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FOREWORD

This report is one of a series written by me under a

common title; "Advanced methodologies for human factors
engineering research." It covers one segment of the total
data collection and analysis process in a complete research
program, namely, that phase dealing with the screening of a

very large number of variables to discover the critical
cnes. According to the research strategy that I am trying

to promote, the screening process is not a complete
experiment and should only be used after a thorough analysis
of the real world is made to develop a list of candidate

variables to be screened and before a later effort to
develop a complete and accurate response surface. Screening
designs and response surface designs are not two separate
designs, but the first is a first stage of the second; the

second is an outgrowth of the first.

This report describes a screening process that is an
improvement over that written in the earlier reports,

t integrating economical multifactor research techniques with
those that keep the data relatively free from trend effects.
Use of this report presumes that the reader is already
familiar with the earlier reports, particularly those on
economical multifactor designs, on building trend-robust
designs, and on ridge regression analysis, as well as the
basic principles for conducting economical behavioral
research. New ideas for improved analysis and for handling

multiple response data are introduced here.

The techniques discussed in this report are treated
unevenly. Forced by time limitations to either go intoTy considerable detail regarding a small piece of the screening
process, or provide an overview of the complete process, I

iv
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chose the latter. Even for the more sparsely treated

techniques, I have tried to present enough information that

would not only direct the reader's attention to potentially

useful methodologies but, hy judicious sifting and digesting, '

would also help clarify the original papers when they are

* read. Only one important step -- data transformation --

was omitted because I was not satisfied that the method I

had would do the job properly.

Eventually, the missing details will have to be added, "A

along with more details on the other phases of the research

t process after screening. Although experience is needed to

determine the full power of this approach, merely studying

20, 30, or 40 variables in a systematically-manipulated

experiment cannot help but improve the predictive quality
of the research or the generalizability of the data base.

i

Charles W. Simon

1977
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I. INTRODUCTION

Screoning designs -- a class of fractional factorials --

are systematic data collection plans that enable the effects

of a very large number of factors to be estimated economically.

Screening designs are used primarily in the second phase of

a total research program where they are intended to determine

which of the great many factors have non-trivial effects on

the performance of a particular task. Screening designs are

to be used to identify important factors, not to obtain an

accuzate representation of the experimental space. This

latter operation will occur in subsequent phases of the

research program.

The strategy for using screening designs in this manner
stems from the observation that a great many psychological

and human factors experiments investigate trivial factors.

Simon (1975b), in an analysis of 239 experiments published

in Human Factors over a fourteen year period, found that in

experiments studying from one to five factors, 24 percent of
the 494 main effects examined accounted for one percent or
less of the total variance in the experiment. Forty-one

percent of main effects accounted for only four percent of

the total variance in the experiment.

As might be expected, the more factors included in a

single experiment, the more frequently trivial effects were
found. Similar conditions have been found in analyses of

other journals that publish psychology experiments (Gallo,

et al, 19771 Dunnette, 1966, p 35).

With the great many factors that are likely to affect

performance in any given task, one must wonder why any psy-

chologist, inter'ested in predicting and conL:_,ting

performance, would study factors having trivial effects.

1A
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Why not first study the factors accounting for the large

effects? The principle of maldistribution (Budne, 1959;

Simon, 1973; 1976b) leads us to expect that a relatively few

factors account for most of the variance. These should
be investigated first in order to build a structure of data

within which marginal effects can be located and about which

confidence limits can be established.

Of course, the answer to "why?" is that until the

experiments are completed, one would not know which factors

are important. But this is where screening designs become 1

applicable. Instead of doing many three- or four-factor ex-

periments, with highly replicated deriigns, requiring a great

* many observations to collect redundant information of limited
value, tho screening designs provide a means of examining a

great number of factors with the maximum amount of information

with a minimum amount of redundance and relatively few obser-

vations. What the results from many little traditional

experiments cannot do, but which results from the screehing

design can, is to order the factors according to the size of

their effects and to discover interaotions among factors that

appear within the same experiment. Screening designs do all

this economically for they can be used to study N factots with 2N

observations (although the size of'the designs in this report

will all be equal to some power of 2). Thus if there are 25

factors, for example, to be ranked in terms of their impor- ,

tance, only 64 observations would ordinarily be required when

screening designs are used. Furthermore, the precision

with which the main effects are estimated is usually much

greater than the effects measured in many smaller, yet

highly replicated studies.- The effects obtained from screen-

ing studies not only permit the ranking of factor effects on

a quantitative scale, but can provide an equation approximat-

$ ing the experimental space if that space can be represented
I

by a linear model.

2



The beauty of using a screening design is that once the

important factors have been identified (step one), 
the same

data can be used, if supplemented by relatively few 
additional

observations at new experimental conditions, to complete 
a

response surface (step two) capable of accurately approximat-

ing the experimental space defined by the original set 
of

25 factors. For several hundred observations, a reasonable

approximation of a 25-factor space is possible. These capa-

bilities arise through the appropriate application of 
the

principles of economical multifactor research (Simon, 
1973),

the basic strategy being to collect only Lhe data needed to

supply the information required at each particular phase of

the research program. Screening designs are employed in the

second phase to help (in as economical an effort as possible)

the investigator decide what factors, what measures, 
what

range of values should be investigated in greater detail 
at

a later stage of the program.

i3 sA

i3

p

A . .. . ...... .. .. . . __ , > Lc : T 3 or



EXPERIMENTAL DESIGN

L31"It

* How to design Resolution IV screening designs robust
to linear, quadratic, and cubic trend effects
without replicating the basic design.

Complete designs are provided requiring 8, 16,
or 32 observations to quantitatively order the
effects of up to 8, 16, or 32 factors.

* How to prepare to use screening designs: preliminary
empirical studies and analyses.

* How to assign operational factors to the design to
keep them robust to trend while minimizing the
number of difficult or time-consuming level
changes.

e How to add center points to a screening design to
roughly estimate error variance and to provide
the data needed to test how well a linear model
fits the empirical data.

e How to include multiple subjects in the screening
design: dimensionalized as factors.

4
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11. 2pq RESOLUTION IV SCREENING DESIGN PLANS

In this section, how to construct a special type of

screening design and the preparations recommended for using

them will be described. The section is written with the

assumption that the reader is familiar with the information

on fractional factorials in general and screening designs

in particular, as described by Simon (1973) in an earlier

report, or its equivalent. The reader should also be

familiar with certain techniques for constructing trend-free

2 k designs, which may be found in Simon (1974) or the

original papers. The techniques described in those two

reports are consolidated in this report to provide an ex-

tremely economical and efficient experimental design for

identifying critical factors.

Although the methods of construction are described here,

three complete screening designs are provided in this report in

spite of a strong personal belief by the author that "cookbook"

applications of experimental plans are to be deplored and are

bound to degrade the quality of research in the long run.
Cookbook applications enable the uninformed to mimic the

efforts of qualified investigators enough, in many cases, to

provide a face validity to their efforts while masking sloppy

4 data collection, an inadequate analysis, and a misinterpreta-

tion of results. They allow the lazy investigator to fit his

problems to his methods and his experiments to the designs

that are available in a book, rather than to design each

experiment in a way that is likely to provide the most valid

information needed for the problem at hand.

The justification for providing these ready-made designs,

therefore, lies mainly in their utility in illustrating the

design principles described in this report and in reducing

the amount of routine calculations an investigator would have

5



to perform in developing the designs on his own. Proper use

of the designs still requires a great deal of involvement by

the investigator in order to fit them to his problem.

CHARACTERISTICS OF THE SCREENING DESIGNS IN THIS REPORT

Each design exhibits the following characteristics:

1. Multifactor. A single run of these designs can be

used to estimate the effects of up to 8, 16, or 32

factors. By analogy, still larger designs can be 2
constructed. However, in practice, if adjustments

for trend effects are to be made, one degree of

freedom for each order of trend (i.e., linear,

quadratic, or cubic) must be set aside, reducing

the number of experimental factors that can be

studied.

2. Economical. The effects of up to K factors can be

estimated with N observations, when K equals

N/2 and N equals some power of 2 (e.g., 24, 26, 26).

The designs in this report require 16, 32, and 64

experimental conditions in a single run for studying

up to 8, 16, and 32 factors, respectively.

3. Qu;si-saturated. The designs allow for no inde-

pendent estimate of the error term unless one

wishes to assume that two-factor interaction

strings are negligible. If fewer than the maximum

possible number of factors are studied, the effects
of three-factor i-.teraction strings can be esti-
mated. Without additional information, it would

be incautious to assume them to be equivalent to
an independent estimate of error.

6



4. Two-level factors. These designs sample only two

levels of a factor,. although they could be adapted

to handle four levels per factor if necessary

(Cochran and Cox, 1957, p 273). However, since

these plans are to be used for screening, about the
only justification for a four-level factor would be
when there are four conditions of a qualitative

variable. The two levels would be selected near

psychophysical or practical performance limits of

the factor to measure the full effect.

5. Resolution IV. All main effects can be isolated

from one another and from all two-factor interac-

tions. Each main effect will be aliased with a

different string of three-factor interactions.
Two-factor interactions will be aliased with one
another in isolated strings.

6. Trend-robust. The experimental conditions of each

design are ordered so that without replication,

estimates of many main effects will be totally un-

affected by linear, quadratic, and cubic trends -

for example, subject learning or equipment drift -

confounded with the effects of interest. All but a
few effects will be robust to trends. The designs

are arranged so that it is easy to identify the more

trend-robust columns to which factors are assigned.

7. Factor-level-change sensitive. If the levels of a
* factor are difficult or time-consuming to change,

the investigator may use the change-counts provided

with each design to assign the difficult-to-change

factor to a column requiring few changes.

£7
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8.Robust to experimenter error. These 2k - p designs I

i are remarkably robust to variations in setting the .

experimental conditions of the independent varia- z

bles, even when the experimenter is unaware of the
existence of the orror (Box, 1963).

9. Modular. Center-points and additional levels for

each factor can be added to the designs to provide

the data needed to estimate non-linear, quadratic

effects of a second-order response surface. New I
blocks of experimental conditions can be added to

the original Resolution IV design to create

Resolution V designs that form the center of a
*central-composite design.

CONSTRUCTING RESOLUTION IV SCREENING DESIGNS

Since screening designs are merely a form of the 2 k-p

fractional factorial designs, they can be constructed in a

number of different ways. Several methods in addition to

the one used for the plans in this report are described in

order to provide the user wl.th the greatest degree of

flexibility of method.

From Resolution III Designs

Simon (1973, pp 89-116) explains the techniques devel-

oped by Box and Hunter (1961) and Daniel (1962) for con-

structing Resolution IV screening designs from two Resolution

III designs. A Resolution III design is constructed by first

writing down the sign matrix for the full factorial and then

aliasing additional factors with the interactions of the
original design. For example, a seven-factor ResoluLion III

design with eight observations would be constructed by
aliasing new factors with tho interactions of a 21 factorial

plan, thus:

,_ 8
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Original 23 fActorials (1) A B C AB AC BC ADC

2-2 created by Aliasing: (1) A B C' D K F G ,

With this design, N-i main effects can be isolated from one
another but not from two-factor or higher interactions. The

defining generators are:

(I) It ABD ACE BCF ABe3

The research strategy would be to collect and analyze the data

from the conditions of this first block (a Resolution III

* design) in order to discover if the design, the factors, and

the range of conditions are adequate and to make whatever
changes are needed before collecting additional data. When

a great many factors are being investigated, information from

9[ this single block may be sufficient in some cases to drop

some of the variables before commencing data collection on

the second block.

When the investigator is ready to collect mo-e data, he

constructs a second design composed of experimental condi-

tions for a second Resolution III block that are the "fold-

overs" of the first block. In the foldover design, the levels

of all conditions -- including (I) = Factor 11 -- are reversed.

The defining generators for this second block would be:

(I) -11 -ABD -ACE -BCF ABCG

The defining generators for the combined design oan be

derived by expanding each set of generators into the full

set of defining contrasts and adding the two sets together.

Box and Hunter (1961, p 338) provide a rule that simplifies

the process. They write;

9L__
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Thus, in our example, when the two Resolution III designs are

combined, the result is a Resolution IV design with the

following e-ifining generators:

9

MI) AfDfl ACE11 BCFH AI3CG.

The defining contrasts (or defining relations as Box and

£ Hunter call them) are obtained by expanding the defining gen-

erators by multiplying all combinations of the original

generators in pairs, triplets, and so forth. For the above

example, tho complete set of defining contrasts would be:

1 2 3 4 12 13 14
MI ABDH ACEH BCF11 ABCG I3CDE ACDIF CDGH

23 24 34 123 124 134 234 1234
gABEF BEGtI AFGH DEPU ADEG BDFG; CEFG ABCDEFGH

where the numbers above each contrast indicate which of the

defining generators (underlined) it is a product. Since the

9 resolution of the design can be determined by the number of

10



letters in the smallest defining contrast, it is apparent

that the two Resolution III designs, when combined, form a

Resolution IV plan.

Plackett and Burman designs. Resolution IV designs also

*can be made from the Plackett and Burman (1946; also see Simon,

1973. pp 102-104) Resolution III designs by adding an addi-

tional "foldover" block. One advantage of using those

designs would be the extra economy achieved as the number of
-actors to be studied increases. This economy derives from

the fact that the Plackett and Burman designs can be con-

structed by restricting the number of experimental conditions

to some multiple of four. The Box and Hunter designs, on the
other hand, require that the number of experimental conditio.is

be restricted to some power of two. Thus, if one wished a

Resolution IV design for fifty factors, the Box and Hunter
designs would require two Resolution III blocks of 64 (or 128)
experimental conditions while Plackett and Burman designs

would require two blocks of 52 (or 104) experimental condi-

tions. Another advantage of Plackett and Burman designs for

screening purposes was noted by Tukey (1960, p 171), who found
that the degree of confounding between main and two-factor

interaction effects in the Resolution III Plackett and Burman

plans was quite low in many cases (dnd much less than the

fully aliased conditions in the Box and Hunter designs).
C. Estimating the relative strength of main effects with the

Plackett-Burman designs before continuing to the foldover block

might, therefore, be done with grcater confidence. Neither
the Plackett-Burman designs nor their potential applications

will be discussed further in this report. The reader, however,

should consider using them if they fit his problem.

i< i



Complete Resolution IV Designs J

The designs proposed in this report do not provide for a

progressive data-collection plan in which a Resolution III

design is used first to investigate the linear effects

(aliased with all higher order effects) to be followed by a

second block to isolate main and two-factor interaction

effects. Instead, with these designs, it is presumed that

the isolation of main and two-factor interaction effects is

* an absolute requirement for screening purposes and so all the

data for that purpose is collected at one time.

Box and Hunter (1961, p 341) note that a Resolution IV

design can be constructed directly "by first writing down the

sign matrix for a two-level factorial and then associating

new variables with all interact on columns having an odd

number of [letters]." Thus, a 16-observation ResoLi~tion IV

design can be derived from a 2' factorial plan by aliasing

four new factor labels (e.g., E,F,G, and H) to the four three-

factor interactions (i.e., ABC, ABD, ACD, and BCD) in the

original plan. By the proper assignment of new factor labels, 3

this design can be madu equivalent to the design made from

the principal fraction plus foldover Resolution III designs

described in the previous section.

N!
The reader should be aware by this time of a number of

characteristics common to all of these methods. The sign

matrix for any design formed from a factorial plan is

arranged so that row coefficients are orthogonal among them-

selves, as are column coefficients among themselves.* With

rows representing the independent experimental conditions,

With the plus and minus signs actually representing

plus and minus ones, orthogonality between any pair of columns
can be checked by obtaining the cross-product sum between
columns, which must equal zero. The same is true with rows.

12



sources of variance can be assigned to the columns in various

combinations. A column may be labeled a main effect or an

interaction, or as with saturated designs, a string of inter-

actions. However, whatever label is assigned to a column,

since columns are orthogonal, we may be certain that an effect

measured in any one column will be independent of an effect

measured in any other column. Thus, we may label the columns

as we please, as long as we are careful to see that labels

for the main effects and those for their interactions are

assigned consistently with the requirew ts of the sign matrix.

With these principles in mind, a screening design robust to

trend can be created.

Resolution IV Designs Robust to Trend

Two steps are required to construct the designs provided

in this report. The first is to construct a quasi-saturated

fractional factorial that will be suitable for screening

purposes. The second is to adapt it so as to take advantage

of its trend-resistant characteristics.

t We begin to construct the design by first determining

the design size which depends on the number of factors being

investigated. The rule 1.3:

C The number of experimental conditions required

is the nearest power of two (2k ) that is equal to

or greater than twice the number of factors to

be studied.

For example, we wish to study 20 factors. Two times

twenty equals 40. The nearest 2k equal to or greater than 40

is 26 = 64 conditions. Or, perhaps we wish to study 8

factors. Eight times two equals 16. The nearest 2k value

is 2 = 16 conditions.

13
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For this example we shall construct a screening design to

*study eight factors. First it is necessary to lay out the

sign matrix for a complete 2 factorial design. For this

example we use a sign matrix for a 2" factorial design. There

would be 16 (N) experimental conditions, arranged in the Yates'

*(1937) "standard order," capable of estimating the following

(N-1=15) effects, also arranged here in the standard order:

A,BAB,CAC,BCABCD,AD,BDABD,CD,ACD,BCD,ABCD

plus the mean (I). These are referred to in this paper as ,

the "old" or the "original factorial" labels.

Rearranging the columns. We rearrange the column of J
signs by moving all columns with labels that include Factor A*

to the left and all remaining columns to the right. The

effects with Factor A are then ordered from the largest to

the smallest interactions followed by the main effect, A.

Also, within any order of interaction, they would be arranged

alphabetically. For example, this would be:

2
2 Alphabetical Alphabetical

ABCD; ABC, ABDt ACD; AB, AC, AD, A (New labels)

4 3 3 3 2 2 2 1 (Size of effect)

The reason for this particular arrangement will be more

evident later. These steps can be followed from here on by
examining tho completed design in Table 1.

*Selecting Factor A for this purpose is arbitrary.
Later, in order to find Folumns that are robust to trends and
also require few factor level changes, it may be necessary to
use a different factor.

14
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Next, we assign "new screening" labels, i.e., the

letters from A to H (for the eight factors in our design),

to the rearranged columns which still bear the old factorial

labels, thus:

New labels (Screening Design): A B C D E F G H

Original labels (Factorial Design); ABCD,ABC,ABD,ACD,AB,AC,AD,A 19

These are not aliases in the usual sense; instead they are

merely associations that occur from the relabeling. To mini-

mize confusion, all original factorial labels, hereafter,

will be underlined.

4 . We must next arrange the columns in which Factor A is

not present in the original factorial labels. This is done

by first arranging the columns from left to right according
to the order of the old labels (from the highest to the

lowest Interaction and then the main effects), and within

each order, arrange the effects alphabetically. In our

example, the columns would be arranged like this;

Alphabletical

BCD, BC, BD, CD, B, C, D, (Old label)
3 2 2 2 1 1 1 (Number of factors involved)

There is one less term than there was in the previous set

with the Factor A. The missing column is the Identity column,

(I).

Next we must associate new screening labels with these

old ones. All new ones will be two-factor interactions of the

A to H new labels given to the other set. It happens that

when columns are arranged so that their original factorial

labels are as shown above, new label two-factor interactions

including A will be arranged in reverse alphabetical order thus:

AH, AG, AF, AE, AD, AC, AB

z' 16
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This makes the column of the original label BCD the

9 column of the new label AH; the column with the original

label BC is now the column with the new label AG, and so

forth. The complete association across all 16 columns then

would be:
CA

Newt (1) A B C D E F G H AH AG AF AE AD AC AB

Old: (I),ABCD,ABC,ABD,ACD,AB,AC,AD,A,BCD,BC,BD,CD, B, C, a

To show that the column associated with both AH and BCD

(new and old labels) is the appropriate one for the interaction

between the columns associated with A or ABCD and H or A, we

multiply new and old at the same time. The associations remain

consistent, thus:

New Old

A ABCD

Multiplied by H A

Yields AH BCD

This would be true with any of the other combinations. With

the new labels, the 2 factorial design ha3 been turned into

a 2 8- screening design, since all xain effects, being in
different columns, are orthogonal to themselves and to all

two-factor interactions.

The next step is to find the aliases within the strings

of two-factor interactions. The simplest procedure is to

continue the pairing of factors, this time beginning with B,
i.e., BH, BG, BF, BE, BD, BC, and not repeating any previously

used pair, e.g., BA-AB. This makes the number of pairs get

smal3er each time around, i.e., AH to AB, BH to BC, CH to CD,

DH to DE, EH to EF, FH to FG, and GH. There will be k(k-l)/2Ii combinations for K factors. For the fully quasi-saturated

design, each string of two-factor interactions will contain k/2

L17



interactions, For example, All would be aliased with (in this

example) DE (since ACD x AB - BCD); CF (since ABD x AC = BCD);
and BG (since ABC x AD - BCD). Aliases are provided for the

designs given in this report. A computer program for iden-

tifying aliases, prepared by Mr. Howard Lee, is given in

* Appendix IV.

Identifying the experimental conditions. The columns,

along with their old and new labels, have been rearranged.

For the old labels, the names of the experimental conditions

remain the same. For the new labels, new names of the ex-

perimental conditions must be obtained. This can be done with

the newly arranged sign matrix. Each row is a different (and

independent) experimental condition. The "name" of each

experimental condition can be obtained by writing down a
letter corresponding to each new label main effect in the

rearranged design that has a plus sign under it in the par-

ticular row. It is conventional to write the names of

experimental conditions in small letters leaving capital

letters for the names or labels of the effects of the columns.

For example, if the first row of the sign matrix looked like

this after the rearrangement:

New labels: (1) A B C D E F G I! AH AG etc '4

Signs + + . .+ f + - - + etc

then the experimental condition associated with that row

would be:

Caofg

since the letters correspond to those of the main effects

with + signs in their columns.

Identifying the trend-robust columns. The reasons for

the particular column arrangement described above will now

18
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become more evident. The general idea on which this is
based came from a paper by Daniel and Wilcoxin (1966, p 261;
also see Simon, 1973, pp 121-128) who noted that:

certain of the ordered contrasts appearing

in the 2P system are orthogonal to linear and to

quadratic trends. Some other contrasts are

nearly orthogonal and some are rather heavily

correlated with first and second order trend.
The design problem is, then, to choose those sets

of ordered contrasts that provide efficient

estimation of all desired effects and interactions.

What they are saying is that certain columns, (i.e, the vertical
sequences of plus or minus coefficients, in a sign matrix

of a two-level factorial or fractional factorial experimental

design) arranged with the experimental conditions in standard
order, correlate zero or very little with a set of coeffic-
ients representing a linear or a quadratic trend. The same

is true for cubic trends, which Daniel and Wilcoxin did not

consider in their paper. The investigator would want to
asuign the more important factors to the column most robust

to trend so that estimated effects would not be distorted.

Other methods (see Simon, 1973) for handling sequence
effects have been proposed. Some involve making multiple
measures of each condition and arranging them in sequences
that eventually are balanced against trends. Some methods
require a large number of repeated measures in which the

effects have been introduced randomly and the trend effects

isolated by means of statistical techniques. Both approaches

involve far more data collection than is usually justified
t during the early screening process. The method proposed by

Daniel and Wilcoxin (1966) provides the most economical solu-
tion by taking advantage of the natural robustness to trend
of 2 kp or 2k designs, unreplicated.

19



To determine the degree to which each column of our

* screening design is robust to linear, quadratic, and cubic

trend effects, we must correlate the plus and minus (one)

coefficients in each column of the sign matrix with the appro-

priate integer Tchebycheff orthogonal polynomial coefficients

I (Fisher and Yates, 1963; Beyer, 1966; DeLury, 1950).

Let us illustrate this with the column for Factor G in

the 2e'. screening design (Table 1), originally labeled

*Interaction AD in the factorial plan. The ordered column

vector of coefficients (without the ones) for Factor G, and i
the ordered Tchebycheff coefficients for linear, quadratic,

and cubic trends are shown in Table 2. The correlation (r)

between linear (L) trends and Factor G is obtained thus:

rLG - (ELG ) 2

(EL2) (EGG)

where ELG 2is the sum of the cross products (or inter-product

sum) between each pair of effect and

linear trend coefficients

ELL is the sum of the linear trend coefficients, each

squared

EGG is the sum of the squared coefficients for Factor G

(which will equal N in these designs)

V Thus to calculate the values needed to solve the equation,

from the data in Table 2, we do the following:

E LG= (-15) (+1) +(-13) (-1) +(-I1) (+1) +... (+13) (-1) +(+15) (+1) -0

EGG= (+1)2_ (_1)2 + (+1)2 ... (-,) + (+1)2 = 16

,EI= (-1512 + (-13)2 (-1]) 2 ... (+13) 2 f (+15) 2 1,360

-2I
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TABLE 2

i ILLUSTRATING USE OF TCHEBYCHEFF'S COEFFICIENTS TO
CALCULATE INNER-PRODUCT SUMS AND SUM OF SQUARES

Factor G TCHEBYCHEFF'S COEFFICIENTS
Coefficient* Linear Quadratic Cubic

+ -15 +35 -455
-.13 +21 - 91

+ -11 + 9 +143
-9 -1 +267

+ -7 - 9 +301

5 -15 +265
,+ -3 -19 +179

- 1 -21 + 63
+ 1 -21 - 63 I

+ + 3 -19 -179
+ 5 -15 -265

+ + 7 - 9 -301
+ 9 -1 -267

+ +11 + 9 -143
+13 +21 + 91

+ +15 +35 +455

EGG 16 1360 5712 1007760

ZLG 0

EOG 64A

EKG 0

*Plus or minus signs represent coefficients of +1 and -1

respectively. 
I
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Substituting these values in the equation, we get:

02 0

rLG 16 x 1260 1760 0

With a zero correlation, an estimated effect of Factor G

would be totally unaffected if an unwanted linear trend

effect was running through the data.

Repeating the process for the quadratic trend and

Factor G we get:

EQG=(+35) (+1)+(+21) (-1)+(+9) (+1)+. (+21) (-1)+(+35) (+1)=64

EQQ=(+35) 2 +(+21)2 +I+9)2 +...(+21)2 +(+35)2 =5712

EGG=N = 16

Substituting in the equation, we get: -t

r = 642 - 4096 044818 .2117

QG -16 x 5712 91392 - 4 =21

The percentage of overlap between the quadratic trend and

the effect of Factor G is, therefore:

= Cr )2 x 100 = (.2117)2 x 100 = .0448 x 100 = 4.5
QG QG

The correlation between Factor G and the cubic trend

effect was zero.

To discover which columns are the most robust to trends,

this process is repeated for all relationships between

linear, quadratic, and cubic trend effects and the experi-

mental effects (main and two-factor interaction strings).
t. However, these calculations are supplied for the designs

given in this report.
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Daniel and Wilcoxin (1966, pp 269-270) point out how

Yates' (1937) algorithm, when applied directly to the Tcheby-

chef f coefficients, can be used to calculate the innerproduct

sums more easily than if these were obtained a column at a time.

When all of the effects for any design are correlated, the

f relationships show two distinct patterns. For one, referring to

the original factorial labels, certain types of sources are

always correlated with particular trend effects. Thus:

Four-factor interactions Uncorrelated with L, Q, or K trends*
and higher

Three-factor interactions Correlated with cubic but not with
linear or quadratic

Two-factor interactions Correlated only with quadratic

Main effects Correlated with linear and cubic
but not quadratic

A second pattern is also apparent. Within any set of effects

of the same order, if they exist at all, the correlations

increase (using the labels of the original factorial) as the

factors progress alphabetically. Thus, the AC interaction

would be more correlated with a quadratic effect than the AB

interaction, and so forth. Both of these patterns can be

seen in the 2 design (Table 1), but they become even
IV

clearer with larger designs.

It should be clearer now why the columns of the screen-

ing design are reordered as they are. It allows main

effects (new labels) to be assigned to the columns less cor-

related with trends and the two.-factor interaction strings
to be assigned to columns more correlated with trend effects.,
For screening purposes, this greater emphasis on keeping

main effects clean is appropriate. The column reordering

,

The letter K is used to represent the cubic trend to
avoid confusion when the letter C is used to represent an
experimental factor.
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also tends to place the least correlated within these two

groups more to the left of the design, facilitating its use.

Since this general pattern is not completely correct,

with each of the designs given in this report the percentage
overlap (= r x 100) between each factor and trend combina-

tion is provided. The investigator can use these when he

must decide how to assign real-world factors to the design

columns.

Counting factor-level changejs. One can merely count the

number of times any column requires a change of factor levels.

For example, in the 28-4 design (Table 1), in column AB the

level is changed only once, from low to high between the

eighth and ninth trial, while in column H, the levels are

changed fifteen times, every other trial. Within each design,

the number of times the factor level changes (the count) is

a different value in each column, from one to N-i for N exper-

imental conditions (and N-1 effects) in each 2
k - p design.

As the designs get bigger, it may be inconvenient, as

well as time-consuming to count the changes in each column.

The following algorithm can be used instead:

1. Using the original factorial labels, with ex-

perimental conditions in Standard Order,

determine the counts for the main effects.

If the letters for the main effects are

written in reverse alphabetic order, the

count for each will be:

(2k i r)

where k is the position of the main effect
@" ! in the reverse order sequence:

e.g., in a three-factor design, the

main effects are A, B, and C. In



-~~~7 77" '~''-

reverse order they are C, B, and A,

in positions 1, 2, and 3 respectively.

