_ AD=AD57 318 WHARTON SCHOOL PHILADELPHIA PA NDEPT OF DECISION SCIENCES F/G6 9/2
DYNAMIC TECHNIQUES FOR RESTRUCTURING THE CONCEPTUAL SCHEMA = AN==ETC(U)
MAY 77 E N BEAVER NO0014=75-C-0462

UNCLASSIFIED 77-06-02 NL

.~ HHEEEEEEEEE
B |-

END

DATE
FILMED

S=78

boc

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DDC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

:
1 D
§ e
i (i]
L |
~ e
o -
1!
(=)
<

— o T " ; g m
BT it el YRR itk o S ' 50 00 e, 8 i i

™ o
H >-“ H
: ! Q‘ Contract ‘lpp()lh 75-C= ¢L;6'> e
A i: uJ SR R R TN LR e R L
: T *
3 [= J
1 - - THIS DOCUMENT IS sne " .
E u 1 THR COPY FUDNT oo, 5 9 ATITY PRAOCTICABLR., [b/"
; —— SIGRIPICANT I 5.2 s i pagss .ﬂ;x‘c’l-;;oém |
3 =L NRPRODUCE LEG T3 Ly .
Department of Decision Sciences /y’wﬁ :
The Wharton School i
University of Pennsylvania
' Philadelphia, PA 19104
i 4 o Al oete.
! 4
\ ‘_I‘.‘Li document has been arproved i
3 for public relcase and sal2; ia 4
F distribution is unlimitad. IE

%, #0815 b
RRSRU——— & W1 W . 13 ¥

TS T

University of Pennsylvania

THE MOORE SCHOCL OF ELECTRICAL ENGINEERING

LYNANIC TECHNIQUES FOR RESTRUCTURING THE

CULICEPTUAL SCHEMA - AN INPLEMENTATIOUW

cdward llevin beaver

A thesis submitted to the Faculty of the ioore (lcaccl
ot ilectrical Engineerings in partial fulfillment of the
requirements for the cdegrece of tlaster of Science in
Engineering (for graduate work in Computer and Information

Sciences).

Philadelphia, Pennsylvania

May 1977 wf

;;f‘,\
"Jﬁhf-

UISJRIB"WN/ AABILITY COnES
Ux

1
N

R jon‘;/

e ¢ \
S0 §ethion ["

5 ulAL

At e o i e

o

L

Page 2

University of Pennsylvania

HMOOKRE SCHOOL OF ELECTRICAL ENGINEERING
Title of Thesis: Dynamic Techniques for Restructuring the
Conceptual Schema - An Implementation

Abstract:

This work is a partial implenmentation of a dynamic
restructuring processor. The total dynamic restructuring
processor allows several generations of database struct;re
to coexist. Restructuring occurs incrementally as data is
accessed 1in the cdatabase. Cnly restructuring of the
conceptual schema (as defined by the ANSI/SPARC report) is
considerec on a CODAEYL type database system called WAND.
The implementation uses generation data structures which
allow several related schemas and databases to coexist with
proper restructuring translation done on the fly. The scope
of this implermentation includes an analysis of data
requirements and gencral inplementation strategy for the
total processor and detailed design and progranning of
routines that provide run-time translation from one schema

definition and associated database to a user using another

75-1‘

Degree and date of degree: Master of Science in Engineering

but related schema definition.

(for graduate work in Computer and Irnformation Sciences)

Hay 1977.

Sirned:

AUTLOR FACULTY SUPERVISOR

LI e SCred s T T

Page 3

1.0 INTRODUCTION

Consider the folowing sequence of events. A large
medical database was implemented at some point in time with
the hierachical structure as shown in Figure 1-A. This
particular structure was chosen because of the one-to-many
relationship between doctors and their patients that existed
at that time. Several application programs were developed,

onne of which allowed a doctor to list his own patients.

As time profressed and the scope of the medical
services expanded, patients started to te seen by several
doctors rather than just one. 7“his change recuirec that the
database be restructured to lock like the structure shouwn in
Figure '-E. This change of schema structure would recguire
the rewriting of all the doctor application programs even
though the particular nrature of the data relationship
exploited by those programs is still present, i.e. each
individual doctor still has many patients. The data in the
database 1is of importance to the functioning of the medical
facility at all times because of the need to have the data

available for instantaneous lookup in case of emergency.

This example, although fiectitious, illustrates many of
the problens that arise when using databases and
particularly large databases. The usual restructuring
procedures presented to date are impractical in the
situation 1illustrated beczuse they cannot cope with

restructuring databases that must, in total, remain on-line

Pare 4
DOCTOR DOCTOR PATIENT |
DOCPAT i DOCPAT PATDOC
rATIENT .—;;;ATKENT
FIGURx {-A FIGURE 1-B

continucusly. I call this the cdatabase continuous integrity
prebliers. Ihe wusual restructuring prececedures also do nct
allcw o¢ld programs to renain independent cf the data
restructuring. This paper addresses tnece problers and

talies steps tovard the implementation ¢of a colution.

une problem illustrated in the example and dizcussed in
this paper 1s restructuring. The terw rectructurine has
several nmeanings in current usage. I cdefine restructuring
4 ‘ to nean chanping the structure of the data file necessitated

because of changes in the structural or logical

1 relationships bLetween the data as manifested by changes to

the conceptual schema.

As the exariple shows, catabases exist in a cdynaric

environmert and rwust change in corcer to maintain their

usefulness. Database management systems ancd the use of

sub=-schiema allow cata file restructuring to be transparent

Page 5

to applications programs to some extent. However,
restructuring involving schema changes pose special problems
that are addressed in this paper ty the use of generation
data structures [1]. Generation data structures allow
applicaton programs developed with previcus schema to remain
independent of the restructured data as 1long as items
required by the program are still in the database. This
results in nuch less programing effort when changes to the
schema occur. In the example, the doctor 1list applicatioﬁ
would not need to be rewritten after the restructuring of

the schena.

ihe scope cf this paper is 1limited to restructuring
caused by changes in the conceptual schema. The ANSI/SPARC
definition of conceptual schema 1is used here. The
conceptual schnema includes the overall definiticon of data
items, groups of items, and the relationships between the
items and groups of items in the database. The conceptual
schena definition is 1intended to be 1independent of the
actual stored data and is not concerned with how the data is

stored.

Changes, other than those to the conceptual schema,
involve data dependencies that require the restructuring to
be dependent upon the value of the data actually stored,
e.g. key field changes. These pose different kinds of
restructuring problems not discussed ir this paper. The

cften cited goal of data independence of database prograns

" T — " - " —

Page 6

naturally leads to the investigation of only conceptual

schema restructuring.

The other major problem illustrated in the example is
when and how to perform the restructuring. The traditional
sclution procedure is to take the entire database, or a
partition thereof, offline and relocad it under the new
schema. However, in scme application areas the integrity of
the total database is needed at 211 times. This limitation
makes the traditional solution procedure infeasible. Also,
with very large databases, such a restructuring riay take an

inordinate amount cf time to complete.

The solution procedure implemented here, using
generation data structures, will work within this limitation
by perforning piece by piece or incremental restrvcturing.
s 1is explained 1later in the paper, this type of dynanic
restructuring nmay alsc be applicable toc very large databases

with certain characteristics.

This paper describes a procedure that perfcrms the
conceptual schema database restructuring in a dynamic
manner. This procedure is 1limited to network structured
databases (a la DBTG [2]). In addition, several steps are

taken toward implementation.

Pare 7T

2.0 PRIOR RESEAKCH

A problem often grouped uncder the name restructuring is

more aptly called reorganization. Reorganization is usually

only concerned with physical management of the data, e.g.

é » through garbage collection (physically deleting logically
deleted records) [9]. Such restructuring does not apply to

the work described in this paper.

The file rectructuring problem, as I am definining it,

‘ has becen discussed by a number of people. Shu, Housel, and
turn [3], lierten and Fry [4], Kanirez, Rin, and Prywes [5],

eurk (6}, and c¢thers have ceveloped translators for

transferring date trom cone generation to ancther. but these

8 solutions to the schema restructuring problemn are handled by
taking the database offline and reloading it uncer the new

schera. These sclutions work vell in sequenticl

environments where data can be taken offline for scome period

of tine. In an online environment these sclutions are

harder to implement, lengthly and costly, and in some cases

impossible because of database integrity restrictions. 1In

addition, none of these solutions allow previously developed

sub-schema and application prograns to run, even when all

the data and relationships still ¢xist in the new data base.

Socket and Goldberg ['0] give a good overview of
dynamic restructuring or, as they call it, reorganization
performed concurrent with usage. They rive several exanples

where schema restructuring nay be requirecd as well as when

B AT o B e bl

|
[
i

TP —— g

concurrent restructuring is needed. They give no solution
procedure but rather state alternatives that exist and

guidelines for the implementation.

These guidelines are : (') The process nust operate
correctly , (2) Appropriate synchrcnization for consistency
1ust te employed by application and restructuring processes
tc¢ prevent cestructive interference, (3) Deadlock nust be
rreventec, (4) Journaling of upcdates and recovery functions
EaiS e be ircluded, (5) BReascnable efficiency nmust be

LA

providec.

ihe work deseritec in this paper is an extencion of the
work perfcermec ty ncrgan‘and Gerritsen ('] usinfg generatior
data structures tc perform dynamic database restructuring.
Generation data structures allow prior schemas and their
applicaton programs to operate during and after the
restructuring. The restructuring as they envision it is to
te performed increnentally. A data object which is
cescribed by an o0ld schema is translated to a new schena

description when the data object is nrext referenced by a

user prcgran.

