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1. Introduction

A triangular matrix reveals its eigenvalues on the main diagonal. By
Schur's lemma any square matrix is unitarily similar to an upper trianqular
matrix with the eigenvalues arranged in any desired order along the diagonal.
In practice the QR algorithm in real arithmetic produces a block triangular
matrix in which the eigenvalues are likely to be in monotone decreasing
order by absolute value down the diagonal. However this monotonicity
cannot be guaranteed and for some purposes the ordering by absolute value
is not what is wanted.

The problem which we address here is to find some simple orthogonal
similarity transformations which have the effect of exchanging two diagonal
elements (or blocks) while preserving block trianqular form. Actually we
will show only how to swap adjacent blocks and so the exchange of distant
blocks must be accomplished by a succession of adjacent swaps.

Although the cost of such a swap is small it is not negli;§:?;?\$n\gn
nxn mtrix (p*q)zn multiplications are needed to swap adjacent diagonal

blocks of orders p and q.

2. Ruhe's Trick

For any real © and s = sin 8, ¢ = cos 0 the symmetric matrix
-5 ¢
is an orthogonal matrix representing a reflection of the plane.
c s
bserve that

[ T - ][ a 8 ][ - € ] ; [ a‘sz-Bsc+azc2 . -n]sc-ﬁszﬁlzsc

cC S 0 cC S -m]scﬂ%czmzsc ’ a]czmscmzsz

b
The new matrix is upper triangular if and only if

clRe - (a‘-n?)sl =0,

e




raram

The choice ¢ = 0 represents no change, the choice
tan 0 = s/c = B/(u]-uz)
results in an exchange of ay and a,. The new (1,2) element is
-S[BS'*(Q]-uz)C] = -s[ps + Bcz/sl = =R .

Now suppose that oy is the (j,.j) element of an n~n upper trianqular
matrix. The plane reflection indicated above, effected in the (j,j+1)
coordinate plane, will swap a, and Q. Postmultiplication affects
columns j and j+1 while premultiplication affects rows Jj and j+l.
This requires 4(n-2) multiplications. To keep the angle © in
(=n/2,n/2) we define

d = v ‘“] ‘T‘-zv;‘g? )
c = |u]-a2|/d .
s = R sign(a]-nz)/d .

Note that when R = 0 the transformation merely exchanges the two rows and

the corresponding pair of columns.

3. The General Case

Consider the reduced matrix

[ A, B ] A, is pxp,

0 A2 A2 is qxq.

We seek an orthogonal similarity transformation which swaps A‘ and A,
In general this is not possible: fortunately we can achieve a form which

is as useful as exchanging A‘ and A2. Ne denote by ZT the transpose
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of any matrix Z. A partitioned matrix

{-S{ CZ] C, ispxp,

Gy 52 C2 is qxq ,

is orthogonal if, and only if, the following relations hold:

STat =gsTag!

(M €101+ 555, = p = i/ tGG
(2) $15; +C,C) = I " CoEy %828,
(3) - €5y +5,C) = %, :
(a) - 5,C,+CTS, = 0 s

Note that if c{ % €y c; = C, then we can take S, =S,, however this

is not always advantageous.

We seek an orthoagonal matrix of the form shown above such that

T 5k T
[-s] CZJ[A] B]'[Az a”-s] cz]
(P 0 A, 0 A ¢, S,

On equating the (2,1) and (2,2) blocks on each side of the equation we find
= T = T‘
(5) CA, A,c] (also A,C, = CHA,)

(6) C]B+SZI\2 . A]SZ .

When C] is invertible (more on this below) then (6) can be rewritten as

= I, 8
B+ C'SA, = C]'AS,

o en
ACy'S, o by (5) .

2




We now let the pxq matrix C;]S2 = X/, where £ 1is a positive constant

at our disposal, and substitute into the equation above to get

(7) AKX - XA, = €8 .

In order to obtain C] from X we pre- and post-multiply the first ortho-

gonality relation (1) appropriately and invert to find

| PO (N
Ip + XX/ GG
or
(8) (c,/8)T e /e) = (1 elexn’) ! 5w, .
1 1 P 1
Using (3) we find that X/¢ also equals S]C£T and by using (2) we obtain
T PO S SR
(9) (Cpre) (Cpre) = (TET+XTX)T0 = W,

It is well known that an X satisfying (7) exists and is unique if

and only if A, and A, have no eigenvalues in common. In practice only

1
such cases interest us but we want the algorithm to be robust in the face
of some perverse or extreme requests. Clearly if A] = A2 we want the
algorithm to do nothing rather than to fail. In such a case C] = C2 =0
which is far from invertible. By taking & = 0 and setting C]/& - c2/& =
= X =1 the algorithm will work. When the eiaenvalues of A] and A?
are close, in some sense, then & will be chosen so that

max{&,0X0)} = 1 approximately.

