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SUMMARY

This report examines the utility and limitations of the integral-
equation representation of ground-wave propagation over nonuniform
terrain. Emphasis is on frequencies between 20 kHz and 200 kHz. The
one-dimensional version of the integral ground-wave equation is subject
to errors caused by: 1) topographic irregularities near the great-circle
propagation path; 2) finite ground conductivity; 3) nonuniformities in |
the earth's electrical properties; 4) an approximate integration to
reduce the dimension of the equation from two to one. Each of these
errors is quantified, and the types of terrain to which the integral
ground-wave equation is applicable are defined.

A method of numerical solution is developed and used to obtain
results for the special case of a smooth, uniform, spherical earth.
These results are compared in detail with numerical results obtained
from the widely used residue-series representation of ground-wave
propagation. The agreement between thﬁ two methods is shown to be

excellent. Graphical results are given for the ground-wave attenuation

function.
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I. INTRODUCTION

The propagation velocity of low-frequency groundwaves is subject to
perturbations from nonuniformities in either the topographic or electrical
properties of the terrain. A sufficiently accurate theory of propaga-
tion over irregular terrain would, in principle, make it possible to
correct position errors that such velocity perturbations cause on low-
frequency radio navigation systems.

Historically, two theoretical treatments of groundwave propagation
have evolved: the residue series of Van der Pol, Bremmer, Nortom, and
Fock (see e.g., Bremmer, 1958); and the integral equation approach (see
e.g., Hufford, 1952; and Feinberg, 1959). The residue series, being
more amenable to analytic solution, has been the foundation of most pre-
vious results. However, although useful for analysis of propagation
over a uniform--or a piecewise uniformf—-carth, the residue series is
awkward for analysis of propagation over continuously varying terrain.
For the latter conditions, numerical solution of the integral ground-
wave equation appears the most fruitful approach.

The integral equation is based on impedance boundary conditionmns,
which are approximate. Therefore, regardless of the numerical accuracy
of its solution, the classical version of the integral equation canmnot
provide accuracy better than that inherent in the impedance boundary
condition. Beyond implennhcation of these boundary conditions, a number
of additional approximations are usually made, with the :esult that the
computationally simplest versions of the relevant equations are subject
to the most stringent conditions on the types of terrain to which they
are applicable.

Accordingly, a main purpose of this report is to quantify the accuracy
of several forms of the integral ground-wave equation, thereby ascertain-
ing the types of terrain to which they may be used to within specified
error tolerances. Attention is restricted to frequencies between 20 kHz
and 200 Hz, especially to the LORAN-D frequency at 100 kHz. The approach

*An example of a pilecewise uniform earth would be two or more uniform
regions separated by an abrupt boundary, such as shoreline.
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taken is to derive expressions for errors due to the approximate treat-
ment of 1) finite earth conductivity, 2) terrain curvature, and 3) non-
uniformities in electrical properties. These error terms arise in twe
places in the derivation of the one-dimensional form of the integral
equation: 1) use of impedance boundary conditioms; 2) use of the method

of stationary phases, or something nearly equivalent, to perform an
integration over the coordinate transverse to the great-circle propaga-
tion path, thereby reducing a two-dimensional equation to a one-dimensional
equation.

Use of impedance boundary conditions is essential to the derivation
of the classical integral equation, and the resulting inaccuracies must
be considered inherent to the fornulation; The reduction from a two-
dimensional to a one-dimensional integral equation, however, is a
simplification that could be forgone at the expense of an order-of-
magnitude increase in difficulty in obtaining numerical solutioms. To
determine when such an increase in difficulty would indeed provide a
commensurate increase in overall accufacy, we compare the error terms
due to the approximate transverse integration with the ones due to the
impedance boundary conditioms.

Section II gives the relevant versions of the integral ground-wave
equation, and rank-orders the various error terms, which are herived in
Appendices A and B. Section III gives numerical results comparing two
versions of the one-dimensional integral equation with each other and
with the residue series. Section IV presents conclusions; Appendix C
derives the integral equation in polar coordinates for a smooth, round
earth; and Appendix D outlines the procedures used to obtain numerical
solutions.




II. INTEGRAL EQUATIONS FOR GROUNDWAVE PROPAGATION

We begin by outlining the steps required to derive the classical
one-dimensional integral equation of Hufford (1952). Although the final
result is simply the well-known Eq. (11) of Hufford's original paper,
the intermediate steps reveal somewhat more general forms. Moreover,
we identify the points at which critical approximations are made, and
quantify the accuracy of these approximations. Finally, we give a form
of the integral equation that is somewhat more accurate than Hufford's
for the special case of a smooth, round earth.

HUFFORD'S EQUATION

Although awkward for the special conditions of a smooth, round earth,
rectangular coordinates (x,y,z) are the most convenient when the shape
of the earth's surface cannot be given a simple analytic form. We assume
1) that the transmitter is located at the origin, and let Z(x,y) denote
the deviation of the earth's surface from the plane z=0; and 2) that
the receiver is located in the vertical plane, y=0. Below, we also use
an integration point, Q, which is on the earth's surfacq and has coordina-

tes x,y,%(x,y), and a receiver point, P, with coordinates x ,c(xo). Other

0
quantities used below are Ty Tp» and Ty» which are straight-line dis-
tances between the origin and P, the origin and Q, and Q and P, respec=

tively. (Appendix B.gives expressions for r _, Ty and rz.)

0
The refractive index of the earth, ng, is given by

2
n8 =g + 1a/uc° 5 (1)

where ¢ is the dielectric constant of the earth, ¢ is the conductivity of i
the earth, w is the angular frequency of the wave, and eo is the vacuum
dielectric permitivity. All parameters in Eq. (1) can be spatially non-
uniform, although the validity of the forthcoming equations depends on

L A

these nonuniformities falling within constraints given below.
For certain smooth, symmetric surfaces, (e.g., planes or spheres),
the Hertz potential for a vertical electric dipole has only a singl:=

bt b ories 0. v adbiadin
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component oriented normal to the surface. In such instances, only three
(E‘,Ez,ﬂy) field components are excited that can be calculated from a
single potential function, y. For arbitrary rough surfaces, the Hertz
vector is not oriented in the normal direction, and all six field com-
ponents are excited. To avoid this complexity, the derivation of the
integral ground-wave equation is based on the assumption that the surface
is "so smooth" that the Hertz vector is composed of essentially a single
component criented in the z direction.

Quantification of the error involved in this approximation is dif-
ficult. Intuitively, one would expect it to be valid provided the in-
clinations of the earth's surface with respect to its average level are
small. More rigorously, if Y is the angle between the z axis and the
normal to the earth's surface, the error will be roughly the amount by
which %

b

cosy = — ' (2)
2 2
3 3
‘Jli-(s&) +-(3§)

differs from unity. '
Subject to the error given by Eq. (2), ¥ satisfies the wave equation

2+ = 1 : 3)°

where T is the source function, k is the free-space wave number, and a
time dependence .-1mt has been assumed.

The second major approximation is use of impedance boundary con-
ditions, which can be stated in the form

)
3L = -1k : (4)

where n is the upward normal to the earth's surface and

PO TSR




§ = llu8 " (s)

provided that n8 is large. The accuracy of the 1mpedanée boundary con-
dition (discussed in detail in Appendix A) is summarized below. Use of
the impedance boundary conditions is essential to the derivation. It
permits 3y/3n to be expressed in terms of ¥ on the surface, which, in
turn, permits use of Green's Theorem to convert Eq. (3) to an integral
equation involving integration over the earth's surface.* The procedure,
described by Hufford, gives the result

i .2 A, 1\ %%
Yy(P) = 200(?) + 2 d“qQv(Q) 5 6+(1+F2-)—3? 3 (6)

A

where wo is the potential that would éxist if the earth were not present.
By letting

ikr
& 1

wo(Q) = Const.

and defining W by

V@ = WQu,@

we find

2

d°Qw(Q)r, 1ik(r,+r,-r ) ar

gl g o

W(P) 1+57 T, e e [c +(1+ktz) an] . (M
A e

*Motc accurate, albeit much more complicated, versions of Eq. (4) can
be derived frqp chg_g:gul:ngf~gx;pv (1940).




