DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/6 20/4
NASTRAN IMPLEMENTATION FOR FREE SURFACE FLOW PROBLEMS.(U)

AD=A0S57 260

AUG 78 P R ZARDA» M S MARCUS
UNCLASSIFIED DTNSRDC-TBIOGS

i.

END
DATE
FILMED

9-78




= e

N2 flis mee

l










e,

i
4
1
|

C/ ; P. Rlchard/Zarda and Melvyn S /Marcu l
- ___,.__———-—-"‘-' 3
9. PERFORMING ORGANIZATION NAME AND ADDRESS / 10. ::ggN‘A:OE“LKEDJ:INYT.NPUR"O.J!E.CST. TASK
David W. Taylor Naval Ship Research ;
and Development Center Program Element: 61152N

SECURITY CLASSIFICATION OF THIS PAGE (When Data Enuull El

UNCLASSIFIED
REPORT DOCUMENTATION PAGE BB iyt o I
C = n RECIPIENT'S CATALOG NUMBER fatine
44|] vTisroc-78/065 7 AR i R S AR R S W
Iy g o 5, “PEMW!/

FLON PROBLEMS s

S

6. PERFORMING ORG. REPORT NUMBER

AéTBﬂN IMPLEMENTATION FOR FREE SURFACE /

7. AUTHOR(s) 8 CONTRACTY OR GRANT NUMBER(»)

Bethesda, Maryland 20084 Gogerhy HEaet 10

11, CONTROLLING OFFICE NAME AND ADDRESS

(/l/? " Auguet 1978 l

37

T4 MONITORINGAGENECTNAME & ADDRESS(/f different from Controlling Office) 18. SECURITY CLASS. (of thie report)
@ i UNCLASSIFIED

SCHEDU

TSa DECLASSIFICATION DOWNGRADING |
L

I76 OISTRIBUTION STATEMENT (of this Repor)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

17. mﬂmwkuwvwmrtmiﬂrmnum 20,44 dittorent trom Report)

'@7( /// a /lé«

j{///// 41, SKILHE AL

= -

19. KEY WORDS (Continue on reverase aide if necessary and identifty by block number)

NASTRAN

Free Surface Flows

Finite Element Method
Fluid-Structure Interaction

20 AIST?ACT (Continue on reverse side If necessary and Identify by block number)

This paper presents a procedure for using NASTRAN to determine the flow
field about arbitrarily shaped bodies in the presence of a free surface. The
fundamental unknown of the problem is the velocity potential which must
satisfy Laplace's equation in the fluid region. Boundary conditions on the
free surface may involve second order derivatives in space and time. In
cases invoiving infinite domains either a tractable radiation condition is 3

(Continued on reverse side)

DD , 55", 1473  eoiTion oF 1 NOV 68 13 OBSOLETE

UNCLASSIFIED /( 5

) SECURITY CLASSIFICATION OF THIS PAGE (When Data Entere.)

\-: )4 7 /7




——UNCLASSIFIED

LLLUMITY CLASSIFICATION OF THIS PAGE(When Date Entered)

. (Block 20 continued)

\
AN|

applied at a truncated boundary or a series expansion is used and matched
Solutions are presented for harmonic,

transient, and steady state problems and compared to either exact solutions
or other numerical solutions.

to the local finite elements.

L] ]
e

P At I

' . - 3
5 = 3

[_ABCESSION o

L TEREE

Whity smm%
b
it Sacticn

7
//

Qs gh

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)




oo

PREFACE

The bulk of this report was originally
published under the title "Finite Element Solutions
of Free Surface Flows" in the Sixth NASTRAN Users'
Colloquium, NASA Conference Publication 2018,

Oct. 1977, pp. 27-52. (Held at NASA-Lewis Research
Center, Cleveland, Ohio, 4-6 October 1977.)
The work was supported by the David W. Taylor

Naval Ship Research and Development Center under

the Independent Research Program, Project 20140201,
and by the Naval Sea Systems Command under the
Mathematical Sciences Program, Subproject SR0140301.

