
.
I

AD—Mb? 318 WHARTON SCHOOL PHILADELPHIA PA nEPT OF DECISION SCIENCES F/G 9/2
DYNAMIC TECHNIQUES FOR RESTRUCTURING THE CONCEPTUAL SCHEMA — AN—ETCCU)
MAY 7? E N BEAVER N000114 75 C O462

IMCLASSIFIED 77—06—02 Pt

_ _ _ _

U

_ _

pnn!’;n~r

PE

~~~

1fli

~

L

~

fl 1E

~

’
_  

~~~~~~~ ~nn wise
IND

9- Is

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DDC CONTAINED A SIGNIFICANT

• NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

•

wara Ne
~~z1/!!av,f

I 7~~~~~~~~~~~
2;A

.
~
. 0

C..) cont r act)wp ~o1’4 _ 7 s_ c _ ~46?~~ j — 0 \cc’~
u~I

•

U
•

CAi~T
A

I ~~~RODUCl LI •
~~~ L~ b ~~~~

Department of Decision Sciences i.jj .~j / ‘I OJ~3The Wharton School
University of Pennsylvania
Philadelphia, PA 19104

~~~~~~~~~~~ hiz 5~~:~ ~r’ ved
for piiblic rek’~tz~ i~~1 s~ i~ ; i’~
di~txibu~1on i~ unflm~.t~d.
—

~~~~~~~~ 
g I
78 06 21 010



I
University of Pennsylvania

THE MOORE SCHOOL OF ELECTRICAL ENGINEERING

‘~~~A 1~IC TL C }iNI QUES FOE RESTRUCTURI N G THE

Cçi~~CE P TU AL SCH ~ NA — AN IllPLE~iE NT A TIO rJ

c.dward N e v i n  beaver

A thes is  cubc~itted to the F a c u l ty  of the ~oore ~c~~~c~1

o~ ~lectrical Engineering in par tial f u l f i l l i~ent  of t h e

requircrnent~ for the c!egrce of tlastcr of Science ir

Engineering (for graduate work in Compute r  and Infornatior.

Sciences).

Philadelphia , Pennsylvania

May 1977

Ii ~ f~,

~~~~~

J

~~~~~~

L ~~~~



Page 2

University of Pennsylvania

~1OORE SCHOOL O~ ELECTRICAL ENGINEERING

Title of Thesis: Dynamic Techniques for Restructuring the
Conceptual Schema — An Implementation

A bstract :

7> This ~xork is a partial implementation of a dynamic

restructuring processor. The total dynamic restructuring

processor allows several generations of database structure
• 

to coexist. Res tructuring occurs incrementally as data is

• accessed in the database. Only  restructuring of the

concep tual schena (as defined by the ANSI/SPARC report) is

considered on a CODASYL type database system called WAND.

The implementatio n uses generation data structures which

allow several rela ted scnemas and databases to coexist with

proper restructuring- translation done or the fly. The scope

of this impler.entation includes an analysis of data

requirements and general inpiementation strategy for the

total processor and detailed design and prograrw~ing of

rou tines that provide run—time translation from one schema

definition and associated database to a user using another

but related schema definition . ~~

Degree and date of degree: Master of Science in Engineering

(for graduate work in Computer and Information Cciences)

Uay 1977~

Signed:

FACULTY SUPERVISOR



Pa ge 3

1.0 INTRODUCTION

Consider the folowin g sequence of events. A large

medical database was implemented at some point in time with

the hierachical structure as shown in Figure ‘—A. This

particular structure was chosen because of the one—to—many

relationship between doctors and their patients that existed

at that time. Several application programs were developed ,

one of which allowed a doctor to list his own patients.

As time progressed and the scope of the medical

services expanded , patients started to be seen by several

doctors rather than just one. This change recuired that the

data bas e be restruc ture d to loc k like t h e structure sho~:n in

Figure 1—B . This change of schema structure would require

f the rewriting of all the  doctor  app l ica t ion  programs even

though the particular nature of the data relationship

exploited by those programs is still present , i.e.. each

individual doctor still has many patients. The data in the

database is of importance to the functioning of the medical

facility at all tirr.es because of the need to have the data

available for instantaneous lookup in case of emergency.

This example , although fictitious , illustrates many of

the problems that arise when using databases and

particularly large databases. The usual restructuring

procedures presented to date are impractical in the

situat ion illustrated because they cannot cope with

restruc turing data bases that rust , in total , rema in on— line

-- p — rn_p —• •~~— S -~~~~ —. S --



— _S5• S “ ‘-r . ~~~~~~~~~~~~~~~~

P

Pare ~I

DOCTOR DOCTOR PATIENT

DOCP.~T 1 DOC PAT PATDOC

MTIENT TRL~TI~ENT

FIGU~~ t -L  FIGURE 1-3

c o n t i n u o u s l y .  I c a l l  t h is  the  dat a b a s e  c o n t i n u o u s  i n t egr i t y

~r b . c r .  ‘f l ~c usual rest ructur inr  ~rocedures .~lso do not

~~l i C W  old r o g r a r s  to r ’c M ain  in ’e p er d c r t  cf t h e  c~a ta

r e s t r u c tu r i ng .  This  ~ ‘per ~ddr e s re s  t (~(’se j r o h l er s  and

t e1~es steps t ow ard  the  in p l c n e n t a t i o n  of a s o l ut i o n .

ori c p r o b l e m  i l lu s t r a t e d  in the  e x a m p l e  a r i d  ( ‘iscu~~sec in

t h i s  paper  is r e s t r u c t u r i n g.  The te rm r e st r u ct u r in ~ has

severa l  r .eanings  in c u r r e n t  usage .  I d e f i n e  r e s t r u c t u r i n g

to nean changing the  s t r u c t u r e  of the  da t a  f i l e  nece ssi t a t ed

because of’ changes in the structural or logical

r e l a t i o n s h ip s  be tween  the  da ta  as m an i f e s t e d  by changes  to

the  c o n c e p t u a l  schema .

As the cxar ..ple shows , d at a b a s e s  e x ist  in  a dy n a m i c

env ironment and rust char.ge in order to n~ intain their

u s e f u l n e s s .  D a t ab a s e  r~an a g e r c r t  sy s t ems  anc th e  use of

s u b — s c h e m a  a l low d a t a  f i l e  r e s t r u c t u r i ng  to be t r a n s p z~r c nt



Page 5

to a p p l i c a t i on s  programs to some extent. However ,

r e st r u c t u r i n g  in v o l v i n g  schema changes pose special  problem s

that are addressed in this paper by the use of generation

data structures [1]. Generation data structures allow

applicator programs developed with previous schema to remain

independent of the res tructure d da ta as long as items

required by the program are still in the database. This

results in much less program ing ef fo r t  when changes to the

schema occur . In the exam ple , the doc tor list applicat ion

woul d not need to be rewritten after the restructuring of

the schema .

The scope ci this paper is limited to restructuring

caused by changes in the conceptual schema . The ANSI/SPA RC

definition of conceptual schema is used here . The

conce p tual schema includes the overa ll d ef initi on of da ta

items , grou ps of items , and the relationships between the

it ems an d groups of items in the databas e. The conce ptual

sc h er~a def inition is intended to be independent of the

ac tual stored data and is not concerned with how the data is 
S

stored.

Changes , other than those to the conceptual schema ,

involve data dependencies that require the restructuring to

be dependent upon the value of the data actually stored ,

e.g. key field changes. These pose dif fcrent kinds of

restructuring problems not discussed in this paper. The

c f t ~~n c it ed  goal of da ta  in d e p e n d en c e of d a t a b a s e  

____  

j



Pa ge 6

naturally leads to the investigation of only conceptual

schema restructuring.

The other major problem illustrated in the example is

when. and how to perform the restructuring. The traditional

sciut ion procedure is to take the entire database , or a

par tit ion thereof , off’line and reload it under the new

schema . However , in some application areas the integrity of

the total database is needed at all times. This limitation

makes the traditional solution procedure infeasible. Also ,

with very large databases , such a restructur ing may take an

inordinate amount of time to complete.

The solu tion proce dure imp lemen ted here , using

I : Cenera tion da ta s truc tures , will work within this limitation

by performing piece by piece or incremental restructuring.

A s is explained later in the paper , this type of dynam ic . 
S

res truc turing may also be applica b le to very  large da t abases

w ith certain character ist ics.

This paper descr ibes a proce dure that perfcrr.s the

conce ptual schema database restructuring in a dynamic

manner. This procedure is limited to network structured

databases (a la DBTG [2]). In addition , several st ep s are

taken toward implementation .



Pa g e  7

2 .0  P 1UOR RESEA }~CH

A problem o f t e n  grouped under  the name r e s t r u c t u r i n g  is

more aptly called reorganization . Reorganization is usually

only concerne d with physical management of the data , e.g.

through garbage collection (physically deleting logically

deleted records) [9). Such restructuring does not apply to

the work described in this paper.

The file re st ructur ing pro b lem , as I am definining i t ,

has been di scusse d by a number of peo p le. Shu , Housel , and

Lur [ 3 ] ,  flcrten and Fry [n) ,  hanirez , ~in , and Prywcs [5) ,

burk [6), an d ctners have developed translators for

transferring data r rom one renerati.or to another. but these

solutions to the schema restructuring problem are handled by

tal;ing the database offline and reloading it under the new

sc h ema . These solu t ions wor k well in se quen tial

env ironments where data can be taken offline for some period

of tine. In an online env ironmen t these solu tions are

har der to imp lement , lengthly and cos tly , and in some cases

impossible because of database integrity restrictions. In

addition , none of these solutions allow previously developed

sub—schema and application programs to run , even when all

the data and relationships still exict in the new data base.

Socket and Gol db er g [ 1 0] give a goo d overv iew of

dynamic restructuring or , as they call it , reor ganizat ion

performed concurrent with usage . They give several examples

where schema restructurin g nay be required as well as when



Page ‘
~

concurrent restructur ing is needed. They give no solution

p roce dure but rather sta te alternati ves that ex ist an d

gu idelines for the implementation .

These guidelines are ( 1)  The process must opera te

correctly , (2) Appropriate synchronization for consistency

: L 2 t  L’e er~ployed by app lication and restructuring processes

to prevent destructive interference , (3 )  Dea d lock must be

preventec , (
~~) Journaling of updates and recovery functions

he ~~~~~~~~~ (5) Heascnable efficiency must be

p rov icec .

The wcr~ ~t~- ’n1 rc C in this paper is ar. extension of’ the

work pert crnec y~~ cr gan an d Gerr its en [ ~ using generation

data structures to perform dynamic database restructuring .

Genera tion data structures allow prior schemas and their

applicaton programs to operate during and after the

restructuring. The restructuring as t h ey envision it is to

be performed incre~ientally. A data objcct which is

Gescr ihed by an old schema is translated to a new schema

description when the data object is next referenced by a

user program.

Since this work is an ex tension of Mor gan and

Gerr itsen ’s work , it is recommended that the reader read the

referenced paper to gain a further insight and background tc

the work described here. In addition , their paper gives

su ppor ting ar gumen ts for some of th e p roce dure s ar~
p rocesses use d , described , and developed in this paper.



-

Page °

3.0  G E N E R A L  H E S T R U C T U R I f l G  PHILOSOPHY

The general metho d of res tructur ing d escr ibed here is

meant to be applicable to any network database system . This

particular implementation is being performed c.~ part of the

~A W D ( .~harton Alerting ijetwork ~atabasc) system ~0 J .  The

~‘ArJ D system is an experimental subset of the CODASYL ~LTG

specification [2], with spec ial features add ed for aler ting

or ~.onitering of databases. It is implemented in FORTRA IJ— IV

or. the h..LCS ysten— IC. The complete ~?A t’Il) schema DDL is given

ir. Appendix ~.umbcr LI. .

r irurc � s~ cws t~ e st r u c t u r e  of a r..edical database that

is si~~i~~~r in p a r t  to the  da tabase  d iscussed in tr e

I • i n t r odu c t i on .  The d a t a b a s e  is a h i e r a r c h y  w i t h  one b r a n c h

i n c l u d i n g  d o c t o r s  and  t h e i r  p a t i e n t s  and  the  o the r  b r a n c h

shcuir.g t h e  h i e r a r c h i ca l  r e l a t i o n s h i p  b e t w e e n  n u r s e s  and  t h e

h o s p i t a l  w i n g s  t h e y  a re  a s s ign e d  t o .  Th e  U A N L ~ OLL fcr  t h i s

catao a se ~c c c r .t a i n e c  ~n L p ; c n c i x  Nur hor 1 
~r~~s e~:ar.ple

d a t a b a s e  w i l l  be used  t h r o u g h o u t  this ~r .per  tc h e l p

i l l u s t r a t e  t h e  concep t  of d y n a m i c  r e s t r u c t u r i n g  a n d  the

imp l e m e n t a t i o n  t h e r e o f .

3.1 ~i ez t r uc t u r i ng  Data  D e f i n i t i o n  Language  (~~D D L )

In order  to p e r f o rm  concep tua l  schema r e s t r u c t u r i n g

the re  m u s t  be sone p rocedu re  w h e r e b y  t h e  chances  f r om  cne

c on c e p t u a l  schem a to an o t h e r  car.  be d e f i n e d .  T h e



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~ -- —~- ---.~~— - S .

j-~~~~r c  10

~{O5PITAL

Hospname

HO SV1ING HOSDOC

