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FOREWORD

This report is one of a series written by me under a

common title: "Advanced methodologies for human factors
It covers one segment of the total

. ‘Mﬁ...f...u,»;,,,,;,,x.a;:ma;af.;;u:,.sn:mm:ma;w:@z~A*{M§f&ﬁ

el

engineering research."
data collection and analysis process in a complete research

program, namely, that phase dealing with the screening of a
very large number of variables to discover the critical
cnes. According to the research strategy that I am trying
to promote, the screening process is not a complete
experiment and should only be used after a thorough analysis
of the real world is made to develop a list of candidate
variables to be screened and before a later effort to

Y sburiik
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develop a complete and accurate response surface. Screening 5
designs and response surface designs are not two separate §
designs, but the first is a first stage of the second; the %
second is an outgrowth of the first. f
This report describes a screening process that is an ! g

Py

improvement over that written in the earlier reports,
integrating economical multifactor research techniques with
those that keep the data relatively free from trend effects. -
Use of this report presumes that the reader is already :
familiar with the earlier reports, particularly those on
economical multifactor designs, on building trend-robust !
designs, and on ridge regression analysis, as well as the ;
basic principles for conducting economical behavioral
research, New ideas for improved analysis and for handling .

-
a

- cander o e

multiple response data are introduced here. 5

The techniques discussed in this report are treated
unevenly. Forced by time limitations to either go into
considerable detail regarding a small piece of the screening
process, or provide an overview of the complete process, I
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clhiose the latter. Even for the more sparsely treated
techniques, I have tried to present enough information that
would not only direct the reader's attention to potentially
useful methodologies but, "y judicious sifting and digesting,
would alsc help clarify the original papers when they are
read. Only one important step -- data transformation --

was omitted because 1 was not satisfied that the method I
had would do the job properly.

Eventually, the missing details will have to be added,
along with more details on the other phases of the research
process after screening. Although experience is needed to
determine the full power of this approach, merely studying
20, 30, or 40 variables in a systematically-manipulated
experiment cannot help but improve the predictive quality
of the research or the generalizability of the data base.

Charles W. Simon
1977
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I. INTRODUCTION %

. ?

Screcning designs -- a class of fractional factorials -- ! E

are systematic data collection plans that enable the effects E
of a very large number of factors to be estimated economically. §
Screening designs are used primarily in the second phase of §
a total research program where they are intended to determine é
which of the great many factors have non-trivial effects on %
the performance of a particular task. Screening designs are §
to be used to identify important factors, not to obtain an t é
accucsate representation of the experimental space. This : ﬁ
latter operation will occur in subsequent phases of the é
research progvam, §

2,

Sk

The strategy for using screening designs in this manner
stems from the observation that a great many psychological
and human factors experiments investigate trivial factors.
Simon (1975b), in an analysis of 239 experiments published
in Human Factors over a fourteen year period, found that in
experiments studying from one to five factors, 24 percent of
the 494 main effects examined accounted for one percent or
less of the total variance in the experiment. Forty-one
percent of wmain effects accounted for only four percent of
the total variance in the experiment.

As might be expected, the wmore factors included in a
single experiment, the more frequently trivial effects were
found, Similar conditions have been found in analyses of
other journals that publish psychology experiments {Gallo,
et al, 1977; Dunnette, 1966, p 35),

With the great many factors that are likely to affect
performance in any given task, one must wonder why any psy-
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chologist, interested in predicting and contruiling
performance, would study factors having trivial effects.
1
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Why not first study the factors accounting for the large
effects? The principle of maldistribution (Budne, 1959;
Simon, 1973; 1976b) leads us to expect that a relatively few
factors account for most of the variance. These should
be investigated first in order to build a structure of data
within which marginal effects can be located and about which
confidence limits can be established.

P ar DTt in 5 B e s T S AL R A T B

Of course, the answer to "why?" is that until the
axperiments are completed, one  would not know which factors
are important. But this is where screening designs become
applicable, 1Instead of doing many three- or four-factor ex-
periments, with highly replicated designs, requiring a great 4
many observations to collect redundant information of limited i
value, the screening designs provide a means of examining a t
great number of factors with the maximum amount of information
with a minimum amount of redundance and relatively few obsger-
vations, What the results from many little traditional
experiments cannot do, but which results from the screening
design can, is to order the factors according to the size of )
their effects and to discover interactions among factors that I

Wi S S 1L P

s

.
ok

appear within the same experiment. Screening designs do all
this economically for they can be used to study N factors with 2N
observations (although the size of the designs in this report
will all be equal to some power of 2). Thus if there are 25
factors, for examplé, to be ranked in terms of their impor-
tance, only 64 observations would ordinarily be required when
screening designs are used. Furthermore, the precision
with which the main effects are egtimated is usually much
greater than the effects measured in many smaller, yet

highly replicated studies. ' The effects obtained from screen-
ing studies not only permit the ranking of factor effects on
a quantitative scale, but can provide an equation approximate-
ing the experimental space if that space ran be represented

by a linear Mgdel.
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The beauty of using a screening design is that once the §
important factora have been identified (step one), the same *
data can be used, if supplemented by relatively few additional %
observations at new experimental conditions, to complete a %
response surface (step two) capable of accurately approximat- g
ing the experimental space defined by the original set of j
25 factors. For several hundred observations, a reasonable %
approximation of a 25-factor space is possible. These capa- §
bilities arise through the appropriate application of the 3
principles of economical multifactor research (Simon, 1973), i
the basic strategy being to collect only the data needed to é
supply the information required at each particular phase of é
the research program., Screening designs are employed in the §
second phase to help (in as economical an effort as possible) g
the investigator decide what factors, what measures, what §
4

range of values should be investigated in greater detail at 3
a later stage of the program. %
|
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EXPERIMENTAL DESIGN

e How to design Resolution IV screening designs robust
to linear, quadratic, and cubic trend effects
without replicating the basic design.

