas h’ solution to the equations (2)  and (3), m — 1 of the

sets 
~k
’ k ~: M will have exactly one basic variable. The remaining 

~k 
~~

will have one basic variable if there is a basic variable in N - 3 , and other-

wise will have two basic variables . (By conventiofl we refer to a variable as

“in” a set if its subscript is in the set.)

To facilitate the subsequent development , we will introduce notational

conventions that will be useful for depicting the form of a typ ical basic

solution within the framework ot the dual simplex method . Throughout this

paper , we will let J
q 
denote the exceptional set that has two basic variables ,

~~~~~
LA
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when this situation applies , and in general, let Xk* denote the basic

variable (or one of the basic variables) in set 3
k’ 

k £ M. We will

suppose that k* is unique for each set 
~k’ 

and call x~~ the starred

basic var iable for J . In the case of J , we will denote the basic van —k q

able other than x by x ,. As will be seen , this conven tion will allow
q

us to associate different formulas with x and x ,, though of course these
q* q

formulas yield equivalent expressions when q* and q ’ are interchanged .

Additionally when there exists a basic variable in N—J it is denoted by

x . Finally, we introduce the objective function variable x
0 

— — c x
3 p j € N

whose maximization achieves the minimization of (1), and let NB denote the

index set of current nonbasic variables. (4)

Basic solution forms

Case 1. x is basic in N — J .
p

x + u x u (5)
° jcNB ‘~~ °

X + v x  v (6)
~ j cNB

x - l  k c M  (7)
jcNB flJ

k

(No te, NBflJ
k 

— 
~k 

— (k*).)

Case 2. No variables are basic in N — J ; x , and x are basic in Jq q* q

x +  ~ u
3
x
1

u (8)
jENB

v x  v
0 (9)q j€N8

x~~~+ ~ (i-v )x + (—v)x - 1 — v  (10)q jcNBflJ ~ jcNB— J ~ -~ °
q q



S

x 
* 

+ “ x — 1 k e. M — (q} (11)
k 

IeNBflJk

For our subsequent development , we need to i d e n t i fy  the precise con-

nections between the coefficients o the basis representations in Case 1

and Case 2 and the coefficients of the ori ginal problem representation (1)—

(4 ) .

To reduce all formulas  to the same no ta t ion  for both Case 1 and Case 2

when N ~ J , we define 
~~~~ 

(N — J) U (n+ l } , where x~~ 1 is a “ f i c t i t i ous”

variable , unrestricted in sign , with a +l c~~ 1 
0. We further specify

that x~~1 
is always the starred basic variable for the set J~~,1, i.e.,

n+1 — (m+1)*. Although we are completely unconcerned about the value of

x 
+1’ 

we may view x +1 
as de fi n it iona l l y  equal to 1 - x and indeed

n cN-J
Xn+l will receive this value by the prescri ptions we will  spec i fy .  Upon

def ining M = MU {m+ 1 } when N ~ J and M M o therwise , the CUB equations

o f (3) therefore  hold w i t h  H rep laced b y H .  (That is , the exis tence  ot

x would make Case 1 equivalent  t o  Case 2 except for  the fac t  that  x
n+l n+l

is unrestricted.) In particular , then , the preced ing equat ions  fo r  the

Case 2 basic solution may be regarded as also applicable to Case 1, for

q m + 1, q ’ — p and q * = n + 1 , enabling subsequent formulas to be sim-

plif ied . However , we w i l l  on occasion find it ~ise t u l  to discuss Case 1

and Case 2 on separate terms (when the unrestricted value of x
~+i 

has

special implications).

By these conventions , the ~onnections between the current basis co-

efficients and the original problem ~octticl ents art’ expressed in the

following remark.

I—
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)
Remark 2. Let a a  — a , 6 - a , — a

° k~ q q*

and d
1 

— c
1 

— vj (cq i — C
q *

)

Then the coefficients of (8) — (11) (with M replaced by M )  may be expressed

in terms of those of (1) — (4) by:

v
0

v~ (aj 
— a

k*
)/tS for 

~ 
£ 

~k’ 
k c M

u
1 

d
1 

— c
k* 

for j 
~ ~k’ 

k c M

The derivation of the remark is immediate by the application of

Gaussian elimination. It may be noted , incidentally, that the arbitrary

designation of X
q~ and X

q* 
implies that the coefficients of equation (10)

can alternately be obtained from the expression for the v
1 

coefficients in

Remark 2 by interchanging q ’ and q* in this expression.

