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INTRODUCT ION

Surface Acoustic Wave (SAW) devices provide a convenient hardware
implementation for non-recursive transversal filters. Because of their low-
cost and small size, SAW filters are becoming increasingly popular in various
signal processing applicatioms.

A transversal filter consists of a tapped delay line (Figure la)

where the output is obtained as a weighted sum of present and past inputs.

A typical SAW filter structure is shown in Figure lb. 1In response to an input

signal the transmitter generates surface waves that propagate towards the
b receiver. The acoustic propagation path constitutes the delay line and the
set of receiving elements tap the wave at different points along the path. E |
The summation is performed automatically by the bus bar connecting the
receiving elements, -thus providing a compact realization of the transversal
i filter concept.
In a practical SAW device there are various second-order effects that
degrade the filter performance expected from the idealized model discussed
above. Diffraction is among the most important of these effects. The {
idealized model assumes a plane uniform wavefront for the surface waves.
The curvature of the actual wavefront (because of finite transmitter

width) thus gives rise to errors in the weight and delays of the taps

causing lower selectivity and rejection.

The mathematics of surface wave diffraction on anisotropic

i
4 ' crystals is well understood and experimentally verified [9-17]. The

effect of diffraction on the frequency response of filters has been
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Figure 1. SAW implementation of non-recursive transversal filters.
(a) Non-recursive tramsversal filter model
i (b) Typical SAW filter structure




analyzed and experimentally verified [6-8,18,19]. However, it has been
difficult to model diffraction into a practical design procedure because
of the large amount of computation involved. Significant improvement in
performance by appropriate diffraction compensation has not been possible
in practice.

We have developed an approximate approach to diffraction analysis
that reduces calculations by at least an order of magnitude. This approach
is particularly significant because its basic assumption is that each tap
has a constant strength and delay independent of frequency, which is
precisely the assumption one makes in the design of surface acoustic wave
devices. The error in this approach is thus an error that cannot be
corrected by present tap weighting techniques no matter how accurate the
analysis might be. The effect of these errors has been investigated on
different types of filters. A real-time design procedure with diffraction
correction has been developed on the basis of this approach. Also a new

technique has been proposed and verified for implementing the tap weight

and delay corrections.

Chapter I describes the analysis technique and its experimental
verification. Chapter II describes the procedure for diffraction correction
and its limitations. It also describes a practical implementation of the

correction technique. The discussion in this chapter is limited to single

filters (only one transducer is weighted, the other being short and uniform)
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Chapter III discusses methods for diffraction corrected design of cascaded

filters. The analysis and design is presented with reference to materials




like ST quartz with a parabolic velocity surface. The problem with non-
parabolic substrates is one of computational complexity and inaccurate

knowledge of velocities [9) and is not discussed further.
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CHAPTER I: DIFFRACTION ANALYSIS

In this chapter the theory of surface wave diffraction as applied

to interdigital transducers is discussed. It also describes the application

of this theory to predict the performance of actual devices and experimental

confirmation of the predictions.

1. Tap Weighting Technigues Based on a No-diffraction Model

This section briefly discusses the different techniques used to

implement tap weighting since diffraction effects depend strongly on the

particular technique used.

SAW filters are commonly modeled as ideal delay lines assuming a
Fourier transform relationship between the tap weights and the device
frequency response. The specified transfer function H(f) is inverse Fourier %

transformed and sampled to yield the tap weights W(tn) such that [1,2],

N -j2'rrft:n
H(E) =T W(t)) e : (1)
n=1

where the values of tn with n running from 1 through N represent the time
delays of the N taps.

SAW filters typically consist of a transmitter which generates
surface waves and a set of receiving elements which tap the surface wave

at various points along the propagation path. For a transmitter of width

~

& L and a receiver of width £ = pL, separated by a distance z (hatted quantities
are normalized to wavelengths) the signal at the receiver in response to

unit voltage at the transmitter may be written as a function R(L, pi, Zz) s

Toc g e

!
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If the receiving elements are connected to the bus bars through
external attenuators then the received signal at any tap at a frequency
f is written as,

Ug(£,) = £t )-R(T,0(c ) 1,2) @)

where r(:n) is the attenuation function.
In the absence of diffraction, the surface waves are plane and
uniform across the aperture, so that,

-j2nz

R(L, oL, 2) = pee (3)

= p-e'jznft

where, £ = frequency and t = time delay.

The different methods for implementing a desired set of tap
weights are broadly of two types:

(1) Varying overlap or apodized weighted transducers: Here the
width of the receiving aperture is varied in accordance with the tap weight
function, i.e., p(tn) = W(tn) and r(tn) = 1., The received signal is obtained
from Eqs. (2) and (3) as,

-j2nftn
UR(f’tn) = R(L, p(tn)-L,Z] = P(tn)'e

-j2nst (68)
n

= W(tn)-e
(2) Uniform overlap or unapodized weighted transducers: Here the
receiving aperture is of constant width and the weighting is achieved by
capacitive attenuators at each finger [3] or by selective withdrawal of
fingers [4] or by series weighting [5]. We will discuss this class of

devices with reference to the first method but it can be extended to the




=

other methods. In this method the tap attenuation function r(tn) is varied
in accordance with the tap weight function, i.e., r(tn) = W(tn) and p(tn)= 1.
The received signal is obtained from Egs. (2) and (3) as,
-jZTrftn
UR(f,tn) = r(tn)-R(L,L,z) < r(tn)-e
(4b)

-jZﬂfcn
= W(tn)-e
From Eqs. (4a) and (4b) we see that in the absence of diffraction both
methods achieve the desired tap weighting as expressed by Eq. (1l).
In the presence of diffraction R(L, oL, 2) is a more complicated

function than expressed by Eq. (3). We will now discuss the theory of

diffraction and apply it to determine this functionmn.