Complete designs are provided requiring 8, 16,
or 32 observations to quantitatively order the
effects of up to 8, 16, or 32 factors.

e How to prepare to use screening designs: preliminary
empirical studies and analyses.

e How to assign operational factors to the design to
keep them robust to trend while minimizing the
number of difficult or time-consuming level
changes.

e How to add center points to a screening design to
roughly estimate error variance and to provide
the data needed to test how well a linear model
fits the empirical data.

e How to include multiple subjects in the screening
design: dimensionalized as factors.
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11. 2P"9 RESOLUTION IV SCREENING DESIGN PLANS

In this section, how to construct a special type of
screening design and the preparations recommended for using
them will be described. The section is written with the
assumotion that the reader is familiar with the information
on fractional factorials in general and screening designs
in particular, as described by Simon (1973) in an earlier
report, or its equivalent. The reader should also be
familiar with certain techniques for constructing trend-free
2X designs, which may be found in Simon (1974) or the
original papers. The techniques described in those two
reports are consolidated in this report to provide an ex-
tremely economical and ~fficient experimental design for

identifying critical factors.

Although the methods of construction are described here,
three complete screening designs are provided in this report in
spite of a strong personal belief by the author that "cookbook"
applications of experimental plans are to be deplored and are
bound to degrade the quality of research in the long run.
Cookbook applications enable the uninformed to mimic the
efforts of qualified investigators enough, in many cases, to
provide a face validity to their efforts while masking sloppy
data collection, an inadequate analysis, and a misinterpreta-
tion of results. They allow the lazy investigator to fit his
problems to his methods and his experiments to the designs
that are available in a book, rather than to design each
experiment in a way that is likely to provide the most valid
information needed for the problem at hand.

The justification for providing these ready-made designs,
therefore, lies mainly in their utility in illustrating the
design principles described in this report and in reducing
the amount of routine calculations an investigator would have

.
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to perform in developing the designs on his own. Proper use
of the designa still requires a great deal of involvement by
the investigator in order to fit them to his problem.

CHARACTERISTICS OF THE SCREENING DESIGNS IN THIS REPORT

Each design exhibits the following characteristics:

1., Multifactor. A single run of these designs can be
used to estimate the effects of up to 8, 16, or 32
factors. By analogy, still larger designs can be
constructed, However, in practice, if adjustments
for trend effects are to be made, one degree of
freedom for each order of trend (i.e., linear,
quadratic, or cubic) must be set aside, reducing
the number of experimental factors that can be
studied,

2. Economical. The effects of up to K factors can be
eatimated with N observations, when K equals
N/2 and N equals some power of 2 (e.g., 2%, 2%, 2%).
The designs in this report require 16, 32, and 64
exverimental conditions in a single run for studying
up to 8, 16, and 32 factors, respectively,

3. Quasi-saturated. The designs allow Zor no inde-
pendent estimate of the error term unless one
wishes to assume that two-factor interaction
strings are negligible. If fewer than the maximum
possible number of factors are studied, the effects
of three-factor iwteraction strings can be esti-
mated. Without additional information, it would
be incautious to assume them to be equivalent to
an independent estimate of error.
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Two-level factors. These designs sample only two

levels or a factor, although they could be adapted
to handle four levels per factor if necessary
(Cochran and Cox, 1957, p 273). However, since
these plans are to be used for screening, about the
only justification for a four-level factor would be
wher there are four conditions of a qualitative
variable. The two levels would be selected near

paychophysical or practical performance limits of
the factor to measure the full effect.

Regolution IV. All main effects can be isolated
from one another and from all two-factor interac-
tions. Each main effect will be aliased with a
different string of three-factor interactions.
Two-factor interactions will be aliased with one

another in isolated strings.

Trend-robust. The experimental conditions of each
design are ordered so that without replication,
estimates of many main effects will be totally un-
affected by linear, quadratic, and cubic trends -
for example, subject learning or equipment drift -
confounded with the effects of interest. All but a’
few effects will be robust to trends. The designs
are arranged so that it is easy to identify the more
trend-robust columns to which factors are assigned.

Factor-level-change sensitive, If the levels of a
factor are difficult or time-consuming to change,
the investigator may use the change-counts provided
with each design to assign the difficult-to-change
factor to a column requiring few changes.
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8. Robust to experimenter ervor. These 2k-p designs 3
s are rumarkably robust to variations in setting the ;
experimental conditions of the independent varia- %
bles, even when the experimenter is unaware of the s
existence of the error (Box, 1963). §
9. Modular, Center-points and additional levels for 3
each factor can be added to the designs to provide %

b nrh

the data needed to estimate non-linear, quadratic
effects of a second-order response surface. New
blocks of experimental conditions can be added to !
the original Resolution IV design to create

Resolution V designs that form the center of a ~
central-composite design,

CONSTRUCTING RESOLUTION IV SCREENING DRSIGNS

Since screening designs are merely a form of the 2k“p
fractional factorial designs, they can be constructed in a
number of different ways. Several wmethods in addition to ‘
the one used for the plans in this report are described in '
order to provide the user with the greatest degree of
flexibility of method.