3. PROPERTIES OF BASIC DUAL FEASIBLE SOLUTIONS

The goal of this section is to identify special properties of basic

dual feasible solutions to (1) — (4), as a foundation for initialing a dual

method . The following theorem (which slightly generalizes results of [15,

16]) accomplishes this by providing necessary and sufficient conditions for

a basis to be dual feasible——i.e., to yield u
1 

0, j r NB , in the expression

for x in (5) and (8). For this result we keep Case 1 and Case 2 separate.

Theorem 1. A basic solution is dual feasible for (1) — (4) if and only if:

k* is selected s& that d
k* 

Minimum {d } k £ M — {v},
IEJ k

- ~~ r~~~r . f lrrV ~
,
~~ -~.____
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7 )
(where d

1 
is as defined in Remark 2 and in Case 2, iv) — (q} and

tw } - 0, otherwise) .

Case 1. c
h/ah ~ c1/a 1 h ~ H , I

where H — {h E N — J: a
h 

S 0) ,  1 — ii C N — J: a
1 ~

‘ o} and p is selected to

be an h c H that yields the maximum c
hfah 

or to be an i c I that yields the

minimum c
i
/a

i
.

Case 2. q ’ is selected so that c c for all j c J such that a — a
q j q 1 q

and

(C
q

t — c
r

)/ (a
q~ 

— a
r
), r c R (C

q
~ — c

5
) / ( a

q~ 
— a), s c S

c
h
/a
h~ 

h c H c 1/a~~, 1 £ I

where R — {r c 3 : a ~- a ‘} , S — is : a a ,).
q r q q s q

Then q* is selected to be an r c R that yields the maximum value ct

all terms on the left of the foregoing Inequality, or an s c S that yields

the minimum of all terms on the right of the inequality, provided this Is

possible in consideration of the terms c
l
/a
h 

and c
1
/a

1
. (Otherwise, the

choice of q ’ does not allow dual t easibility . Also , whenever H or I is

empty, the inequalities involving the corresponding h c H or I c I are

not applicable.)

Proof. The stipulations about k* and Case 1 are ininediate from Remark 2,

noting that c
q* 

— a
qa 

- 0 for Case 1. The sti pul at ions abou t Case 2 are

derived as follows. When x , and x are both basic , then there are dual
q

multipliers 0 for equation (2) and ii for the J
q 
equation of (3) such that



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — i . ,—~.

8 )
u
1 

— c
1 

— (0a
1 

+ it) for 
~ 

c 3
q~ 

These multipliers must be selected to

yield u , u — 0. From u , — 0 we obtain ii — c , — Oa , ,  and hence
q q* q q q

U

1 

— C

1 

— + O(a
q. 

— a
1
). The dual feasibility requirement u

1 ~ 
0 yields

— a )  c , —

Thus, if = a
q .~ 

then C
q~ ~ c1

, as first stipulated under Case 2. The al-

ternatives a
1 

a
q~ 

and a
j 

d
q I~ identified by j R and j S, respectively,

yield

(c — c ) / ( a  , — a ) 0 ~c , — c ) / ( a , —a ) r C R , s ~ Sq r q r q s q S

Dual feasibility requirements u
1 

c
1 

— 0a
1 ~ 0 for  j  ~ N — .1 further yield

c
h
/a
h 

0 ~ c1
/a

1 
h C H , i ~ I

leading to the full set of inequalities stipulated for Case .~. Finally , the

condition u — 0 requires that q* be selected so that 0 (c , — c )/
q* q

(a
q~ 

— 

~q*
)• This completes the proof.

Theorem 1 discloses what may also be argued by simple dominance consider-

ations——first , that we may throw out all elements of a set with tied a
1

values except for one with the :~ma1lest c~ value , and second , that all elements

of H and I may be discarded except those yielding the maximum c
h

/a.
fl 

and the

minimum c 1/a~ . Thus N — .1 can be restricted to at most two elements. If

both these elements exist , and e
h
/a
h 

c
1
/a

1
, then the problem has an un-

bounded optimum. Otherwise, Case I of Theorem 1 provides an immediate start-

ing dual feasible basic solution whenever N - J is nonempty, by selecting

either x.
~ 

or x
1 
as a basic variable (according to which of these variables

exist). This observation also applies when N — J , because it is possible to



add an artificial variable x it or n increased b~ 1), yielding N — J — in),

with  a - 1 and c large. (This variable is not to be confused with then n

“Lctitious” x .)n+l

However, Theorem 1 also makes it possible to obtain starting dual

fe asible solutions w i t h o u t  resor t ing  to the elementary Case 1 situation .

The following corollary indicates an easy way to do this when N — J and

N — J — in). We assume for this setting that a 1 for N — J — in). In

addition , we wil l  suppose c — 0 for N — J in ) ,  usi ng Gaussian elimination

on the objective func tion to achieve this if necessary.