Since this work 1is an extensicn of liorgan and
Gerritsen’s work, it is recommenced that the reacder reac the
referenced paper to gain a further insight and backgrounc tc
the work described here. In additicn, their paper gives
supporting arguments for some of the procedures and

processes used, described, and developed in this paper.

3.0 GENLRAL RESTRUCTURINIG PHILOSOPHY

The general method of restructuring described here is
meant to be applicable to any network databtase system. This
particular implementation is bteing performed zs part of the
WAND (Wharton Alerting letwork Database) system [8]. The
WAND systen is an experimental subset of the CODASYL LLBTG
specification (2], with special features added for alerting
cr monitering of databases. It is implemented in FORTRAN~-IV
cr. the LLCSystem-1C. The ccnplete i/AND schemz LDDL is given

irn Appendix liumber 4.

rigure 2 suows the structure of a recdicsl datzbase that
is similar in part to the database discussed in the
introductior.. The database is a hierarchy with one branch
including dectors and¢ their patients and the other branch
cheuwing the hierarchiczl relationship between nurses and the
hespital wings they are acsigned to. The VANL DBL for this
database ic contained in Appendix Nunber 7. fhis ‘exarple
database will be wused <~Chroughout this paper to help
illustrate the concept of dynamic restructuring and the

implementation thereof.

3.1 Hestructuring Data Definition Language (KDDL)

In order to perform conceptual schema restructuring
there must be sone procedure whereby the chancges from one

conceptual schema to another can be definecd. The

.

Pare 10
g HOSPITAL
: Hospname
: HOSWING HO3DOC
WING DOCTOR
YWiinzname Docname
Wingsize
ASSGMT DOCPAT
y
NURSE PATIENT
Nursenane Patname
‘ursetype Patage
Treatment
i FIGURE 2
nestructuring iate iefinition Lanyuare (RLLUL) 1is the

riechianisr that allous the user to make such 2 restructuring

getiniticn.

There are rany different types of definiticn that would

be necessary go accomplish complete CODACYL restructuring.

e

Hoviever, the scope of this work is 1limited to conceptual

schena restructuring and any restructuring involving

o 5 o o e g

physical structure and physical storage in the database are

therefore ignored (See Cection 1.0).

et o

giisa o

Pare *°

Conceptual schema restructuring does not consider the
following clauses since they involve physical structure:
TEMPORARY area status, set MCDE, MANDATORY/OPTIGNAL,
AUTOHATIC/MANUAL, LINKED TO OWNER, and DUPLICATES. The
restructuring problems created by changing the size of an
area, the page capacity, the WITHIN clauses, etc., are also

shysical structure changes and ignored here.

The RDDL contains three classes of entries,
INCORPURATE, EXCISE, and CHANGE. INCORPORATE adds entries
tc the schema and EXCISE removes entries from a schema. The
CIiANGE entry is more complex ancd allows changes to
individual entries of the schenma. The entire RDDL is

contained in Appendix humber 5.

3.%.17 Insertion And Deletion Of Schema Entries -

The INCORPORATE and EXCISE operations are hancled in a
straight forward manner. A simple though simple-minded
prccedure for restructuring schema A to schema E 1is to
EXCISE all areas, record types, and set types from A and
INCOHPOHAT§ all areas, record types, and set types that make
up B. Sgch a procedure is not recommenced but proves the

completeness of the RDDL.

Whenever any particular recorcd type is excised, all set
types where that record type is the owner are also excised.

If there is only one member record type of a particular set,

T

Pare 12

the excising of that record type has the effect of excising

the entire set type.

3.1.2 Changing Of Schema Entries -

In many restructuring situations the restructured
schenia A is closely related to the original schema B. Iters
in the restructured schema B are usually the semantic
equivalent of items in schema A. The RDDL CHANGE operator

accomplishes this type of restructuring.

3..2.1 Change To kecords -

OCne type of change to records is consicered: chanfres
to data items. The addition and deletion cf cata items are
handled by the INCORPORATE ard EXCISE operaticns. Chanres
off the type of the data items are easily performed and

ignored here.

The only cther needed change to data items is
accoriplished by the RELOCATE operator. This operator allows
the relccation of data items from one record to another. In
order to allow the restructuring processes to make this
change transparent to prior schemas the path whereby the
data item is relocated must be specified. In sore instances

there may not be a unique path so the complete specification

of the patﬁ is required.

Pare '3

3.1.2.2 Change To Sets -

The only CHANGE clause needed for sets allows the
inclusion of records as members of sets. The INCCRPORATE
operator allows adding records to sets, but, where several
inctances of the recorcd are alreazdy includec in the cdatatace
tetore the restructuring, the RETRCACTIVE SET occurrence
SELECTION clause of the CHANGE operator is needed if the
menber is RETROACTIVE and MALDATORY/AUTOlLIATIC. This clause
tells the restructuring routines how tc acsign the existing

reccrd cccurrences as renrnbers of the set.

(U9

.'.3 nestructuring Exanple -

Two ¢t the nmost common conceptual schema restructurinr
charnges are to convert a hierarchy of reccrds to a
contluency and to expand a hierarchy by the insertion of a
record in the middle of the hierarchy. In order teo
illustrate the use of the KDDL, consider the medical

database cdicscussed earlier in Sections '.C and 3.0C.

As a result of the scenario of events discussed in
Section 1.0, the one-to-many relationship between doctors
and patients changes to a many-to-many relationship. This
necessitates the crecation of a confluency. The addition of
other floors to the hospital wings may make it necessary to

further serregate the nurses and their assirfnments according

tc floors as well as wings. +tipure 3 <chows the resultinre

—

——

Pare 14
HOSPITAL
Hospname
HOSWING HOSDOC
WING DOCTOR PATIENT
Wingname Docname Patid
Wingsize Docaddres Patname
Patage
WINGFLR
v :
FLOOR DOCPAT PATDOC
Flrname
Firgize
A3SGHUT DIAGNOSIS
y Treatment
NUR3E
Yursename
Nursetype
FIGURE 3

databace structure that is the restructured versicen cof the
database shown in figure 2. The RDDL <definitien for this
restructuring can be found in Appendix Humber 2. The two
CHANGE NAMNE statements are not defined but their use |is

obvious.

3.2 Generation Data Structures Concept

Traditionally the data in the database is stored in
conformance Viith one schema definition with sub-scheras to
support various views. Generaticn [Cata Structures (GDS)

extend this concept to allow data to te stecred under ccveral

T yTe—
A"

Page 1'%

different schema at the same time. Each of these schenas
being generated from a previously existing schema throuéh
the use of the RDDL. Each of these schema is considered a
generation of the original schema and the different

generations map the structural evolution of the datatase.

An application program can be¢ Jritten under any one of
the generations of the schema. Each logical record in the
database contains an indication of the schema that was in
force when the record was written. Sirilarly, each schemra
generation has a generation number compiled into all its

calls.

The RDLCL for each fgeneraztion of scherma 1s used to
develop an internal data structure that contains for each
record, set, and item for every generation the information
needed to perferm translations into the proper achera
fornats on the fly. This internal data structure will te
cetinec after 2a general discussion of the prccess bty which
translations are made during runtime. The RDDL is also used

to cevelop the schema defintion for nevw generation.

3.3 Runtime Translation - General Description

The dynamic nature of this restructuring concept allowus
several generations of the schema and corresponcding cata to
exist simultaneously. A translation occurs only as data is

accessec. Two types of translation are needed: translation

LR edauiid Lt |\ duisg s

Pare 6

of the data stored in the database and translation of the
data for the run-unit so the accessing program sees the

database as if it had not been restructured.

The translation is performed 1in a two-step [process.
First the data accessed is translated to cenform to the
latest generation schema and then translated back to 1lock
like the data from the view of the schema in fecrce when the
program was written. The reasons for this two-step

translation are fully discussed in torgan and Gerritsen’s

paper [1].

The translation for the run-unit is performed via the
c~record and c-set concepts. The c-record (corresponding
recerd) is defined tc be that record in the current schema
trom which all scattered cata items are accessable either
beccauce they are in the c-record or through FIND OUWNER
access throuch sets named in the "USILG . . . PATH"
clauses.(1) This concept ic relatecd to the VIxTu/L SCURCE

cericept in the DEIG report.

The c-set is a similar idea. A g-set is macc up of any
number (including zero) of sets in the current schema.
lihenever a record is replaced by a c¢-record, then c-cets
have to be determined for all sets of which the record is a
riember. The c-set for a set, X, is composed of the sets in

(1) Gerritsen, kob and tiorgan, lioward L., "Dynaric
nestructuring of Databases with Generation Data Structures,"

bept. of Decision Sciences, Working Paper 75-1'2-02, The
wharton School, December 1975, rpare 6.

Pare 17

the current schema on the unique upward path (through set

owners only) from the c-record to the owner cf set X.(2)

C-records and c-sets are and refer to record types and
set types of the schema definition and not to particular
record instances stored in the database. OUnrne and onrly one
c-record cr c-set can exist for each record or set type in

the scherma being restructured.