DDC

NP g
Ul aoe 10 1078

s
»)




B T

TABLE OF CONTENTS

LIST OF FIGURES. . cvnviocnniirasnnmessmsdnimaisanssonbonnssomnsnns
BRSTRACT . © oo snsasnumn on orainis sins s amningsas s s s sninessasnsessss
INTRODUCTEON. & & s e s bbb e B AL AN e R B R AT A B AT ARE S hara i
FREE SURFACE EQUATIONS.....coeeeeecneeeetancncasoctocsnocanns

HARMONIC FREE SURFACE PROBLEMS..........cceiiiiiiiiininnnnn.
2-D WAVE MAKER.....ccovcoccsaccoscansconusaninvonnsnsnnnes
REFRACTION PROBLEMS. . cccnscserossnassnnonscnnsnsansansosss

TRANSIENT PROBLEMS. .. cucivecaeessansiactosonanansnasnnnssssnios
STEADY STATE PROBLEMS.....screvssnnsoncrssanmennssonnsssesssso
CONCLUSTONS. . « cvconuesionsnmnvsosnssmsbs et ssmssssssissssssoes
REFERENCES. - - < ..o v oo nesuinvi s univnsnnenasiowsivnssns v setessssses

T = EVae SUFTACE WaVO . o iieve s o cials o siaieatahene st o snormis sla sl s srels wiole o sin

2 - Geometry and Boundary Conditions for 2-D

WAV MR e ey e o o el e e lre:  Ierecvs o shereurs et irmt

3 - Amplitude of Surface Elevation for the

Gy ot R S I L e S 0

4 - Geometry and Boundary Conditions for

Pulsating Cylinder.......cocoevvvecnnns N e e e e s

5 - Amplitude of Surface Elevation for the

Pulsating Cylinder....cccveeeeeececicncrnnssscssnssnrenns

6 - Geometry and Boundary Conditions for Refracted

Waves Due to a Bottom Obstacle.......coviiiiiiiivenennnns

7 - Amplitude of Refracted Waves for the Bottom

OBstacle. v cvvvoivivowven g T

8 - Phase of Refracted Waves for the Bottom
(1514 (o0 4 ey P D e T

Page

10

11

12

i i




10

11

12

13

14

15

16

17

LIST OF FIGURES (Continued)

Geometry and Boundary Conditions for Refracted

Waves Due to a Surface Obstacle.....coviviiiiiennnnnnennns

Amplitude of Refracted Waves for the Surface

11570 o, L] (- e e S et et IR S Ao e ey g ML e e

Phase of Refracted Waves for the Surface

()15 7 (oA [ e e B B e A i o e ey T

Stationary Pressure Distribution Oscillating on Free

T o - (o L e SR

Development of Surface Elevations for the Pressure

Bistribution Problem. . i ccc s ceecms covaissiasoeasalonsaasipieiesens

Finite Element Model for Cylinder Moving Below the

Free Surface - €oarse Grid......cccceeeeeneeconcceecsencenas

Finite Element Model for Cylinder Moving Below the

Free Surface - Fine Grid.......c.ccoceieeeneeecasossessscsaas

Wave Height Along the Free Surface for Moving

(57 8 111 [ e e R R s o i i i e e R O R

Pressure Distribution on the Cylinder...........ccovuen...

Page

12

13

14

15




T T L

ABSTRACT

This paper presents a procedure for using NASTRAN to
determine the flow field about arbitrarily shaped bodies
‘n the presence of a free surface. The fundamental un-
known of the problem is the velocity potential which must
satisfy Laplace's equation in the fluid region. Boundary
conditions on the free surface may involve second order
derivatives in space and time. In cases involving infinite
dorains either a tractable radiation condition is applied
at a truncated boundary or a series expansion is used and
matched to the local finite elements. Solutions are pre-
sented for harmonic, transient, and steady state problems
and compared to either exact solutions or other numerical

solutions.

INTRODUCTION

The pressure distribution and flow field about submerged bodies are
important in the determination of hydrodynamic variables such as 1ift and wave
resistance and the calculation of boundary-layer characteristics. The
investigation of these variables can be realistically modeled by assuming the
fluid to be inviscid and incompressible. In this case the equations of motion
can be reduced to the solution of Laplace's equation in the fluid region. The
linearized free surface condition (small wave amplitude) may involve second
derivatives of the velocity pctential 4 in both space and time and considerably
complicates the problem. The free surface flows investigated in this paper can
be divided into three aireas: harmonic, transient, and steady state.

An exhaustive list of literature for forced harmonic motion or diffraction
problems may be found in Wehausen (ref. 1). Problems of this type were
generally solved by using a distribution of sources or dipoles on the body
boundary with an appropriate Green's function for the problem. The boundary
condition on the body is used to determine the strength of the source distri-
bution (for example, Hess and Smith, ref. 2). Such solutions are appropriate only
for problems of infinite or constant depth.