Corollary 1. When N — J or N - J — tn}, a Case 2 starting basic dual tea~ i—

ble solution can be obtained by designating any’ to be J
q i selecting q ’

so that

a , — Minimum ~a 
} , c , — Minimum Ic }

q 1 q 
~~ : a . a- q - 

q i q

and selecting q* ~. S so that

c
q~
)/(a

q* 
— a

q.) 
= Minimum (c — C

q ?)/td s 
— a

q~
)

If S = 0, then X
q~

= 1 (and the problem shrinks ’I . If S ~ 0, hut

N — j  — (n} (with a — 1 and c — 0), then c ‘- c , or else , again x , — 1.
q* q q

(For this case c . c , for j r J allows x — 0.)
j q q j

When N — J in Corollary 1, replacing (2) by its negative leads to an

alternative application of the corollary , equivalent to picking a
q~ 

to be a

maximum and selecting q* c R to yield a maximum ratio.

We now turn to the ma in results ct this paper , characterizing the re-

lationships of the dual simplex method app lied to t1 ) — ( .e t , and developing
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an efficient specialiution for this problem . As a by—product we will also

identify ways to generate other starting basic solutions that accord with

the conditions of Theorem 1.

4. SPECIALIZATION OF THE DUAL SIMPLEX METHOD

For convenience in the following development , we outline the steps of

the dual simplex method as follows.

Step 0. Begin with a dual feasible basis.

Step 1. Select any equation , other than the x equation , with a negative

constant term. (If none exists , the current basic solution is optimal.)

Represent this equation in the form of (9) (thereby identifying the out-

going var iable as

x , + ~. v x — V (v 0)q jc NB ~~~ °

Step 2. Let NB — {j r NB: v
1 

‘- 0). If NB is empty, the problem has no

feasible solution. Otherwise , select the incoming variable x1
, I N8

to yield

u
1

/v 1 
— Max imum {u /v 4 }

j ENB

where the U
1 

coefficients are those of the current x equation (8).

Sç~p 3 ,  Execute a basis exchange (pivot) step that replaces X
q~ 

by x
4 

in

the basis. The updated form of the pivot equation (9), which becomes the

new x~ equation, is

+ :~. (v /v~ )x
1 

— v / v
tj cNB *

I
I

L



r ~ 
~~~~ A ~ - -~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘

~~~~~~

I t

where Nit5 Is the new set ci nonhas it ’ vat tables (replacing I by q ’ ) anti

V
q t I (as Imp It cit in (t) ) ) . The upit~ I øtt term of alt ins I n ing equal ions

Is obtained by Gauss1~n eliminat ion (ci equivalent lv , it tre e I. suhet I tnt ion)

us tug the equat I on t c remove I rem I he ci her equations . Then ret urn

It ’ Step I

The t o  rege tug descript ion ci I he dna 1 mit I hod is cut I r e l y  gene at and

not spec i t Ic  to the  LP/t~Utl kn apsack ~‘ tct~ Lest except to I he net at ton link tug

th e  c ut ten I pivot equat ion to (t~ anti t he x equal ton to (8 . By means ci I. h i  a

tiotat tonal link , heweve t- , we may now make atttl I t  tonal observat ions concern  tug

he eel ut ton path ci t hi’ dna I a lisp 1 e met hod t ci I his prob lem.

Note I I rat ci iii 1 t hat  t hi’ convent ten ci represent ing the p ivot  equal ion

in the form c t i, ~) Is ent I t i ’ lv pens I sa lb Iii In the rca t il t ’ t i’d set t tug ci (he

I,P/GtIit knapsack p t ot ’ I i’m S tnt’e we rna~’ a twa~ s tnt ct-change I in’ t ot es ci x , and

* 
as neces sa i-v I o a It ow I It I a t’~’t t ’ ni~it I at (on, I ’ I i’a i lv , I cc • at tites I cue ci

the two equal lens (~ 
‘I and i. 10 ‘I can have a negat lv.’ cons t ant t .‘ t m  and t ii . et ’v

qua l i t  v as t he p I vet equal I on • Thus , i s’s’ t .‘sen I in g I t t i ~ pivot equal Ion in  t lie

tot is ci ‘~ 
‘
~ setves to nut que Iv I dent it v I hi’ I ndexe ’s q ‘ att~l t~ * . In tact us I t i g

I he connect ton e o I Remark 2 we tsav I nutted tat .‘lv rxp * cas I he con t it Ions I or

I den I I fv I ug v I) and the ma ~ I mum at t~’ ci ~ I •~p .‘ ci i he dua l met hod in I erms

c i  the ci (gina I prob lem cccli i i ’ ten ts.