2. Diffraction Theory

The theory of surface acoustic wave diffraction is basically an
extension of the well-known principles of optical diffraction to anisotrapic
media and two dimension#l wave propagation. Three different theoretical
approaches have been described in the literature:

(1) Angular spectrum of plane waves [10,11]: This is a technique
of Fourier analysis whereby a given source distribution is described in
terms of its component plane waves with wave-vectors E in different directioms.
The wave amplitude of any field point is obtained by recombining the plane
waves with appropriate phase-shifts, This technique thus involves an
integration over .K-space.

(2) Resolution into component Gaussian modes [12,13]: 1In this

technique Gaussian waveforms are used as the basis rather than plane waves.

™ S " — T - Ty oy 4 g .
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In isotropic space Gaussian beams represent 'normal modes' i.e., they retain
their shape during propagation. This property remains valid in parabolic
anisotropic space though not in general anisotropic space. This technique
thus provides approximate analytical insights but is not suitable for numerical
evaluation.

(3) Huygen's principle [9,15,17,19]: In this method the source
is considered a collection of infinite point sources each of whose field
distribution at a distance i is given by,

=2
eJK-R

The wave amplitude at any field point is obtained by summing the contributions
from the individual point sources. This technique thus requires an integratiom
over the source distribution.

Beam profile prediction on the basis of each of these approaches
has been confirmed experimentally. However, the Huygen's function approach
is most widely used because the integration over the source distribution is
more well-defined and easier to perform numerically than the K-space inte-
gration required in the first method. Since the Huygen's function approach
has been used in all our calculations, the other techniques will not be :
discussed further.

Application of Huygen's principle to parallel IDT transducers:

In this section the Huygen's principle will be applied to find

the transfer function R(i, pi, 2) between a single finger transmitter and

a single finger receiver as a function of their widths and separation.
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This function may then be used to obtain the response of an actual filter
which is made up of many such transmitter receiver pairs.

We will first take the special case when transmitter and receiver
widths are equal. Consider (Figure 2) a single finger transmitter, IX and
a single finger receiver, Rx, each of width L separated by a distance Z.
The problem is to find the amplitude and phase of the signal picked up by
RX relative to the transmitted signal.

In the Huygen's approach we assume T_ to be composed of a large

X

number of point sources each of which has a contribution, u, at a distance

- =
R (R not too small) given by:

L.
4
w4

u= (3

=

where i is the wave vector.
The-signal at any point, X on the receiver is obtained by inte-
grating u over the width of the transmitter:
Ux = f qux dy 6)
all ¥
The net signal at the receiver is obtained by integrating Ux
over the receiver width:
R= [ U d&x= | J o uggixdy )
all X all X all ¥
For parallel line transmitting and receiving fingers (which is
the most common case) the double integral in (7) is reducibie to a single
integral. This has been done by Szabo and Slobodnik [7] and by Mitchell

and Stevens [6]. We derive this simplification in a slightly different




Figure 2. Parallel transmitter and receiver of equal width.
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Figure 3. Area of integration for equal width transmitter and receiver,
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manner to bring out the physical process involved in the reduction. The
contribution at a point X on the receiver from a point Y on the transmitter
is written as (Figure 2):

jKerx jK@) + Z sec @
e e
Uox T = (8a)

./? JZ sec ©

where 8 is the angle made by the line ¥X with the axis (the Z-direction).

Let x be the distance of the point X (on the receiver) as measured from the
lower end of the receiver; and y be the distance of the pt. Y (on the trans-
mitter) measured from the axial line (parallel to Z) through X, so that we

have,
tan 6 = % (8b)

With y thus defined, we see from Eq. (4a) that Uyoax is a function of y and

Z only and independent of x. We may write,

Upax = £(y,2) (8¢)

With this definition of y and x, the signal at point X may be written as:
L-x
U= ]y £0.2)

-X

The total receiver signal is given by:

L L-x
R=[dx [ dy £(v,2) (9)
0 -X

Equation (9) represents an integration in two coordinates, x and y. The
area of integration on the y - x plane is shown in Figure 3. Since the

integrand is a function of y alone, the x-integration may be eliminated
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by multiplying the integrand by a factor L - lyl, equal to the x-dimension of
the area of integration.

Thus, from Eq. (5),

+L
R=[ dy @~ |y £G,2) (10)
-L

1f £(y,2) = £(-y, Z) (which is true if K@) = K(-8)), then,

L
R=2[dy(¥ - y) £(7,2) (11)
0

The result of Eq. (10) may be visualized physically as follows:
The double integral in (7) basically means that we have to sum the contri-
butions of all of the rays that are drawn from each point on the transmitter
to each point on the receiver.

Consider (Figure 4) the ray from one end of the transmitter C to
a point, X on the receiver such that the distance of C above the axial line
through X is Yye Then,

Yoag T f(yl, Z)

Now, for each point, M on the receiver between X and B (the lower end) we
find a point N on the transmitter such that NM is parallel to CX. Since

parallel rays are equivalent,

Spm Y Yok O B
However, parallel rays like PQ at points, P outside BX do not
end on the transmitter and hence do not contribute to our integral. Thus

a particular contribution f(yl, Z) will be weighted by a factor proportional

to the length of BX( = L-y,) in our summation process. So,
1
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Figure 4. Parallel transmitter and receiver of equal width.




all Yy

r\+L
= oy a-lyh te, 2
-L
A similar reasoning may be applied with unequal transmitter and

receiver width (Figure 5). From the area of integration (Figure §) it

follows that in this general case,

b L-x
R=[dx [ dy £(y, 2)

a -X
-a L-b

=[ day+y) £(v, 2) + [ dyb-a) £y, 2)
-b -a
L-a

+) dy(L-y-a) £(y, 2) (12)
L-b

If the receiver is symmetrically located with respect to the trans-
mitter (which is usually the case inapodized transducers), we have, L-b = a,

L-a =b, so that from (12),

-g a
R = Ib dy® - |y]) £, 2) + [ dy®b-a) £(v, 2)
- -a

b

+ i dy(®-y) £(y, 2)

W

a b
=2( [ dy®-a) £, 2) + [ ey® -y) £(7, )]
0 a
if K@) = k(-9). (13)
The transfer function has been derived above without any approximations

and so may be used for any kind of anisotropy provided the function k®) is

known accurately.




iy S

)

Figure 5.

b+y

Figure 6.