From Resolution I1II1 Designs

Simon (1973, pp 89-116) explains the techniques devel-
opaed by Box and Hunter (1961) and Daniel (1962) for con-
structing Resolution IV screening designs from two Resolution
III designs. A Resolution III design is constructed by first
writing down the sign matrix for the full factorial and then
aliasing additional factors with the interactions of the
original design., For example, a seven-factor Resolution IIT
design with eight observations would be constructed by
aliasing new factors with the interactions of a 2' factorial

- s e ana s g -

plan, thus:




g V1

Column Headings ‘
original 2' factorial: (I) A B C AB AC BC ABC
2;;; created by aliasing: (I) A B ¢ D & ¥ @

With this design, N-1 main effects can be isolated from one
another but not from two-factor or higher interactions, The
defining generators are:

RS b 3t BB

s

{I) = B = ABD = AUCK = BCF < ABCS

The research strategy would be to collect and analyze the data

from the conditions of this first block (a Resolution IIIX -
design) in order to discover if the design, the factors, and

the range of conditions are adequate and to make whatever

changes are needed before collecting additional data. When

a great many factors are being investigated, information from

this single block may be sufficient in some cases to drop

some of the variables before commencing data collection on

the second block.

When the investigator is ready to collect more data, he
constructs a second design composed of experimental condi-
tions for a second Resolution III block that are the "fold-
overs" of the first block. In the foldover design, the levels \
of all conditions -~ ineluding (I) = Factor H -- are reversed. '
The defining generators for this second block would be:

(I) = -4 = -ABD = -ACE = -BCKF = ABCG

~ sy e e s

The defining generators for the combined design can be
derived by expanding each set of generators into the full
gset of defining contrasts and adding the two sets together,
Box and Hunter (1961, p 338) provide a rule that simplifies
the process, Thay write:

9
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o+« when ¢ deatgn La formed contatning Bk” mns from
a destign acontaining 2" muns by replicating the 3k
design with raversed signs and assoviating some
Darther faotor X with the gk plus ones and 2% minus
ones, then a genewal rule for obtaining the genemators
and defining relation of the new design from the
generators and defining relations of the old destgn

ta ag followa: 1) ALl generators whioch contain an
aven munber of chamaotaers ta the original dasign are

3
3
f
3

retained as generators tn the naw Jdeasign, 8) All -
generators whioh contain an odd nmunber of charactars !
in the original designs will be repraduced containing

the extia charaster X as genarators tn the new design,

GRS s 3

Thus, in our example, when the two Resolution III designs are
combined, the result is a Reszolution IV design with the
following ¢~fining generators:

(I) = ABDH = ACEH = BCFH = ABCG.

The defining contrasts (or defining relations as Box and
Hunter call them) are obtained by expanding the defining gen-
erators by multiplying all combinations of the original
generators in pairs, triplets, and so forth. For the above

example, the complete set of defining contrasts would be:

1 2 3 4 12 13 14
(I) = ABDH = ACEH = BCFH = ABCG = BCDE = ACDF = CDGH =

23 24 34 123 124 134 234 1234
ABEF = BEGH = AFGH = DEFH = ADKG = BDFG = CEFG = ABCDEFGH

whaerae tho numbers above each contrast indicate which of the

defining generators (underlined) it is a product. Since the

resolution of the design can be determined by the number of

10
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letters in the smallest defining contrast, it is apparent !

that the two Resolution III designs, when combined, form a

Resolution IV plan.

Plackett and Burman designs., Resolution IV designs also
can be made from the Plackett and Burman (1946; also see Simon,
1973, pp 102-104) Resolution III designs by adding an addi-
tional "foldover" block. One advantage of using those
designs would be the extra economy achieved as the number of
"actors to be studied increases. This economy derives from .
the fact that the Plackett and Burman designs can be con-
structed by restricting the number of experimental conditions
to some multiple of four. The Box and Hunter designs, on the
other hand, require that the number of experimental conditious
be restricted to some power of two. Thus, if one wished a
Resolution IV design for fifty factors, the Box and Hunter
designs would require two Resolution III blocks of 64 (or 128)
experimental conditions while Plackett and Burman designs
would require two blocks of 52 (or 104) experimental condi-
tions. Another advantage of Plackett and Burman designs for
screening purposes was noted by Tukey (1960, p 171), who found
that the degree of confounding between main and two-factor
interaction effects in the Resolution III Plackett and Burman
plans was quite low in many cases (and much less than the
fully aliased conditions in the Box and Hunter designs}.
Estimating the relative strength of main effects with the
Plackett-Burman designs before continuing to the foldover block
might, therefore, be done with grcater confidence. Neither
the Plackett-Burman designs nor their potential applications
will be discussed further in this report. The reader, however,
should consider using them if they fit his problem.