)l.maik I . It a , • a then
- 

Ii

O t t  tint on ly i t  a ’

antI I t  In add It Ion y # 0 , v S 0 liii , Ii I (peas lb lv t — u’t , t henI h i it

II / V  .. I I  V ii Mliii  only It 0I I It Ii * hu~
where ~) — ~c . — c ‘ / i,~~ - — a ~ , I t a ‘ a then the dii ci’ t ion of t he ~p~ i’~ iI

I g I g q q A

- -—— ----——-—~ ~~~~~~~~~~~ ~~~~~~~~~~~~
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inequality in (12) and in (13) is reversed.

Although this remark follows directly by substituting the coefficient

identities of Remark 2 into Remark 3, its implications are quite useful.

This is due to the somewhat surprising fact that the application of the dual

simPlex method assures that if a
q~ 

a
q* 

holds at one iteration , then a
q i >

a
q* 

(for other indexes q ’ and q*) at all iterations. This relationship and

others associated with it are expressed in the following main result of this

section.

Theorem 2. Let denote the set cont~tining the incoming variable x1 
deter-

mined in Step 2 of the dual simplex method. If t - m + 1 (i.e., if I c N—J),

then the pivot must yield an optimal solution . If t ~ m , and if the pivot does

not yield an optimal solution , then upon representing the next pivot equation

also as (9),  all of the following hold :

(a) becomes the new J
q

(b) x~~ becomes the new outgoing variable Xq~

(c) x1 becomes the new X
q *

(d) the rat io values 0
3k*’ j  ~: 

~k
’ remain unchanged for all k c M — {t}

(e) a
q t > a

q* 
before the pivot if and only if aq i ~

‘ a
q* 

(for the new

q’ and q*) after the pivot.

(f) Over a series of pivots , as the index k is periodically selected as t ,

the elements a
k* 

w ill only change in descend ing sequence if a
q i a

q*

and will only change in ascending sequence if a
q e < a

q*

Proof. Each of the assertions is a direct outcome of applying the dual simplex

method . First , the x
1 
equation of Step 3 of the dual method must have a posi—
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tive constant term (since both v and v
1 
are negative), and cannot quality

as the new p ivot equation . However , th is equation currently has the form

of (9) (since x~~ and no t x
1
, is the current starred basic variable for the

set J). Thus, equation (it)) is the only possibility for the new pivot

equat ion, in which case it may be put in the form of (9) by interchanging the

roles of I and t*. The interchange of I and t* Is unnecessary if I ~ N—J

because x Is the unrestricted variable x , and an optimal solution is al-
t~ n+l

ready obtained . OtherwIse , if the current solution is not feas ib le  ( the

solution value ci x~ exceeds 1), the Interchange immediately establishes

(a), (b) and (c) of the theorem. Next , since 
~ 

is the onl y set in which

the identity of X
k* 

changes by the p ivot , it. also follows that the values

0
jk* 

change only f or k — t , establishing (d). The condition a
q i a

q* 
before

the pivot is equivalent to sti pulating a
1 

a~~ in consideration of the fact

that v~ 0 (Remark 3). But since t* becomes the new q ’ and i becomes the

new q*, this yields (e). Finally, (t) follows directly from (e) and Remark

I , completIng the proof.

We w i l l h e n c e f o r t h  suppose i c r  s Imp ,l icily tha t a
q 

-‘ a
q * 

on a.l 1 iterations ,

understanding that  the d i r e c t  tons ci inequa l  it i~ s specified in the following

discussion may have to he reversed if t h i s  Is not the  case. (Alternatively ,