Their factor level change count would

therefore be:

C: 21 -1 1

B: 2 2 l 3

A: 2 3 -1=7

2. To determine the count for any interaction, the

counts for the individual main effects are

combined always as: plus, minus, plus, minus,

etc, starting with plus and going as far as

necessary;
e.g., the count for the interaction ABC --

the letters must be ordered alphabetically --[I_ _would be:

[ A B C
+7-3+1=5

or for BC:

B C

or for AB:

A B

+7-3=4

of course, the count can be simplified

since ABC would also equal:

AB + CI
4 +1 5
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PREPARING TO USE SCREENING DESIGNS

It takes more to properly design an experiment than to

describe the experimental design. Screening designs tell

us at what coordinates in the abstract experimental space

we should sample performance to obtain information regarding

main effects without bias from two-factor interaction

effects. However, the investigator has more to do if he

wishes to use these designs effectively.

Pre-analysis to Select the Experimental Factors

Before he selects the final set of factors to be

included in the screening study, the investigator should

prepare an unrestricted list of factors which reasonable

and knowledgeable experts believe may have a non-trivial

influence on the real-world task most of the time. This

first step is designed to make certain that any source

likely to influence the performance of the task under in-

vestigation be listed for consideraLion, whether it be

related to the equipment, subject, environment, or task.

The value of this exercise is to reduce omissions too early

in the effort because of practical considerations real or

imagined, at that time. This, of course, is no license to
list every factor imaginable, but any that are likely to
influence the performance at hand should be included in this

initial step.I, The second step is to define the task, with emphasis on

the conditions in the real world. This includes an opera-

tional definition of the performance measure (and more likely,

measures) that will be employed, as well as the nature of the

stimuli and responses of the specific situation. While this

short statement does not do justice to the care required

and the importance of this requirement, the matter will not

be discussed any further in this report.
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The third step is to decide what real-world values to
set at the upper (+1) and lower (-1) limits of each factor.

These values should be selected, based on the following
considerations:

i. Lmits likely to be experienced in the real

world for the task under consideration.

2. Limits set by the state-of-the-art in

4the real world.

3. Limits set by the state-of-the-art in

simulation, which may be beyond those in

the real world so that information re-

garding future systems can be collected.

4. Limits set by construction costs, where

the information lost is not considered

critical.

5. Limits set by manipulation difficulties,

where the information lost is not con-

sidered critical.

6. Limits that are likely to approximate the

points at which the highs and lows of per-

formance will occur. (This is particularly

important when the function between the

factor and performance is probably U-shaped.)

The limits selected obviously affect to some extent, how

critically a particular factor will appear to affect per-
formance. If the limits are too narrow, performance may

change little and an investigator may read this (incor-

rectly) as meaning the factor has a trivial effect on

27



performance, when in fact it is true only within the limits

being studied. Had the limits been set wider, the effect

would be greater. This is why setting the limit values

should be determined by real-world interests, so that effects
are measured under conditions of practical interest in

the operational situation. Do not do as one eminent psy-

chologist did when he failed to get an effect from some factor.

That is, do not expand the range in the simulation beyond anything

likely to be found in reality so that the factor would show
a significant effect.

The fourth step is to assign priorities to the original

list of variables based on a number of considerations:

1. Order the factors on a five-point scale (if

possible) according to how much each --

within its specified limits -- is likely

to affect the performance on the particular

task.

2. Indicate those factors in which the inter-

ested parties (e.g., contracting agency and

the investigator) have a special interest.

3. Indicate those factors that are expensive

to simulate.

4. Indicate those factors that are likely to

interact with one another, noting particu-

larly the ones likely to result in disordinal

interactions.

[ The investigator must weigh these subjectively to select the

final set of the factors for the experitaent. The listing
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exercise provides him with a better overview when making hi3

decision. Ultimately, he must consider how his decision

affects the experiment's capacity to reflect reality for the

task under consideration.

Pre-analysis to Facilitate the Use of Screening Designs

Once the factors have been selected, the next step is to

anticipate how they will fit into a screening study. This

can be a mixed process of analysis and empirical data collec-

tion. However, pre-analysis is always desirable, whether or

not it is to be followed by preliminary or formal data

collection, for it can show a priori that certain effects,
observed later, were anticipated. An anticipated disordinal

interaction can be accepted as real with greater confidence

when found in the data than one that was not anticipated.

The investigator should make the following analyses as

an aid to using the sreet.ing design:

1. Classify the factors according to their quantita-

tive characteristics: ordered-continuous; ordered-

discrete; ordered-complex-categorical (by choice);

categorical.

This provides a preview of design characteristics

needed to handle each factor. Ordered factors can 9

eventually become part of a response surface, and

may be assumed continuous for certain applications,
( but all levels of the factor may not be available

as a design data collection point. On the other

hand, complex factors which are treated as categor-

ical ones but which are in fact a particular com-

bination of ordered and continuous factors, may be

redefined according to these parameters. Most

economical multifactor designs can be used more
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effectively with ordered and continuous factors;

fewer data points generally have to be taken and

the chances that greater-than-second-order inter-

actions are non-trivial are small.

For the ordered factors,

2. Estimate the response function between the given

limits of each factor. Four functions are of

major interest: linear, quadratic, U-or negatively

accelerated growth pattern, cubic or S-shaped.

This will aid in deciding how complex a model may

be needed to approximate the response surface,

how many levels will be needed to approximate the

individual functions, and where the limiting data

points must be located.

3. Decide what measurement scale might be used to
simplify any non-linear function that was antici-
pated. This helps meet the requirements for a

lower-order response surface when economical multi-

factor designs are used.

4. Attempt to draw the interaction effects that are

considered important, and consider the scaling

that would eliminate the ordinal interactions.

Pre-experiment Data Collection 1
Certain information can only be obtained empirically.

Some data might be collected, if deemed important by the

investigator, to make a quick but tentative check on assump-

tions made in the foregoing analysis. Other information,

however, is vital if the screening designs are to be used,
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and should be collected, in fact, prior to any experiment. I
The most important ones are:

1. Test the trial-to-trial reliability for a single

condition. (Reliability Test)

Test a typical subject on five or more consecutive trials

of a single condition. Does performance from trial to trial

vary irregularly and excessively (see Figure !-A)? If so,

this suggests that some critical source of variance has not

been identified and/or is not under control, and should be,

Are there signs of a progressive trend effect over the five
trials (see Figure 1-B)? This suggests that the subject
might not be sufficiently familiarized with the task or the

experimental apparatus. Either more practice, trend isola-

tion techniques, or both may have to be employed. Is there

an immediate improvement in performance and then a leveling

off (see Figure 1-C)? This suggests that some precautions

need be taken to offset momentary perturbations as each new

trial condition is introduced.

AC) B ) C

U -

,gI I I I I I I _I , I I1

Trials Trials Trials

Figure 1. Examples of Trial-to-Trial Performance Variability
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Differences in the extent of trial-to-trial variance

under easy and difficult conditions with experienced and

inexperienced subjects provide clues to the need for proper

response scaling and other variance-control mechanisms.

2. Test for subject-to-subject variability within

presumably homogeneous groups. (Subject Hetero-

geneity Test)

On both easy and difficult experimental conditions, a

number of presumed equivalent subjects should be tested. If

their performance differs considerably, then one may suspectA

that critical subject characteristics are being ignored.

Quite often, subjects are considered homogeneous according to AX!

some simple label, but are not so insofar as their performance

is concerned. This test provides some clues as to whether

those subject factors should be measured or controlled in the

experiment.

When faced with the need to introduce a new subject

characteristic as a dimension of a screening design, the

investigator must consider the nature of the characteristic.

If the characteristic is simple and readily quantifiable

(e.g., visual acuity), then it probably should be introduced

into the experimental design as any other factor. This

means that subjects within different levels of visual acuity --

two levels for a screening study -- would be used, each

performing a particular combination of the levels of the !

remaining factors representing the experimental condition.
If the characteristic is complex and difficult to quantify

(e.g., pilot experience), initially it might be better to

run subjects representing each of the two levels on every

experimental condition. This permits a subject-by-factor

interaction, if it exists, to be detected.
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3. Test to determine whether there are conditions i
which can be performed perfectly or can't be

performed at all by most subjects.

When too many experimental conditions are too difficult

or too easy, the information provided by a screening design

is severely limited. An investigator may have to "live with

it," or he may find that by making slight adjustments in the

range of a few factors, he can eliminate these uninformative
upper and lower limits. This, however, should never take

priority over practical interests and the reality of the

situation.

4. Test a very good and a very poor subject on the

easiest and most difficult tasks. (Interaction

Test).

How performance is distributed among these four condi-

tions providesvaluable clues regarding the task, its range

of difficulties, and the scaling of the dependent variable.

Four types of solutions are shown in Figure 2. In Figure

2-A no interaction is present, while in Figure 2-B an im-

portant type of disordinal interaction is shown, warning of

the presence of interactions that the unaugmented screening

design is poorly equipped to handle. Figures 2-C and 2-D

suggest the presence of ceiling and floor effects, respectively,

which may be reduced through appropriate scaling.

Selecting the Screening Design

C
Two major considerations in selecting a screening design

are:

1) whether or not one wishes to isolate main

and two-factor interaction effects immed-

iately before examining part of the data;

2) the number of factors to be studied.

33

C - . . ,. , ,, i . . .' . ... . .. -



2.1

A. NO INTERACTION B. DISORDINAL INTERACTION

o) GOOD SUBJ. GOOD SUBJ.

SPPOOR SUBJ.

HARD EASY HARD EASY
Task Task

C, CEILING EFFECT D. FLOOR EFFECT

i ~~~GO SUBGoDSUJ..
GOOD 

SUBJ.

POOR SUBJ.
00

'4.4
$4.

Z-_ -POOR SUBJ.

,1 ! -I

"HAR EASY HARD EASYTask Task

Figure 2

Examples of Types of Interactions Including No Interaction
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Resolution III or IV designs. It would be unusual for

an investigator performing human factors engineering experi-

ments (or any behavioral science study) not to want to isolate

main from two-factor interaction effects. Two-factor interactions

occur too frequently to risk their distorting main effects, even

in a screening study. On that basis, an investigator may

wish to use a Resolution IV design from the beginning with-

out resorting to blocking. The added advantage of the

Resolution IV design is robustness to trends (more so than a

Resolution III design).

As more factors are to be investigated and the cost of

data collection becomes uncomfortably high, there may be

stronger reasons to begin with a Resolution III design, as the

first block, and then later add a second Resolution III

design to create a Resolution IV design. First of all,

blocking enables data to be examined and factors added or

dropped, or their ranges changed if necessary, after half as

much data has been collected as would be required were the

full Resolution IV design completed first. Second, blocking
facilitates the control of certain irrelevant sources of

variance (Simon, 1970a; 1974 pp 100-103). Finally, running

experiments in small blocks reduces the chances that some

disruptive force would destroy the entire experiment.
SEquipment breakdowns may be less likely to occur and subject

sickness may be easier to avoid. In either case, it is

easier to recoup from the loss of a small block of data

than it would be if an entire study were lost because of

some disturbance occurring part way through the experiment.

In this report, only the Resolution IV plans will be
discussed. Resolution III plus foldover plans were dis-

cussed in an earlier report (Simon, 1973, pp 89-125).
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Number of factors. The Resolution IV designs provided

in this report are capable of handling up to 8, 16, or 32

factors (and others capable of handling up to 26, 2 ... 2n

factors can be created by the same process). However, the

number of experi~ntal factors that can be studied in any

design will be reduced if the investigator plans to isolate

trend effects or is restricted by particular combinations of

factors, interactions, and trend contamination.

The investigator must allow for making trend estimates,

losing one column (or experimental factor) for each trend

(linear, quadratic, and/or cubic) effect that is to be iso-

lated. Further restrictions on the number of available

columns (and therefore factors to be studied) may occur if an

investigator wants to keep certain combinations of main and

interaction effects robust to linear or quadratic effects.

If he decides to block his design, he must sacrifice still

more columns, which reduces the number of factors that can

be studied still more. For all of these reasons, an investi-

gator must select a design large enough to handle more than

just the number of experimental factors.

AT The Designs

The following basic Resolution IV screening designs and

supporting data are provided in this report:

3
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Minimum Number of
Observations (N)

Number of Factors for a Single

Design to be Studied Replication Design to Use

28-4 Up to eight 16 Table 1, Appendix I
TV

26" Nine to 16 32 Appendix II
IV

23226 Seventeen to 31 64 Appendix III

The following information is provided with each design:

1. Th: sign matrix

2. The experimental conditions

X 3. The original factorial design labels

4. The new screening design labels

5. Trend-robust test order

6. Percentage overlap between linear, quadratic,
and cubic trend effects and experimental
design effects

7. Number of changes made between levels for
each factor

8. Two-factor interaction aliases

9. Three-factor aliases of main effects

10. Inter-product sums used to adjust factors for
trend effects

Assigning Factors to the Columns of the Design

In assigning the real-world factors to the columns of

the design matrix, the investigator will be concerned with

which main effects and which interactions must be kept trend-

robust and which will require the fewest number of factor- I
level changes. These decisions, of c~urse, will depend on:

a) Which ones are the most important and thus

should be estimated with the smallest amount

3of trend bias.
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b) Which ones are important but are so unques-

tionably large that they will be identified

even though the data is somewhat distorted.

c) Which ones are the most difficult or most

time-consuming to change from level to level.

d) Which ones are likely to show large two-

factor, disordinal interaction effects.

Trends. In each table, the percentage overlap at the

bottom of the columns shows the investigator how much each
column will be contaminated with trend effects. Columns

affected by linear trends are not affected by quadratic

trends. In making his selection, however, the investigator

should realize that in human factors performance data linear

effects are generally larger than quadratic, and both are
generally larger than cubic effects. Thus, a 10% overlap

for a linear effect would ordinarily be much more likely to

distort the data than a 10% quadratic overlap. There are,

of course, no absolute rules and the investigator is ob-

ligated to minimize these effects by his experimental

procedures (Simon, 1974, pp 21-26) so that when trends do

appear, relative to the effects under investigation, they

will be small to begin with, making the absolute amount of

overlap even smaller.

Special problems of assignment arise when the investi-

gator wishes to keep both main effects and the two-factor

interactions reasonably trend-free. There are fewer inter-

action columns that are trend-free or trend-robust, and the

magnitude of the overlap is, on the average, higher than in the

main effect columns. Anything not overlapping more than

* O 10% with a linear trend is probably reasonable to use.
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An overlap of less that 30% and 50% between interactions and

quadratic or cubic effects, respectively, would also probably

* be acceptable if the investigator had no reason to believe

that this type of trend would be present to any degree and

had done his best to reduce them through his data collec-

tion procedures. These percentages are of course arbitrary,

and depend in part on how cautious an investigator feels he

must be.

As the nurber of factors increases, i.e., the larger the

designs, the options available to an investigator in this

regard, increase. Even if the investigator can't get a

trend-free interaction column with these designs, he still

has two options. First, he can make adjustments for trends

(to be discussed in the section on Analysis). Second, he j
may modify the design (to be discussed later in this section). Ii

Count. Screening designs are valuable because they

permit a large number of factors to be investigated

quickly. But if it takes a great deal of time to change

the factor levels from trial to trial, this prime advantage

will be lost. The sophisticated experimenter -- if he has

any say ir the matter -- will see that every means is taken

when the experimental apparati are being built to insure

that a rapid and accurate change can be made between levels

of all factors. Delays may affect the subject's motivation

and performance and errors in settings can dustroy the value

of the data. When normal precautions are taken, however, it

is more common to find that only a few of the total number

of factors have serious difficulties insofar as changingL the factor levels is concerned.

The problem of assigning the factors to the proper
columns of the design depends, therefor on both the number of

factors that must be considered as well as the degree of
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difficulty in making the factor-level changes. For example,

if it takes a day to make a change in the level of a particu-

lar factor, then the investigator would probably prefer to

assign the main effect of that factor to a column requiring

only a single change. If it takes only several minutes, he

may be content to assign it to a column requiring more

changes.

Unfortunately, with the designs provided in this report,

the main effects are all associated with columns that require

at least N/2 or more changes, where N is the number of ex-

perimental conditions in the design. This means that even

the main effect column with the smallest factor-level change

count still requires a great many changes. Furthermore, this

problem increases as the size of the design increases.

The problem of factor assignment is further complicated

if thf investigator wishes the column selected for its

minimum number of changes also to be reasonably robust to

trend effects. But it is apparent from the designs, that,

on the average, those columns most robust to trends are the I
ones requiring the greatest number of factor-level changes.

The designs, as they have been arranged for this paper,

maximize this inverse relationship. For example, in the

2~ -*1 1 design (Appendix II) the column identified as the~IV
string containing the AB interaction is the one requir.ing

only a single factor-level change, but it also is the one

with the cubic trend. The column requiring only two factor-

level changes (i.e., the string of two-factor interactions

with AF in it) has a 71% overlap with the cuadratic trend, a

somewhat better situation, but not a comfortable one. About
the first reasonable compromise in the 32-run design would

be the column identified as the two-factor interaction

string including AH, requiring four factor-level changes and

an overlap of only 4% with the quadratic trend.
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Thus, it seems that with the designs given in this

report, in order to have only a few factor-level changes, a

main effect must be assigned to one of the columns made up

of two-factor interaction strings. While this is possib'e,

since it has already been noted that we may assign any

labels to the columns, it is still not a simple matter, for

it triggers a series of reactions . .volving the ot.r

columns in order to maintain the appropriate relationships

among main and interaction effects. However, there is a

solution that an investigator may use if necessary. The

given designs are intended to optimize the robustness to

trends, but if it is also necessary to be concerned with

factor-level changes at the same time, the designs can be

easily modified to meet this need.

Modifying the Given Designs I

With the given designs, the smallest factor-level change

count for a main effect will be equal to N/2, where N is the

number of observations in the study, and in the 28-4 designs,IV
no linear nor quadratic trend effect overlaps a main effect

by 10% or more. If it is necessary to reduce the factor-

level count, by sacrificing the robustness to trend,

one may repeat the procedures given in this report to create

the original designs in Table 1 and Appendices II and III ex-
cept that instead of assigning to main effects all of the columns

containing a Factor A in the original labels, we would assign

*all those containing Factor B, or Factor C, or Factor D and 4
so forth in the original labels, instead, depending on what -

-' mixture of factor-level count and trend resistance is

required.

For example, with the 26IV1 design, if we used all

columns originally labeled with Factor B in them for the

main effects, then the smallest factor-level change count
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associated with a main effect would be four, but now only one

out of eight main effects is overlapped by linear or quad-

ratic trendsby more than 10%. If all columns labeled with

Factor C in them had been used for the main effects, then

the smallest count would be two and only two of the eight

factors would overlap linear and quadratic trend effects by
more than 10%. At the same time that tren-istance

among main effects is decreasing, more trend-resistant

columns are being associated with the two-factor interaction

strings. The effects of building a 216-11 screening designIV
where the main effects are associated with the columns of

the original Factors A, B, C, or D are shown in Table 3*.

For completeness, the reader should be aware of other
efforts to develop experimental plans that are robust to trend
while minimizing the number of factor-level changes required.
Simon (1974, pp 138-146) described the methods proposed by
Draper and Stoneman (1968) and Dickinson (1974). Their plans
were limited in two ways: 1) they were robust only against
linear time trends and 2) their robustness was only for main
effects. They arrived at what they believed were optimumdesigns through a systematic exantination of each alternative;

this becomes incrcasingly expensive as the size of the
design increases and it also reduces experimenter options.
Joiner and Campbell (1976) proposed to reduce the costs by
searching optimum combinations of a random subset of the
various alternatives. Lancaster and Reynolds (1976) proposed
a method wherr'by the investigator could select the optimum
combinations for both main and interaction effects.
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once the columns have been rearranged in an order that

produces a satisfactory factor-level change count and trend

resistant combination, it is necessary to assign the new

screening design labels. If the design is arranged in the

same manner described when Factor A terms were used, then all

new screening-design labels for both main and interaction

effects and their aliases will remain the same.

Finally, the new experimental conditions must be renamed

because when the columns have been reordered and assigned to

different main effects, the order in which the experimental

conditions will occur will also change. Thit is accomplished

by merely writing down the letters (using small letters for

the conditions) associated with all main effects with a plus

sign in each row.

When fewer than the maximum possible number of factors

are studied. The designs in Table 1 and Appendices I, II

and III are suitable for investigating up to a maximum of 8,

16, and 32 experimental factors, respectively, less of course

the number set aside to handle trend or blocking. Quite

often, however, an investigator will not want to investigate

the maximum number possible, and will want to modify the

given designs accordingly. This is done by simply striking

out each letter representing the label of each unused column

from the letter designations of the experimental conditions,

and by removing all interactions in the strings of aliases

containing those letters. This may create an uneven number

of interactions among the strings.

For example, in Table 1, if there were only six factors

in the experiment and no G and H factors were used, tnen the

experimental conditions would be changed as follows:
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With G & H Without G &H

aefg aef

bcdh bcd

bcfg bcf

adeh ade

bdeg bde

etc.

and Main Effect A would only be aliased with BCE, and BDF

and Interaction AF would only be aliased with BD, since all

interactions with the letters G and H in them would be

eliminated.

The columns in which no main effects are located are

now used to estimate directly the effects of particular

strings of three-factor interactions.
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III. EFFECTIVE USE OF CENTER POINTS IN SCREENING DESIGNS

Unreplicated 2
k -p screening designs have two distinct

limitations: 1) they cannot measure possible curvilinear re-

lations between independent and dependent quantitative

variables; 2) they provide no direct estimate of the experi-

mental error variance. These are recognized, but to obtain

such information would be costly and, for screening purposes,

would be of little value and certainly not cost-effective. In

later stages of research, this information does become impor-

tant. Since the investigator can ordinarily anticipate con-

tinuing his experiment beyond the screening phase, he would

fit a non-linear model, if necessary, and obtain an external

error estimate at that time.

Data from at least three levels of each continuous

factor is needed to measure the curvature of the response

surface. Screening designs ordinarily have only two levels.

Design points must be replicated several times to estimate

error variance. Replication for this purpose is usually

discouraged in the screening study. However, once the

decision is made to get this information, it can be obtained

most economically by adding data-collection points at the

center of the experimental design. Data collected at the

center of the design (with coded coordinates 0,0..., 0, when

the original screening design coded coordinates were +1 and

-1) will provide some estimate of curvilinearity for every

factor.

By adding a single point at the center of the experi-

mental desiqn, a third -- middle -- level of every factor

of the screening design is measured. This is illustrated in

Figure 3. With three levels, -1, 0, and +1, performance at
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Figure 3

Illustrating How Single Center Point Enables Each -
Factor to be Tested at Three Levels.

each end point is estimated by averaging one half of the

experimental conditions in the original screening design.

The center position, however, would be estimated from
the performance of only the single center point. Because

of this uneven precision along the dimension, with the

poorest being at the center of interest, repeated measures

should be made at the center of the design. This center-

point replication will also provide an empirically derived

estimate of the experimental error.
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CENTRAL-COMPOSITE DESIGNS

t Box and Hunter (1958) propose using this center-point7' replication technique in their central-composite designs,

where there are still more advantages than indicated above. .1

Since central-composite designs follow in the research

program once the critical factors* have been screened, mul-

tiple center points should be included in the screening

designs whenever appropriate. The number of center-points

in central-composite designs affect the following design

characteristics and functions:

1. The test for the presence of quadratic effects

in the first-order model and higher-order

effects in the second-order model. J

2. The estimate of "pure" error variance needed

to test the statistical significance of lack

of fit.

3. The uniformity of the "information" profile

(which is based on the number of observa-

tions at each point in the response surface).

4. The orthogonality of the central-composite

design.

An optimum design strategy would use the data collected
in the screening design as a block of data making up the cube
portion of the central-composite design. The methodology for
handling this transition will not be discussed in thLs report.
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5. The "rotatability" of the central-composite

design.

6. The ability to isolate block and trend effects.

As applied to the central-composite design, the above items

are discussed in considerable detail by Box and Hunter

(1958, pp 152-168) and Simon (1974, p 102; 1976a, pp 22-28).

Lack-of-fit tests can be applied to screening designs sup-

plemented with multiple center points. These will be

discussed in the Analysis section of this report. 4

SCALING

Once an experimenter has decided to add center points to

the screening design, he is forced for the first time to con-

sider what measurement scale to use for each factor. Up to

now, since basic screening designs are made up with two levels

per factor, only a linear response surface could be estimated

regardless of what shape might actually exist in the real world.

Adding center points complicates the situation.

Let us, for example, consider a 23 factorial study

involving Sensor Resolution (5 and 15 feet), Target Bright-

ness (10 and 100 foot-lamberts), and Vehicular Speed (300

and 600 knots). The pairs of values set the limits of the

three-dimensional experimental space. The experimenter who

decides to add center points should not automatically

select the point with coordinates in the center of each

dimension, i.e., 10 feet resolution, 55 foot-lamberts

brightness, and 450 knots vehicular speed. Instead, he

should first consider what scale will enable the experimental

space to be represented by as simple a function as possible.
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To illustrate this, let us consider the brightness scale.

With a center point at 55 foot-lamberts, experience has shown

that the scale would relate non-linearly with a visual per-

formance task (Figure 4A). On the other hand, when brightness

data is plotted on a logarithmic scale, the relation would more

nearly approximate a straight line (Figure 4B).

4J 4JU Ui4).

U)

0)

110 55 100 1.0 1.5 2.0
Foot-lamberts Log foot-lamberts

-1 0 +1 Ve -1 0 +1-I 0 +I values?

Figure 4.

Plotting Brightness on Linear and Logarithmic Scales

Since economical multifactor research is most successful

the simpler the relationship and since fewer conditions need

be studied to approximate the less complex functions, the

experimenter would be better off using a log foot-lambert
Sscale while raintainit'g the range between 10 and 100 foot-

lamberts (i.e., one and two log foot-lamberts). This means-

that the center point on that scale would be at 1.5 log foot-
lamberts, or 31.6 foot-lamberts instead of 55 foot-lamberts.
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A similar decision must be made for the Vehicular Speed.

The experimenter would want to consider whether speed or

rate (the reciprocal of one another) is likely to give the

simplest function. The choice will determine whether 450

knots or its reciprocal in seconds would be used.

QUALITATIVE FACTORS

Center points can be added to a design only when the
factors are quantitative and continuous. Categorical varia-

bles have no crder and therefore no center values. However,

when quantitative and qualitative variables are studied in
the same experiment, center points can still be added. In

that case, the condition would be centered only within the

space defined by the quantitative, continuous variables.
This restricted center point would be replicated once for

each unique combination of the qualitative variables.

This is illustrated in Table 4. A sign matrix is given
for an experiment with two qualitative and two quantitative

factors. The first sixteen conditions are those of a

full 24 factorial, with + and - representing the coded +1
and -1, high and low values. The last four conditions show

how center points (0,0 in the coded terms) for the quantita-

tive variables are added.
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TABLE 4CENTER POINTS IN AN EXPERIMENTAL DESIGN

INVOLVING QUANTITATIVE AND QUALITATIVE FACTORS

FACTORS

Qualitative QuantitativeExperimental ia
Conditions* I II III IV \ i

2+ +

3- +

4+ +

5 +

1 + + -

13 - - + -

14 + - + -

7 - + + original

8 + + + factorial
design 3

9 - - + 0

10 + 0 +

19 - + 0 +

12 + + - +

13 - -+ +

14 + -+ +

15 - + + +

16 + + + +

18 + -0 0 Minimum number
19 - 0 0 of additional

center points
20 + + 0 0

This is not intended to be an optimized presentation order.
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IV. INTRODUCING SUBJECTS INTO THE SCREENING

DESIGN AS FACTORS AND AS REPLICATIONS

Subjects in psychological experiments either appear as

1) identifiabla types who can be represented as composite

levels of subject factors, or as 2) unidentified masses,

presumed to be homogeneous members of the same population.

SUBJECT CHARACTERISTICS AS EXPERIMENTAL FACTORS

There are two situations that can exist when we wish to

include subject characteristics as factors along with equip-

ment/environment factors and temporal factors. In one, each
subject is selected having the characteristics required by

the sign matrix. In the other, measurable subject character-
istics are known but it is difficult to impossible to select
subjects with the required combinations.

Measuring Subject Characteristics as Part of the Design

If each subject characteristic were to be investigated
f

at two levels, and there are f characteristics, 2 subjects

would be required to exhibit all of the required combina-

tions of characteristics. Each subject would be tested on
a particular combination of the remaining factor levels,

where the combined characteristics of subjects and other

factors would represent a specific experimental condition

as defined by the sign matrix.

A study on target acquisition performed at the Naval.
Weapons Center, China Lake, California (Grossman and White-

hurst, 1976) illustrates how subject characteristics can and
should be introduced into the experimental design of the
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screening study. Three of eleven factors in that study were

subject factors.* This required a minimum of 23= 8 subjects,

each having the appropriate combination of characteristics

as indicated in the following sign matrix:

Subject # Acuity(A) Depth Perception (B) Color Vision(C)

2 +
3 +
4 + +
5 -+
6 + +
7 + +
8 + + +

Where - represents the poor condition and + represents the

good, according to specified criteria.

Each subject was tested under appropriate combinations

of the eleven equipment/environment factors required to

complete the 16 experimental conditions of the complete

2 1 - 7 Resolution III design. For example:

*

A fourth, labeled Experience (D) might be considered
a subject characteristic but was introduced into this ex-
perimental design as a temporal factor. Each subject ran
through the experiment twice. The first measurement of each
condition was considered low experience and the second
measurement of each was considered high experience.
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I,

Columns A through K Strings of two-
represent main effects factor inter-
aliased ..,.h two- actions not
factor inieractions aliased to main
and higher effects

Source of Var. SUBJECT TIME EQUIPMENT/ENVIRONMENT

Factor Label A B C D E F G H I J K (ad) (bc) (bd) (cd)

Exptl. Cond. 1 - - - - + + + + + +

Exptl. Cond. 2 +- - + + - - - + + +

Subject 1 Subject 2First Trial ) First Trial

Although a number of sub4ects are involved, each

experimental condition is represented only once in an

unreplicated design. If one considers subject factors
equally as important as equipment factors, then no distinc-

tion need be made in the analysis of the data. Tf the

purpose is to order the factors whatever the source, accord-

ing to their relative effects on the performance of the task

under investigation, then this screening design can be used.