11
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Complete Resolution 1V Designs l

2

The designs proposed in this report do not provide for a
progressive data-collection plan in which a Resolution III
design is used first to investigate the linear effects
(aliased with all higher order effects) to be followed by a
second block to isolate main and two-factor interaction
effects. Instead, with these designs, it is presumed that
the isolation of main and two-factor interaction effects is
an absolute requirement for screening purposes and so all the é
data for that purpose is collected at one time. |

R i e OB NI Oy s A A B

Box and Hunter (1961, p 341) note that a Resolution IV
design can be constructed directly "by first writing down the
sign matrix for a two-level factorial and then associating
new variables with all interaci-on columns having an odd
number of [letters]." Thus, a iL6-observation Resolution IV
design can be derived from a 2" factorial plan by aliasing
four new factor labels (e.g., E,F,G, and H) to the four three-
factor interactions (i.e., ABC, ABD, ACD, and BCD) in the
original plan. By the proper assignment of new factor labels,
this design can be made equivalent to the design made from
the principal fraction plus foldover Resolution III designs
described in the previous section.

The reader should be aware by this time of a number of
characteristics common to all of these methods. The sign
matrix for any design formed from a factorial plan is
arranged so that row coefficients are orthogonal among them-
selves, as are column coefficients among themselves.* With
rows representing the independent experimental conditions,

*

With the plus and minus signs actually representing
plus and minus ones, orthogonality between any pair of columns
can be checked by obtaining the cross-product sum between
columns, which must equal zero. The same is true with rows.

12
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sources of variance can be assigned to the columns in various
combinations. A column may be labeled a main effect or an
interaction, or as with saturated designs, a string of inter-
actions. However, whatever label is assigned to a column,
since columns are orthogonal, we may be certain that an effect
measured in any one column will be independent of an effect
measured in any other column. Thus, we may label the columns
as we please, as long as we are careful to see that labels

for the main effects and those for their interactions are
assigned consistently with the requirer ts of the sign matrix.
With these principles in mind, a screening design robust to

trend can be created.

Resolution IV Designs Robust to Trend

Two steps are required to construct the designs provided
in this report. The first is to corstruct a quasi-saturated
fractional factorial that will be suitable for screening
purposes. The second is to adapt it so as to take advantage
of its trend-resistant characteristics.

We begin to construct the design by first determining
the design size which depends on the number of factors being

investigated. The rule i3:

The number of experimental conditions required
is the nearest power of two (2k) that is equal to
or greater than twice the number of factors to
be studied.

For example, we wish to study 20 factors. Two times
twenty equals 40. The nearest 2k equal to or greater than 40
is 2% = 64 conditions. Or, perhaps we wish to study 8
factors. Eight times two equals 16. The nearest 2k value
is 2" = 16 conditions.

13
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For this example we shall construct a screening design to
study eight factors. First it is necessary to lay out the
sign matrix for a complete 2k factorial design. For this
example we use a sign matrix for a 2" factorial design. There :
would be 16 (N) experimental conditions, arranged in the Yates' Pog
(1937) 'standard order," capable of estimating the following
(N-1=15) effects, also arranged here in the standard order:

A,B,AB,C,AC,BC,ABC,D,AD,BD,ABD,CD,ACD,BCD,ABCD

e

plus the mean (I). These are referred to in this paper as
the "old" or the "original factorijal" labels,

Rearranging the columns. We rearrange the column of ,
8igns by moving all columns with labels that include Factor A* |
to the left and all remaining columns to the right. The
effects with Factor A are then ordered from the largest to
the smallest interactions followed by the main effect, A.
Also, within any order of interaction, they would be arranged
alphabetically. For example, this would be:

| S e LT N g Lo g Lot oo m e Faaya 1o >
il e R s i e e S B e b ey s

Alphabetical Alphabetical
A Py

- A\ g )

ABCD; ABC, ABD, ACD; AB, AC, AD; A (New labels)
4 3 3 3 2 2 2 1 (Size of effeact)

The reason for this particular arrangement will be more

s e e et B

i

evident later., These steps can be followed from here on by ‘i
examining tha completed design in Table 1. -
4
z
*Selecting Factor A for this purpose is arbitrary. f
Later, in order to find columns that are robust to trends and —%
also require few factor level changes, it may be necessary to ]
use a different factor. :
.“j
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Next, we assign "new screening" labels, i.e., the
letters from A to H (for the eight factors in our design), 1
to the rearranged columns which still bear the old factorial ‘
labels, thus:

New labels (Screening Design): A B C D E F GH

Original labels (Factorial Design): ABCD,ABC,ABD,ACD,AB,AC,AD,A

These are not aliases in the usual sense; instead they are
merely associations that occur from the relabeling. To mini-
mize confusion, all original factorial labels, hereafter,
will be underlined.