~~~NG I DOCTOR
l win.znarne I Docnarne
[Win~size]

~~ 3GMT DOCPAT

NURSE PATIENT
~ur~ enanie Patname

• ::urset~~~ Patage
Treatment

FIG~URE 2

nesLi’~ cturir;g ~;i tc ~cfiniti on Lor .guore (hLbL) is the

no chan i sm t h a t a l l ow s the user to nok e such a restructuring

(I C I i f l i t lCr .

There arc n-m y d i f f e r e n t types of’ d e f i n i ti cn t h a t would

be necessary Co accompl ish comple te C0DI~~YL r e s t r u c t u r i n g .

H ow ev er , the scope of th is work is l i m i t e d to conce p tual

schema r e s t r u c t u r i n g and any r e st r u c t u r i n r i n v o l v i ng

ph y s i ca l s t r u c t u r e and p h y s i c a l s to rage in t h e d a t a b a s e are

t he re fo re i gnore d (See Sec t ion 1. 0) .

Pare ~~‘

Conceptual schema restructuring does not consider the

following clauses since they involve physical structure :

TEMPORARY area status, set MODE , - M A N DATOR Y/ OPTIGUAL ,

AUTOflAT C/HANUAL , LINKED TO O~:uER , and DUPLICATES. The

restructuring problems created by changing the size of an

area , the page capacity , the WITHIN clauses , etc., are also

physical structure changes and ignored here .

The RDDL contains three classes of entries ,

IUC0l~P uRA TE , EXCISE , and C H A N G E . IN C0E? O~ ATE adds en t r i e s

tc the schema and EXCISE removes e n t r i e s f rom a schema . The

C H A N G E e n t r y is more complex and a l l o w s changes to

i n d i v i du a l en t r i e s of the schema . The entire RDDL is

contained Ic. Appendix humber 5.

3.1
•~~~ Inser t ion And Delet ion Of Schema E n t r i e s —

The IN CORPORATE and EXCISE ope ra t i ons a re h an d l e d in a
• straight forward manner. A simple though simple -minded

procedure for restructuring schema A to schema B is to

EXCISE all areas , record types , and set types from A and

• IUCOHPOhATE all areas , record types , and set types that make

up B. Such a procedure is not recommended but proves the

completeness of the RDDL.

Whenever any particular record type is excised , all set

types where that record type is the owner are also excised.

I f there is on ly one member record type of a particular set,

Pare 12

the excising of’ that record type has the effect of excising

the entire set type.

3.1.2 Changing Of’ Schema Entries —

In many restructuring situations the restructured

schema A is closely related to the original schema 8. Items

in the r e s t ruc tu red schema ~ are u s u a l l y the semant ic

equivalent of items in schema A. The RDDL CHANGE operator

accomplishes this type of’ restructuring .

3.1 .2 .1 Change To I~ccords -

One type of change to records is considered : changes

to data i tems . The a d d i t i o n and de l e t ion of d a t a i t ems are

h a n d l e d by the IN CO R PO R ATE and EXCISE o p e r a t ion s . Changes

of the type of the data iter ’.s are eas i ly performed and

ignored here .

The only c th e r needed change to data i tems is

accomplished by the RELOCATE opera tor . This opera to r al lows

the relocation of’ data items from one record to another. In

order to allow the restructuring processes to make this

change transparent to prior schemas the path whereby the

data item is relocated must be specified . In sore instances

there may not be a unique path so the complete specification

of the path is required.

~~~• • S - • S S  ~~~~~~~~~~~~~~~~~~ • . -~~~~ •S• -~~~S-- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S • . . .••S• ’ .• • • S



Page 13

3.1.2.2 Change To Sets —

• The only CHANGE clause needed for sets allows the

• inclusion of records as members of sets. The I N C O R P O R A T E

opera to r  a l lows a d d i n g  records  to sets , bu t , where  several

in s t a n c e s  of ’ t he  record are a l r eady  i n c l u d e d  in the  da t a ba se

b e f o r e  the  r e s t r u c t u r i n g ,  the r~ETi~CA CTIVE SET occurrence

SELECTION clause of the CHANGE operator is needed if the

member is RETROACTIVE and UANDATORY /AUTO~ ATIC. This clause

tells the restructuring routines how to assign the existing

record occurrences as members of the set.

3 •
1

• 3  i~estructuring Example —

I : Two cl the most common conceptual schema restructur inr

char4-es a re  to conver t  a h i e r a r c h y  of rcecrds  to a

c o n f lu e r 4 c y  and to expand a hierarchy by the insertion of a

record in the middle of the hierarchy. In order to

illus trate the use of the RDDL , cons id er the medi cal

database discussed earlier in Sections 1.0 and 3. 0 .

• As a result of’ the scenario of events discussed in

Section 1.0, the one—to—many relationshi p between doctors

and patients changes to a many—to—many relationship. This

necessitates the crca tion of a confluency . The addition of

other floors to the hospital wings may make it necessary to

further segregate the nurses and their assignments according

to floors as well as wings. Figure 3 shows the re~ ultir.~



Pare ~

HOSPITAL
• . [Hospname
• 

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~SDOC

_

WING DOCTOR 1 PATIENT
Win~name Docrtame Patid
WinBsjze Docaddresl patname

_ _ _ _ _ _ _ —
~~~~~ 

j  Pata~ e

____

~

,
WI NGFLR /

FLOOR DOCPAT \ / PATDOC
Firnarne

• Fl r~ ize

I L~.SSGi4T DIAGNOSIS4, 
_ _ _ _ _  

Treatment

Nur3 enarne
Nursety pe

FIGtJ R~ 3

dat~’h~ z-e 3t 1’u c ture  t h a t  is the  r e st r u c t u r e d  vorsion of t h e

d a t a ba se  shown in f i g u r e  2. The RD D L d e f i n i t i o n  for this

r e st r u c t u r i n g  can be found  in A p p e n d i x  i lunber  2. The two

CHANGE NAME statements are not defined but their use is

obv ious .

3 .2 Gene ra t ion  Data  St r u c t u r e s  Concept

T r a d i t i o n a l l y  the  da ta  in the  d a t a b a s e  is s to red  in

conformance with one schema definition with su~ —cc hcr.as to

support various views . ~eneration ~ata ~ t r u c tu re s  ( GD S)

extend this concept to allow data to be stored under ‘cvera l

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—

~~~~~~~~ 
.- - • —~~~~~~~~~~



Page ~

different schema at the same time . Each of’ these schenas

• being generated from a previously existing schema through

the use of the RDDL. Each of these schema is considered a

generation of the original schema and the different

• generations map the structural evolution of the database.

• 
. An application program can bc ;ritten under any one of

the generations of the schema . Each logical record in the

database contains an indication of the schema that was in

force when the record was written. Similarly, each schema

generation has a generation number compiled into all its

calls.

The i~DDL for eac h genera t ion of sche ma is use d to

develo p an internal da ta s truc ture tha t contains for eac h

recor d , set , and item for every ceneration the information

needed to perform translations into the proper schema

f ormats on the fly. This internal data structure will be

definec after a general discussion of the process by which

t r a n s l a t i o n s  are  made during runtime . The 1~DDL is also used

to develop the schema defintion for new generation.

3.3 Runtime Translation — General Description

The dynamic nature of this restructuring concept allows

several generations of the schema and corresponding data to

ex ist simultaneously. A translation occurs only as data is

accessed. Two types of translation are needed: translation



• 
• Pare ~~

of the data stored in the database and translation of the

data for the run—unit so the accessing program sees the

database as if it had not been restructured.

The translation is performed in a two—step process.

First the data accessed is translated to conform to the

latest generation schema and then translated back to look

like the data from the view of the schema in f c r c e  when the

program was written. The reasons for this two—step

translat ion are fully d iscusse d in Morgan and Gerritsen ’s

• paper [1].

The translation for the run—unit is performed via the

c—reco rd  and  c — s e t  concepts .  The c—record  (co r re spond ing

• 
record) is d e f i n e d  to be t hat recor d in the current schema

from w hi ch all sca ttere d data it ems are acccss a b lc either

becau se they ~re in t h e  c— reco rd  or t h r o ugh  FIND OWNER

access through sets named in the “USIh G . . . PATH”

clauzes.(1) This concept is related to the \Ii~1’t!L ~tJU 1~CE

concep t  in the  D D I G  r e p o r t .

The c—set is a similar idea. A c—set is m d c  up of any

• number (including zero) of sets in the current schema .

Whenever a record is replaced by a c—record , then c—sets

have to be determined for all sets of which the record is a

member. The c—set for a sot , X , is composed of the sets in

(1) Gerritsen , }~ob and Mor gan , Howar d L., “Dynamic
s~cstructuring of Databases with Generation Data Structures ,”
De pt. of Decision Sciences , Working Paper 75—~ 2~ 02 , The

~dhar ton School , December 7975, page 6.



Pare ~7

• the current schema on the unique upward path (through set

owners only) from the c—record to the owner of set X.(2)

C—records and c—sets are and refer to record types and

set types of’ the schema definition and not to particular

record instances stored in the database. One and only one

c—record or c—set can exist for each record or set type in

• the schema being restructured .

in the sample restructuring of a medical database

discussed earlier , the c—record for the PATIENT record of

the first generation schema would be the DIAGNOSIS record .

ihe c—set f o r  the DOCPAT set would be composed of only the

• D~ CPAT set while the c— set for the ASSGUT set would he

composed o both the WIHGFLR and ASSGtI T sets .  D e t a i l e d

run—unit translation using c—records and c—sets will be

d e s c r i b ed  in t he  sec t ion  c c v e r i nr  t h e  i r -p le r ~e n t a t i cn  (see

section 4.0).

3. L4 Limitations Of The RDDL And GDS

This restructuring procedure can accomplish any

restructuring of schemas from one generation to another as

the completeness of the hDDL indicates. However the

translation back for the run—units of previous generations

canno t be supported in all situations by the use of

c—records or c—sets. This section will outline setme of’

• 

~~~~~~

•

~~

•_

~~~~~~~~~~ I~ i

•
~ 

~~~~~ ~~~ • • • _ _ _ _
_

~~•

Page 18

these limitations. This list is not meant to he complete

but rather to give an idea of the most apparent limitations .