In the sample restructuring of a medical gatabase
discussed earlier, the c-record for the PATIENT record of
the first generation schema would be the DIAGNOSIS record.
ihe c¢-set for the DOCPAT set would be composec of only the
UDGCPAT set while the c-set for the ASSGHMT set would be
ccrposecd of both the WINGFLR and ASSGHT sets. Detailed
run-unit translation using c¢-records and c-sets will be
describe¢ in the =section ccvering the irplermentaticn (see

Section 4.0).

3.4 Limitations Of The KDDL And GDS

This restructuring procedure can accomplish any
restructuring of schemas from one reneraticn to another as
the completeness of the kKDDL indicates. However the
translation back for the run-units of previous generations
cannot be supported in all situations by the use cof

¢c=-records or c-sets. This secticn will cutline sore cf

(2) Ivid, rage €.

R — i

T N T TR TN

!
|

Pare 18

these limitations. This list is not reant to be complete

but rather to gpive an idea of the rost apparent limitations.

In general, c-records and c-sets can handle expansion
or reducticn of access paths but not scverance of access
paths beyond the severance point. Expansion cf access paths
is shown by the medical database exanple ceveloped earlier
when the FLCOR record was inserted hierarchically between
two other records. A reduction of an access path would
cccur if the sanmnple nmnedical database restructuringe were
cerforred 1in reverse crder. The FLGOGR and WING records in
this instance wcould be cocllapsed along the WINGFLR set thus
recucing the lenrth of the access path btetween FLOOR records

and L.UKSL reccrds.

A D A D
AF AB DE AF AB DE

i y

F B E F B

BC
BC EC
Cc c
Generation 1 Generation 2
FIGURE &

Page 19

Fipure 4 illustrates the severance of access rpaths.
After restructuring to the generation 2 schema vhich deleted
set EC, there is no longer any way to traverse an access
path from records A,B,C to records D,E and vice versa. The
deletion of either a record or a set in an access path will

sever that path and limit access beyond the severance point.

Generatlion 1 Generation 2
A B
A-data-i B-data-1 A B
A-data-t{ B-data-1
AC BC C=-data-1 C-data=2
C-data-2
C-data-2
FIGURE S
Firure 5 illustrates another 1limitation. Translation

tack to the first generation’s view of record C from the
seconcd gencration scherma would require taking one cata iten
fron restructured records A and B. Heowever, there is no
unique c-record from whiech this c¢en be perforred. In
addition, there is no longer an access path from record & to

record C.

The RELOCATION operator allows the relocation of data
items from one record to another. However, data cannot be
relccated to all records in the datatase, it only can be
located 1in records located hierarchically above that record
fer which an access path exists. For example, in fifure 4
data from records B and C cannot be relocated intc records D

and E because an access path nc longer exists. In addition,

PSP

Page 20

data from records B and C cannot be relocated into record F

because record F is not hierarchically above records B or C.

The reason for this limitation is that every data item

must be uniquely defined by the concatenation of the keys

é for all the records hierarchically above it. Relocation to
any of the records hierarchically above it allows the data

item to be relocated in a record with a total key that is a

subset of ﬁhe original concatenated key. In order to

relocate data items into a record not hierarchically above

it requires the specification of an additional key value to

uniquely specify into which particular record occurrence the

data iter is to be relocated. The present RDDL doesn’t

allowu such a cdefinition.

When an item is relocate.! upward in a2 hierzcrchy as the
rcsult of e restructuring, there is a preblem in definine
Juct which data item to nove. If rcre than cne record
instance containing the dataz item exists in the datarese
sone decision must be made abcut which data item to
relocate. This implementation will wuse the data value
contained in the first logical record instance. It is
suggested that in a refinement of the RDDL some method be

devised so that this default can be changed.

The final limitation perceived is that when a data itenm
in one pgeneration is deleted but is converted into a lorical

link between records, there is prescntly no rmanrner bty wvhich

the restructuring processor can recreate the cdata iter fror

m‘_——-—-—w : TR~

Pare 21

the logical link.

3.5 GDS Internal Data Structure

As described earlier, the translaticns performed bty
the restructuring processor use an internal database. The
cdatabase used in this implerentation is irplermentec¢ as a
WAND database. This dztabase cannot te restructurecd because
it 1s accessed by the restructuring routines. These
accesses mnmust be made with routines not using the database
itself, i.e. the WAND routines developed for databases not
allowing restructuring. The structure of this database is

shown in figure 6 and the DDL 1is contained in Appendix

wirmber 3.

The SCHIA record 1is accessed by the schema name,
[tAnOCH, and the number of feneraticns currently existinrg is
contained in KNUMGEN. For each generation of the nared
schema a GEECHG record is stcred. This record, accessed vic
the value of the generation number, GENLUIli, contains the
name of the (file where the schema definition of the
ceneration is stored (*.SCH file). For each generation of
thie database the information contained in the other records
gives the information needed to convert the run-unit’s data
from the nmnost recent schema generaticn to the view of the

application prorram’s schema generation.

—

ed

Parec 22
3CHMA
Namsch
Numgen
GENERATNS
y
LNCHG
Gennum
Gschnam
CHGSET ¢ CHGREC CHGITM
¥ : v/)
S3TCHG RECCHG ITMCHG
30ldnam Roldnam Ioldnam
Schgflg Rerecord Ichgflg
Rchgflg Icrecord
LIST PATH
WV
L3THEZMBER PATHMEM
3etname Sname
FIGURE 6
“he OSLTCHG record, accessed via the set’s nane,

SOLDILElIl, ccontains a flag telling whether the set was deleted
or not. The LIST set and the set nares in the LSTHENBER
records associated with this record malie up the c-set for
the named set. The RECCHG record inclucdes inforration about
records. This record accessed by the record’s nanre,
ROLLMNAY, contains a flag telling whether the record has been

deleted or not as well as the c-record for this record.

The ITHCHG record in this internal datatase contains
information needed to perform the run-unit translation.
This record, accessed via the data item’s name, IOLDUALE,

contains a flag telling whether the iter has been delcted or

—

Pare 22

relccated. The associated PATH set and PATHMHEM records for
each 1item 1is the list of sets that must be accessed to get
to the relocated cdata item. For the SETCHG, RECCHG, and
ITHMCHG records, if a record occurrence does not exist in the
database for a given record, set, or item name, then no

runtime translation is needed for that record, set, or iten.

3.6 Sequence Of Operations In Restructuring A Schera

This section will define the typical secuence of
operations whereby the user goces abtout restructuring a
schema. The oririnal schera file is created in the normal
rmanner as described in the WAND manual [3]. To restructure
thic database the user creates an RDDL file giving the
restructuring definition. This file should have the

extention .RDD.

This KDD file and the previous schera file (¥.DDL) is
inputted into an ADDL File Descripticn pProcessor (hDDFLDP).
This procecsscor using the inputtecd files creates the cchena
definiticn file (*.bLDL) fer the restructurec cschema. This
file is ucsed by applications progrrarners to create their
pregsrams. In addition the EDDFDP processor crcates a *.SCH
file which gives the internal schema rcpresentation used by
the WAND DELilS. The file name for these generated files is
the same name ac the original schema file name with the

generaticn number apgended, or if that creates 2 file nare

that is of length greater than six characters, the sixth

it i i i

Pare 24
character is substituted with the schema reneraticn number.

The RDDFDP also inputs into the Generation Data
Structures’® internal database the information needed to
perform the restructuring translation. The internal name
for the schema 1is the same for all renerations, i.e. the
original schema name. Since each restructurinr redefines
the most recent generation schema, all the previously stcrecd
translaticn data must be updated. If errors occur durine
thhe hRDDFDP processing a file with the extention .EFRR is

procucec and nc new .SCH or .DDL file is cenerated.

As an exanple, if the cririnzl schemz was defined in a
{file namecd 1:EDICA.CDL and the rectructuring definition was
det'ined in a file named CHANGL.RDD the rDDFDP would create
two files named MEDIC2.DDL and !EDIC2.SCH along with

changing the internzl datatase.

These new files along with the changed internal
database allew the DlL processors tc make the necessary
restructuring changes. Hew application programs can now be
written using the newly defined schema DDL as the database
definition. All other restructuring generations of the
schema are created and run in a similar manner. Note that
each application program can bev written wusins only one

generaticn scherma cefinition.

Pare 25

é This particular implementaticn only allows four
generations of the database to coexist at the same time.

The number four was chosen to allow sufficient generations

of the schema for ccmplete systems testing and tec minimize
storage reguirercnts. The optimum number of renerations
allowed to co-exist 1is a functicn of several variables
including the expected number of generations existing
sirultaneously at any pcint in time, size of the database,
storage requirements, availability of other restructuring
processors, etc. The coexistence of many rore than four
gcenerations of the database could cause severe perforrnance
degrradation and a total offline restructurinr wvculd probably

be cost effective.

4.0 INPLEMENTATICH DEZTAILS

This section of the paper will discuss in nore cdet2il
E] the irplementation of the dynanic recstructurins icdeas
described in the earlier sections of this paper. A total
implementation design of the internal processes needed to
perform all the restructuring translations is presentec. A
i step by step implementation plan to implement and thoroughly
test the restructuring process is then discussed. Following
J that will be a detailed discussion of the changes nade to
the present VAlID system and those restructuring processes
written and tested for this work. Versicn ECO of lALD as it

existed on April 15,1977 was modified to irplcrment the

e e e i s i a e

Pare 26

restructuring processes.