*®

N o/

N
N\

N

Parallel transmitter and receiver of unequal width.

2 I\

-
'
o

Y

<

y=L-x.

xp-1083

Area of integration for unequal width transmitter and receiver.
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3. Fresnel's Approximation

Inmany practical cases k(®) is approximated by a parabolic function

of the form,

BN - X g2
k@) =k (1 -38)

where ko is the wavevector in the z-direction (Figure 1) and v is a parameter

depending on the particular crystal and axis of propagation.
In parabolically anisotropic space beam diffraction is the same as
in isotropic space with the distance scaled by a factor (1 + v) [9,10,12]

i.e., the effective distance Eeff is given by

zeff =z(1l+Y)

In this case the Fresnel's approximation can be used when 2 > L (hatted

eff
quantities are referred to wavelengths). Under this approximation the inte-
grals in Eq. (13) reduce to the Fresnel's integral. Since this integral is

available in tabulated form, a considerable reduction in computation time

is achieved by the approximationm.

Using the Fresnel's approximation the transfer function between

a transmitter and receiver of equal width L and separation Z is written as:

R(i,i,;) = e.jZTTz JZ(L+Y)
[ i L/Nz/2(L+Y)
d

! v o I2

VZI2(L+Y)

-

~2
. g A iy, o 11
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The transfer function R does not depend separately onm Z and L but on

12/E(l-ky). Utilizing this fact R is written as,

RG.L2) = e 2™ . B 1.5) (15)
2F i -jF
where SF) =F%Fr /= - (e - 1)
T J2Fm

F = TL2/2 (L +Y)

X _.ﬂvz/z
and Fr x is the Fresnel's integral fdv ed .

0 a -
Similarly for a transmitter of width L and receiver of width pL

(p < 1) separated by a distance Z, the transfer function (Eq. (13)) is

written as:

83, L, By =TS L BTG

[ 8 Pb/Jz/Z(l-i-Y) -2 /2 3 rﬁ/fz:/2(1+Y) ~ym2/2

S dv e S R AT dv e ;

LTV ST

A Frt ) e ;7%—:;;”1# i)
FA+Y) J

where pi = E - 3 (Figure 4). 1If the receiver is symmetrically located, thea,
=1 ite
2
seiize

Comparing with Eq. (11), Eq. (12) is written as,

~

R, oL, 2) = R(G,b,2) - R(3,3,2)

P L R ol [1—2tg S(F,) - -17'-2 S(F,)] (17a)




i‘l

R WA S T A R ST A

i b 5 l+92
where Fb §?T::7$ F( 3 )
(17)
.2
na _ 1=0.2
Thus, R(L, pL, Bb = 2 *T® B3 stv.5) (182)
There SE,p) = Stlsry - 2L sy (18b)
2P 2 b 2 a

We now have the transfer function between two parallel fingers in a form
suitable for evaluating the response of unapodized (Eq. (15)) and apodized

(Eq. (18)) devices.

4. Nature of Diffraction Errors in Apodized and Unapodized Devices

A function E(F,p) is defined,

EF,p) = R(L, pL, 2)/pe 2™

that compares the transfer function R with diffraction (Eq. (18)) to its no

diffraction value of pe.JZﬂz (Eq- (3)). The actual tap weights, W_ with

D
diffraction are given by,

Wh = W-E(F,p)

where W represent the ideal tap weight without diffraction.
Figures 7 and 8 show the amplitude and phase of E for different
values of p as a function of the normalized aperture separatiom factor,

ASF which is related to F by

ASF = 1/F = 2(l+y)/L2
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L' Tap errors are incurred because of changes in E from one tap to another.
4
The change in E from one tap to the next is written approximately as,
SE S é% s Az %% * Ap
- 2E . 9 (ASF) eE .
B(ASF) a2 Xty W
DU, SN £ SRR
el 2 B TR# (1%

where AZ is the change in z and Ap is the change in p from one tap to the
next.

It is seen from Figures 7 and 8 that for ASF > 1 the functionm E
becomes relatively smooth. This is the far field region where diffraction
errors are less because of the lower values of the derivatives im Eq. (19a).
However, practical devices cannot be built in the far field because there is

a large waste of power and substrate area.

In the near field (ASF < .05) the diffraction errors are low.
However, because of the limited extent of this region and RF coupling
problems devices cannot be located totally in the near field. In the
intermediate field (where most devices are built) the errors are larger.
However, for unapodized devices the second term in Eq. (1%a) is absent
(p = 1 for all taps) and the first term may be made sufficiently small
by increasing i as discussed by Wagers [8]. In practice 1 cannot be

] increased indefinitely because of limited substrate size and correction

techniques are called for.




Since apodized devices have a wide variation of p for different
taps, diffraction errors are considerably larger due to the second term in

Eq. (19a) and cannot be removed by mere increase of i A typical apodized

filter has diffraction errors ~30db below passband level as compared to

~50 db for unapodized filters.

