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PREFACE

The bulk of this report was originally

published under the title “Finite Element Solutions

of Free Surface Flow s ’1 in the Sixth NASTRAN Users 1

Colloquium , NASA Conference Publication 2018,

Oct. 1977 , pp. 27-52. (Held at NASA-Lewis Research

Center , Clevelan d , Ohio , 4-6 October 1977.)
Of The work was supported by the David W. Taylor

Naval Shi p Research and Development Center under

the In depen dent Research Pro gram , Projec t Z014020l ,
• and by the Naval Sea Systems Conuiiand under the

Mathematical Sciences Program , Subproject SRO14O3O1 .
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ABSTRACT

This paper presents a procedure for using NASTRAN to
determ i ne the f low f ie l d about arb it ra r i l y sha ped bodi es
~n the presence of a free surface. The fundamental un-
known of the problem is the velocity potential which must
satisfy Laplace ’s equation in the fluid region . Boundary
con di t ions on the fre e su rface may i nvolve secon d or der
deriva tives in space and time . In cases involving infinite
dor~ains either a tractable radiation condition is applied
at a truncated boundary or a series expansion is used and
matched to the local finite elements . Solutions are pre-
sente d for harmon i c , transient , and steady state problems
and compared to either exact solutions or other numerical
solutions.

INTRODUCTION

The pressure distribution and flow field about submerged bodies are
i mportant in the determination of hydrodynamic vari ables such as lift and wave
resistance and the calculation of boundary-layer characteristics. The
investi gation of these variables can be realistical ly modeled by assuming the
fluid to be inviscid and incompressib le. In this case the equations of motion
can be reduced to the solution of Laplace s equation in the fluid region. The
linearized free surface condition (small wave amplitude ) may involve second
derivatives of the veloc i ty potential in both space and time and considerably
complicates the problem . The free surface flows investigated in this paper can
he divided into three areas: harmonic , transient , and steady state .

An exhaustive list of literature for forced harmonic motion or diffraction
problems may be found in Wehausen (ref. 1). Problems of this type were
generally solved by using a distribution of sources or dipoles on the body
boundary with an appropriate Green ’s function for the problem . The boundary
condition on the body is used to determine the strength of the source distri-
bution (for example , Hess and Smith , ref. 2). Such solu tions are appropriate only
for problems of infinite or constant depth.

Ba i (refs. 3-6) uses finite elements to model both harmonic and steady state
problems of arbitrary geometry. Similar methods which employ variational
funct ionals have been used by Berkhoff (ref. 7) and Chen and Mei (ref. 8). For
steady state problems Bai developed a localized finite element method (ref. 6)
i n wh ich f i ni te elemen ts are use d i n a local i zed regi on aroun d the body an d a
series expansion is used in the rema i nder. The finite element representation
is matched to the series expansion along the common boundary to form a consistent
set of equations for the nodal potentials and series coefficients .

Finite element solutions for transient free surface flows are given by
Visser and van der Wilt (ref. 9). Unfortunately , for the transient prob lem
there seems to be no suitable method to construct a completely absorbing
boundary in cases involvi ng radiation conditions. For that reason truncated
boundar ies are taken far enough away so as not to affect the region of interest.
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The purpose of this paper is to demonstrate how the structura l analysis
computer program NASTRAN (refs. 10-Il) may be used to implement finite element
procedures for modeling the three types of free surface problems described
above . The use of NASTRAN is motivated by the wide-ranging capability , con-
ven ience of use , and availability of this general purpose computer code . The
va riety of finite elements available in NASTRAN permits the method presented
here for 2-D and axisyninetric problems to be routinely applied to complex 3-D
geometries of naval and marine interest. In contrast with specialized progranining
efforts , NASTRAN implementation of the finite element procedures is enhanced by
a variety of pre- and postprocess ing programs (ref. 12) which include capabilities
for automatic data generation , data checking via interactive graphics , matrix
bandwidth and profile reduction via grid point resequenc i ng, and contour plots
(in the case of scalar variables such as velocity potential) of computer output.
In addition , the NASTRAN capability to model free surface flow problems is
currently being exploited to investi gate the coupled fluid-structure interaction
problem involving fluid flow about an elastic body near or on a free surface.