In g e n e r a l , c — r e c o r d s and c — s e t s can h a n d l e e xp a n s i o n

or re duc ti on of access pa ths but not severance of access

paths beyond the severance point. Expansion cf access paths

is shown by the medica l d a t a b a s e exa”ple developed earlier

• w h e n the FLOOR record was inserted hierarchic ally between

two other records. A reduction of an access path would

cccur if the sample medical database restructurin g were

~er forr ed in reverse order . The FLOOR and ~ If l G recor ds in

this ins tance wculd be colla psed along the W INGFLR set thus

r e du c i n g th e l c nr t h of t h e access p at h be tw een FLOOR records

and ~Uh~ i. r e cor d s .

[A _ [A] ~~D]

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

D~1NI _ _ J P J ~~B H
BC

BC
_ _ _

~C
_ _ _

Generation I Generation 2

FIGURE 4

• •

Pa ge ~9

Figure 4 i l l u s t r a t e s the severance of access p a t h s .

After restructuring to the generation 2 schema which deleted

set CC , there is no longer any way to traverse an access

path from records A ,B ,C to records D,E and vice versa. The

d e l e t i o n of e i t h e r a record or a set in an access p a t h w ill

• sever that path and limit access beyond the severance point.

Generation 1 GeneratIon 2

A_data_~j
B-data-i A B

_ _ _ _ _ _ _ _ _ J A-data—I B-da ta - I

~~
~

C .data_1J C-data-2

C-data-2
C’-da ta-fl

FIGURE 5

~‘igur e 5 i l l u s t r a t e s an o t h e r l im i t a t i o n . T r a n s l a t i o n

• b a ch to the f i r s t g e n e r a t i o n ’s view of record C Iron the

zeccnci generation schema would require taking one data iten

t’ron restructured records A and B. F7cwcvcr , there is no

u n i q u e c — r e c o r d f rom w h i c h this can be p e r f o rm e d . In

addition , there is rio longer an access path I r on record A to

record C.

The RELOCATION operator allows the relocation of data

1terr~s from one record to another. However , data cannot be

reloca ted to all records in the datatase , it o n l y can he

located in recor ds loca ted h i e r a r c h i c a l ly a bove th a t recor d

for which an access p a t h e x i s t s . For e x a m p l e , in t ’igure 11

data from records B and C cannot be relocated intc records D

and E because an access path no longer exists. In addition ,

Page 20

data from records B and C cannot be relocated into record F

because record F is not hierarchically above records B or C.

The reason for this lim itation is that every data item

must be uniquely defined by the concatenation of the keys

for all the records hierarchically above i t . ~elo cat i on to

any of the records hierarch ically a bove it allows the data

item to be relocated in a record with a total key that is a

subset of the original concatenated key. In order to

relocate data items into a record not hierarchically above

it requires the specification of an a d d i t i o n a l key va lue to

unicuely specify into wh ich part icular recor d occurrence th e

data iter is to he relocated. The present J~DDL doesn ’t

allow such a definition.

~lhen an item is relocate1 upward in a hiercrchy as the

resul t of a restructuring, there is a problem in defining

duc t which data item to move. If’ mcre than one recor d

instance containing the data item exists in the dat~~
.
~ se

some dec ision must be ma de a bou t wh i ch dat a it em to

relocate. This implementation will use the data value

con tained in the first logical record instance. It is

suggested that in a refinement of the RDDL some method be

devised so that this default can be changed .

The final limitation perceived is that when a data item

iri one generation is deleted but is converted into a logical

link between records , there is p r e sen t l y n o manner by ~Thich

th~ restructur ing processor can recreate the data ltcr’ frot

ir~iA - .-~~~~~~~~~~~~~ -- • -
—

Pnr ’e 2 1

the logical l i n k .

3.5 GDS Internal Data Structure

As described earlie5 the translaticnz performed by

the res tructuring p roc essor use an internal dat a base. The

database used in this implementation is implemente d as a

~A tJD database. This database cannot he restructured because

it is accessed by the restructuring routines. These

accesses must be made with routines not using the database

itself , i.e. the WAND routines developed for databases not

allow ing restructuring . The structure of this database is

shown in figure 6 an d th e DDL is con tained in A p p e n d i x

h u n h e r 3.

The SCHIIA record is accessed by the schema name ,

i .A ~~~C f i , an d the number of generaticns currently existirir is

contained in NU ~iGEN . For each generation ol the na~ ed

schema a GEhCHG record is stcred. This record , accessed vii’

the value of the generation number , GENi WI , con ta ins the

name of the file where the schema definition of the

perjeration is stored (* .SCH file). For each generation of’

the database the information contained in the other records

gives the information needed to convert the run-unit ’s data

from the most recent schema generation to the view of the

application program ’s schema generation .

P age 22

jS0I-IMA
f Namsq~
~Numg~n

GENERATNS I
GENC HG

• Gennum
Gschx am

• CHGSET CHG REC C }iGITM

~RECCHG ITMC HG
•
1

h~o1dnam Roidnain loidnarn
ISch~f1~ I Rc record. I Ich~f1g• L _J Rchgflg J Icrecprd

LI ST PATH

tL3T~~ M3ER 1 PATHM F~M
~~~tnarne I Snatne

• • FIGURE 6

‘t h e  ~ h TCfl G r ecord , accessed via t he  ~ct ‘s name ,

SQLD1.~. I! , c c n ta in s  a f l ag  t e l l i ng  w h e t h e r  t h e  ~et ~ de l e t ed

or not. The LI~~ set a n d  the  set nn~-es in  t h e  LST~~~~~E~

records associated with this record mal :e up the c— set for

t h e  na m ed  se t .  The R ECCHG record i n c l u d e s  i n f o rm a t i o n  a b o u t

records. This record accessed by the record ’s name ,

f OL D?i A~~, c o n ta i n s  a flag telling whether the record has been

dele ted  or no t  as we l l  as t h e  c—record  for  t h i s  record.

The I TH CH G record in th i s  in t e r n a l  d a t a b a s e  c o n t a i n s

i n f o r m a t i o n  needed to p e r f o r m  t h e  r u n - u n i t  t r an s l a t i o n .

Th i s  record , accessed via t h e  d a t a  i t e m ’s n~~’e , I O L b ! i A t E ,

c o n t a i n s  a f l a g  t e l l i n g  w h e t h e r  the  i t e m  has  been d e l e t e d  or



‘I

Par e 23

relocated . The associated PATH set and PA TFit1 E~1 recor ds for

• each item is the list of sets that must be accessed to get

to the relocated data item . For the SETC!!G , RECCHG , and

IT~4CI1G recor ds , if a record occurrence does not exist in the

database for a given record , set , or item name , then no

r u n t m n i e  t r a n s l a t i o n  is needed for that record , set , or item .

3.6 Sequence Of Operations In Restructuring A Schema

This section will define the typical seouence of

operations whereby the user goes a b o u t  r e s t r u c t u r i ng  a

schema . The original schema file is created in the normal

r a n n e r  as desc r ibed  in the  ~A N D  m a n u a l  [ C ] .  To r e s t r u c t u r e

• t h is  d a t a b a s e  the  user  creates an RDDL f ile giving the

restructuring definition. This file should have the

e x t cn t i or .  . R D D .

This RDD file and the previous schema file (
~ .~~D L )  is

inputted into an . h~~L Eile ~escr iptic’n £rocessor (b~~ FDP ).

This processor using the inputted files creates the schema

ecfir~iticn file (*.DDL) for the r e st ru c t u r ed  schema . This

file is used by applications progra-ncrc to create their

prcgrams . In addition . the EiDDFDP processor creates a *.SCH

file which gives the internal schema represent ation used by

the WAND D C UZ .  The file name for these generated files is

the same name as the original schema file name with t h e

generation number appended , or if that creates a file name

t h a t  is of l c m g t h  gr e a t e r  t h a n  s ix  c har a c t e r s , t h e  ~ i x t h



1
P ar e  2L~

character is substituted with the schema ge n e rat i on  n u m b e r .

The RDDFDP also inputs into the Generat ion Da ta

Structures ’ internal database the information needed to

perform the restructuring translation . The internal name

for the sc hema is the same for all genera tions , i.e. the

r n ig i n al  schema name . Since each r e st r u c t u rin r  r e d e f i n e s

the most recent generation schema , all the previously stored

t r a n s l a t i on  data ‘~iust be updated. If errors occur durinr

the  i~LDFDP processing a file with the extention .F~~R is

proceced and no new .~3CH or .DDL file is renerated.

/~s an example , if the oririnal schema was defined in a

1ilc. named i~ .DICA .DDL and t he  r e s t r u c t u r i n g  d e f i n i t i o n  was

defined in a file named CFiAflGL. .RDD the t~DDF DP woul d crea te

• two files named MEDIC2.DDL and ~~DIC2.3CH along with

changing the  i n t e r n a l  da tabase .

These new files along with the changed internal

• database allow the DtIL processors tc make the necesse~ y

restructuring changes. flew app l i ca t i on  program s can now be

wr itten using the newly def ine d schema DDL as the da tabase
• definition . All other restructuring generations of the

schema are created and run in a similar manner. Note that

each application program can he written using only one

geriera ticn schema definition .

L



[‘are 2~3

This particular implementation only allows four

• generations of the database to coexist at the same time .

The number four was chosen to allow sufficient generations

of the schema for complete systems testing and to minimize

storage requirer~ nts. The optimum nur.her of reneratiors

a l lowed to co—exis t  is a f u n c t i o n  of’ several variables

including the expected number of generations existing

s imu l t aneous ly  at  any point  in t ime , size of the database ,

• s torage  requ i rement s , a v a i l a b i l i t y  of other  restructuring

processors , etc. The coexistence of many rore than four

• generations of the database could cause severe performance

degradation and a total offline restructurirr would probably

be cost e f f e c t i v e .
a

~4 C I t I P L E t I E N T A T I O L ’ J  DET~.ILS

This  sec t ion  of the paper will discuss in. more d e t a i l

the imp lementat ion of the dynam ic res tructuring id eas

described in the earlier sections of this paper. A total

i m p l em e n t a t i o n  des ign  of the i n t e r n a l  processes needed to

perform. all the restructuring translations is presented . A

step by step implementation plan to implement and thoroughly

test the restructuring process is then discussed . Following

that will be a detailed discussion of’ the  changes  made to

the present  WA UD syste m and t hose res truc tur ing p rocesses

written ari d tested for this work. Vcrsicn L~CO of L A U D  as it

existcc. on April ‘5, 1977 was mociuied to ir’plcreri t the



• Page 26

restructuring processes.

The short time lim it placed on this project precludes

the writing and testing of all processes needed for a tctal

restructurin g system . But the work done should give

guidance in continuing the imp lemen ta t ion and show the

feasibility of the restructuring concept discussed earlier.

• 
~.1 General Implementation Strategy

The inpler.entation of dynamic restructuring discussed

r equ i r e s  t h r ee  d i f f e r e n t  t ypes  of ’ processes.  The three

types of processes are cal led r e c o nst r u c t , locate , and

translate. Any DIlL cal l  made by the user using the most

• recent generation schema or any other generation schema is

f irst r€ccr~structued to look like the call or calls the user

wculd have made had he been using the most recent generation

schema . uf course , i f the user is actually using the most

recen t generation schema then no actual reconstructicn of

the call is necessary. The reconstruction is accor’plishec

via the use of the internal database discussed earlier.

Once the call has been reconstructed the database is

accessed using this call or calls in the form needed to

access the most recent generation database. The data that

is the target of this call or calls is stored in either the

most recent schema generation database or any of the cther

generation databases. The locate prccess performs the



Pare 27

searching for the target data in the many coexistent

database structures , i.e. the most recent generation

database and all previous generation databases. The most

• 
• recent generation database search is performed using the

• 
- 

actual reconstructed call. The search in al]. the other

• generation databases is achieved by perfor m ing ano ther

• reconstruction on the call. This reconstruction. is in many

ways the inverse of the recor.struetion done on the oririnal

user ’s call.

There is a separate recoristructor and locator routine

for each user interface routine (DhL command) that is

supportec after restructuring . Each user interface r o u t i n e

that is supported after restructuring requires different
a

• fo rn s  of reconstruction and location , thus requiring the

separate routines .

Unec the target data is located it must Le translated

into the view of the most recent gereratirs ~-che~ a. This

translation is only done for target data found in databases

other than the most recent generation database. The

translaton is only done for the target data , all ot her data

remains unchanged.

11.2 Irnplementaion And Testing Plan

I have developed a four step implementation plan that

will allow fcr step wise or incremental implementation .



Page 2~

This plan also permits full testing of each phase of the

• implementation before proceeding onto the next step. The

four implementation steps are as follows :

1) A dd the needed changes to the present W AND system in

order to allow the restructuring processes to operate. The

restructuring processors need additional data variables and

• status variables. The sohema definitions for all the schema

generations are needed as well as user work creas for all

• the databases coexisting (one for each generat ion of th e

schema ) in addition to t h e  ma in  user  work .area t he user

interacts with. These cher c-cs sre tested by r u n n i ng  the

da ta base with only one schema generation . Since only one

ge n e r a t i o n  exis ts  at th i s  s ta re  no r e s t r u c t u r i ng  of ca l ls ,

• • i cca t ior .  of target data , or translation of data is needed.

2) Once the first step has been ir.plencnted an d  tested ,

th e reconstruction processes are then implemented. 1o o t h e r

~rocezses are ±m plemcnted at this stage. The programm ing of

the reconstructor routines is tested with a database stored

totally under the view 01 the most recent generation schema .

Since this is the only existing database , the reconstructed

calls can be made directly to the database and no locating

or subsequent translation is necessary.

3) The next implementation step is to implemen t the

locator processes. These p rocesses arc then tes ted wit h

several Coexis tent databases stored under past gencraticns

of the sc he~ a. however , these databases rcrair. static ari d



I
Page 29

the  data is not t r a n s l a t e d  to the  most  recent  generation

• database.

11) The fourth and final step is to add the translator

routines to the database. The resulting programs wifl.

• ccmprise a complete dynamic restructuring procedure and the

• full system testing can be performed.

Once these four steps have been completed any other

modifications and enhancements can be added to the ~vstc~ .

Thc present detailed iniplernention only covers steps 7 and 2.

44 .3 h eeded t)ata And Changes  To E x i st i n g  Di~L System

4

This section will describe the additional data that is

needed by the system in order to allow restructurinr . This

additional data also requires some changes to the existing

1)IA L sys tem and these changes are described.

l3ef’ore detailing the additional data and changes , we

must define the concept of ‘contex t switching ’. This

• imp lementation uses the WAND DtI L user interface routines , as

they existed before this restructuring work , to make all

database accesses. These routines assume that only ore

schema d e f i n i t i o n  and user work a rea  e x i s t s .  In order  to

use these routines it is required that cr.ly one generation

of the schema definition and one user work area be in force

~.hen making actual database accesses. The schema rereraticr .

and user work area in force defines the ccntc~ t that exists



Pare 30

at  any point  in t ime .

Dynamic restructuring requires performing many

different basic database accesses under the context of any

of the generations of the schema as well as the user ’s

generation of the schema . There must be a way to move from

one c o n t e x t  to a n o t h e r  and back du r i n g  the  execu t ion  of a

restructuring . This movement is termed context switching.

Since r e s t r u c t u r i n g  r equ i r e s  access to t h e  data bases

existing for all generations of the schema , the schema

definitions for all the generations of the schema must be

stored . Access to all these existing databases requires a

separate user work area for each database so the

restructuring processes can interact with these databases .

In addition , the main user work area , where the oririnal

user interacts with the database as a whole , m u s t  he

ma intained .

Each context swith requires a change in the generation

sc hema in force as well as a change in th e user wor k area

being used. Therefore , in addition to the main user work

• area now used by the l~iAN D implementa t ion and the normal user

schema initialization , the restruc turing processes require

the initialization of additional user work areas for all

generations of’ the schema as well as schema definiti ons for

all  the g e n e r a t i o n s.  The m ethod  of data storage and context

switching used causes some data redundancy , i.e. the user s

generation of the  schema d e f i n i ti on  is stored tw ice , once



Pr -