5. Frequency-Dependent and Frequencv-Independent Tap Models for Diffraction

In analogy with Egs. (2), (3), and (4), the transfer function R

is written as (from Eq. (18)),
£ = . : i* SN
UR(&,tn) r(tu) R(L, p(tn) L, zZ) =e
where W = 2L S(F,p)er(t )

f = frequency

WD represents the actual frequency dependent complex tap-weight including
the effects of diffraction. The frequency dependence arises because F
varies with frequency. The distorted freéuency response due to diffraction

is given by

N -j2nft
Hy(£) = L W (£t ) e 3 (20)
n=1

Equation (20) is used in conjunction with Eq. (18) to evaluate the response
of an actual device. We will call this the frequency dependent tap model
(FDT) since it takes into account the frequency dependence of individual
tap response due to diffraction. Device response predictions on the basis

of this model have been experimentally verified by Mitchell and Stevens [6]
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and by Szabo and Slobodnik [7]. This method, though quite accurate, has
the disadvantage of requiring a large amount of computation time.
A considerable reduction in computation time is achieved if the

frequency dependence of W_ is neglected, i.e., if WD(f,tn) is replaced by

D
its value at some convenient frequency, fo, possibly the center frequency.
For typical narrowband filters this is a very good approximation. With this
approximation, Eq. (19) becomes,
N -jZﬂftn
HD(f) :.nEl WD(fo,tn) e 21)

We will call this the frequency independent tap (FIT) model. Computationally
it is far faster than the FDT because. |

(1) WD needs only to be calculated for one frequency |

instead of each frequency of interest and

(2) The efficient fast Fourier transform may be used

in computing HD(f).

For a typical narrowband filter it takes only a few seconds for the FIT
model compared to a few minutes for the FDT model.

The FIT model is particularly significant because it represents
the limit to which diffraction errors may be corrected during f£ilter design.
The process of correction involves determining the right overlap functioms '
and delays p(tn) for apodized devices (or the right attenuation function
and delay r(tn) for unapodized devices) so that the diffracted tap weights
WD(f,tn) accurately reproduce the desired tap weight function W(tn).

However, this can only be done for a single frequency, fo, such that




WD(fo,tn) = W(tn). No technique is known to tailor the amplitude and
delay of a single tap so as to compensate for the frequency variation of
diffraction effects. The added accuracy of the FDT model is thus only of
analytical value; it cannot be used to improve performance. The accuracy
of which the FIT model reproduces the FDT model  represents the ultimate
accuracy to which diffraction corrections may be effected.

In Chapter II we will describe in detail the accuracy of the FIT
model in various cases and how the accuracy may be improved for unapodized

devices by a judicious choice of £ For the present it suffices to mention

0.
that for narrowband apodized devices without diffraction correction the
predictions from the two models agree very closely. The experimental results

presented in this chapter relate to apodized devices that fall into this

category.

6. Experimental Results

Experimental results with apodized devices for ST cut quartz
(y = .378) are presented in this section. The first filter has a 400-tap
output transducer and a short input transducer. The maximum transducer
width is 50 wavelengths and the center to center distance is 190 wave-
lengths.

Figure 9a shows the response predicted with diffraction from the
FIT and FDT models. The two agree quite well. Figures 9b and 9¢ show the
experimental response together with the theoretical response with and

without diffraction. Evidently, the sidelobes near the edge of the pass-

band are predicted quite well by the theory.
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(b) Predicted response without diffraction and experimental response.
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Figure 10a shows the theoretical response with and without dif-
fraction for another filter with a shert input transducer and 351-tap
apodized output transducer. Figure 10b shows the experimental response
and the predicted response (with diffraction). On the low side the lobes
are predicted convincingly. Lack of agreement on the high side is because
of the presence of bulk waves due to the wider bandwidth of this filter.
This is evident from Figure 1l which shows the bulk wave response obtained

by absorbing out the surface waves.

7. Concluding Remarks

In this chapter an analysis of diffraction suitable for appli-
cation to surface wave devices has been described. The simplification
obtained by assuming an FIT model is discussed. A full discussion of the
approximations involved in this model will be presented in the following
chapter. Experimental results for two filters is presented in confirmation
of the analysis procedure. The analysis has not been verified for capacitive

weighted devices since this technique has as yet been used only on LiNb03

which has a non-parabolic velocity surface.
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CHAPTER II - DIFFRACTION-COMPENSATED DESIGN

This chapter discusses the design of SAW filters with optimum
diffraction compensation pointing out the limitations imposed by the
frequency dependence of diffraction errors. Possible techniques for effecting
tap weight and delay corrections are described. A practical implementation

of the correction procedure is presented.

l. Limits to Diffraction Correction

The impulse response model [1], which is widely used in the analysis
and design of SAW filters, assumes a constant strength and linear phase
response with frequency for individual taps. In the presence of diffraction
this assumption is violated; and accurate diffraction analysis calls for a
frequency dependent tap (FDT) model that takes into account the frequency
variations in individual tap response.

The FDT model cannot, however, be used in correcting diffraction
errors since the diffraction-induced variations in individual tap response
with frequency cannot be compensated by any known technique. Earlier works
directed at compensating for diffraction errors during device design [7,8,18]
have all carried out diffraction calculations at center frequency, thus
using a frequency independent tap (FIT) model (or the impulse response
model) for correction - a model that neglects the frequency dependence of
the response of individual taps.

The difference between the FIT and the FDT models represents an
error that established a fundamental limit on the optimum performance that

can possible be achieved in the presence of diffraction. The extent of this

limit for apodized and unapodized filters are discussed in this section.




;
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All examples quoted in this section are for single filters with
only one transducer weighted, the other being of short time extent. The
maximum width of the transducers is assumed to be 50 wavelengths. The
distance of the input transducer to the near end of the output transducer
is assumed 90 wavelengths; so that the devices are located in the near and
intermediate fields. The substrate material is assumed to be ST quartz with
an anisotropy scaling factor of v = 0.378 [9].