There are infinitely many C's satisfying (8) and (9) and any of them
will do. In the absence of other constraints the symmetric solutions are
the natural ones; if C{ = C1. C; = C2 then S‘ = 52. but this fact is
not obvious. In this algorithm, however, we prefer to choose C‘ and C2

so that R] and AZ have a convenient form for most applications.




It is not necessary to compute S] and 52 explicitly. Write
8] = C]/E. the scaled version of Cl' Then

T T
S 0 g o Y x' &
. "’[ | 2]’[26” ]

C] S2 0 G £ - X
and P is best applied in this factored form. In practice the orthogonality
of P is completely determined by the accuracy with which the C's satisfy
(8) and (9).

It is not necessary to compute i‘. 52. or B explicitly since they

will emerge when the similarity transformation

A B
(an p[ ! ]PT
0 A,

is effected. For completeness we give the formulas

= T =
- ) 5T _ f aT-1
g % aolel L oToslz . o=Ta o Ty o1
B = Ay Sp =510y Ay = Ta RSy - $1A G

ooy




A, B
4. The Algorithm for SWAP A - ‘ ! ]
0 A

2
1. Clear the (2,1) block of A.

2. Solve A]x -XA2 = (B for X and & usinq subroutine TXMXT.
£ 1is chosen so that Xl # 1
If £ =0 then exit.
Solve 8{51 i (52+XXT)"‘ ) for E‘ using CTCEOW.

1) JR e % R [ 2
Solve Czc2 (z+x'X)"" = W, for C2

using CTCEON.
Premultiply A by P using NEWCOL.

Postmultiply PA by P' using NENRON.

Update the matrix of orthogonal transformations using NEWROW.

~

Force the diagonal elements in the new blocks R‘ and Az to

O o N OO O e W

be equal.

Name Executable Statements | Count for 2 x2 Case

SWAP 17 32n multiplications

TXMXT $2 42 multiplications

CTCEQW 17 32 multiplications,
4 square roots

NEWCOL 22 16 multiplications
per column

NEWROW 22 16 multiplications
per row

5. Solving A X - =B
a B (AT
Nhen A1 = y 1=1,2, the linear equations which determine
Y. @
B
can be solved stably in closed form. Let & = Ay =0y then the equations

may be written as

X

e 4




i
3
1

i g i e e A0

9

X b
C &l % %
(1) x*hs %= 1’|, b= 12
"l ¢ X21 bsy
Xa2 bo

where
2

§ -y §T+B,Y =28y

-32 8 -2682 § +82Y2

Multiply (1) as indicated in order to make the coefficient matrix block

diagonal,
ctgyy O S
(3) 2 S 2
Now let
& T 28y
G = (CZ-B]Y-') L - 2 /d
2682 T
where
(4) T 84y, =B d = <2 - (268,)(25y,)
272 " Shy » gIrEigl

and premultiply (3) diag(G,G) to find

(6 0 € -g
-
L0 6y C

8byy = Yabyp - Bybyy

(610 )] By * Sty =

5) - o2 " = )
: o6 )| ™MPn e B %
L “Tilhg - Bhn * B2

oot ¢ TR -t
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Q 08by + (265-1)v,b - Thibgy = 267,805, |
) (262-1)82b” + 08byp - 288, B,by, - R0y, >
“Tn - 2Yebye., 88byy + (26°- )y b5 .
L - 207 8yby, - 0y * (265108505 ¢ $4bos
= !/d

defining y, where

. - i :
g =% ‘27282 =4 - (8171*8212) 0 )
= 26%

-
¥

_ g
-7 ®§ +(B]Y]‘82Y2) .

Inevitably (5) is Cramer's rule and d = det(A]QI - I@AZ) so that d = 0
if and only if ay = An, B]y] = 8272.

Among all the coefficients in the linear combinations of the elements
of B which are given above only 1 and ¢ involve genuine subtractions
and possible loss of information through cancellation. However by rewriting
them in a more complicated form all unnecessary loss can be avoided. From
(4) t = 62+-8272- B1Yy and if either of 52 or -8yY, is tiny compared
with the other two terms we want to add it in last. Similarly for y. Thus
we use
Y = (B]y]'*nux{Gz,-Bzyz}) + min{62.-82Y2} s

(6) 2 oy
T = (Bzyz'*max{ﬁ .-81Y‘}) + min{§ .-617]}

Here is an example for a machine with a relative precision of 8 decimals,

i.e. the floating point result f1(108-9) is 108 whereas f1(108-10) is

8 2

10%-10 = 100107-1). Let &€ =9, gy, = -(10%:10), ByYy = 108 then

from (4), computing from the left, t = £1(f1(9-10%) +108-10) = 210 ,

from (6), computing from the left, t = f1(f1(-10°+ (108-10)+9) = -1 .
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If we are given a matrix M with eigenvalues near 11031 and are evaluatinq

exp(10M) then values 1ike the ones given above will occur.

Normalization

The important matrix in effecting the orthogonal transformations is

25 ity

and we want our formulas to be accurate right out to both extremes:

-1 0 0 I
and
¥ 1 I 0
An appropriate way to achieve this is to choose ¢ so that

max{E,AXN} ¢ 1 .