In Eq. (7), W is an attenuation function that accounts for the fact that
the earth is not flat and does not have infinite conductivity. Note
that W= 1 if § = 0 (0==) and 3r,/3n = 0.

Equation (7) is the most general form of the integral equation, being
subject only to the limitations of the impedance boundary conditions and
the assumption of gentle departures from a plane earth. Being a two-
dimensional integral equation, however, Eq. (7) is quite expensive to
solve numerically. A major simplification (carried out in Appendix B)
transforms--subject to some restrictions--Eq. (7) into a one-dimensional
integral equation. Formally, this transformation involves using the
method of stationary phases to perform analytically the integration over
the coordinate transverse to the propagation path. Physically, this
transformation implies that only regions within the first Fresnel zome
significantly affect the received signal. The resulting equation is

1/2 fo /2 1k(r 4+t -t )
v.:(xo).l-.""”"[% f dx[x(:;)_x) Wy (s +ar,fame 1 20,

: (8)

which is the classic form derived by Hufford (1952).

ACCURACY OF HUFFORD'S EQUATION
Equation (8) is an order-of-magnitude simpler to solve than Eq. (7),

but is less accurate because of errors incurred in the approximate trans-
verse integration. It is therefore important to quantify the accuracy

of these equations to determine whether Eq. (7) is sufficiently more
accurate (or more general) than Eq. (8) to warrant the considerable
additional computational complexity. Moreover, it is importaat to esta-
blish the limitations on Eqs. (7) and (8), thereby determini~g the types
of terrain to which each may be applied to achieve some specified accuracy.
Accordingly, Table 1 summsrizes the first-order correction terms to each
of the main approximations. These correction terms (derived in Appendices

B o AN R N P PRI S SRTF NS 25 e e P e PR 2




A and B) denote the order of magnitude of the errors* involved in each
approximation. In Table 1, Rb denotes the local radius of curvature of
the boundary.

Table 1

ACCURACY OF MAIN APPROXIMATIONS

Approximation Fractional Error

I. Hertz vector normal to surface (3:/31)2 + (3:/3y)2

II. Impedance boundary conditions

a. Finite conductivity ucola

1/2/R

b. Surface curvature [!ubdf]' 0

-1/2 1 _a_g_]

c¢. Nonuniform conductivity [wwocfl b

III. Stationary phase integration

a. Stationary point at y= 0 (3C/3Y)2|y_ 0

b. Asymptotic series : llkxo

Table 1 shows that errors due to use of 1) impedance boundary con-
ditions for finitely conducting media (IIa) and of 2) the asymptotic
expansion of the stationary phase integration (IIIb) are the most funda-
mental in the sense that they are nonzero even for a plane, uniform earth.
The other error terms depend on the degree of terrain nonuniformity.

A simple conclusion regarding the relative accuracy of approximations
IIa and IIIb cannot be made, because one depends on ground conductivity,
whereas the other depends on the length of the propagation path. Table
Al (p. 30) gives numerical values for the term Ila, and shows that better
than l-percent accuracy is obtained at LF/VLF provided that ¢ > 10"3 mhos/m.

*
Roughly speaking, the percentage error associated with each approxima-
tion can be estimated by multiplying the fractional errors of Table 1 by 100.

e

shicialacid i



Poor accuraéy is obtained for Greenland ice, i.e., where o ‘:.:I.O"5 mhos/m.

If the stationary-phase error-term IIIb is less than the impedance error-
term IIa, no degradation in accuracy (for a plane earth) is caused by

the transformation of Eq. (7) to Eq. (8), and any additional accuracy
achieved by solving the two-dimensional equation would be spurious. Con-
versely, if the term IIIb exceeds IIa, additional accuracy is obtained

by dealing with the complexity of the two-dimensional equation. Comparison
of these terms shows that the stationary phase integration causer no sub-

stantial degradation in accuracy provided that xo exceeds a characteristic

distance, £, given by

L - lllkt . v (9)

Table 2 gives £ for various conductivities and a frequency of 100 kHz.
These results show that if the conductivity is 10"’3
one~dimensional integral equation is essentially as accurate as the two-
dimensional equation, provided that the pathlength exceeds about 100 km.
For a conductivity of 10-2 mhos/m, the two-dimensional equation is more

mhos/m or less, the

accurate than the one-dimensional one, unless the pathlength exceeds
about 900 km. For seawater (0 = 4 mhos/m), the two-dimensional equation
is far more accurate than the one-dimensional one for all realistic path-

lengths.
Table 2
VALUES OF £ AT 100 kHz FOR SEVERAL CONDUCTIVITIES
o (mhos/m) 4 1072 1073 1073
2 (k) 3.5 x 10° | 8.6 x 10° 90 0.9
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Before evaluating the other expressions in Table 1, note that their
derivation involves power series expansions, and that these expansions
are valid only when their magnitude is less than unity. Caution must
also be exercised in interpreting the error-term I for a spherical earth.
For a smooth, round earth, it is easy to show that

2
(3/9x)% + (3p/3y)% = —SX[8)

¥ .o (10)
1-(x/a)

' wﬁich correctly indicates that Eq. (8) becomes very inaccurate as the pro-

pagation pathlength, x, approaches an earth radius, a. This unnecessary
inaccuracy, however, is due to Hufford's treatment of the earth's curvature
as a perturbation to a plane earth. The situation is remedied by deriving
the integral equation in spherical coordinates (Appendix C and below),
which causes the appropriate Hertz vector to be rigorously normal to the
surface for a smooth, round earth. Thus, the proper interpretation

of such error terms as I and IIIa should treat { as the departure of the
terrain contour from the average surface contour of the earth; i.e.,
should include hills, etc., but not the earth's curvature, which can be
accurately accounted for. ;

For a frequency of 100 kHz, Table A2 (p. 31) shows that errors due to
surface curvature (expression IIa in Table 1) are about an order-of-
magnitude greater than those due to finite conductivity.(cxpinscion IIb),
for conductivities of 10-3 mhos/m or more, and Ro = 1 km. For lo « 100 m,
the error terms due to curvature effects exceed 10 percent for normal
ground conductivities. Nontheless, in this case, it is better to account
for hills via Eqs. (7) or (8) than to leave them out of the analysis
entirely. Note that by setting R = a in expression IIb, it follows that

‘the 1npedancc error caused by norlal earth curvature is extremely small.

For Grocnland 1co, the results of Appcndi& A ohav that errors due
to finite conductivity effects at 100 kHz are so large that discussion
of other error sources is academic. We do not have adequate data to
evaluate the term IIIc, which accounts for nonuniformities in conductivity.
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It is easily shown, by evaluating expressions I or IIIa, that errors
caused by terrain gradients should be less than 1 percent for grades of
5 percent or less, and less than 10 percent for grades of 15 percent or
less. Much steeper grades would essentially totally destroy the accuracy
of either Eq. (7) or Eq. (8).

In summary, for very smooth terrain where the error terms (Table 1)
I, IIb, ¢, and IIla are much smaller than the terms IIa and IIIb, the
two-dimensional integral equation is much more accurate than the one-
dimensional equation only for ground conductivities of 10-2 mhos/m or
more. For much lower ground conductivities, the accuracy of the impedance
boundary conditions is :ufficicntlylpoor that nothing additional is
really lost by resorting to the approximate, one-dimensional integral
equation. Once grades of 5 percent or more, or terrain features with
radius of curvature of 1 km or less are encountered, the one-dimen- ;
sional equation might as well be used, since the accuracy of the
stationary phase integration is no worse that that of the other
approximations.

INTEGRAL EQUATION FOR SMOOTH, ROUND EARTH

Equation (8) can be used to calculate W for the case of a smooth,
round earth provided that the propagation path does not exceed a mega-
meter or so. As shown by Eq. (10), the errors caused by departure of
the earth's surface from the plane z=0 can be substantial for longer
propagation paths. Such criors can be avoided by rederiving the integral
equation in spherical coordinates, and using the radial component--rather
than the z-component-—of the Hertz potential. In this instance, the
error terms I and IIIa in Table 1 vanish, whereas the term IIb is extre-
mely small for Ro- a. The result is that an integral equation can be
obgained that is essentially as accurate for a uniform spherical earth
as is Eq. (8) for a uniform plane earth. In addition, this "spherical”
integral equation provides a consistent basis of comparison with results
calculated using the residue series, which rigorously accounts for a
spherical earth.