~~~~~~~~~~~~~~~~

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~~~~~~~~~~~~~~

Pa ge 3 1

for use by the user and his data base calls , and once for use

by the restructuring processor to perform its database calls

to the database stored under that generation schema .

In order to allow context switching, the add ress bases

of’ the location where the schema definiticn data is stored

is now a vector of bases rather than a scalar. The address

bases for the locat ion of the many user work areas are also

store d as a vector of numbers rat her than the scalar value

used by the present WAND implementation. These internal

var iab le changes require the rewriting of all statement s

referring to locations in the schema d e f i n i t i o n s torage area

or the user work area .

The DL~C?EN routine , that initializes the schema

definiticn , is changed to read in all needed generation

schema definitions as well as setting up ~ll t he user wo n :

areas. The UBOPE h routine also initializes the additional

res tructuring p a r a m e t e r s descr ib ed ~c low .

initialization requires the opening and reading of the

internal database used to store information for the

restructuring, as was described earlier.

The restructuring processes require some adc !iticnal

system parameters which are stored in a n e w l y created common

area called JiCCOtI. These parameters and their definitions

are as follows : ZCHIIUI i — the g e n e r a t i o n of’ the schema now

in force (the present schema generation in context). This
I

variable if ecual to 1 means the user ’s o r i g i n a l sche m a

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - 
• • - • • • ---~~~~— .~~~~ —~~~



t’age 32

context , any other value impl ies a context of’ some

generation of the schema , U~iABAS — this is a vector of

values telling the address base of the various user work

areas , CUWABA S — a scalar which at all times contains the

value of’ the user work area address base for the current

context , RCSTACK — this vector of values is used as a stack

to allow the switching of contexts , STI~TC? - th c :calar

E 

pointing to the last location in 1~CSTAC}( that is used ,

— this is a switch tcllirg the intcrr .al prccess~ r

• ~.i ~c tL cr  r e st r u c t u r i n g  is called for or n o t.  This sw itch is

creeted by locking at the internally stored generation

num ber cf the schema the user is  uz ir~~. If this genera tion

nur ~hcr ’ is zero , no restructuring is called for , otherwise

t he  r e s t r u c t u r i n g  processes are used , NU ~~OFGE N — this scalar

cO nt a i n s  the  to ta l  number of generation s of this schema that

exist.

As was discussed earlier , the internal database is

im plemented as a b4AND database. This is accomplished by

appending this database , name d CHGDB (C hange Data base) , as a

separate area of’ each schema generation . This area , not

seen by the user , is appended as the first area of the

schema definition for all generations of the schema .

The reasons for th is particular implementation stratety

are as follows. The internal database contains infcrraticn

needed to fully initialize the internal data structure :,

nas~ely the number of schema generations and names of  the

Lk~



N
i a g c  33

files c o n t a i n i n g  the  schema d e f i n i t i o n s  for  each ge n e r a t i o n .

I~ecause this data is stored in the internal database , the

initialization routines nee d to access the internal data base

after inputting only one schema definition , i.e. the user ’s

schema definition. Therefore , the internal database

cef inition must be appended  to all scheme generation

definitions.

CHGDB is the first area of eac h genera ti on ’s sc h ema

ce linition so that all internal routines accecsinr CHGDE

will know where in the user work area to look for the data

no matter what the gener~ ticn of the schema may be. In

crder to assure that the correct dat~ hase currencies are

usec , on ly  one of the internal user work areas is used (i.e.

• onl y one ccn text  is use d), in makinr access tc the CHCDB.

The main , user work area is the area a c t u a l l y  used .

The reconstruction processors internally perform DML

calls as a result of’ the user ’s global D1!L call. However ,

FCaI~ThAU— IV on the DECSystem— ’~O does not allow the callinr c~

a subroutine from within itself. In order to solve this

problem the user does not directly call the D~!L routines hut

calls controllin g routines. All the old Dt~L rout ines have

been renamed by adding the prefix DBX to the  a b b r e v i a t i o n  of

the replaced DML command subroutine. Fcr example , the old

routine FINDAP was renamed DbXFAP.



Pare ~ ‘I

New routines were created with the old DUL camnand

names which act as controlling routines. These routines

check to see if restructuring is needed , if not the

appropriate DBX routine is called. If’ restruc tur ing is

called for , the app ropnitate D~ I~ r o u t i n e  is ca l l ed to

recons t ruc t  the DHL command. If r e s t r u c t u r i ng  is needed  b u t

the command itself need not be reconstructed , as is the case

when the user is using the most recent generation schema ,

the appropriate locator or DBL rcutine is called. The

locator or DDL and DL~J~ r o u t i n e s  when accessing database:  use

the appropriate DBX r o u t i n e s .  A DLX , DEE , and DBL rou tine

exis ts  for  each user  in t er f a c e  r c u t i n e  suppor ted  a f t e r

r e est r u c t u r i ng .

4• L~ U t i l i t y  Rou t ine s

T here are a number of utility rou tines th a t r~ ke the

~rcgramning effort easier and  also p r o v i d e  r en c r a l  r o u t i n es

t h a t  can be used by f u r t h e r  i m p l e m e n t a t i o n  e f f o r t s .  These

rcutincs are of two ty pes , those nee d ed to perform contex t

switching and those that access the internal database CHGDB.

There are two context switching routines and two

routines that support those routines. One routine , called

DDCTTO, will switch the context to the given schema

generation num ber. The prior context is pushed on the stack

calle d ~C3TACK by a general stack push routine nar’cd DEPUSH .

Ihe needed conversion of the context and context bases is



Pare  35

then made. V

The other  con tex t  switch ing rou tine , calle d DBCTBAC ,

switches the context back to the previous context. A

general stack pop rout ine , called DBPOP , is used to get the

V previous context off of the stack named R C S T A C K .  In order

to swi tch  the  con tex t  two i n t e r n a l  p a r a m e t e r s  are  ~et to t h e

p rc per valu e, i.e. SCHNU~1 and CU~ A EA 3 d iscussed ear l i e r .

All  ac cess tc th e in t e r n a l  d a t abas e CH GDB (see F i~’ure 6

ari d A p ç~er~d i x  Lumber  3) is th rou gh  u t i l i t y  r o u t i n es .  The

i n t e r n a l  d a t a b a s e  is i n i t i a l l y  e n t e r e d  t h r o u g h  the  r o u t i n e

ibC II4Ii . lhis routine reads the 3CH ~ A record by uzing the

i n p u t t ed  schema name and  r e t u r ns  the  n u m b e r  cf gene ra t i ons

t ha t exist of that schema . The routine D EN XSCH fin d s an d

reads the GENCHG record using the inputte d gencrat ion number

and r e t u r n s  the  f i l e  name where  t h a t  g e n e r a t i o n ’s schcra

definition is stored.