Equation (6) above yields y so that the correspondina 2 x 2 matrix Y

-~

satisfies

A]Y -YA2 = dB

where d 1is given in (4). To get x and £ let n = Iyl then

Case 1: n <d, take x = y/d, €=1.

Case 2: n > d, take X = ¥/"’ £ o= d/n.
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The Algorithm for TXMXT
We solve A1X -XA2 = £B when A] and A2 are 2 x 2 standardized

matrices as follows:

2
6.01‘02. GSQ'G »

MEBY T "By
08 = 8(8sq - (my+n,))
V= (n] +mx(6sq.-n2}) + min{sq,-m,}

o
"

-
]

fy = v = (my +max{8sq,-my}) + min{ssq,-n;) ,

2
"

26Y2 , h = 2682 s

a
L

f2 -qh .
At this point y can be evaluated from (5). Then

n= oyl
5 - Cxlmax(d’n) ’

new § = ge+d/max(d,n) .

L
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6. §plvingﬁCTC = W

In some applications the Ai’ i=1,2, have the special form

0 B;
Ai = Qilz + 0 ’ BiYi <0 ’
Y4
and we want 51 to have the same standardized form (equal diagonal elements).

Because Ai is similar to A1 we must have

~ 0 B, 3

Ai = “ilz s Y , BiYi = BiY
Y 0

This requirement fixes the matrices C1 and C2 of the previous section.

A straightforward way to derive formulas for C] and C2 is to obtain a

particular solution to (8) via the Choleski decomposition and then to

standardize the resulting diagonal blocks.

Let R] and R2 be upper triangular and satisfy

e o 3 ekt Ty~
R]R] = W.I = (g 12-+XX )
o . Tyy-1

where X solves (7), A1X -XA2 = tB. Next define

N =) TERIE GO
: Ay = Ry'AjRy

Now let 01 and J2 be the unique plane rotation matrices which stan-

dardize ﬁ1 and az. i.e. both

T : o 1
J 2

A]J1 and A, = J2A2J

A 5 =

mn

1 1

have equal diagonal elements. The appropriate C1 and C2 are therefore

= = T =
E, = €/ = JyRys 82 Co/E = JpRy.

i et i W 1 Gl 4 b e S o L




P T TP T i i i
. R R % Ao . .

o ——

Let us drop the subscript and dot from C‘ and A‘. The condition

-

cTe=w= (g212+xx7)“

imposes three quadratic relations on the four elements of C. If

1

a B -
A= [ Y a ] then the requirement that CAC have equal diagonal

elements (both «) imposes another quadratic constraint, namely

BE11€2 = YC€y2Cp0 o

4
i
i
|

which suffices to determine C. However the direct solution of these
nonlinear equations is far from obvious. Instead we shall derive the ;
solution in a straightforward but lengthy manner via the Choleski factori-

zation of W. The final algorithm is however very compact. Let

it A sz s b e g o diiin Lin i

2

d© = det(£212+xxT) = &4 + Ez(fflxijlz) + (det X)2 h

Then define M by

s 2 %

g RPN AgE RAE - (X1 %1 %1 2%2) |

L LB 2.2 . .2
AL -(xpyxp*xyoXp) BT 4 Xy

and note that

i's _1_[ ) '“12/’4‘71—1}

d
R T

is the Choleski factor of W. Note that det M = d?. The next step is to

form
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A= RAR"!

i
: [ MmN ][ 0 8 ][ faz M2 ] Shes) o ox
Mz * olp
Py y O 0 o

Y [ M2 (9”11 L 2)’r22 ]r-l
n
Yr22 '

d [ s Ay ]
= 0[2 .
62] '(g

Now let J be the plane rotation which standardizes A.

S e c -s § a € '3
A=A - e +al,
$ ¢ an -8 - €

6(c2-52) - 28sc 28sc+a . a 52
- it il
= (‘Iz Y

28s¢ - 8]2s2 + 'iimc2 -6(c2-52) + 28sc

+ (112 =

where
as= (alz*az])IZ ?
The proper choice of ¢ = cos 6 1is therefore given by

| tan 20 = 2sc/(c’-s%) = §/a .
So

2-1+c0520=1+8/v.

v= /87 +87 ,
c = VT+Ta[/V)/2 , to keep |0 < n/2 , {
s = sin 20/2cos® = § sign(&)/2cv .

2c




i T AN PR A

ke [c 'SM'H '”12] 3 ["n ”12‘“22]
$ . 8 0 roo ' sr]2+cr22
Our object now is to get rid of the intermediate quantities and

express C in terms of d and M. So

-5
"

2 2 2
(Bryy = v{ryomropl ) /2y vos

2 2 2
= YC/m,] , defining =,

§ = yra/ty = Yma/myy

IY|6/my, where ¢ = /fri?ﬁ} :

«

<
"

Since By < 0 the expression

R A
is positive.