The resulting one-dimensional integral oquation* is

*Scc Appendix C for detailed derivation.
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s
1/2 %o sin == 1/2
W(sy) = 1- [L] .-wi/ls/ ds_ u(s) 2a sin s/a

2n sin 87-2—!- Sn=S
| "2a sin lo/l sin g‘
| 3 / / lo'l i 3
s -8 ika|sin s/2a-sin s./2a+ sin ] {3
[6 + sin -g;—] e 9 - : (11)

where s and '0 denote great-circle distances on the earth's surface.
By using T, " 2a sin sOIZa, etc., in the exponent of Eq. (11), and
noting that

N 20 SN ST A, BT AN e e

85" ]
arzlan - sin[ %2 ’
it follows that Eqs. (8) and (11) agree to the extent that the approximation

)
a

s
s:ln—gz
a

is valid; i.e., the fractional disagreement between Eq. (8) and Eq. (11)
is of order (sola.),z, which arises because Eq. (8) is subject to errors
of the order of magnitude indicated by Eq. (10), whereas Eq. (11) is not.
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III. NUMERICAL RESULTS FOR A UNIFORM, SPHERICAL EARTH

Equation (11) (p. 1l) is the most accurate form of the one-dimensional
integral equation for a smooth, spherical earth, and is therefore solved
numerically to obtain the results given in this section. Specifically,
the attenuation function, W, is computed as a function of distance for
frequencies between 20 kHz and 200 kHz, and conductivities between
4 mhos/m and 2x 10—5 mhos/m. (Appendix D outlines the numerical methods
used.)

Although somewhat less accurate than Eq. (11) for a uniform, spherical
earth, Hufford's integral equation (Eq. (8)) is convenient for analyzing
propagation over irregular terrain. Accordingly, as a partial check on
relative accuracy, we also solve Eq. (8) (p. 6) numerically and compare
the results with those obtained from Eq. (11). . In solving Eq. (8), we
used the full expressions for ro, Ty rz, and a:zlan (e.8.» ro-Za sin sO/
2a, etc.) rather than the expression in powers of s/a = x/a used in
Hufford's (1952) example.

As an accuracy check on both Eqs. (8) and (11), detailed comparisons
with results given for the residue series by Wait and Howe (I1956) are
made. Care must be exercised in making these comparisons, because we
have defined the attenuation function by (see Eq. (C-9))

. o b
W(so) o< W(so)e > : (12)

whereas, a different attenuation function, G, is defined by

- ikso
W(so) o< W(so)o ’ (13)

in the residue series. Thus, since the Hertz potential, y, must be the

same in both treatments, the phase of ﬁ given by Wait and Howe must be
corrected by a factor

s
k(so - ro) =k (lo - 2a sin 5%) ’ (14)

P e —
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before comparison with our results. This adjustment in the residue series
results has been made in the comparisons given below.

To make the comparisons as quantitative as possible, we use a digital
rather than a graphical format. Tables 3 through 16 give the results;
the number of significant figures given corresponds to the numerical”
accuracy that we used in solving Eqs. (8) and (1l1). The results labeled
"spherical int. eq." correspond to Eq. (l1); those labeled "Hufford int.
eq." correspond to Eq. (8); those labeled "residue series" are taken
from Wait and Howe, adjusted according to Eq. (14). Following Wait and
Howe, we used an effective earth radius of 4a/3 (e.g., 8500 km) to account
for atmospheric refraction. The sensitivity of the results to the choice
of effective radius, which is crude at low frequencies, is examined below.
For purposes of comparison with Wait and Howe, we used x = 0 in the cal-
culations, but do not advocate doing so in general. Also, the rather
unusual distances at which the results are given were chosen so that
comparison with Wait and Howe could be made. o)

E'Heydiscuss first the results at 100 kHz, since this freiuénéy'i;
of more practical interest than the others. Tables 3 through 6 give
these results, and show that both the Hufford equation and Eq. (11) agree
with the residue-series results to within one tenth of a degree of phase
for distances out to 600 kilometers. To put this accuracy in context,
note that, at 100 kHz, one tenth of a degree of phase corresponds to a
distance of less than a meter. Moreover, even this minute disagreement
is due to roundoff, and would have been smaller had more significant
figures been presented in the tables.

At distances of 1200 km or more, small--but noticeable--differences
appear between the results of Eq. (8) and Eq. (l1) and the residue series.
Equation (l1) agrees somewhat more closely with the residue series than
does Eq. (8). This behavior is to be expected, because Eq. (8) is
accurate only to order (sola)z, which becomes appreciable (0.08 at 2400
km) at the larger distances. We have no way of knowing whether the
disagreement between Eq.(ll) and the residue series at 2420 km (Table 3)

*

Numerical accuracy pertains to the precision of the methods used
to solve the equations, and has nothing whatever to do with the accuracy
of the equations themselves, which is discussed in Sec. II and Appendices
A and B.
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Table 3

W AS COMPUTED FROM EQ. (11) FOR f = 100 kHz AND ¢ = 4 mhos/m

Distance (km) 60.6 121 242 606 1211 2420
i oL LAY 2.0 43 | 1009 | 47.8 | 199.5 | 1148.2
et o e e b e
Difference 0 0 0.1 0 0.3 (3.6)
s . 0.983 | 0.952 | o0.869 | 0.57%6 | 0.223 | 0.024
A harioat int eq | 0-982 | o.951 | o.ee8 | o.575 | o0.223 | 0.023
Difference 0.r01 | 0.001 | 0.001 | o0.001 0 0.001
Table 4
W AS COMPUTED FROM EQ. (8) FOR f = 100 kHz AMD o = 4 mhos/m
Distance (km) 60.6 | 121 262 606 | 1211 | 2620
e o 2.0 43 | 109 | 478 | 199.5 | 1148.2
e I s 2.0 43 | 1009 | e7.9 | 198.8 | 1140.6
Difference 0 0 0 (0.1) | 0.7 7.6
A e X ies | 0.983 | 0.952 | o.869 | 0.57%6 | o0.223 | o0.028
ttordine o | 0-982 | o951 [ o.8e8 | o0.575 | o0.222 | o.026
Difference 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | (0.002)




s

/5
Table 5

W AS COMPUTED FROM EQ. (11) FOR f = 100 kHz AND o = 10.2 mhos/m

Distance (km) 60.6 121 242 606 1211
Phase W (deg)
Residue series 20.1 30.1 47.7 109.2 297.0
Phase W (deg) =
Spherical int eq 20.1 30.0 47.6 109.2 296.9
Difference 0 0.1 0.1 0 0.1
Amplitude W
Residue ‘series 0.969 0.927 0.828 0.531 0.206
Amplitude W
Spherical int eq. 0.969 0.927 0.828 0.531 0.206
Difference 0 0 0 0 0
Table 6

W AS COMPUTED FROM EQ. (8) FOR f = 100 kHz AND o = 10°2 mhos/m

Distance (km) 60.6 121 242 606 1211
Phase W (deg) . -

Residue series 20.1 30.1 47.7 109.2 297.0
Phase W (deg)

Hufford int eq 20.1 30.0 47.7 109.3 | 296.9
Difference 0 0.1 0 (0.1) 0.1
Amplitude W

- gD 0.969 | 0.927 | 0.828 | 0.531 | 0.206
Amplitude W

Hufford int eq 0.968 | 0.926 | 0.829 | 0.531 | 0.206
Difference 0.001 | 0.001 | (0.001) 0 0
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Table 7

W AS COMPUTED FROM EQ. (11) FOR f = 20 kHz AND ¢ = 4 mhos/m

Distance (km) 60.6 121 242 606 1211
Phase W (deg)
Residue series 0.6 1.6 4.2 17.5 61.6
Phase W (deg)
Difference 0 0.1 0.1 0.1 0.1
Amplitude W
Residue series 0.992 0.978 0.939 0.779 0.497
Amplitude W
Spherical int eq. 0.991 0.977 0.937 0.777 0.495
Difference 0.001 0.001 0.002 0.002 0.002
Table 8

W AS COMPUTED FROM EQ. (8) FOR f = 20 kHz AND o = 4 mhos/m

Distance (km) 60.6 121 242 606 1211
Phase W (deg) !