Measuring Subject Characteristics Not in the Design

When it is not possible to vary subject parameters by

systematically selecting a subject with precisely the correct

combination of characteristics, then measurements should be

made of the characteristics as they actually exist in the

subjects who are used. If over the entire experiment the

variables tend to distribute themselves relatively normally,
then their effects can be estimated along with the more sys-

tematic ones using a regression analysis. One can visualize
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the variables laid out as terms of a polynomial to estimate

performance, y:

A

Y A + a2 B + N I- 134D + (35E + i1 ....

where the italicized letters represent measured values of the

uncontrolled variables (probably correlated amori one another

and the other variables) while the Roman letters represent

selected levels of the controlled factors of the factorial

(or fractional factorial). The 13 are the weights of each

variable as determined by a regression analysis, preferably

ridge regression analysis (Simon, 1975). As the correlation

among variables increases, ridge regression analysis is

superior to the conventional multiple regression analysis for

this purpose. However, when uncontrolled variables are to

be measured and analyzed along with the controlled variables

in the experimental design, enough extra observations must be

made to provide the degrees of freedom needed to cover the

additional uncontrolled variables.* These degrees of freedom

may be obtained if the basic design is replicated using a

representative sample of different subjects selected in

some random manner. Tile re1qui red number of degrees

of freedom may also be obtained if the orthogonal
design is analyzed first in the prescribed manner, and those

factors that are definitely trivial are diopped from the

analysis. Presuming the number of factors dropped is equal

Use of Lhis technique need not be limited to uncon-trolled subject variables, but can be applied for any type
of uncontrolled variable.
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or greater than the number of measured variables, then there j
will be enough degrees of freedom available to re-analyze

data to include the uncontrolled but measured variables

(co-variables). While there are some dangers associated with

this latter procedure, an alert investigator should be able

to detect them if they arise. The odds favor the latter

approach which maintains the integrity of economy in a

screening study.

SUBJECTS AS REPLICATION

Replication is the antithesis of experimental economy.

In some cases, it is used unreasonably. Such is the case
when an investigator replicates a fractional factorial design.

If he intends to expend this additional effort collecting
more data, it would be far more informative to add a dif-

ferent fraction to the design than it would be to replicate

the original fraction. In this way, more sources of variance

in aliased strings could be isolated, increasing the inves-
tigator's understanding of the situation. As Daniel (1976,

p 10) says: "The most useful replication will be that which

best samples the pcpulation of conditions about which E wants

to make inferences. In this sense, the best replication is

done under different conditions, not under the same condi-

tions." Simon (1973, pp 19-32) reviewed the arguments psy-

chologists frequently give for replicating, and indicated

their weaknesses and alternative solutions.

Two valid reasons for "replicating" with subjects, after

all other alternatives have been exhausted, are to establish
4 inter-subject reliability and to obtain confidence intervals

or fiducial limits.
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Replicating for Inter-subject Reliability

An investigator never really knows if there are unwanted
and unknown sources of va' .ance affecting his experimental
data. No matter how careful he may be -- and there appears

to be large investigator differences in the care with which
Lhey collect experimental data (Simon, 1976b) -- an investi-

gator should impose checks on the quality and consistency of

his data. This means that when a second subject is tested on
all the experimental conditions, the data from each subject

should be analyzed separately and compared. This not only
permits a check on the consistency of responses among homo-

geneous subjects as well as the assumption of homogeneity,

but also helps detect distortions and outliers in the data.
Some hints in this regard are discussed in the section on
Analysis. The investigator may even wish to test more

subjects (still making individual examinations of the results)

until he builds confidence in a particular set of conclusions

*or discovers reasons for not accepting them.

While methods of isolating experimental from trend
effects in screening studies have been described, an investi-

gator may be as concerned with cross-over effects as he is

with trends. If so, he may decide to present the experimental

conditions to several subjects in different orders in a way
which will enable cross-over effects to be isolated from ex-
perimental effects (Simon, 1974, pp 27-90)*

*

Economical designs that are robust both to trend and
cross-over effects have not been worked out.
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Replicating to Establish Confidence Intervals.

0 The appropriate research strategy is to establish

confidence intervals at the end of the experimental program.

Once an equation containing all of the critical factors has

been derived, those combinations of factor values that

optimize performance or represent combinations of practical

Vinterest would be used to test a group of "truiy" homogeneous
subjects. Subjects can be considered homogeneous after the

inveLcigator has separated them into groups on the basis of

critical subject variables and any remaining within-group

subject variability is small and not readily identifiable.

It's the "what's left over" after all efforts to identify

the sources have been exhausted. Generally, establishing

Aconfidence intervals would be done in the operational environ-

ment where that information would be most useful.
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DATA ANALYSIS

e How to calculate the criteria for deciding which
factors are critical to the task under inves-
tigation and which are marginal or trivial:
effects, eta squared, cumulative proportion
of variance, half-normal plots.

0 How to analyze subjects used to replicate the

basic screening design.

* How to adjust experimental effects for trends.

* How to aralyze multiple responses: graphical
and statistical methods.

o How to evaluate how well first and second order
regression equations fit the empirical data.

o How to analyze an incomplete screening design.

1 6
Sii
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V. CALCULATING CRITERIA TO SELECT NON-TRIVIAL FACTORS

Since the purpose of the screening study is to identify

those factors out of a larger candidate group which have non-

trivial effects on performance, the first step of the analy-

sis is to calculate a number of criteria which will help the

experimenter make that judgment. It is appropriate at this

time, before the analysis begins, to emphasize the point that

there are no mechanical methods of selecting the trivial and

non-trivial factors. Lest the unsophisticated investigator

believe that requiiring subjective decisions on the part of

the investigator is unscientific and is a weakness confined

to these screening studies, let him be assured that this is

not the case. Evaluating the results from a screening

designs study is no different from evaluating the results

from an analysis of variance by hypothesis testing. Accept-

ing or rejecting the hypothesis is done by the investigator,

not the F-test (Bakan, 1967). Statistics applied to the

empirical data may facilitate a decision.

SELECTION CRITERIA

Whether or not a factor is considered non-trivial will

be based on the following criteria:

1. Does it have a practical effect on performance?

This can be determined by calculating its effect,

i.e., the mean difference between the high and

the low value of that factor.

Precaution: If the pair of values per factor in

the experimental design does not cover the full

range of interest, an estimated effect will not

be indicative of the full strength of this

factor.
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2. Does the factor account for a meaningful pro-

portion of the variance in the experiment?

0 This is determined by calculating Eta squared,

or the ratio of the sum of squares for the

factor to the total sum of squares.

Precaution: If the candidate list does not

include essentially all of the critical factors

affecting performance under operational

conditions, then proportions obtained in the

9experiment will be deflated when applied to

a real-world problem.

3. Does including the factor materially improve

6 the ability to predict performance under

operational conditions?

This is determined by examining the cumula-

tive proportion of variance obtained when

9' the effects of the factors are combined.

Precaution: If an effect is due to chance in

this sample, including it will lead to poorer

'4 prediction in subsequent tests (shrinkage).

4. Could the observed effect have been due to chance?

Without a source of error variance, the investi-

gator must rely on less direct indications (i.e.,

internal tests) of a chance phenomenon. Examining

the data using "half-normal plots" may be useful

for this purpose.

Precaution: This graphic inspection of portions

of the data is still a poorly developed art.
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5. Can the cumulative effects of a large number of

non-critical factors be ignored?

While some factors may show only small effects,
nevertheless, they have an impact on performance.If there is a large number of marginal factors,

and according to the principle of maldistribu-

tion that is what we expect, we may wish to

exclude them during an initial screening, but to

examine them more carefully during the refine-

ment phase of the program. Together they may

improve prediction considerably.

In applying the above criteria, the investigator will temper

his judgment with the cost of each decision, as well as by

satisfying the interests of those who have sponsored the
research. With an iterative research strategy, and decisions
are constantly being tested, no decision need be final. Factors

included or excluded early in the program may be excluded or

included later in the program, if necessary. Generally

the error in decision will occur with the marginal factors

where the practical effect of an error is the smallest.

Estimating the Effects

The "effect" of a factor is the mean difference between

the performances measured on the two levels or conditions of

that factor.* An investigator has several methods at his

disposal for estimating effects in the 2kp screening design.

Some statisticians use the term "contrast," instead
of "effect."
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The conventional method (for psychologists) of finding I
the effect of Factor A, for example, in a 2k-P design, would

be to add up all of the performance valueg in all the cells

associated with one condition of Factor A and to add up all
of the performance values associated with the other condition
of Factor A. The means of these sums would represent the

mean performance on the two conditions and the difference
between the two means is referred to as the "effect." This

is illustrated with some fictitious data in Table 5.

As more factors are included in the screening experiment,

the sign matrix can be used to facilitate the analysis. The
sign matrix for a 22+ 1 design, along with fictitious perfor-V
mance data, is used to show how a sign matrix is used (Table

* 6). For example, the effect of Factor A is estimated by
summing all performance scores, obtained when the "high" (+)
condition of A is being tested, e.g.:

4+ (-5) +3+5=7

This sum is divided by 4, giving the mean performance of 1.75
for the high condition. Next, all performance scores, ob-

6 tained when the "low" (-) condition of A was being tested,
are summed, e.g.:

2 + 3 + 1 + (-2) =4

This sum is divided by 4, giving a mean performance value of

1.00 for the low condition. Subtracting the low from the
high gives a mean difference of 0.75, the effect of Factor A.

Similarly, the effect of the interaction AB would be

obtained as follows:

(+4 + 3 + 1 + 5) - (+2 -5 +3 -2) 15 4 3.75
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TABLE 5. CONVEiNTIONAL METHOD OF ANALYZING 2 kDESIGN

Factor (-2/4)V +
________Mean Two performance

scores in each i3

/ cell. (N=8)

F4 2 (9/4)
F 5 /-2

t Effect of B -7/4 -17

r + (2/4)k'

Mean /(4)

- ~ (13/4)
=Effect of A -3/4 -.-

[Effect of Interaction AB=

Grand mean =11/4 =2.75 15/4 =2.75I

TABLE 6. SIGN i'TRIX METHOD OF ANALYZING 2kDESIGN

Factor SourcesA
Performance

__A B AB - +

(1-- + 4 4 2I
a + - -2 -5 3

0 0 b - + - -5 3 1
ab + + + 3 5 -2

Q ;9ab + + + 1 7 -4

0b+ 3 3

~ a + - -2Effect of A -
(1)- + 5 4

-3/4= -.75
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the t n e p rv e a l

The divisors for the means in these cases always equal half
. the total number of performance values. Each column of the

matrix, i.e., each source of variance, is treated in the same

way.

Yates' algorithm. When the effects of a large number

of factors must be estimated, using the sign matrix can

become tedious and the chance of making arithmetic errors

increases ji a computer is not used.* Yates (1937) devel-

oped a systematic tabular method of calculating the effects

of 2k designs which is adaptable to 2 k-p designs including

screening designs. IM example of the analysis of a 23 design

using Yates' algorithm is given in Table 7. The steps are

these:

k1. List the 2 experimental conditions in the Standard

Order (Column I). This Standard Order is (1), a, b,

ab, c, ac, bc, abc, d, ad, bd, abd, cd, and so forth,

where after the (1) condition, a factor at a time

is added, followed by all interactions between that

factor and each previous factor combination before

a new factor is added.

2. List each performance score adjacent to the corres-

ponding conditions (Column II). If it will simplify

Even if the calculations are done with a computer,
there is a material advantage in using Yates' algorithm.
Because the Standard Order is assumed (or corrected for later
if the initial assumptiorn is incorrect), the only inputs to
the computer are the performance scores. No 2k or 2k-p matrix
need be input, a sa.,ings in the programming and card punching
requirements.
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TABLE 7

*YATES' ALGORITHM FOR ANALYZING A 2FACTORIAL

I IIIII IV
Effect-

Standard Experimnental tota.l Effect
Order Condition Perf ormance 1 2 3 (N Source

1) (1) 4 6 4 11 2.75 Mean x2

2) a 2 -2 7 -3 -.75 A

3) b ..5 3 6 -7 -1.75 B

4) ab 3 4 -9 15 3.75 AB

5) ab 5 -2 -8 3 .75 C

b -2 8 1 --15 -3.75 AC

7) a 3 -7 10 9 2.25 BC

8) ()1-2 5 -5 -1.25 ABC

4
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calculations, a constant can be subtracted from

every score without affecting the estimation of the

effects. Only the mean must be corrected by thathi' constant amount.

3. Separate the nuribers in Column II into pairs and

add the two values in each pair, taking signs into

consideration. List these sums in order in the

upper half of Column 1.

Next, start again at the top and subtract the FIRST

number Zm the second of each pair in Column B and

list the differences in order in the lower half of

Column 1.

4. Repeat this process to create Column 2 using the

numbers in Column 1.

5. Continue to add and subtract adjacent pairs in each

list to create a new list until there is a total

of k numbered columns for 2 k experimental conditions.

In the example in Table 7, with 8 = 2 conditions,
there are three numbered columns (Columns 1, 2, and 3).

6. The effect for each factor is obtained by dividing I
the appropriate value in the last numbered column,

'I :referred to as the "effect-total,"* by a value equal

to half the total number of observations in the

experiment (Column III).

Sometimes called the "contrast-sum."
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II
rho effects thus calculated will also be listed i the Stan-

dlard clider, thle first-. value beinq equal. to twice; the. meanl* of

all the data, the second being the effect of Factor A, the

Arthird being the effect of Factor B, the AB, C, AC, BC, ABC,
i D, AD, and so f'orth (Column IV).

When this analysis is used withi screeninq (or other

fractional factorial) designs in which the oriqinal factorial

labels are changed to new screeninq desiqn labels, and

effects are aliased, an equivalent chanqe must be made in

the factor labels of the analysis usinq Yates' algorithm.

Corresponding new labels must be substit-uted for the old

labels that appeal in the Standard Order in the effects column.

Daniel (1956, p 93) writes: "With NR as lartle as 32,

Yates' computational form may be split into two forms of

size 16, using sum and differences of pairs over the last

factor, instead of the original single results. This sub-

d~ivision may be continued further for N larqer than 32."

This is illustrated in Table 8. The performance values

(Column B) of the experimental conditions (Column A) listed

in Standard Order would be dividod in half, with performances

associated with all low condi tions of the last: factor (i.e.,

C in this example) being analyzed with Yates' alqorithm as
one problem and pertormance associated wLIth all high con-

ditions of the last factor analyzed as a separate problem.

Since only half the data is in ach probloml there will be

one less column in each sub-analysis (Columns I and 2) than

would be in the full. analysis. When the effect:/t.otal values

___ ___

We t dividh by N/2 in Step 6. To get the mean, we
would of course divide by N.
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TABLE 8

USING A SPLIT-YATES' ALGORITHMTO ANALYZE A 2 DESIGN

1 1i 1 2 2' 2" 3 ('4, i

Half (1) a a+b a+b+c+d = A A A i
with a b c+d b-a+d-c = P 1,+h, A

b c b-a c+d-a-b = (W P +G B
ibd d-c d-c-b-a = F1 141 AB

Half c e e+f e+f+g+h =( (' '-A C
with ac f g+h f-e+h-g = (h G F-1 AC
C+ bc g f-e g+h-e-f = () -C BC

- abc h h-g h-g-f+e = (l if !!-P ABC

Original Performance Applying Effect- Effect- Overall Combined

exptl. values Yates' tot-als totals effect- effects
conditionsi algorithm for each of each totals in
in (symbolic) separately half of half for St.andard
Standard to each total after complote Order
Order half split exper. pai r ina Axpr.

on low
level and
high level
of factor C

______ Il 1 2 2' 2" - Ill
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are obtained for each half (Column 2') they would be inter-

mingled, alternating with the first effect-total in the low-

condition analysis followed by the first effect-total in the

high-condition analysis, and continued to alternate in this

fashion until the two halves are completely paired (Column 2").
This new column is then treated to the sum-difference analysis

fas if it had been the next to last column, the effect-total
values, of the full analysis (Column 3). Then in this example,

if Column 3 is divided by N/2 = 4, we obtain the mean doubled

and the effects in Standard Order,

Estimating the coefficients of the multiple regression

equation. In screening designs, the equation would take the
form:

Y b oX0 + ba% a.. bkXk + ba_Xah + bagX + babXab

where-^ 2
Y = estimated performance

bi = coefficient for factor i, where i = a to k
1

Xi = term representing the level of factor i; X0

b = coefficient for the string of two-factor inter-

bij actions

X = term representing the string of two-factor inter-
I-I actions

The regression coefficient, b., equals \:YXi, X However,

in the basic screening design, ):x? = N and .YYX. equals the 4
effect-total in the Yates algorithm. Thus the regression

coefficient for a multiple regression equation can be ob-

tained as follows:
Effect-total_ Effect J

N 2
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Interpreting effects data. The effects data shows the

change in performance that occurs between the two levels of

each factor. If these levels represent the extremes of the
operational space, or the upper and lower limits of perfor-

mance, then the magnitude of the effects tells us something

of the practical importance of that factor for the task under
consideration. Thus, it is not possible to make a meaningful

interpretation of the results without fully understanding the

design and its context in the real world. In Figure 5

(solid line), the effects of resolution might be quite differ-

ent depending on which two levels had been selected for the

conditions of the experiment:

Trivial: AB, DE
Mild: CD
Largu: BD

Large
Tgts. -

Small
Tgts.

A BC D E
RESOLUTION XA

Figure 5. Illustration of flow Experimental Context
(i.e., task difficulty) Affects Performance

All this could change as a function of other parameters. For

example, the effect between levels B and C might have been
trivial if all targets had been so large that differences in

resolution were inconsequential. This is illustrated by the

dotted line.
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L; When effects are evaluated, however, the interpretation

must be made in the context of the operational situation

rather than the experiment. It is equally important that the

performance also be measured in terms of operationally rele-

vant parameters. For example, a 2.4-second difference in the

speed of reading a full-size newspper page would probably ]
not be an important consideration in selecting one of two

styles of .ype. On the other hand, a 2.4-second difference

might be quite critical in selecting the design of a safety

switch on a nuclear reactor. The experimenter must look at

the effect and decide if one that size is critical in the per-

formance of the real-world task. 'f it is definitely not, then

that source of variance can be excluded until new evidence

negates that decision. If it is a marginal effect, other

considerations involving costs and convenience will determine

whether it should be excluded at this time or not. If the

effect being considered represents the sum of a string of two-

factor or three-factor interactions, the investigator should

determine whether or not any of the larger main effecLs are

paired in the string. If so, it is likely (though

definitely not certain) that the string represents an ordinal

interaction which is of secondary importance. Deciding[ whether a string contains an ordinal or disordinal interaction

may requlr-e more data to be collected (Simon, 1973, p 116-124).

Estimating the Proportion of Variance Accounted For

For an unreplicated 2
k- p screening dtesign, the variance,

or mean square, can be calculat-ed quite simply once the

effects for each source have been obtained.

First the Sum of Squares for each individual source of

variance is calculated as follows:

Sum of Suares (ffct)
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where N is equal to the total number of observations in the
kexperiment. Since these designs involve factors at only two

flevels, each source has only one degree of freedom. Therefore,

the sum of squares and variance for each effect are equal.

Eta squared. The proportion of total performance

variance in the experiment, accounted for by each source of

variance, is calculated as follows:

E Sum of squares for particular sourceEta squared Total sum of squares

Total sum of squares is obtained by summing the sums of

squares for all N-1 sources of variance, including those

between blocks, if any, in the experiment. The mean is not

included.

Interpreting proportion of variance data. In interpret-

ing the proportion of variance associated with a single source

of variance, two things must be remembered: one, it is a

relative measure and two, its importance depends on how many

critical factors are included in the experiment. As a rela-

tive measure, the magnitude of an eta squared depends on the

magnitude of the other sources of variance in an experiment.

Since there is always an upper limit of 1.00 on the proportion

of total variance that can be accounted for, a source that

shows a mean difference of 30 seconds may, for example,

account for 25% or 75% of the total variance depending on

whether the other effects and error in the experiment are

relatively large or small, enhancing or decreasing the abso-

lute total variance, and changing the relative proportion

accounted for by any single effect. With only one factor

plus some random error variance, a factor may account for 90%

or 10% of the total variance depending whether or not it is

a "clean" experiment with a little or a lot of random error

respectively. Thus, in interpreting eta squared, a source

that accounts for a small proportion of variance is likely to
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be a non-critical source of variance, but a source that

accounts for a large proportion of variance cannot per se

be considered critical. It may have accounted for most of
the performance variability in the experiment, but in the

real world where a great many factors are likely to be opera-
ting, it will account for relatively little. It is the case

of a big frog in a small pond.

The only time when a source with a large proportion-of-

variance value can be considered critical -- with confidence --

is when a large number of factors has been included in the

experiment and these are believed to include most of those

likely to be critical under operational conditions. Other
.4considerations in the interpretation of eta squared are dis-

cussed by Simon (1976b, pp 37-43).

Cumulative Proportion of Variance

When the sources of variance are ordered from largest to

smallest according to the size of each one's effect and the pro-

portion of variance accounted for by each is calculated, these

proportions may be added, one at a time, so that as each new

source is added incrementally, the cumulative proportion of

the total variance accounted for by all sources of variance,

both factors and interactions strings, up to that point, is
~indicated.

Since the sources in a screening design are independent,
each cumulative proportion of variance represents the square

of the multiple regression coefficient (R2) for an equation

composed of all sources included up to that point. Each new

source adds some incremental amount, which may or may not be

important -- whicn is what the investigator is trying to

decide -- and which may in fact have been a chance effect for

the particular sample and would not likely re-occur were the

experiment repeated. As stated earlier, we have no way in
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the single replication screening design of directly measuring

the error variance with which to test the reliability of each

new term. Several indirect (or internal comparison) measures

will be suggested later on.

When we stop at a particular point along the ordered
continuum of sources and calculate the cumulative proportion

of variance (or R2 ), we are implicitly assuming --

tentatively at least -- that the remaining proportion of var-
iance not accounted for (i.e., 1 - R2 ) is error. This estimate

of error might be used to determine at what point the addi-

tion of another term (source of variance) results in a drop

in -he population R2, which is estimated by applying certain

correction factors to the sample R2 . Quite obviously, the R.2

value for the sample must increase toward 1.00 as more sources

of variance are added, but the population R2 reaches a point
where instead of increasing as more sources are added, will

decroase. This could be used as a clue as to where to stop

adding more sources.

While there are a number of formulas to calculate
"shrinkage" (Kerlinger and Pedhazur, 1973; Url and Eisenberg

1970), the following one is probably as effective as any for

our present purpose and is simple to use:

R= 1- N -1 (1 - R 2)

where R is the population multiple correlation corrected for
shrinkage

R is the uncorrected sample multiple correlation for
the k factors

N is the total number of observations

k is the number of factors (or sources of variance)
included in the equation
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At some point, as k increases, R will bei to decrea

This is the maximum number of sources that should be considered.

In practice, however, this formula gives an overestimation,

and the k sources are probably too many to include.

Because a successful experiment should account for most*

of the performance variance, there is often a tendency to

want to include more sources of variance than are probably

necessary. Still, the final decision of what to include or

not will be made more on the basis of practical considerations

and the dangers of an erroneous decision than on the results

of a statistical test. The decision is made more difficult,

however, when we look at the cumulative proportion than at

the proportion accounted for by an individual term factor.

For in individual cases, we may see a small value, e.g., a

proportion of .01, and decide that even if it were a real

effect, it is marginal and if we omit it erroneously it is

not going to be too critical. On the other hand, we might

hesitate dropping ten or fifteen effects that individually

might each account for a probability value of .01 or less,

since cumulatively they might, for example, account for .10
to .20 of the total variance. Luckily, the problem is 4
easier to resolve in the screening phase when we are only

asking whether a particular factor should be included in

€-

I*

Without more experience, what proportion should be
accounted for by a screening design cannot be stated with any
degree of confidence. Still, as a personal guess, if we
started with a 30-factor study (and an astute experimenter),
one ought not to be happy unless one accounts for more than
.80 of the variance in the experiment with real etfets.

C
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subsequent studies than it would be in the refinement phase

near the end of the research problem, when even small amounts
* (as lon as they are real effects) should not be ignored.

But in the screening phase, if even a series of factors shows

a sizeable cumulative effect, if they have been preceded by

a great many interaction strings each with meager effects,

* and occur in the second half of the ordered sources of var-

iance, it is unlikely that any effect will be critical.

Reverse Yates' algorithm. Daniel (1976, p 73) examines

* the cumulative proportion of variance one step at a time using

a reverse Yates' algorithm as a computational aid. Beginning

after a reasonable number of terms has been included in the

cumulative proportion, he calculates the predicted value at

each experimental data-collection point in the design and

compares it with the empirically obtained value. Calculating

the predicted values could be done using the regression equa-

tion, however, Daniel's application of the reverse Yates'

algorithm is the same as for the forward Yates' with the

following exceptions:

1. Begin by writing the effects in the

CStandard Order, but inverted.

2. Read off the estimated values at the

end of the procedure with the condi-
C tions in an inverted Standard Order.

If one begins this reverse analysis with the effects, then

the values in what would ordinarily be the effects-total

C column must be divided by N/2 to get the estimated per-

formance values. However, if instead of beginning with
the effects one begins with the regression coefficients,

then no division is required. The values in the effect-
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totals position of the reverse Yates' are the estimated

performance values. For example:

FORWARD YATES'

Exptl.
Cond. Perf.(y) 1 2 ( 2) Effect Source

(1) 3 11 18 9 2(M)*
a 8 7 2 1 A
b 5 5 -4 -2 B
ab 2 -3 -8 -4 AB

REVERSE YATES' I

Est. Exptl.
Source Effect 1 2 ( 2) Perf. 9 Cond.

AB -4 -6 4 2 ab

B -2 10 10 5 b

A 1 2 16 8 a
2(M) 9 8 6 3 (1)

The proportions of variance accounted for by A, B, and AB

are .048, .190, and .762,respectively. If these were ordered

from largest to smallest the cumulative proportion would be:

AB .762
AB + B .952

AB + B + A 1.000

In this simplified example, Daniel might propose to find out

what the estimated performance vould be for each condition

if we assume that A is actually zero for all practical

purposes. Using the reverse Yates' he would get:

*Value in Effect column is twice the value of the mean.
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Exptl.
Source 1 2 3 (i2) y (Y Cond.

AB -4 -6 3 1.5 2 .5 ab
B -2 9 11 5.5 5 -.5 b
A 0 2 15 7.5 8 .5 a
(M) 9 9 7 3.5 3 -.5 (1)

where y is the estimated value and y is the obtained one. He

would test to see if the residual, (y-y), could be tolerated 2

or not, and thereby decide whether the dropped variable, A,

can be excluded or not. In this artificial example there

was no mean difference and no source of error variance, so no I
significance test would be meaningful. In the case of larger

designs, however, this is yet another tool to help the in-

vestigator judge whether to include or omit a source of
~variance.

Daniel also uses this calculation to discover whether

there are distortions in the data and whether transformations

could be used to simplify the model. In particular, he

plotted the residuals (i.e., the y - y) against their cor-

responding performance (y) values as proposed by Anscombe

and Tukey (1963), and also their distribution on a normal

cumulative distribution grid. He next searched these for

patterns that would be indicative of distortions in the data.

While the study of residual patterns is an important part of

the data analysis process, no further discussion on this

topic will be given in this report. It is described in

detail in Daniel's (1976, pp 71) book.

Interpreting the cumulative effects of non-critical

factors. There is something disconcerting when it is dis-

covered that the non-critical factors, (i.e., the ones that

individually account for only a small proportion of the var-

iance) in combination, account for a large chunk, perhaps .30,

of the bptal variance. That is a great deal of unexplained
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variance and it may cause an investigator to think that pos-

sibly some of the non-critical factors may be marginal ones

of minor but practical interest. He may wish to examine

these non-critical factors in order to decide which he still

believes are trivial and which might be consiei'ed real but
"marginal." Some considerations in this regard are listed

below;

1. The small effect may in fact be trivial, a chance

perturbation. It is unlikely to be found on sub-

sequent tests.

2. A noticeable effect might be due to error, an in-
frequent and intermittent disturbance in a few cells,

affect ng by chance a particular effect or two.

For example, momentary losses of attention on the

part of the subject, an irrelevant but intermittent

occurence in the environment, or erroneous settings

of the simulation equipment. The momentary effects

are large, but are averaged down in the analysis.

An examination of the raw data or a half-normal

plot may reveal this.

I2

3. The effect may reflect an unexpected confounding

with some concomitant, systematic, but irrelevant

source of variance. This might not occur if the

study were repeated and can often be avoided with

better planning during the problem definition phase.
* The size of the observed effect may be distorted due

to the confounding effect a) inflating a factor's

otherwise trivial effect, or b) deflating an impor-

tant factor's effect.
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4. The effect may be reliable, but small. More measures

will be required to see if the effect occurs con-[sistently. It might have been larger had a duffer-
ent part of the operational space been included in

the experiment.*

The investigator, faced with the decision to include or ex-

clude the marginal factors, realizes that:

a) If he includes a marginal factor, he adds to

the expense in subsequent efforts that must

allot more observations to study that factor,

more time to change the factor during the ex-

periment, and more money and manpower to build

and maintain the factor into the simulation. )
If there are no major expenses associated with

the inclusion of a marginal factor, then it

might as well be included. If it is a wrong

decision to include it, i.e., if it is not a

reliable effect, it can be deleted later.

b) If he excludes a marginal factor, he will be

able to reduce the size of subsequent studies

and possibly their costs, but if it is a real

effect, his ability to predict will be reduced.