At the cost of an extra square root the important quantity & can be

written in a form which is attractive for finite precision computation
- T 2 2
Q= [d -(mlz'am‘]/Y)l/Zd - (d"'(l))(d*ﬂ‘)/?d .

Having computed d, M, &£, and ¢ we obtain the desired formulas:

2
0 - m“/zd [
¢y =y ® Vo(U+Te]79)
Coy = STy ® rfl Gsign(i)/2v(cr“) = sign(&)nmlzloc‘] "

Cryp = Stpp = (Cqmyo=yyd)/myy s

SPyp HCrop = (Coymypteyd)/my,
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For completeness we note that
B } . [ N2 ]l 0 8 J[ 2 €12 ]d
0 €1 S LY 0L -cy oy

B = (Bcf]-ycfz)d :
Y = By/B

———
-~ ¢ o

so that

The matrix C 1is computed by the subprogram named CTCEQW (i.e. CTC

i

Computation gj_cz

The subprogram which computes C] from d, X, B, Yy can also be used

to compute CZ' Recall from (9) that

T

Co

L= Tor=)
c2 (12+x 1 SR

2

By symmetry d° = det(I+X'X) = det(I+XX'). Moreover, from (12)

T oo alee)
A2 CoAS L, .

By transposing the data we can use the same formulas as given above for C].
The data is d, X', y,, 8, and the output will be C,, Y. B,. In other
words it is only the interpretation of the parameters which distinquishes

the computation of C2 from that of C].

In practice Al and A2 will be contiguous submatrices on the
diagonal of some big block triangular matrix. The similarity transformation
determined by P affects elements in the same row or column as those of

A, and A2 as indicated in the fiqure,

1

W).
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Let those elements in a typical column which are altered by the premul-
tiplication by P be partitioned conformably with P as ( : ). They

will be transformed into

[u] 3, o]-xT cl]u
)

v | O 8] [ £l X [ v }
i 3 ( EZ(EV-XTU) ]

* | & (eusnv) |

Notice that the number of multiplications required to effect this is pq

for each of XTu and Xv plus q2 and p2 for the application of C2
and C]. This is the same as for multiplication by the full, non-factored
version of P except for the (ptq) multiplications involving ¢.

There is a surprising difficulty in writing a program to effect this.

The program must work for any values of p and q and this condition

prevents us from supplying the input data as values; they must be names or
references since the number of them, p+q, 1is not known at compile time.
In other words the subprogram is informed that elements m+1 through
mp+q of an array Y are to be transformed.

The disadvantage of this constraint is that the same code cannot be
used for effecting the postmultiplication by PT. More precisely, the
price of using the same code for both cases is a loss in elegance and
efficiency. The difficulty can be seen clearly by looking at the listings
of the subprograms NEWCOL and NEWROW. They differ only where a variable

Y[i,k] in NEWCOL corresponds to a variable Y[k,i] in NEWROW.
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8. Gaussian Elimination for Solving A\X-XA, = B

The linear equations defining X can also be solved by block Gaussian
elimination in about half the time required by the alqorithm just described.

Three different factorizations are appropriate (i.e. stable).

Case 1: 62 >> mﬂX('31Y1"32Y2)

I, 0]fC &l X by | b | by
L T | N ol 0 R Tl 1 R Sl 8 W
N 2 Bd R " 2

Case 2: |y | > IBll >> max(Gz,-Bzyz)

cY;‘ y;‘ 0 -(c"’-em) Xo by

Case 3: |72| 3,|82| >> max(sz,-B]Y])

x

A

SRR B TR X b,
2 V) o e % 6]
Yo Y2 2Y2

a Sy . X12 5 o 6 b2

., St & BoL. Sl B B8 Mol & 5. Balt 8

e 12 i 22 21 - 22
In each case X can be found with 16 multiplications and 4 divisions. Further
rearrangements should be made when I8]| > |yy| in Case 2, [By| > |v,l
in Case 3.

The extra length of the code (100 statements versus 50) does not

appear to warrant a saving of 16 multiplications.




9. Swapping Large Blocks

The algorithm we developed for swapping was quite general with A] pxp
and A2 qxq. However the individual subroutines TXMXT, CTCEQW, NEWCOL, and
NEWROW were specialized for p < 2, q < 2. Here we want to point out that
general versions of these programs are readily produced.

1. A]x--XA2 = B can be solved for X by the algorithm of Bartels
and Stewart [B and S, 1971]. In our case A] and A2 are already in real
Schur form and X can be partitioned to match A‘ and A2‘ If the equa-
tions defining X are taken in the proper order the system is trianqular
and can be solved by

(1) (2) E Al %y 40
At *ke ~Mketee ® Bre - .iﬂAkj SRR
J i
The proper order is k = p,p-1,...,1; 2 =1,2,...,q. Here p and q are
the block orders of A] and A,.