Residue series 0.6 1.6 4.2 17.% 61.6
Phase W (deg)

Hufford int eq 0.6 1.6 4.2 175 61.9
Difference 0 0 0 0 (0.3)
Amplitude W

Residue series 0.992 0.978 0.939 0.779 0.497
Amplitude W

Hufford int eq 0.992 | 0.977 | 0.938 | 0.778 | 0.495
Difference 0 0.001 0.001 0.001 0.002
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Table 9
W AS COMPUTED FROM EQ. (11) FOR f = 20 knz AND o = 10'2 mhos/m
Distance (km) 60.6 121 242 606 1211
Ph W

ol S0 4.3 6.7 11.5 29.3 79.5
Phase W (deg)

Spherical int eq 4.2 6.7 11.4 29.3 79.3
Difference 0.1 0 g.1 0 0.2
e il 0.993 | o0.978 | 0.938 | o0.780 | o0.504
Amplitude W :

Spherical int eq | 0-991 | 0.976 | 0.93 | 0.778 | 0.502
Difference 0.002 0.002 0.002 0.002 0.002
Table 10

W AS COMPUTED FROM EQ. (11) FOR f = 20 kHz AND o = ].0-3 mhos/m
Distance (km) 60.6 121 242 606 1211
Phase W (deg)

Residue series 12.5 18.4 28.1 56.2 119.8
Phase W (deg)

Spherical int eq 2.5 18.4 28.1 56.2 119.5
Difference 0 0 0 0 0.3
Amplitude W

Residue series 0.987 0.967 0.920 0.750 0.477
Amplitude W

Spherical int eq | 0-987 | 0.967 | 0.920 | 0.749 | 0.477
Difference 0 0 0 0.001 Q

——————
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Table 11

W AS COMPUTED FROM EQ. (11) FOR f = 50 kHz AND ¢ = 4 mhos/m

Distance (km) 60.6 121 242 606 1211
Phase W (deg)

Residue series 1.2 2.8 7.1 30.5 117.5
Phase W (deg)

Spherical int eq 1.2 2.8 7.1 30.5 117.4
Difference 0 0 0 0 0.1
Amplitude W

Residue series 0.988 0.966 0.905 0.675 0.338
Amplitude W

Spherical int eq 0.987 0.965 0.904 0.674 0.337
Difference 0.001 0.001 0.001 0.001 0.001

Table 12
W AS COMPUTED FROM EQ. (11) FOR f = 50 kHz AND o = 10”2 mhos/m
Distance (km) 60.6 121 242 606 1211
Phase W (deg) -

Residue series 0.3 |.15.8 25.0 60.8 164.4
Phase W (deg)

Spherical int eq 10.3 15.6 25.0 60.8 164.2
Difference 0 0 0 0 0.2
Amplitude W

Restdus saries 0.985 0.960 0.896 0.667 0.342
Amplitude W

Spherical int eq 0.985 0.960 0.896 0.667 0.342
Difference 0 0 0 0 9

R wn:
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Table 13

W AS COMPUTED FROM EQ. (11) FOR f = 50 kHz AND o = 10-'3 mhos/m

Distance (km) 60.6 121 242 606 1211
Phase W (deg)

Residue series 30.8 44.6 66.4 126.5 263.5
Phase W (deg)

Spherical int eq 30.8 44.6 66.4 126.5 263.5
Difference 0 0 0 0 0
Amplitude W

Residue series 0.952 0.899 0.79C 0.505 0.213
Amplitude W

Spherical int eq 0.957 0.903 0.795 0.509 0.211
Difference (0.005) | (0.004) | (0.005) | (0.004) | 0.002

Table 14

W AS COMPUTED FROM EQ. (11) FOR f = 200 kHz AND ¢ = 4 mhos/m

Distance (km) 60.6 121 242 606 128
Phase W (deg)

M tdhe teriss 3.4 7.0 17.0 77.3 350.9
Phase W (deg)

Spherical int eq 3.4 7.0 17.0 77.4 351.1
Difference 0 0 0 (0.1) (0.2)
Amplitude W

Residue sarfes 0.976 0.932 0.820 0.462 0.130
Amplitude W

Spherical int eq 0.975 0.931 0.819 0.461 0.129
Difference 0.001 0.001 0.001 0.001 0.001

&
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W AS COMPUTED FROM EQ. (8) FOR f = 200 kHz AND o = 4 mhos/m
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Table 15

Distance (km) 60.6 121 242 606 1211
Phase W (deg)

Restine satris 3.4 7.0 17.0 7.3 | 350.9
Phase W (deg)

Hufford int eq 3.4 7.0 17.0 77.5 | 3853.9
Difference 0 0 0 (0.2) (3.0)
Amplitude W

g AR 0.976 | 0.932 | 0.820 | 0.462 | 0.130
Amplitude W

Wiffard 1ot eo 0.975 | 0.931 | 0.819 | 0.461 | 0.129
Difference 0.001- 0.001 0.001 0.001 0.001

Table 16

W AS COMPUTED FROM EQ. (11) FOR f = 200 kHz AND ¢ = 1072 mhos/m

Distance (km) 60.6 121 242 | 606 | 1211
Phase W (deg) : :

Residue series 39.5 58.1 89.8 199.0 546.7
Phase W (deg)

S haetual Tnt o | N8 58.1 | 89.8 | 199.0 | 544.7
Difference 0 0 0 0 2.0
Amplitude W

Residue series 0.921 0.834 0.668 0.307 0.068
Amp1litude W

Spherical int eq 0.922 0.836 0.670 0.307 0.066
Difference (0.001) | (0.002) | (0.002) 0 0.002

oo~

S N S K S
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is due to the approximations made in this report, or numerical impreci-
sions in Wait and Howe's results. Also, Wait and Howe did not give the
exact value that they used for the earth's radius. However, even for
the worst case shown (o = 4 mhos/m, g~ 2420 km), the disagreement in
phase is 3.6°, which corresponds to a distance of only 30 meters.

The remaining tables (7 through 16) further confirm the general
conclusions drawn above. For distances up to 600 km, the agreement
among Eq. (8), Eq. (11), and the residue series is virtually exact. For
greater distances, the agreement is still excellent but, as expected,
Eq. (11) agrees slightly more closely with the residue-series results
than does Eq. (8).

The results of Tables 3 to 16 are sufficiently close to those of
Wait and Howe that a graphical presentation here would add nothing new.
Wait and Howe, however, did not present results for propagation over ice,
nor were they able to obtain satisfactory convergence of the residue
3 series for o = 10"3 mhos/m and frequencies of 100 kHz and 200 kHz. For
: these conditions, therefore, we present graphical results (Figs. 1
through 4).

Figure 1 gives the amplitude and phase of W for a frequency of
100 kdz and a ground conductivity of 10-3 mhos/m. Results are shown

for both the "4/3" earth used by Wait and Howe, and a "mormal earth" of
radius 6372 km. The results for these two assumed earth radii agree
quite closely, although noticeable differences do occur at ranges of
several huAdreds of kilometers. For example, at a range of 600 km,
the selection of effective earth radius can influence the calculated
phase by more than 20 degrees, which corfesponds to a position uncertainty
of about 170 meters. Since the use of an effective earth radius to
account for atmospheric refraction is crude, this 20-degree difference
between the "4/3" and "normal" earths must be regarded as a sort of
uncertainty, which far exceeds the mathematical uncertainties associated
with Eqs. (8) and (1l1). In other words, the accuracy of the equations
seems to be far better than this input to the equations.