it is always possible to assitri’ t , “ 
~~~~ by the device of replacing equat ion

(2) by its negative in case a , a
q *
.) W i t h  this understanding, Theorem 2

directly implies

orollary •2. (Frir aq~ 
-‘ a

q*
): If the maximum ratio 

~ K ’ given by
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- Maximum {O
jk*

} ( 14)

k
a
J
a
k*

is known for each set 
~k

’ k c H , together with the index i(k) such that

— °JkC 
for j — 1(k), then the incoming variable x~ is identified by

I — 1(t) where R
~ 

— Maximum (15)
k i M

0

and the pivot step leaves all R.
~ 
except R

~ 
unchanged for the determination ci

the new R
t 

by (15) at the next pivot. (It a
q . 

< a
q*~ 

the maximum in (14)

is replaced by a minimum over a~

The significance of Corollary 2 Is twofold. First of all , it allows

the dual simplex method to be implemented for the LP/CUB knapsack problem

without ever explicitly calculating the U
j 

and v~ coefficients. Secondly ,

it allows the values to be efficiently stored In a heap , with the maximum

R at the top. Then as R
t 

is removed , and replaced with a new value , h it’ un-

changed values of the remaining R.K 
enable the heap to be reconstituted with

minimal computation (on the order of O(iog m)).

The issue remaining before  g iv ing  a det ailed spec i f i c a t ion of the steps ol

a specialized dual algorithm , is the efficient determination of by (14~ .

Since each time a new R.K 
is found , the variable xi (k) will become the new

(the next time k is selected as t by (15)), all of the j 
~ ~k 

such that

~ 
ai (k) may immediately be dropped , since they will be of no further interest.

This approach by itself , as will be shown, leads to a specialized method whose

worst. case computational bound is superior to that of 116) when the number ci

GUR sets exceeds the number of elements in each set. (This generally occurs
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‘ “

in practical applications of an “assignment” nature , where the number of

items to be assigned generally far exceeds the number of possible assignments

per item.) However , an even better approach from the standpoint of worst

case bounds results by a simple preliminary pass through each set

eliminating in advance the elements that do not qualify to be selected as

k*. Since the elements that are left will be visited En descending order

of the the a
j 
values (for a

q t > a
q*

)i it follows that each sucessively smaller

a
j 
will be the next ak*, and the task of identifying a maximum by (14) is

eliminated.

Specifically, then , we seek to identify a subset J~ of 
~k 

whose elements

are linked by a predecessor/successor ordering , where the Immediate successor

s(j) of an index j c J~ identifies the next element that qualifies to serve

as k* after j, and the immediate predecessor p(j) of j identifies the element

of J~ that qualifies to serve as k* immediately before j. Initially , of

course , s(j) and p(j) just arrange the elements of in descending (ascending)

order and we will suppose that in the process of creating such a linking that

duplicate a~ values are removed by retaining only the one associated with the

smallest c~ value. The process of dropping an element from 
~k 

in the construc-

tion of J~ can be accomplished simpl y by linking its immediate predecessor to

its immediate successor.

Under this predecessor /successor linking , (14) can be written

01k* 0
jk* 

for all successors of I — 1(k)

Then I will become the new k* (except. tor the first I selected as k*). Thus ,

in particular , since we may eliminate the situation of tied maximum ratios by

selecting the one with the smallest a
1 

coefficient (which has no tied successors),

_ _
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and since dropping superfluous elements will yield k* — p(i), the identify—

ing characteristic of J~ becomes

0
ip~

1
~ 

O~,(i) (16)

- —0 ~0 0for  all successors j  ot i and for  all I c 
~k ’ where is 

~k stripped of Its

first and last elements, which respectively have no predecessors or successors.

The task of weeding out elements of to assure this relationship is made easy

by the following.

Remark 4. The inequality (16) holds for all I c and for all successors j

of i if and only if it holds for all I r and for j — s(i).

Proof. We need only show that for any h , i, j, r (taking the roles h - p(i),

j — s(i) and r s(j)) such that a
h 

> a
i 

> a~ > 
~~ 

the two “successive” in-

equalities °ih 
> °jh 

and ‘ 0
rj 

imply 0
ih 

> °rh~ 
First , for the coefficients

as ordered , we note that °ih °jh 
is equivalent to 0

jh ~~~~~~~~~ since both of

these inequalities reduce to c
1
a
1 

+ c~a~ + c
J
a
h 

> c
l
a
h 

+ c
j
a
i 
+ c

h
a
l
. Similarly,

°ji ~ 
®
rj 

is equivalent to 0
rj 

> ®
ri 

Hence we obtain -
‘ °jh °ji 

0
rj

0
r1 

and in particular ‘ 
~~~~~~~~~ 

which is equivalent to O~~ °rh Consequently,

°Ih °rh ’ completing the proof.

To make convenient use of this observation we introduce a dummy index 0

to “start” and “terminate” the predecessor/successor linking, where 0 is treated

as the immediate predecessor of the largest a
j 

and the immediate successor of

the smallest a~ . The procedure for modifying the initial linking on 
~k 

so that

it becomes a linking on J~ is then as follows.

0. To start , let It , I and j be the “first three” elements of 
~k’ 

that is,

- - - ~~~~~~~~~~~~~ t 
-
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)
h — s(O) , I — s(h), j — s(i). (If 

~k 
has less than three elements, then

— 

~k and nothing is to be done.)

1. Compare 0
ih 

to 0
jh ’

(a) If °ih 
0
jh ’ set h - I and go to Step 2.

(b) If — °jh 
or 1

~~
0
ih ~ h 

and p(h) - 0, drop I and go to

to Step 2.