Since it is a marginal factor, the error -- to

exclude or include incorrectly -- will be rel-

atively small. The balance arises when the
fewest factors account for most of the variance

in the experiment. By building a framework --

This does not mean that one should artificially extend
the boundaries of a factor just to get a larger (or more

significant) effect. We wish to order effects by their size
within a particular operational space.
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a response surface -- involving these critical

variables, the marginal factors can be intro-

duced into it at a later phase of the research

program -- to refine the original equation --

when they can be investigated more thoroughly

and with more precision than if they had been

entered early during the screening phase.

Costs, interest, probable impact, difficulty, realism,
reliability and so forth, are all weighed in the inclusion/
exclusion decision regarding marginal factors.t$

Half-normal Plots (Dani!?l)

When a large number of effects are being investigated,

the largest effects can be several times larger than the av-
erage even when no effect is real. In an experiment with 31

effects, the size of the largest effect could be 2.4 times
~larger than the average size when in fact the difference was

dne only to chance. Using the traditional .05 significance

level in such an experiment would cause unreal effects to be

tjudged real in over half of all experiments done (Daniel,

1959, p 312). While an examination of mean differencts and

eta squared values can help the investigator avoid trivial

effects, these measurements do not provide sufficient data
to protect the investigator from including effects which may

.( Cappear to be non-trivial but which are, in fact, chance

deviations.

Conventionally, t- or F-tests are used to protect thelu investigator from overenthusiasm regarding a large effect.

Since economy is of paramount importance and replication is

avoided in the screening design, there is no internal data

with which to estimate the error variance needed for the

significance test. In the physical sciences, error variance

V
83



can be estimated from the results of other experiments

studying the same problems/ this would be foolhardy to try

in psychology. Psychologists, who run unreplicated factorial

designs, often use higher-order interactions -- generally

more than three factors -- to estimate the error variance.

This is done on the assumption that the effects of these
interactions are negligible. However, in screening designs

this is not possible since all higher-order interactions are
confounded with main and two-factor interaction effects.

Of course, if any strings of two- and three-factor
interactions are trivial, they can be used to estimate error.

But here we are faced with an enigma since we have no error
term to test whether these interaction 

strings are trivial.

Birnbaum (1959) suggests that instead of assuming that certain
interactions are zero, an inference procedure be used which
assumes that a specified number of effects out of a total

number are non-zero. However, he develops the mathematics
only for the case where it is necessary to discover whether
one effect out of many is real or not. He concluded that his

statistic in that situation would be about as sensitive in
detecting one real effect among thirty-one effects (if one

real one were present) as traditional multiple t-tests were

capable of detecting one among 15 possible effects with ten

E degrees of freedom for error, or one from 31 possible effects

with over 20 degrees of freedom for error. We are, of course,

more interested in those situations where more than one 
j p

source of variance is likely to be critical.

Daniel (1956; 1959) developed a graphic method (corres-

ponding in principle to Birnbaum's statistic) for examining

the results from an unreplicated design to help 
judge the

reality of the largest main effects and interactions, and to

indicate the piesence of unruly data. His method is to
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graphically compare the empirically derived cumulative distrib-

ution of the effects with a cumulative distribution derived

from a normally distributed population. To do this, the

results from the experiment are plotted on "half-normal grid"

paper.

Preparing half-normal grids. The steps to produce a

half-normal grid are as follows:

1. Obtain a sheet of Probability Scale graph paper.

This paper is produced commercially (e.g., Keuffel
and Esser Co., #358-23). On this paper, a graph of
the theoretical normal distribution would be a

straight line through the origin.

2. Use that portion of the grid that begins with the

probability, P, of 50 and goes up to a value greater

than 99. (Notes These "p1robability" values, of

course, are multiplied by 100 to eliminate having to

print the decimal.)

3. Rescale the graph paper with new probability values,
Pit calculated from the old values, P, where

PI = 2P - 100.

For example, P - 70, and PI - 2 x 70 - 100 40. 4

4. Locate the PI along the ordinate of the grid where

each ordered effect (i.e., ordered contrast) must lie.

A different set of values is required for each

analysis in which the total number of effects is

r A
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different. The equation to find the P' value for
each particular rank ist

P' - [(R - 0.5)/(N-l)) X 100* =

where R is the rank of the ordered effect and (N-i)

is the number of effects that will be plotted it

is also the total degrees of freedom with N obser-

vations.

or example in a 21611 screening design, there areIV
31 effects to be plotted. The largest effect, ranked
31, would be plotted at P' - [(31 - 0.5)/31] X 100

98.39. The effect tenth from the top, rank 22, would

be plotted at P' - [(22 - 0.5)/311 X 100 - 69.35.
32-26For a 2 screening design, with 63 effects, theIV

effect ranked 22 would be plotted at P' - [(22 - MY/

633 X 100 - 34.13. The P and P' values for all

ranks of designs with 15, 31, and 63 degrees of
freedom (and effects) are given in Table 9. P values
are probabilities (X 100) for each rank plotted on

normal probability grids. P' values are the corres- p

ponding probabilities (X 100) plotted on half-normal

grids. An example of a 31-effect grid is shown in
Figure 6.

*To determine the standard score, z, of each rank
position on a unit normal curve (where the N and standard
deviation are both assumed to be 1) we may refer to any
normal distribution table such as Beyer (1966, p 117) and
look up the P -- not the P' -- value (1 100) associated with
that rank. Fur example, in the above il.lustration

If P' - 40, P = 70# then z = .52.

Z-values can be used to determine the height of each rank
position above zero on the ordinate of a half-normal grid
which could be drawn directly rather than by extracting them
from a plot on normal probability paper. The z-value will
also be useful later in this paper when Zahn's work is
discussed.
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TABLE 9

PROBABILITY* VALUES FOR
CONSTRUCTING HALF-NORMAL GRIDS**

-a *1 ~ _X_ ___

. ... ,|, ,, LII. II I L.

15 96,67 9n.33 31 98,39 99.19 6) 99. 21 99.60
14 91t.oo 95.en 0 95.16 97. 5 6z 97.62 98.81 )1 48.41 74.21
13 83,71 91.67 29 91.9's 95.97 fl 96.0) 98.02 30 46,8) 73. 1
12 76,67 88.33 28 R71 914.35 60 914.414 97.Z2 29 115.214 7 2.(.

.11 70.00 85,00 27 85.48 92.711 59 92.,6 96.43 28 13.65 71.,

If 63.33 81.67 26 82.26 91.13 58 91.2 95.63 27 h2,06 71.03
9 56.f7 78.33 25 79.03 89.52 57 89.68 914.8 26 ho.k.8 no.i
8 50.0.' 75.00 24 75,81 7,.90 56 85.09 94.05 25 38.89 (9.LL
7 1.3-33 71.67 23 72. 58 86.29 55 86.51 93.25 ;e4 37.30 Mf.5
6 36.67 6". 3 .22 69,)5 , 4.68 51 864.92 92.46 23 35,71 67.2 Vi
5 o.oo 60.oo 21 66.13 83.06 53 83.33 91.07 2: 3-.13 67.0,
4 23.33 e,.67 '0 62.90 81.45 52 8175 90.87 21 32.54 ('6.V
3 16.6? 5q.33 19 59.68 79.84 51 80.16 90.08 20 30.95 65.40
2 10,00 55.00 18 56,.45 78.23 50 78,57 89.29 19 29,37 6h.40

L 1 3.33 51.67 17 53.23 76.61 19 76,98 88.49 1S 2 7.79 63.8B
0 0 50.00 16 50.00 75.00 48 75,40 87.70 17 26.19 63.1-

15 46.8 73.3 N 7 73.81 86.90 16 2 .60 62.M
14 43.55 71.77 146 72,22 P6. 11 15 23,02 61.-
13 O.32 70.16 45 70.63 85.32 14 21,43 C0.71
12z 37.00 6.8.55 .144 69.05 84.52 13 19.91. ;n.c

f 11 33.87 66.94 43 67.46 83.73 12 18.25 59.1?
10 30.65 65.3! 42 65.87 82.;14 11 16.67 5,.3)

9 27.112 63.71 111 64.29 81.116 10 15.08 57.5-.
8 2*.19 6,10 40 62.70 81.35 9 1),119 !.6. 7
7 ?,97 60,h 39 61.11 80.56 8 11,90 55.95
6 17,74 55.87 38 59.52 79.76 7 10.32 55.1f
5 1 ,2 57,26 37 57,94 78.97 6 8.73 .
4 1 11.29 55,65 36 56.35 70-17 5 7.14 52.5-
3 8.06 54,03 35 5:1.76 77.38 4 5.56 5z. 7
2 4,804 52,42 34 51.17 76.59 3 3.97 51.9?

1 1,61 5(.81 33 51.59 75.79 2 2.39 51,19
0 0 50.00 32 50.00 75.00 1 :79 5. 1. 3

0 0 50.0"

* * *P values are probabilities (X 100) to be used on normal prob- i
ability grids. Adjacent P' values are probabilities (X 100) at the
same rank when half-normal probability grid is used.

**If normal probability paper is not available, grids may be con-
structed directly by finding the z-score equivalent to the P-value (; 100)
for each rank and using it to measure off the distance on the ordinate
scale. Z-scores can be found in most normal distribution tables, e.g.,
Beyer (1966, p 117).
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I
5. Write a scale along the abscissa of the grid that

covers the rang* of absolute* values of the effects.
I6I

Plotting the data. The absolute effects obtained from

the analysis of the experimental data are ordered from largest
to smallest and given the ranks from (N-l) to 1, respectively.
The coordinates of a point representing the largest effect --

iqnoring signs -- would be where the P' for the highest rank
(along the ordinate) and the proper abiolute value (along the
abscissa) intersect. Each subsequent effect is plotted on the

line of its appropriate rank. Daniel (1959, p 314) suggests
that it is not necessary to plot every one of the smaller
effects at the lower ranks since they tend to be correlated.
The mean is not plotted but block differences and higher-
order interaction strings, if they exist, are.

Interpreting half-normal plots. If none of the effects

in the experiment are real, that is, if the sizes of the
effects are no greater than might be expected to occur by
chance, the standard deviation of the values would be approx-
imated by value of the effect at the rank order nearest to

the P = 68.3 quantile. In other words, the standard deviation
would equal the value of the effects, XR, when R - .683(N-1)-0.5.
For 15, 31, and 63 degrees of freedom (or N-l) this
would be the value at rank positions 11, 22, and 44 respec-

tively. Under the null hypothesis, therefore, the plotted

points would theoretically approximate a straight line

*The effects are ordered disregarding signs.
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through the origin and the point made by tne rank at the

68.3 quantile. This straight line, the "chance" line, is

the cumulative distribution of a normal curve (the classic

S-shaped curve) an it would appear when plotted on probe-

NEI bility paper. Daniel (1959, p 316) plotted ten samples of

V31 effects from purely random data. While the average of

Cthe ten approximates a straight line very well, individually
they wander about the line in an irregular pattern, though
not enough to be misinterpreted as being real effects.

In practice, since some effects may be real, we do not
know exactly where the slope of the line should be. Instead,

we allow the aata to determine where the straight line will

lie. It would be drawn by eye through points representing

the smaller half of the ranked data. Ordinarily these should
go through the origin, but occasionally may not. The

farther the larger effects deviate to the right of this line,

I the more probable it is that they did not occur by chance

and are in fact reliable effects.

Interpretation tactics. Krane (1963) who adapted the

use of half-normal plots to multi-level factorial experi-

( mente, suggests an iterative approach to the selection of

r the real effects. He examines the largest point first to

see if it lies far enough to the right of the line to be
judged real, and if so, removes it and replots the remaining

4 effects and again decides if the largest of the remaining
effects deviates far enough from the straight line to be

Judged real. This continues until he no longer believes

that an effect Js real.
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In practice, he may make a crude test of a number of the

largest effects by drawing a vertical line from Lhe point

* where the horizontal line on which the largest rank is located

intersects the empirically constructed cumulative distribution

line. He then considers only those effects lying to the right

of the vertical line. Next, he replots the effects after

having eliminated those largest effects already judged to be

real, draws a new line and again judges whether effects to

the right are real.

~In the replotting, since there are fewer cases each time,
the position of the rank order-lines on the P' scale must

change. For example, the 31st line in Figure 6 is at P - 99.19

on the full-normal probability scale or PI - 98.39 on the half-

C' normal plot. These values can be found in Table 9 of the

effect on the 31st rank is considered real and is removed, and I
the remaining 30 values are replotted, the probability position

of the 30th rank is now based on an (N-l)-30 rather than 31.

t Therefore, it cannot be plotted on the original half-normal

grid in Figure 6. The new P' for each rank must be replotted

using the equation:

P, (R- 0.5)/(N-l)] X 100

as was done before. Or, if it is apparent that the first four

largest effects can be removed, then a new P' value for the

o t. rank 27 effect would have to be calculated. P' woull be 98.15.

Ek| Since a special grid has not been prepared for any sime

other than 31, the reader can make his own by marking off the
correct grid on the upper half of the normal probability

paper. In this case, he would have to work backwards in his

calculations, first determining what the P' value would be

for a particular rank and a particular (N-1), and then

finding that position on the half of the normal probability

paper at P, where P - 0.5(P' + 100).
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To facilitate this effort however, calculations of P'

and P for the first four largest ranks for values of (N-1)

from 63 down to 4 is given in Appendix V. For example, if

(N-I) equals 27, then from Appendix V we would plot on one

half of a piece of full-normal probability paper the first

four largest ranks at the following positions:

Rank P

27 99.07

26 97.22

25 95.37

24 93.52

and assign the now P' 2P-lO0.

Detecting defective values. Krane (1963, p 24-285)

discusses Daniel's 1966 conclusions regarding the use of

half-normal plots to detect defective values. These are

cited here briefly to inform the reader who may be interested

in pursuing this form of analysis on his own but for whom

Krane's paper may not be readily available. Krane noted that

the half-normal plot of an experiment involving a number of
small but real interactions may appear very similar to the

results induced by plot-splittinq, because "split plot error
contrasts invariably contain a relatively larger number of

the higher order contrasts." He added. "Our practice is

generally to employ a split plot analysis only when knowledge

of the experimental techniques indicate its propriety."

Krane also noted that because his analysis was usually based ii
on transformed data, he seldom experienced the downward con-
vexity of half-normal plots that Daniel, in his 1966 paper, I
believed indicated the presence of an antilognormal distribu-

tion of error. Krane pointed out, on the othei hand, that

"the removal of a moderate number of points representing
apparently real effects often results in a downward convexity
of the upper portion of the plot. We generally attribute
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this appearance to the inadvertent removal of one or more

points representing error contrasts, for the results look
*very much like the plot of a normal distribution with

truncated upper tail."

Daniel, in 1959, felt that half-normal plots could be

used to detect defective values in the data. By the time he
had published his book in 1976, he no longer believed that

to be the case. In his book, Daniel (1976, p 149) felt that
"the signed contrasts in standard order have more information

in them than do the unsigned contrasts ordered by magnitude."
He spends a good part of his book showing how residual analysis
can be used to detect distorted experimental values. This

should be an important part of the analysis of any experimental

data and can be of particular value in studies employing

economical multifactor designs with minimum replication.

Anscombe and Tukey (1963) also treat the subject of residual

analysis. This topic will not be treated in this report.
both of Daniel's books (1976; Daniel and Wood, 1971) are

recommended reading for anyone analyzing applied experimental
data. Unlike the authors of many textbooks on statistics,

Daniel discusses and deals with the interpretation problem
Sfrom a practical point of view based on years of experience.

Standardized Half-Normal Plot (Zahn)*

{. If Daniel had proposed no more than the foregoing dis-

cussion of half-normal plots, he would have made a major
contribution to the analysis and interpretation of unreplicated

screening design data. At the least, this type of plot warns

the user that large effects might in fact be due to chance.

It At the most, in this computer age, it encourages the investi-

gator to engage in that almost forgotten art of studying his

P*

Just when this report was ready to go to press, the
papers by Zahn (1975a, 1975b) were discovered. Zahn's work
(continued on next page)
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data directly. But Daniel did not stop there. Instead he

proposed the concept of a "standardized" half-normal plot

(Daniel, 1959, p 322).

Daniel proposed that a scale-free, standardized half-
ncimal grid be used on which fixed limits could be placed
to identify how far from the line deviant effects must be
to have a specified probability of being a real, rather

than a chance, effect. The advantage of this plan is that

it facilitates comparipons among sets of data using differ-

ent criteria. Furthermore, it serves as a graphic test of
statistical significance, alerting the investigator to the
possibility that he might be making Type I errors.

In the standardized version, Daniel's premise was that
with no real effects Rresent in the data, the standardized

values of the absolute effects, when plotted on a half-
normal grid, would lie along a straight line through the

o origin and the coordinate of the ordered effect at the rank
having the value approximating the standard deviation of
the data. The standardized values are obtained by dividing
the absolute effects by the estimated standard deviation.
Daniel estimated the standard deviation to be the value of

the effect at rank, R - .683 Y + 0.5 (with Y - the largest ii
possible rank for the set of data). For data involving

i

U
points out flaws in Daniel's method of producing "standard-
ized half-normal plots." Since it is believed that half- H
normal plots are powerful tools for interpreting unreplicated
screening data, the original discussion regarding Daniel's
method was removed from this report and this brief notation
regarding Zahn's work was introduced in its place. The
reader is encouraged to read Zahn's original papers and to
use his version of the "standardized half-normal plots."
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15, 31, and 63 effects, the standard deviations would be

approximated by the values at ranks 11, 22, and 44, respec-
tively, when no real effects are present in the data.

Based on the theoretical work by Birnbaum (1959),
Daniel (1959, p 322) provides the data for calculating

probability guidelines -- "guardrails" -- which indicate

the limits above the "chance" line at which points may fall,
purely by c!,ance,a specified proportion of the time. This

is a form of graphic significance test.

Zahn (1975a, 1975b) recently proposed modifications to
Daniel's version of the standardized half-normal plot. He

notes a minor flaw in the plotting positions and a major
flaw in the method of calculating the guardrails for the

standardized half-normal plots. Zahn describes two versions --

X and S -- of his own, but based on an empirical study, he
concludes that his version S is the superior one (Zahn,

1975b, p 210). The difference is primarily in the way the
standard deviation is calculated.

Zahn (1975a) proposes these changes in Daniel's
approach to standardized half-normal plots. Two minor

changes are:

1. Reorient the position of the grid so that effects
are on the ordinate axis and the rank orders

are on the abscissa axis. This corresponds, he

felt, "to the usual regression analysis graph '

on which the random variable is plotted as the K
ordinate" (p 191). He also suggests using the

raw effect values rather than the standardized
score be used.
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2, iNiks minor changes in the plotting positionsa0
(o.o, the &-values of P and P') on Daniel's grid

* since the standardized effects that Daniel uses

are g actually hall-normally distributed.
Uhai' (p 192-192) recommends minor changes when

there are 15 effects and M when there are 20 1
or more effects to be plotted.

For n * 15, the ranks and Daniel's u-values are shown

below along with Rahn's (1975, p 193, Table 2) recommended

a-values for the new plotting positionst

Rank Danilel's a Iahn's a

15 2.12 2.050

14 1.64 1,626

13 1.39 1.376

12 1.49 1.191

11 1,04 1.040

10 .90 .910
9 .78 .794

* .67 .688

7 .57 .589

6 .48 .496

5 .39 .408

4 .30 ,322

3 .21 .239

2 .13 158

1 .04 .079

P and P' values associated with Daniel's a's (d.t. - 15) can

be found in Table 9, this report, These values would'shift

for 3ahn's x. lowever, given the s-values, there is no

teason to obtain the probability values.

] I
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The two major changes are:

1. Daniel makes his initial estimate of the standard
deviation of the data on the basis of a single

value, the effect at the rank position closest to

PI - 68.3. For more stability, Zahn proposes, in

his version S, to use a value based on the slope

of the ordinary least squares regression line

through the origin of the standardized half-normal

grid, and fitted to the points of the smallest non-

real ("error contrasts") effects, i.e., from the

lowest rank, 1, up to rank a, where a equals
[0.683(n + 1)].

4The estimated standard deviation so defined is:

aa
(an) xr

where

a 0 O.683(n + 1) - number of effects to be
fitted

r - largest rank

xi - absolute effect at rank i

Zir a standard score of rank i on unit normal
probability curve (see footnote, page
86, this paper)

2. Zahn (p 195) proposes different criteria for deter-

mining the guardrails and therefore computes new

guardrails. The guardrails represent the distance

above the "chance" line, (i.e., the line through
the smallest non-real effects) at which different

il probabilities of making a Type I error would occur

if effects plotted above those guardrails were

rp| hypothesized as real. Specifically, Daniel's

97

- _ L



approach failed to take into account the fact that

in the single experiment we are trying to estimate

whether a family of effects is significant. The

probability error rate (PER) is the probability that

there is at least one false positive in the family
of statements. Daniel's guardrails have a valid PER

only if no real contrasts are present. They were

appropriate for detecting one false positive. In

screening designs, we expect more and thus we would

want to employ a different PER. For example, if we

wish to have the Type I error rate for k - 9 real

effects to be a -. 05, then the guardrail beyond
which significant effects would be located on the

grid would have to have a probability error rate of:

PER - 1 - (1 - a) - .37

Zahn (1975a) uses rather elaborate statistics to

calculate the guardrails for his version X (p 196) and an

empirical Monte Carlo sampling study to determine the
guardrails for his version S (p 197). He does provide the

critical values by which new guardrails (for PER - 0.05,

0.20, and 0.40) can be plotted for N - 15 for his version
S model and N - 15, 31, and 63 for his version X model. '
These are provided in Appendix VIII.

Zahn (1977) stated that he had done little with this
work since the papers were published. As far as he knew,

no one had determined critical values for N - 31 or 63 for
his version S model. He suggested that the guardrails for - H
version X might be used instead, along with the more

reliable version S estimate of the standard deviation, as
long as the investigator realizes that version S requires

slightly larger effects than version X for the same

significance level. The differences for N - 15 can be
observed by comparing the values in his Table 5 and Table

7 (also reprinted in Appendix VIII of this paper) or by

studying the plots, shown in his Figures 4 a and 9.
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In the behavioral sciences, one can use this approach,

but must beware of assuming that very precise judgments can

be made. For example, in applying half-normal plots to

screening designs, it is not certain that the distribution

of effects (representing values from aliased sources) is

necessarily the same as that of a full factorial with the

same number of effects, Also, the guardrails cited here

are calculated based on the assumption that a specific

number of effects might be real. Thus, the critical values

for plotting guardrails can vary considerably depending on

the assumptions of the investigator (or the model employed

in the calculation). If we do not take these mathematically
precise values too seriously, we can make effective use of

the half-normal plots.

Theme plotted values are only one of a number of

criteria to be used for screening and selecting the most

important variables for future study. The half-normal plots

provide a check on an investigator overenthusiastically
declaring effects to be real when they might have been chance.
Whether the probability of the Type I error is precisely 0.40

or 0.30 is not critical in this case. Used judiciously --

and we do need more experience in using them in behavioral

research -- these half-normal plots can be expected to be

extremely useful evaluative tools.

USING ORDERED DISTANCES WITH MULTIPLE RESPONSE DATA

Wilk and Gnanadesikan (1961) propose a method of graphical

analysis using ordered distances which represent a generaliza-

tion and extension of half-normal plotting. This will be dis-.

cussed later in this report. Gnanadesikan (1963 ) illustrates

how these techniques might be used. His comments regarding

the use of these "internal comparison procedures" are important

from the point of view of research strategy and worth noting

here. He said (p 22-23):
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While formal procedures, with formal or informal
interprtations, are useful in thetr own way, yet,
as anyone who uses statistics learns rapidly,
the dont satisfy all needs. It is neither us-
wIt nor productive to think that the real insights
into data are gained by posing a few questions in
terms of a few parameters and by seeking for their
answer* through the use of certain formal tech-
niques. Statietica procedures, with or without a
formal probabilistic franmework, which are aide, in
a sense, to "allowing the data to analyse them-
selves" are valuable tooZe in gaintng insights
into the structure of data . . . .

Informal procedures, with their chief purpose of
serving as aide to learning from data and, in a
sense, unhapered by considerations of probability
statements, should guide and stimulz te the eperi-
mentor into partitioning the data, and studying the
partitions separately, both with rsepect to the
treatment structure and with respect to the response
structure in the problem. Also, informal procedures
should depend on prior as well as posterior (after
seeing the data) considerations and Judgment.

Perhaps the main advantage of a tool such as half-normal
plotting is that it encourages the investigator to leave his
computer outputs and immerse himself in his data.

VJVALIDATION TEST

Wilburn (1963, p 23) proposes a validation test on the
final selection of critical factors (and noteworthy interactions)
to ascertain that no large distortions occurred in the actual
responses that could have seriously altered the mean effects.

He writesi "The procedure used was to determine the standard
error of the individual observed responses by analyzing the

Cthirty-one mean effects. A second standard error, for the
difference between observed and predicted responses, was then
obtained with the predicted responses based on the assumptions
that all mean effects other than those for [the critical
factors] were indeed zero. If the two standard errors would '2
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then be equivalent, both the total experiment and the conclu-

* sions derived from it would be proved valid."

The first standard error is estimated by ordering all of

the effects of the sources of variance Judged to be non-

critical and using the value at the rank position R for which
PI is most nearly 0,683, obtained from the equation:

ER - 0.683 (N-l) + .5
C

This would mean, for example, that the effect at rank 16

would serve as a rough estimate of the standard error of
23 sources, all considered non-critical.*

C
(R - 0.683 (23 - I) +0.5 m 16]

The second standard error is calculated as follows.
First, do a reverse Yates' algorithm computation on the cal-

culated effects after making the effects of all non-critical
sources equal to zero. The answers so obtained are the

"predicted" responses. Second, subtract the predicted
response from the actual, observed response for each condi-

tion. Third, rank order these differences including signs.

Fourth, plot them on normal probability paper
[P a (R - .05)/(N-1)] including signs. The difference value

scale is along the ordinate; the probability (P) value scale

is along the abscissa. Fifth, draw a line through the plots
approximating the least squares fit. Sixth, determine the

vertical distance between the .50 and the .84 P values.

,I

U The rank nearest to P =0,683 for all cases of n from 63
down to four are given in Appendix V.
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i!
This distance read from the ordinate scale represents the I
standard error of these differences between predicted and
observed responses. If the two standard errors are essentially

equivalent, this is sufficient, Wilburn claims, to accept the

experiment as being valid. (Note: Obviously, it is "valid"

only insofar as the mathematics is concerned. Validity of

simulation, representativeness of the subjects and task, and

other features determine ultimate validity).

NUMERICAL EXAMPLE OF A SCREENING STUDY ANALYSIS f
An experiment was performed at the U. S. Naval Weapons

Station, China Lake, California that may represent the first

attempt on the part of engineering psychologists to employ
a saturated fractional factorial and foldover design for
screening purposes. (Grossman and Whitehurst, 1976). In

this study the effects of eleven factors on the location and

ident.ification of targets in a simulated terrain model wet

investigated to ascertain their relative importance in that
task and to generate curves to indicate how performance

varied as a function of the more important effects.

The eleven factors that were investigated are listed in

Table 10. These factors could be divided into three classes
depending on whether they were subject, time, or environment

related. How the investigators handled the subject-related

factors within the experimental design was discussed earlier '4'

in the section on the design of screening experiments. While
the investigators were primarily interested in the effects of

the single factor, Visual Acuity, on target acquisition, the

use of this multifactor plan illustrates how a much more gen-
eralizable data base can be achie~vd with this approach than
had acuity been studied alone.
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TABLE 10

THE ELEVEN FACTORS'AND THE TWO LEVELS ASSIGNED EACH FACTOR

Levels
Factors - +

A. Visual Acuity 20/40 20/20

B. Depth Pqrcept~on Poor Good
C. Color Vision Deficient Good
D. Experience 2 Trials 14 Trials

E. Slant Range 1600 m 800 m

F. Target Type APC Tank

G. Masking 50-75% None

H. T/B Contrast 1.15 2.40

I. Pattern Painting Pattern Sclid

J. Target Orientation 45 deg 90 deg

K. Target Density 1 Target 3 Targets

The 212V7 experimental design was constructed from two
basic and foldover blocks (Simon, 1973). This design

was made up of 32 experimental conditions and was capable of
estimating eleven main effects, fifteen strings of two-factor
interactions, four strings of three-factor interactions

(other than those confounded with main effects), and a block

effect. Four measures taken on each experimental condition I
were combined into a proportion-of-targets-found score. No

effort was made to minimize or control sequence effects. The

experimental conditions and the performance scores are shown
in Table 11.