Figure 2 gives the amplitude and phase of W versus distance for a

3

frequency of 200 kHz and ¢ = 10 ° mhos/m; and Figs. 3 and 4, the amplitude

and phase of W for various VLF/LF frequencies, and electrical properties

e s e e R
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corresponding to nominal Greenland ice (e.g., <« = 6, and 0 = 2 x 10-5

mhos/m). Given the poor accuracy of the impedance boundary conditions
for low conductivity (Table lA), the precision of the results in Figs. 3
and 4 is not high. As expected, Figs. l through 4 show that the attenua-
tion and phase shift increase as the frequency increases and as the
ground conductivity decreases.

e 3
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IV. CONCLUSIONS

For a smooth, uniform earth, Hufford's one-dimensional integral
equation gives essentially exact agreement with the results of the resi-
due series for frequencies between 20 kHz and 200 kHz, and propagation
distances up to several hundreds of kilometers. For propagation dis-
tances greater than 1000 km to 1500 km, the accuracy of Rufford's equation

degrades somewhat, and a modified one-dimensional equation--expressed in

polar coordinates--provides slightly better agreement with the residue

series. H
For a nonuniform earth having terrain undulations, the two-dimension-

al integral equation exhibits errors due to: 1) assuming that the Hertz

vector is essentially normal to the surface; 2) use of impedance boundary

conditions. The one-dimensional integral equation incurs additional

errors due to the approximate evaluation of an integral over the coordi-

nate transverse to the propagation path.

For ground conductivities greater than about 10.2 mhos/m, or for
pathlengths less than about 100 km, the two-dimensional integral equation
is inherently much more accurate than the one-dimensional one, provided
that the earth is fairly smooth. However, this additional accuracy could
be unnecessary, because--as was the case for the perfectly smooth, 1
# * spherical earth--the accuracy of the one-dimensional equation could be

adequate.

For ground conductivities less than about 1.0.3 mhos/m, or for rela-
tively rough terrain, the inherent accuracy of the two-dimensional
equation is really no better than that of the simpler one-dimensional

version. This behavior occurs because errors due to the assumption of
impedance boundary conditions and a normally oriented Hertz vector are

at least as large as those due to the approximations made in reducing the
two-dimensional equation to the classical one-dimensional form. DMore
specifically, for these unfavorable terrain characteristics, the accuracy
of the two-dimensional equation is degraded to the extent that no
additional penalty is paid for performing the approximate transverse

integration.

B I R N (LY PR Syvs
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Appendix A

ACCURACY OF IMPEDANCE BOUNDARY CONDITIONS

Use of impedance boundary conditions (Eq. (4), p. 4) is essential to
the derivation of the integral equation for the groundwave attenuation
function. Therefore, the accuracy of even an exact solution of the full-
fledged two-dimensional integral equation (Eq. (7), p. 5) is no better
than the accuracy of the impedance boundary conditions. The applicability

of these boundary conditions has received detailed attention by numerous
authors (e.g., Rytov, 1940; Leontovich, 1944; Bremmer, 1958; Feinberg,
1959; Senior, 1961), and the details of their treatments need not be
repeated here. However, to quantify the inherent accuracy of Eq. (8)
for the frequencies and terrain of interest here, this appendix briefly
summarizes the formulas for the correction terms to the impedance
approximation.

Impedance boundary conditions are accurate for highly conducting,
uniform media having flat boundaries. Errors are thus incurred if 1) the
medium is imperfectly conducting, 2) the electrical properties of the
medium are spatially nonuniform, and 3) the boundary of the medium is not

flat. We consider each of these errors below.

ERRORS DUE TO FINITE CONDUCTIVITY
Validity of impedance boundary conditions rests on the fact that for

a highly conducting earth, the refracted wave is, according to Smell's
law, propagated in a direction nearly normal to the earth's surface.

Even for a plane earth, deviation of the wave normal in the earth from
the normal to the surface causes computational errors. Rytov (1940)

and Leontovich (1944) showed that, for a vertically polarized wave and

a uniform plane earth, the fractional ctror* incurred by use of impedance

boundary conditions is of order

We
lln: ==l (A-1)

*"?ractional error" is defined as the ratio of the neglected terms to
the retained term in a series representation.
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where we have assumed that o/meo >> k, where k is the dielectric comstant
of the ground. For situations where a/ueo is not much greater than «,
the error is of order 1/x. Since k is only of order 10 or less for most
types of ground, Eq. (A-l) applies for all situations where the accuracy
of impedance boundary conditions is better than about 10 percent.

To quantify the error term (A-1l), we give its numerical values for
conductivities and frequencies of interest in Table Al. These values
show that, for most cases, use of impedance boundary conditions is valid
in the sense that the fractional error incurred is much less than unity;
i.e., the percent error is no greater than about 10 percent. If very
high accuracy--say, 1 percent (fractional error of 10-2) or better--is
required, however, the impedance boundary conditions are inadequate in
the 20 kHz to 200 kHz range for Greenland ice, which has a conductivity
of about 10-'5 mhos/m.

Table Al

VALUES OF mtola FOR VARIOUS FREQUENCIES AND CONDUCTIVITIES

g (mhos/m)
-2 -3 a
Pt 4 10 10 10
. 262107 | 12200 112207 | 1121070
50 6.9x10" | 2.9x107% | 2.9 x107% | 2.8 x 107t
100 1.4x10° | s.8x10% | s.6x10® | 5.6 x10"
200 2.9x10°% | 1.1210°% | 1.2220% | 1.2

ERRORS DUE TO SURFACE CURVATURE

The errors caused by curvature of the boundary have been calculated

by Rytov (1940) and Senior (1961).
is that the local radius of curvature, R
pared with the skindepth of the wave in the earth.

0

Physically, the validity condition
» of the surface be large com=-
Mathematically, the

expression for the fractional error incurred by using impedance boundary

conditions in the presence of a curved boundary is
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~1/2

(wueaf) /R° 8 (A-2)

To quantify this error term, Table A2 gives values for the expression
(A-2) for various conductivities and frequencies and R° = 103m. One way
to interpret Table A2 is that the values shown are the fractional errors
due to hills (for example) having a radius of curvature of 1 km. The
error caused by hills with a 100~m radius of curvature would be 10 times
as large as shown in Table A2, whereas that due to hills with a 10-km

curvature would be one tenth as large.

Table A2
VALUES OF (nuoof)‘l’z/ne FOR VARIOUS CONDUCTIVITIES
'AND FREQUENCIES AND Ry = 10°m
¢ (mhos/m)
< -3 ST
PP 4 10 10 10
20 18x10°1 3.6x10°] 1.ix10" | 1.1
50 1.1210° } 2.2210%] 7.10210% | 722107
100 8.0%x207% | 1.6 x107? | s.0x107® | s.ox120 |
200 5.6x10°% ] 1.1210% )] 3.6x107% | 3.6 22070

Table A2 also shows that, with regard to curvature effects, the
accuracy of the impedance boundary condition degrades as the frequency
decreases. This behavior is different than that shown for finite-con-
ductivity effects (Table Al), where the accuracy degrades as the fre-
quency is increased. Thus, if the frequency is too high, the impedance

approximation fails because the ground refractive index is too small to

refract the wave into a nearly normal direction; whereas if the fre-

quency is too low, the approximation fails because the skindepth can

become comparable with the radius of curvature of the surface. Comparison
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ERRORS DUE TO NONUNIFORM ELECTRICAL PROPERTIES

%

of Tables Al and A2 shows that, except for very smooth gréund, curvature
effects induce liré;f—ZQQ;;E;tiéhﬁi errors than finite-conductivity §§
effects. 1 §
The errors shown in Table A2 apply where the entire propagation path ;]
is characterized by undulations having characteristic dimensions of a
kilometer, and would be smaller if only part of the path contained such
irregularities. Also, so long as the fractional errors shown in Table A2
are less thin a few tenths, it is better to account for surface undula-
tions using the impedance method, than to neglect them entirely. On
this basis, we estimate that for a frequency of 100 kHz, and the average
ground (u--lo-3 to 10-2 mhos/m), the impedance method of treating curved
terrain should be useful, provided that the characteristic dimensions of
the undulations are at least 100 meters. For smaller values of Ro, the

error terms become comparable with the retained terms.