Bai (refs. 3-6) uses finite elements to model both harmonic and steady state
problems of arbitrary geometry. Similar methods which employ variational
functionals have been used by Berkhoff (ref. 7) and Chen and Mei (ref. 8). For
steady state problems Bai developed a localized finite element method (ref. 6)
in which finite elements are used in a localized region around the body and a
series expansion is used in the remainder. The finite element representation
is matched to the series expansion along the common boundary to form a consistent
set of equations for the nodal potentials and series coefficients.

Finite element solutions for transient free surface flows are given by
Visser and van der Wilt (ref. 9). Unfortunately, for the transient problem
there seems to be no suitable method to construct a completely absorbing
boundary in cases involving radiation conditions. For that reason truncated
boundaries are taken far enough away so as not to affect the region of interest.




The purpose of this paper is to demonstrate how the structural analysis
computer program NASTRAN (refs. 10-11) may be used to implement finite element
procedures for modeling the three types of free surface problems described
above. The use of NASTRAN is motivated by the wide-ranging capability, con-
venience of use, and availability of this general purpose computer code. The
variety of finite elements available in NASTRAN permits the method presented
here for 2-D and axisymmetric problems to be routinely applied to complex 3-D
geometries of naval and marine interest. In contrast with specialized programming
efforts, NASTRAN implementation of the finite element procedures is enhanced by
a variety of pre- and postprocessing programs (ref. 12) which include capabilities
for automatic data generation, data checking via interactive graphics, matrix
bandwidth and profile reduction via grid point resequencing, and contour plots
(in the case of scalar variables such as velocity potential) of computer output.
In addition, the NASTRAN capability to model free surface flow problems is
currently being exploited to investigate the coupled fluid-structure interaction
problem involving fluid flow about an elastic body near or on a free surface.

FREE SURFACE EQUATIONS

For an inviscid, incompressible fluid in an irrotational flow field, the
equations of motion and continuity reduce to

vie = 0 (1)

where ¢ is the velocity potential (ref. 13). The pressure p in the fluid can
be determined from Bernoulli's equation,

3% 1 3¢y 2 ad
st LG Gl w (2)

where o is the density of the fluid and g is the gravitational constant. In
Fig. 1 the deflection of the free surface n 1is assumed to be small compared
%o %he]dﬁpth d. In that case the linearized conditions on the free surface are
ref. 10

<@

3¢
1 5% on y=0 (3)
and
30
- g-- gn on y=0 (4)

The surface elevation n may be eliminated from Eqs. (3) and (4) at the cost of
increasing the order of the time derivatives by one. This gives

%0 . _1lap_ 23 2
32 ol 3y on y=0 (5)

Once the potential ¢ is determined, the surface elevation n may be determined

2




from Eq. (4).

GRAVITATIONAL

DIRECTION
Y
UNDISTURBED n
FREE SURFACE
X
X
d DISTURBED

FREE SURFACE

-

Figure 1. Free Surface Wave

HARMONIC FREE SURFACE PROBLEMS

2-D Wave Maker

Consider the 2-D wave maker shown in Fig. 2. At x=0, a wall is oscillating
in simple harmonic motion with velocity V. For the harmonic problems, assume
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Figure 2. Geometry and Boundary Conditions for 2-D Wave Maker




p(x,y.t) = o(x,y) e'“t

and
p=0 on y=20

Then Eqs. (6) and (1) give
v = 0
Using Eqs. (5), (6), and (7), the free surface condition becomes

B:i. =
ay q‘, on y 0

At the wall,
3 . V on x =0
an

and, along the bottom,

—&: XL e T -
o 0 on vy d L

(10)

(m)

The solution of this problem can be obtained by separation of variables

(see Bai, ref. 3) and is given by

~as1x
\lo GNX

8(x,y) = Ay cosh ag(y+d)e + NE\ Ay c0s ay(y+d)e

where L
—6-- a0 tdnh(aNd)

"

w.‘
o " Yoy tan(aNd) for all N

4i Sinh(aod)
A. = i :
0 Siﬁﬁ(?aoa) + 2a0d a0

2 Sin(uNd)
A, = —
N s1n12aNd77+ ZGNd ay

The first term of Eq. (12) represents a traveling wave in the x-direction,

(12)

(13)

(14)

(15)

(16)

while the succeeding terms are local terms that are only significant for small

x. Thus
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for large x. Eq. (17) is a tractable radiation condition which can be applied
at suitable boundary far enough away from the wall, Eq. (8), together with
boundary conditions given by Eqs. (9), (10), (11), and (17), constitute a well-
posed problem for Laplace's equation.