The short time limit placed on this project precludes
the writing and testing of all processes needed for a tctal
restructuring systen. But the work done should give
guicdance in continuing the implementaticn and show the

feasibility of the restructuring concept discussecd earlicr.

4.1 General Implementation Strategy

The implerentation of dynamic restructuring ciscussed
requires three 'diftcrent types of ©processes. The three
types of jprocesses are called reccnstruct, locate, and
translate. Any LiiL call nade by the user using the rost
recent gencration schema or any other generation schema is
tfirst reccnstructued to look like the call or calls the user
weculd have rade had he been using the most rccent generation
schera. vf course, if the ucer is actually using the most
recent generation schema then no actual reconstructicn of
the call is necessary. The reconstruction is accomplishec

via the use of the internal database cdiscussed earlier.

Once the call has been reconstructed the database is
accessed wusing this call or calls in the form needed to
access the most recent generation datatase. The data that
is the target of this call or calls is stored in either the
most recent schema generation cdatabase or any cf the cther

feneration cdatabases. The 1locate prccess performs the

-

Pare 27

searching for the target data in the many coexistent
database structures, i.e. the most recent generation
database and all previous generation databases. The most
recent generation database search 1is performed using the
actual reconstructed call. The search in all the other
ceneration databases 1is achieved by performing another
reconstruction on the call. This reconstruction is in nmany
ways the inverse of the reconstruction done on the orisinal

user’s call.

There is a separate reconstructor and locatcr rouvtine
for each wuser interface routine (DML command) that ic
supportec after restructuring. Each user interface routine
that 1is supported after restructuring requires different
forns of recornstruction and 1location, thus requiring the

separate routines.

Uncec the tarpret data is locatecd it must Ete tranclated
into the view of the nost recent gencration zchena. This
translation is only done for target data found in Cdatabasec
other than the nmost recent generation database. The
translaton is only done for the target cdata, all other data

remains unchanged.

4.2 Implementaion And Testing Plan

I have developed a four step implementaticn plar that

will 2llow fcr step wise or increrental implerentation.

~r

Pape 28

This plan also permits full testing of each phase of the
implementation before proceeding onto the next step. The

four implementation steps are as follows:

1) Add the needed changes to the present VAND system in
order to allow the restructuring processes to operate. The
restructuring processors need adcditional cata variables and
status variables. The schema definitions for all the schema
generations are needec as well as user work creas for all
the databases coexisting (one for each generation of the
schema) in addition to the main user work _area the user
interacts with. These charnres ore tested by running the
catabese with cnly onc scheriz reneraticn. Since only cne
reneration exists at this stare no restructuring cof calls,

lccation cf tearget data, or translation of data is needed.

2) Cnce the tirst step has been implemcntecd and tested,
tlie reconstruction processes are then implercented. ll¢c other
processes are implemented at this stage. The progranmming of
the reconstructor routines is tested with a database stored
totally under the view ot the most recent generation schema.
Since this is the only existing database, the reconstructed
calls can be made cdirectly to the cdatabase and no locating

or subsequent translation is necessary.

3) The next implementation step is to implement the
locator processes. These f[frocesses arc then testecd with
several coexictent catabases storec under pact cenerations

cf the schena. lHowever, these cdatatases rermain static and

T PR T T S e

o

Pare 29

the data is not translated to the mnost recent greneration

database.

4) The fourth and final step is to add the translator
routines to the database. The resulting programs will
ccermprise a conplete dynamic restructuring procedure and the

full system testing can bte perfcecrned.

Unce these four steps have been completed any other
rnodifications and enhancements can be added to the syvstem,

The present detailed implemention only covers steps ' and 2.

4.3 Iiieeded Data And Changes To Existing LiilL Cysten

This section will describe the additional data that is
needed by the system in order to 2llow restructurine. This
additional cdata also requires some changes to the existing

bl.L systen and these changes are described.

Before detailing the additional data and changes, we
nust define the cconcept of ‘context switching’. This
implementation uses the WAND DHL user interface routines, as
they existed before this restructuring work, tc make all
database accesses. These routines assume that only onre
schema cdefinition and user work area exists. In order to
use these routines it is required that cnly c¢ne greneration
of the schema definition and one user work area be in fcrce
wnen rmaking actual cdatabase accesses. The schera rereraticn

2nd user work area in force defines the contexyt that exists

S

at any point in time.

Dynamic restructuring requires perforning many
different basic cdatabase accesses under the ccontext of any
cf the generations of the schema as well as the wuser’s
generation of the schema. There rnust be a way to move from
one context to another and back cdurinec the execution of a

restructuring. This rmovement is termed context switching.

Since restructuring requires access to the <databases
existing for all generations of the schema, the schema
definitions for all the generations of the schema must be
storecd. Access to all these existinr cdatabases recuires =z
separate user werk area for each database so the
restructuring prccesses can interact with these datatases.
In adcition, the main user work area, where the oririnal
user interacts with the database as a whele, nust be

maintained.

Each context swith requires a2 change in the reneration
schema 1in force as well as a change in the user work area
being used. Therefore, in addition to the main user werk
area novi used by the WAND implementation and the norral user
schema initialization, the restructuring processes require
the initialization of additional user work areas for all
generations of the schema as well as schema definitions for
all the generations. The method of data csteorare and context
switching usecd causes some data redundancy, i.e. the user’s

rFeneration of the schema definition is stored twice, conce

Pare 2

for use by the user and his database calls, and once for use
by the restructuring processor to perform its database calls

to the database stored under that generation schema.

In order to allow context switching, the address bases
of the 1location where the schema definiticn data is stored
is now a vector of bases rather than a scalar. The acdcress
bases for the location of the many user work areas are also
stored as a vector of numbers rather than the scalar value
used by the present WAND implementation. These internal
variable changes require the rewriting of all staterents
referrinr to locations in the schema cdefinition storapre area

or the user work area.

The LCLUGPEN routine, that initializes the schema
definiticrn, 1is changed tc read 1in all neecded generation
schiema cefinitions as well as setting up 211 the user werl
areas. The ©DBOPENL routine also initializes the additiornal
restructuring parameters descrited helow. This
iritialization requires the openings and reading cof the
internal <cdatabase used to store information for the

restructuring, as was described earlier.

The restructuring processes require some additicnal
systen paraneters which are stored in a newly created common
area called KCCOM. These parareters and their definitions
are as fcllows: SCHNUII - the peneration of the scherma now
in force (the present schema generatiocn in context). This

variable if ecual to ' nmeans the vser’s original schera

AT

context, any other value 1implies a context of some
generation of the schema, UWABAS - this is a vector of
values telling the address base of the various user work
areas, CUWABAS - a sczlar which at all times contains the
value of the user work area address base for the current
context, RCSTACK - this vector of values is uvsed as a2 stack
to allow the switching of contexts, STKTGP - tne =zcalar
reinting: to the last 1location in RCSTACK that is used,
RCSWITCH - this is a switeh telling the irnternal processes
wh:ether recstructuring is called fer cr net. This switech is
created by 1lecoking at the internzlly stored generation
numter c¢f the schema the user is usirs. If this generation
nurber is zero, no restructuring is called for, otherwise
the restructuring processes are uced, HUICFGEN - this scalar

ccntains the total nunber of generations of this schema that

exist.

s was discussed earlier, the internal <datahase Ii=c
implemented as a wWAND database. This is accorplished by
appending this database, named CHGDE (Change DataEase), as a
separate area of each schema generation. This area, not
seen by the user, is appended as the first area of the

schema definition for all generaticns of the schenra.

The reasons for this particular inplermentation stratety
are as follows. The internal database contains inferrmation
needed to fully initialize the internal <cata <ctructurec,

narnely the number of schema generations anc narmes cf the

T — b

files containing the schema definitions for each generation.

Eecause this data 1is stored in the internal database, the

initialization routines need to access the internal database
after inputting only cone scherma definition, i.e. the user’s
schemna definition. Therefore, the internal catabase
definition must be appended to all <cchemz reneration

cefinitions.

CHGDB is the first area of each generation’s schema
cetinitiocn =<co that all internal routines accecsine CHGDE
will Know where in the user work area to look for the data
nc mnatter what the generation of the schema may be. In
crcer to assure that the correct cdatabase currencies are
usec, only one cf the internal user work arcas is ﬁsed (i.e.
cnly cne context is used), in nmakinfg access tc the CHCDB.

The main user work area is the area actually used.

The reconstruction processors interrally gerform Dtil
calls as a result of the user’s rlobal DIIL call. However,
FORTKAlI=-IV on the DECSystem-'0 does not allow the calling ¢f
a subroutine from within itself. 1In order to solve this
probtlem the user does not directly call the DI!IL routines but
calls controlling routines. All the old DML rcutines have
been renamed by adding the prefix LCBEX to the abbreviation of
the replaced DHL command subroutine. Fcr example, the olcd

routine FINDAP was renamed DBXFAP.

Pare 24

llew routines were created with the o0ld DIL ccmnarnd

names which act as controlling routines. These routines

check to see 1if restructuring is needed, 1if not the

appropriate [CBX routine 1is called. If restructuringe is

! called for, the appreopritate DBL routine is called to
reconstruct the DML command. If restructuring is reecdecd but

the command itself need not te reconstructec¢, as is the cace

when the user is using the nost recent generation schena,

the appropriate locator o¢r DBL rcutine 1is callecd. The

I locator or DDL and DER routines when accessing databasecs uce
the appropriate DBX routines. A DEX, D&K, and LBL routine

exists for each ucer interface rcutine supported after

reestructuring.