Analyses of the 31 sources of variance are shown in

Table 12.* In it are given the Effects, the Variance, and

*These are not the analyses found in the Navy report, which
left much to be desired in this regard. The analyses and con-
clusions in this report are solely those of this author.
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TABLE 11

EXPERIMENTAL CONDITIONS AND PERFORMANCESCORE FO NAVAL WAOS CENTER STUDX

1711-7Block I (Basic 2117) Block I (Foldover 21-

1 ejk .2S0 17 abcdfghi 1.000
2 afhi .6 1 bcdegjk .750
3 bfghk .125 19 acdoj .625
4 abegij .7S0 20 cdfhk .12 5
S cfgij .250 21 obdehk .875
6 aceghk .750 22 bdfij 0
7 bcohi .250 23 adfgfk .875

8 abcfJk .625 24 deghi .625
9 dghijk .875 25 abeef .750

10 adefg 1.000 26 bchij .375
11 bdefik .875 27 acghj .500
12 abdhj 0 28 cefgik .875
13 cdefhj .625 29 abgik .375
14 acdik .250 30 betghi .750
15 bcdg, 0 31 aefhijk .625
16 abcdefghijk 1.000 32 (1) 0

Oider of Effects Across Design Matrix in Block *

I!
New String$

Screening A B C D E F G H I J (AD) () (BD) (CD)
Label

Original
Factorial A C D ABC BCD ABD ACD AB AC AD BC BD CD

*Blok 1I is fold-over form. (See Simon, 1973)
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TADLE 12, ANALYSES O? NAVAM WEAPONS CENTER EXPERIKENTAL DATA

Cumulative
Mean Mean Eta Proportion

Rank Difference Square Squared of Variance
(largest let) Source" (Effect) (Variance) (32) Acct'd ror

31 E .3359 .9026 .2662 .2662
30 A .2422 .4692 .1384 .4046

29 G .2266 .4108 .1212 .5258
28 (AV,...)* - .2266 .4108 .1212 .6470 i
27 F .1797 .2583 .0762 .7232
26 K .1172 .1099 .0324 .7556
25 SCDG,AF,HI,JK .1172 .1099 .0324 .7880
24 , .1016 .0826 .0244 .8124
23 DKAJEI - .1016 .0826 .0244 .8368
22 AKRH,FJ - .1016 .0826 .0244 .8612
21 BEDK,GJ .1016 .0826 .0244 .8856
20 AI,BG,CD,ZJ,FH - .1016 .0826 .0244 .9100
19 I .0859 .0590 .0174 .9274
18 BKCJ,DC .0703 .0395 .0116 .9390
17 AEHKIJ - .0703 .0395 .0116 .9506
16 Block Difference - .0547 .0239 .0070 .9576
is H .0547 .0239 .0070 .9646
14 (ACE,...)* - .0547 .0239 .0070 .9716
13 AB,Cr,DH,GI .0391 .0122 .0036 .9752
12 ACBFGHOI .0391 .0122 .0036 .9788
11 AH,BD,CG,EK,FJ - .0391 .0122 .0036 .9824
10 a - .0234 .0044 .0013 .9837
9 J .0234 .0044 .0013 .9850
8 (ABE,...)* - .0234 .0044 .0013 .9863
7 SJCK,LG - .0234 .0044 .0013 .9876
6 EF,HJ,IK .0234 .0044 .0013 .9889
5 CE,DJ,GK - .0234 .0044 .0013 .9902
4 AD,BR,CIFG - .0234 .0044 .0013 .9915
3 C .0078 .0005 .0001 .9916
2 (ADE,..,)* .0078 .0005 .0001 .9917
I AG,BI,CH,DF .0078 .0005 .0001 .9918

*Represents a string of three-factor inteactions. .,

105
0 o



at& squared for each source along with the Cumulative Propor-
tion of Variance Accounted For.

In the table, the sources have been ranked from the

largest to the smallest effects. From that data, half-normal

plots are supplied for this experiment (Figure 7-A) and for a
second experiment (Figure 7-B) that was a repetition of the

first but with different subjects. No other data in given

here for the second experiment.

No detailed discussion of these results will be given

here except to note that from an examination of all the data,
it appears that at least four or five factors (E,A,G,F, and

possibly K) out of the eleven appear to be critical. One

three-factor interaction showed a large effect and a cursory

examination revealed that out of the triple interactions in

the string, one was Interaction ARF. Also the string of two-
factor interactions showing the largest effect includedC
Interaction AF. Since these both include the factors showing

large (even larger) main effects, it suggests that both might

be ordinal, and would not change the decision regarding the
criticalness of any factor. From the half-normal plots

(Figure 7), the only real difference between the results of
experiments A and B is the increased importance of Factor K

(target density).

No effort was made to discover why Factor K took on im-
portance (i.e., eta squared a .139) for the second group,
whether it was subject-by-factor interaction effect or the
result of some unsystematic disturbance to the data. Factor
D, on the other hand, was not considered a critical factor
within the limits of the Experience (i.e., familiarity with

the terrain) levels in this study, for three reasons: 1) it
does not show up as a better-than-chance effect on either
half-normal plotj 2) its effect is trivial in the second
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S I
experiment (i.e., eta squared - .002)1 and 3) in the design H
used for that experiment, the D effect could be severely
confounded with a quadratic trend effect (i.e., 71%) if one

exists. No center points were included in the original ex-
perimental design which might have provided a measure of
trend through the data, as well as the basic for a test for

lack of fit of the linear model of the screening design.

The investigators at the Naval Weapons Center ranjanother study using factors AD,E, G* in a 22x42 factorial
design and did an analysis of variance on the data. All
factors but D were statistically significant at better than

pu .001, while the F for Factor D was less than 1. The four
factors plus several of their interactions accounted for .86
of the variance in that experiment, suggesting that the

screening study was successfully picking important factors.
Two-hundred fifty-six observations were required for this

factorial study, and although functions were approximated
through the mean data points for several pairs of factors, no
overall function was calculated. Considerably more informa-
tion in more useful form might have been obtained more cheaply J

had the original screening study been augmented with addi-

tional data points to create a central-composite design to be
analyzed by a regression analysis.

*These letters refer to the factors as labeled inCTable 10.
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VI. ANALYZING SUBJECTS AS REPLICATIONS*

In the typical psychology experiment, when several
subjects are tested on the same experimental condition,**

the investigator will analyse the subject data by averaging
each effect across subjects. Even when subject variance is

isolated in these experiments, subject-by-fact,',r interactions
are usually included in the ectimate of the "error" variance.

This so-called error variance then is used to test the stat-

istical significance of the estimated experimental effects.
Of all the uses of subject replication, this most common use

in probably the least informative.

SWhen subjects are used in an experiment for replication

purposes (which implies no interest in critical subject

characteristics insofar as the replication group is concerned;

the groups are presumed to be homogeneous), two kinds of
analysis can be performed that will be considerably more in-

formative than a test of statistical significance. In the
early stages of the research program, the screening stage,

where economy is being emphasized and little replication is

Canticipated, each subject as a replication who is added
should represent a separate verification study. Each individ-

ual's data should be independently analyzed and the results

C*
This designation is used to distinguish this use of

subjets from the case in which subjects are introduced into
the experiment to represent specific combinations of sublect
characteristics. We expect subjects as factors to show a
difference, or at least, would not be surprised if they do.
On the other hand, we "hope" that subjects as replications
will not differ in their performances, but would be
interested to know if they do,

In a survey of 239 experiments published in the Human
Factors Journal, the Iedian number of subjects as replications
was nine (Simon, 1976b, p 27).
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compared among subjects. In this way differences due to a

* bad measure or to important subject-by-factor interactions

can be detected rather than hidden among the averages. At

the end of an experimental program, the data from subjects

as replications would be used to establish confidence limits#

which from an operational point of view is far more useful
information than a test of statistical significance.

ESTIMATING CONFIDENCE LIMITS

Cochran And Cox (1957, p 5) have this to say about signi-
ficance tests and confidence limits: "... tests of signifi-

cance are less frequently useful in experimental work than

confidence limits. In many experiLents it seems obvious

that the different treatments must have produced some dif-
ference, however small, in effect. Thus the hypothesis that

there is no difference is unrealistic: the real problem is
to obtain estimates of the sizes of the differences. The

construction of confidence limits may add something to the

interpretation of a test of significance." They note that if
the difference between performances on two machines is not

found to be statistically significant, it does not prove
that the performances (and thus the machines) are identical. A
They argue that if the 95% confidence limits for the dif-

ferences in performance were relatively small, then the true
differences would probably be of no practical significance,

and . . consequently, it could be said that for all

practical purposes the 2 machines are identical. in speed.

This is much more positive and useful than the mere

statement that the difference in speeds was not statis-
tically significant." Conversely, they add, if the confi-

donce limits are large, then " there is no justification

for the conclusion that the machines can be regarded as

equivalent. All that we have learned is that the data are
not sufficiently accurate to show whether there is a !

difference in speed that is of practical importance."
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In problems of equipment design, valid confidence limits

are of considerable operational importance. While mean

performance is useful to know, knowing the limits -- i.e., the

estimated performance of the 95th or the 5th percentile man --

may be even more important from the standpoint of safety

and/or mission success.

Confidence limits can be estimated with the following

equation:

ts
100 (1 - a)% Confidence Limits Mean t a

Where: t is the Student t for n-i degrees of freedom at
the error level

a is the probability of Type I error the investigator
is willing to risk

n is the number of observations on the condition

S is the standard deviation of the replications

INTERPRETING MULTI-SUBJECT DATA

Subjects as replications should not be averaged together

until it has been established that they are in fact homogen-

eous, at which time averaging becomes a cleaner way of

handling the data although a less informative one.

When subjects are used as replications, a complete analysis

should be performed on the data from each one separately and

the results compared. A number of possible outcomes may be I
anticipated, each with its own particular interpretation.

For example:

1. The rank order of the different sources of var-

iances (based on the magnitude of their effects)

is essentially the same for all subjects.

111



2. A few sources are consistently ranked first for

all subjects but after that there is little J

agreement.

3. The ranks agree among some subjects but not
among others.

4. There in essentially no agreement in the ranks of i

the sources among subjects.

If the overall ranking of a majority of factors in a

screening study agrees across subjects, there is reason for

confidence that the results are probably accurate. It can
be argued, of course, that just because two or three subjects

agree that is no reason to believe that the results from 15

to 20 subjects would also agree. A sample of three, the
argument goes, is just too small. It could, of course, be

argued that in a population of thousands, 15 or 20 subjects
are also a rather small number. However, it should not be
forgotten that the purpose of this strategy is to check for
gross errors and to do so as economically as possible. If,

in fact, neither time nor economy are major considerations,
then one might run the thousands of subjects. This still would

not deny the importance of examining the results from each

one at a time to find discrepancies. One strategy to increase

one's confidence in the data from a few subjects is to

select the few subjects at opposite extremes of skill or

experience, for example, to test the limits. But when the
agreemen., j good, for a screening study, only a few subjects
(and a competent investigator) will ordinarily suffice.

As the differences in rank become more evident, more
subjects may be required to understand why this is so.
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If there is essentially no agreement in the source-ranks

among subjects, it may be due to:

1. The collection of analysis of the data was sloppy

with either considerable measurement or observa-

tion errors.

2. The performance measure may not be relevant to
the problem or the task.

3. The factors actually have trivial or no effects

on performance.

4. The task is either too difficult or too easy and
Clittle differentiation in performance is occurring.

When a few factors consistently rank first among subjects,

but the remainder fail to agree, it is likely that those not

agreeing are non-critical sources of variance and therefore

show a variability both within and between subjects due to

chance. The magnitude, as well as the ranko, will help de-

termine if this interpretation is correct.

When the source-ranks among some subjects agree and

disagree among others, several explanations are possible.

For example:

1. If the results show several groups of subjects
consistent within but not between groups, then

it suggests that there may be unidentified subject
factors interacting with the other factors. This

is an important finding and should be investigated
further.

i
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2. If there is some consistency in the source-ranks
*among some subjects and no consistency observed

among some others, this may mean that:

a. The inconsistent subjects were doing so
poorly that nothing really mattered.

b. There were data-collection errors among

the inconsistent.
c. The inconsistent subjects had not stabilized

their procedures before beginning the experi-

ment and either changed their approach to the
task in mid-study or exhibited learning (or

fatigue) effects that distorted the experi-

mental effects.
d. The inconsistent subjects were tested across

conditions in a different order and unisolated
sequence effects might be distorting experi-

mental effects.

Inspection of the raw data will often help find the explana-

tion. i
These are only a few possibilities. Only by inspecting

the raw data before it is aggregated can an investigator

begin to have faith in his results, particularly when the

amount of data is small. Certainly wl-en inconsistencies are
observed, they should not be hidden by averaging on the

assumption that this is a cleansing process. It is not.
Averaging at the screening phase may hide important effects

or the fact that the data is poor. Interpreting averaged
results may lead to a distortion of the truth.
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VII. ADJUSTING EXPERIMENTAL EFFECTS FOR TRENDS

Although the screening designs proposed in this report

are robust to trends, when any overlap with a trend effect

might distort the data more than is deemed incidental, the

investigator may wish to adjust statistically the experi-
$mental effects for trends. An examination of the Percent

Overlap data at the bottom of design matrices for the 16,
32, and 64 factors (Table 1, Appendices II and III, respectively)

show which effects require adjustment. Even if the investi-

gator has used procedures that are likely to minimize any

trend effects, he may still wish to adjust as a precaution.

It is apparent from the tables that those effects which must

be adjusted for linear and cubic trends need not be adjusted

for quadratic, and vice versa.

The methods of adjustment described here were taken from
a paper by Daniel and Wilcoxin (1966)*. They applied the

technique only to linear and quadratic trends. Methods for
adjusting for cubic trends are also included in this report.

When linear and cubic trends are both confounded with an

effect, both must be adjusted simultaneously.

*Those who wish to refer to the original paper by Daniel

and Wilcoxin (1966) to learn how the equations for the cor-
rection values are derived, will find the following pages in
that paper the most informative. The general equation for
deriving the correction factor for linear or quadratic trends
is (4.10) on page 273; no equation was provided for calculating

C the cubic trend. The (L) term [or (Q) term] in that equation
can be calculated from the sequence of identities (4.1) and
(4.2) shown on page 269. It may also be calculated as the
sum of the cross products between the particular integer
Tchebycheff orthogonal polynomial coefficients and perfor-
mance. Equations (4.7), (4.8) and so forth on page 272 are to
be used to correct the appropriate estimated effects for
trend. In AppendixVI of this report the derivations are
given for the equations needed to adjust for both linear and
a cubic trend together.
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CONSTRUCTING AN ARTIFICIAL PROBLEM WITH TREND EFFECTS

To illustrate how corrections for trends are calculated

and used, artificial data generated for a two-factor experi-

meat, replicated twice, will be used. There are, therefore,

£ eight observations and three effects# A, B, and AS. When

the experimental conditions are arranged in the Standard

Order, i.e., (l),abab,(l),ab~ab, the performance scores,

unbiased by trend effects, are:

-7, +1, -3, +9, -7, +1, -3, +9

respectively. These yield a mean performance of zero, re-

Cgression coefficients of 5 3, and 1 for the effects A. B,

and AN, respectively, and no error. The equation formed from

that data is:

Y - $A + 3B + lAB

To introduce trend effects into the data, linear,

quadratic, and cubic coefficients of the integer Tohebycheff
orthogonal polynomial (Fisher and Yates, 1963; Beyer, 19661 U

DeLury, 1950) were multiplied by a factor of -4, 2, and 1,
respectively, and added to the experimental performance data.

The total design, with supplemental data to illustrate how

the pertormance data was produced, along with other calcu-

lations to be used later to adjust for trend effects, is
shown in Table 13. The differences between the trend-free
and trend-biased effects in this example are shown in Figure 8.

The trend-free and trend-biased performance values from 4

Table 13 can be analysed using Yates' algorithm to esti-
mate the effects of A, B, and AB. These analyses are shownIC
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Figure 8. Comparing Results from Imaginary Experiment (Table 13),
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118

I Or



in Table 14. A comparison of the coefficients of the three

effects before and after they have been biased by trends

reveals:

Effect Trend-free Trend-biased

A 5 3
B 3 2

AB 1 3

The differences are striking. In addition, no replication
or replication interaction effects are indicated with the

trend-free data but (as can be seen in Table 14-B) both

show large effects in the trend-bias data. This would i
ordinarily be delegated to an error variance.

In practice, were this a real experiment, the investi-

gator would have no idea what the true trend-free results

should be. After all, the purpose of his experiment is to

discover that from the sample data. All he knows are the

performance scores and the results of their analysis. If

he has no way of measuring the trend effects, or for that

matter, even know for a fact that they exist, there is the

real and ever-present danger that the only information he

has will be distorted as in this example. Neither he nor
his publJ ., if he publishes, can know for sure. Eventually

this distorted data becomes part of the lore naively referred

to by some as "scientific" fact. It is not necessarily true,
as some defenders of poor experimentation like to claim,

that some information (however poor) is better than no

information. When poor information can lead to erroneous
decisions, it is better to have no information.

To offset these possibilitieu, the conscientious ex-

perimenter should first use procedures that help reduce or

0 eliminate unwanted trend effects. Next, he should assign
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TABLA 14
$ ESTTMATING EXPER IMENTAL EMFECTS IN T E

14ENCE AND PRESENCE OF TREND EFFECTS

3 Unbiased
Exptl. Effect- Coeff.
Cond. Perform. 1 2 Totals +8 Source

(1) -7 -6 0 0 0
, +1 +6 0 40 5 A
b -3 -6 20 24 3 B

ab +9 +620 8 1 AB
(1) -11 +8 12 0 0
a +1 +12 12 0 0 Error
b -3 +8 4 0 0ab +9 +12 4 0 0

(14-A) EXAMPLE OF ANALYSIS OP DATA WITHOUT TREND BIAS

3 Biased
bCond. Eff.ct- Coeff. UnbiasedCond. Perform. ,1, 2, Totals 8 Source CorrectiLon Coeff.

(1,) 2o 56 72 00
4 .. . 28 16 -72 .. 24 . ..3 .. . A& -.L-2C ,, 5

b 10 -48 -4 -16 -2 B -2L-3C - 3
ab 6 -24 28 24 3 A -2 0 1
(1) -24 0 -40 -144 -18 C Repl. 0
a -24 -4 24 32 4 AC (Error) 0
b -26 0 -4 64 8 C 0

Sab 2 28 28 32 4 ABC 0

(14-B) EXMPJLE OF ANALYSIS OF DATA WITH TREND BIAS,
SHOWING HOW BIAS IS CORRECTED

CV
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his most important factors to trend-free columns. Then, as
9 a final precaution# he should adjust the estimated effects

for whatever trend remains. The method supplied by Daniel
and Wilooxin (1966) and supplemented by Webb (1977) is
described next.

DETERMINING THE VALUE OF TREND-ADJUSTMENT FACTORS

If the investigator wishes to correct for linear or

quadratic or cubio trend effects alone, each of these can
be calculated independently of one another using equations
I or II or II,.respectively, in Table 15. If he wishes also
to adjust for cubic'trends as well, when they are correlated

C with linear trends, the adjustment factors for the two
trends must be calculated simultaneously using the pair of I
equations, IV a and b in Table 15. The information required

to solve these equations will be found in Appendices I, II I
and III as well as the equivalents of Table 14-B for new
problems. In the discussion that follows, the artificial
trend-biased data from the functional design described in
the previous section will be adjusted for trende. How to
perform the analysis when a screening design rather than a
factorial design is involved will be discussed later.

Linear Adjustment Factor L 4
Equation I in Table 15 is needed to calculate the linear

adjustment factor. The numerical substitutions for symbolic I
values in this example are shown below:

[S(168) - (8)2 (16 ]L - 8(-584) - (8) (24) - (16) (-16)

(1024) L= -4672 -192 + 256 - -4608

-- 4.5
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TADL 15

EQUATIONS NEEDED TO FIND TI1 LINEAR, QUADRATIC, AND LINEAR/CUSIC CORRECTION VAUEIS

I. Equation to Determine the tinear Correction Value (L)

[M(LL)-iL-CL-)
2-(L-z)2

...] I - M(L) - (LX) (X) - MLY)C0) - W ())...

II. Equation to Determine the Quadratic Correcticn Value (9)j

( Q)-QXl-(y)(Q).. , N(Q0) 1410P) - () - (QY) (Y) - (QZ)() ...
I1. Equation to Determine the Cubic Correction Value (K)

[Nox- K) (2XY) 2-(n),... K P-NX) - (X)X)) - (Ky)(y) - (Kz)(_)...

IV. Simultaneous !iuations for Determining Linear (L)plus Cubic (K) Correction Values

a) H(tLL)-(LX) -CL)
2

-.. . - ((1*)(XX) - (L-)(KY) *...] K - I(p) - (LX)C) - (LV)) -..

b) -[(LX)(KX),(LV)(KY)+...] L (+C(xX)-(KX)2  (KY)-...] K 4(KP)- X_) - (KY)(Y) ....

SYMBOLOGY FOR TABI.E 15

0 Total num ber of observations. r2 kP, where p way be any value from 0 up
to M-1), and r is the number of times design is replicated,

L.Q, or K Ordered Integer Tchebycheff orthogonal polynomial coefficients for linea.,
quadratic, or cubic trends, respectively. (Found in Fisher & Yates, 1963;

.Bayer, 19661 DeLury, 1950).

LLQQ, or KK - Sum of squared L, Q, or K Tchebycheff coefficients, respectively.

P a Performance values (as found in Table I, second column).

LPQP, or KP Sum of cross products between Tchebycheff coefficients for a specific

o trend L, Q, or K, respectively) and the corresponding rerformance values
for the ordered experimental conditions. 4

X,Y,Z, etc Ordered experimental conditions (1) for Effect. X,Y,Z etc (as found tn

experimental design). (Number of effects involved depends on how manyare correlated with particular trends belig corrected.)

LXLYLZ, etc or

QX,QY,Q7, etc or
KXKYKZ, etc - Sum of cross products (called "Inner products") between Tchebycheff

coefficients for a specific trend (L,Q, or K, respectively) and the
ordered experimental conditions (t 1) for Pffects X,Y,Z etc (depending
on how many are correlated with the particular trend being corrected).
(Inner products for the designs in this report can be found in
Appendix I-C, II-D, and III-D.) 1

(j),(),(), etc - Effect-totals for Effects X,YZ etc (depending on how many are

correlated with particular trend being corrected). (E.fect-totals are
found in the last column of Yates' analysis, before dividing by N, e.g.

as illustrated in Table 14.)"

L, Q, or K - The unknown trend (L, Q, or K, respectively) co:rection value to be A

determined. .
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Note that while A, B, and AB are the only real experimental

effects in this example, with eight observations, in theory,$3 all effects of a 2s factorial can be estimated. For example,

in Table 14-B we see that the effect-totals of the imagin-
ary factor C is -144. In fact, this C represents a block
effect, the difference between the two halves of the repli-
cated experiment. At least one of the effects that is
correlated with a linear trend cannot be used as an experi-
mental factor in order to provide the necessary degree of

freedom for the trend estimate. Factor C, the block effect,

therefore would serve this purpose, it being the only

remaining source of variance confounded with a linear trend.

Instead of using Equation I, Table 15, to make the

calculation shown above, the adjustment for linear trend

could have been done this way:

(1024) L -LC(C)
(1024) L 32(-144) -4608

=-4.5

In this calculation we used

[LC(C)] instead of [N (LP) - (LA) (A) - (LB) (B)]

since they are equivalent. The equation on the right
removes from the total, N(LP), the (LX) (X) terms of all

sources of variance that were included as experimental
factors correlated with linear trend (i.e., A and B).

That would leave as a remainder, the value for all sources
of variance that were not included in the experiment but

were correlated with linear trend (i.e., C), which is

~Ii what LC(C) represents.
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Quadratic Adjlustment FactorQ

The calculations for isolating linear and quadratic
adjustment factors are the same except that Q-values are

substituted for L-values, as shown in Table 15, Equation
II. The substitution of numerical for symbolic values in

this problem are shown below:

[868) - (8) 2 ]Q - 8(+344) - 8(+24)

(1280)6 2752 -192 -2560

V Q *+2

As was done when estimating the linear trend adjustment
factor, all the non-experiment sources of variance correla-
ted with a -.uadratic trend could have been used to arrive
at the same answer. For example:

1280 Q - 16(32) + 32(64) - 2560

Q +2

Cubic Adjustment Factor

This calculation would parallel the linear or the quad-

ratic examples, except of course, only the terms that were
a source of variance in the experiment and were correlated
with a cubic trend would be involved. These are shown in
Table 15, Equation III. The calculation would be:

[8(264) - (161 - (32)4J1V - 8(416) - 16(24) - 24(-16)

(832)9 - 3328
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* I
Linear Plus Cubic Adjustment Factors

Because the data was generated artificially, e know

that both the linear and cubic adjustment factors just
calculated are not correct. The linear one should not be
-4.5 but -4t and the cubic should not be 4 but 1. These

discrepancies occur because the linear and cubic trend
effects are correlated with one another and if we intend to

adjust the effects for both, then the adjustment factors

must be determined for both simultaneously. This means
that one may correct for linear and/or quadratic trend
effects, but that if one were intending to correct for
cubic and linear, the set of sO.multaneous equations, IV-A
and B in Table 15 should be used to determine the pair of
adjustment factors.* The substitutions of numerical for

symbolic values in this problem are shown below:

a) 8(168) - (8)'- (16)2 L - 8(16) + 16(24) K - 8(-584)-[8(24)+ 16(-16)]

b) 8(16) + 16(24) L + 8(264) - (16)2 - (24)'K + 8(416) -[16(24)+24(-16)J

which can be simplified to
0

I

1024 1, - 512 K - -4608

-512L + 1280K- 3328

C,

These equations were derived by Dr. Steve Webb. The
derivations are shown In Appendix VI.
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If we multiply the second equation by two, we can eliminate

Le and solve for X t

1024 L 512 --4608

-1024 L + 2560 K - 6656

2048 - 2048
9

K- 1

* Substituting this in Equation IV-a,

1024 L - 512 (1) -4608

it we simplify and get

1024 L - -4096

L -4
C

These values of L,-4, and K,l, are the weighting factors
that we reuned to create the artificial data.

Making the Adjustment for Trend

The equation for adjusting for any single trer . effect is:

X - (X) - TX
N

0
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where, x is the adjusted effect

X) is the effect-total of the source being adjusted

iskt .e(e.g., A, B, AB, etc)

is the particular trend correction factor (e.g.,

L or Q eto)
TX is the sum of the cross products between the

coefficients of the particular trend and the

issource (e.g., LA or QA or LB, etc)

N is the number of independent observations in the

coeficentexperiment e on
fo t

For example, in our fictitious data in Table 14-B, the
~coefficient for the biased estimate of Interaction AB is 3.

To correct that value for the bias introduced by the quad-

ratic trend, we solve this equation:

;B -(AB) - QX(Q)
N

SA - 2+1

The trend-free estimate of the coefficient for Interaction

AB is 1.

To adjust an effect for both the linear and the cubic

trend, the general equation is:

(X) - LX(L) -X(

X N

Thus to correct Factor A for both linear and cubic trend

bias, we substitute:
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4*

24 8(-4) - 16 (1) +58

and for B:
-16- 16(-4), 24(1) +38

p both of which are the coefficients we had derived before
trends had been introduced to distort the data.

If one were to apply these same adjustments to the
trend-biased effect-totals for the sources of variance

associated with the block (replication) differences and
each block-by-factor interaction, the corrected values
would all be zero as they should be in our fictitious data.

*
Applying Trend-Adjustment Techniques to Screening Designs

Applying these techniques to screening designs involves
no unique problems as long as the analysis is done with the
original factorial labels in mind. The results from the

Yates' algorithm will automatically rank the data in Standard :1
Order using the original labels. These original labels are to

* be used as references to find in each screening design the
values needed to make the trend adjustments for the partic-

ular effect. After the corrections have been made, the new
screening design labels would be substituted for the

original factorial labels.

* 11
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VIII. HANDLING MULTIPLE RESPONSES IN SCREENING STUDIES

Human performance is situation-specific and complex.
To understand and predict performance, therefore, it is
necessary to examine all of the critical factors operating

v at the time performance is being measured (including those

associated with antecedent events that also can affect per-
formance). Equally important, but more frequently ignored,

is the importance of providing measures that reflect the
t complexity of performance in toto. V

J
Although methods of handling multiple performance

criteria have been around for decades, experimental psychol-
ogists in general, and engineering psychologists specifically,

have tended to examine the effects of experimental factors on

multiple performance measures, a criterion at a time. As
performance under operational conditions is generally complex,
this one-at-a-time approach regarding responses is no more
acceptable than it is regarding stimuli or the task situation.

Informative results will be obtained only when it becomes

common practice to perform bilateral multivariate experiments. j
I

ADVANTAGES OF BILATERAL MULTIVARIATE EXPERIMENTS

The following are reasons why an investigator would want
to include multiple responses as an integral part of his
experimental plan and analysis:

1. A single measure usually does not adequately

represent the typical complex performance under
investigation.

2. A single measure may be an acceptable unitaryI ~concept but understanding would be improved if
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it were broken down into component measures,

rather than tying it to any single one.

3. Discovering evidence of interaction among response

measures improves one's understanding of a phe-
nomenon,

4. An analysis of multiple effects jointly may lead

to different conclusions than would the sum of
responses analyzed individually.

5. Understanding the joint contribution of several
response variables can make it possible to select
a smaller but most efficient combination of

variables with which to measure performance.

6. It ia more economical to carry out a single test

rather than a number of separate tests for each

response before a significant effect is detected.

7. Multiple responses increase the generality of the

results.

8. A multiple response measure of performance in many

situations is the more natural condition, whereas

if efforts were made to hold some measures con-

stant, artificial restrictions are introduced into

the data to distort the interpretation. However,

comparisons and assessments of factors and inter-

actions when there are multiple responses are

complicated by the fact that there is no unique
linear ordering for vectors. Different approaches

have been devised to overcome this. 1

130



The independent variables in screening designs are

orthogonal (uncorrelated). However, it is highly likely
that the dependent variables -- the responses, the criteria --

will be correlated to some degree.

Once an investigator has decided to make multiple
responses a critical part of his investigation, he must
then decide how he should analyze his data. It is not

always obvious -- and in fact, it may be counterproductive --

to use the most sophisticated and formal methods of analysis
available.

A statement by Gnanadesikan (1963, p 23) is appropriate

here:

I:j While the majority of muttireeponse techniques,
esecially those in the fozina oowaserk of hy-

respontes indivieaZy are thus Vo usefu. a

In suummary, the sophisticated investigator avoids a single

, cooboo nsi qut oftnthea pedues are data suchan

that is likely to provide useful information.
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Scope of This Section

A great many papers and books -- dating back to the

mid-1930's -- have been written about the methods for
analyzing experimental data involving multiple responses.
In this section, therefore, no attempt will be made to

explain the derivations of these methods in depth, nor to
provide the reader with more than a cursory -- conceptual --

description of how to use them. The purpose of this section

in to alert the experiment~l psychologist to the advantages

of techniques of multivariate analysis and to encourage him
to use them an a normal part of his experimental program.
To do this, some of the more popular as well as some less

1 C familiar methods will be described. In some cases, enough

information will be provided, hopefully, to take some of
the mystery out of less familiar statistics, at least enough

to make them easier to understand when the user must go to

original papers to learn the mechanics of how to use them.