(c) If 0Th 0
jh 

and p(h) # 0, drop I, set i h , and h - p(i).

Then re turn  to the start of Step 1.

2. Set I = j and j — s(i). If j — 0, the procedure stops and the

linking correctly identifies the ordered elements of J~ . Otherwise ,

return to Step 1.

The validity of the foregoing procedure is an immediate consequence of

Remark 4. Note that the index j never “backs up” to a predecessor value ,

but remains unchanged in Step 1 and is set to its successor at Step 2. Con-

sequently Step 2 will always be executed — 2 t imes, where is the number

of elements in Whenever the method does not go to Step 2, the index I is

dropped at 1(c), which can occur at most n
k 

- 2 times (since i is never the

first or last element), for a to ta l  n umbe r o f i t er a t ions of the procedure

equalling at most 2(n
k 

— 2). This procedure is patterned after one due to

-
• 

Witzgall [16) (who obtains a different iteration count) except that Witzgall’s

approach is based upon a geometric determination of the locations of points

on or below line segments , rather than on a direct comparison of ratios as

afforded by Remark 4.

it should also be noted , in contrast Ic the less general situation ex-

amined in [16], that the elements of may not all qualify to be basic in a
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dual feasible solution. If N ~ J , it is additionally necessary that the

ratios 
~i~ (i) 

be bounded by the limiting ratios from N — J , as shown in

Theorem 1. This means that  some of the in i t ia l  and f inal elements of

(under the predecessor/successor l inking)  may also drop out of consideration .

Rather than bothering to check for this situation in advance , however , the

first and last relevant elements of J~ can be determined automatically by

starting from some initial basic dual feasible solution and simply executing

the specialized dual algorithm .

In general , these observations lead to the following Corollary as an

extension of the options available from Corollary 1 for  obtaining an i n i t i a l

dual feasible basis.

Corollary 3. The set of Case 2 dual feasible bases , any one of which provides

an acceptable starting basis for the specialized dual simplex method , can he

generated by selecting an arbitrary J~ to be J~ , and selecting any element i

from this set (other than the first element) such that 0 satisfies theip ( i)

limiting bounds from N — J (identified in Theorem 1). Then I and p ( i )  may

respectively serve as q’ and q*. I f  no such element i exists , then some other

set must serve as J
0 , and whatever element of the “unacceptable” J~ thereby

enters the basis in the star t ing solution Is compelled to be basic in all dual

feasible bases (hence , the associated variable may be f ixed at the value 1).

The elements q ’ and q * found in Corollary 3 may need to be interchanged ,

so that  the f i r s t  pivo t equation can be represented by (9).  (in  th i s  case ,

the a
q i ‘ a

qa 
assumption must be replaced by the a

~~ 
> a

q i assumption , re-

versing the roles of the predecessor/successor links.) If a Case 1 basis is

used as the start , then a ~ 0 (for x the basic variable in (5)) implies

- - - . ~~~~~
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a
q~ 

a
q* 

on all iterations (since 
~ 

takes the initial role of q’ with

a — a = 0) ,  whereas an artificial start (with p — n, a — 1 and c
q* n+l n n
large) will select the first (“largest a

s ”) elemen t of each 
~k 

as the

initial a
k*
.

The specialized dual simplex method based on the foregoing results may

now be described as follows.

The Special ized Dual Simplex Method

1. Initialization.

(a) Create the predecessor/ successor link ings and the J~ sets, k E 11.

(Fo r N # J , def ine J~~1 to be the set containing the elements (at

most two in number) with limiting ratios identified by Theorem 1.)

(This step can be deferred or applied in conjunction with Step 1(b),

using the starting basis there to reduce the range of elements

considered for inclusion in the J~ sets.)

(b) Create a starting dual feasible basis (as by Theorem 1 and Corollary 1

or Corollary 3). Compute the initial v value by computing

ci. - a0 
— a

1~ 
and v

0 
- cI/(a

q~ 
- a

q*
)

kcM

If v .~~ 0 and either q ’ c N — J or v ~ 1, then the current basic0 0

solution (X
q

t — V~~ X
q * 

- 1 — v and x
k* 

— 1,k c — {q }) 
~~ op-

timal. Otherwise , interchange q ’ and q* if necessary so that v

0. For what follows we suppose a
q~ 

a
q*
. (If not , the word

“maximum” should be replaced by “minimum ,” and the successor -

so should be replaced by the predecessor symbol p0.) 