The boundary conditions Eqgs. (9), (10), (11), and (17) all have the form

2iys -0 (18)

where y and 8 are constants. The functional form for Laplace's equation with
the mixed boundary condition of Eq. (18) is

{OE ;—l{f{(%@? CER) e [ (e - enas (19)

where B is the boundary of region A. When variations are taken with respect
to ¢ such that

s5F =0 (20)
then Eqs. (8) and (18) are satisfied,

Eqs. (19) and (20) can be approximated with finite elements using NASTRAN
structural elements. A procedure for using structural elements to model fluid
domains which satisfy the wave equation (or, as a special case, Laplace's
equation) is given by Everstine et al (ref. 14), and has been successfully
applied using NASTRAN on several problems by Schroeder and Marcus (ref. 15),
Marcus (ref. 16), and Everstine (ref. 17). A translational degree of freedom
(in this case the x displacement) is chosen to represent the potential ¢,
and all other degrees of freedom at a node are permanently constrained. The
linear isoparametric membrane element, QDMEM1 (NASTRAN Level 16), was used.
The material matrix G and the mass density o of the QDMEM] elements are chosen
as follows: e

.01
R o T (21)
R

NASTRAN's Rigid Format 8, with governing equation given by
(-w?M+ iwB+ K¢ = Flu) (22)

is chosen as the analysis method. The stiffness matrix K generated by the
QDMEM1 elements with material properties given by Eq. (27) is equivalent to
the finite element representation of the first term in Eq. (19).




The free surface condition, Eq. (9), corresponds to y = w?/g and g = 0 in
the second term of Eq. (19). A consistent formulation for this term is
implemented using NASTRAN by inserting the matrix

z 1 i=k,2
AX J
M2PP). . = e
( )1,3 69 [1 2] J=k,% 25

into the mass matrix M in Eq, (22) using DMIG data cards. In Eq. (23), k and
% represent the two nodes which 1ie on the free surface for each of the QDMEMI
surface elements, while Ax is the spacing between nodes k and 2. The frequency
w is inserted into Eq. (22) using a FREQ data card,

The radiation condition, Eq. (17), corresponds to 8 = 0 and y = i a, in
Eq. (19). A consistent formulation is obtained by inserting the matrix

) -aoél 2 , i=k,2
WePely 5= TGl 2l ek (24)

into the mass matrix M in Eq. (22) using DMIG cards. In Eq., (24) k, #,and Ay
are defined as in Eq. (23) except that in this case the relevant boundary
surface is the truncated boundary.

The bottom condition, Eq. (11), is a natural boundary condition which is
automatically satisfied within the finite element approximation. The boundary
condition at the wall, Eq. (10), is implemented by inserting the vector

B 1/2 i
Foo=Voay []/2] , i=k,2 (25)

into the forcing function F(w) in Eq. (22) using DAREA data cards, The
relevant boundary for the quantities k, 2, and Ay in Eq. (25) is the oscillating
wall.

The above procedure was used to compute the fluid response for the
oscillating wall problem illustrated in Fig, 2. A1l data is presented in non-
dimensionalized form using the length L and the velocity V. Results are
shown in Fig. 3 for dimensionless spacing Ax = Ay = .0625 which corresponds to
approximately 10 nodes per wave length for the linear elements. In Fig., 3,
the amplitude of the surface elevation is plotted. The NASTRAN solutions
obtained by both consistent and lumped formulations, as well as the analytic
solution, are presented. The lumped formulation is determined by using
diagonalized matrices in Egs. (23) and (24) where diagonal terms are determined
by adding together all terms in the corresponding row. The consistent formula-
tion is a significant improvement over the lumped formulation. In subsequent
problems only a consistent formulation will be used.




b i

st

E i B

0.150 T T T

@2l 4000
9

r/’\q wV . 03941

0125

NASTRAN (LUMPED)

NASTRAN (CONSISTENT)

AMPLITUDE OF SURFACE ELEVATION |n/L/

0.100 |~
0.076 |-
EXACT SOLUTION
0.050 =) L 1
0.0 05 10 15 20

DIMENSIONLESS LENGTH (X/L) ALONG FREE SURFACE

Figure 3. Amplitude of Surface Elevation for
the 2-D Wave Maker

Axisymmetric Wave Maker

The geometry and boundary conditions tor the axisymmetric wave maker are
shown in Fig. 4. Boundary conditions are the same as tor the 2-D wave maker
except for the additional term in the radiation condition. The radiation
condition is determined by investigating the exact solution (see Bai, ref, 3):