Some simple methods of analyzing multiple response
methods are described because in many cases they will be

more responsive to an investigator's needs than one of the

more sophisticated analyses. For some of the more complex

analyses, recent innovations that facilitate the interpre-
tation of the data will be described. In come cases a
method may be selected to avoid a large or unusual computer
effort.

As Wilk and Gnanadesikan (1964, p 613) wrote:

... there is a long existent need for proceduyes

to handZe data involving multivariate responses in

such a way that the resulting statistical sunmary

and analysis (M takes some account of the muZti-

variate structure, and (ii) encourages insight
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into the experimental situation (as die tfint from
* aavoajing out artifioiaa and often pointless teats

of hypotheses). The indefiniteness and ocmptoxity

of obJectives of statiatioal analysis of multi-

response data emphaeixe the need for general
* infomaL prooedure. whioh help to oonveyi to the

data anaLyxsr come of the information implieit

in the data.

Hopefully, this section, while in many respects meager, will

at least show the reader that there are choices to be made

and provide enough detail to help him make the choice.

9 WEIGHTED CRITERIA j
If the relative importance among n different sets of

responses is known and can be quantified, the investigator

c can reduce the multiplicity of responses to a single value

and treat the data as a unilateral analysis. For example,

if all of the responses or criteria can be associated with

a dollar value, or weighted according to their contribution

to some other single concept, then they could be combined

into a composite variate, W.

Before the weights are assigned, however, each set of
perfirmance scores must be transformed into standard scores.

The standard score for each set of responses would be:

Yi " Yi
zi ( (i - 1 to n sets of responses)

C Y

where y is the mean of the particular set of performance

values. Each set of performance measures, Z through Zn
would be assigned the weighted values b, through bn
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respectively and a composite score, Wi for each experimental

condition would be calculated, thus:

Wi - btz + baz: + .. nn

GRAPHIC INSPECTION

If the independent factors are quantitative and contin-
uous, each performance measure may be presented graphically
as a "response surface," which, with two predictor factors,

has the appearance of a contour map with equal performance
contours (e.g., Figure 9a). The hills and valleys of these

response surface contours indicate the maxima and minima

performance positions that can be associated with the co-
ordinates (or values) of the independent factors. When

optimum locations among multiple criteria do not coincide,
the investigator must find a way of studying the data in
order to make the best and most practical compromise.

If an investigator wished to find the optimum values
of two predictor factors for a combination of performance

measures, the contours for each measure could be drawn on
a common coordinate system (e.g., Figure 9b). However, when

there are more than two or three predictor factors, this
graphic method becomes awkward to use unless it is meaning-
ful to fix all but two of the predictor factors.

Given overlapping response surfaces, for example, one
showing performance and the other showing costs, an investi-

IJ

gator may visually search for the values of the equipment
parameters (the predictor variables) that lead to some ac-

ceptable compromise between the two criteria.
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Arrows point to values of xi. and X2 that optimite Y

Dashed lines
~represent cost

in thousands
of dollars

2j
N Solid lines

represent
$9 performance

data

X2 (Contrast)

Figure 9. Artificial Data illustrating Graphic
overlapping of Two Response Surfaces
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USING LA GRANGE MULTIPLIERS

6
When there are too many independant variables to plot

on a two-dimensional piece of paper (or attempt to draw as
a three-dimonsional surfacf.), some technique other than
overlapping plots of the response surfaces must be used.
A procedure proposed by Umland and Smith (1959) may be

employed. While their description treats the topic when
only two criteria easures are being considered, it can be

extended to handle more criteria.€4

They propose to use LaGrange multipliers* to find the
optimum level of one fitted second (or first) order response

function -- subject to the constraint provided by a second

fitted second (or first) order response function. For example,
assume we have two functions, one, the cost of building
each particular equipment configuration (as represented by

the'experimental condition) and two, the level of operator l
performance at each condition. It would be possible to
dotermine the combination of equipment parameters that opti-

mized performance at some specified level while keeping the
cost of the equipment within specified bounds. The converse
could also be determined, i.e., the lowest cost for some

fixed performance value. The procedure, a general outline of
which is illustrated in Umland and Smith's (1959, pp 290-2911

CP-dper, is as follows:

*The general theory of LaGrange multipliers for solving
constrained optimization problems is clearly presented in
R. Courant, Differential and Integral Calculus, 1936, Vol. II,
pp 188-202.
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1. Two response surfaces are calculated using regression

*analysis to obtain the conventional least squares

fit. Only first- or second-order surfaces can be
handled, e.g., Y W 00X0 + OX + oX X

2. Differential equations are derived for each predictor
factor in the two (or more) equations.

3. A new set of non-linear equations, using LaGrange

multipliers is written.

4. These non-linear equations must be solved with one
of a number of available computer programs. Umland

and Smith (1959, p 291) suggest a method of steepest
ascent as given by Booth (1955) for an IBM 650

Computer. However, a more recent program which
Singer (1977) found useful was Subroutine ZXSSQ in

the IMSL Library I (IBM 370 series computer),*

Additional programming is required to fit the program

to this particular application.

The results obtained would be the value of the two pre-
dictor factors for the optimum level of one criterion con-

straiae.1 by some value of the second.

Several precautions should be taken in using this

techniquet

1. An inspection of the surfaces individually will
show whether they all have optima. Some surfaces

appear as ridges rather than peaks which could cause

the computer to either supply numerous correct[I answers or, more likely in the search mode, be unable

to arrive at a solution.

*Institute of Mathematics and Statistics Libraries, Inc.,I Sixth Floor, GNB Bldg., 750U Bellaire, Houston, Texas 77036.
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2. Since optimum responses may not fall within the
limits of the experimental space, limits must be
written into the computer program to assure that

the solutions obtained automatically by the com-

puter will be useful.

3. Coding the independent variables can simplify the

magnitude of certain calculations which may

overload the computer.

STEP-DOWN PROCEDURE

If the investigator cannot assign quantitative values to

his response, but is able to rank them in order of importance,
he may assess the predictor factors in terms of the multiple
responses as a series of single-response assessments, using
a "step-down" procedure proposed by Roy (1958, p 1177) who

notes:

The step-down procedure obviously is not invariant
undev, a permutation of the variates and should be

used only when the variates can be arranged on a 
priori grounds. Some advantages of the step-down

procedure are (i) the procedure uses widely known A

statistics like the variance-ratio, (ii) the tost

is carried out in successive stages and if signi-

ficance is established at a certain stage, one can i
atop at that stage and no further computations are

needed, and (iii) it leads to simultaneous confi-

dence-bounds on certain meaningful parametric

functions.

The investigator would use an ordinary F-test at each

step of the analysis. He would begin by examining the most

important response alone, and perform the analysis of variance
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and F-test on that. He would next use the second most
important response to assess the data as a uniresponse

analysis and F-test, but it would be conditional on the

first response used. That is, he would perform an analysis
of covariance, yRIj, i.e., response Y2 with the effects of
y, removed. Each succeeding response measure is made con-

ditional on all previous response measures in the ordered
sequence. This would continue until p response measures

and p independent uniresponse assessments have been mde.

Gnanadesikan (1963, p 23), in describing this technique,

writes the following in regard to setting the probability

value for rejecting the null hypothesis with this step-down
proceduret

The hypothesis for the multiresponse situa-
tion is not rejected if and only if none of
the sequence of uniresponse hypotheses is
rejected. Under the overall (i.e., com-
plete multiresponse) hypothesis of no
treatment effectsthe separate F statistics
are independently distributed. Hence, if
a,, a2 , ... , a are the a-risks associatedp
respectively with the p F-tests, then the

overall a-risk is given by 1 - n 1 (1 - a).

Roy (1958) describes how to choose the value of the a-risk

(probability of error) at each step, so as to insure a
desired overall a-risk for the combined data.

Gnanadesikan (1963, p 25) provides an example of this

technique including a chi-squared-with-one-degree-of-freedom

probability plot of the squared estimates of the different

effects.

C
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MULTIPLE ANALYSIS OF VARIANCE (MANOVA)

The use of MANOVA to analyze multiple response data is
analogous to the use of analysis of variance to analyzR
single response data. The former uakes into consideration

the fact that multiple criteria are seldom completely inde-
pendent and may depend upon one another or be hidden aliases
of a single more fundamental criterion. As with ANOVA, an

investigator may use MANOVA to:

1. Estimate the probability that two or more groups

are really different, i.e., that an observed

effect is a reliable one.

2. Determine the proportion of total variance
accounted for by each factor, i.e., eta squared.

Instead of differences among means, we examine differ-
ences among centroids. Instead of studying the variance,

we study the dispersion of the multiple responses in a multi-

variate space. Detailed discussions on MANOVA can be found

*in most references on multivariate analysis (e.g., Kerlinger
and Pedhazur, 1973; Cattell, 1966; Cooley and Lohnes, 1971).

Making separate analyses for each of a number of response

*variables can lead to incorrect conclusions. Separate re-
sponses are seldom completely independent and in fact may

be aliases of a single, more fundamental criterion. It is

possible that no univariate criterion alone would distinguish

£among several groups, while a MANOVA would. This is illus-

trated with some fictitious data (Figure 10) taken from
Kerlinger and Pedhazur (1973, p 359). It can be seen that

when the means of conditions Al, A2 , and As are projected

on either of the two dimensions, they are not well separated.
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Yet an inspection of the two-dimensional plot shows that the

three groups are clearly separated. This is what MANOVA

*would detect.

We will begin our discussion of MANOVA with eta squared,

since in screening designs, this information would ordinarily

*be more important than significance tests.

MANOVA Eta Squared

*Eta squared (;2 ) from multiple response analysis of

variance problems will be calculated in one of two ways.

One-way designs. The first, which is not too important

I for screening studies, is used in a one-way design with only
a single factor,

1 iYL

= ~ ITII
where JWJ and ITI are the determinants of a within-treatment

and a total-treatment matrix respectively.* This is anala-

gous to the eta squared for the single-response ANOVA. Eta

squared for ANOVA is equal to

2 ~SSWssw

t

where ssw and sst are within-group sum of squares and total

sum of squares respectively. By subtracting that proportion

*
In Appendix A of their book, Kerlinger and Pedhazur

(1973) provide an easily understood short course in matrix
algebra.
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of the total accounted for by the within group, i.e., IWI/ITI

from one, we have the proportion accounted for by the groups

under consideration.

For a two-response study, the within-treatment matrix,

W, and the total treatment matrix, Twould consist of the

following elements:

ripp
,w Sw2J

and the total treatment matrix, T,

sPt2
sp55st1 sst2)

The elements of the matrices are calculated as follows.

For a total of N observations, with r groups and n observa-

tions per group, the ss (sum of squares) and the sp (sum of

products) are calculated in the conventional way. The total

sum of squares would be:

n N
s = X 2  (ZX), AI

N ;

Between-group sum of squares would be:
n

r Ex. 2 nSb =~ 11 - ( ,X) 2

Within-group sum of squares is obtained by subtraction:

b - b =

These must be calculated for each response measure (1 and 2,

in our example which we call X and Y in our two-response

example).
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The sum of products (or sum of cross products between I I
X and Y, or product-sum as it has been called) is calculated

essentially the same as the sum of squares, except that

instead of multiplying X times X to get X2, we now multiply

X times Y to get XY. Similarly, instead of multiplying Y
X t EX to get (X) 2, we multiply EX times LY to get

(EX) (EY). Thus, for a total of N observations, with r groups

and n observations per group, the total sum of products would
be: r.

n n n n

sP rX, (X.Y ) (LX(LY)

5p E' I - - 1
b n N

and the within-group sum of products would be obtained by

subtraction, thus:

sP -,= b 'w:

Within each matrix, the sums of products in corresponding

positions on either side of the main diagonal, are the same

(since sP12 is the same as sp21).

Multifactor (and screening) designs. When the study

involves more than one factor, as in the screening design,

and there are multiple responses, the equation for eta

squared is

- IF + El

'TI
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Note once again the analogy between this eta squared for

multiple-response data and eta squared calculated from
single-response data. For single response data eta squaredcu d

would be the ratio of the sum of squares for the particular

factor or interaction over total sum of rquares. In the

multiple-response case, it is the ratio of the determinants

of the factor matrix (F) plus error (E) matrix over the

total matrix.*

For screening designs, the F-matrix represents both main
azd interaction effects. The E-matrix is equivalent to the W-
matrix in the previous equation for eta squared, both being

the residuals after all sources of variability between groups

have been removed from the total variance, or dispersion.
Thus, in MANOVA with multifactors, the between groups disper-

sion can be partitioned into matrices for the individual

factors and the interactions, and eta squared values determined

It should be noted that in the first equation it is
necessary to work from the Within tdatrix rather than get eta
squared from a between matrix directly. In the second equa-
tion, it is necessary to add the grror matrix to the particular
factor matrix before finding the determinant. These are
necessary because all between-treatment matrices (which include
a factor or interaction matrix) are singular. That means that
at least two columns (or rows) of the matrix are proportionalto one another# e.g., 1 2 3 and 2 4 6; the determinant of %
a singular matrix is always zero. This "no solution" situa-

tion is avoided by working with the within -groups and then
subtracting, or by adding the error matrix to the between-matrix.
Because of this restriction, no eta squared can be calculated
for a screening design unless-t-T repeated--t -ast twice
an& n error term i obtaied. At least, the'-autr was unable
to-fl-nd a-'he-ool-otonby the time this report went to press.
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for each of them as in the ANOVA case. Of course, with

Resolution III designs, interaction terms are not isolated
from main effects. With Resolution IV designs the two-

factor interactions are in fact strings. This does not

change the calculations. For MANOVA, the sources of variance

are partitioned in the same manner as in single response

ANOVAs. In a two-response study, for example, the matrix

for Factor A would look like this:

A (ssl 5sAA A21

and for Interaction AB, for example, like this:

ABl SPAB\

AB c )s
sPAB 5 AB2

Elements in the matrices for main effects are calculated
4 in the same manner they would be for the between-treatments

matrix. The only new elements are those for the interac-

tions, and these are not difficult to calculate with screening

designs in which all the interactions are linear products of ~~

Stwo two-level main effects. Thus the same equation is used

to calculate each element of the interaction matrices as the

main effects. The only difference in the calculation is that

with main effects, the ZXi and Y i I represent the summing of

t performance scores obtained under all high or all low
conditions, while with interaction effects one would sum

either all conditions in which both factors levels were high

and both were low, or one would sum all conditions in which

the factors levels were always mixed, one high and one low.
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These two sums now represent the sum of two "groups" from
which sums of squares and sums of products are calculated.

Once the appropriate sum of squares and sum of produots
are obtained, the equation for eta squared requires that ma-
trices F and E be added. To add two matrices, in this case

F and E, it only is necessary to add the elements in corres-
ponding positions in each matrix to form the matrix sum.

For example:

3 with 4 1S2 6 (5 9) 7 15)

with 4 obtained by adding 3 plus 1, and 13 obtained by
adding 5 plus 8, and so forth. (You can not obtain the
determinants for F and E and add them to get the determin-
ant for the sum. One must sum first and then get the

determinant.)

In Appendix VII, algebraic equations are given to
calculate the determinants for 2 x 2 and 3 x 3 matrices,

used when there are two or three responses in the MANOVA.

When there &re more responses, the analysis is sufficiently

complex to require a computer.

Multi-variate Test of Significance

In multivariate analyses, much attention -- possibly too

much attention -- has been directed at tests of statistical

significance. Such tests, for a null hypothesis of "no
effect" against the completely general alternate hypothesis,

have important limitations. While a number of tests have
been devised, choice among them is based largely on intuition.
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Wilks' lambda (A) (generalized mean) test is one of the

more popular tests of significant differences between groups

in multiple response studies and will be described here. It
determines a probability level for the null hypothesis of

equality of population centroids (mean vectors) on the
assumption of equality of dispersion (variance-covariance

matrices). The assumption is analogous to that of homogen-

eity of variance in the univariate F-ratio test of equality

of means.

The equation for Wilks' lambda is:

* IT! IB +E IF + El

Matrix T is equal to matrix (B + E), which is not surprising

since the total is equal to the between plus the within. We have

already indicated that both W and E are residual matrices that
are left after z11 known sources of variance have been removed

from the total.* In multifactor designs the B-matrix would

become a matrix (F) for each particular factor or interaction.

a
Althogh the explicit distribution of Wilks' lambda is

not known except for a few special cases, there are a number
of transformations which enable lambda to approximate the

C classical F-distribution. Most of them, as given, are

usually suitable only for the one-way MANOVA design. Tatsuoka

(1971, p 200) gives the formula for Rao's R-statistic having Li

We shall assume that we are always dealing in screening
designs with a Model I (final effects) experiment.
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an approximate F-distribution which is suitable for the

multiple independent variable (and screening design) case,

provided there is an estimate of error variance and co-
variance possible. The equation he gives is:

me - (Pvh / 2) + 1

A1, pvh

with m ve + vh - (p + vh + 1)/2

(pv h)2 - 4and a --

p24.

with pvh and ms - (pvh/? ) + 1 degrees of freedom. Also

Ve = Number of observations in basic screening
design multiplied by number of repeats
beyond the original plan.

vh = Number of groups in factor being investi-
gated, minus one. In screening designs
this value will be 1 for main and
interaction strings.

p = Number of dependent variables.

MANOVA Versus Multiple Discriminant Analysis

Although it is not the intention in this report to

review every form of multivariate analysis available, some

comments regarding multiple discximinant analysis as it
relates to MANOVA may be helpful. Both techniques may be useA

to examine one-way designs (single factor, multiple condi-
tions) with multiple response data. For a given set of data,

both techniques will produce identical overall tests of

statistical significance.
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But MANOVA stops with this test of significance, while II
multiple discriminant analysis provides the user with some
indication as to the nature of the difference. It does this
by providing a set of weights or coefficients for the several
dependent measures that will separate the mean values of the

conditions to the maximum extent. Essentially what is
happening is that they are turning the original dependent
variables into now orthogonal dimensions (i.e., canonical
variables) which, like the factors of factor analysis, may
not be readily named. In certain human factors for equip-
mant design problems one may not find the orthogonal, arti-
ficial variables as useful as the real world ones. Thei

canonical variables may provide clues for better understand-
ing, yet the original variables may still be of greater
practical value. Multiple discriminant analyses were
developed to handle one-way designs. In a multiple-response,

multifactor screening design there are separate discrimin-

ant analyses, one for each main and interaction effect.
Multiple discriminant analysis can be found in most books
on multivariate techniques (e.g., Cooley and Lohnes, 1971;

Kerlinger and Pedhazur, 1973).

C I
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GRAPHICAL ANALYSIS USING ORDERED DISTANCES

Wilk and Gnanadesikan (1961; 1564) describe a procedure
for graphical analysis of multiple response data by means

of 'robability plots." Their procedure represents a gener-

alization and an extension of the technique of half-normal
plotting proposed by Daniel (1959) for the graphical analysis

of single-response data. It was proposed specifically to

be used with two-level factorials where there is a meaningful
decomposition of the treatment structure into orthogonal

single degrees of freedom contrasts. It can also be

applied to results from the fractional factorial and
screening experiments. Where no independent estimate of

error is available, the use of this "internal comparison"*

method has several advantages:

1. It may reveal significont effects when

single-response analysis does not.

2. It may lead to smoother, more stable

statistical configurations than a single-

response analysis.

3. It provides an easily assimilable

summary of experimental results that

facilitates investigator personal
inspection of the data.

I; j

*"Internal comparison" refers to comparisons based on
a statistical standard set by the data.
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I
4. It helps clarify the interpretation I

of data when different responses are
not orthogonal to one another.

Throughout the many references to this technique, the point
is made continually that the intent is not to supplant the

marginal analysis of individual responses. Instead, bo-h
types of analysis should be used to supplement one another.

Roy, Gnanadesikan, and Srivastava (1971, pp 97-112) devote
an entire chapter to graphical methods and internal compari-

son evaluation procedures for multiple response data,

including examples.

General Description

I Analogous to the case of the half-normal plot, the
multiple response method of graphical analysis is based on

probability plots of ordered squared distances (defined as
"positive semi-definite quadratic forms"). Ordered
distances are judged to be real when they deviate consid-
erably from a straight line plott,?d on appropriately

scaled paper. Several problems arise, however, with
multiple eesponse analysis that are not present in single
response analysis. One, in multiple response analysis, it

is necessary to appr.-ximate and estimate the distribution
which serves as the appropriate basis for the probability

plot§. A procedure for doing this may be based on order
statistics from the gamma distribution and tables to

facilitate the required estimation. Two, while the uni-
variate analysis may be based on the half-normal distribu-
tion (i.e., chi-square distribution with one degree of

freedom), the multivariate analysis uses the standardized

gamma distribution of a particular shape determined by the
data. Three, unlike the univariate case, the problem of
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linearly ordering multivariate data is complicated by the

lack of a convenient measure of "size." Gnanadesikan and

his co-workers have developed techniques to help solve

these problems. Only a general description of these tech-

niques will be supplied here. The reader is referred to

the original papers and other references on the topic for

a working knowledge.

Gamma distribution paper. This technique requires that

the squared distances be ordered and plotted against the

corresponding quantiles of the gamma distribution. Psychol-

ogists are familiar with special cases of the gamma

distribution, e.g., the chi-square and exponential distri-

butions. Unfortunately, un]ike the uniresponse procedure

proposed by Daniel for which special "probability" paper can

be prepared, no single general probability papex can be

prepared for the gamma distribution. This is because the

distribution can be standardized through a linear trans-

formation for only two of the three parameters defining the

distribution, that is, for the origin and the scale, but

not for the shape. Special approximation tables or a high- i
speed computer are required to calculate the actual

percentage points of ordered effects. Wilk, Gnanadesikan,

and Huyett (1962) and Roy, Gnanadesikan, and Srivastava

(1971) provide tables of percentage points for the reduced

gamma distribution, together with the numerical procedures

and approximations employed. Wilk, et al (1962, pp 102-103)

describe the procedure step by step and note that the

entire procedure is mechanized and in uie at Bell Telephone

Laboratories for the IBM 7094 and GE 635 computers.

Computer programs for these calculations are also given in

Roy, et al (1971).

-1 5
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Calculating the Ordered Distances

The effect of a factor in the univariate case is the
mean difference in performances between high and low levels

of the factor. With multiple responses, the measure of the

main effect of a factor would be the "distance" between the

high and low centroids in the multi-dimensional response

surface. For example, if there were three independent

factors with two levels in each and two responses, one

might graphically represent the data as shown in Figure 11.

The performances on conditions involving high and low levels

for Factor A are indicated by squares and circles,

respectively. The centroids are the darkened symbols.

Roy, et al (1971) describe the calculation this way:

- A.t 0W l--ok: a0 A Ad kiAk level

0 e Low icvit CENTRo~
,. • l*h~I4_ LV/._CNTA.*1b

a. U
Uw AC

a

a a. '4 f * I 2 I *4 "

RESPONSE 1

Figure 11. Geometric Representation of One Main Effect, A,

in a 2s Experiment with Two Responses. (From
Wilk and Gnanadesikan (1964, p 619, Fig. 1.]
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For the bivariate response, therefore, a
natural measure of the main effect A would
be the "distance" between the centroids in
the two-dimensional response space. If x,
is the contrast vector corresponding to the
main effect A, then the "distance" between
the two centroids is proportional to the
"length" of x,. For instance, choosing the
compounding matrix A, in the defining equa-
tion

i= Ax i = 1.,2,...L(n-l) response

as the identity matrix of order 2 in this
case, so that di - xIxi, we get the squared
Euclidian distance between the two centroids
corresponding to the definition of the main
effect A. More generally, the (n-l) contrast
vectors x,'s may be visualized as (n-l)
points in the p-dimensional space, as
squared lengths, or squared distances from
the origin, associated with the contrast
vectors.

Selecting the compounding matrix. The defining equation,

written with matrix symbols, can be expanded to look like this:

Squared
Distance, xa,.. a zi

COMPOUNDIN aij a I

MATRIX aL

It is necessary for the investigator to arbitrarily specify

the values of the a weights of the compounding matrix with

the single restriction that the squared distances are

greater than or equal to zero. Symbolically:

X 'Ax > 0

Wilk and Gnanadesikan (1961, p 1210) state that the

elements in the A matrix are non-negative definite

quadratic forms. Some possible examples of the A matrix
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might be a) the identity matrix, (I), b) a diagonal matrix

of reciprocals of estimates of the variances of the p

responses, (D_-), or c) the inverse of the covariance matrix
sii

of the original responses, (S ").

The inverse of the covariance matrix, S-1, is a

particularly useful compounding Potrix since it provides a

linear invariance and makes statistical allowance for

differing variances and correlations among the elements of

the effects vectors. However, it is recommended that an

S matrix be derived from the sum of squares and sum of

products of r effects (contrast) vectors, where r is a
subset of the total number of effect vectors. In the case

of ordered values, the subset of r vectors might include the

smaller half of the effects. This removes the larger effects

from the estimates, for if they are real, including them

would reduce the number of effects that would appear to

stand out from the rest. Excluding them gives the

smaller, but real effects a better chance of being detected.*

1
Two other useful compounding matrices, i and D- , are

Si
diagonal matrices. The diagonal matrix with weights

inversely proportional to estimated variances, has been

found to yield a more sensitive analysis than equal weighting
as long as the estimated variances are based on the smaller

half of the ordered effects vectors (as proposed for S 1).

Roy, et al, recommend that several different compounding

matrices be tried in estimating the squared distance and the

researcher should realize that whatever compounding matrix

is used, subsequent inferences regarding the data should be
"conditional" on this choice.

* ~

Note the similarity between that tactic and that proposed
by Zahn when he calculates the standard deviation for the half-
normal plot (see p 97, this report).
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Analyzing Subgroups

-* Graphical internal comparison procedures may also be

applied to subgroups of the effects vectors, selected ac-
cording to meaningful criteria which are independent of

the data. For example, one might look at different orders
* of effects separately, e.g., main and two-factor inter-

actions, or isolate all higher-than-second-order interac-

tions and examine them. V

Plotting and Evaluating the Ordered Distances

It has already been stated that under the null
hypothesis, i.e., no systematic effects, the ordered
distances would behave like a random sample from a gamma

distribution with its density defined by origin, scale,

and shape parameters. By keeping the origin at 0 and the
scale at 1, only the shape parameter is unknown. If it

were known, then when the ordered distances were plotted
against corresponding quantiles of the gamma distribution,

the points would appear in a straight-line configuration
if there are no real effects. Major departures from the

straight line by the largest effects will suggest that

those effects are probably real.

]4
Conclusion

While there is much to learn before one can comfortably
use this graphical, internal comparison method, there seems

to be sufficient justification to apply it to screening

problems. Since without replication, the screening plans
have no independent estimate of error variance to test

the significance (reliability) of an effect, this internal
comparison procedure serves as a useful alternative. Before

anyone can assess how valuable the technique is, more ex-
perience is needed in using it and applying it to behavioral
data.
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CANONICAL CORRELATION ANALYSIS

Canonical correlation analysis is the generalization

of univariate multiple correlation analysis to two sets of
variables, usually, but not always, multiple independent

and multiple dependent variables. Canonical analysis provides

a measure of the degree of association between the two sets
of variables and may be useful for learning something about

the underlying relationships among the variables of the two
sets.

Applications

Examples of two sets of multivariate data to which

canonical correlation analysis might be applied to deter-

mine the degree of association and underlying relationships

are:

1. Flight performance measures at the beginning

and the end of a training program.

2. Instructors'characteristics versus trainees'

flight performance measures.

3. Instrument design factors versus multiple
cost criteria (e.g., dollars, performance).

4. Pilot selection test scores versus flight

performance data.

5. Pilot training-simulator design parameters

versus multiple transfer-of-training

criteria.

158



~Process

Many books have been written on canonical correlation

analysis, the theory and the mathematics, (e.g., Cattel,

1966; Kerlinger and Pedhazur, 1973; Nie, Hull, et al, 1975;

Bock and Haggard, 1968; Tatsuoka, 1971). These will not

be discussed here. Although that background is important,
at the end of this section an improved canonical analysis

will be described. Therefore at this time, only the
fundamental process involved in the canonical analysis will

be discussed.

We begin with a table showing the coordinates of the

experimental space at which the data was collected and
the set of measures made on that set of conditions. In

screening designs, the coordinates are the conditions of

a fractional factorial and therefore, orthogonal. The

response measures are almost always correlated. Thus the

raw data matrix for three independent and two dependent

variables would look like this:

4 Observation Independent Dependent

Number A B C X Y
1' -1 -1 -1 .3 14

2 +1 -1 -1 .7 21 1
3 -1 +1 -1 .1 13

4 -1 +1 -1 .5 11 1

...etc etc etc...

t From this data a table of intercorrelations is con-

structed by finding the correlation between every pair of i
columns, and locating them in the intercorrelation table
as follows:
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Independent Dependent

A B C X Y
A r r r r r

aa ab ac ax ay

(I) B rba rbb rbc rbx rb,

C rca rCb rcc rex ro

X r r r rx ry

(D) Y r y ryx r

which can be simplified using matrix algebra and symbols as:

1 1

* I

R
21 1 I 2

L

where R is the entire correlation matrix, RII represents
the correlations among the independent variables, R22
represents the correlations among the dependent variables,
RI2 represents the correlations between independent and

dependent variables, and R represents the transpose ofBI21
R12 '

Computer programs exist that would work from the data
in the above matrix to find the solution to the canonical
correlation analysis. This in essence is what it would do.

E It would search out a set of weights (i.e., Beta coeffi-
cients) to assign to the independent variables and another
set of weights to assign to the dependent variables. Withthese, two sets of canonical variates would be calculated.

A "variate" is a rotated dimension in the multivariate
space made up of composite scores derived from the weighted

values of the two sets of raw data.