FREE SURFACE EQUATI ONS

For an inv i sc id , incompressible fluid in an irrotational flow field , the
equations of motion and continuity reduce to

(1)

where ~ is the veloc i ty potential (ref. 13). The pressure p in the fluid can
he determined from Bernoulli’ s equat i on ,

- ~~- = -~ -~- + -~- 1(~!)~ + (~±)21 + 2
~ ~t 2 L ~x ‘~y ~ 

gy

where p is the dens i ty of the flu id and g i s the grav i tat i ona l constan t. In
Fi g. 1 the deflection of the free surface ‘~ is assumed to be small compared
to the depth d. In that case the linearized conditions on the free surface are
(ref. 10)

on y=O (3)

and

= - 2. - gn on y=O (4)

The surface elevation n may be eliminated from Eqs. (3) and (4) at the cost of
increasing the order of the time derivatives by one. This gives

u1z r _ i ~ 2.. g~~! ~ y=O (5)
0

Once the potential • is determined , the surface elevation i~ may be determ i ned

2 -
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F ig ure 1. Free Surface Wave

HARMONIC FREE SURFACE PROBLEMS

2-0 Wave Maker

Consider the 2-D wave maker shown in Fig . 2. At x=O , a wall is oscillating
in simple harmonic motion wi th velocity V. For the harmonic problems , assume

V

~~ FREE
—~~~~~~~~~~~~~ ‘~~ SURFACEan~~~

OSCILLATING TRUNCATED
• WALL . II BOUNDARY .

fl c~~2O .,,0
- 

• a 0 - I%~I
2L (1X
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Figure 2. Geometry and Boundary Conditions for 2-0 Wave Maker
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~( x ,y,t) ~(x ,y)  e~~
t (6)

and
p 0 on y = 0 (_ ‘ )

Then Eqs. (6) and (1) give

(S )

Us ing Eqs. (5). (6), and (7), the free surface coiidition becomes

-
~~~ L~~ on y O  (9)

At the wall ,

V on x = 0 (10)

and , along the bottom ,

= 0 on y -d -L (11)

The solution of this problem can be obta i ned by separation of variables
(see Ba i , ref. 3) and is given by

—~~‘ 1~~ -“ _
~*~x

~(x ,y) = A cosh (y+d)e U A cos (y+d)e I~
0 0 1 N N

where 
= 

~~~~ 

(13)

a = - 

~N 
tan (cINd) for all N (14)