The routines named DLDZET , DED R E C , and DDDITh read the

records nanded SETCHG , RECCIiG , and ITIICHG respectively. The

particular records are located by the use of’ the inputted

set , recor d , or item name . The data in the accessed record

is returned by these routines along with any error status

that was produced as a result of’ these calls. The error

status once gotten from the user work area is reset to zero

to allow further processing. The routines calling the D~ L~
rou tines nanere these errors separately . Dome e r ro rs  a rc

ex pected a: a result of the internal datat’nse accesses ,

V
~~~~~~~~~~~~~~~~~~~

-
~~~~~~~~~ —__ _ _



~agc 36

however , all unexpected errors will eventually be re turne d

to the user. All of’ these routines assume that the correct

GEiiCF~G record is current for making these calls.

The f i n a l  two u t i l i t y  r o u t i n e s  t h a t  read the  i n t e r n a l

databaze are DB D PATH and DEDLIST which access the P ATH M E 1~l

and LSTt1~LEEii records and the set that owns these records.

The PATh and LIST sets are ordered sets of setnames that are

accessed in some secuerice to reconstruct D~1L calls. These

r o u t i n e s  i n p u t  the  pos i t ion  w i t h i n  the  sets PATH an d LIST

where the  needed record  is loca ted .  The r e su l t i ng  set name

gotten from the PATHHEI or LST 1’IEHBE }~ recor ds is re tu rne d

along with any error status. The error status is handled

like the other L~~D rou ti n es han d le it . Bot h rout ines  assume

that the appropriate owner record For the PATH and LIST sets

is curren t.

4~ 5 Detaile d I~eccnstruction Routines

This section will discuss in detail all of the DLL

comman ds that reconstruct and how that reconstruction is

accomplished .

4.5.1 The GET Command —

The GET command moves the current instance of the , 
V

indicated record type from the database into the user wor k

area. The recons tructed GET command does essentially the

j



Pare 37

sane thing.

The internal database is checked to see if the named

record has been restructured. If the record type has been

deleted , signified by a particular flag value , an e r ro r  is

returned (see Appendix Number 6). After switching to the

most recent generation context and updatin g the currer.cy of

the record type , the database is accessed. The named record

type or the c—record , if it exists , is the actual record

type gotten from the database through the use 01 a L:~ LGET

ca l l .

i~ow that the proper record has beer. gotten from the

d a t a b a s e , the  da ta  mu s t  be l e ade d  i n t o  the  r a i n  user  work

area . This is done by sequencirir through all data items

F c o n t a i n e d  in the  record ac c o r d i ng  to the  u se r ’s schema

g e n e r a t i o n .  For each data  item the internal database is

accessed to see if the data item has been restructured . If

no r e s t r u c t u r i n g  occu r r ed , t he d~~t~ i t e m  is moved d i r e c t l y

from the las t user  wor k ar ea , where the data from the

da ta base now rest s, to the main user work area. If the data

item has been deleted , a null  va lue  is move d in to t he ma in
V 

user work area locations for this data item . This

convention is used by the CODADYL ccmr.ittee [2) in the

A C T U A L / V I R T U A L  SOUR CE s p e c i f i c a t i o n .  In t h a t  s p e c i f i c a t i o n

if  the da ta  va lue  does not  ex i s t  a n u l l  v a l u e  is r etu rr i ec .

This convention therefore seems appropriate for signifying

that no data value exists rather than returning an error.



V 
~~~~~~~~ V~~~~~~~~~

P~~r e 3E~

If the da ta i tem has not been de l e t ed or is r iot in the

record obtained from the database , it must be relocated in

some other record. To get this record FIND OWNER accesses

are ma de for all sets in t he reloca t ion pa th store d in the

in ternal database. The record thus located is moved from

the da ta base in to the las t user wcr k a rea an d th e

appropriate data is moved to the main user wcrk area .

A f t e r all data has teen moved , the r a i n use r work area

currency is reset to the database key of the record found in

the database as a r e su l t of the o r i g i n a l d a t a b a s e access

(i.e. the record or its c—record , if ~t exists). f ote that

all database accesses except those to the internal database ,

are done by DEL rutines that locate the needed data in the

catat’ase. In addition , any unex pec ted errors t hat occur as V

a resul t of a da ta base accesses are re turne d to th e ~ser.

~4 .5.2 DELETE Command —

DELETE is similar to the GET command recontruction .

The i n t e rna l da tabase is accessed to see if the record to be

de le ted has been r e s t r u c t u r e d . If t h e record no longer

exists in the schema , an error is re turne d (see A p p e n d i x

Num ber 6). Otherwise , the record as named (or its c—record ,

if it exists) is deleted f rom t h e d a t a b ase . The par ti c u l a r

record to be de l e t ed is s ign i f i e d by the current database

key found in t he r a in user work area for t h e record t y p o

cr ig ina l i . y s p e c i f i e d . A f t e r the d e l e t i o n ha s occurre d , that

~ar€ ’ ~~~)

currency in the main user work area is reset.

The delete command deletes the current instance of the

record or i ts c—reccrc i and all records l i n k e d benea th tha t

record . it is possible for a person us ing a pr ior

generation schema to delete records , or data values stcred

therein , that he does not know exist and that ray be used by

other users who are using more recent generation :cher’a

d e f i n i t i o n s .

14 .5.3 STO}~E Comman d -

V The STCIi E cor~nanc cannot he r e c o n s t r u c t e d . Consider

F the r e s t r u c t u r i n g i l l u s t r a t e d in ~‘igur c 7 where t he only

chan ge from genera t ion one to two has been the a rh ’i t lon of a

record and a set to complete a cenfluericy. V4hCfl z’ prcgra~i

w r i t t e n w i t h the f i r s t g e n e r a t i o n sc h er a t r i es to ~ tor e ~n

ins tance of ~EC OR D—2 , the restructuring now recuire: that

some record of typo RECORD— 3 be selected to c:tehlich t h e

ap2ropriatc link:. However , there is no way of selec t in g

that record because it did not exist under generation one

and data item DATA— 3, which is the record ’s key , does not

exist for programs written with generation ore schema .

In cenera l , to store a recor d , the full concatenated

key for records above the record to be stored rust he

specified in sore way. If restructuring changes a record ’s

identifying key by additions , deletions or changes to keys ,

.~~~~
- •~~ V V~~~V • V V :V

~ V V~~~~~

F “U

Page 140

[~co~~ 3
V Data-I Data-i Data-3

SZT— I—2 SET_1_2\

__

/S
~
T_3_2

I RECORD-2 RECORD-2
Data-2 Data-2

Generation 1 Generation 2

FIGU~~ 7

t h e STLI 1V. car ~n ot be a d e q u a t e ly r e c c n st r u c t e~~. For these

r e a so n s the ~TChE cor mand c~’nr.ot be reconstructed ari d any

call to this routine in any generation but the r~ost r ecen t

genera tion w ill cause an e r r or (see A ;~~cn d i x t~umbe r 6). It

is re ccnr~ended t h a t a l l s t o r i n g in a d at ~~ba:e t h a t has been

r e st r u c t u r e d be by r o u t i n e s w r i t t e n u s i ng t h e m os t r e c e n t

F generation schema definition .

An alternative , an d possi b ly be t te r solu tion , is to

allow programs using previous generation schema to STORE a

record type if It can he verified that the related structure

has not been changed. The implementation of this

alternative would require additional data be stored in the

internal database to signify whether a record can be STO1~ED

as a result of the restructuring.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~~~~~~~~~~~~~~~~ VV ~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


V ~~~~~~~ V
I

Pare 14 1

14~~5• 14 tIODIFY Command —

Unl ike the STO R E command , the IIO D I F Y command can be

recons t ruc ted because m o d i f i c a t i o n s are performe d on recor ds

that have been located in the database previous to the

~ODIFi command cal l .

The MODIFY co!tmand is reconstructed In the following

manner. The internal database is searched to see if the

record type has been changed by restructuring. if the

• record type has been deleted , a res t ruc tur in g error is

returned (see Appendix Number 6). If a c—record exists for

the record type , the c—record will be used as the base
V

record to m ake a l l m o d i f i c a t i o n s r a the r than t he recor d ty pe

4 cri gin a l l y spec if ied because a l l da ta i tems for the V

sp e c i f i e d record are icca ted in . the d a t a b a s e w i t h respect to

tI;c c—record .

L C CSU SC the record cr c—record to Lc rr (ific (~-rv have

rore data in it than the user is ~wr r c r f , thc ~ r ’r . i i i e at i e n

u st be ma de to t h e cur ren t ly s to re d r e c or d or record : t h a t

ccntain , after restructuring, the data iter.s in the record

t ha t the user wants to modify . The current record or

c—record is first gotten from the database. For every data

i tem con ta ined in the record the u ser w a n t s to m o d i f y , the

following steps are performed . If the data item no lorrer

exists due to restructuring, it is ignored. If the data

item has been relocated , it is store d on a st a ck for l a t e r

processing. All remaining data , i.e. those items th .~t

--V
_ _

V V V V V V ~~~~~~~~~~ V

Page 142

a f t e r r e s t r u c t u r i n g are s t i l l con ta ined in the record or I t s

c—record , is moved from the main user work area to the

correct locations in the last user work area where the data

values ob ta ined from the da t abase lie.

A f t e r all da ta i tems have been se quence d throu gh , a

modification command is performed to p lace the m od i f i ed

record back into the database. For all data items relocated

in other records , the following operations are performed .

FIkD OWNEIi commands for all sets in the relocation path (the

path is stored in the i n t e r n a l d a t a b a s e) are made to locate

the record that has a data v a l u e to he m o d i f i e d . The

located record is gotten from the database and the data iter’

valu e moved from the main user work area to the last user

work a rea . The record is then reen tere d in to th e da ta base

by a UODIFY ccrmand.

The modification should update the database so that the

newly store d data i tem values a f t e r the n c d i fi c a t i on can be

V gotten back as entered. Therefore , the processing for the

relocated data is performed after the wanted record or its
V

c—record has been modified . That modification may change

some set relationships and thereby change the particular

record in which the re located data now is supposed to l ie .

The cu r r en t record i n s t ance t h a t is to he m o d i f i e d is

d e t e r m i n e d f rom cu r r ency i nd i ca to r s in t h e r a i n user work

area and a f t e r m o d i f i c a t i o n these c u r r e n c y in c i c a t o rs are

updated. An : ~rrors tha t may have occurre d as a resul t of

V V V

Pa re 143

the database accesses are re~”rned to the user.

14.5.5 FINDAP Comman d —

If a record is named in the ca l l ing por t ion of th i s

command , the internal database is searched to see if the

V record has been restructured. If the record has been

deleted , an error is returned (see Appendix Number 6). If’

the record still exists or has a c—record , the data base is

accessed using a DBLFAP command using the record named or

its c—record , if it exists.

11 rio record is named snd ‘,AJJY record is recuested ,

the following is done. The mo st recent g e ne r a t i o n d a t a b a s e

• is searched for any record using the FINDAP location

rou tine. If the record found exists in the user ’s V

generation database , tha t record is returned to the user.

The da tabase is searched u n t i l such a reccrc~ i s fourd or an

error occurs. This procedure wil l only f’ir.d and r e t u r n to V

the user records t h a t have no t been r e s t r u c t u r e d . If i t is

deemed necessary to return any record that the user would

normally expect to find , it would be necessary to check each

tine a record is found to see if it is a record in. t he

user ’s schema or if it is a c—record for a reccrd in the

user ’s schema . This requires a search of the internal

database and is thought presently to he unnecessary for this

ccrr~an d s ince t h e c omma nd ’s use is t h o u g h t to he r a re .

L. ~~~ V V V ~~~~~~~~V V~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



V V~~~~~~~~~ ~~~

Pa ge ~U

No r a t t e r  how the  record is found  in the  da t abase ,

currency is updated in the main user work area using the

database key for  the  record found and any  errors that occur

are returned to the user.

14.5.6 FINDC Command -

As with all other commands involving records , the

r out i n e  to restructure the FINDC command accesses the

i n t e r n a l  d a t a b a s e  to see if the named record has been

r e s t r u c t u r e d .  If the record has been deleted from the ‘~ost

recen t genera ti on schema , an error resza ge is re turne d (see

A p p en d i x  f i u m b e r  6 ) .  II ’ the record has been re st ru c ture d an d

a caic access is impossib l e , as is the case if t h e  cab key

has been deleted or relocated in . sore o th e r  record hesides

the c—record , another error status is returned (sec Ap pendix

humber 6).

If the record  now has a c—record  where  th e  ca ic  key

resides , special processing has to be dcne to s imu l a t e  the

calc access. I3ecause the c—record contains the key but is

not stored via the key valuc , all c—records must be

sequentially searched until a match on the key value is

obtained. In order to allow for the finding of duplicates ,

the first sequential access of the c — r e c o r d  is done u s i ng

the pos i t ion  as en te red , i. e. ‘FIRST ’ or ‘f l EX T ’. This

causes the  search to s t a r t  at the  b e g in n in ~ of the  d a t a b a s e

or where the las t  scarch  l cft  o f f  depen d in g res pect ive ly



Pare 145

up on whe the r  t h e  f i r s t  or the  nex t  d u p l i c a t e  is w a n t e d .

Al though this method is not foolproof , it al lows , in most

cases , the finding of’ duplicates and is better than no

provision for finding duplicates , however , it can be

expensive if many records of the requested type exist in the

database.

If the record has not been res tr u c t u r e d , t he cab

access to the database can be made in the usual manner.

~ hen t h e  w a n t e d  record is f o u n d , rega rdless of how i t  was

found , the database key is r e t u r n e d  to the main uzer work

area and currency is updated. All errors encountered are

returned to t h e  user  az he ‘~cu ld  see t h e n  u n d e r  norma l

c~ crating conditions.
4

1 4 . 5 . 7  ~ I f lD PO Comman d — V

The FINDPO comman d operates on sets. The internal

database is accessed first to see if t he set has been

V restructured. If no restructuring was done on the set the

command is used d i r ec t l y  to locate the  t a rge t  rcccrd in the

database .  The cu r ren t  posi t ion in the set is found  by the

currency indicated in the main user work area which is

t r ans f e r r ed  to the  last  user work a rea  where the database

access is made. If any error occurs it is returned to the

user. The currency in the main u ser  work area is also

up d a t e d  a f t e r  t h e  da t abase  access .

LL~~~~ VV_  
~~~~~~~~~~~~~~~~~~~~~ VV ~~~~~~~~~~~~~~~~~~~~~~~ V~~~~~~~~~~~