We must next arrange the columns in which Factor A is
not present in the original factorial labels. This is done
by first arranging the columns from left to right according
to the order of the old labels (from the highest to the
lowest interaction and then the main effects), and within
each order, arrange the effects alphabetically. 1In our
example, the columns would be arranged like this:

A At e bt S B S RN O B 5 Y e 0 F D At o S DA R

L

Alphagetical

BCD, BC, BD, CD, B, C, D, (01d label)

— et e’ o

3 2 2 21 11 (Number of factors involved)

There is one less term than there was in the previous set
with the Factor A. The missing column is the Identity column,
(1),

e 2 Y BRSNSt R e st s P

Toveaegd e, . R A Sh P ek g
B e R LR M T PR R LT

Next we must associate new screening labels with these
old ones. All new ones will be two-factor interactions of the
A to H new labels given to the other set. It happens that
when columns are arranged so that their original factorial
labels are as shown above, new label two-factor interactions
including A will be arranged in reverse alphabetical order thus:

AH, AG, AF, AE, AD, AC, AB

16
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This makes the column of the original label BCD the
column of the new label AH; the column with the original
label BC is now the column with the new label AG, and so
forth, The complete association across all 16 columns then

would be:

New: (I) A B C D E F GH AH AG AF AE AD AC AB

old: (I),ABCD,ABC,ABD,ACD,AB,AC,AD,A,BCD,BC,BD,CD, B, C, D

rtubandt Phduis b e el ettt Jhesthall fhand sl Jevduifl

To show that the column associated with both AH and BCD
(new and old labels) is the appropriate one for the interaction
between the columns associated with A or ABCD and H or A, we
multiply new and old at the same time. The associations remain

consistent, thus:

New 01d
A = ABCD

Multiplied by H = A
Yields AH = BCD

This would be true with any of the other combinations. With
the new labels, the 2" factorial design has been turned into
a 27" screening design, since all main effects, being in
different columns, are orthogonal to themselves and to all
two-factor interactions.

The next step is to find the aliases within the strings
of two-factor interactions. The simplest procedure is to
continue the pairing of factors, this time beginning with B,
i,e., BH, BG, BF, BE, BD, BC, and not repeating any previously
used pair, e.g., BA=AB. This makes the number of pairs get
smaller each time around, i.e., AH to AB, BH to BC, CH to CD,
DH to DE, EH to EF, FH to FG, and GH. There will be k(k-1)/2
combinations for K factors. For the fully quasi-saturated
design, each string of two-factor interactions will contain k/2

17

T

PR

e e n———a

i,
j

24

ot BT e A e S 2 BN A

R R e

R A M T BTt T e _ o

S e Mel e

£ A BB B e e A B ot T e en

LT

3T e

P a ks,

_%‘
:
A
K
ol
&
%
2
i
21




VLB ESSRCINR Y D P T e e ol I e e e T T
AU S AR RN T, N v T T T P U I ot il N
o far, ¥ B et VAT, At 4, A e e Lk TR ATMY SRR OIS o SN gty o PR i i B N3y
; e A age 2% N S BT v R S e T T T N T R st e e ok "'»"‘ MY Sttty g ot A Ll
25 = - _ w Pk !
A3
i

T DR

®

T e T

interactions, For example, AH would be aliased with (in this
example) DE (since ACD x AB = BCD); CF (since ABD x AC = BCD);
and BG (since ABC x AD = BCD). Aliases are provided for the
designs given in this report. A computer program for iden-
tifying aliases, prepared by Mr. Howard Lee, is given in
Appendix IV,

AR e K LW?; 3;’-:*../‘:"" (e

Identifying the experimental conditions. The columns,
along with their old and new labels, have been rearranged.
For the old labels, the names of the experimental conditions
remain the same. For the new labels, new names of the ex- i
perimental conditions must be obtained. This can be done with
the newly arranged sign matrix. Each row is a different (and
independent) experimental condition. The "name" of each
experimental condition can be obtained by writing down a
letter corresponding to each new label main effect in the 3
rearranged design that has a plus sign under it in the par- 4
ticular row. It is conventional to write the names of :
experimental conditions in small letters leaving capital 3
letters for the names or labels of the effects of the columns. ; 5
For example, if the first row of the sign matrix looked like

this after the rearrangements CA

%
A
g
b
3
®
3

%
g
3
3
A

Do

o 8 sl

New labels: (1) A B C D E F G H AH AG etc

i

Signs i1+t - - - 4+ + + - - + etc .

S B

then the experimental condition associated with that row 2

would be:

[

aefq

sirce the letters correspond to those of the main effects P
with + signs in their columns. ’

Identifying the trend-robust columns. The reasons for e

the particular column arrangement described above will now

18




become more evident, The general idea on which this is
based came from a paper by Daniel and Wilcoxin (1966, p 261;
also see Simon, 1973, pp 121-128) who noted that:

+ « . certain of the ordered contrasts appearing
in the 2 system are orthogonal to linear and to
quadratic trendg. Some other contrasts are

nearly orthogonal and some are rather heavily
correlated with first and second order trend.

The design problem is, then, to choose those sets
of ordered contrasts that provide efficient
estimation of all desired effects and interactions.

What they are saying is that certain columns, (i.e, the vertical
sequences of plus or minus coefficients, in a sign matrix

of a two-level factorial or fractional factorial experimental
design) arranged with the experimental conditions in standard
order, correlate zero or very little with a set of coeffic-
ients representing a linear or a quadratic trend. The same

is true for cubic trends, which Daniel and Wilcoxin did not
consider in their paper. The investigator would want to

assign the more important factors to the column most robust

to trend so that estimated effects would not be distorted.

Other methods (see Simon, 1973) for handling sequence
effects have been proposed. Some involve making multiple
measures of each condition and arranging them in sequences
that eventually are balanced against trends. Some methods
require a large number of repeated measures in which the
effects have been introduced randomly and the trend effects
isolated by means of statistical techniques. Both approaches
involve far more data collection than is usually justified
during the early screening process. The method proposed by
Daniel and Wilcoxin (1966) provides the most economical solu-
tion by taking advantage of the natural robustness to trend
of 2K°F op 2K designs, unreplicated.
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To determine the degree to which each column of our l
screening design is robust to linear, gquadratic, and cubic
trend effects, we must correlate the plus and minus (one)
coefficients in each column of the sign matrix with the appro-
priate integer Tchebycheff orthogonal polynomial coefficients
(Fisher and Yates, 1963; Beyer, 1966; DeLury, 1950).