#(r,z) = BOHO(anr) coshao(ﬂd) + N—] By Ho (- W ir)cos ay (z+d) (26)
4 sinh(uod)
Wiy B0 7 W Tagrg) aglsinh (agd) ¥ Zagd) (27}




e 2

Sl SR e -0l S cael

2
AXIS OF ﬁﬂ_&£¢
//REVOLUﬂON an 9 FREE SURFACE
b v \ r
o TRUNCATED
BOUNDARY,
PULSATING EY)
o A
CYLINDER, <72¢:0 . an (-1/2a-i%)¢
d¢ ’/
—_—=\
dn

1
/999534569566649?4445445099599999997’
q—.ﬁ_.‘ _a_Q=o

dn

a=25L I

Figure 4. Geometry and Boundary Conditions for
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4i sin(ayd)
B, = ot 28
N = (o T rglay(sin ayd + 2ayd) (28)

and where ag and ay are given by Eqs. (13) and (14), ry is the inner radius of
the cylinder, and H,, Hy are Hankel functions of the second kind of order 0
and 1, respectively. The first term of Eq. (26) is an outgoing wave and the
second terms represent local disturbances. Thus it can be shown that

L1 S S SR
T { %a + Tag }¢ for large r (29)

where a is defined in Fig. 4.

This problem was modeled using NASTRAN's Rigid Format 8. CTRAPRG
elements were used (Everstine, ref. 17) with dimensionless spacing given by
Ax = Ay = .0625 (all variables are non-dimensionalized with respect to V and L).
This corresponds to approximately 10 nodes per wave length. Results showing
the amplitude of the surface elevation along the free surface are presented in
Fig. 5. These results are based on applying consistent boundary conditions,
and are in good agreement with the series solution.
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Refraction Problems

A surface wave, given by

‘i(mt—aox)

n(x,t) = Ae (30)
is incident upon the bottom obstacle shown in Fig, 6, The potential ¢
corresponding to the incident wave is given by

: h an (y*d) =i an X
. Bgq SURD oy 0
°I(x'y) o COSh(aOd) = (31)

where w, an, g,and d satisfy Eq. (13). In order to determine the total
potential ¢ of the fluid corresponding to the incident wave, the potential o
is divided into

¢ = o1 + g (32)
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Figure 6. Geometry and Boundary Conditions for
Refracted Waves Due to a Bottom Obstacle

where ¢, is the refracted potential. The boundary conditions and governing
equatioﬁs on ¢p are shown in Fig. 6, All variables are non-dimens-onalized
with respect to the length L and frequency w, and boundary conditions are
specified in a consistent formulation.

The NASTRAN results shown in Figs. 7 and 8 are presented for dimensionless
spacing Ax = .125 and Ay = ,0625,which corresponds to approximately 41 nodes
per wave length. These results compare favorably with the finite element
solution recently re-computed by Bai as a correction to his originally
published (ref. 5) results. Accuracies within 4% have also been obtained using
coarser grids of 10-20 nodes per wave length.

A similar free surface problem is illustrated in Fig. 9. The dimensionless
spacing used was Ax = Ay = .125,which corresponds to approximately 42 nodes per
wave length. Again, the NASTRAN results shown in Figs. 10 and 11 compare well
with the finite element solution recently re-computed by Bai (ref. 5).

TRANSIENT PROBLEMS

Consider the transient free surface problem shown in Fig, 12 illustrating
the time dependent pressure distribution on the free surface, The pressure
distribution is given by

p(x,t) = P(x) sin «t (33)
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and where Po is the maximum pressure.

and

Initial conditions which could be specified on the free surface are

an _
at = (%) y

1
it

0, t

0

"
o

n fz(x) h S 00 t

11

(34)

(35)

(36)
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Eqs. (35) and (36) must be put in terms of ¢ and 3¢/3t since this is the only
suitable input to NASTRAN. Specifying 3an/3t on y=0 is equivalent by Eq. (3) to
specifying 9%/3y on y=0. Then Laplace's equation may be solved with the
boundary conditions shown in Fig, 12, except that 3¢/3y is specified on the free
surface. This will determine ¢ everywhere initially. Similarly, specifying n
on y=0 is equivalent by Eq. (4) to specifying 3¢/3t on y=0. Then the procedure
just described may be repeated to determine 3%/3t everywhere initially, since
3¢/3t also satisfies Laplace's equation and the boundary conditions shown in
Fig. 12 (not including the free surface condition). This determines ¢ and

99/5t everywhere initially.