sinh(a d)
A0 

~~~~~~~~~~~~~~ 
(1

sin(ci d)

N 
- 

~
T
~
f2L

~N
dT + 2

~N
d

The first term of Eq. (12) represents a traveling wave in the x-direction .
while the succeedinq terms are local terms that are onl y significant for small
x. Thus

4
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for large x. Eq. (17) is a tractable radiation condition which can be applied
at suitable boundary far enough away from the wall . Eq. (8), together with
boundary conditions given by Eqs. (9), (10). (11), and (17), constitute a well-
posed probl em for Laplace ’s equation.

The boundary conditions Eqs. (9), (10), (11), and (17) all have the form

+ = (1 8)

where -
~ and S are constants. The functional form for Laplace ’s equation with

the mixed boundary condition of Eq. (18) is

F(~) 
l f f ~~~~)2 + (~~~ )

2~ dA + f ~~~~~~ s~)ds (19)

where B i s the boun dary of regi on A . W hen var iat ions are ta ken w i th res pect
to ~ suc h that

~F = 0  (20)

then Eqs. (8) and (18) are satisfied .

Eqs. (19) and (20) can be approximated with finite elements using NASTRAN
structural elements . A or.icedure for using structural elements to model fluid
domains which satisfy the wave equation (or, as a spec ial case , Laplace ’s
equation) is given by Everstine et al (ref. 14), an d has been successfu l ly
applied using NASTRAN on severa l problems by Schroeder and Marcus (ref. 15).
Marcus (ref. 16), and Everstine (ref. 17). A translational degree of freedom
(in this case the x displacement) is chosen to represent the potential ~~,

- • and all other degrees of freedom at a node are permanently constrained . The
l inear i soparametric mem brane elemen t, QDMEM1 (NASTRAN Level 16), was used.
The ma’er i al ma tr i x G an d the mass dens ity ~ of the QDMEM1 elements are chosen
as follows : e

1 -l 0

G = — l 1 0 , 

~e
° (21)

0 0 1

NASTRAN ’s Rigid Format 8, w i th govern i ng equa tion gi ven by

(‘~~2 M +  i w B +  K)~ , = F(w) (22)

is chosen as the analysis method . The stiffness matrix K generated by the
QDMEM1 elements with material properties given by Eq. (21) is equivalent to
the finite element representation of the first term in Eq. (19).

5
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The free surface cond i t ion , Eq. ( 9), corresponds to y = w2/g and ~ = 0 in
the second term of Eq. (19). A consistent formulation for this term is
implemented using NASTRAN by inserting the matrix

(M2PP) 1~~ 
= 

~ 
[
~ ~

] (23)

into the mass matrix M in Eq. (22) usinq OMIG data cards, In Eq. (23), k an d
z represent the two nodes which lie on the free surface for each of the QDMEM1
surface elements , while ~x is the spacing between nodes k and ~~~. The frequency
~ is inserted into Eq . (22) using a FREQ data card .

The radiat ion condition , Eq. (17), corres ponds to ~ = 0 and y = I a
0 

in
Eq. (19). A consistent formulation is obtained by inserting the matrix

r2 ii
~M2PP’ = — i —fl- ~~~~- I I ‘ 

~24~ 2 6 V 2J j=k ,9.

into the mass matrix M in Eq. (22) using DMIG cards. In Eq. (24) k, 9~,and .~yare defi ned as in Eq. (23) except that in this case the relevant boundary
surface is the truncated boun dary .

The bottom condition , Eq. (11), is a natura l boun dary con di tion whic h is
automatically satisfied within the finite element approximation. The boundary
condition at the wall , Eq. (10), is implemented by inserting the vector

F1 
= V ~y , i=k ,t (25)

into the forcing function F(w) in Eq. (22) using DAREA data cards . The
relevant boundary for the quantities k, ~~, and ~y -in Eq. (25) is the oscillating
wall .

The above procedure was used to compute the fluid response for the
oscillatin g wall probl em illustrated in Fig. 2. All  data -is presented in non-
dimensionalized form usin g the length L and the velocity V. Results are
shown in Fi g. 3 for dimensionless spacing Ax = 

~y = .0625 which corresponds to
approximately 10 nodes per wave length for the linear elements . In Fig. 3,
the amplitude of the surface elevation is plotted . The NASTRAN solutions
obta i ned by both consistent and lumped formulations , as wel l as the analy tic - -

solution , are presented . The l umped formulation is determined by using
diagonalized matrices in Eqs. (23) and (24) where diagonal terms are determined
by adding together all terms in the corresponding row. The consistent formula-
tion is a significant improvement over the lumped formulation . In subsequent
probl ems only a consistent formulation will be used .
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Figure 3. Amplitude of Surface Ele vation for
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Axis ymmetric W ave Ma ker

The geometry ~nd hotind.i i-
~ ~nd t an— . t or t he i —.vnune t r i Wd~~ t ’ n~i k~’rshown i n I i q . 4 . Bound~i r y  r (mi I t I on~. .ire t he c~I;iie .1k. tO t ’ the ‘— I) wave na Lt’r

except for the additional term in the radiation condition. The radiation
condition is determ~~ed by inve stiq ati nq the exact solution (see Bai • ref . 1)

•(r . z )  = 80H0(ci0r) cOSh i~ (z+ d) + 

~ 
B~ H0 ~~

- 

~ 
i r) cos 

~N (z+d)

4 s i nh (~0d)where B0 = 
H1 (~0r0) ~~TcIn~ ~~~ 

I 
~~~~dy 

(,‘7)

1

____________________________ - ,~a___ • _..j...___ —.__. -__ -__—_ 
. 

— —_-. —.—_- _____ ~L__~~ _ __._ ~~~~~~~~~ ~~~~~~~~~~ ‘— t_�f ~~~ •~~~___ ~~~~~~~ - - 1111111