V V

Pa ge 146

If the set has been deleted an appropriate error is

r e tu rned (see A p p e n d i x Number 6) . If’ the set has been

res t ruc tu red and not de le ted a c—set exists in the internal

database for the set. The processing to be done to

V reconstruct the command is dependent upon whether the set is

em pty or not.

If the c—set is empty, the mem ber an d owner recor d are

the same for this set. If’ the set position requested is

LA ST or FIR ST it is ionore d and the owner recor d (wh ich in

this case is also the only member record of the set) is

returne d as the record found. The ~csitional calls using

i.EXT or P~ ICL , if rot proceeded by a LAZT or r’Th~ T

pos iti onal cal l , are t r e a t e d in a s i mi l a r mariner. 1.11 other

• positional accesses generate an. end of set error status. To

te l l w h e t h e r any p rev ious accesses have been m ade tc t h i s V

set in s t ance a f l ag in the i n t e r n a l da t ab ase is t u r n e d en

and o f f . This f l a g is u pd ated a pp ro pr ia te ly ever y ti re a

member or own er record of’ sets with empty c—sets has been

accessed. If no error is g e n e r a t e d , the d a t a b a s e h ey of the

owner record is r e t u r n e d to the m a i n user work area and

currency set.

If the c—set is non—empty , all sets in. the c—set rust

be ex ploded so that all combinations of’ recor ds are p rov id ed

to the run—unit. In order to do this , the currency for all

set s in the c — s e t m u s t f i r s t be de tcr r i r .e d . This is done by

t a k i n g the set c u r r e n c y s tored in the ra in u se r wcrh ~rea

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~_~~~~~~V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


Pa re 147

and u s ing th i s value as the c u r r e n t set pos i t ion for the

first set in the c—set. The appropriate currencies for all

the other sets are determined by doing FIND OWNER accesses

on the sets in the c—set in the proper order.

Once the currencies have been set , the positional finds

can be p er formed . A posi t ion of LAST or FIRST requires that

the FIk~ST or LAST pos i t ional record be found for all sets in

the c—set in reverse order. Note that the c—set is a list

of sets with the prime order determined by those sets in the

unique upward path from the c—record to the original owner

F of the set. I f any of these accesses , other than the f irs t ,

accesses an empty set , t hen a F I h D t EXT or FIND PRIOR

command is executed in t he folbowinr set in the c— set .
4

V

If the positional request is N EXT or PkU OR the proper

~V O S j t j O f l C l f i nd is m a de to t h e f i r s t set in t h e c — s e t . I f

an em pty set is encountered a FII~D h EXT or ~It ~E~ ?F ~I C h is

execute d in the following set in the c— set and so forth

recursively. When the last set in the c— se t is exhausted a

non— zero error status is returned to the user.

When the position requested is a number , the proper

sequence of FIND LAST , N EXT , FIRST , an d PRIOh commands are

made had the user not entered a number. For example , if the

position requested is 3, the implied FIND FIRST er.d two FIND

~~ XT commands are a c t u a l l y e x e c u t e d . when the proper record

is f o u n d , t he d a t a b a s e key is u sed to reset the rain user

work a rea c u r r e n c y .

Pa re 148

14.5.8 FI N DO Comm an d —

The set name for wh ich the command is requested is

searched for in CHGDB to see if it has been restructured.
V If it has not been , the currency for the set is obtained

from the main user work area , and a F I N D O’w N E R command

executed . The resulting record and database key are used to

reset the ma in user work area c u r r e n c y . If the set has been

dele ted as a resul t of res truc tur in g , an error mess age is V

returned (see Appendix Number 6).

.

If the set has been restructured hut not deleted , a

c— set exists. If the c— se t is the empty set (the c—record

is also th e owner r e c o r d) the re is no d a t a b a s e access made

an d the c u r r e n c y in t he m a i n user work area is set u s i n r the

database key of the c—record .

When. the c—set is non— empty, F I W L LW~ uI comm an d s ar e

made for all sets in the c—set. I f the owner of the set is

already current the FIND OWhER command : are not neces sa ry .
V

Once the owner ha s been foun d the cur rency in the ma in user

work area is reset. Any error that m ight have occurred is

returned to the user.

14.6 Documentation

The routines described in the portion cf the paper

V comprise the implementation as it exists as a result of t h is

,~aper. The crorram code and documentation is stored cn the V
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



V ~~~~~~~~ V 
VV ~~ • V  V

Page 14~~

DEC System— lO in several Fortran source code file: under

user number (40TO ,5143. Those who are interested in a more

detailed look at the routines and those who nay want to do

further implementation should consult these files. V

5.C FU 1~TNU~ INPLENENTATION AND EXTEN SIGNS

This section will outline the next steps needed to

fully complete the implementation of the dynamic

restruc turinc processsor described in this paper. This work

has tr ied to develo p a genera l im p l emen ta t ion s t r a te gy an d

incorporate the data and utility routines to be used by the

total implementation. fluch thought and work needs to be

done to im p l em ent  th e rema in ing por tion of the dyna m ic V

restructuring processor. 
V

Section 14.2 outlined t he  genera]. implementation and

testing strategy . The work done for th is  paper  i n c l u d e d  a

detai led im p l e m e n t a t i on  of ste ps ~ and 2. The nex t  s tep  is

to implement steps 3 and 14. Step 3 reQuires the writing and V

testing of the locator routines. These routines , one for

each command to be reconstructed , will search through the V

most recent Ceneratlon database and all previous generation 
V

databases for the data that is the target of the inputted

command. 
V



Pare 50

It is be l i eved  tha t  the information stored in the V

i n t e r n a l  d a t a b a s e  and used by the  r econst ruc to r  r o u t i n es  is

sufficien t to perform these locator cperations. The locator

V operations are in many  ways the  inverse  of the  reconst ruc tor

routines. The reconstructor routines reconstruct the user s

data base calls to the call or calls tha t woul d have been

ma de had he been using the most recent generation schema .

V The locator routines will take the call in the  form needed V

to access the most recent  genera tion da ta base an d chan ge it

into the call or calls needed to access the other generation

databases. The locator routines must sequence through all

coex i s t en t  da tabases  to t ry  and locate the target data.

T hese rou ti nes nu~ t also manage the error messages resulting

from its own eaHs to the databases and the errors returned

V 
V to the user of the locator routines. - V

‘~hc loc: tcr r o L t i n c s  can  ~e tc:tc~ ~ ofcrc t~~’ f~~ -~ 
V

ir~~lcr:entatJ e~ rtc.. is ta~:er. , 1.0.  t.~~ c i~~. ;V i er c r ta t i c r  mi

the tranzlaticn rcutinc that transfcrr data in old

generations databases to the most recent Vr e ne rat i or ~

database . Ilorgan and Gerritsen ’s paper [
~

) gives some

i nsight  in to  ex ac t ly  how th is  t r a ns l a t i o n  can be

V accomplished .