4.4 Utility Routines

Therc are a number of utility routines that make the
(rerramrming effort easier anc also provide rereral rcutines
that can be used by further implementation efforts. These
rcutines are of two types, those needecd toc perform context

switching and those that access the internal database CHGDE.

There are two context switching routines and two
routines that support those routines. One routine, called
DBCTTCG, will switch the context to the given schema
generation number. The prior context is pushed on the stack
called RCSTACK by a general stack push routire named DEPUSH.

The needed conversion o¢f the context and context bases is

Pare 35

then made.

The other context switching routine, called DBCTBAC,
switches the context back to the previous context. A
general stack pop routine, called DBPOP, is used to get the
previous context off of the stack named KCSTACK. In order
to switch the context two internal parzmeters are set to the

prcper value, i.e. SCHNUIl and CUWAEAS discucsed earlier.

All access tc the internal databtase CHGDB (see Firure 6
anc Aprerncdiry liumber 3) 1is throurh utility routines. The
internal cdatabtase is initially entered through the rcutine
EBGIEIT S This routine recads the SCHME record by using the
inputted schera name and returns the nurter c¢f generations
that exist of that schema. The rcutine CENXSCH t'inds and
reads the GENCHG record using the inputted reneration number
and returns the file name where that reneration’s schera

definition is stored.

The routines named DLDSET, DEDREC, and DBDITI! read the
reccrds namded SETCHG, RECCHG, and IT!CHG respectively. The
particular records are located by the use of the inputted
set, record, or item name. The data in the accessed record
is returned bty these routines along with any errcr status
that was produced as a result of these calls. The error
status once gotten from the user work area is reset to zero
to allow further processing. The routines calling the DED
rocutines manare these errors separately. Secrie errors are

expected as a result of the internal catabase accesses,

T

- Pare 35

however, all unexpected errors will eventually be returned
to the user. All of these routines assume that the correct

GENCNG record is current for making these calls.

The final two utility routines that read the internal
database are DBLDPATH and DEDLIST which access the PATHMEM
and LSThE!NBEK records and the set that owns these recorcds.

The PATH ancd LIST sets are ordered sets of setnames that are

accessed in some secuence to reconstruct DML calls. These
' routines input the position within the sets PATH and LIST
where the neecded record is located. The resulting set name
cotten from the PATHME!I! or LSTMEMNBER records is returned
alonf with any error status. The error status is handled
like the other DBED routines handle it. Both routines assune

that the appropriate owner record For the PATH and LIST sets

is current.

4.5 Detailed Heccnstruction Routines

This section will discuss in detail all of the DIiL
commands that reconstruct and how that reconstruction is

acconplished.

4.5.1 The GET Command -

The GET cormmand moves the current instance of the

indicated record type from the database into the user work

area. The rcconstructed GET command <does essentially the

o oo

Pare 27

same thing.

The internal database is checked to see 1if the named
record has been restructured. If the record type has been
delected, signified by a particular flag value, an errcr |is
returned (see Appendix Number 6). After switchinr to the
nmost recent generation context and updating the currency of
thie record type, the database is accessecd. The named record
type or the c-record, if it exists, 1is the actual record
type gotten from the database through the use of & LELGET

call.

iijow that the proper record has bteen gotten fror the
database, the data must te lcacecd into the main user work
area. This is done by sequencine through 2all cdata 1items
contained in the record according tec the user’s schema
reneration. For each data item the internal database 1is
accessed to see if the data item has been restructured. If
no restructuring occurred, the cdatz item is noved directly
from the 1last user work area, where the data from the
cdatabase now rests, to the main user work area. If the data
item has been deleted, a null value is moved into the main
user work area locations for this cata item. This
convention is wused by the CODASYL comnmittee [2] in the
ACTUAL/VIRTUAL SQURCE specificaticn. In that specificaticn
if the data value does not exist a null value is returned.
This convention therefore seems appropriate feor signifyinrg

that no data value exists rather than returning an errcor.

n . — - —— e . ,,,,,_.__J

If the data item has not been deleted or is not in the
record obtained from the database, it nust be relocated in
some other record. 7o get this record FIND OWNER accesses
are nmnade for all sets in the relocation path stored in the
internal database. The record thus lccated is moved from
the database into the 1last user wecrk area and the

appropriate data is moved to the main user verk area.

After all data has teen moved, the main user work area
currency is reset to the database key of the record found in
the cdatabase as a result or the original datahase access
(i.e. the record or its c-record, if it exicts). liote that
all datarase accesses except those tc the internal datatase,
are cdone by DEL rutines that locate the needed data in the
catatase. 1Irn addition, any unexpected errors that occur as

a result of a cdatabtase accesses are returned to the user.

4.5.2 DELETE command =~

DELETE is similar to the GET cormand recontruction.
The internal database is accessec to see if the record toc be
deleted has been restructured. If the record nc¢ lonrer
exists in the schema, an error is returned (see Appendix
Number 6). Otherwise, the record as named (or its c-record,
if it exists) is deleted from the database. The particular
record to be deleted is signifiec by the current datatase

key found in the main user wcrk area for the reccrc type

criginally specified. After the deletion has occurred, that

e i

ST

currency in the main user work area is reset.

The delete command deletes the current instance of the
record or its c-reccrd and all records linked beneath that
record. It 1is possible for a perscn using a prior
generation schema to delete records, or data velues stcrec
therein, that he does not know exist and that may be usecd by
other users who are using more recent reneration schersa

det'initions.

4.5.3 STOKE Commanc -

The STURE commanc cannct be reconstructed. Consider
the restructuring illustrated in Figurc 7 where the only
change from generation cne to two has been the addition of a
record and a set to complete a ccnfluency. when & prerran
written with the first generation schera2 tries tc =store an
instance of RECURD-2, the restruvcturing now recuvires that
sorie recorc of type RECURD-3 be selected to estahlish the
zppropriate 1links. However, there is no way of selectinrg
that record because it cdid not exist vunder generation one
and data item PDATA-3, which is the record’s key, does not

exist for programs written with generation cne schema.

In general, to store 2 record, the full concatenated
key for records above the record to be stored rust be
specified in scme way. If restructuring chanres a record’s

identifying key by additions, deletions c¢r changes to keys,

w—

Page U0
RECORD~1 RECORD-1 RECORD-3
Data-1 Data-1 Data-3
SET-1=2 SET-~1=2 SET-3-2
¢
RECORD-2 RECORD-2
Data-2 Data-2
Generation 1 Generation 2
FIGURE 7

the E7T0LL cannot bte adequately reccenstructecd, For these
reasens the STCKE cormand cenrnot te reconstructed and any
call tc this rcutire in any generaticn tut the rnost recent
gereration will cause an error (see Appendix llumber 6). It
is reccnrencded that all storing in a datobase that has been
restructured be by routines vritten using the rost recent

generation schema definition.

An alternative, and possibly better solution, 1is to
allow programs using previous generation schema to STORE a
record type if it can be verified that the related structure
has not been changed. The implementation of this
alternative would rcquire additional cdata be stored in the
internal daotabase to signify whether a record can be_STOHED

as a result of the restructuring.

P e

Pare 41
§.5.4 LODIFY Conmand -

Unlike the STCRE command, the MODIFY command can be
reconstructed because modifications are performec on records
that have been located in the databtase previous tc the

11ODIFY command call.

The MODIFY command ic reconstructed in the [(ellowing
manner. The internal database 1is searched to see if the
record type has been changed by restructuring. If the
record type has been deleted, a restructuring error is
returned (see Appendix Number 6). If a c-record exists for
the recorc type, the c¢-record will be used as the base
record to make all mocdificaticns rather than the record type
crifinally specified because all data items for the
specitied record are lccated in the cdatabase with respect to

tiie c-rececord.

kLecause the reccrc or c-recerd te be mecdifiied ~ay have
rore data in it than the user is awcre of,; the redificaticn
ruct bte made to the currently stored recccrc or reccerds that
centain, after restructuring, the data items in the record
that the user wvants to nrodify. The current record or
c-record is first gotten from the database. For every data
item contained in the record the user wants to nodify, the
following steps are performed. If the data item no lonrer
cexists due to restructuring, it is igfnored. If the data
iterm hacs been relocated, it is stored on a stack for later

processing. All reraining data, 1i.e. those items that

N
¢ 4
i1

H

Pare U2

after restructuring are still contained in the record or its
c-record, is moved from the main user work area to the
correct locations in the last user work area where the data

values obtained from the database lie.

After all data items have Lteen sequenced through, a
rodification command 1is performed toc place the modified
record back into the cdatabase. For all data items relocated
in other records, the following operations are performed.
FIND OWNER commands for all sets in the relocation path (the
path 1is stored ir the internal daztabase) are rmade to locate
the record that has a2 data value to be modified. The
located record is gotten frorm the databcse and the data iterm
value moved from the main user work area to the last user
WCrKk area. The recerd is ther reenterec intc the database

ty a lICDIFY ccrmmand.

The rmodification shculd update the databtase sco that the
newly stored cdata item values after the ncdification can te
gotten back as entered. Therefore, the rprocessing for the
rcelocated data 1is perforned after the wanted record or its
¢-record has been modified. That mnodification nay change

some set relationships and thereby change the particular

record in which the relocated data now is supposecd to lie.