‘~~~~~~~~~~~~~ ~~~~ ~~~ ‘• - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - . - -

z
AXIS OF ~~~REVOLUTION an~~i FREESURFACE

—~~~~ _ _ _ _

TRUNCATED
BOUNDARY ,

PULSATING -a
CYLINDER , V2o~ o L 

o n (— 1/2 . — i  
~~~

.SL

an

a 2.5L

Figure 4. Geometry and Boundary Conditions for
Pulsa t i ng Cyl inder

— 

41 sin(ci~d)
- 

H
l

( _ C L
N 

rO)aN{sin aNd + 2 a Nd
~ 

(28)

an d where ao and a
~ 

are given by Eqs. (13) and (14), r0 is the inner radius of
the cyl inder , an d H0, H1 are Hankel functions of the second kind of order 0
and 1. respectively. The fi rst term of Eq. (26) is an outgoing wave and the
second terms represent local disturbances. Thus it can be shown that

= - f + i a~ } ~ for lar ge r (2 9)

where a is defined in Fig. 4.

This problem was modeled using NASTRAN ’s Ri gid Format 8. CTRAPRG
elements were used (Everstine , ref. 17) wi th dimens ionless spacing given by
Ax = Ay .0625 (all variables are non-dimensionalized with respect to V and L).
This corresponds to approximately 10 nodes per wave length. Results showing
the amplitude of the surface elevation along the free surface are presented in
Fig. 5. These results are based on applying consistent boundary conditions ,
and are in good agreement with the series solution .
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Refraction Problems

A surface wave , given by
l(Ut-c*0

x )
o(x ,t) = A e (30)

is incident upon the bottom obstacle shown in Fig. 6. The potent ial
corresponding to the incident wave is given by

~1 (x,y) = 
A
~
9i COsh (d )  

e~ 
aO x 

(31)

where 
~~
, a,~, g,and d satisfy Eq. (13). In order to determine the total

potential • of the fluid correspond ing to the incident wave, the potential  ~is divided into

~~~~I ”4 ’R (32)
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Figure 6. Geometry and Boundary Conditions for
Refracte d Waves Due to a Bo ttom Ob stacle

where 
~ D i s the refracted poten tial . The boundary cond iti -Dns and governing

equatioI~s on are shown i n F i g. 6. All va riables are non -dimens -onalized
with respect to the length 1 and frequency 4~~ and bounda ry conditions are
specified in a consistent formulation.

The NASTRAN results shown in Figs. 7 and S are presented for dimensionless
spacing • \X = .125 and ~y = .0625,wh ich corresponds to approximatel y 41 nodes
per wave length. These results compare favorably with the finite element
solution recently re-computed by Bai as a correction to his orig inally
published (ref. 5) results. Accuracies within 4. have also been obtained using
coarser grids of 10-20 nodes per wave length.

A similar free surface probl em is illustrated in Fig. 9. The di mens i onless
spacing used was Ax = Ay = .l25 ,which corresponds to approximately 42 nodes per
wave length. Again , the NASTRAN results shown in Figs. 10 and 11 compare well
with the finite element solution recently re-computed by Bai (ref. 5).

TRANSIENT PR OBLEMS

Consider the transient free surface problem shown in Fiq. ~ illustrating
the time dependent pressure distribution on the free surface . T he pressure
d istribution is given by

p(x ,t) = P(x) sin ~t. (33)

10
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where
P0 0 ~ x ~ 0.3

P(x) = 

4 [1- sin ( ~~x-O~5) )]  0.3 ~ x ~ 0.7 
(34)

0 x ~ 0.7

and where P0 is the maximum pressure.