The variational form for the free surface problem shown in Fig. 12, based
on Hamilton's principle (see Courant and Hilbert, ref. 18), is
1 b 30 3 3 1 i
F(o) = 5 SN2 4 (2842 + ~yo2 + ¥ RAFRLEY:
(0) = 5 (I) {\{ (Gx)" + (5y) 1A dt (f)é(zw ae)ds dt é{;reezg(at) dx dt
t . Surface
s [ 43R paxdt (37)

0 Free P93t
Surface
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Figure 11. Phase of Refracted Waves for the Surface Obstacle

where B is the boundary of the region A, and all geometric boundary conditions
are enforced. If variations of F(®) taken with respect to ¢ equal zero,

Eqs. (1), (5), (18), (35), and (36) are satisfied for zero initial conditions
(f1=f2=0 in Eqs. (35) and (36)). Non-zero initial conditions can be easily
incorporated into Eq. (37).

The finite element representation based on Eq. (37) was implemented using
NASTRAN by modeling the fluid with QDMEM] elements where material properties
are given by Eq. (21). Any translational degree of freedom can be used to
correspond to ¢, but all remaining degrees of freedom are permanently con-
strained. The analysis method chosen is NASTRAN's Rigid Format 9, with the
governing equation given by

s LS

lése
+
-
‘>
"
™
—
*
—
P
“s
52
—

|€>:

The stiffness matrix K generated by the QDMEMI elements is equivalent to the
finite element representation of the first term of Eq. (37).

The last two terms of Eq. (37) represent the free surface condition and
may be incorporated into NASTRAN as follows: Let ¢ for any point on the free

14
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surtace be yiven by
d = ¥ Ni *, (39)
where Ni is the shape function for node i and ¢ is the nodal potential. Then

the finite element formulation for the third temm of £q. (37) is implemented
using NASTRAN by inserting the matrix

1
(M2PP) . j N.N. dx (40)
" qFree MR
Surface

into the mass matrix M in Eq. (38). The finite element representation of the
last term of Eq. (37) is impiemented using NASTRAN by inserting the vector

1 ap
Foee [ =N (41)
1 Free Qg ot
Surface
into the forcing function F(t) in Eq. (38).

Referring to Fig. 12, the natural boundary condition ad/an =0
(corresponding to [ 0) on the bottom and left face is automatically

15
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Figure 13. Development of Surface Elevations for the
Pressure Distribution Problem

satisfied. The geometric boundary condition ¢ =0 is implemented by constraining
%; =0 at all nodes i on the downstream boundary.

The above procedure was used to model the geometry and boundary conditions
shown in Fig. 12. A1l variables have been put in dimensionless form using the
pressure Po. the depth L, and the gravitational constant q.
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This procedure was used to model the geometry and boundary conditions
shown in Fig. 12. QDMEM] elements were used with dimensionless spacing
ax=0.1 to 0.5, and Ay = 0.25; this would correspond to approximately 13 to 60
nodes per wave length, where the wave length 1s based on the steady state
problem. A dimensionless time step of At =.) was used. Rules of thumb for
estimating spacing and time steps are given by Visser and van der Wilt (ref. 9).
In this case approximately 60 time steps per period of the forcing function
were used.

In Fig. 13, the NASTRAN results are compared to a Fourier series solution
given by Haussling and Van Eseltine (ref. 19).  The wave neights are in good |
agreement with the series solution and illustrate the capability of NASTRAN to |
{ model transient water wave problems. -

STEADY STATE PROBLEMS

Consider the steady state problem shown in Fig. 14 where a cylinder of
diameter L is moving at constant velocity U below the free surface. Steady state 1
solutions are sought for which all variables are independent of time when
referenced to a coordinate system moving with the body, that is, the x-y
coordinate system shown in Fig. 14. In this coordinate system it can be shown
that the potential ¢ must satisfy Laplace's equatior, and the free surface
condition expressed in £q. (6) becomes (with p=0 on free surface)

“€ 2 - U“ ".\_‘h 4‘)
Y 9 o2 Ll
E
The boundary condition on the rigid cylinder shown in Fig. 14 is E
A : 3
n Ucosa (43)

where @ is the angle between the x-direction and the normal to the body directed
out of the fluid. No upstream waves are allowed and the Froude number,

u-

b “;L
is such that downstream waves are allowed (see Bai, ref. 6). Considerable
effort was devoted to developing tractable radiation conditions for the up-
stream and downstream boundaries, resulting in the conclusion that none were
possible. For this reason a series expansion is used in the regions beyond the
upstream and downstream truncated boundaries and matched (at these boundaries)
; to the finite element solution. This technique was developed and successfully
g applied by Bai for both steady state problems (ref. 6) and frequency response

i problems (ref. 4). A similar finite element-series expansion technique for an
i acoustical fluid has been implemented using NASTRAN by Zarda (rer. 0)
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Figure 14. Finite Element Model for Cylinder Moving
Below the Free Surface - Coarse Grid
It can be shown, using separation of variables, that downstream from the
body
N+3 (%)
o= ¢ A, f. 44
j='| J J
where
ta.X
(cos::j (y+d)e J 1S3 =N
1 Jj = N+l
fJ. = ¢ cosh ao(y+d) . (45)
Tosh agd <% %X R
cosh ao(y+d)
sl sl B TR
ZoSh uod smaox J = N+3
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and