Rytov (1940), Leontovich (1944), and Senior (1962) have evaluated the
errors incurred by using impedance boundary condi;ions for media having
nonuniform electrical properties. Specifically, for « and o that are
functions of x, y, and 2z, where z is the vertical coordinate, they showed
that the fractional error is given by

138 -1/2 [1 3 3
K 32 i (ﬂuqu) [c Bz] 3 ! (a-3)

Since (wuofa)fllz is simply the skindepth of the wave in the ground, the
error term (A-3) will be small if the conductivity undergoes only a small
fractional change within a skindepth of the surface. The expression (A-3)
is obviously extremely small for seawater because the skindepth is small

and the medium is nearly uniform. At a frequency of 100 kHz, we see-—by
multiplying the values in Table A2 by 1000--that the skindepth in normal
ground is several tens of meters. Thus, for Eq. (A-3) to be small, the
ground must be nearly homogeneous to a depth of tens of meters. Precise
evaluation of Eq. (A-3) must use data on shallow conductivity-depth
profiles for terrain of interest.
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As pointed out by Senior (1962) and Leontovich (1944), the condition
(A-3) depends only on vertical variations in conductivity, even through
o was assumed to have lateral inhomogeneities as well. Thus, to first
order, nonuniformities in electrical properties introduce errors only
to the extent that the wave can penetrate to a depth where the con-
ductivity departs from its surface value. Errors due to lateral non-
uniformities are of higher order, and are appreciable only where the

quantity -
1 (30 ., 3¢
o \9x » ay) 7 (a-4)

is very large; e.g., at a coastline.
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Appendix B
VALIDITY CRITERIA FOR ONE-DIMENSIONAL INTEGRAL EQUATION

A

e -

Appli_.cion of impedance boundary conditions and Green's theorem
leads to the following type of integral equation for the attenuation
function, W(P)

W(R) = 1+ /dZQW(Q)K(Q.P) . (8-1)
A

In Eq. (B-1), the integration is taken over the surface, A, of the earth,
Q is an integration point on this surface, and P is the receiver point,
which we assume is also on the surface. By making certain approximations,

TS S

the two-dimensional integration over the surface, A, can be converted into
a one~dimensional integration along the terrain between transmitter and
receiver. This appendix determines the accuracy of these approximatiomns.

The detailed form of the right-hand side of Eq. (B-1) depends on |
the coordinate system used. However, the validity criteria for the ?
approximate integration of the right-hand side of Eq. (8-1) do not depend |
on the coordinate system. Therefore, to keep the algebra as simple as
possible, we establish the accuracy of the approximate integratiom in
? rectangular coordinates. Appendix C rederives the integral equation in
spherical coordinates, which are more natural to propagation over a
spherical earth.

Consider a rectangular coordinate system with the transmitter at the
origin, and with the plane defined by z= 0 oriented perpendicular to the
vertical electric-dipole transmitting antenna. We let the deviation of \
1 ; the surface of the earth from the z= 0 plane be given by {(x,y), and |
assume the receiving antenna to be located in the vertical plane defined
by y= 0. The integration point, Q, has the coordinates x, y, Z(x,y),
and the following relationships hold:

A A A I G B30 55 N M




T ey

35

- Sivis, g e 5
=X ti, & C(xo.o) ’

:i - xz + yz + cz(x.y) ’

r: - ['xo-x]z + yz + [:0- c(x.y5]2 s (8-4)
2 2
2 3 3 :
d%qQ = dxdy ﬂ+ 3-3) + (-3-3) : (B-5)

In rectangular coordinates, Eq. (B-1) can be written (see Sec. II or
Bufford, 1962)

2 T
we) = 1+ 4L pq) o 0 ; (3-6)
J T1%2
where
ikr r
0 . N 4 -
P@ = 2w [o+ (1+g) « | NS (3-7)

By using the relationships (B-2) through (B-5), Eq. (B=6) can be rewritten

ikro[ﬁ':.-::z' ]

w(xo) -1+fdx fdyl‘(x.y)c 0 ’ (B-8)

where

T 2 2
F(x,y) = -;—E[-;g— * W(x,y) {14»(.%2. +(-:-§
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Thus, to reduce Eq. (B-9) to a one-dimensional integral equation, our
task is to evaluate the integral

r Lk h(x,y)
I(x) = / dyr(x,y)e : (B-10)
where
b PR
net—-2-1 . (8-11)
0

For transmission paths much greater than A/2x (about 0.5 km at 100 kHz),
kro >> 1, and the integral (B-10) is of the classic form amenable to approxi-
mate evaluation by the method of stationary phases (e.g., Erdelyi, 1956).

At this point of the derivation, other authors (e.g., Hufford, 1952) have
correctly argued that the integral (B-10) is approximately given by the
stationary-phase formula, which is well-known and can be written down by
inspection. This formula is, in fact, the leading term in an asymptotic
series representation of the integral (B-10). To quantify the accuracy of
this term, we must retain and evaluate the second-order correction terms.

We assume that h has a stationary point at y-yo. given by the equation

ah .
h' W — - o . 3-12
(vy) ayly=y, ( )
The value of Yo will be found below; but, for now, we need only assume that
such a stationary point exists. Because of Eq. (B-12), the power series

for h becomes

" "e n"nn
h(y) = h+%—(y-yo)z+h—6-(y-yo)3 +h2—,.(y-y°)4 + cees (8-13)

where the prime denotes differentiation with respect to y, and all deri-
vatives are evaluated at y=¥y In the conventional stationary phase
method, only the first two terms in Eq. (B-13) are retained--the others
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being correction terms that are small if k:o >> 1, We retain these higher-
order terms and assume--subject to a posteriori justification--that they
are small enough to permit the following series expansion of the exponent

in Eq. (B-10):

ik.ro

2
”
1kt°h(y°) ﬂu.'oh (y-yo) /2
e =e e

S s oty | I o-10

By similar reasoning, and subject to similar q posteriori justificatiom,
we write

(B-15)

r (x,y4) (y-yo) 1

r'(x,y) = l‘(x.yo) E’+ r(3oy°)

By inserting Eqs. (B-14) and (B-15) into Eq. (B-10), and noting that odd
powers of (y—yo) vanish due to odd symmetry, the integral becomes

I(x) x e

; : L) ; 2
ikr h(y,) ikr h™ (y-y,) /2
e TR D i

Rt e :
B Bt hw - momtdhes 7 e & Y : ks

which can be immediately integrated to give

I(x) = .11/4 .:Lkroh(yo)( 2w

1/2
Eo_h'") I‘(x.yo)

. -—Lhmr'z- 2""2 ' (B-17)
T 8kry(h")

2kr°(h")

e T R R A A
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where, again, a prime denotes y-diffcfcntiation and all quantities are
evaluated at =Yg

Aside from the question of the limits an the x-integration, and one
or two minor constraints, insertion of Eq. (B-17) into Eqs. (B-10) and
(B-8), will give the classical one-dimensional integral equation (e.g.,
Hufford, 1952; Bremmer, 1958) provided that the following two conditions
are satisfied:

h(yo) = h(0); rl(yo) e rl(O) etc., (B-18)
""'” 5 El.l P (B-19a)
2kr°(h )
- =<l . (B-19b)
8kry(h™)

Condition (B-18) simply states that the stationary phase point, Yor is suf-
ficiently close to the plane defined by y=0, that Yo = 0 may be sub-
stituted in all relations. This condition results in an integration along
the line between transmitter and receiver. Conditions (B-19) require
that kro be large, which is the validity requirement for the stationary
phase integration. To quantify the accuracy of these approximations, we
further simplify and evaluate the correction terms.

By inserting Eq. (B-11l) into Eq. (B-12), performing the differentiationm,
and using a perturbation expansion, we obtain the following equation for
the stationary phase point:

. ["_1(‘0") + rgc]’:'

r1+r2 y=0

Yo . (B-20)

If the transverse derivative of the terrain contour, ', vanishes at y=0,
then Yo" 0, and we recapture the classical result that the integrand be
evaluated on the line z=(Q, y=0, In fact, Eq. (B~20) shows that the
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stationary point is displaced from the line z=0, y=0 by an amount pro-
portional to the lateral gradient of the terrain comtour, ', evaluated
on the line between transmitter and receiver.

It follows from Eq. (B-17) that the phase of I(x) is governed by

rob(yo) - + r,= T, ¢ (B-21)

By \uing Eqs. (B-2) through (B-4), and keeping leading terms in a power

series expansion of Tys Tos and r,, it follows that

0

2. 2 2 2 2
Yot & y°+(r.°-c) %y

(B-22)

for0_<_x_<_x°.