(a) Unapodized Devices

For unapodized transducers with the receiving elements connected
to the bus bars through external attenuators, the received signal at any

element is written as (from Eq. (2)),
UR(f,tn) = r(t )+R(L,L,2) (22)

The function R(i,i,%) has been derived in Eq. (15) as

R@,L,2) = e 32" 7 1.s(F) (15)

O R

where S(F) = FR - (e
2FT

-1)

- 2
ﬂLZ RRE .1 474N

Exiary) = shil+y

(A = wavelength).
The parameter F varies directly with frequency and is written as,

F=F, < (222)
e
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where the subscript 0 indicates the value at f = fo. Similarly,

- £ 3
T Lo s (22b)
0 fo

Equations (22) and (15) are combined to yield,

2 i -j2mz ] &,
Ug (£,8) = Tt )ee J2 Ls@®)
-jZﬂftn 5
=e - r(e ) -2 Les ) (23)
Comparing Eqs. (23) and (4a) we write the tap weight including the effects
of diffraction as,

W (£, e) = £(E ) /2 L.S(F) (24a)

At £ = £,
Wy (Egoty) = T() 2 Ly*S Ey) (24b)

Using Eqs. (222) and (22b), Eq. (242) is expanded around f = f0 for small

changes Af in frequency from fo,

Wo(£,2) = (e )2 - Ly [SE + % (S(Fy) + D(E)]

dS(FO) -jFO
where D(Fo) = Fo I j(e —1),/ 1

v} SFOn

For a given value of L., S(Fo) and D(Fo) may be written as S(t)

is given by,

0
2 2
nLo nLo

and D(t) respectively, since F

E

0~ z(l+y) £,-t(1+Y)




32
Thus, dropping the constant multiplier JE-LO,
W_(E,t ) = r(e )[S(t ) + 2% (s ) + D)) (25a)
D' a n n £ n n’* .
= A; . # 3\ /n =
wD(fO,tn) + fo r(tn) (S(:n) + D(:n), (25b)
and WD(fo,tn) = r(tn)-S(tn) (43¢}
The second term in Eq. (25b) represents the tap w2ight error incurred in
the FIT model.
To determine the effect of this error on the frequency response
A we use Eq. (20),
N -jZT!ft?l
H(£) = T Wy(f,t ) e :
n
n=1
N -jZ\'rft:‘_1 o
= T e T(e s + 5 {8t ) + D )]]
n=1 0
For an -uncorrected device, the attenuation function is the same as the
tap weight function.
r(tn) = W(tn)
and the specified frequency response is given by (Eq. (1)),
N -jZﬂftn
H(f) =L W(t_ )-e
n
n=1
. 3 Af — ,
SOHp(E) = H(E)#S(E) + 3= « [H(D)%(S(£) + D(£))] (262)
0
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N -j2mEe
where S(f) = ¢ s(tn) e
n=1 ;
N -jamEe_
D(f) = L D(tn) e and * denotes convolution. |
n=1 |

The diffracted response predicted by the FIT model is obtained |

as, |

N -j2nft 1

0 n |

(£) =& W.(£.,t )-e . |

r Spitl Wi Mnifarf |

N -jZﬂftn

-nflr(:n)-S(tn)‘e

= H(E)#S (£) (26b)

The difference between the two models is then given by [Egqs. (26a) and

(26b)1,

L. mE*s@® + (D)) 2c) |
0

The difference becomes appreciable when

s(f) = (8(£) +D(£)) .

=

Figure 12 shows S(f) and S(f) + D(£f) for the special case of Lo = 40 and

Y = 0. (S(f) and S(f) + D(f) are actually centered around 0 MHz but have

been plotted around 100 MHz in the figure for ease of reference). Since

the latter is an order of magnitude larger than the former we may expect

that even for moderate values of Af/f0 the error in the FIT model may be
appreciable. Figure 13a and 13b show the predicted frequency response

from the FDT and FIT models for 1% and 27 bandwidth filters respectively.
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For Af/f0 = ,01 (Figure 13a) the difference is negligible, but for

Af/£. = .02 (Figure 13b) there is a small difference.

0 ¥
These small differences, however, become important when the

devices are corrected.. Correction involves the determination of an

attenuation function r(tn) that yields the desired tap weight function with

diffraction at some specified £ = £, i.e., WD(fo,tn) = W(tn). Clearly

0
from Eq. (25¢), (e ) = W(t )/S(t ) such that, from Eq. (25b), the tap

weight with diffraction are given by

S(cn) + D(tn)
S(:n)

Af L
Wy (E,e ) = W(e ) + , W(e)

(27a)

Thus, for a device with the best possible diffraction correction (assuming
complete accuracy in the adjustment of tap weights and delays and negligible
errors from other sources),
N -j2mft
Hy(E) =T Wy(f,c) e =

n=1

- H(E) + %5 H(£)%C (£) (27b)
0

where

N S(t_) + D(z) -j2rmft
C(f) = ¢ --%7;-3--Jl e = 27¢)
n=1 n

The term AZ/£,-H(£)*C(f)) in Eq. (27b) thus represents a diffraction error
that may not be corrected away. Figures l4a and 1l4b show the predicted
response from the FDT and FIT models for the corrected filters with fo at
center frequency (100 MHz). For the filter with 27 bandwidth we see that
nothing is gained from the correction (Figure 14b). For the filter with 1%

bandwidth there is some gain but not as much as expected from the FIT model

(Figure l4a).
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However, because the errors are localized in the upper transition

region of the frequency function, the error may be minimized by choosing fo
not at center frequency but at a higher frequency in the region of distortiom.
This makes Af = 0 right around the frequencies of maximum error (Eq. (27b)).

Figure 15b shows the predicted responses from the FDT and FIT
models for the 2% bandwidth filter corrected at 103.5 MHz in place of
100 MHz. The correction is near perfect. Figure l5a shows the same for the
1% bandwidth filter corrected at 10l.5 MHz.