Initial conditions which could he —.p ecit led 1 n the t ree surface are

= f1 (x) y 0, t = 0 (35)

and n = f 2 (x)  y = 0, t 0 (36)
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Eqs. (35) and (36) must be put in terms of ~ and ~~/~t since thi s i s the only
suitable input to NASTRAN . Specifying ~r~/~~t on y=0 is equivalent by Eq. (3) to
specifying 3~/~y on y=O. Then Laplace ’s equat i on may be solve d w it h the
boundary conditions shown in Fig. 12 , except that a~’/~y is specified on the freesurface. This wil l  determine ~ everywhere initially. Similarly, specif y ing n
on y=O is equivalent by Eq. (4) to specifying ~cI/ 3t  on y=0. Then the procedure
jus t descri bed may be repeated to determine ~~/~t everywhere initial ly, since
a/at also satisfies Laplace ’s equation and the boundary conditions shown in
Fiq. 12 (not includ i ng the free surface condition). This determines t and
a~’/~t everywhere initially.

The variational form for the free surface problem shown in Fig. 12 , based
on Hamil ton ’s principle (see Courant and Hilbert , ref . 18), is

ti ti tlf 
~~

_

{ (~~ ) 2 + ( ~~ ) 2 }dA dt ÷ f ~ (i.~~l: +~~)ds dt + 
~ ~ree~~~~~~~~~~

t

Surface
+ I f  ~ dx dt (37)

O Free pg
Surface
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where B is the boundary of the region A . and all qeometric boundar y condit ions
are enforced . If variations of F(~ ) taken witr~ respect to ~ equal zero.
Eqs. (1), (5), (18), (35). and (36) are satisfied for zero initi a l conditions
(frf2=0 in Eqs. (35) and (36’). Non-zero i n i t ia ~ ~ ‘ndi tions can be easil y
incorporated into Eq. (37).

The finite element representation based on Eq. (37) was implemented us incl
NASTRAN by modeling the fluid with QDMEM 1 elements where material properties
are given by Eq. (21). Any translational degree of freedom can he used t1
cor res pond to ~~ . but all remaining degrees of freedom are permanently con-
stra i ned . The analysis method chosen is MASTRAN ’s Riqid Forma t 9, with t~egoverning equation given by

+ B~ -‘- r ( t )

The stiffness matr ix K generated by the QDMEM1 elements is equivalent to the
finite element representation of the first tern of Eq. ~37).

The last two terms of Eq. (37) represent the free surface , ondi t ion and
may be incorporated into NASTRAN as follows : Let .~ for any poi nt on the fret ’

14
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surface be ~~ven by

‘ Y N 1 ~‘ . (39)

where N 1 is the shape function for node I and +- ~ is the noda l potential. Then
the finite element formulation for the third term of Eq. (37)  is Imp lemented
using NASTRAN by inserting the matrix

- 
1 

,~ 
N 1N . d~ (40)

~ 9 Free ~
Surface

into the mass inatri~ M in Eq. (38). The fin it e element representation of the
last term of Eq. (37) is implemented usin g NASTRAN by insertin g the vector

F
1 

- J ~ M~d~Free ~ -

Surf ~~

into the forc i ng function F (t) In Eq. (38).

Referring to Fig. h’. the natura l boundary cond ition ~~/~n R O
S I1I5 t o  .~ ~ 0 On t Pit ’ hot t 0111 ~SIid 1 Of t S ~~ t ’ 1 ‘~ ,lu t 0 110 t 1 ~~0 11

1 ~
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satisfied . The geometric boundary condit ion ~ = 0 is implemented h~. constrainin g
- j =0 at all nodes i on the downstream boundary .

The above procedure was used to model the geometry and boundar y cond it ions
shown in Fig. 12. All variables have been put in dimens ionless form us ing the
pressure P0, the depth L, and the gravitational ~.onstant q .

i n

- ~~~~~- -~~ --_ ~~~~~ - - — - 
- —~~~~~~-



- ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~ ~~~~~ I. ,

15

T hi s proc e~.1 u rt’ Wd’. used t mode I the qe&wne t ry and tsounda r c ovid i t s ~~
shown in F i . I.

’ . QL)MF Ml ~‘l emen t s we re used with d 1 inens ion less spa c 1
a 0 .1  to 0.5 , and .\v ø..’~ , thi s would correspond to appro~ i inate~ y 13 to t~L~

nodes per wave length , where the wave l~ n~th i s  based on the steady state
problem . A ~lilner1s ionless time step of ~t .1 was used . Rules of thumb t~~ r

estImatirl ~) spaHrvq and t line step s ore given b~ V i s s t ’r and van der Wilt (re t . ~fl -

In th is  ~ast ’ appro~ si nate lv t~O t s ine st ~ps per period of the f o r c i ng  tunc t iou

~~~ used .