From Eq. (B-20), it follows that the order of magnitude of Yo is gz',
because rll (r1+r2) nnd_rzl (x_‘l+rz) are of order of unity. Therefore,
the fractional phase error incurred by setting Yo" 0 is

2 :
) ] 3 (B-23)
y=0

To the same order of accuracy, the y-derivative term in Eq. (B-5) may also

y3/5%~ 0 [(-35'

3y

be neglected.

Tedious, but straightforward differentiation of h(y), and insertion
of y=0, show that the error incurred by neglecting the terms given by
(B=19) 1is of order

hmv
8kr,, (h")2

~ 0 (1/key) " (B-24)

> il
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It also follows from direct differentiation that, to the accuracy indicated
by Eqs. (B-23) and (B-24),

t1+r2

ity ;

roh" (y=0) = (B-25)

whence Eq. (B-17) can be written

i/ (rytrorg) [ 2,1,

1/2
I(x) =e e I ] r(x,y,) » (B-26)

2)
where all quantities are ewaluated at y=0.
Comparison of Eq. (B-26) with Eq. (B-10) shows that the stationary-

phase integration is equivalent to multiplying the integrand of Eq. (B-10)
by a lateral distance, Ay, ‘whose magnitude is given by -

1/2 /2
PREY: o 2 . o (B-27)
y k(rl-irrz) (r1+r25 <

which is essentially the width of the first Fresnel zone. Therefore, the
stationary-phase integration is physically equivalent to retaining con-
tributions from transverse distances of the order of a Fresnel zone.
Satisfaction of condition (B-18) (or, equivalently, if the error term
(B-23) is small) guarantees that the terrain will not vary appreciably
across this zone. Combination of Eq. (B-26) with Eqs. (B-8) through
(B-11) gives the following integral equation for the attenuation function

1/2
- 2
1/2
o 1-oa"T1/6 (K 2 0
W(xg) = 1-e (\?') jdg\lu(ac/ax) soral|

B d

ik(z,+r,-r.) [ or
cuix)e 2+ 20 E""a‘iz'] ; (B-28)
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Eq. (B-22) shows that the c:pon.nﬁ, k(r1+r2-r°), is of order kczlx pro-
vﬁﬁtM:O:xiﬁ.TMmfutuuminquuuusmuancm-
parable to or smaller than a wavelength, the exponent in Eq. (B-24) is
small and oscillates slowly. For x < 0 or x > x,, however, the exponent
is of order 2kx or Zk(x-xo), which oscillates very rapidly. Thus, to
within the same order of accuracy as the stationary-phase integration
(e.8., Eq. (B-24)), the integration limits in Eq. (B~28) can be taken
equal to 0 and x,y-

Use of these finite limits in the x-integration converts Eq. (B-28)
into virtually Hufford's classic form. However, Hufford made two addi-
tional approximations, which~-although consistent with those described
above and in Sec. II--are not really necessary. First, Hufford assumed
that d2Q = dxdy, vhich is tantamount to neglecting (37/3x)> in Eq. (B-28).
Second, he assumed that terrain irregularities were sufficiently gentle
that, except in the exponent, it is permissible to set

r, =X s
(B-29)

The approximation (B-29) is accurate to order cglzg. To within the accuracy
of these approximations, Eq. (B-24) becomes Ed; (8) (p. 6), which {s identcal
to Eq. (11) in Hufford's (1952) original paper.
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Appendix C

INTEGRAL EQUATION FOR UNIFORM, SPHERICAL EARTH

Equation (8) (p. 6) can be used to calculate the attenuation function i
for a smooth, spherical earth of uniform conductivity, o. Somewhat better &
accuracy could be obtained by using Eq. (B-27) (p. 40) and retaining the
full expressions for Ty rl. and rz, rather than the approximate ones

given by Eq. (B-28) (p. 40). In each instance, the curvature of the earth
is accounted for in the function {(x), which represents the deviation of
the earth's surface from a plane. v
The above comments nothwithstanding, certain of the procedures and :
approximations used in Appendix B to derive Eq. (B-28) were necessitated ‘
by the fact that the shape of the surface was not specified. If éne
assumes a smooth, round earth at the outset, a much more direct--and
slightly more accurate-—derivation of the appropriate integral equation
can be given. The major improvement is that spherical coordinates are
used, thereby treating the carth:s curvature in a natural way rather than

as a perturbation to a plane surface.

In spherical coordinates (r,08,4), the three field components generated |
by a radially oriented (vertical) electric dipole located at r=a, 6=0,

are given by

,F g, = (+a%0e?] (m) -, © (e
: 2
i 9
| Ey = T 3ca9 (TV! ’ (c-2)
and
K¢ = few P/ , (C-=3)

where € is the complex dielectric constant and the Hertz potential, V¥,

satisfies

" +1¥)y = 0 (C-4)




except at the transmitter location. In the above equations, r is the
distance from the origin--in this instance, the center of the earth--and
therefore differs qualitatively from Ty» Tpo and Ty which are linear
distances between transmitter and receiver, transmitter and some integra-
. tion point, and integration point to receiver.

Continuity of E and H at r=a implies that

] 9
3¢ [TVl Ui (rv] e
€y (TV] + clrvl R

r=a r=a

Subject to the validity conditions for the impedance boundary conditions
given in Appendix A,

r (vl = .yl aerca
: g
and the boundary condition becomes
= [rv] =-1ks(ry] . (c-6)

which is simply a spherical coordinate version of Eq. (4) (p. 4).

Equations (C-4) and (C-6) may be used in conjunction with Green's
theorem to obtain a two-dimensional integral equation. The steps are
identical to those used by Hufford (1952) for the plane earth, except
that here the volume is bounded by two disconnected surfaces--one a large
sphere with a radius approaching infinity, the other coincident with the
earth's surface except for an infinitesimal hemisphere about the receiver
location. The resulting integral equation is

or
¥(rg) = 20,+5 fdm(:) l}-—i'+(l+-k:—)34r.]' (-7

SV
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where the integral is taken over the surface of the earth and wo is the
free-space Hertz potential.

We let
ikr
2 1
"o(rl) - COnsto rl s (c-a)
and

where, as above, W denotes an attenuation function accounting for departures

from the situation where the earth is flat and of infinite conductivity.
Insertion of Eqs. (C-8) and (C-9) into Eq. (C-7) gives the following inte-
gral dquation for W.

\

T ik(r,4r,=r.) r
W(to) - 1+-%'-k;fdAW(r1) '-'122 e 17270 [&--ki?-{-(lq._i-.)_l] ¢

(C-10)

Equation (C-10) is formally nearly identical to Eqs. (B-6) and (B-7),
the extra term in the square brackets of Eq. (C-10) resulting from the
polar spherical coordinate system. For a smooth, round earth, hovuver,

explicit functional forms can be given for dA, r 2? etc., rather than

ol
expressing them in terms of the unspecified tert:in function, g, and its
derivatives. These function forms permit the transverse part of the
surface integral to be performed without having to use a full-fledged
stationary-phase approximation.

We thus write (after considerable rearrangement)

2

dA = 3"siné d6 d¢ ’ (C-11)
T, * 2a sineolz " (c-12)
T, = 2a sin6/2 ’ (C-13)

A 1 I i

1
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T, = 2 a [1-cos® coseo- sind sineo cosﬂl/z . (C-14)
ar
2 1 1/2
_— = <= [1-cos® cos8_ - sind sind . cos¢] (C-15)
R 0 0 .
or
12 o B -
r, or 2a , yErasa
r=a

where [60,0] and [06,¢] are the angular locations
_ integration point on the surface of the earth.

of the receiver and the

Substituting Eqs. (C-11)

through (C-15) into Eq. (C-10) gives the following form for the integral

equation
- sing /27 2ika[sin6/2 - sin8./2]
W(Oo) - 1+[%] V2 af de sing W(8) [:i-n_e(/)_Z-]. 0
0

i o i
[o- vzass F 10,
where
% e1./2- ka(A-B cos¢]ll2
I(k,8) -f dé 172
0 [A-B cosd]
and
A= 1-cosé coseo ’
B = giné -meo .