-- - 
-—
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(c) Identify the ratios R.K °s(k*)k* 
for each k c M .  (If s(k5) — 0,

the ratio R.
K 
does not exist, and is bypassed. For the case k — m + 1

where by convention k* n + 1, we define s(k*) to be the first

element of J~~1 excluding the current q ’ (if q ’ C J~~1
). Hence

— c
1
/a~ for j — s(k*), if this element j exists.) Put these

ratios in a heap, with the maximum at the top.

2. Identify the incoming basic variable and the new basis composition.

Pick the maximum ratio from the top of the heap and denote it R
t~ 

( I f

the heap is empty , there is no feasible solution.) The current variable

X
q
I leaves the basis and x

(~S) 
enters the basis. If s(t*) C N — J , the

current basic solution is optimal for q ’ — s(t*) and v
0 

= ci/(_a
q~
) (where

ci is unchanged trots its previous value). Otherwise , the current ~~~

becomes the new x , ,  while x is the new x ; i.e., set q ’ — t’~ andq 8( 1*) q*

q* — t~ — s(t*).

3. Update the current basic solution.

Update cz and v by setting ~ — a~~ 
- a

q*~ 
ci — ci + ~S and v0 ct/tS. If

v ~ 0, the current basic solution is optimal. Otherwise, identify the

new value of R — 0 (for the new t*). If the ratio does not exist
t s(t*)t*

(s(t*) — 0), reform the heap for the ratios still in it. Otherwise , add

R
t 
back to the heap. Then return to Step 2.

An analysis of the maximum amount of computation required by this method

Is an follows. The creation of the predecessor/successor linkings (that m i —

tially arrange the a
j 

coefficients In descending/ascending order for each

requires on the order of O(n
k 

log 
~~ 

computation for each set , or an effort

Li~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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of at most ~ 0(n log n ) O(n log n). (For the case where each CUB
kCM0 k k

set has the same number of elements, n/rn, we may refine this to O(n(log n —

log m)).)

The work to modify the linking to identify the J~ set involves at most

— 4 iterations of the procedure based on Remark 4, or 2n — 4m iterations

over all sets, requiring computation or order O(n — m) ~ 0(n). Creating the

starting feasible basis requires an effort of at most 0(n) (including the ef-

for t of generating and selecting the minimum d~ values) while computing the

initial v value is 0(m). Finally, computing the R.
~ 
ratios requires 0(m)

computation, while putting them in a heap is an effort of order O(m log in).

Thus, the total initialization effort of Step 1 can be expressed as 0(n log n)

+ O(m log in).

For Steps 2 and 3, at most n — in — 1 elements (the successors of the k*

elements, excluding the initial q’) remain to be examined in the J~ sets,

k C M and so these steps will require at most n — m — 1 iterations. Exclu-

sive of reforming the heap , these two steps require a handful of “if checks,”

assignments, a couple of additions and 1 division. Reforming the heap re—

quires an effort of 0(log m), hence in total the amount of effort required at

Steps 2 and 3 is 0((n — m)log in). Putting these together with the effort

required at initialization we can state

I
Theorem 3. The computational complexity of the LP/GUB knapsack problem is of

H order at most

0(n log n) + O(n log in)

or

0(n(log n + log m))

--—--~--~~~
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We have stated these order bounds separa tely ins tead of simply giv ing

the O(n(log n + log m)) bound , because of the overestimate involved in the

O(n log n) term. In particular , as previously noted , this term can instead

be expressed as O(n(log n — log in)) for the situation in which each CUB

set has n/m elements. Thus, in this case we have

Corollary 4. When each CUB set contains the same number of elements, the

computational complexity of the LP/GUB knapsack problem is at most 0(n log n).

The bound of Witzgall is given in [16] as O(n log n’ + 0((n —

where the O(n log n) term is essentially the same as that of Theorem 3, and

also can be replaced by O(n(log n - log m)) for CUB sets with n/rn elements.

The primary difference between the bound of [16] and that of Theorem 3 is

therefore the contrast between 0((n - m)m) and O(n log in). For easier corn—

parison, let g — n/rn (so that g is the number of elements In each GUB set If

each set has the same cardinality). Then these terms can be respectively

written O((g — l)m2) and 0(g(m log in)). Since g ~ 2 in any meaningful

problem (or else there are CUB sets with only 1 element), the latter term

clearly represents a smaller order of effort than the former, particularly as

in or g (hence n) becomes larger. This difference appears to stern from the

fact that our procedure specializes the dual simplex method directly , whereas

Witzgall’s instead carries out preliminary “topological reduc tions” (corres—

ponding to those obtained via Remark 4) but otherwise leaves the dual method

primarily to its own devices (for the case J = N). (Sinha and Zoitner ’s pro-

cedure and Witzgall ’s procedure appear closely related in this respect.)