160



The weights for the two sets are selected in a way that will

cause the correlation between the pair of variates to be a
maximum. The square of this correlation indicates the

proportion of the variance of the single criterion composite

accounted for by the predictor composite.* Next, a
second pair of variates could then be calculated that would

account for as much as possible of the variance between

the two sets that were left unaccounted for by the first
pair of variates. This procedure can continue, the maximum

number of iterations being equal to the number of variables

in the smaller of the two groups. Each new pair of variates
is completely orthogonal to all previous pairs of variates. i
It may not be necessary to complete them all since most of

the variance may be accounted for by the first few pairs.

Since the new variates are formed in pairs, the existence

of large weighting (coefficients) on the old variables in

the two groups would identify which ones were responsible

for the degree of correlation that was found. For example,

an idealized result might De: I
Old New Variates

Variables I Coefficients

1 H L H - high weight

Group 2 H L L - low weight

3 L H
4 L H

5 L H

6 L H
7 H L
8 H L

Canonical Correlationt (.85) (.75)

" Thorndike (1975) discusses general considerations in interpreting
canonical corralations and specifically (pp 82-83) some problems in inter-
preting the index of proportion of variance. A "redundancy index" is
proposed instead.
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These results could be interpreted as follows. In the

first variate (I), approximately 72% of the variance due to

Variables 1 and 2 were accounted for by Variables 7 and 8.

In the second variate (II), approximately 56% of the

14 remaining variance (after Variate I was discounted) in

Variables 3 and 4 were accounted for by Variables 5 and 6.

As in factor analysis, it may be possible to find the

common element among the heavily weighted variables to be
, ;able to name the -ariates in the two groups of data.

V~ Limitations of Canonical Correlation Analysis I

K With real data, these clear cut divisions and associa-

tions found in the above example seldom occur. The problem

of interpretation may be difficult. Trying to "name" the

new variates may also be difficult.

Perhaps the major limitations of a canonical correlation

analysis lies in the unreliability of the weights. The

problems that arise in trying to examine the coefficients of

individual terms in multiple regression problems when the

variables are correlated are only complicated further in

these bilateral regression analyses. Hoerl and Kennard
(1970a, b), cite the following characteristics of coef-
ficients estimated from ill-conditioned experimental designs:

1. The coefficients become too large in absolute

value. '

f 2. Some coefficients have the wrong sign.

3. Collectively the coefficients are unstable;

another set of performance data would be

unlikely to give the same beta values.

K6
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4. Individual coefficients may be over or under

estimates of the strength of a particular factor.

To try to interpret the results from a canonical correlation
analysis by examining the individual weights, therefore,
seems to be overly optimistic. The more non-orthogonal the

original matrices, the less reliance can be placed on the
interpretation of individual coefficients. (See Simon,

1975 for more discussion of this problem.)

An Improved Method of Canonical Correlation Analysis j

Hoerl and Kennard (1970a, b) proposed to use "ridge
regression" to improve the analysis of an ill-conditioned
multiple regression matrix. This analysis, they suggest,
will obtain a better prediction equation in which:

1. The estimated coefficients will be closer to I
the true coefficients on the average.

2. The signs attached to the coefficients will be

more meaningful.

3. A point estimate of a response can be made
with a smaller mean square error.

4. The coefficients will be more stable and likely
to be repeated if new data is taken.

Hoerl and Kennard's (1970a, b) original papers provide a

description of the philosophy and underlying mathematics

for ridge regression analysis. A simpler explanation has

been provided by .Simon (1975) and will not be repeated here.
Mechanically what is done is to add a small constant to the
unit diagonal of the intercorrelation tables, and then
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analyze this modified • ta by a multiple regression analysis
ri as usual. Finding the proper constant (usually less than

.05) depends on a study of a plot of the coefficients

obtained with each constant after trying a range of values.

A number of studies have found that for highly correlated i

matrices, ridge regression analysis provides a more stable

set of coefficients and a smaller prediction error than
conventional multiple regression.

Carney (1975) proposes using ridge regression analysis
i4' rather than multiple regression analysis to obtain canonical

correlations. As with Lhe single response case, this would
reduce the instability and the errors in the estimates of

the weights used to obtain the canonical variates. He

'I developed a computer program that would provide Monte Carlo

S.~ data to evaluate and solve the "canonical ridge
k'1 estimates" (Carney and Anderson, 1974).

The investigator must decide what constant, k, to

add to the unit diagonals of two matrices, R11 and R22, for

the canonical ridge analysis. Carney (1975, p 9) says:

"There seems to be no theoretical criterion for choosing

k-values for canonical ridge estimates" but he suggests

several possible empirical approaches:

1. Try a series of k-values and select the solutions

in which the coefficients appear not to change

much over a range of k's. (This is feasible for

ridge regression, with a single set of coefficients,

but can be more difficult with the many coeifioients
in the canonical ridge case).

2. Limit the application of ridge to the first
canonical correlates only.
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3. Proceed as in the Monte Carlo experiments# treating
the sample covariance matrix as if it were, a
population matrix, generating arificial samples,
and selecting k-values to minimize "mean square
error."t

4. Perturb the data matrix and attempt to find k-values
for which the perturbations have little effect.

5. Subdivide the sample and select k-values for
which stability across subsamples occur.
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IX. EVALUATING THE ADEQUACY OF THE REGRESSION EQUATION

One of the better features of central-composite designs

is the procedure that enables the investigator to:

o Collect data sequentially in blocks, beginning

with only enough for a first-order model when

no function is assumed

o Determine whether the order model adequately
fits the ictual data

o Collect more data when lack of fit is significant J

in order to fit the next higher-order model.

The analysis of variance of the classical central-

composite designs (Box and Wilson, 1951; Box and Hunter, ]
1956; Simon, 1970b, 1973),composed of 2k-p fractional

factorials and center points in the first-order model plus
"star" points in the second-order model would ordinarily

take the form of these examples;

First Order (3 factors, 4 center points, 12 observations)

Source d.f.

First order terms 3

X,1

X 1

Lack of fit 5

Error 3

*Most of the material for this section was taken from a
paper by Draper and Herzberg (1971). Mr. Edward J. Dragavon
helped interpret the paper and prepare the example.
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Second Order (3 factors, 6 center points, 30 observa-

tions)

Source d.f.

First order terms 3

Second order terms 6

Lack of Fit 5

Error 5

Draper and Herzberg (1971) show how the lack of fit in each

of these two types of designs -- first or second-order --

can be split into two sources that can help the investigator

decide where the lack of fit (bias) lies and what his next

step should be.

SPLITTING THE LACK OF FIT OF THE FIRST-ORDER DESIGNS

The sum of squares for the first-order lack of fit

can be split into: I
Li: Sum of squares due to lack of fit of

the interaction effects

L2: Sum of squares due to lack of fit of'

curvature,

The calculation for L2 sum of squares for estimating curva-

tures' lack of fit is given by Draper and Herzberg (1971),

Cochran and Cox (1957, p 342), Peng (1967, p 160), and

Meyer (1971, p 116) is:

n In - - A1
Sum of squares L2 = +n -y) 2

7 1 2
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where: j
ni - Number of replicated center points

n2 = Number of non-center points (fractional
factorial portion)

- Mean response at center points

Y2 = Mean response at non-center points

L2 has one degree of freedom and is the sum of the Bii

aliased in a single string.

The Li sum of squares (for estimating interaction lack

of fit) can be calculated as follows:

Sum of Squares Li -Ttal Lack of Fiti minus sum SMOf Sur
T um of squares [

L, has one less degree of freedom than the total Lack h
of Fit sum of squares had.

Variances are formed for L, and L2 by dividing the sum of

squares by the degrees of freedom. These can be tested for sig-

nificance using the error term in the conventional way. If
there are so few degrees of freedom in the error term of the

unreplicated basic central-composite design as to make the

power of such a test questionable, it would be wiser for the

investigator to inspect the relative magnitudes of the

proportions of variance accounted for by each of the sources

of variance. (See Simon, 1976a).

Meyer (1971, p 116) shows how this technique would be

used with a fractional factorial Resolution IV design

augmented with center points. In his analysis (p 117), he

isolated all linear model terms plus lack of fit and then

error. The four degrees of the lack-of-fit term were further

isolated into 3 degrees of freedom for the cross-product

sources (LI) and one degree of freedom for the quadratic

sources (L2)- In this 24-1 design, the 3 degrees of freedom
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for the cross-product source were actually for three

strings each with two two-factor interactions aliased with

one another. The single degree of freedom for the quad-

ratic source represents the sum of the coefficients of all

quadratic terms.

While the wording in Draper and Herzberg's paper (1971,

p 234, para 3.1) seems to suggest that this splitting of

the lack of fit in a first-order model is appropriate only

when the 2k-p fractional factorial design is of "resolution

greater than four," this is not the case. This procedure

then could be used with Resolution IV screening designs to

determine whether an observed lack of fit is the result of

inadequate curvature of cross-product information, or both,

in the first order model. K
Meyer (1971, p 123) later makes an important point

when he warns his readers that the aggregate sources of

variance that make up the lack of fit will differ depending

on the experimental design. He writes: "Essentially, they

represent terms that the experimenter nould have included

in the model but didn't." Thus, if a lack of fit test is

not significant, implying an adequate representation, the

investigator should be sure that the terms of interest are

included in the design. Otherwise, prediction will suffer.

SPLITTING THE LACK OF FIT OF SECOND ORDER I)ESIGNS

Draper and Herzberg (1971, p 235) specify that this

procedure for splitting the Lack of Fits sum of squares for

a second order central-composite design should be used only

when the cube part of the design is Resolution VII or higher.

A Resolution VII design enables all main and two- and three-

factor interaction effects to be isolated from one another.

In this case, L'2 is used to check for fourth order biases.
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Since for most psychological research valid fourth order
effects are extremely unlikely (Simon, 1976b) any signifi-
cant Lack of Fit of the L'2 term would suggest that

unwanted sources of variance are distorting the data.

Calculations. L', will provide a test of third order
biases. The calculation of L'2 for the second order model
is more complicated than for the first order model. Draper
and Herzberg (1971, p 235) provide the following equation:

kI
L'; SS - d(l + dt) ft (n-d)yl - o + a

The meaning of each symbol is given in Table 16. The

L'2 SS has one degree of freedom.

Li is obtained by subtracting the sum of squares for L'2

from the total Lack of Fit sum of squares, thus:

L'iSS (Total LoF SS) - (L' 2 SS)

The L'i SS has one degree of freedom less than the
Total SS.

If the second-order design is orthogonally blocked,

the sum of squares for blocking can be removed as usual.

Since L', is foun! by subtraction, removing the sum of

squares for blocks will reduce the size of L'1 but will not

affect L'2.

1
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TABLE 16

SYMBOLS USED IN EQUATIONS TO CALCULATE L' 2 SUM OF SQUARES

FOR THE SECOND-ORDER CENTRAL-COMPOSITE DESIGN

d - Number of center points

n - Total number of observations

k - Number of factors (independent variables)

c - Sum of non-center point coefficients squared

g - Sum of non-center point coefficients raised to 4th power

h - Sum of cross products between, any pair of coefficients
squared over all non-center points*

y Mean performance at non-center points

Y - Mean performance at center points

g + h (k-i)

(n - d) [g + h(k - 1)] - kc2

-ct
g + h(k - 1)

i = Sum of cross products between performance and coefficients
squared of factor i over all non-center points (where

6 i = 1,2,...k)

C[

In the conventional central-composite design, this sum will

equal the number of non-center points.
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EFFECTS OF REPLICATING NON-CENTER PnINTS OF THE CCD

Draper and Herzberg (1971, p 233) comment on this

stating that ". . . if the center points are not the onlyF replicated points in the design there are slight changes

in the above which do not materially affect the situation."

They cite some notational changes that might be made but
Iindicate that it would not be necessary to make any changes

in the calculation of L2 or L'2 . Although L, and L'i

would be affected by the change, the computations remain the
same since their sums of squares is obtained by subtraction.

ADDITIONAL CRITERION FOR EVALUATING THE EQUATION

Suich and Derringer (1977, p 213) note that ". .the
significance of the regression F-ratio and the nonsignifi-

cance of the lack-of-fit F-ratio do not necessarily imply

that Y(X) is an adequate [predictive] model." At best,

when the regression F-ratio exceeds the critical F value

for significance, this only indicates that the fitted equa-

tion is probably a better predictor of performance than the

mean of the data would be. Such information is of little

practical value. Draper and Smith (1966, p 64) suggest that

", * *unless the range of values predicted by the fitted

equation is considerably greater than the size of the random

error, prediction will often be of no value even though a

'significant' F-value hao been obtained, since the equation

will be 'fitted to the errors' only." J. M. Wetz (1964), a

student of G. E. P. Box, in a Ph.D. dissertation, suggested

that the F-ratio of the equation would have to exceed some

criterion F-value by about a factor of four to be rated as

a satisfautory prediction tool. ,

C
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Suich and Derringer (1977) provide "... a numerical

criterion,y , which quantifies the range of values predicted

4by [a second degree polynomial] relative to the size of the

standard error. That is, the importance of the standard

error is considered in light of the magnitude of the changes

to be estimated by the model itself . . ." (p 213). This

equation is:

n (Y 2

- )2
"= : n

where

Y = Each performance score

= Mean performance

m = Number of terms in equation excluding the constant

n = Number of observations

Calculation and Test

Instead of wishing to compare the F-value obtained by the

usual method:

F Regression mean square
Error mean square

with the standard F-value taken from a central-F distribution

(published in most statistics books 'hat deal with the

analysis o! variance), that is, to test the hypothesis that Y

is or is not greater than some non-zero value considered to

be an important difference for a particular situation. To do

this, they develop an equation to calculate a non-central

F-value to compare with the F obtained from the experimental

data. This non-central F (i.e., F' Y2) can be.a ,n-m- 1,
estimated for any risk level, a, and particular pairs of

degrees of freedom, m and (n-m-l) by adjusting the standard
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F-value found in the conventional tables. This relationship

is:

Icm,n-m-l,1y 2  ab,n-mI

where:

b - m(l+Y2 ) 2

(1+2 y2)

and (n-m-l) is the degrees of freedom, and a is the accep-

table risk level of committing a Type I error (i.e., stating

that a difference exists when in fact it doesn't).

The y substituted in this equation is not calculated

from the data, but is the degree of variation required for

importance.* To select an F' to be approximately four times

I*

We could decide to use a y value calculated from the
data using the aforementioned equation and substitute that
into the equation relating F' to F, but reversed thus:

F1
F = (l+y 2 )

with the appropriate degrees of freedom indicated above for
both F and F'. Then by using the standard F-distribution

V tables, along with some interpolation, we could find the
risk level, a, for accepting the equation as a predictor by
searching the table for the F value for the indicated degrees
of freedom closest to the one calculated above. One would
need a set of F-tables that givesF-values for a range of
probability values (e.g., Fisher and Yates, 1963).

IV4:
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the size of F (as Wetz had suggested), then making Y equal
Sto 2 would roughly produce that result. However, the5decision of how large this value should be is up to the

investigator and a matter of experience. The experiences

of the statisticians who have suggested the value might be
four were not working with human performance data -- more

likely it was chemical engineering data -- so we will have
to try it and see how it works. Certainly any more critical
criterion than the one currently in use is likely to produce
a better predictive equation, although Suich and Derringer
say it ". . . is not meant to be a final answer to the

problem but more as a benchmark or rule-of-thumb to help
in answering this difficult question. .. " (p 216).

If the regression F-value is less than F', the investi-

r gator would reexamine two things: 1) is his error variance
too large because of too small a sample? 2) is the equation
model adequate or should it be expanded? Both require more
data to be collected. If the regression F equals or is
larger than F', then we have increased our confidence in the
equation as a predictive model. Suich and Derringer provide

an example of this test (pp 214-216).
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X. ANALYZING THE DATA FROM AN.

INCOMPLETE SCREENING EXPERIMENT

An experimentc. may be required to do an analy-

sis "on-line" each time a new piece of data has been collec-

ted. For example, he may wish to check his results as soon

as the data is collected in order to decide whether to stop

or to modify the experimental program. Or, he may wish to
keep abreast of the data in the event the experiment is inad-

vertently terminated prematurely. While a regression analysis
can be performed relatively quickly with a modern computer,

it may not be convenient or may be too costly to make one

available for this purpose.

Hunter (1964) has provided a "predictor-corrector" (P-C)

equation that can be used to determine the regression coeffic-

ients in a polynomial model after the data has been collected

on each experimental condition of a screening design (or for

that matter, any 2k and 2k-p design), provided that an

initial set of orthogonal estimates of the coefficients is

available. This means that if a screening design is made up

of blocks of Resolution III designs, then once the first

block has been completed -- enabling the coefficients of a

first order polynomial to be estimated -- a new equation

can be determined relatively quickly after data has been

collected at a new data point. The predictor-corrector

equation provides an exact least squares estimate, an update,

of all the coefficients without elaborate calculations or

the need for a high-speed computer.
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REQUIREMENTS FOR USING THE P-C EQUATION

Two conditions must be satisfied before the equation

can be used:

1) The estimated coefficients from at least a single

Resolution III block must be available. More, or

higher resolution blocks are acceptable.

2) The rows of the new data points must be orthogonal.

That means that the sum of the cross products

between adjacent coefficients (i.e., plus and minus

ones) of the sign matrix making up any two rows

must equal zero.

Both conditions are met in a 2 kp screening design made up

of two Resolution III blocks. They would also be met if

one Resolution I design, to represent the initial block,

had been completed and was in the process of being replica-

ted, or a new plan begun.

PREDICTOR-CORRECTION EQUATION

The P-C equation provided by Hunter (1964, p 43) is:

1 ASi MN + q i*

where: <

q =number of coefficients in the model- q - N

m = number of blocks of N conditions already
completed

N = number of conditions per complete block

r. = row vector of coefficients (i.e., t 1) o

r Italicized letters are matrix symbols.
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independent variables associated with
the ith experimental condition

Y i ew performance score associated with
A

Yi predicted performance score associated with
ith observation (ria)

* The correction constants, di , for the ith condition is

combined with the coefficients (B) from the previous block

to get the revised coefficients (*), thus:

n
B*- B + di1

The variance of each coefficient is calculated:

C Variance (b*) = 1 - mN + q

EXAMPLE

How the equation is used can best be explained by means

of an illustration. Fictitious data for a 22+1 fractional

factorial experiment with 8 observations is given in Table
I E XVII. Eight observations enables two Resolution III blocks:

of data to be collected. We will presume that the first

block was run and the coefficients for the linear terms were

calculated. We will use the predictor-corrector equation

to obtain the least squares equation after the results from

the 5th and 6th data points are each obtained. The proce-

dure for calculating the new coefficients after each new

experimental condition has been completed is as follows:

1. Calculate the q coefficients from the N experimental

conditions in Block I. Yates' algorithm can be used

to obtain the effects-total, which are divided by N

Co to obtain the coefficients. The first four (N)
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TABLE 17

j. IMAGINARY DATA WITH WHICH TO ILLUSTRATE
AN INCOMPLETE ANALYSIS

[ Exptl. Condition (I) A B C Performance

1 c - - - + 1.3

Block I 2 a - + - - 3.6

(I=ABC) 3 b - - + - 2.4

4 abc - + + + 1.7

5 ab + + + - 2.5

Block II 6 bc + - + + 1.5

(I-ABC) 7 ac + + - + 2.8

8 (1) + - - - 3.4

9 c - - + 1.2

TABLE 18

WORKING DATA TO OBTAIN UPDATED EQUATIONS

M : I A B C y' yj d

2.50 .40 -.20 -.75

Exptl. cond. #5 t + -- + 2.5 2.35 .0188

Exptl. cond. #6 + - + + 1.5 1.15 .0438

Coef. 1+5 2.519 .419 -.219 -.731

Coef. 1+6 2.544 .356 -.156 -.706
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experimental conditions in Table 17 make up

Blo-Tk I and the four (q) coefficients for this
data are shown in Table 18 at .I

2. Solve for the denominator of di, the correction[~; constantsi

1 Y

d i mN + q

In this example,
mii - I block already completed

N - 4 conditions in the complete block
q - 4 coefficients in the model

(including mean)

Therefore, the P-C equation for this problem reduces

to:

i (1x 4) 4 (Y '

(Y'i - Yi) I

( i y •

3. Determine the estimated performance for the now

data point, Y. Thi- is the sum of the cross
products between the Block I coefficients and

corresponding 1 coefficients of the now data

point. Include the plus and minus signs in this
operation.
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For example, in Table 17 to obtain the estimated

performance for experimental condition #5, the

following steps are performed:

Block I: +2.50 +,40 -.20 -.75

Coefficients Exptl.
Cond. #5t +1 +1 -1 -1

Y5 f +(+2.50) +(+.40) -(-.20) -(-.75) - 2.35

This value is located in Table 18 at I.

4. Calculate the correction constant, by subtracting

the estimated performance, Yi, for experimental

condition i (such as the one just calculated for

experimental condition #5) from the actual perfor-

mance, Yi' (found in Table 17 and located in

Table 18 at K]). Divide this difference by

the denominator of di , which was calculated in

step 2:

y = 2.5
A

-Y 2.35

.15 divided Dy 8 = .01875 = +.019

which is the correction constant for experimental

condition #5.

5. Add this correction constant (using the sign

vector of the particular experimental condition)

to the corresponding coefficients from the previous

estimate to obtain the new estimates. These are

the coefficients for the new fitted equation.
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Continuing with our example:

Coefficients of previous equation
(Block I) 2.50 +.40 -.20 -.75

Constant w/signs of coefficients
of experiment-Al condition #5 +.019 +.019 -.019 +.019

New equations ccmbined data from
Block I and experimental
Condition #5 2.5194.419A-.219B-.731C

6. The procedure would be repeated when performance for

a new data point (#6) is obtained. The estimated

performance, Y, is still obtained using the co-

efficients from Block I. The coefficients for the

new equation, however, are obtained by adding the

new correction constant, multiplied by the coeffi-

cient of the corresponding columns of experimental

condition *6, to the corresponding coefficients of

the previous equation derived by combining Block I

and experimenLal condition #5.

Coefficients (Block I 2.50 .40 -.20 -.75

(Exptl. Cond. #b +1 -1 *1 +1

Y 2.50 -.40 -.20 -.75 = 1.15

Y1.5

( - Y)/8 1.5 - 1.15 = .35/8 =+.04375 Correc-
tion Constant

Equation 1+5. 2.509 .409 -. 207 -. 741

Constant w/

shlns #6 +.044 -. 044 *.044 +.044
New equation,

for combined
data from
block #1 and
exptl. cond.
#5 and #6 Y = 2.5 + .3A - .IB - .7C

This procedure continue3 as each new data point is

added.
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If it is not necessary to estimate the equation each

time a new data point is added, the correction constants
! along with the appropriate signs for the specific experimen-

tal conditions can be summed together and added to the

original block coefficients. For example, after both experi-

mental conditions #5 and #6 have been taken, the new coef-

ficient for Factor A in the above example would be:

Coeff. from Original Block: .40

#5 constant: +(+.01875)

#6 constant: -(+.04375)

New coefficientz .025 (Factor A)

Computations can be made more easily when many data points are

to be added if a tab with the list of correction factors (with

signs) listsd on it is laid next to each sign column and

added or subtracted accordingly.

If a second block of N = q experimental conditions is

run -- in this example, eight more -- further revisions of

the equation would be based on the coefficients derived from

the data from both blocks. This would also require a change

in the denominator of the correction constant:

* If the number of coefficients to be estimated

continued to be 4 (q), then since there are now

2 (m) blocks completed with 4 (N) conditions per

block, the denominator of the correction constant

would be: (2 x 4) + 4 = 12

• If the number of coefficients, q, including the

mean, is expanded to 8 (which is possible with

8 independent observations), this would make
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the block size, N, equal to 8, now to be considered

a single block. The denominator of the correction

constant would be: (1 x 8) + 8 = 16.

Remember, all estimates are based on the data from the most

recently completed block of a size capable of estimating all

the coefficients.

MISSING DATA

At first glance it would appear that this process could

be used to fill in missing data. For example, if all data

points of the first block and all but one somewhere in the

second block were completed, then a least squares fit of

the available data made by using the P-C equation could be

used to predict performance in the missing cell. In theory,

* this is true. In practice, for any cell of a 2 k -p design,

the equation obtained from the Block I data would provide

the same estimate of a missing performance value at a point

within the experimental design as would an equation derived

after the data from the incomplete block has been added to

that of the first block. This anomoly occurs because each

condition in the new block is orthogonal to the first block

and therefore does not affect the original estimates.

However, the equation based on the old block data plus

the data from the new incomplete block will provide better

estimates of data points anywhere in the experimental space

except those that are a cart of the experimental desiqn.
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APPENDIX I-A

t THREE-FACTOR INTERACTION STRINGS ALIASED TO MAIN EFFECTS

original Factorial Labels AD ACD AC ABD ABCD ABC AB A

*Three-Factor Interaction ABH ABF ABD ABE BCE ACE ABC ABG

Strings ACD ACG ACH ADG BDF ADr ADH ACF

Aliased with AEF AEU AEG AFH BGH AGH AFG ADE

Main Effect BCF BCH BCG BDII CDG CDH BDG BCD

BDF BEG BEH BFG CFH CFG BFH BE?

CEH CE? CDE DEF DERl DEG CDF CEG

DF1I FGH UGH EGH EFG EFH CGII DFG

New Factor Main Effects G D F C A B E H

APPE~NDIX I-B

TWO-FACTOR INTERACTIONS ALIASED IN STRINGS

tOriginal Factorial Labels D CD C BD BCD BC B3

Two-Factor Interacztion AB AE AC AF All AG AD

Strings CE BC BE BD 13G Bl1 BF

Aliased with DF DHI DG CH C.F CD CG

Main Effect Gill FG FI1 HG Dr. HF Ell

For experimetAl design, Table 1, page 15 in text.
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APPENDIX II. DATA FOR 216-11 SCREENING DESIGNS, N = 32
IV

21 SCEENING DESIGN' APPENDIX I-A

TEST EXPERIMENTAL N E W S C R E E N I N G
ORDER CONDITION (MAIN EFFECTS)*

(1) A B C D E F G H I J K L M N 0 P
2 IBCDELMN + + + + + + + + + -
2 AFGHIJKP + + + + + + + + +
3 AEFGHMNO + - + + + + + + +
4 BCDIJKLP + - + + + .. + + + + - - - +
5 ADFIJLNO + + - - + + + - - + +- + - + +
6 BCEGHKMP + - + + - - + - - + - + - - +
7 BCGHIJNO + - + + - + - + + + - - + + +

a ADEFKLMP + + - + - + . . . . + + + - +
9 ACGIKLMO + + - + - - - + - + - + + - +

10 BDEFHJNP + - + - + + + - + - + - - - + - +
11 BDFHIKMO + + + - + - + + - + - + - + -
12 ACEGJLNP + + - + + - + - - + - + + - +
13 BEFGJKLO + - + - - + + + - - + + + - - +
14 ACDHIMNP + + - + + - - - + + - - + + + - +
15 ACDEHJKO + + - + + + - - + - + + - - - +
16 BFGI LMNP + - + + + - + + - - + + + - +
17 ABHJKLMN + + + + . . . + + + - + + + - +
18 CDEFGIOP + - - + + + + + - + .. . + +

19 CDFGJKMN + - - + + - + + - + + + -
20 ABEHILOP + + + - - + - - + + - - + - - + +
21 CEFHIKLN + - - + - + + - + + - + + - + - -

22 ABDGJMOP + + + - + . .. . + - - - + +
23 ABDEGIKN + 4+ + - + + - + + - + - - -

24 CFHJLMOP + - - + - - + - + - + - + + - + +
25 DEGHIJLM + - - - + + - + + + + - + + - - -
26 ABCFKNOP + + + + - - + - - - + - - + _,4 +
27 ABCEFIJM + + + + - + - + + - - -
28 DGHKLNOP + - - - + - - + + - + + - +. + +
29 ABCDFGHL + + + + + - + + + - - + . . . .
30 EIJKMNOm + . . . . + - + + + + + + +
31(1) + - -
32r ACDIIJKLJNaP A I 4. 4. + + + + + + + 4 +

--- ,, - - n, =,,,- aORGAL ACTRIALBL (1) Q -1 1

PERCENT# LINEAR 0

TREND/EFFECT QUADRATIC 0 0 0 1

OVERLAP*** CUBIC 0 0 0 0 1 2

FACTOR LEVEL CHANGE COUNT 0 21 20 22 18 26 23 19 17 27 25 29 16 24 28 30 31
*THREE-FACTOR INTERACTION STRINGS ALIASED WITH MAIN EFFECTS ARE LISTED IN APPENDIX Il-B

*TWO-FACTOR INTERACTION STRINGS ALIASED WITH TWO-FACTOR INTERACTION LABELS LISTED IN APPENDIX I-C
**INNER-PRODUCT SUMS LISTED IN APPENDIX II-D
#BLANIK SPACES REPRESENT ZERO PERCENT, SPACES WITH ZEROES IN THEM REPRESENT SOME PERCENT SMALLER THAN iX
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-7

DESIGNS, N = 32

APPENDIX II-A N-32 (TREND RESISTANT)

NEW SCREENING DESIGN LABELS °

(Two-FACTOR INTERACTION STRINGS)"
G H I J K L M N 0 P AP AO AN AM AL AK AJ Al AH AG AF AE AD AC AB

- -. + + + - . . . + + + + -.+ + + + . . . . + + ++ + + -
4. 4 - + - + 4.+ . . . . . . + . -. ..+- - + - + + + + - -+ + + - + + - - + - - - - - + -

++ + + + . . .. + - + - 4 - - . + - -
- - + + + - + + - . + 4. - _ _ - + -+ . - + + 4. - + - _ - . 4. 4 . - . . . + - - - + -

+ + + + - .- 4 . - -. . . . . +S + + + + - + - + + - - - + - 4. -+ - + - + - + - + - - .+ - + 4. -+ + + - + - + - + + + + + -
+ + + + + - + - - - 4 4 - - - 4 4 -+ + +- - - - - + - - - - -+ +++4 - + .- - - - 4. - - - - 4 4 --+ + + . 4. + + - - - + - +

+ + + - + . . . 4. . ++ + 4. - _ . -. . +- - + - _ - - .
+ + - 4. + - + -4. - -4 - - 4_ " .+ - 4. - - -4. 4. 4. 4 -4. - + - _4. - . - 4

4.4 4 4. - -- 4. - - 4. - + - 4. - + 4. - 4.
+ + + + + . -. . . + + + - . + . + + _~+ + + + -++++ - - +j+ 4 . - -.. . 4. - + +

- . * . - 4. - -' - . - + - - + 4. - . 4. 4. 4.
4 4. 4. - 4 + 4. - - . - - . 4 - - 4. 4. - . 4.