The current record instance that is to bte rodified 1is
determined from currency incdicators in the rain user work
area and after modification these currency incicators are

upcated. An: 2rrors that nay have occurrecd 2s 2 result of

Pare U3

the database accesses are re.urned to the user.

4.5.5 FINDAP Command -

If a record is named in the calling portion of this
command, the internal database is searched to see if the
record has been restructured. If the record has been
deleted, an error is returned (see Appendix MNumber 6). If
the record still exists cor has a2 c-record, the database is
accessed using a DBLFAP command using the record nared or

its c-record, if it exists.

it nc record is named and ‘ANY " record 1is recuested,
trre following is done. The mest recent generation database
is searched for any record using the FINDAP 1location
rcutine. If the record found e¢xists in the user s
gceneration database, that record is returnec to the ucer,
The database is searched until such a reccrd is found or an
error occurs. This procedure will only find and return to
the wuser records that have not been restructured. If it is
ceened necessary to return any record that the wuser would
normally expect to find, it would be necessary to check each
tire a record is found to see if it is a record 1irn the
user’s schema or if it is a c-record for a recocrd in the
user’s schema. This requires a =search of the internal
database and is thought presently to be unnecessary fcr this

corrnand since the command’s use is thought to he rare.

Page 44

No rmatter how the record 1is found in the cdatabase,
currency 1is wupdated in the main user work area using the
database key for the record found and any errors that occur

are returned to the user.

4.5.6 FINDC Command -

As with all other commands involving records, the
routine to restructure the FINDC command accesses the
internal database to see if the named record has been
restructurec. If the record has been deleted from the most
recent generaticn schema, an error ressage is returned (cee
Lppendix liumber 6). If the record has bteen restructured and
a calc access is impossible, as is the case if the calec key
has been cdeleted or relocated in sore other record besicdes
the c¢-record, ancther error status iz returnecd (Sce Appendix

humber €).

If the record now has a c~record where the calc key
resides, special processing has to be dcne to sinulate the
calc access. Because the c~record contains the key but is
not stored via the key value, 3all c-records must be
sequentially searched until a match on the key value is
obtained. In order to allow fer the finding of duplicates,
the first sequential access of the c-record is done using
the position as entered, i.e. ‘FIRST” or °LEXT . This
causces the search to start at the beginning of the database

or wnere the last scarch left off depending respectively

g

Page U5

upon whether the first or the next duplicate 1is wanted.
Although this method 1is not foolproof, it allows, in most
caces, the finding of duplicates and 1is better than no
provision for finding duplicates, however, it can be
expensive if many records of the requested type exist in the

datebase.

If the record has not been restructured, the calc
access to thé database can bte nade in the usual mnanner.
When the wanted record is found, rerfardless of how it wsas
found, the database Key is returned to the main user work
area snd currency is updatec. All errors concountered are
returrned to the user as he wculd sce them uncder normal

crerating concditions.

4.5.7 FILDPO Command -

-~

The FINDPO command operates on scts. The internal
database 1is accessed first to see 1if the set hac been
restructured. If no restructuring was done on the set the
comnand 1is used directly to locate the target reccrd in the
database. The current pecsition in the set is found by the
currency indicated in the main wuser work area wvhich is
transferred to the last user work area where the database
access 1is made. If any error occurs it is returned to the
user. The currency in the main vuvser wvork area 1is also

updated after the catabase zaccess.

TR I

Pare 46

If the set has been deleted an appropriate error is
returned (see Appendix Number 6). If the set has been
restructured and not deleted a c-set exists in the internal
catabase for the set. The processing to be done to
reconstruct the command is dependent upon whether the set is

enpty or not.

If the c-set is empty, the member and owner record are
the same for this set. If the set position requested is
LAST or FIRST it is ianored and the owner record (which in
this case is =also the only member recorcd of the set) is
returnec¢ as the record found. The gpositional calls usinre
“EXT cr PhIOL, if nrot proceedec by a LAST or [IKST
positional call, are treatecd in a similar manner. A1l other
positional accesses generate an end of set error status. Te
tell whether any previous accesses have beern made tc this
set instance a flag in the internal database is turnecd c¢n
and off. 7This flag is updated appropriately every tire a
menber or owner record of sets with empty c-sets nac teen
zccessed. If no error is generated, the datatase key cf the
owner record is returned to the main user work area and

currency set.

If the c-set is non-empty, all sets in the c¢=-sct nmust
be exploded so that all combtinations of recorcds are provided
to the run-unit. In order to do this, the currency for all
csets in the c-set nust first be determined. This is deone ty

taking the set currency stored in the rmain user wcri area

Pare U7

and using this value as the current set position for the
first set in the c-set. The appropriate currencies for all
the other sets are determined by coing FIND OWNER accesses

on the sets in the c-set in the proper order.

Once the currencies have been set, the positiongl finds
can be performed. A position of LAST or FIKRST requires that
the FIKST or LAST positional record he found for all sets in
the c-set 1in reverse order. Note that the c-set is a list
cf sets with the prime order determined by those sets in the
unique upward path from the c-record to the criginal owner
cf the set. If any cof these accesses, other than the first,
accesses an cnpty set, then a FILD LEXT or FIND PRIOR

comnand is executec in the fcollowings set ir the c-set.

If the positional request is NEXT or PRICR the proper
positiconal fincd is made to the first set in the c-set. 1If
an enpty set is encounterecd a FIKD NEXT or rfIul P2PRICKk is
executed in the following set in the c-set and so ferthn
recursively. When the last set in the c-set is erhausted a

non-zero error status is returned tc the user.

fhen the position requested is a number, the rproper
sequence of FIND LAST, NEXT, FIKST, and PRIOR commands are
made had the user not entered a number. For example, if the
position requested is 3, the impliec FIND FIRST end twec FIND
11LXT comnands are actually executed. Vher the proper record
is found, the database key is used to reset the rain user

wCrk area currency.

Pare 48
4.5.8 FINDC Command -

The set name for which the cormmand is requested is
searched for in CHGDB to see if it has been restructured.
If it has not been, the currency for the set 1is obtained
from the main user wcrk area, and a FIND OWNER command
executed. The resulting record and cdatabase key are used to
reset the main user work area currency. If the set has been
deletec as a result cf restructuring, ar error nescare 1is

returned (see Appendix Humber 6).

If the set has been restructured tut not deleted, a
c-set exists. If the c-set is the emnpty set (the c-record
is alsc the owner record) there is no database access made
ancd tne currency in the nmain user work area is set usinre the

catabase key of the c-recorc.

When the c-set is non-emgty, FINU Ciikehk ccmmancds éare
made for all sets in the c-set. If the owner of the set is
already current the rIiD OWHER commandc are not necessary.
Once the cwner has been found the currency in the main user
work area is reset. Any errcor that might have occurred is

returned to the user.

4.6 LDocumentztion

The routines descrited in the portion «c¢f the paper

comprise the inplementation as it exists as a result of this

vaper. 71he progran code and docurentation is stored cn the

PagFe 40

DEC System-10 in several Fortran source cocde files under
user nunber [4010,54]. Those who are interested in a nrore
detailed look at the routines and those who may want to cdo
further inplementation should consult these files.

.

5.C FUKTHUR IMPLENMENTATION AND EXTENSICNS

This section will outline the next steps needed to
fully conplete the implementation of the dynanic
restructuring processsor described irn this paper. This work
has tried to develop a general inplementation strategy &and
inccrporate the data and utility routines to be used by the
tctal irmplementation. lluch thought and work needs to te
done to iriplerent the renaining portion of the dynamic

restructuring processor.

Section 4.2 outlined the general implementation and
testing strategy. The work done for this paper includecd =
detailed implementation of steps 1 and 2. The next step is
to inmplement steps 3 and 4. Step 3 requires the writing and
testing of the locator routines. These routines, one for
each command to be reconstructed, will sezrch through the
most recent generation database and all previous generation
databases for the data that is the target of the inputted

ccmmand.

Pare 50

It is belicved that the information stored in the
internzl database and used by the reconstructor routines is
sufficient to perform these locator cperations. The locator
operations are in many ways the inverse of the reconstructor
routines. The reconstructor routines reconstruct the user’s
database calls to the call or calls that would have been
made had he been using the nmost recent generation schema.
The 1locator routines will take the call in the forn needed
to access the most recent generation database and change it
intoc the call or calls needec to access the other generation
datatases. The locator routines nust sequence thrcurh all
coexistent databases to try and 1locate the target data.
These routines must alsc manage the error nessages resultings
tfrom 1its own calls to the databzses and the errcrs returned

tc the user of the locator routines.

trhe lecater routines can bte tested bhefeore the finel
inplerientaticn step 135 taken, iwe. Ehe irplerentaticn of
the translaticn rcutine that transfers data in olc
cenerations databases te the mest recent freneration
database. llorgan and Gerritsen’s paper ['] gives sone
insight into exactly how this translation can be

acconmplished.

The 1implermentation of these final two =steps will
produce a conmplete dynanic restructuring processcr. The
RDDFDP processor to actually corpile the restructuring

cefinitiorn language 1into the necescary files and databases

a2

Page 51

nust also be implemented. This processor can of course be
developed in parallel with the other implementation, but the
form of the internal database must be totally ospecified
first. The locator routines must at least be conceptually
designed and their data requirements ascertained before the

interal database can be totally specified.