Let ns illustrate this with the column for Factor G in
the 2°"% screening design (Table 1), originally labeled
Interaction AD in the factorial plan. The ordered column
vector of coefficients (without the ones) for Factor G, and
the ordered Tchebycheff coefficients for linear, quadratic,
and cubic trends are shown in Table 2. = The correlation (r) -
between linear (L) trends and Factor G is obtained thus:

= 2
G \// . (¥1G)
(IL?) (IGG)

where ILG?is the sum of the cross products (or inter-product J
sum) between each pair of effect and
linear trend coefficients

5
o SIS, SR TSNS i b U e e & e I A Rt s e o)

— o

ZLL is the sum of the linear trend coefficients, each
squared T

IGG is the sum of the squared coefficients for Factor G
(which will equal N in these designs)

- mrr e ———— oy o

Thus to calculate the values needed to solve the equation,
from the data in Table 2, we do the following:

LLG= (-15) (+1)+(=13) (1) +(-11) (+1)+. .. (+13) (=1} 4 (+15) (+1) =0

Ice= (+1)%= (-1)% + (+1)? ... (-11? + (+1)? = 16
Tth= (=152 + (-13)%2 = (-11)% ... (+13)% + (+15)% = 1,360

20
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TABLE 2

ILLUSTRATING USE OF TCHEBYCHEFF'S COEFFICIENTS TO
CALCULATE INNER-PRODUCT SUMS AND SUM OF SQUARES

e o &
Cmenst oY B B S S e T A R St L

1S¥ VY

Factor G TCHEBYCHEFF'S COEFFICIENTS
*
Coefficient Linear Quadratic Cubic

-15 +35 -455
-13 +21 - 91 !
+ 9 +143
9 -1 +267 1
-9 +301
~-15 +265
-19 +179
-21 + 63 !

]
—
[

-21 -~ 63
-19 -179
-15 -265
-9 =301
-1 -267
+11 + 9 -143
+13 +21 + 91
+15 +35 +455

ORI S T I N R R
+4+++ 4+ 110100
ONCIWHrFWO

IGG 16 1360 5712 1007760

£LG 0 ‘ !
QG 64 ‘
IKG

*Plus or minus signs represent coefficients of +1 and -1
respectively.
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Substituting these values in the equation, we get:

0?2 0
e ™y T w1260 2~ 721760 - °

With a zero correlation, an estimated effect of Factor G
would be totally unaffected if an unwanted linear trend
effect was running through the data.

Repeating the process for the quadratic trend and
Factor G we get:

TOG=(+35) (+1) + (+21) (=1)+ (+9) (+1)+... (+21) (=1)+(+35) (+1)=64
£00=(+35)2 +{+21)2 +(+9)2 +...(+21)2% +(+35)2 =5712

LGG=N = 16

Substituting in the equation, we get:

_’ 642 _ | 4096 _ =

The percentage of overlap between the quadratic trend and
the effect of Factor G is, therefore:

% = (r. )2 x 100 = (.2117)% x 100 = .0448 x 100 = 4,5
QG QG

The correlation between Factor G and the cubic trend

effect was zero.

To discover which columns are the most robust to trends,
this process is repeated for all relationships between
linear, gquadratic, and cubic trend effects and the experi-
mental effects (main and two-factor interaction strings).
However, these calculations are supplied for the designs

given in this report.
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Daniel and Wilcoxin (1966, pp 269-270) point out how

Yates' (1937) algorithm, when applied directly to the Tcheby-

cheff coefficients, can be used to calculate the innecproduct
sums more easily than if these were obtained a column at a time,

When all of the effects for any design are correlated, the

relationships show two distinct patterns. For one, referring to

the original factorial labels, certain types of sources are
always correlated with particular trend effects.

Thus:

Four-factor interactions

Uncorrelated with L, Q, or K trends®
and higher

Three-factor interactions Correlated with cubic but not with

linear or quadratic

Two-factor interactions Correlated only with quadratic

Main effects Correlated with linear and cubic

but not quadratic

A second pattern is also apparent. Within any set of effects

of the same order, if they exist at all, the correlations

increase (using the labels of the original factorial) as the
factors progress alphabetically.

Thus, the AC interaction
would be more correlated with a quadratic effect than the AB
interaction, and so forth.

Both of these patterns can be
seen in the 2] design (Table 1), but they become even
clearer with larger designs.

v Rl ot

3%

s s alganaiite

It should be clearer now why the columns of the screen- '

ing design are reordered as they are, It allows main

v

. -

e¢ffects (new labels) to be assigned to the columns less cor- i 3
related with trends and the two-factor interaction strings ! %
to be assigned to columns more courrelated with trend effects. Z %

For screening purposes, this greater emphasis on keeping

main effects clean is approvriate. The column reordering

* 3
The letter K is used to represent the cubic trend to

avoid confusion when the letter C is used to represent an
experimental factor.
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also tends to place the least correlated within these two
groups more to the left of the design, facilitating its use.