For the uncorrected filters too, better agreement between FDT and
FIT models is obtained by performing calculations at the upper band-edge
frequency instead of the center frequency in the FIT model. Figure 16 shows
the predicted response for the 2% bandwidth filter (uncorrected), with the
FIT model calculated at 103.5 MHz. The agreement is clearly better than
in Figure 13b where the FIT model was calculated at 100 MHz.

Figures l17a, 17b, and 17c compare the FIT and FDT models for a 5%
bandwidth filter corrected at 3 different frequencies (100, 105, and 107.5
MHz). Obvious improvement is obtained by correcting at higher than center
frequency.

Filters with wider bandwidths are not discussed since diffraction
errors are known to be negligible with unapodized wideband filters [8].
This is because the convolution functions S(f) and D(f) [Eq. (26)] are
narrowband functions (Figure 12) that go down rapidly at higher frequencies.

We thus conclude that for unapodized devices,

(1) The FIT model can be used to predict frequency response

——
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accurately down to 60 db or less by a judicious
choice of fo.

(2) Significant diffraction correction is obtained
by correcting not at center frequency but around

the band-edge frequency.

(b) Apodized Devices

For an apodized transducer the received signal at any finger is

written as (from Eq. (2)),
Ug (£t = R(L, p(r )+L,2)
As derived in Eq. (18),

R, p(e ) 1,2) = e L Ls@mp )

-j2nftn -
Thus, Up (£,£) = e . NZ:L.S(F, p(t))

Comparing with Eq. (4b), the diffracted tap weights are written as

Wp(£,e0) =42 LeS(F, p(t)))

For small Af, Eq. (28c) is expanded as,

WO (£, ) = W2 LolS@g,e(e ) + %ﬁ 5 (0 (£,)) +D(Fg,0 (£ )]
e b 2
where D(F,p) = £ L0l = 1/ /57T . e FA+e0egin For2

For uncorrected apodized transducers the diffraction errors are around

30 db or less and the difference between the FIT and FDT models is not

(28a)

(28b)

(28¢c)

(29a)

42

D crasie ol
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. perceptible (Figure 9a). However, the difference shows up for corrected
devices. For a corrected device, we choose p(tn) such that S(FO, p(tn)) =
W(tn) so that,

£ W(tn) + D(Fo, p(tn))

ik - AL
LNER D )2 Ly-W(e )[1+ :, eTcw

] (29b)

. Thus the frequency response with diffraction is written as,

N -jantn
T WD(f,tn) e
n=1

B (£) =

; « BEE) # %i . H(E)#B(E) (29¢)
0

3 where

NoW(e ) + D(Fy, p(t))) -jemte

B(E) = % . e
n=1 w(tn)

Equation (29c) is of the same form as Eq. (27b) for unapodized devices.
Both B(f) and C(f) represent the errors that cannot be corrected away for

the respective cases.,

However, it is not possible to obtain B(f) without specifying

E . the apodization function p(tn). For comparison we have chosen a triangular
t

| apodization function p(tn) and obtained the corresponding B(f). This is

| ' compared with C(f) in Figure 18. It is noticed that B(f) is larger in
magnitude than C(f). This is because of larger errors in the smaller taps
in apodized devices; the fundamental limit to diffraction correction is
thus higher for apodized devices than for unapodized devices.

L‘ This is shown in Figure 19 for a corrected apodized filter with

2% bandwidth. Correction is good only to about 50 db. An apodized device
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with the best diffraction correction is still only about as good as an
uncorrected unapodized device (Figure 13b).

Since for the apodized transducer the errors are spread over all
frequency, the frequency of correction cannot be shifted for better results
as in the unapodized case. In addition because of the broadband nature of
B(f), diffraction errors tend to increase with wideband devices. This is h
in contrast to unapodized transducers where wideband devices have minimal
diffraction errors due to the narrowband nature of C(f).

Figures 20a, 20b, and 20c compare the FIT and FDT models for
different filters corrected at center frequency. It is clear that diffraction
correction ceases to be effective for wide bandwidth filters with steep

skirts.

We then conclude that there is a fundamental limit on the perfor-
mance of SAW filters in the presence of diffraction. The results may be
summarized as follows:

(1) Rejection levels below 60 db may be octained for unapodized
filters by calculating the correcting diffraction effects at a frequency
around the high side of the pass~band rather than at center frequency. The
FIT model may similarly be used for analysis by performing the calculations
at upper band-edge frequency.

(2) For uncorrected apodized filters the diffraction error level
is ~30 db. At this level the FIT model may be used for analysis without

significant error.

e~ — - T —
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(3) The optimum correction for apodized filters may vary ZIrom
~50 db to ~35 db depending on the bandwidth and selectivity of the filter.
However the optimum performance of an apodized filter will usually be worse
than the performance of the corresponding unapodized filter without any
correction.
Practical techniques for implementing diffraction correction using

the FIT model are discussed in the next section.

2. Techniques for Tap Weight and Delay Correction

As discussed in Chapter I, Section 4, the tap weight with diffraction

is related to the no diffraction tap weight by,

WD =W . E(F, p)

where E(F, o) = R, oL, 'i)/pe-jZﬂz

Given an ideal impulse response function h(tn), the FIT model is used to
derive an impulse response function h'(tn) such that at some convenient

frequency,
h(e) =h'(c) « EGF(e)), p(t)) (30)

The function h’(:n) has to be determined by an iterative procedure.
Single filters i.e., filters with a short input transducer and a weighted
output transducer are assumed. For cascaded filters the problem is more
complex since an individual tap cannot be identified with a particular
value of tye The filter is then designed using h'(tn) as the impulse
response. With diffraction this filter yields the ideal impulse response
h(tn) at the chosen frequency. This design thus represents the best

possible diffraction correctiom.
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In general h'(tn) is a complex function, and this presents
implementation problems. Szabo and Slobodnik showed [7] that for certain
special filters the phase of h'(tn) may be ignored. However, for most
practical filters this is not possible and a technique of implementing
complex tap weights is needed in order to obtain significant improvement
in performance.