In Fig . 13. the NASTRAN resu lt  S 0I~~’ couiipOl’ t’d to a F o.ii’ier se ri es solution
given by HaUsSliI ig and Van Iseltin e ~,rt - t  - H’ - The wave -it’iy hts are in good
agreement w ith the se r ies  so lu t io n and illustrate the capabilit y of NASTRAN t o
model transient water wave problem s .

ST E AD Y STATE PR OBLEM S

Cons ideI the s tead~ st aft ’ problem s hown in F s . 14 where a ~ 1 nder ot
diameter I is moving at constant vel oci ty U below the free surface . Stead’, state
solutIons are sought for whi ch all var iables are i ndependent of t inse when
referenced to a coordinate system movin g with the hod~ , that is , the ~~~~~~

coordinate svc tev r i  shown in Fig . 14. ~n th i s coord m ate s y s t e m  it co,i he s hown
that the potential ~ mus t sa t  i st y Lap i ace s t’quat S oi~ , and the free sii v ’ face
condition e~prt’ssed in Eq. it’ ) becomes ~with p -P on free surface)

-
~~~ — 

I) 4~~

The boundary condition on the r i g i d cylinder shown in Fig. 14 is

— U cos ~ ~4 3 )

where o I s the ang it’ between the ~ - di rec t ion and the norma l to the both di rec ted
out of the flu id. No upstream waves are allowed and the Froude number ,

is such that downstream waves are allowed ~see Bal , ref . t i). Covisi de rable
effort was devoted to developivig t ract a ble radiation cond itions for the up-
stream and downstream boundar ies, result ing in the concl usion that none were
possible. For this reason a se r ies  expansion is used in the regions beyond the
upstream and downstreani truncated boundaries and matched (at these houndarie~~to the finite element soluti on . T h i s  technique was developed and successfulh
applied by Bal for both steady state problems ~ref . 6) and frequency response
problem s (re f . 4). A similar finite element—series expansion tech niqut ’ tor an
acoust ical fluid has been implemented usin g NASTRAN by :arda ~~ -e 
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It can be shown , using separation of variables , that downstream from the
body

N+ 3
= : A .  f .  (44 )

j=l ‘~

where

cos cz~ (y+d)e 3 1 ~ 
j ~ N

1 j = N + l

f. = cosh cz0
(y+d) (45)

cosh cz0d~~~ 
COS X = N+2

cosh a0(y+d )

., 
cosh cz0d 

Sin ct0x j = N+3
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and

= tanh d , - = tang O  0 g ~ 
j

Upstream from the body ,

N+l
= ~T B . f .  (46)

~)

The sign in the exponential is (+) for the upstream boundary , and (-) for the
downstream boundary . Furthe rmore , N is the number of series terms chosen
(the same number is assumed upstream and downstream , although this is not
necessary), and d is the depth. Eqs. (44) and (46) satisfy Laplace ’ s equation
and the boundary conditions on y=O and y= -d. The first F~ terms rep resen t local
terms that decay away from the cylinder , and the last two terms in Eq. (44)
represent an outgoing downstream wave ; no such waves are allowed in the upstr ‘rn
ex pans i on .

Consider the variational functional given by

S - XBF(~ ) = ~~ f ~(~~) : + (~~y~-dA - 
~~

— I (~-~~~dx + f U cos~~dsA - - g x,~ Body

Free (47
Surface

- f [-
~~

] ~dy - J E - ~-- 

~dy - ‘
~~x~~B 

+

Upstream - x=-x Downstream - x=x g - g

L R x=x x xX = X
1 

x _ X
R R L

y=O y=0

where points A and B and boundaries X L and xR are definea in Fig. 14 , and
n is the normal to the boundary directed out of the fluid. If independent
variations of F with respect to 