Since this general pattern is not completely correct,
with each of the designs given in this report the percentage
overlap (= r x 100) between each factor and trend combina-
tion is provided. The investigator can use these when he
must decide how to assign real-world factors to the design
columns.

Counting factor-level changes. One can merely count the

number of times any column requires a change of factor levels.
For example, in the 2} * design (Table 1), in column AB the
level is changed only once, from low to high between the
eighth and ninth trial, while in column H, the levels are
changed fifteen times, every other trial. Within each design,
the number of times the factor level changes (the count) is

a different value in each column, from one to N-1 for N exper-
imental conditions (and N-1 effects) in each 25°P design.

As the designs get bigger, it may be inconvenient, as
well as time-consuming to count the changes in each column.
The following algorithm can be used instead:

l. Using the original factorial labels, with ex-
perimental conditions in Standard Order,
determine the counts for the main effects.
If the letters for the main effects are
written in reverse alphabetic order, the
count for each will be:

(2% - 1)
where k is the position of the main effect
in the reverse order sequence:
e.dg., in a three-factor design, the
main effects are A, B, and C. In
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reverse order they are C, B, and A,

in positions 1, 2, and 3 respectively. ?g
Their factor level change count would g
therefore be: 3
c: 2' -1=1 5

&

B; 22 -1= 4

&

A: 2° - 1= 1

|

4
Ak

2. To determine the count for any interaction, the
counts for the individual main effects are
combined always as: plus, minus, plus, minus,
etc, starting with plus and going as far as
necessary;

e.g., the count for the interaction ABC --
the letters must be ordered alphabetically -~

s e et e s e .
Sl el RS i e ad,

would be:
A B C
+7-3+1=25
or for BC:
B €
+3-1=2
or for AB:
A B
+7~-3=4

of course, the count can be simplified
since ABC would also equal:

aB

= |0

+
+ +

o
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PREPARING TO USE SCREENING DESIGNS

P R, s

It takes more to properly design an experiment than to
describe the experimental design. Screening designs tell
us at what coordinates in the abstract experimental space
we should sample performance to obtain information regarding
main effects without bias from two-factor interaction
effects. However, the investigator has more to do if he ;
wishes to use these designs effective.y.

b2

SRS

T werta 2 Eme R e o

Pre-analysis to Select the Experimental Factors

PO ORI N Db A B

Before he selects the final set of factors to be
included in the screening study, the investigator should
prepare an unrestricted list of factors which reasonable
and knowledgeable experts believe may have a non-trivial
influence on the real-world task most of the time. This
first step is designed to make certain that eny source
likely to influence the performance of the task under in-
vestigation be listed for considerairion, whether it be
related to the equipment, subject, environment, or task.
The value of this exercise is to reduce omissions too early
in the effort because of practical considerations real or
imagined, at that time. 7This, of course, is no license to
list every factor imaginable, but any that are likely to
influence the performance at hand should be included in this

g,

TR [t T
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P
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initial step.

The second step is to define the task, with emphasis on
the conditions in the real world., This includes an opera-
tional definition of the performance measure (and more likely,
measures) that will be employed, as well as the nature of the
stimuli and responses of th2 specific situation. While this

B e e

2ar 34

o

short statement does not do justice to the care required
and the importance of this requirement, the matter will not
be discussed any further in this report.
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26

2 T 2 s el




The third step is to decide what real-world values to

set at the upper (+1) and lower (-1) limits of each factor.
These values should be selected, based on the following

considerations:

1.

The limits selected obviously affect, tc some extent, how
critically a particular factor will appear to affect per-~
If the limits are too narrow, performence may
change little and an investigator may read this (incor-

formance.

rectly) as meaning the factor has a trivial effect on

Limits likely to be experienced in the real

world for the task under consideration.

Limits set by the state-of-the-art in
the real world.

Limits set by the state-of-the-art in
simulation, which may be beyond those in
the real world so that information re-
garding future systems can be collected.

Limits set by construction costs, where
the information lost is not considered
critical.

Limits set by manipulation difficulties,
where the information lost is not con-
sidered critical.

Limits that are likely to approximate the
points at which the highs and lows of per-
formance will occur. (This is particularly

important when the function between the

factor and performance is probably U-shaped.)
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performance, when in fact it is true only within the limits
being studied. Had the limits been set wider, the effect
would be greater. This is why setting the limit values
should be determined by real-world interests, so that effects
are measured under conditions of practical interest in

the operational situation. Do not do as one eminent psy-

chologist did when he failed to get an effect from some factor.
That is, do not expand the range in the simulation beyond anything

likely to be found in reality so that the factor would show
a significant effect.

The fourth step is to assign priorities to the original

list of

1.

variables bagsed on a number of considerations:

Order the factors on a five-point scale (if
possible) according to how much each --
within 1its specified limits -~ 1is likely
to affect the performance on the particular
task.

Indicate those factors in which the inter-
ested parties (e.g., contracting agency and
the investigator) have a special interest,

Indicate those factors that are expensive
to simulate.

Indicate those factors that are likely to
interact with one another, noting particu-
larly the ones likely to result in disordinal
interactions.