It is interesting to note the type of order bound that results for our

method when the initialization effort of setting up the predecesor/successor

—4
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23 )
links and adapting them to the sets Is not employed .

The modifications for this approach are as follows.

Al ternative method. (Onit t ing  the in i t i a l  ordering of the a~ coefficients by

the predecessor/successor links, and the creation of the J~ sets.)

1. Initialization.

(a) Deleted

(b) As in the previous method , except tha t Corollary 3 Is not used as

a strategy for creating an initial basis. In addition , drop the

index k* from each

(c) Instead of setting R.K 
= 0 

(k*)k*’ 
examine each j € (for 

~k 
as

currently constituted). If a
j ~ 

a
k~ 

then drop j from 
~k

’ and if

not compute the ratio °jk*’ 
saving the minimum of these computed

ratios as R.k
. (Then s(k*) denotes the j that gives this minimum

ratio.)

2. Identify the incoming basis variable and the new basis composition.

As in the previous method.

3. Update the current basic solution.

As in the previous method , except for setting R
t 

= ®
s(t* t*~ 

Instead ,

first drop t~ from J~ , and for each remaining ~ c 
~~~~ 

(as currently con-

stituted) carry out the operation indicated in 1(c) for k — t.
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The type of analyses app lied to the computations for the previous

method allows us to state

Corollary 5. When each CUB set has the same number of elements g — rn/n,

the computational effort required by the Alternative Method for the LP/C.UB

knapsack p roblem is of order

0(n) + 0((n — m)log m) + O((n - m)g)

or

0(n) + O( (n  — m) (g + log in)

Again we have written the bound in different ways to facilitate comparison

with the other bounds. The 0(n) term here is comparable to a 0(n) term that

was previously assimilated Into O(n log n) in both our approach and in Witz-

gall ’s. Thus, for a clearer comparison , the bound of Corollary 4 can be re—

written

0(n) + O(n log n)

and that of Witzgall can be written

0(n) + O(n log g) + 0((n — m)m).

While the worst case bound of Corollary 4 appears generally superior to the

other two , note that the bound for the Alternative Method appears more attrac-

tive than that of [16] for g in , and becomes increasingly attractive as in

becomes larger relative to g, due to the fact that increases in log in are

dwarfed by increases in m. (The value of m is often several fold greater

than g in pracUcal applications. For example , in the applications of [H ,

11, 12, 13], m ranges from 4g to 50g.) Coupling this with the fact that the

Alternative Method requires less “set up” effort than the other methods makes
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)It an appealing alternative for problems in which worst case bounds are ex-

pected to be overly pessimistic. In this context , any attempt to consider

“likely” cases instead of worst cases must also account for the advantages

that may derive from initiating a specialized dual algorithm from an ad~-

vanced starting basis, rather from an “extreme end” of the dual feasible

region (as in [15] and [16]).

Finally , it is Interesting to consider the specialization of these bounds

to the ordinary knapsack problem. In this problem , the number of variables

before adding slacks to give CUB constraints is in n/2 (i.e., the addition

of slacks yields g = 2). Bounds of both previously indicated versions of

the Specialized Dual Simplex Method (from Corollary 4 and Corollary 5) re-

duce to O(m log in) in this case , which is a standard bound for algorithms for

the knapsack problem. Recently, however , Balas and Zemel [1] have developed

an improved bound of 0(m) for in variable knapsacks. This raises the interest-

ing question of whether it is possible to find a method for the general LP/

CUB knapsack problem whose worst case computational effort specializes to

0(m), yet that maintains advantages for the general case. We conjecture that

this is not possible.
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linear programming (l.P) knapsavk problem sub iect to gene ralized uppe r
boufld (GLIB) constraints . The LP/Gl H knapsack problem is of in  ~‘rest
both for so lv ing  more genera l  1.1’ problems by the  dua l  s imp lex  method ,
and for appt~~ing ~~rri~,’ate constraint s t r a t e g i e s  to the s o l u t i o n  of 0 — 1
~
‘
~Multtpli- (‘h ice intecer programming problems . WV~ provid~~cornputa-tiona I bound. r ethod of O(n(log n log m i ) , where n is the total

numbe r of problem variables and ni is the number of GLIB sets. In the
commonly encounte red situ ation where the n u m b e r  of variables in each
Gl ’ f l  set is the same , ou r hound he~’on ies O(n log n). These bounds
reduce the previous best e st i  rnatt’ of the order of comp lexit y of the
L P /GU B  knapsack problem ~~~~~~~~~~~~~~~~~ and provide connect ions  F .

to compu ta t iona l  bound ~ ~~~ the or hna rv knapsack problem.
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