Upstream from the body,

N+1

g = ‘£ B:f, 46
2, (46)

The sign in the exponential is (+) for the upstream boundary, and (-) for the
downstream boundary. Furthermore, N is the number of series terms chosen

(the same number is assumed upstream and downstream, although this is not
necessary), and d is the depth. Eqs. (44) and (46) satisfy Laplace's equation
and the boundary conditions on y=0 and y=-d. The first N terms represent local
terms that decay away from the cylinder, and the last two terms in Eq. (44)

represent an outgoing downstream wave; no such waves are allowed in the upstream
expansion.

Consider the variational functional given by
X

<) oroy2 , (3942, U2 B 3002 - ;
F(¢) = 5 i{(jx) R { (S5} dn s BédyUcos“ ds
A
Free
Surface (47)
) 3 U%r3 U2ra
- (2] edy - | [22] ody- {3e, + {280
Upstream 3"x=—xL Downstream " x=x 9 3X:XB 9 3:= Q
X= xL x=xR x R L
y=0 y=0

where points A and B and boundaries x_ and xg are defined in Fig. 14, and

n is the normal to the boundary directed out of the fluid. If independent
variations of F with respect to ¢, ¢p. and ¢g are set equal to zero, then
Laplace's equation and the boundary conditions shown in Fig. 14 are satisfied,
and 3¢/3n is continuous on the upstream and downstream boundaries. No
variations of the bracketed expressions in Eq. (47) are allowed, and these
expressions can be evaluated in terms of the series coefficients by taking the
appropriate derivatives using Eqs. (44) and (46). This will increase the
number of unknowns by the number (2N+4) of series coefficients. The correspond-
ing additional equations come from requiring that the potential ¢ is
continuous at the upstream and downstream boundaries. Let the finite element
renpresentation at the truncated boundaries be given by

NN
¢ = .x] Ny oy (48)
1=

where NN is the number of nodes on the truncated boundary. Then, for continuity
of & on the downstream boundary, it is required that
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NN N+3
ENoo= TAf on xexp (49)
i=] k=1

and on the upstream boundary
NN N+1 i
% N:d. = T B f on Xx= X 50
421 Y1 sy oK L

Eq. (49) is multiplied by f., j=1 to N+2, and integrated from -d to 0. This
gives a system of equations

NN N+3
15161j¢i = kzl ij A, on x=xp (51)
i= 1 to N+2
where
i :
G..= [ N.f.dy i =1 to NN 52)
Wy VA j-= 1 to N+3
and o
ij = _é fjfkdy .k =1 to N+3 (53)

Eqs. (51) are N+2 equations involving the N+3 unknowns A . Multiplying Eq. (49)
by fN+2 and integrating from -d to 0 does not determine an independent equation
since fy+2 is proportional to fy43 for fixed x.

Multiplying Eq. (50) by fj, J=1 to N+2, and integrating from -d to 0 gives
NN N+1 X =

o |

1 to N+2 (54)

p
i=1

Eqs. (54) are N+2 equations in the N+1 unknowns By. The additional equation,
determined by multiplying Eq. (50) by fy4+2, corresponds to the condition that no
upstream waves are allowed (see Bai, ref. 6). Eqs. (51) and (54) give the
additional 2N+4 equations involving the 2N+4 unknowns Aj and Bj-

The procedure just described can be modeled using NASTRAN. CIS2D8 elements
are used to model the fluid (see refs. 21 and 22). These second order iso-
parametric elements with the material properties given by Eq. (21) determine a
stiffness matrix equivalent to the finite element representation of the first
term of Eq. (47).

The second term of Eq. (47) is modeled using additional CIS2D8 elements
along the free surface as shown in Fig. 14. For these elements, the height in
the y-direction is unity, and all nodes having the same value of x are con-
strained to move together. This is equivalent to having 1-D isoparametric
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elements along the free surface. The material properties for these elements
are given by Eq. (21) except that the material matrix G is multiplied by the
constant factor (-U’/g).

The third term of Eq. (47) represents a loading term. It is implemented
using NASTRAN by entering

Fo= - [ Ucos o N:ds (55)
! Body

as nodal forces, where N; is the shape function for node i cn the body.