The implementation of these final two steps wi l l

produce a complete dynamic restructuring processor. The

FtDDFDP processor to actually compile the r e st r u c t u r i n g  
V

d c f i r4 i t i on  l a ngu a g e  i n t o  the  necessa ry  f i l e s  and  da ta b a se s  
V 

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



V 

~~~~~ V

Page 5 1

mus t also be i m p l e m e n t e d . This processor can of course he

developed in parallel with the other implementation , but the

form of the in ternal database must be to ta l ly .~pecified

first. The locator routines must at least be conceptually

designed an d the ir data re quiremen ts ascer ta ine d before the

in t e r al d a t a b a s e can be t o t a l l y s p e c i f i e d .

The RDD FDP processor in gen eral shoul d perform the

following operations:

1) U s ing the RDDL def in i t i on an d the p revious

V
genera tion schema d e f i n i t i o n , c r ea t e the d a t a d e f i n i t i o n for

the next generation schema . The internal database V

d e u in i t i c r i is also ap~ cnded as t h e f i r s t area of all these

CchcI:!2 c e fj nj t i c n : if r o t done before . The r e s u l t i ng schema
V d e f i n i t i o n is o u t p u t t e d f c r use by a p p l i c a t i o n s p r o gr a mm e r s

and also is run through the FUP processor to generate thc

~r opcr * .~~C~i f ile f or th is r en e r a ti o n schem a to he u sed ~‘y

the restructuring processor.

2) From the RDDL an d prev ious genera t ion schema

definition , the c—sets , c—records , etc. are calculated.

The relocation paths for data relocation are calculated and
V

tested for uniqueness.

3) The ca lcu la ted values from step two are th en

incorporated in the internal database. The database ~ust be

augmen ted by i n c l u d i n g the d a t a needed to p e r f o r m

t r a n s l a t i o n s f r o m the previous generation schema to a new

L~~~~~V i

V V~~~~~~~~~~~~ V~~~~~~~~~ VV V~~~~~~~~~~~~~_

V V V V

Page 52

g e n e r a t i o n schema . Al l the data in t he CHGDB is s tored to

al low t r a n s l a t i o n between previous g e n e r a t i o n schema and t h e

most recent genera t ion sc~~ema . The r e s t r u c t u r i n g , however ,

V has modified the previous most recent generation schema .

The CHGDE is modified to allow translation to the new most

V recent generation schema for all previous generations of the

schema .

At t he p r e sen t t ime only the rou t ines F I N D A P , FINDPO ,

Fi(~i)C, r IN D C , GET , ST(~}~E , h ODIF Y , and DELETE are be ing

r e c o n s t r u c t e d . C~the r rou t ines are also candidate for
V

r e c o n s t r u c t i o n , in c l u d i ng D ELLALL , and F I Z J D V . Several

accition : and extcn :icns mentioned in the previous sccticns

ci this p a p e r arc c a n d id at e s f o r i m p l e m e n t a t i o n as we l l .

ô.C CO1.CLUSIOLi

The work done for th i s paper has a t t e m p t e d to sh c %r

throu gh an im p lem enta tion , the feasibility of dynamic

restructuring of databases. The implementation of a
V com ple te dynam ic res t ruc tur in g processor has no t been f u l ly

atta ined by this work but brought several steps closer to

total implementation .

The completed programming work done for this paper ,

however , is of importance in i ts own r i g h t . The processes

irVlpleriented provide a system tha t will allow several

generations of schema to coexist an d p r o v i d e runtir’.e

Li~~~~~~~~~~~ V
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



V ~~~~V • V ~~~~~
V 

V~~~~~

Page 53

translat ion for users or programs using previous generation

schema from a database existing under the most recent

generation schema definition . This system will remove the

common necess i ty  of r e w r i t i n g  a p p l i c a t i o n s  p ro gram s  a f t e r  a

conceptual schema restructuring.

The conce pts develope d by ~organ and Ge r r i t se n  ( ‘]  have

proven adequate for the  t r a n s l a t i o n s  d e v e l o p e d  for this

partial implementation of the dynamic restructuring

~r eccsso r .  It  is be l ieved  tha t they  wi l l  also be adecua t e

xcr the remaining part of the processor to be implemented.

I t V ,C ~y n ar ic r e s t r u c t u r i ng  ~rocessor , as descr ibed  in

this paper , is on ly  p ar t o f an y total d yna m ic r e s t r u c t u r i ng

system . Of’ Socket and Goldgerg ’s [‘0) stated guidelines for
V 

such a system (see Section 2.0 for a listing of their

ruidelincs) the dynamic restructurir,r processcr only

a~ drcsscs guidelir,c 1 , the restructurin g process must

c~ cratc correctly, r e t u r n i n g  the  cor rec t  data  f rom the

V database. The issues of dead lock , s yn c h r o n i z a t ion  of

p rocesses , and recovery must be addressed by any total

restructuring system that is to be developed from thIs

dynamic restructuring processor. I am confident these

problems can be handled .

The f i n a l  g u i d e l i n e  m e n t i o n e d  is th a t rea sona b le

c f f ’i c i e n c y  mus t  be m a i n t a i n e d .  ho m e a s u r e m e n t  of efficiency

has been defined , however , some general comment s on

V efficiency can be made. ~y necessity the dynamic

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~


Pa ge 514

V restructuring routines r equ i r e more ope ra t i ng overhead for

all database accesses and each access reques t i n p u t t e d by

the user r equ i res a t least one , and o f t e n two or more ,
V

database accesses. Some r e s t r u c t u r i n g d e f ’l ni t io n s can make

the num ber of database accesses high in number reducing
V

o p e r a t i n g e f f i c i e n c y .

There is no way at this po in t to measure the ope ra t ing

e f f i c i e n c y of the dynamic r e s t r u c t u r i n g processor because

further implerentation is necessary before a total processor
V

exsists.

As the introduction of’ this paper indicates , d yn a m ic

r e s t r u c t u r in g is of p a r t i c u l a r importance when d at a b a s e

a p p l i c a t i o n s r e q u i r e comple te and u n i n t c r u p t a h l e d a t ab a s e

i n t e g r i t y . D y n a m i c r e st ru ct u r in r a lso may be a p p l i c a b l e to

r e s t r u c t u r i n g v e r y l a rm e d a t a b a s e s , e s p e c i a l l y those t h a t

a rc highly volatile , i.e. the number of record deletions

an d rcplacer .erits is high in relation to the number of record

acctiszez. D y n am i c r e s t r u c t u r i ng does not require data in

pr io r ge n e r a t i o n d a t a ba s e s to be r e s t r u c t u r e d to th e present

generation database before it is deleted or replaced.

To determine the tradeoffs between the two types of

restructuring options (traditional or ofl’line restructuring

versus dynamic restructuring) consider the following

analysis of restructuring co~ te. There are two types of

cost associated i ii th r e st r u c t u rin g . The ccst of p r o v i d in r
V

t r a n s lat i o n back to the usor~ c ge n e rat i o n schema would be

V
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



VrV

V V  V V 
~~~~~~~~~ V~~~~~~~~~~~~~~~~~~~ V V V  V V~~~~ V~~~~~~~~~

Pare ~5

the same despite the type of restructuring used therefore it

is irrelevant here .

The other type of cost is the cost of actually

performing the database restructuring. Traditional

V
restructurinC has a large fixed processing cost , although

the average cost per record may be relatively low. Dynamic

r e s t r u c t u r i n g has a v a r i a b l e t y p e cost. The independen t

V
v a r i a b l e upon wh ich t h i s cost is d e p e n d e n t is the number of

V records of’ p rev ious genera t ion da ta bases ini ti a l l y accessed

(not replaced or deleted). This is the independent variable

because the restructuring processinr cost is a one tine ocst

incurrt when r€’corcs in prior generation databases are

f i r s t accessed . A low fVj~~~~~~~~~ cost f~ r the stora r’e need ed by

the d y n am i c r e s t r u c t u r i n g processor a lso exis t ! . The

restructuring costs as defined above can now be compared

V using the usual break—even analysis. The traditional or

of fline restructuring costs are fixed and do not vary with
V

the independent variable defined befcre. The dynamic

V
restructuring processor has a high variable and low fixed

cost in rela tion to the independent variable. Tne

break—even point exists and can probably be calculated if

the correct costs are known .

The i n d e p e n d e n t v a r i a b l e v a l u e fo r any p a r t i c u l a r

da tabase is d e p e n d e n t upon a n u mb e r of t h i ng s i n c l u d i ng s ize

of the database . and volatility of the database. The

independent variable can usually be measured by scre

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VV ~~~~~~ V V~~~~ V V • V V V V  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



V Pare ~G

V probabilisti c measure. Some databases will fall below the

break—even  poin t  and thus  it ~ ould be cost e f f e c t i v e  to use

dynamic restructuring in these situations.

It is impossible at this point to measure the

restructuring costs of dynamic restructuring because the

entire processor has not been implemented. when

implementation is completed such costs can be determined and

an analys i s made as to the proper break—even point and what

databases are above and below the point can be determined.

Th i s  a n a l y s i s  w i l l  in d i c a t e  those da tabases  where dynam ic
V 

V 

r e s et r u c t u r i ng  is a less cos t ly  t e c h n i q u e  for restructuring .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


Pare S7

V BIBLIOGRAPHY

1. Gerri tsen , Rob , and ~1organ , Howard L . , “Dynamic
R e s t r u c t u r i ng of Databases w i t h Genera t ion Data
Structures ” , Dept Decision Sciences , Working Pa per
75— ’2—02, The wharton School , December 1975.

2. CODASYL , CCDASYL Data Ea se Task Grcu~ Ap r i l II Report ,
ava ilable from. A CL I , h ew York City. V

3. Shu , f~an C., Bar ron C. Housel , and Vincent Y. Lum ,
“Conver t: A High level Translation Definition Language
for Data Conversion ,” Comm . ACN IC ‘0 , October 1975 , V

V

V pp 5C7 —~67.
~
.. ~c rt en , A l a n J . and ,Jemcs F. Fry , “A D ata P e s er ip t io n

Lar guage Approach to File Translation ,” Proceedins . Acjj

~IC~~4 Lorkchop on Late Descriptiti J~ceesz ~~1d Control,
V hay “)714, pp 1~~1~~2C~

V
.

~i~ rir~~~, J . A . , h . 1. hir , and ~ . . ~~~~. Prywe s , V

“~.~uter:~ tic Gen~ raticn of Data C o n ve r s i o n f’ rc~~r ams U s i n g
a UeV te L c s cr i p t i cr ~ L e r g u a g e , ” .‘r o c ecd in r s . ~~~ ~lG~iCD
v.orksho~ on Da ta Ve scripticr. Acccss ~~~ Con trol, hay
19714 , çp2C7 —225 .

V

6. ~urk , J . l i . , “DhS Data Ease h e st ru c t u r in r , ” Xerox
Tc chnclogy f~cport (~ crk Order F3142314), Na y ~97 ’ .

7. Gerritsen , Rcb , Howard L. ~V Ior ga n , and Llicheal D. V

Zisman , “On some hetrics for Databases , or What is a
V

Very Large D a t a b a se ? , ” Decision Sciences working Pap e r V

76_ 013~~08 , A p r i l 1976.

8. G e r r i tse n , iob , Ricardo Cortes , Jim hiheiro , and Ruth 11
Zowa der , ~~~~

V
~~ftI,D User ’s Guide ,” Decision Sciences ~.orkingPaper 76—01— 03, April 1976.

V 9. Uinslow , L.E. and Lee , J. C., “Optima l Choice of
V ~cstructuring Points ,

’ Proceeclinc”s
~~ ~~ International

Conference Qfl Very Larpe Databases, September 1975.

IC. Socket , Gary H., Goldberg , Robert P., t? IVlctivation for
Database Reorganizaticn Performed Concurrently with
Usa ge ,” Working Paper TR 16—76 , A iken Computing V

Labratory , Harvard University, Cambrid ge , Ness.

~~~1. Ai~SI/SPARC, “Study Group on Database hanagerent Systems
— Interim )~eport ,” 75—C2—08 , Am erican National
Standards Institute , Washinpdon , D. C.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


Page 58

APP E !~DIX NU t:b E I~ 1
EXAHPLE HEDICAL DATA BASE

BEF ORE A N Y RE ST RU CTURING

SCHEflA NAII E IS ~1EDICALDE .
V

AREA NANE IS CfED IC~L.

F~EC OR D t I A I I E IS HO SPITAL
V LOCATION tV4ODE IS CALC USING IIOSPNANE

V DUPLICATES NOT ALLOWED
HOSPNAt E TYPE IS CHARACTER 20.

V RECORD IE IS DOCTOR
LUCTATION £~ODE IS CALC USING DOCNAHED U P L I C A T E S N OT ALLOWED
DOC1~AH~ TYt’E IS CHARACTER 30

V j
~ L C A j~~Dh E ~~~Z TYPE IS CHARACTER 30.

~~~~ 1 L.fl;~ ~~~ L G SL U C
H(i Li E 1.~.. CH,~I1~(~z~L~Ei~ l.~J ~

‘ I h L T
O~, N t b  IC I t O C P I T A L
t f ~ t~V Eb iS DoCTeh .