2
2. ¢'c = (£24xx")"'. The positive definite matrix £2+XX'

can be

formed explicitly and its Choleski factorization RTR computed in a standard

manner. Then R can be overwritten with its inverse to give a solution L.
3. The execution of the orthogonal similarity transformation, in

factored form

presents no difficulties.
We mention this possibility only to reject it. The rival method is
simply to swap A, and AZ subblock by subblock, using the programs which

1
we have presented here, that is by swapping many 1x1's and 2x2's. The

————————————————
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operation count for each method is approximately (p+q)2n multiplications
and additions but the general procedure sketched above would require siani-
ficantly more program statements.

In the language of computer science we are recoomending the recursive

swapping of big blocks.
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10. Test Results

(a) 6x6 Matrix (Separated Eigenvalues)*

Original Matrix

™ 2.0000 3.0000 4.0000 5.0000 6.0000

-1.0000 2.0000 5.0000 6.0000 7.0000

6.0000 7.0000  8.0000

8.0000  9.0000

12.0000

i -1.0000
Swap Ist and 2nd blocks, 2 x1 case

™ 6.0000 -4.2583  -4.6036  9.6667 11,

2.2<10°"  2.0000  3.2930 -3.8212 -4.

8.0000 9.

12.

3 <.

Swap 3rd and 4th blocks, 1 x2 case

™ 6.0000 -4.2583  -4.6036 13.192 -13.
2.2x10°"  2.0000 3.2930 -4.8713
-0.91103  2.0000 -1.5437
12.0000

-15.839 12.

4.2x107 1.

-0.91103 2.0000 -1.3978 -1.

S.
| P
0.

7.0000
8.0000
9.0000
10.0000
11.0000
12.0000 |

14

-

12.990
-4.7929
-1.5161
10.0000
11.0000
12.0000

6.3656 |
-2.3615 |
-0.75851

5.5837
-4.5244

8.0000 _‘

*
Computations oerformed on 14 digit machine, results rounded to 5 fiqures
for display.
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4., Swap 2nd and 3rd blocks, 2 x2 case

™ 6.0000 13.402 -14.062 -1.3625 -3,
2.2x10°"%  12.000 0.63866 -3.6006 0.
-17.224 12.000 -0.21201 0.
.0x10°83  aex107' 2.0000 2.
4.7x100'  2.5x107" 10720 2.
. a.2x107" .
(b) 6x6 Matrix (Close FEigenvalues)*
1. Original Matrix
[ 6.0000 10°*  4.0000 5.0000 6.0000 7.000
-1.0000 6.0000 5.0000 6.0000 7.0000 8.000
6.0000 7.0000 8.0000 9.000
6.0001  9.0000 10.000
6.0001 107%
E -1.0000  6.000
2. Swap Ist and 2nd blocks, 2 x1 case
C6.0000  0.99984 -4.9995 -5.9992  -6.9990
6.0000 4.0006 5.0010  6.0011
-2.4996x10"°  6.0000  7.0000  8.0000
6.0001  9.0000
6.0001
£ -1.0000

1781
39990
40812
7985
0000
3x10

0‘\
0
0

1

~7.9989
7.0013
9.0000

10.000

T

-14

-

6.0001 |

6.3656

5.3584
-5.1223
-1.6498
-0.35352

8.0000 |

*Computations performed on 14 digit machine, results rounded to 5 fiqures

for display.

_‘
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3. Swap 3rd and 4th blocks, 1 x2 case

E 76.0000  0.99984 -4.9995 - 7.9996 5.9992 6.9983
6.0000 4.0006  7.0019 -5.0010 -6.0004
-2.4996x10"°  6.0000  9.0008 ~7.0000 ~7.999]

6.0001 9.9992 x 1078  0.99992
-10.001 6.0001 8.999]
3 3.9x10°8  4.3x1071%  6.0001 |
4. Swap 2nd and 3rd blocks, 2 x2 case
[6.0000 -4.9997 -0.99972 <5.9991 -7.9995 6.9983 |
6.0001 2.4995x10"°  7.0000 9.0008 -7.9992
-4.0008 6.0001 -5.0011 -7.0020 6.0006
2.1%x10°8  _6.6%x10°%* 6.0000 10.001 -8.9989
8.9x10%%  _3.8x107%°  _9.9994x107% 6.0000 1.0000
3 3.9x10°'8  .4.3x10""7  6.0001
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11. Program Listing

SURRN U™ NS SWADRENM N, T
DIMTNG LR TR N ) OO (1M

.‘; NEUF I B Sl

o

SBEAL X(232)4Cl(292)0eC2(20200Y(2,%)
tle1))