The RDLFDP processor in general should perform the

tollowing operations:

1) Usirng the RDDL definition and the previous
ceneration scherma cefinition, create the data cefiniticen for
the next feneraticn schema. The internal databace
cdefiniticn 1is clso aprenced as the first area of all these
cchenra definiticns if not done before. The resulting schema
definition 1is outputted for use by applications programmers
and also is run through the FDP procescor to generate the
croger *.S5CH file for this generation schema to be used bty

the restructuring processor.

2) From the RDDL and previous generation schenra
definition, the c¢-sets, c-records, etc. are calculatec.
The relocation paths for data relocation are calculated and

tested for uniqueness.

3) The calculated values from step two are then
incorporated in the internal datatase. The database must be
augnented by including the data needed to perfornm

tranclaticns frem the previouc reneration schema to 2 nevw

generation schema. All the data in the CHGDB is stcred to
allow translation tetween previous generation schema and the
most recent generation sciema. The restructuring, however,
has modified the previous most recent generation schema.
The CHGDE is modified to allow translation to the new most
recent generation schema for all previous generations of the

eschera.

At the present time only the routines FINDAP, FINDPO,
FIiwbC, r¢INDU, GET, STURE, ODIFY, and DELETE are being
reconstructed. Uther routines are also candidate for
reccnstruction, including DELLALL, and FINDV. Several
edditions anc extencicns menticnec in the previous secticns

ct this paper are cancicates for irplerentation 2s well.

6.C COLCLuSION

The work done for this paper has attempted to sheow
through an implementation, the feasibility c¢f cdynaric
restructuring of cdatabases. The implenentation of a
complete dynanic restructuring processor has not been fully
attained by this work but brought several steps closer to

total implementation.

The completed programming work done for this paper,
hovever, 1is of importance in its own right. The processes

inplemented provide a system that will allow several

fenerations of schema to ccexist and provide runtire

Pare 53

translation for users or programs using previcus gceneration
schema from a database existing wunder the nmost recent
generation schema definiticn. This system will remove the
common necessity of rewriting applications programs after a

conceptual schema restructuring.

The concepts developed by tiorran and Gerritsen ['] have
precven adequate for the translations cdeveloped for this
partial implementation of the cdynamic restructuring
Lsrocessor. It 1is believed that they will also be adecguate

icr the remaining part of the processor to be implemented.

il.e dynaric rectructuring processor, as described in
thiis paper, ic orly part of any total dynamic restructuring
system. UOf Socxect and Golcdrerg’s ['C] stated ruidelines for
such a system (see Section 2.C for a listing of their
ruidelines) the dynamic restructurinr processcer only
adcressces fuidelinre 1, the restructurings prccess nust
crecrate correctly, returning the correct data frcm the
cetatase, The issues of deadlock, synchronizaticn of
prccesces, and recovery nust be addressed by &any total
restructuring system that is to be developed from this
dynamic restructuring processor. I am confident these

prcblems can be handled.

The final ruideline menticned is that reasonable
efficiency rmust te naintained. Ilio measurement of efficiency
rhas teen defined, however, some penecral cernents on

etficiency can be mace. By necessity the cdynaric

it it i ————— ||..| . s - ; " . oo =

e it s i

Pare %4

restructuring routines require more cperating overhead for
all database accesses and each access request inputted by
the user requires at least one, and often two or nore,
database accesses. Sone restructuring definitions can make
the number of database accesses high in number reducinr

operating efficiency.

There is no way at this point to measure the operating
efficiency of the dynamic restructuring processcr because
turther irplerentation is necessary before a total processor

eysists.

L5 the introduction of this paper incdicates, dynaric
restructurings is of particular irmportance wher database
applications require coriplete and wuninteruptable database
integrity. Dynamic restructurings also rmay bhe applicable to
rcstructuring very larre databases, especiclly theose that
are nighly volatile, i.e. the number of record deletiocons
ard replacenents is high in relaticn to the nunber of record
accesses. Dynamic restructuring cdoes not recuire data in
rrior generation cdatabases to be restructurec to the present

reneration database before it is deletecd or replaced.

To determine the tradeoffs between the two types of
restructuring options (traditional cr offline restructuring
versus dynarnic restructuring) consicer the follewing
analysis of restructuring costs. There are two types of
cost associated with restructuring. The cest of providing

translation back to the user’s reneration ccherma would be

P

|

the sare cdespite the type of restructuring usecd therefore it

is irrelevant here.

The other type of cost 1is the cost of actually
perforning the database restructuring. Traditional
restructuring has a large fixed processing cost, although
the average cost per record may be relatively low. Dynanic
restructuring has a variable type cost. The 1independent
variable vupon which this cost is cdependent is the nurmber of
records of previous gencration databases initielly accessecd
(not replacec or deleted). This is the incdepencent variable
because the rectructuring processine cost ics 2 one time ccst
incurred when reccraes in prior fgernecraticn databases are
tirst zccessed. A low fixed ccst ter the storare neecdecd by

e

the dynaric restructuring prccessor also exists. 1he
restructuring costs as defined above can now bte comparec
using the wusual tbtreak-even analysis. The traditional or
offline restructurine costs are fixed and do neot vary with
the incdependent variable defined tefcre. The dynanic
restructuring processor has a high variable and low fixed
cost in relation to the independent variable. The

break-even point exists and can probably be calculated if

the correct costs are known.

The independent variable value fcr any particular
database is dependent upon a number of things including size
of the database. ancd volatility c¢f the catabase. The

independent variable can wusually te neasured by cscre

Pare &6

probabilistic measure. Some databases will fall below the
break~even point and thus it would be cost effective to use

dynamic restructuring in these situations.

It 1is 1impossible at this point to neasure the
restructuring costs of dynamic réstructuring because the
entire processor has not been implemented. When
iriplementation is completed such costs can be determined and
an analysis made as to the proper break-even point and what
catabases are above and below the point can be determined.
This analysis will indicate those databases where dynamic

resctructuring is a less costly technicue fer restructuring.

1C.

?1‘

BIBLIOGRAPHY

Gerritsen, Rob, and I!organ, Howard S "Dynanmic
Restructuring of Databases with Generation Data
Structures", Dept Decision Sciences, Working Paper
75-12-02, The Wharton School, December 197S5.

CODASYL, CCDASYL Data Ease Task Grcup April 7! Report,
available frorm ACIi, liew York City.

Shu, han C., Barron C. lousel, and Vincent Y. Lum,
"Convert: A High level Translation Definition Language
for bata Conversion," Comm. ACti 16 '0, CGctober 1075,
pR557-567.

aerten, Alan . and James P. Fry, "A Data TDescription

Larruare Approach to File Translation," Proceedins, ACH
<ICuUL i.orkchop on Lata Descriptiv Accecs and Centrel,
hay '974, pgp '01'-2Ch.

Ramirez, J. Ao, s k. Rin, ané€ i.. e Prvwes,
"Autoratic Generaticn of Data Conversior VFrecrams Using
a Data lescripticn Larguage," pProceedinges, AClLI EI1GHGD

workshoy on Data Descriptior Accece =nd Centrel, llay
1974, pp2C0T7=-225.

Burk, J. e, UDLS BPata” Base Kestruecturing," Xerox
Technclogy heport (Lierk Orcder F3L234), licy 1077,

Cerritsen, RKRcb, Howard L. illorgan, and tlicheal D.
Zisman, "On some lletrics for Databases, or What is a
Very Large Latabase?," Decision Sciences liorking Paper
76-04~08, April 1976.

Gerritsen, Kob, Kicardo Cortes, Jin kibeiro, ancd Futh
cowader, "wALD User’s Guide," Decision Sciences VWorkinrs
Paper 76€-01-C3, April 1976.

Vinslow, L.E. and Lee, J. C., "Optimal Choice of
rnestructuring Points,’ Proceedines of the International

Conference on Very Largre Databases, September 1975,
Socket, Gary H., Goldberg, Rotert P., "Hectivation for

Database HReorganizaticn Perforrmed Concurrently with
Usage," \Vorking Paper TR 16=T76, Aiken Computing
Labratory, Harvard University, Cambridre, liass.

ALSI/SPARC, "Study Group on Latabase iianarerent Systems
- Interin Keport," 75=-C2-08, American National
Standards Institute, VYWashingcdon, D. C.

{ 4
:
‘
i
i
:
1

APPENDIX NUNDBEER 1
? EXAMPLE MEDICAL DATA BASE
EEFORE ANY RESTRUCTURING

SCHENA NAMNE IS HEDICALDB.

g - AREA NAHE IS HEDICAL.

KRECOKD HAIE IS HOSPITAL

' - LOCATION MODE IS CALC USING HOSPHNAMNE
: DUPLICATES NOT ALLOWED

L HOSPNALE TYPE IS CHARACTER 20.

KRECURD WNANME IS DOCTOR
LUCTATICN iiODE IS CALC USING DOCNAHME
DUPLICATES NOT ALLOWED
DGCLALE TYPE IS CHARACTER 30
LCCADDRESS TYPE IS CHAKRACTER 30.

Sel wkhE IS BGSEUC
fHiULE 18 Chall
GhbEl 18 FIKST
OWliER IS LOUESPITAL
lihnBEkEh 1S LOUCTUOL.