~~~
, ~4.and ~B 

are set equal to zero , then
La p lace ’ s equation and the boundary conditions shown in - Fig . 14 are satisfied ,
and a~/~n i s con ti nuous on the u pstream an d downs tream boun dar i es . No
var iations of the bracketed expressions in Eq. (47) are allowed , and these
expressions can be evaluated in terms of the series coefficients by taking the
appropriate derivatives using Eqs. (44) and (46). This will increase the
num ber of unknowns by the number (2N+4) of series coefficients. The correspond-
ing additional equations come from requiring tha t the potential ~ iscontinuous at the upstream and downstream boundaries. Let the finite element
representation at the truncated boundaries be given by

NN
= ~: N 1 ~~~

. (48)
i=1

where NN is the number of nodes on the truncated boundary . Then , for continuity
of ~ on the downstream boundar y, it is requ i red that
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NN N+3
E ~~ 

= 1 Akf k 011 X=X R1=1 — k=l

and on the upstream boundary

NN N+l
E N.e .  = 

~ 
B~f~< 

on X X
L 

(5 0)
i=l 1 1 k=l

Eq. (49) is multiplied by f , j= l to N+2 , and integrated ‘from -d to 0. This
gives a system of equations~

NN N+3
~~ = 

~ 
H

,
~~~~ A k On X=X

R 
(51)

i—l k—l 
,
~ 

1 to N+2

where
0

G1. = f N
~

f .dy i = 1 to MN (52)
‘~ -d ~ j - = l t o N+3

and
= f f.f dy j,k = 1 to N+3 (53)

~

Eqs. (51 ) are N+2 equations involving the N+3 unknowns Ak. Multiplying Eq. (49 )
by 

~N÷3 
and integrating from -d to 0 aoes not determine an independent equation

since 
~N+2 is proport ional to 

~N+3 for fixed x.

Multiplying Eq. (50) by ~~ j= i to N+2 , and integrating from -d to 0 g ives

NN N+1 x x

1
~~

1
~~ij i  

k~ l
Hj kBk j = 1 to N +2 (54)

Eqs. (54 ) are N+2 equations in the N+l unknowns Bk. The additional equation ,
determined by multiply ing Eq. (50) by 

~N+2~ 
corresponds to the condition that no

upstream waves are al lowed (see Bai , ref. 6 ). Eqs. (51) and (54 ) give the
additional 2N+4 equations involving the 2N+4 unknowns A~ and B3.

The procedure just described can be modeled using NASTRAN . CIS2D8 elements
are used to model the fluid (see refs . 21 and 22).  These second order iso-

• - parametric elements with the material properties given by Eq. (21) determine a
stiffness matrix equivalent to the finite element representation of the first
term of Eq. (47).

The second term of Eq. (47) is modeled using additiona l CIS2D8 elements
along the free surface as shown in Fig . 14. For these elements , the height in
the y-dlrection is unity , and a l l  nodes hav ing th e same va lue  of x are con-
stra i ned to move together. This is equ i valent to having 1-0 isoparametric

20
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e lements along the free surface . The material properties for these elements
are given by Eq. (21) except that the material matrix G is multiplied by the
constant factor (-U~/g).

The third term of Eq. (47) represents a loading term. It is implemented
using NASTRAN by entering

F = - f U cos ~ N~ ds (55)
Body

as nodal forces , whi-re N 1 is the shape function for node i on the body .

The fourth and fifth terms of Eq. (47) represent coupling terms at the
upstream and downstream boundaries. Using Eqs. (44) and (46) to determine the
norma l derivatives , the ‘m ite element modeling yields , fo r the downs tream
boundary ,

N+3 0 3f.
(KZPP)1 - = f - N~ dy j= 1 to NN ~56)

-
, 

~ j=l -d -X 
X _ X

R 
j= 1 to N+3

where the matrix K2PP is added to the stiffness matrix. In order to implement
this condition , N+3 sca lar unknown s A~ are created using SPO INT data cards .
Then the matrix term (K 2PP ) 1 . in Eq. (56 ) refers to node i on the downstream

• boundary and to the SPOINT rè~resentation of the unknown A3 . Similarly, for the
upstream boundary

Nil 0 af
(K2PP) 1 . = 

~ J - --
~~

--
~~

- N~ dy i = 1 to NN (57)
~ j l  -d X 

x= X L i = 1 to N+l

For the last two terms in Eq. (47) ,  the f inite element representation
yields

-~f.(K 2PP)
B J  

= - 
~~~~