COUTVALI NCE (X 1,1),Y cu:.n.vu.‘n).(c.'u.n.vu.'-)) }
c £ XCHANG! AOJACENT G LAGUNAL BLIECKS T AND T 9L GINNING In 0w g1 Ay
. C  ORTHOGONAL SIMILACITY. TOANMBFIRMATICNS, 0 anuin TN Py NEESFEVING TH
& T LANGUIL AN FORM (% T RLCTR SR i WY R, T [S 60 Y L &
"-’JIH 1
L e B
J“.J.?JJJ_ SR N re
= led
' C
f CRNRNWRRNBRRRAERRRC | AR THE (2,1) RLOCK, 1
 FO ISR 1 - 5. Sl 5D 5 66 ; .
DA % [ 21,2
< TCI28 001 40=1)7Ca
¢
s_—red. 1 L X, "1!...“."!.“"‘**"‘[.\/' FOR X IN TINX=XxT2a2ATI2, WHLNCT Tl IS LI OY (2,
CALL TXMXT NV N, TL014J03,0 14l Py Te?4X)
1P (7.7 Qe Ne) "FYU"
¢
CNERY AR AN RN ERRCEOMD)TE C] WHERSE C1""C L (29Q%T ¢ X&XT )nwa
CHrmNl NGATPRNNLRAND CD W W CAT™MEE = (2901 & XTYX )k ta] o
CSALL “FCrQW 2y X (1o 10X (2910 XClyg2) e X242 370 11 0d2) TN, 00),010 L)
CALL TYETAWEZ2 90l 0] ) XL g ) W X241 ) XD D) TJALUX) T (D R)A),C 2L 2)
P
TCHNRNA RN R QU RKAARPERFEAIRM TRANSFNARTMAT TON ON COLUMNS AND ROWS (F T,
CHMM“ANANNKARASJONA T P,
K CALL NYWVEC (241 1oL 2y YeToNM NI, 1) )
R X S fFrhlabBaXaLabted o] g N
CALL wwv‘r Lol 2 0¥ 0B ONM Ny Oy Kw)
(=
CONMAT WA RN R Y OOE Qe OYALTTY F DT AGONAL FLEMENTS TN RLOCKS o
a3 TR Lo af0e 2) TAJLo D)1 41, 0) 410 =0T (U, D) TCILIL UL 1)V /70,
,’“ TE L1 of Qe &) T(IA =1 ¢ A =1 ) =T (J3, 04 )= (T(Ha=1,08=1)¢Y (048,J4))72.
l RETURN
{ END
i
O . SA— S < - - - - ]
' cyunRLOuTI Mt (‘”" IWE7 o X1 g XAl oX1 2 X222, NETA,CAM CyLL) |
[ DIMENSICN C (2, 2) '
S : - i " " el g .
TTTEFIND AN ADBROPETATE SOLUYION & YO CTR¢ = w = (Z50%1 ¢ xdxTirnmeo
| IS5 C= 2% 2
IF (L eGTe l (02 TO .2 > - oy y
/s5Q 7ENeX X11eX21%X LX) PNX) Q2
S EPYYIATY REIIR
10 CMLlE 290 ¢ X0 LI R
INt.)g-(x'!ﬁx \le"\\'x\‘)
Lespruemnpen SN SELXLITR2eX127 "2 )=k ML €2
R -.m-‘ (0
EGA = QORT (FEMIDERD =« QFTANEM] 1N D/ GAM)
{ PETA a2 (DT « FARAIRIRTD ¢ FGAY Z(2e YNETH)
SR "’hl'SuLu_Ll( AR "?""41’“’?)
FACITMIT /(e OV
~(|.x)-~f)f-vnmu e SHANS( 2T YA ZONTIN)
ClPe) )= IAN(] a0)y PR A‘*lﬂl’ﬂM’("Hl“f(l.lH
TN SRR, 5 RS 2 L&(Lg | ILID AR tEID)Z ML
CUR D)= (D, 1 )%F "\?“‘(lo“*h?l")l*‘vll
. H""UQN
FND
M - 3 13 A ‘).__4 A‘
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SUESTIITINT TXMXT (MM Ny Ty )1, 02, L1400 29yRy74X)
DINCNSTOMN TUINYGN) gPINMIN) X (2,2)
T C SOLVE FOR L1 HY L2 MATRIX X IN TluX = X#T2 = 7%R,
C T1 AND T2 AFGIN (N CCWS JI ANO J2, Z IS GIVEN N ENTOY
C BUT AN EXIY Z < ('HANG"h TO ENSURE NOOMX) 1561,
XKl al) =X(2,1)X(1,2)=X(242)=00
TF(7e NeCe) ‘-“TU""*I
NFE2YCALe JYN Y= (J2,.02)
K=PHL 16l 2=
= IE LRl aNE o, Do ol K 2GTe 1) GCL IC ¢
CREMMEBRERERNRET] AND T2 HAVE THE SAME fF IGENVALUIS ¢ RKETURN 2z=)e
A X(1,1)=X(242)=10¢
CEEB S IR & Y oo O e it o e S —
W TYSN
¢

Coumma AR R RN TERMING DIM NSTONS 0OF SSLUTICN X

SESSENS. SRS < | s o G S - [ o B, U6 N (18 TORS " AE v — e
€
ComerekkabkerkxxT] 1S 1 RY 1, T2 IS 1 BY 16
10 XMAX=AE‘§(R(J19J?,’