RECURD NALE IS PATIENT B
LOCATICN HODE IS CALC UCSING PATHANE
DUPLICATES NCT ALLOWED

PLTHANE TYPE IS CHARACTER 30

PATAGE TYPE IS FIYED

TREATHENT TYPE 1S CHARACTLHK 40.
f £:1 NALE 1S LOCPAT

IHOLE 1S CHAIl

URDEFR IS8 FIKST

urhit IS DOUCTChH :

HELERR IS PATIENT. ,
: RECChD MALIE IS WIKLG

LCCATION MODE IS CALC USING WINGNAME

DUPLICATES NOT ALLOVED
: WINGHNAME TYPE IS CHAKACTER 20
: wINGSIZE TIPE 1S FIXED.
1
SET hHAliz IS HOSUING

; ilove IS CHALlU

ORDER IS FIKST {
g GWwlER IS HOUSPITAL ;
. NEMZEER IS LING.

rECURD HALE IS NWUKSE
LCCATION tChbE IS CALC USING MURSIALL

— -

Pare 59

DUPLICATES ALLCGWED
[IURSNAME TYPE IS CHARACTER 3C
NURSTYPE TYPE IS CHARACTER 1'C.

SET HANE IS ASSGHT
lIODE IS CHAIN
ORDER IS FIARST
OUNER IS WING
MEHEER IS NURSE.

APPENDIX NUIIBER 2
KESTRUCTURING DEFINITION

CHANGE NAME OF PATIENT RECORD TO DIAGNOSIS.

INCORPOUKATE RECORD NAME IS PATIENT
LOCATION !MCDz IS CALC USING PATID
DUPLICATES NOT ALLOWED
PATID TYPE IS FIXED.

INCORPOKATE SET MAKE IS PATDOC
LIODE IS CHAIN
CRDER IS FIRST
CWhEKR IS PATIENT
LEMBER IS DIAGNOSIS.

RELOCATE PATNANE OF DIAGWGSIS IN PATIENT
USING UNICUE PATH.
RELCCATE PATAGL OF DIAGHOSIS IN PATIELT
USILG PATDULC PATH.
INCUKPUGRATE ELCCRD NAllE IS FLOCR
LOCATICL !IGDE IS CALC USTIUG FLRLALL
vUPLICATES ALLGWED

FLEL AL TYPE IS CHAKRACTER 15
FLRSLLE TIPL TS EIXED.

ikl L ELE L Spa ARGt 10 WIENGELR .

CHEALGE SLd leeleh 18 wliDE bk
uchitek 18 BRTINGACTIVE FLOCK

SET CCCUhALCE SELECTIOR IS THEU LOCATIOK

USIRG FLENALLE.
eXCISE LEHLEER NURSE FhCil SET WINGFLK.

IiCOLPORATE SET NAME IS ASSGHT
{iODE IS CHAIN
ORDER IS FIRST
OWRER IS FLOOR
MEMNBER IS HUKSE.

i{0DE OF

Pare €GC

OWNER

APPELLIX HWUUIBER 3
SCHEINA FOR THE CHANGE DATA EASE

AREA NAIIE IS DECHG.

RECORD NAMNE IS SCHIIA
LOCATIOK {IOLE IS CALC USINC NANMECH
DUPLICATES KOT ALLOWED
IHAUSCH TYPL IS CHARACTER 'C
HUNGEN TYPE IS FIXED.

RECORD NAME IS GENCHG
LOCATION IIODE IS VIA GENERATNS
GENMNULi TYPE IS FIXED
GSCHHAMN TYPE IS CHARACTER 10.

neCCED NAIE IS SETCHG
LCCATICN (i0De IL VIA CHGSET

SOLDNAL TYPE IS CHARACTER 10
SCHCELG TrPE 18 EHIXEDL

KECORD RALE IS LUTHLnbER
LCCATIVL bl 10 VIA LIST
SETRALE TYPE IS CHARACTER 'C.

holUnb NALie 15 heCliig
LCCATION 1ubk 1S5 VIA CHGREC

#ULDIAL FrPe 18 CHARRCTER 1C
LUKECUKD TYPL 1E CHARACTER U
RCHUFLG 1YPe 1S BIXED.

RECORD rALLE IS ITHLCHG
LOCATION hiobLE IS VIA CHGITL
IOLDUAH TYPE IS CHARACTER 10
ICHGFLG TYPE IS FIXED
ICKECORD TYPE IS CHARACTER 10.

RECURD WANE IS PATHMEL
LOCATION NMODE IS VIA PATH
SKALE TYPE S CHARACTER 10.

LAME IS GENERATKS
HUDE 1S CHAIN
ORDER IS SOKTEL
OLKER IS SCHilA
HNEMEER IS GENCHG
ASCELDING KEY 1S GENNUIL.

(&}
m
~3

&
o
-3

NALIE IS CHCSET
11IGDE IS CHAILL
URCEl IS SORTED
CLILI/ER IS GEIUCEG

s i o

SET
‘.
i SET
é
SET
F'l
; SET
|
t
b
1

HEHMEER IS SETCHG
ASCENDING KEY IS SOLDHNAM.

NAME IS CHGREC
MODE IS CHAIN
ORDER IS SOKRTED
OWNER IS GENCHG
{IEMEER IS RECCHG
ASCENDING KEY IS ROLDNAM.

NAMNE IS CHGITHU
MCDE IS CHAIN
ORDER IS SORTED
OWNER IS GENCHG
HEIBER IS ITHMCHG
ASCENDING KEY IS IOLDNAM.

MAME IS LIST

LhODE IS CHAIN

LINKED TC PrIOh
OKDER IS HEXT

OWHER IS SETCHG
MEWBER IS LSTLELNLEK.

LALE IS PALEH
t10DE IS CHAIM
LINKED TC PnICh
URDEk IS HEXT

WHER IS ITIHiCHG
tIEMEER IS PATIHIIEL.

Pare 62

T RTT——
-

Pare 63

APPENDIX NU!NBEK 4
WwAND SCHEMA DDL

SYtBOL HIEANING

(underline) WORD MUST APPEAR
() PHRASE MAY BE OHITTED
g ONLY ONE OF THE LINES LAY BE USED

Lower case words nust be replaced by a2 user-defined name cr
value.

SCHEIIA HAME IS schema-name
(PRIVACY LOCK IS integer PAGES)
(DATABASE SIZE IS integer PAGES)
(PAGE SIZE IS integer WORDS).

fhEA NAIE IS area-namne
(AhEA SIZE IS integer PAGES)
(PAGE SIZE IS interer WORDS).

hicuil (AlIE IS record-nare
LUCATION LHOGLLE IS
(VIA set-nare
[CALC USILC iter-name-'DUPL
{LIKECT

(=

¥
CATES ERi (lOT) ALLOWED]
]

(LITHIN area-nare).

iten-nzrie=-2 1iPE IO
[CHARACTLr interer])
(FIXED J
LLEAL Y
SET NANL IS set-riame

LODE IS CHAIU
(LINXED TO 2uhIChk)

URDER IS

(EIRST]
(LAST]
(HEXT]
(PEIOR]
[SORTED]

OLNER IS record=-nar.e-?

iibiMEER IS reccrd-nane-~2
(LINKED TC OWUEK)

(%AEQEEDIHQ % KEY IS item-nare-1)
LESCELDILG

(SET OCCURANCE SELECTION IS THKU
(CUKRENT GF SET]
[LOCATION MODE OF OWNER]

Pare G4

(ALIAS FOR item-name-2 IS data-name)).

Pare 65

APPENDIX NWUMBER 5
RESTRUCTURING DATA DEFINITICH LANLGUAGE

SYHEOL INEANING

__ (underline) WORD MUST APPLAK
| <) PHRASE l1AY BE OIIMITTED
1 El ONLY COMNE OF THESE LINES lAY EE
{ USED

Lower case words nmust be replaced by a user-defined rzne or
value.

ILCUKPOIATE [area-entry.]
[record-entry.]
[set-entry.)
(Iii record-name-! KECORD data-sub-entry.]
[1li set-name~?! SET member-sub-entry.]

[AhEL KAUED area~name-1.

[LECURD 1liAliLD reccrd-rame-c.

[£L7 LANED set-name-2.

[item-name-"' FKClI record-naTe-2 hECURD.
{iEMEEK WANED record-nare-4 FROII set-name-3 SET.

EECISE

LU L T L S W | B)

3 ELLCCATL (level-number) datzbase-data-rnane
UF record-name-5 RECORUD

1l record-name-6 KECOUKRD
uSIi.G [UNIQUE

{set=-1(,set=- ...)] PATEF.

CHANGE SET NAMED set-nare-)
LENBER IS [HETHCACTIVE] reccrd-nane-?!
(SET UCCURANCE SELECTIOK IF ThhU
LOCATIOL MUGDE COrf OUWLEk USILG
fully-cualified-cdata-name-from-old-cchena
FOR data-base~identifier) .

e

63

1260

£C10

6012

Pare 6¢€

APPENDIX NUMBER 6
RESTRUCTURING ERROR CCDES

An error in using 2an internal stack was
encountered.

Because of restructuring the STORE connand
cannot be perforned.

Record or set no lonfer exists tbtecause of
restructurings.

Unable to reconstruct calc access for this
record due to rectructuring.

Error in reconstructing a record from its
c-record.

Any unexpected error encountered in rmraking
accesses to the internal database has 7CCC
added to it and is returrned.

Note: This convention was used for easec of
debugging, a mnore ccomprehensive error may te
used later.