RECORD NAh~ IS F’~~iILhTL O C A T I CN hOL E IS CALC USING PAT~ A !iE
&UPLICA~~ S P~CT ALLOWED 

V

?ATHAt ~E TYPE IS cH;~hA CTEfl 30
i V A T A G E  TYPE IS FIXED

EATNENT TYPE 15 CHARACTCh ~10.

~~ !:ACiE 15 L’UCt’AT
NuLE IS C~ A IL 1
~..~iiDEz~ IS r’IRST
L~~~i V L: ( IC IOCTO~i
iEh~ ER IC PATIENT.

V RECORD tI A t iL IS ~‘IL ~J
LOCATION n ODE IS CALC USING WINGNAt IE

DUPLI CA TES NOT ALL OWED
W It GU A ME TYPE IS CHA R ACTER 30
WIflGZI~ E TYPE IS FIXED .

SET NA I1E IS HOSWING
hOyt. IS CHAIN
ORDER IS FI~ ZT
c~:hiER IS H O S P I T A L
!1eI V I~ EFI I~ ~ IhJ G .

V hEC~ hLi UA l~E IS N U R S E
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


VT

V V ~~~~~~ V V
~~~~~~~~~~~~~~~~~~~~ V V V V

Page 59

DUPLICATES ALLOWED
IIUKSNAHE TYPE IS CHARACT L~H 30

V NURSTYPE TYPE IS CHARACTER 10.

SET IJANE IS ASSGt~T 
V

NODE IS CHAIN VV 

ORDER IS FIR ST
OWNER IS WING
tV IEL IBCR IS NURSE.

4 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~ V • V V V~~~~~~~~~~~

Pare  60

A P P E N D I X  N U I i B E R  2
F i EST R UCT URIU G D E F I N I T I O N

CHANGE NAI .I E OF PATIENT RECORD TO DIAGNOSIS.

INCORPORATE R E C O R D  NMI E IS PATIENT
LOCATION NODE IS CALC USI N G PATID

DUPLICATES NOT ALLOWED
PATID TYPE IS FIXED .

IU C OR PO I ~ATE SET N A I V i E IS PA TDOC
ILUDE IS CHAIN
ORDER IS FIRST
OW NER IS PATIENT
~VIE1.1BER IS DIAGNOSIS.

RELOC A TE PAT N A N E OF D I A G~ OZIS IN P A T I E N T
USING U N I C U E  P A T H .

hELOCATE ~h~IAGL OF DIAGNOSIS IN PATIEh1
USII.G P A T DL V C ~/~TH.

IN C Oh ~ Ort A Ti ~L C CI~1) t~ANE IS FLOOR4 LOCAI ION NODE IS CALC USING FLR !.Ai~L
J~UPLIC~~iE S ALLOWED

i’~~P~~ IS UPAhA CTE j~
j 15 

V

~Lh~ IL~. iLP L . IS FIXED . V 
V

~ :.~ ~~~~ L~ J. 1, V C C
V 

TL ~,iLGrLh . 
V

L~:ALGr~ ~~~~ ~J~~~L I. ~.l,::FL~
~~~~~~ I~ i~i i ~~OLL’iI~ i I V L G V A

Lz.~ L C C U h A I . C E SEL E C TI O l ~ IS T H h U LOCAIIOf ~1ODE OF OWN~~
USING FLRNAtIE .

EXC ISE LIEhIEEIi NURSE FRCLI SET WINGFLR .

IN C OI ,P OiiA TE SET N A tI E IS AZZG tI T
V NODE IS CHAIN

ORDER IS FIRSTV
O~JNER IS FLOOR
I’1E1~1bER IS NURSE.

p a r c (1

APPENDIX L4UL IBER 3
SCHEUA FOR THE CHANGE DATA EASE

AREA N A N E IS DB CHG .

RECORD NAHE IS SCH IIA
LOCATION IIODE IS CALC USING NA ?ISCN

DUPLICATES NOT ALLOWED
NANSCH TYPE IS CHARACT ER 10

V HUNGER TYPE IS FIXED .

RECORD N A tIE IS GE N CHG
LOCATION NODE IS VIA GENERATtJS
GENNUN TYPE IS FIXED
GSCHUAtI TYPE IS CHARACTER 10.

i tE C ORb [JANE IS SETCI !G
LCO~ TICN NODE IC VIA CHOSET
LOLImA ! ~Yi~E IS CHARACTER 10
LC~ C1’LG TI t ~r.. iS rIXED .

~EUORi’ i~ANE I.~ L~ iT~V , L H L,E1~
LC~ ATIOi. IL VIA LIST

TYPE IS CHAhA CTEt~ IC.

hi LU~D NANE 15 h~ CLz~OLOCATIO N I IUDE IL VIA CHGREC
~OL DhJLfl i Y P E IC C[~Ai~t~CTER 1 C
hoiiEClihi) TYPE IS CF! ACTEN ‘1
RCHUFLG TYPE IS FIXED .

Rr CORD NA1~L IS ITN ONGLOCATIO N ~~~~
j)h IS VIA CHGITN

IOLDIJAH TYPE IS CHARACTER 10
ICHGFLG TYPE IS FIXED
IChE C ORD T1?E IS C H A R A C T E R 10 .

REC O RD 14AIIE IS PA T HH E II
LOCATION N ODE IS VIA PATH
SNANE TYPE ~ S CHA RACTER 10.

LET NA IViE IS GENERATN S
[lODE IS CHAIN
ORDER IS SCRTEL
OWI V ~ER IS SC}NIA
IV IEI V IE E }I IS GE!’JC }iG V

ASCE N DING ~ EY 15 G E N F I U I I .
V

SET NA !IE IS CHOCET
NODE IC CHAIN V

ut~CEI IS SORTED
OI.liEIt IC GEI!CHG

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _



V Pare 62

[IE IIB ER IS SETC HG
ASCENDING KEY IS SOLD [JA [V1.

SET [lANE IS CHGREC
MODE IS CHAIN
ORDER IS SORTED
OWNER IS GENCHG
i IEFIBER IS RECCHG

ASCENDING KEY IS HOLDFJAN.

V SET NA M E IS CHGIT U
[lODE IS CHAIN
ORDER IS SORTED
OWNER IS GENCHG
t!E I IBE R IS I TH CHG

ASCENDI N G KEY IS I OL DN A N .

SET NAME IS LIST
NODE IS ChAINr LIUHE.D TO Pi~IOR

V ORDER IS !V~EXT
V OWNER IS SE~ CNG

[IENB ER IS ~~51V E [ L ~~R

LET LANE IC PA~LH 
V

NODE IC CHA 1~. V

LINKED TO PiiIOIi
V ORDER IS N E X T

OW NER IS IT t I CH G
MEMBER IS FATiiUEN . V

ii

_  JVV ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~



V
VV ~~~~~~_

Pare 63

APFEJ’JDIX NUMBER IJ
WAND SCHEMA DDL

SYMBOL M EANI N G

— 
(underline) WORD [lUST APPEAR

( ) PH RASE [lAY BE OMITTED
C 3 ONLY ONE OF THE LINES NAY BE USED

Lower case words must be replaced by ~ user— defined name crV va lue .

SCIx EtIP ~ NAM E IS schera—n ame
(FRIVA ~i LOCK IS intecer PAGES)

V (DATABA ~~ SIZE IS integer PAGES)
(PAGE SIZE IS integer 1tORDS)~

A h E A  !VJANE IS arca~ narie
(AREA S I Z E  iS i n t ege r  PA GE S)
(PAGE SIZE IC i n t c rer  ~1ORD S) .

i LCOIW ~AHE IL reccrd—nero
L C A ~ 1oR LV i O D L  13

[V I A sct—naric 3
(CALC US I NG itcr~—nare— IDUPLICATES ARE (NOT) ALLO~ED)[ LI h E C i

(NITI!It~ a r e a — m~r~e) .

i t c r — r . c n c — 2  i Y L ~E IL
V [C1JAPACTLt~ integer)(FIXED

V 1L~EAL

~j’j lIAME I~ set—name
[
~~Q~ IS CftA VII!

( L I 1 V K E D  TO ?NIOR )

(ii~RL) ER IS
(FIRST I
r t
L ~~~~~ ~[ NEXT I
[PRIOR I
[SORTED]

O~.NEfl  IS record—nare—1

NEHEER IS reecrd—n ame—2
(LINKED TO O~ U Eki)

((ASCENDING 3 EEY IC item_flare_ I)
( DEC C ENZ i II iG )

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A


V V~~~~~~~~~~~ VV V V~~~~~~ V ~ V V V V V

Pa r e 6~4

(SET OCCURANCE SELECTION IS TH hU
[C U R R E N T OF SET IV

[LOCATION [lODE OF O W N E R]
(ALIAS FOR i t e m — n a r n e — 2 IS data—name)).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V



V V

V 

Pare 65

APPENDIX NUMBER 5
RESTRUCTURING DATA DEFINITION LANGUAGE

V SYIVj B OL [lEANING
(underline) WORD [lUST AP PEAR

( ) PHRASE NAY DE OI iNITTED
V ( 3 ONLY WVIE’ OF THESE LINES NAY EEV USED

Lower cese ;V:ords r iu st  be replaced by a user—dcfir.ec~ r~~ie cr

V 
value.

Ih OORPOhATE [area—entry ~ I
[record—entry. 3
(set—entry ~. I
( iii r e c c r d — n a m e— l  1IL~C ORD d a t a — su b — e r . t r y J
(jfl s e t — n a r e — 1 r , e n b e r — s u h — e r i t r y .  3 V

V 

EXCI C~ [ A N E A  N A [ I~D arca—na r~e— 1. 3
[ N L C O R D  ~V , A1 ED r e c c r d — n a r i e — ~~ I
~~~~ 1~At ~EL) z e t — n a r e — 2 ~ I
[i tcn ~ n~~,e~~’ FROL I record—na~--e—~ RECORD. V 3
[~~ 1 V N L ~EF i~A!~ED r e c o rd —n ar e— 14 F i~GN set—narie— 3 SET .. I

JV

R L L C C A T L (l e v e l — n u m b e r) d a t a b a s e — d 3t z ~—n~ r1e
OF record—name-5 RE COi ~L~
j~ record—name— 6 hECOk~CV UCING [U[V I I QUE 3

(set— ’(,set— .~~~~~~~~
)] ~~ Ti-~.

CH ANGE ~~ T tV~JthED ~e t — n a r c — l V

LiEN~ ER IC [hET ~ OAC TLV E] r c c c r d — r . a n e — 1
(SET oCCU~ ALCE SELEcTIOt~ I~ T~~ U

LO CA T I O r ; [V :ODE OF O W N E R US IN G
fu l l y — c u a 1 i u i e d — d a t a — n a r e — f r o m — o l d - - z-cher ~a

FOR data—baze—identifier)

V Page 6t~

APPENDIX NU Mb ER 6
REST RUCTURING ERROR CODES

V 63 — An error in using an internal stack was
~ncountered .

V 1260 — Because of restructuring the STORE command

/

1 cannot he performed .

£C10 — Record or set rio longer exists because of
restructuring .

6012 — U n a b l e to reconstruct caic access for this
record due to rectructuring.

6020 — Error in reconstructing a record from its
c—record .

Any unexpected error encountered in r’aking
accesses to the internal tah~se h a s 7C~ 0added to it and is returned.
Note: This convention t

~VJ?~~~ used tc~r ea~ c of
debugging, a more comprehensive error may 1e
used later.