(c-17)

] (6'18)

(c-19)

(c-20)

Note that although the earth's surface is azimuthally symmetric, T,

depends on ¢ and a transverse integration (C-18)

must be performed.
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Equation (C-17) is much simpler, however, than a full-fledged two-dimen-
sional integral equation because the unknown function, W, depends only on
6. The transverse integral, I(k,8), depends only on known quantities and
could be tabulated via numerical integration, i.e., I(k,8) is a known
function of 8 that need not be determined as part of the solutiom process.
Further, note that the only approximation used to derive Eq. (C-17) is
the application of the impedance boundary conditions, and that numerical
solution of Eq. (C-17)--in conjunction with numerical tabulation of I(k,8)--
would give W(8) to the accuracy of the impedadce boundary conditions.
However, as is evident from the close agreement of the numerical results
given in Sec. III with those computed by other authors using the residue
series, an asymptotic approximation to I(k,8) gives good accuracy, and
removes the need for numerical tabulation.

It is well-known, and was shown in Appendix B, that omnly the first
Fresnel zome contributes significantly to the received signal, provided
that the surface contains no abrupt nonuniformities in either shape or
electrical properties. The angular width, A¢, of this zone is of order

l1/2

Adp = [)‘/ro s (C-21)

which is small provided that the transmission pathlength is at least several

wavelengths. Thus, subject to a postertori justification we use

cosp =1- ¢2/2 ¥ (C-22)

in Eq. (C-18), which results in the following form of I(k,8):

2]1/2
(c-23)

T
1kavB[2(A-B)/B+$
1= 7¢2/B de & =173 :
[2(A-B)/B+$"]

Further, since large values of ¢ are unimportant, the upper limit can be
changed from 7 to =, and Eq. (C-23) can be approximated by
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7 ika/B[2(a-B)/B+%1M/?
I = Lim V2/B f de £ cosbé (Cc-24)
0

b0 [2(a-B) /B+21 /2
which is of the standard form (Gradshteyn and Ryszhik, 1965)

2..2.3/2

r Jip[n“+”) ) 2
f dé 2 173 cosb¢ d¢ = "?i Hl (m pz-bz ) > (c-25)

/ [m2+¢2] 0

where the positive square root is taken and Hz is the Hankel function. It
follows that

I(k,8) z-‘lzi V278 ‘% (/i ka /Fi) (c-26)

or, after using Eqs. (C-19) and (C-20),

- v 5 corns e -e
_m 2 1 0
e 2 Ho(“‘“‘i" 2 ) e i

0

—
n

3

o2

'/ 2 1 °'°6
Ce R e B W M L

0

The argument of the Hankel function is krz (see Eq. C-14), evaluated at
$=0, and may be assumed large enough to use the asymptotic expansion of

the Hankel function. Thus, to order l/ka siné, substitution of Eq. (C-27)
into Eq. (C-17) gives

i e o~
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1/2 r sin s /2a | 1/2
P -wi/4 ds_ 0 sin s/a
ey % 1 [21:] i e W) |3 s/2a 8,8
sin so/a sin( g )
: 8,78\ | 22ka(sin s/2a - sin 90/234-[sin (s-so)/Zil)
. 6+sin( = ) e » (C-28)

vhere s denotes great-circle distances along the earth, and we have used
6=g/a, etc. For s < Sy the integrand oscillates very slowly, as can be
seen by the fact that the exponent vanishes to first order in 30/ 2a.

0 however, the integrand oscillates very rapidly, as can be seen
from the fact that the exponent is 2ik(s-s,) to first order in aOIZa.
Thus, we write for the final form of the integral equation for a smooth,

( For s> s

round earth

’ W(ac) 2 1—[—;— - ‘-"il-l' ds W(s) sin 30/2‘ sin s/a 1/2
E T /7 sin s/2a 8,™8
E 0 sin (sola) sin >a

y (C-29)

852 28ka(sin s/2a - sin 30/23+sin (so-s)/Za)
L 6+sin( %a )e

which is Eq. (11) on p. 11l of the main text. The correction terms to Eq.

' (C-19) are extremely tedicus to derive, and are not really needed, because
the excellent agreement between numerical solutions of Eq. (C-29) and
available results from the residue series is an adequate accuracy check.
Nenetheless, we point out that by following steps analogous to Eqs. (B-13)
through (B-17), we find after considerable algebra, that the fractional
error of Eq. (C-29) is of the same order of magnitude as the error term
given by Eq. (B-24).
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Appendix D

NUMURICAL SOLUTION OF EQS. (8) AND (1l1)

METHOD

Both Eq. (8) and Eq. (l1) (pﬁ. 6 and 11) are instances of the Volterra
integral equation of the second kind: % ey,

x
W(x) = g(x) + f W(s)K(x,s)ds 1 (D-1)
0

We solve this equation iteratively using the well-known method of Picard.
Starting with the initial guess Wo(x) = g(x), successive approximations
wl, }12, ..+ are found such that

x
wj+1(x) = g(x) + [ Wj(s)K(x,s)ds.. 3 (D-2)
o :

Iteration continues until two successive approximations differ by less
than some specified tolerance. Volterra integral equations and their
solution by Picard's iterative method are discussed by Colia:z (1960) .

The difficulty with the solution by Picard's method lies in the
repeated evaluations of the integral in Eq. (D-1). From Egs. (8) and
(11), it is seen that the kernal, K(x,s), viewed as a function of s with
x fixed, is singular at the endpoiuts of the interval (0,x). Both Eq.
(8) and Eq. (11) can be rewritten in the form

x
W(x) = g(x) + f W(s)H(x,3) ds ; (D-3)
S /x(x=8) :

*‘rhi.s procedure is possible for Eq. (l11) because sin(s/2a) and
sin (52‘-"-'-) have only first-order zeros near s=0 and s=x.
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; where H(x,s) has derivatives of all orders. A Chebyshev-Gauss quadrature
| Z : -
I is used to evaluate the integral in Eq. (D-3). For each iterationm, ws,
we take
W, (s)H(x,s) 2 :
f J——-d,-z.,:;fjtsiwnn : (0-4)
8 X-S 3
1=l
]
where :
fj(a) = Wj(s)u(x,s) ]
(D-5) :
s mX,.X cos(2i-L)w
{ s e T 2n ’
E
and
Rn ~ (Zn) () 0<g<x . (D-6) |
* 2 (Zn)! $
] Here, Rn is the remainder term corresponding to the computational error !

incurred by use of a finite number, n, quadratures. Note that this remainder
is zero, and the integration exact, when f is a polynomial of degree less

than 2n. The Chebsyhev-Gauss quadrature is described by Krylov (1962).

IMPLEMENTATION E

The code used to solve Eq. (8) and Eq. (l1) is written in FORTRAN. |
The function Rj, represented as a vector array of chosen length, mathe-
matically corresponds to representing the successive approximations to .

|

‘ {

the solution as a piece-wise linear function. The code user selects the (1
|

tion. Iteration according to Eq. (D-2) continues until a pair W, and W

number and widths of the steps in the approximating piece-wise linear func- e |
b j+l i

are found that satisfy the inequality

B o - il on |
o N__ =1 GEL TN ii
max '




where Nmax is the number of values in the vector array approximating W,

th step, and T is a chosen tolerance. Thus,

Xy is the value of x at the N
our convergence criterion demands that the rms difference between two
successive iterations be less than the chosen tolerance.

A Most of the results given in the main text are obtained with a
convergence tolerance of 10-4, and were run on a CDC 7600 computer. The
running time required to calculate W as a function of distance depends
on the propagation pathlength, ground conductivity, wave frequency,
number of quadratures, Nmax’ and T. The running time tended to increase
as the frequency increased or the conductivity decreased. For example,

g for r-lo", 11 sec of running time was required to calculate W out to a

distance of 2000 km for a conductivity of 4 mhos/m and a frequency of

100 kHz. Reduction of the frequency to 20 kHz reduced the running time

to 8 sec; but, for 100 kHz, decreasing o to 2::10-'s mhos/m caused 18 sec

of running time to be required tocalculate W out to only 50 km. Of course,

at 100 kHz, about as much attenuation occurs for 50 km of propagation over

ice (2::10.5 mhos/m) as for more than 1000 km over seawater (4 mhos/m).

Thus, the running time required to compute a given amount of attenuation

does not vary drastically.
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