‘(l.l):‘vHJl.J.?)"(’/I\“A\(!()"BY' AR LR SN TR et
360 T FQ

3
(G Dl iR LR R, SLER AR | IS 1 Y Y. T2 18 O BY Y
20 D=0 LE®2=T(J2 4J241)2T( Y24+ ,J2)
X(1y1)2(PE U1y J2VRDEL 4R (I 424 1)%T(J261,02))
X(192)=2(R(J1 qU2)%T(J2,02¢1)4R (V11,0241 )%DFL )
e XMAXSAMAXI(ARS(X(1411) 2AHS(A(L$21))
G TN sC
2
CoNTYO e we R e e NN T 1S 2 AY 2' T2 IS 1 AY lao
A DRI RO aT (1 o1 A1 (Ul el dl)
X1 1) (DL (UL 3 J2)V=TC I yJI*1IXR(IL &) ,U2))
Xe2¢1 )=z (=T (141 J1)NQCII,I2)DEL AR (D1¢1,)0))
XMAX =AMAX] (ADS(X(]1 41)) 4ARS(X(2,1)))
oo Y 8 el § renc
{
CESRE SO PERKAAT T 1§ 2 ny 2, T2 15 2 AY 2.
ar QET1I=T(J1,J014¢1)
B GANY T ey Ly bt e
PETZ2=2T(J2,02+1)
GAN2 =T (JD 4] 5 J2 )
P1=AETIRGAM]

i R B U AR CAMD R SIS S R -
qr*n-;)r t ne D

t=0C7LA(DIN=(0 140 D))
F1=(P1$AMAX] (DSQy=N2 ) )4AMINL(DRQ,=P2)
e E 22D 2P ANMAXI(OSQ 4=O1) L EAMIAL(DSQ,=PL)

H=22 e O RDEL ¢ 17T 2

GzPe N LMEGAMD

D af 20k e G

I (N otNe Ca) G2 YO 4

1Y ERJ) G JE)

o 122R(J1, ¢ 1)

R21=2R(J1+],J2)

R22=Q(JL1+1 ,42+1)

X(191)2RIINF SR 12FGAMDIRE | =R 2 I%AFET 1¥F 2-RINAF 71 %G
X(142)=RI1IAAFT2*FLARIP2 X\ «RD | RAFT 1 RH=R P2 IVAFT | *F D
XOT oIV Eal LN SGANINE D L ERGAVINGR R e ranwg]
X(242)==T 1 1RGAM I WH-R 1 2NGAM IR D 4R 210" T2WE 147 P wE
XMAXZAMANT (ARSEX(L 5 1) ) g ARCINX(L 32 V) e i (X (Dg 1))y ARS (X (2, 2)))

S e e -
[ CRRR P aFARRRRECKENGORF, NORMIX ) < 1o
i ]2 E=7/7AMA X1 ( XMA X 40 )
L 00O S0 JU=1,.L2

__"_*.JlQ":iL_L%lJLJ..; e
~ ] X(Y =X(Vy JYEF
> IF (XJA2XaLhTaD) 7z 7%N/XMAX
; NETUAN
= ENC " i -
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CURROUTING NEWVIC (FoNL M2,y 2, Y (NM N MY, TNC)
DTMENGTON YOI 42702 6) gw( @)

YO COn(OryY = XTrU) = NCWU_oCLY(FXU ¢ X%y} = NLwV.

C WHEDRFE C1 19 N1 BY N1,02 1S N2 Y N2,AND (UeV) 2(Y(M1) ,Y(MI41)4000)e
C THT MATOTICES Y 4C1,C2 AORF STAREN IN Ze IS SCAL ING FACTER FOOR Xe
C av"y INT=
C RECrNARN 3ngg.tgrhnﬂ(‘ TOAMSFOFMAT [QM ON COLUMNS ML TO N OF Y
TOIM THE NTENZ2 UNWSR STARTIANG wWITH MY
CONMY = (ML=1 ML) = M = e(MI= RN = (M= 1V (HMe L)y (=ML, U= M,
CowHON TRC=NM,

L C O RPERFORM OLOCK L XCHANGL THANSCOSMATION UN B IR T % [ORS . Y

! C IN THFE NL#N?2 (Ol UMMS STALTING wiITE COLYIMN M1,

i C NY = (1,M1=1) = 14(MI=2)"NVM = (M]=])NANE] =AWV, LK=zl, J=1lo

! 1= INC

'

i

C
C

LA=d=NM=T¢] S
IF- 0 abTa J) L =M
NY= (ML =1 ) M (=Y

N1+ VN -

e GO T (1002063080041 .