There are three possible techniques to achieve complex tap weights:

(2) Tap Offset Along Propagation .Path

Let h' be given by

b = pel® (31)

where ¢ and o are real numbers. This may be implemented by making the
overlap equal to p and shifting the tap along the propagation path by a
distance f% -« X\ where N\ is the wavelength at center frequency (or the
frequency of correction).

Evidently this technique requires non-uniform tap-spacing. This
creates problems with mask fabrication since most computer plotters move

in discrete steps. Moreover, due to tap-interaction large offsets may

change the effective tap weight.

(b) Tap Offset Pervendicular to Propagation Path

Tap delays may be adjusted within limits by shifting the position
of the tap perpendicular to the propagation path i.e., by adjusting x

(Figure 21). With larger offsets the contributing rays from the trans-

mitter are more oblique and hence have larger delays. ;




-
!
|
|
|
|
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Figure 21. Parallel transmitter and receiver of unequal width
with receiver offset from center.
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Figures 22a and 22b show the amplitude and phase variation as

a function of & = x/L for p = 1.0 and for two values of F(= ﬂiz/i(lé-Y)).

Figures 23a and 23b show the same for p = .3. It is seen that in the

far field (F = .5) tap delays may be adjusted independent (almost) of tap
weights by changing «. However, in the near field (F = 50) both tap weight
and delay vary arbitrarily with « so that no simple design procedure can

be devised.

(¢) In-Phase and Quadrature Taps

In this technique each tap is replaced by an inphase and a

F quadrature tap spaced a quarter wavelength apart. The inphase tap has a
weight of p cos o and the quadrature tap has a weight p sin o (p and &
defined in Eq. (31)). The combined weight, WT of the two taps at center

frequency is given by

jn/2
W, =pcosa+p sina . e

= pe®

This technique thus yields the desired tap weight as expressed in Eq. (31).

Since the taps are uniformly spaced, this technique is free
from the problems discussed earlier. There is no loss of resolution since

most practical filters use equal length double fingers in order to

suppress mechanical reflectionms.
In the next section experimental results are presented for a

d device built using this technique to implement diffraction correction.
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3. Experimental Results

The f£ilter considered in this section has a short uniform input
transducer and an apodized weighted output transducer 200 wavelengths long.
The maximum width of the transducers in 45 wavelengths and the center to
center distance between the transducers is 190 wavelengths. The center
frequency is 70 MHz and the bandwidth is about 1%. The substrate material
is ST cut quartz.

Figure 24 shows the predicted frequency response including dif-
fraction effects for the uncorrected filter. Using the method discussed in
Section 2 (Eq. (30)) a corrected impulse response h'(tn) is calculatcd. As
discussed earlier, h'(tn) has complex values with both amplitude and ph: =.
Neglecting the phase gives rise to tap-delay errors. Figure 25 shows the
predicted response with diffraction for a filter designed using lh'(tn)l as
the impulse response.

Using inphase and quadrature taps h'(tn) is implemented both in
magnitude and phase. Figure 26 shows the predicted and experimental results
for a device built using this technique. (The predicted response also
accounts for end-effect errors which were not corrected in the design.)
Comparing with Figures 24 and 25 it is clear that significant improvement
is obtained in the transition regions. However, there are significant
errors in the experimental response especially on the high frequency side.

The reasons for the spurious response is not clear yet. There are four

possible reasons:
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(1) Interaction between different taps caused by unequal length

double fingers.

(2) Increased coupling to spurious modes because of the long

output transducer.

(3) Effects of fringing fields on the small quadrature taps.

(4) Errors in crystal alignment.

The experimental frequency response is inverse Fourier transformed
to yield the impulse response shown in Figure 27. It is apparent that there
is a large tap-weight error at the center of the main lobe. A second device
built using a different mask has the same error in the impulse response;
which shows that it is not a fabrication error. It is possibly because of

a spurious mode response superposed on the surface wave.

4, Concluding Remarks

In this chapter the design of single filters with diffraction-
compensation is discussed. The limitations imposed by the frequency
dependence of diffraction errors is investigated for apodized and unapodized

filters. A practical implementation of diffraction-correction with inphase

and quadrature taps is presented with sxperimental results.
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CHAPTER III: CASCADED FILTERS

P In the last chapter the techniques of diffraction compensation
were discussed for single filters where the input transducer is short
(with only one electrode pair) and uniform. In practice for high-rejec-
tion filters it is often necessary to have both transducers with many
weighted electrodes. By cascading two transducers a given impulse response
can be realized with a smaller dynamic range of tap weights on either trans-
ducer so that tap weight errors are less. Moreover, both transducers being
frequency selective, there is greater suppression of spurious modes.

& In cascaded filters the taps om either transducer cannot be

associated with any unique sample of the composite impulse response (i.e.

with any unique time delay). The correction techniques discussed in the

b last chapter are thus not directly applicable.

Figure 28 shows two transducers with tap weight functions Wl(t)

The composite

[ and Wz(t) separated by a center to center time delay of to.
|
|

impulse response is written as,
| h(e) =T RW, (1), W, (t-ty=T), €) (32)
T
where the function R represents the transfer function between the trans-

mitter tap of weight Wl and the receiver tap of weight W, separated by a

2

time delay t. The exact form of the function will depend on the tap weighting

technique.

Vi In cascaded filters one transducer must be unapodized. Two apodized

transducers cannot be cascaded, in general to produce a useful filter. The




Jwi(t) | ‘ A wit)

— to — >

Figure 28. Two transducers operating in cascade.
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Figure 29. Equivalent single filter for cascaded unapodized transducers.
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reasons are discussed briefly at the end of the chapter. It is assumed that
the input transducer (wl) is unapodized while the output transducer (wz)
may be apodized or unapodized.