The fourth and fifth terms of Eq. (47) represent coupling terms at the
upstream and downstream boundaries. Using Eqs. (44) and (46) to determine the
normal derivatives, the finite element modeling yields, for the downstream
boundary,

Nt3 0 af.
(K2PP); ;= I f - 5;1 N,dy i= 1 to NN (56)
j=1 -d x=xp j= 1 to N+3

where the matrix K2PP is added to the stiffness matrix. In order to implement
this condition, N+3 scalar unknowns A; are created using SPOINT data cards.

Then the matrix term (K2PP); . in Eq. (56) refers to node i on the downstream
boundary and to the SPOINT réﬁresentation of the unknown Aj. Similarly, for the
upstream boundary

) N+1
(K2PP). . = &
i,] j=1

=

(=%
~<
-
]

1 to NN (57)
1 to N+1

n
>
.

1"

For the last two terms in Eq. (47), the finite element representation
yields

U2 af .
(k2P o> = J=1 to N3 (58)
X=XR
2 Af,
(Rl g o i=1 to N (59)
X=XL

Eqs. (51), (54), and (56) through (59) are entered into NASTRAN using DMIG cards
and complete the set of equations to solve for the nodal potentials and the
upstream and downstream series coefficients. NASTRAN's Rigid Format 1 (Static
Analysis) does not accept DMIG cards. Therefore, Rigid Format 9 was used for
one time step. (Since no mass or damping matrix exists, static equilibrium is
reached for any time step.)

2]




Computations, with all quantities being non-dimensionalized with respect
to the cylinder diameter L, velocity U, and fluid density p, were carried out
using NASTRAN for the grids shown in Figs. 14 and 15. Each mesh has approxi-
mately the same number of unknowns since the series solution is used for

| x| 2 3.0 on the coarse grid and for | x| 2 1.5 on the fine grid. Approxi-
mately 9 and 17 nodes per wave length were used for the coarse and fine grids,
respectively.

Wave height along the free surface is plotted in Fig. 16. Results for both
the coarse and fine NASTRAN grids are seen to compare favorably with a solution
obtained by Giesing and Smith (ret. 23) using a distribution of sources. The
solutions shown here all satisfy the condition that no upstream waves are
allowed. (In this case, since the Froude number based on the depth is less than
one, downstream waves are generated.)

The pressure distribution on the cylinder may be determined from Bernoulli's
equation. Assuming the flow about the cylinder is steady, then, in the x-y
coordinate system that is moving with the body, Eq. (2) becomes

v 3¢ _ 1 30V 2 (392
p= sollearme (R 1 G (60)

Fig. 17 illustrates a plot of the dimensionless pressure as a function of the x
coordinate on the surface of the cylinder. Results are shown for both tne fine
and coarse grids shown in Figs. 15 and 16. The discontinuities of the curves
occur at element junctures on the cylinder. Although the potential ¢ is
necessarily continuous, 3¢/3x and 3¢/dy are not necessarily continuous within
the finite element approximation, and discontinuities in these terms are
magnified in determining the pressure in Eq. (60). Also shown in Fig. 17 is a
table showing computed values of the wave resistance and 1ift coefficients,

C, and CL’ defined by

D
(pUQL)CD = - [ pdy (61)
Body
(pU’L)CL = [ pdx (62)
Body

The values of Cp and C; computed using NASTRAN compare favorably with those
given by Giesing and Smith (ref. 20).

CONCLUSIONS

The problems illustrated here demonstrate the capability of NASTRAN to
successfully model linearized free surface flow problems for harmonic, transient,
and steady state cases. Although the results presented here are for arbitrary
2-D and axisymmetric geometries, the procedures described are directly
applicable to 3-D flow problems and readily extendable to the coupled problem of
fluid flow about an elastic body.
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The steady-state flow due to a cylinder moving below the free surface
was computed using the technique of coupling finite elements with a classical
method at an appropriate common boundary. Finite elements are used to model
irregular geometry over to some specified regular boundary, and classical
solution methods are used beyond this boundary. The coupling of the series
solutions to the finite element model may be regarded as determining a stiffness
matrix for a "classical finite element." Such “"elements", if available in the
libraries of finite element computer codes, would broaden the range of problems
efficiently handled using finite elements. Furthermore, the enhancement of the
NASTRAN capability described here may be used to investigate the coupled
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problem of fluid flow about an elastic body near or on a free surface. In
such a case both the structure and surrounding fluid would be modeled using
existing NASTRAN elements and would be coupled at the fluid-structure
interface.
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