- ---

~~~~~
• i 1 to N+3 (58)

(K2PP) A j  = ~~~~ - j  = 1 to N+l (59)

Eqs. (51), (54), and (56) through (59 ) are entered into NASTRAN using OMIG cards
an d comp lete the set of equa ti ons to solve for the nodal potent i als  an d the
upstream and downstream series coefficients. NASTRAN ’ s Ri gid Format 1 (Static
Anal ysis) does not accept DMIG cards. Therefore , Rigid Format 9 was used for
one time step. (Since no mass or damping matrix exists , static equilibrium is
reached for any time step.)
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Computations , with all quantities being non-d imensionalized with respect
to the cylinder diameter L , veloci ty U , and f luid density ~~ . were carried out
using NASTRA N for the grids shown in FIgs . 14 and 15. Eac h mes h has app rox i-
mately the same number of un knowns s i nce the ser i es solut i on i s used for

x ~ 3.0 on the coarse grid and for x ~ 1.5 on the fine grid. Approxi-
mately 9 and 17 nodes per wave length were used for the coarse and fine grids ,
respectively.

Wave height along the free surface is plotted in Fig. 16. Resul ts  for both
the coarse and f ine NASTRA N grids are seen to compare favorably wi th a solution
obtained by Giesin g and Smith (ret. .‘$) using a distribution of sources. The
solu tions shown here all satisfy the condition that no upstream waves are
allowe d. (In this case, since the Froude number based on the depth is less than
one , downstream waves are generated.)

The pressure distribution on the cylinder may be determined from Bernoulli ’ s
equation . Assuming the flow abou t the cylinder is steady, then , in the x-y
coordinate system that is moving wi th the body , Eq. (2) becomes

p = — 
~u :~ 

— 
~~~~~~~~~~~~~~~~ (60)

Fig. 1 7 i l lustra tes a p lot of the di mens i onless p res sure as a funct i on of the x
coordinate on the surface of the cylinder. Results are shown for both tne fine
and coarse grids shown in Figs. 15 and 16. The discontinuit ies of the curves
occur at element junctures on the cylinder. Although the potential ~ isnecessarily continuous, ~~~~ and a~/ay are not necessarily continuous withi n
the finite element approximation , and discontinuities in these terms are
magn ified in determining the pressure in Eq. (60). Also shown in Fig. 17 ‘is a
table showing computed values of the wave resistance and lift coefficients ,
C0 and C1, defined by

(~U
2L)C 0 - f pdy (61)

Body

(eU L)CL 
= J pdx (62)

Body

The v t I u’’- of C0 a rid C1 compu ted us i rig NASTRAN c oinpo i’ t ’ tavora bi v wit Ii t host’
91 vt ’ ir by Gi t’S I ri~ and Sin i t  Ii (re t  . .‘i) ‘1

CONCLUSION S

The problems Illustrated here demonstrate the capabil i ty of NASTRAN to
successful ly model linearized free surface flow problems for harmonic , transient ,
and steady state cases. Al though the results presented here are for arbitrary
2-0 and axisyninetric geometries, the procedures described are directly
applicable to 3-D flow problems and readily extendab le to the coupled problem of
fluid flow about an elastic body.

L.
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The steady-state flow due to a cylinder moving be l ow the free surface
• was computed using the technique of coupling finite elements with a classic al

method at an appropriate cornon boundary. Finite elements are used to model
irregular geometry over to some specified regular boundary , and class i cal
solut ion methods are used beyond this boundary . The coupling of the series
solutions to the finite element model may be regarded as determining a stiffness
matr i x for a “class ical f i n i te element. ” Such “elements , if available in the
l ibraries of finite element computer codes, would broaden the range of problems
effic iently handled using finite elements. Furthermore , the enhancemen t of the
NASTRAN capability described here may be used to investigate the coupled

24
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problem of fluid flow about an elastic body near or on a free surface. In
such a case both the structure and surround i ng fluid would be modeled using

- existing NASTRAN elements and would he coupled at the fluid-structure
interface.

25
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