In the absence of diffraction the function R is written as,
R(wl(T)! wz(t-to-‘r)) :) - wl(T)' wz(t-to-’r)

From Eq. (32),

B(e) = T w, () w,(c-€y=7) (33)
%

so that the composite impulse response is just the convolution of wl(t)

and wz(t) delayed by t In this case,

0
-jwto
Hw) =W, (@) » Wy(w) - e (34)

where 2
H(w) = ¢ h(t)e ¥

€

Wlun) =z wl(t)e-jwt

t

WZQD) = 3 wz(t)e-'jmt

t

The design procedure is thus quite straightforward in the absence of
diffraction. With diffraction, the function R is more complicated and the
problem is to obtain the functions wl(t) and wz(t) so that Eq. (32) yields
the desired impulse response h(t). In this discussion the frequency
dependence of diffraction errors is neglected. The accuracy of correction
is thus limited by the accuracy of the FIT model as discussed earlier.

Two cases are considered separately; (1) when the output transducer is

unapodized and (2) when the output transducer is apodized. The input

transducer is assumed unapodized.
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Both Transducers Unapodized

In this case the function R is written as

R(wl(-r), wz(t-co--r),t) = wl(T) . wz(c-to-r) + S(t)

where S(t) represents the diffraction error which depends only on the time
delay between the transmitter tap and the receiver tap. Equation (32) is

written as:

h(t) = ¢ wlCr) . wz(t-to-f) « 8(t)
T

= S R wl(T) . wz(t-to-T)
T

= 5() « W, (8) (33

where wlz(c) denotes the convolution product of wl(t) and wz(t) delayed by to.
It is apparent from Eq. (35) that in this case the composite impulse
response with diffraction is the same as if the input transducer has a single
finger and the output transducer has a tap weight function given by wlz(t)
as shown in Figure 29. This equivalence of the cascaded filter to a single
filter makes all the results of Chapter 2 applicable in principle. Diffraction
correction can .thus be carried out quite easily. The filter of Figure 29 is
corrected to obtain a modified tap weight function wlz'(t) using the methods

discussed in Chapter 2. The individual tap weights of the two transducers

wl'(t) and wz'(t) are now determined to satisfy the relationship:
' 1 = 1
Wy () * v, (t) Vi, (t)

Thus utilizing the equivalent single filter approach, diffraction errors
are corrected in a straightforward manner (within the limitations of the

FIT model).
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An alternative approximate method of correction seems reasonable.
In this method the tap weights on the output transducer are corrected with
respect to a single finger at the center of the input transducer; and
the tap weights on the input transducer are corrected with respect to a
single finger at the center of the output transducer. It is interesting
that this approximate approach yields no improvement over the uncorrected
filter. To obtain significant correction the technique discussed earlier
is used. The results for an example filter with identical input and output

transducers each having about 800 taps, are shown in Figure 30.

One Transducer Unapodized and the Other Apodized

In this case the function R is written as,
R(wl(T), wz(t-to-f),t) = wl(T)-wz(t-tofT)-E(wz(t-to-T),t)

where E(wz(t-to-f),t) is the diffraction error which depends on the
receiver tap weight and the time delay between the transmitter and
receiver taps.

Equation (32) is written as,

H(t) = ¢ wl(‘l’)-wz(t-to-T)'E(wz(t-to-T),t) (36)
L7

Since the error term in Eq. (36) cannot be taken out of the summation,

there is no simple equivalence to a single filter as in the previous case.
This makes the problem of correction computationally more diffi-

cult. Given an impulse response h(t), Eq. (36) has to be solved to yield

the tap weight Wy and v, for the two transducers. This requires an iterative

optimization procedure.
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“An approximate approach may be adopted. wl(t) and wz(t) are
first obtained for the no-diffraction case. A function wz'(t) is then
obtained by correcting wz(c) with respect to a single finger at the center
of the input transducer. wz'(t) is used as the tap weight function for
the output transducer. The results expected from this approximate procedure
are illustrated with an example.

A filter with 100 MHz as the center frequency and about 27 band-
width is considered. The output transducer has 160 taps and is apodized
weighted. The input transducer has 80 taps with a uniform tap weight of
1. Figure 31 shows the ideal frequency response without diffraction.

Figure 32 shows the frequency response with diffraction for an uncorrected
filter and a filter corrected approximately using the method discussed
above. It is seen that the approximate approach yields significant improve-
ment. For better results, a complicated optimization technique is required.

Figure 33 .shows the.predicted results for the filter considered
in Figure 30, but with the output transducer apodized. 1In this case the
approximate correction makes little improvement ‘in the response. However,
it is interesting to note that without any correction this f£ilter has less
error than iﬁ'Che last case when both transducers were unapodized. This
is surprising since unapodized transducers acting singly have less

diffraction errors than corresponding apodized transducers.

Cascaded Apodized Tranmsducers:

Apodized transducers in general cannot be cascaded. Without

diffraction, the function R(Eq.(32)) in this case is of the form

66
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R(wl(f), wz(t-co-f),t) = min(wl(T), wz(t-tooT))

i.e., the resulting tap weight is equal to the smaller of the two taps.

Thus,

hit) = & min(wl('r), wz(t-to-'r))
T

It is not in general possible to find wl(t) and wz(t) to yield any arbitrarily
specified h(t). Thus even without diffraction the tap weights wl(c) and

wz(t) cannot be designed to yield a useful impulse responmse.

Conclusions:

In this chapter the techniques of diffraction correction (based on

the FIT model) as applied to cascaded filters have been discussed briefly.
It has been shown that when both transducers are unapodized the problem

may be treated in terms of an equivalent single filter, and the correction
techniques developed for single filters may be applied with simple modifi-
cations. When one of the transducers is apodized, exact correction requires
a complex iterative technique. An approximate correction based on the
single filter approach may be used to yield significant improvement in

performance.
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