4. 4 . - . .. + - . - + 4. + - 4 . 4.
- 4. + + + 4. + - - . - + - - - 4 + 4 . - 4 + 4.

- - - - - - - - - 4. + 4 . 4 . 4 + 4. 4 . 4. 4. 4 +

~ rn n rn W~ n In n- W I-r i-, ir imm~ ii in w~i

-

0 1 .5 19 75

0 0 0 1 0 1 4 4 18 71

0 0 1 2 121039 392111

:1 17 27 25 29 16 24 28 30 31 10 11 9 8 12 14 4 6 215 7 3 1
ED IN APPENDIX II-B
LABELS LISTED IN APPENDIX Il-C

!EPRESENT SOME PERCENT SMALLER THAN 1Z



THREE-FhCTOI( INTE~RACTION STRINGS ALIASKI) TO MAIN 'EFeCTS

NEW ORIGINAL
MAIN FACTOR ALIASED TrHEE-FACTORl INTERACTION STRINGS

EIFP.CTS LABELS

0AH ABP' ACK ADJ AEH AFN AGMl All BON BDM BEL BFK BJ BHZ DE GhL

CPCOI CNJ GLII DFI DCI' ONK DLN EFO El? EJK ElAN FHM PJL GH14

f HLP IJN IKYK 1%.P' KNP

K ADE ABN ACU ADE APP AGI AHJ AV,1 iCP BDI BEG B70 BHlK BJL 003 CEH
CFP4 CC14 CIL DFPM DON D1U DLI' EFL ElM EJU EYP 703 7)11 GHP GLD
HLN 13? INO JtKM HOP

N AD ABK ACI' ADI AEG APD, AlVM AJL DCO BDE 3FF 301 311J BLI-1 001 C61,L
CPK 003 CHI DFJ Di0K ON' DLO EFH EIK EJP EJ.O P01. ell. 0110 OLP
HKL IJ0 I1,.. J K1; KbP

3ACE ABIT4 ACE ADO API AG? AHK ALN BCi BD? BE? BOO BHN1 BKL CDK. CFM
CGM CHO CLI' DEN PPM DOM OIL EGL EIM EKO EN? 70K 'FlP PLO 011
HiM. IX? 1Mb Kt?.11 MG?

r ABC ABC ADL AEK AGH Ali AiiP AN(; 201 DEJ BGL DI.Y BKu 311? COG CE1
CHL CJZ4 CKN CuP DEP DIU DJN WK. EGO EHN EKL GIP G.;K GXM 111K
NJP HMO4 ILN .JLUi LI'.

L AB ABH ACO AD? AEP AID AjIN AKIV: BCD BED BFO DIP DJKh BI','N CEN CFH
*CIX CJ? CKO DEM 0011 D;J DK? DM0 EFK' EGJ EH1I FIN 730 Fb.P GI'.

GKO GNP H v3 11KM HuP

P A ABD ACM ALM AEL AFK AGJ AHI BCX 203 BEN BFN BGM BIL CDI CEG
CFO CHit CJL 0EF DGD DHN DKL EIG EJN EY14 FGI P113F PL. G11K GLN
HLO 13K IlWN JI'40 KNO

E -ACDE AB, ACJ ADK APW. AGN A~io~ ALP DCV. RON DFJ BOXK BHP BLU Coil. OF!
CGOP CNK CLN DFP ocI D.4J ouL: FGD Fil PKL 01.., GJL NIL 133' IN
IGI' JKU JN? KI':P VNO

I ACO ABE ACVt ADN AFJ AGK AHP ALU BC3 BOX, BPM DON BHu BLP CDP CE?
COO CHN CXL DEG D~u D101 DJL EHL EJ14 EKN EtLP POP P11K PLN 0113
GLM. jKP 3110 K1Y MN P

m AC ABJ ACI AP AEF AGO ANN AKL BCB BOO DPI BO? BHlK BLN CDN CFJ
CCK CHP CLO DEL DFK DGJ 0111 EGN EIJ EKP END FGM PHU~ FLP GIL
HJL IKO IN? 3KN 3iUP

Ht ABE ABL ACD AEG AFO AI? AJK AMN BOG BD? BE? BIO B3M WK CEK CPL
CIN CJO CYP DEJ DGL DIM. DKO DNP EPN EON EIL PIK 73? PFtO 013
GKP ONO Ji1-1 XiN 1kP

0 ADDE ABO ACH AEK AFL AIM AJO AMP BCL BEN BPM IlK 23? DB.D CEO 070
CIP CJK CMN EP EGI L£1J ELVK FI0 731 FKY1 GHlL GJM 0KM GOP 1113'
11K? liO ILM KLU LNP

C ADCE AD? ADH AEJ AOL Al,% AhO AMP ?DL BEM BOX 213 BKP BND DEU DF3
DIP D3K D,,N EFI EOP 1*1K ELM FHL P3K FKN FP 010 G3N 0KV HlN
1JO1305.P IKL JLP L1.0o

A ABCDE BCP BOO Bd I DNL 331 .1 N BU? CON CEJ COL 0114 CKO CN? DEk DFL
DIN DJ0 t131.. BFM EGN END EL? FOH l P1 FKP FNO GlX GJP GMO HIP
HJ( 11MN ILO JLN KLb:

B ABCD AC? ADO AE1 AHL A J t' Ar*N AD? CDL CEM CON CiJ ChP CN 0 DEN DFH
D1K DJ? DMO EFJ ECK EHI' EiD FUL FIN~ FhO FM? GIN GJu GM.? HID

KNM 11KM LP Jr~L i:'.N
GADD ABD ACL A n, A9i! AIX AIP AVO ECH BEK DPI BIN 30 BYP CDP CEP

CIO CJN C1** DFI DilL D311 DEN DO? EFO EFI EJL PIP P3K FM~ 1113
HKP IO ILI. KLO LIII'
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FWM CQF1 FM&ISHED TO DDC -

APPNIX 111. DIATA FOR 2~" SCRSD'NS DESIGNS, 4 -16 ____________________________________________

=CIIOIIIGO ANIX u:-A

["'ORDEREpCONDITIONEJ 
i.LLLL.LL)i

O~ER ITIW (1) A 8 C 0 E F 6 H I J K L A N n P Q A S T 0 V V X Y Z A' 8' C' D' V

~~ *cJLUVAO 4 - 4 4 ; -. 4. 4 4 . - + 4 +

'~ +MN)~MSx1'' + - +- - +

1 A JK~4I1m~D C a -+ 4. + + + + 4+.4 4 4

KWVLJE40MYZ4 ~ * 4 . 4 4 4 -+ - 4 4 4 4

to AmSimoUsS1WC9p, + + ; - . + + + + + +

12 .~1flYDI' + + + + + + + + + + + - - ~ - 4

X4 ePIJDMTUxyLB f .T + + +

11 utmASMVSZAM . . . . . . . + + + - - - - - 4- - 4 4 4 4. 4 -

La MIIJSOP"IV9 +. + + + -. 4 4 4 - - - - 4 -

30 MEJISW A'BDF: + i4 4 - +. - 4. +

It ACIINSPOSIR E.' C 4. + + .4 ; ! 4+ + : + - + +.1 ; + - 4 4 4

23 061JLSIVMWA~ + + + + +. + 4 -- 4 - 4 - 4 - 4 - 4 ;
23 ;SIU SI~ C,E,, + ! 4 + 4 + + +. + . 4 4 4 - 4 4 4

34 KVUWSMA19 4 4 4 - 4. 4 - 4 - - 4 - -4 4 - - 4 4 - 4 4 4

Isl WA - - T , + 4. *- -+ 4. + +. +.- - - - 4 + - - - ;

31 ANWJOy , C . 4. F + 4 + + - - - -. 4 - 4 . * - - . 4 - - - +4

31 MhI45MUEA9O4T . . - - 4 4 . 4 . - - . 4

21 NM 99 +. - - 4 4 4 . 4 - 4 - - - - - . 4 4 . 4

34 n~~umC 4. + + + +. + . .. .. . . . . .4 .. . . . . .4. - . 4

40 AUqP1M a9~ . . 4 .. . . + + + + + . . . .- . . . .4. 4. . .

4L ASWPMWA&D 4 . + + + + + + + + + 4 4 - 4 4

41 Corit mmy I' I + + +. + + 4+ 
+ +.4 

- 4 4 - 4 - 4 . - - 4 - - - 4

41 4.mm v c' z- + + + - + + 4 + + + + + . 4 - 4 - 4 - 4

AS~ ~ + + + + + . - - - - - -

4 1111111TIA0YIj I : -I e 11 1 :I1 I
A§SKW%?hWAh' + + + . . . .. . .. .. - -

52c' .uW ev3, + -- 4 4- - - --~ - - - - -. ~ 4

#tmUUmIS1IIAD' 4. 4 4 4 - - 4. 4 4. 4 - - - . 4. ;. - -" + +

S4 A ofJUrUo y a I .. 4 . - 4. 4, 4 -+. + + . . . . . .

M0 W~nW Zm ' . . . . 4. . . . . . - . + + +7 4 4 - + + - : + -

SI WSW0 STWM" + + * - 4 4 4 4 4 4 - - + + . 4

S. CNNNIP VlLj 4 4. .4 . . . . + +-- - - . . - - - -

U A=~IM0yW, . . . . . . + + +. + +

Me~~ ~ ]),[IFYADL - - - - - - - - 4 - - - - - - - 4

:~wl I I : ; : : 44 " 4 4 4 +4 4+

PEKEMO towe

____c 
I 

-- 
o 

-o--- 
TT+

*4Tf~-AcTom IWMEACTION SRNSALIV! V IT$ MAINS EI'1Ctt ME LISTED IWAPPWIXZ 1113B IWE-PRVUCT 3455$ INl A"MIX 111-)

.. TsO FACOR INVUACTIOSI STEIMaS ALIASM WI114 TWO-FACTrlS INMtAACTIO U J LIS rM IN AinIX Ill-C 
1
B1.ANO SPACES "EPREIEN'r ZERO PERCENTj

-ALL FACTORS PFE4 A T14jU61 F' INCLuSIvj SPACES WITH4 ZEROES RHW*(tNT SOME PERCENT WLLjEp Tj EIMA2



THIS PAGE IS BEST QUALITY PRACTICABLE
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LLLLE DESIG LAEA
(Two-FACvlo INTERACTION STIKS)"

Z A' I ' V D' E' V AF' AE' 0' AV' AS' M' AZ AY AX N AV AU AT ALS AR 'A AP Ao MA M AL AK( AJ Al AMl k, V A E P AD AC AB

i. i -- 4. I 1-i -4 .- + +
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APPENDIX IV

COMPUTER PROGRAM FOR OBTAINING SCREENING DESIGN ALIASES

STN? PRI'OGRAM ALIAS 4
/4 WRITTEN BY HOWJit~ B. LEE 4

/4THIS COMPUT!16 rRIIRAN HAS 53!4 WRITTEN IN PL1./ FOR AN 10" 360/41 0/

/* PRCGTN TOP COMPUTING; TWO AND TIIREn WAY hLZA3ES ICR FRACTIONAL /
/$ FACIO!IIAL CVIGtNS (!C~trNI'4G rEStGNS)*

1 ALrCC~tOC Cl- 1(%S (MAIN) ;
2 rCL ccoG FILL SIREAM CU'IPUT;
3 DCL P(32,81 ~t! 1). t.3) CHlAR11~),11(32) FIXED VItIART(15,O)

4 CCL ZZ CHhP6).A(J2.lt) CNAR(),Nr(32) FIXED DINAV(t5.0);
5 LCL R4(32) FIXID L.R 150 e CHAR (2):
6 LCL F (4961) CHAt (f1) ,Q(4'4bl) CIHAR (d)
7 ECL LrC(49b1) fIltL HXNA1,YI11,O) ;
a CCI KCC(4961) FIXkL, EINARYQI.0);

/0 THIS rV-UT-.NZ IS USEC TO COI'UTI Tit! ALIASES FOR IOTH TWO FACTOR 4

/6INTtIRCTIONS AND Tflt.!! k'AcrCo INTEEACTIONS.

11 ECL 3(12,B) CIIAt(1)
12 C-L I '.)CHt.1 '(,) CIIA!(1)
13 CCI IN(s) N*tk)) fIX! IN Y(',,~
14 DCL (N,NE,1..1L.Kr) FIXFI nINArY(15,O);
15 VCL I! C11 V (1):
16 CCL 2! CIIAt(1) ;

COMPUJTATIONS TO FIND THEt TWO FACTOR INTIACTION TREMS 6
/* CHECKS THlE Ltrnrs C1 ON? LIIT AGAINST Till OTHER.. WH!N THlERE IS A 4

4 ATCH, To~r 1'rol;AA mrIs TO THE lf4 ST LETTER AR! CHICKi IT AGAINST 4
T4ilt! LDT7FF O~F Ti'! SIC(43 LIST. IF so0 wenh is FOUND, IT IS STOiE6/

IN 1 Till AE'! AT P. IC CIECh FOS THL. POS!bIPLI:T THlAT A MATCH MAY 6/
/0 WO'! aCCir WHitN MTCIING VAC!! ELLENT OF TILE SECOND LIST AGAINST 4

/6 ':ii' FtfST, Tilt SFCH 1:, rD.DY1b'Pl.D IN THE OPPC2IT1 cumcrEioN 4

17 KD'1;

18 LCCP:or 1-1 TC N; C1) J-1 TO ME:
20 IF TH,)ILLJ lEN GO TO llZLL;

25 hEL.L: END LOOr;
26 FLVEP:CC !*1IC TOM; DO Jul TO N;
28 IF 1(LL,I).X(L,J) THlER GO TO HzEAVtN; LNr;
31

/: hH'! YTP TA AEN ATCH IN EACH LIST ARE SORTED TO Ak~e2Aft4
/ N A 1tMNX4T!ZAR &tkIIbDPODUCT.

39 END. ENII LAI:
41 F K1 )ZU KL"ICP$1 HEAv!N:E'ID belER;

/0 CCI'UI.TTONS VO$ TlE TIII'TI PACTOR INrIACTIoN IEI~mS.

45 11 TFIF-O TilE? GC TO ZAP;
/0 CH'C KS4111FCTWO 11111 INrE3~ACVIONS AGAINST A THIRC LIST FOR A MITCH 4

41 Dc K IL I TC -Z.
48 K".1;
49 CC '-I TO KP-1; CO J-1 TO d (S~)

/0 IF k %%C:l "CCIINlS. SKIP TO Tit! N'!%T LLTTrr IN IhE LIST. IF No
/& MATCH OCCUPS, THEN ASS:GN HkT' LETTER -'0 THE ARRAY S. 4

' 1 If l'I)AJ ThkW GO TO litU;
53 IND;

56 llER;1wC'
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/0 WET W1 CHC ORM ATCH Of LETTERS IN THEl IENS! ORDER
a/

59 IfXKT P(FJ H1IN GO TO SO,

(I FD;

6 (DO K.2 O N(I) ;DO

b5 M (I) (I .31)THL

80 S%; I

/0 PLACE THE LTIESI TETIRD ONDUS INTERACTION I IT TI I TO 08011.0

71 DO .30 TO HF(I) ;

76 itsrj ; (D;SI' -) (IJ Iw3

o0 HA!ND AXS

/0 FLC T!711DODI NERACTN. NtI A N~ IO LN~ BAC ITOII PA P.TAD hE~

85 IND. A NICTt INIl

9? C 11TO H 2;

9 14D( Of*NA; Ui:TIFa

97 'C I- MZ, TO r 1; ~ fO IT 0U 0VIL NTOADTt ? a

1 02 INTES.!LTICN GO tTO SEWI; fi EGHO dEFRTLSTADTE*

/* CLLO D BYl SI TNE IS rAS TH ROl COUTE TH HIS AIS RPIi ATI FOR
AS ANYRAS INDSNSI IN NZ.

192 DC' 1-1 TO 12e;
.'*I C-1 r ?:KD,(A INI;S DOJi TO N) HAhZ , LIZ(. 1)DO aTO A))LETI

(X ( 1) . A ),X() 0 (1)C XI N (I CA AIR: )# (1 (N A UPTT 11)
9 / (T)S -~ N; 3 11OI.II i 1 ODN C4i

198 m11 )N t 1ThNEJ) PI
110 ECS NO; T'?l! (J'(III(,
917 !LS I?- NB(). 1; SlRJ)-1,) I(,)II(.)

98e jLiElh'MI) hNE(;)-I )II(,)l t3)P,)lPT
118 r3.S LI 1 PFIZ;TR (J (~h ~1JIII3 hPI~ I(.)

P(T,6 V ;I- T

101 K.2.9
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~ O? 1aSj= To DAQ i

Ft 120
1)1 IND;
'122 s!u:EmC;
123 IND
124 a .
125 OC Iti TO RZ; 00 J-1 TO MZ IF I>m.; TIHEN CC TO JIM;

p' 1111 SECOND OI Dtg INTIPACTION TRMS FOR THE 4ECl CODING ASSZ CONFUTED*/
129 It III-)1 I IN VO;
131 11 H(1) -2 & t M1) 2 TI:. It KK)- C 11,14) 11 z.(2, 1) 1 I I , JII IUZ (2, J)
1 3 3 EL S E I F M 3 ( 1) 6& M ?( J ) 01 T lk; H )( K K % -BZ ( 1 , ) I I BZ 11 , ) 1I B11 2 0 , J ) ;
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APPENDIX V

PROBABILITY VALUES FOR CONSTRUCTING HALF-NORMAL GRIDS

The table below provides the probability values at which the first four
largest effects would be plotted on grids for grids with from 63 to 8 ranks.
For each set, the number in parentheses is the rank, R8 , where

Rx = .683 Y + 0.5 (Y - largest rank; also N-l)

representing the estimated standard deviation for a Y-size grid (Daniel, 1959,
p 322). The relationship between P, the probability value on normal probabil-
ity paper, and P', the new probability values for the half-normal grid, is
explained on page 85 in the text. Grids can be properly spaced by relating the
original P values to their corresponding Z-values (where a = 1) found in most
normal distribution tables.

RANK P' P RANK P' P RANK P1 P RANK P1 P

63 99.21 99.60 62 99.19 99.60 61 99.18 99.59 60 99.17 99.58

62 97.62 98.81 61 97.58 98.79 60 97.54 98.77 59 97.50 98.75
61 96.03 98.02 60 95.97 97.98 59 95.90 97.95 58 95.83 97.92
60 94.44 97.22 59 94.35 97.18 58 94.26 97.13 57 94.17 97.08

(44) (43) (42) (41)
59 99.15 99.58 58 99.14 99.57 57 99.12 99.56 56 99.11 99.55
58 97.46 98.73 57 97.41 98.71 56 97.37 98.68 55 97.32 98.66
57 95.76 97.88 56 95.69 97.84 55 95.61 97.81 54 95.54 97.77

56 94.07 97.03 55 93.97 96.98 54 93.86 96.93 53 93.75 06.88
il(41) (40) (39) t39)-

55 99.09 99.55 54 99.07 99.54 53 99.06 99.53 52 99.04 99.52
4 54 97.27 98.64 53 97.22 98.61 52 97.17 98.58 51 97.12 98.56

53 95.45 97.73 52 95.37 97.69 51 95.28 97.64 50 95.19 97.60
52 93.64 96.82 51 93.52 96.76 50 93.40 96.70 49 93.27 96.63

(38) (37) (37) (36)
51 99.02 99.51 50 99.00 99.50 49 98.98 99.49 48 98.96 99.48

50 97.06 98.53 49 97.00 98.50 48 96.94 98.47 47 96.88 98.44
49 95.10 97.55 48 95.00 97.50 47 94.90 97.45 46 94.79 97.40
48 93.14 96.57 47 93.00 96.50 46 92.86 96.43 45 92.71 96.35

(35) (35) (34) (33)

47 98.94 99.47 46 98.91 99.46 45 98.89 99.44 44 98.86 99.43
46 96.81 98.40 45 96.74 98.37 44 96.67 98.33 43 96.59 98.30
45 94.68 97.34 44 94.56 97.28 43 94.44 97.22 42 94.32 97.16
44 92.55 96.28 43 92.39 96.20 42 92.22 96.11 41 92.05 96.02
(33) (32) . (31) (31)
43 98.84 99.42 42 98.81 99.40 41 98.78 99.39 40 98.75 99.38
42 96.51 98.26 41 96.43 98.24 40 96.34 98.17 39 96.25 98.12
41 94.19 97.09 40 94.05 97.02 39 93.90 96.95 38 93.75 96.88
40 91.86 95.93 39 91.67 95.83 38 91.46 95.73 37 91.25 95.62
(30) (29) (29) (28)
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PROBABILITY VALUES FOR CONSTRUCTING HALF-NORMAL GRIDS (Continued)

RANK P' P RANK Ps P RANK P' P RANK P' P

39 98.72 99.36 38 98.68 99.34 37 98.65 99.32 36 98.61 99.31
38 96.15 98.08 37 96.05 98.03 36 95.95 97.97 J5 95.83 97.92
37 93.59 96.79 36 93.42 96.71 35 93.24 96.62 34 93.06 96.53
36 91.03 95.51 35 90.79 95.39 34 90.54 95.27 33 90.28 95.14
(27) (26) (26) (25)
35 98.57 99.29 34 98.53 99.26 33 98.48 99.24 32 98.44 99.22
34 95.71 97.86 33 95.59 97.79 32 95.45 97.73 31 95.31 97.66
33 92.86 96.43 32 92.65 96.32 31 92.42 96.21 30 92.19 96.09
32 90.00 95.00 31 89.71 94.85 30 89.39 94.70 29 89.06 94.53
(24) (24) (23) (22)
31 98.39 99.19 30 98.33 99.17 29 98.28 99.14 28 98.21 99.11
30 95.16 97.58 29 95.00 97.50 28 94.83 97.41 27 94.64 97.32
29 91.94 95.97 28 91.67 95.83 27 91.38 95.69 26 91.07 95.54
28 88.71 94.35 27 88.33 94.17 26 87.93 93.97 25 87.50 93.75
(22) (21) (20) (20)
27 98.15 99.07 26 98.08 99.04 25 98.00 99.00 24 97.92 98.96
26 94.44 97.22 25 94.23 97.12 24 94.00 97.00 23 93,75 96.88
25 90.74 95.37 24 90.38 95.19 23 90.00 95.00 22 89.58 94.79
24 87.04 93.52 23 86.54 93.27 22 86.00 93.00 21 85.42 92.71
(19) (18) (18) (17)
23 97.83 98.91 22 97.73 98.36 21 97.62 98.81 20 97.53 98.75
22 93.48 96.74 21 93.18 96.59 20 92.86 96.43 19 92.50 96.25
21 89.13 94.57 20 88.64 94.32 19 88.10 94.05 18 87.50 93.75
20 84.78 92.39 19 84.09 92.05 18 83.33 91.67 17 82.50 91.25
(16) (16) (15) (14)
19 97.37 98.68 18 97.22 9e.61 17 97.06 98.53 16 96.88 98.44
18 92.11 96.05 17 91.67 95.83 16 91.18 95.59 15 90.62 95.31
17 86.84 93.42 16 86.11 93.06 15 85.29 92.65 14 84.38 92.19
16 81.58 90 79 15 80.56 90.28 14 79.41 89.71 13 78.12 89.06
(13) (13) (12) (11)
15 96.67 98.33 14 96.43 98.21 13 96.15 98.08 12 95.83 97.92
14 90.00 95.00 13 89.29 94.64 12 88.46 94.23 11 87.50 93.75
13 83.33 91,67 12 82.14 91.07 11 80.77 90.3U 10 79.17 89.58
12 76.67 88.33 11 75.00 87.50 10 73.08 86.54 9 70.83 85.42
(11) (10) (9) (9)
11 95.45 97.73 10 95.00 97.50 9 94.44 97.22 8 93.75 96.88
10 86.36 93.18 9 85.00 92.50 8 83.33 91.67 7 81.25 90.62
9 72.27 88.64 8 75.00 87.50 7 72.22 86.11 6 68.75 84.33
8 68.18 84.09 7 65.00 82.50 6 61.00 80.56 5 56.25 78.12
(8) (7) (7) (6)
7 92.86 96.43 6 91.67 95.83 5 90.00 95.00 4 87.50 93.75

f 6 78.57 89.29 5 75.00 87.50 4 70.00 85.00 3 62.50 81.25
5 64.29 82.14 4 58.33 79.17 3 50.00 75.00 2 37.50 68.75
4 50.00 75.00 3 41.67 70.83 2 30.00 65.00 1 12.50 56.25

5) 5) 4)( 3
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APPENDIX VI

DERIVATION OF COMBINED LINEAR AND CUBIC )

TREND-ADJUSTMENT EQUATIONS

Dr. Steve R. Webb

The following derivation parallels the ones used to
obtain the linear and quadratic trend-correction equations
described by Daniel and Wilcoxin (1966, pp 272-273).

1. Normal equations for ordered 2P plans to correct for
linear (L) and cubic (K) trends.

A 
9L + XX + XX + yY + zZ +. ............ = (L) (U.1)

A A A

kK + x'X + y'Y + z'Z +.................. = (K) (1.2)

x'K + XL + NX = (X) (1.3)
A

y'K + yL + NY = (Y) (1.4)
A AA

z'K + zL + nZ = (Z) (1.5) i

etc.

where Z = [DLI, x = [LX], y = [LY], z = [LZ]

k = [KK], x= [1XI, y' = [KY], z' = [KZ]

The meaning of the alternate symbols can be found in Table 15 in

the text. N = 2 and (X), (Y), (Z) are the contrasts correlated

with (L) and (K). A dot over a letter indicates it is an unknown

term.

2. From equations (1.3), '1.4) and (1.5) we can obtain

NX = X) - xL - x'K (1.6)
A A A -

NY = (Y) - yL - y'K (1.7)
A A A

NZ = (Z) - zL - z'K (1.8)

etc.

3. Substituting these equations into (1.1) and (1.2)
we obtain:

(Nk - x2- y2-z2-...)L + (-xx'-yy'-...)K = N(L)-x(X)-y(Y)... (1.9)

(XXyy...) L + (Nk-x' 2 -y' 2 -... )K = N(K)-x'(X)-y'(Y) ..... (1.10)

With the solutions for L and K in terms of the obser-
vations and the design parameters, we can evaluate the
regression coefficients directly from equations (1.6)
to (1.8).

Equations 1.9 and 1.1.0 are written using the alternate
symbols in Table 15, Equations IIIa and b, in the text.
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APPENDIX VIT

CALCULATING DETERMINANTS

Determinants for a 2 x 2 matrix as shown in this

illustration are easy to calculate. For example, if the

elements of the matrix were:

c d

then the determinant of the matrix (indicated by the

vertical lines), is:

1) ( d I (ad - bc)

when the a and d are sum of squares and b and c, sum of

products in our application.

If there are three responses, then the matrices become

tlarger to iicilude the additional sum of products (e.g.,
bett-een responses 1 and 2, 2 and 3, and 1 and 3. Thus, for

three responses, the total matrix, by way of illustration,

would be:

SS SPtl2 sPtl3
5t12 8 t2 5 t23

5stl3 sPt23 t3
a symmetrical matrix with the sum of squares for each

response, 1, 2, and 3, on the diagonal, and the sum of

products in the appropriate columns and rows off the

diagonal. The determinant of a 3 x 3 matrix is:

a b c

D= d e f = aei + bfg + dhc - gec - dbi - ahf
g h i

A computer would be used to calculate determinants for

larger matrices.
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APPENDIX VIII

ZAHN'S GUARDRAILS FOR HALF-NORMAL PLOTS

Zahn (1975a) provides critical values for plotting

guardrails for PER = ai = 0.05, 0.20, and 0.40 on the half-

normal grids.

[ For version S, he provides them only for N = 15,ii assuming four real effects. This could be used if the results

f rom a 2 B4 screening design were plotted. The criticalIV
values, taken from Zahn's (1975a, p 197) Table 5, are:

ci 0.05 0.20 0.40
R__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

15 3. 37 2.61 2.20
14 3.00 2.34 1.97

13 2.61 2.06 1.76

12 2.21 1.76 1.51

Unlike Daniel's, Zahn's guardrails will appear curved, as

shown in this reproduction from hiis Figure 9 (r) 198):

Guardrail

- J P.E.R.

0 E- --4W ~

Estimated X1
Deviation - -- "hance"

IL -~Line

RANK:. 3U 4 IF' ,15*
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Appendix VIII (Continued)

For version X, Zahn (1975a, p 195) provides the critical

values for N = 15, 31, 63, and 127. Taken from his Table 7,

the critical values for N 15, 31, and 63 are:

n = 15 R 0.05 0.20 0.40

15 3.230 2.470 2.066
14 2.840 2.177 1.827
13 2.427 1.866 1.574
12 2.065 1.533 1.298

n 31 31 3.351 2.730 2.372
30 3.173 2.586 2.247
29 2.992 2.439 2.121
28 2.807 2.288 1.891
27 2.615 2.133 1.857

n = 63 63 3.470 2.945 2.629
62 3.384 2.872 2.564
61 3.297 2.797 2.497
60 3.209 2.722 2.431
59 3.120 2.647 2.363
58 3.030 2.570 2.295
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