AR SR ARA RN NN =], NZ=]e

12 NC 1% XK=l 0yN
wil)s= Y(NYL&!I)*F Z(1 .1
WEZI=VINYSTIM e2(0 1,01
YINY+T)=2() S )™w (1)
YONY42 T )=2( 1 )0 w(2)

S C GRS 6 & 'y L R ; R

C
C

RF TURN

REUERRRERERRREN] 22, N2=]e

___JHL-_DD_ZJm&,U1di S TR

|

2O 0NYInNYe N )

=Y (NY 3% T Y ®F = 7
=Y(NY+T)XRF¢2Z(

1) 7(1
h( 2) 1
WE3)I=Y(NY2INT )k 47
Y. 1=2(1 ) "w(l
YINY42IRT )= (1, 3w
YINY 431 )7 (2 3N
25 NYaNY+ )
RLTUSN s v

MR N R YRR AR L =)y NZT Se

e
& x: H 3
30 DC 3% K= _tyN

BN, =
C

e ML) Y (NYERN] ) ""L;:.I.(

W(2)=Y(NY®3IR -7

wi(3)=Y(NY+1) 1,

YINY+I)=2(1 1)

vYANY 420 1)= 2L
YOV v Yy=20(

15 PrYZNY )

ETURN

-‘\)25-

R RERBREANRRRN |22, NOTZ o
ac DC 4 K=l R,N
Wl 1) =Y(NYSILT)*F =
W2 )=Y(NY AXT )Vl =

(NY e T)
(NY*2])
(NY#arT)
YY (NYeaAR])

e~ %%

e i A
. e LA
PoraZ 22
< 2R~ zv~*

B EE Yl e
~ g TNy
* -~~~
Ny
~e o

Y(NY ¢3* [ )=?

<

z

<

*

>

<

—

~—

1]

~

-~

N -

- e

i‘“

~ -

—~——Ne w® e
PP Ly
NNy~ € -
o~~~
‘\“A-“,.‘v'
Pon el
B

') NY=NY+.)




Alternative, but less efficient, version of NEWVEC which better illustrates

the column and row operations.

T TS URRAUTINE NEWCCLCF yNL gN2 47 oY JAVM Ay ML)
D IMENS INON V(Nn,Nn.Z(?.e). (a)
[

PERFORM _BLOCK EXCHANGE TRANSFCRMA
C IN THE N14+N2 ROWS STARTING WITH+ M1
C COMFUTE C2%(FxV - xT#%y) = ANEWU ,C1
C WHERE C1 IS N1 BY N1,C2 IS N2 BY N
| - G IHE "A;?l% =S X3Cl 3C2 ARF STQREC IN

DO 50 K=M1,N
DN 10 J=1,4,N2
e M) = YOMINYSISYNE
DO 10 L=1,yNIL
10 W(II2W(JI)I=Z(L yJ)BY(MEL yK)
DO 20 J=1,N1
L_~_-.___1Lﬂ2tdl. YIMe) K)*F Lot
i DO 20 L=1,N2
' 20 u(N?fJ)-w(AZOJ)OI(J.L)#vtuohloL.K)
j NO 3S J=1,N?2
e i e R e e i
DO 30 L=1,N2
30 S=S+Z(J,L+4)%w(L)
35 Y(N+JyK) =S
DO &% A= NY
S=0.
NN 40 L=1,NI i :
S= SO?(J.L#Z)*&(NZ*L)
____15_“_1LHLNZtJ;K1=Sm_-_“,‘-“.,_,_ i () = e A e o
S0 CONT INUE i
RE TURN
END

A Ch CCLUMNS ML TC N CF Y

F*U ¢ X¥V) = NEWV
AND (L oyVv)s(Y(ML) yY(MI®]1)geoele
e F 1S SCALING FACTOR FOR X

Ne -~ N0

T

SUBROUT INE NE'RO‘(FquoN?QIQV N“.N.Ml.l)
DIMENSICN Y(AMIN) ,2(246)0wW(4)
C
- -C PEFFORM BLOCK EXCHRANCE YRANSFORMAT ION ON FIRST I ROWS OF Y
C IN THE NI1#N? COLUMNS STARTING wWITH CCLUMN M),
C COMPUTE C2%(F*%xv - XT2U) = NFWU ,CI%(F%®U ¢ X%¥Vv) = NEWV
C WHERE C1 IS N1 AY N1,C2 IS N2 BY N2,AND (UyV)IS(Y(M1)yY(ML41)peee)e
C THE HAL?ICES X3C1,yC2 ARE STORED IN Zo F IS SCALING FACTOR FOR X
M=M] -
DO S50 K=1,1
DO 10 J=1,N?
PRy WA = YIK,MtAL2J)EF Lt
DN 10 L=1,yN1
10 WEJI)=W(J)-Z Ly J)IPYIK, ML)
DA 20 J=1,yNi
SO _MIN2EJ) = YI(K, M) *F i,
DN 20 L=1,N?
20 WINZ2¢J)=WIN2+J )22 J)L)*Y(K MENLHL)
DN 35 J=1,N2
St e T ) T —— 5

00 30 L=1,N?
30 S=S+2(JyLea)%kn(L)
35 Y(KeMeJS)=S
e IR YRR 0 ST R e .
S=0,
DO 40 L=1,yN1
40 S=S+Z2(JyL+2)%n(N2¢L)

.”ﬂlﬁ.~_!l&?l¢N23411$m._nm_w & v ol .
S50 CCNTI NUE

RETURN
END

—— - - —— — . e -
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