The investigator must weigh these subjectively to select the
final set of the factors for the experiment. The listing

28
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exercise provides him with a better overview when making his
decision. Ultimately, he must consider how his decision
affects the experiment's capacity to reflect reality for the
task under consideration,

Pre-analysis to Facilitate the Use of Screening Designs

Once the factors have been selected, the next step is to
anticipate how they will fit into a screening study. This
can be a mixed process of analysis and empirical data collec-
tion, However, pre-analysis is always desirable, whether or
not it is to be followed by preliminary or formal data
collection, for it can show a priori that certain effects,
observed later, were anticipated. An anticipated disordinal
interaction can be accepted as real with greater confidence
when found in the data than one that was not anticipated.

The investigator should make the following analyses as
an aild to using the screening design:

1. Classify the factors according to their quantita-

tive characteristics: ordered-continuous; ordered-

discrete; ordered-complex-categorical (by choice);

categorical.

This provides a preview of design characteristics
needed to handle each factor. Ordered factors can
eventually become part of a response surtace, and
may be assumed continuous for certain applications,
but all levels of the factor may not be available
as a design data collection point. On the other
hand, complex factors which are treated as categor-
ical ones but which are in fact a particular com-
bination of ordered and continuous factors, may be
redefined according to these parameters. Most
economical multifactor designs can be used nore

29




effectively with ordered and continuous factors;

fewer data points generally have to be taken and

the chances that greater-than-second-order inter-
actions are non-trivial are small.

For the ordered factors,

2. Estimate the response function between the given

limits of each factor. Four functions are of

major interest: linear, quadratic, U-or negatively
accelerated growth pattern, cubic or S-~shaped.

This will aid in deciding how complex a model may
be needed to approximate the response surface,

how many levels will be needed to approximate the
individual functions, and where the limiting data
points must be located.

3. Decide what measurement scale might be used to

>a

simplify any non-linear function that was antici-

pated. This helps meet the requirements for a
lower-order response surface when economical multi-

" E

i
‘}'
B
.
L%
L ¥
- &
PG

factor designs are used.

<y e,

4. Attempt to draw the interaction effects that are

considered important, and consider the scaling

that would eliminate the ordinal interactions.

Pre-experiment Data Collection

Certain information can only be obtained empirically.
Some data might be collected, if deemed important by the
investigator, to make a quick but tentative check on assump-
tions made in the foregoing analysis. Other information,
however, is vital if the screening designs are to be used,

30




AR R T ST LY

e
3

and should be collected, in fact, prior to any experiment.
The most impoxtant ones are:

1, Test the trial-to-trial reliability for a single
condition. (Reliability Test)

Test a typical subject on five or more consecutive trials

of a single condition. Does performance from trial to trial
vary irregularly and excessively (see Figure i-A)? If so,
this suggests that some critical source of variance has not
been identified and/or is not under control, and should be,
Are there signs of a progressive trend effect over the five
trials (see Figure 1-B)? This suggests that the subject
might not be sufficiently familiarized with the task or the
experimental apparatus. Either more practice, trend isola-
tion techniques, or both may have to be employed. Is there
an immediate improvement in performance and then a leveling
off (see Figure 1-C)? This suggesté that some precautions
need be taken to offset momentary perturbations as each new
trial condition is introduced.

Performance

i
Performance
]
Performance
T

[ N | T | N T
Trials Trials Trials

Figure 1. Examples of Trial-to-Trial Performance Variability
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Differences in the extent of trial-to-trial variance
under easy and difficult conditions with experienced and 3
inexperienced subjects provide clues to the need for proper
response scaling and other variance-control mechanisms.

2. Test for subject-to-subject variability within
presumably homogeneous groups. (Subject Hetero-

geneity Test)

On both easy and difficult experimental conditions, a

number of presumed equivalent subjects should be tested. If 1
their performance differs considerably, then one may suspect
that critical subject characteristics are being ignored.
Quite often, subjects are considered homogeneous according to l
some simple label, but are not so insofar as their performance )
is concerned. This test provides some clues as to whether
those subject factors should be measured or controlled in the

fd T L el L RS e AT g
ARt R e s SRR A Gt e e

experiment.

e

When faced with the need to introduce a new subject
characteristic as a dimension of a screening design, the X
investigator must consider the nature of the characteristic. '
If the characteristic is simple and readily quantifiable
(e.g., visual acuity), then it probably should be introduced
into the experimental design as any other factor. This .
means that subjects within different levels of visual acuity --
two levels for a screening study -- would be used, each i
performing a particular combination of the levels of the i
remaining factors representing the experimental condition. &
If the characteristic is complex and difficult to quantify !
(e.g., pilot experience), initially it might be better to
run subjects representing each of the two levels on every
experimental condition. This permits a subject-by-factor
interaction, if it exists, to be detected.
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3. Test to determine whether there are conditions
which can be performed perfectly or can't be
performed at all by most subijects. i

L BT AR v

Vistas

When too many experimental conditions are too difficult (
or too easy, the information provided by a screening design
is severely limited., An investigator may have to "live with
it," or he may find that by making slight adjustments in the
range of a few factors, he can eliminate these uninformative

e L,

Absrapay

i R

upper and lower limits. This, however, should never take -;
priority over practical interests and the reality of the I o
situation.

4. Test a very good and a very poor subject on the i
easiest and most difficult tasks. (Interaction l
Test).

J v kY a,r Nt X L > h
S SRR e e TR

.

How performance is distributed among these four condi-
tions providesvaluable clues regarding the task, its range
of difficulties, and the scaling of the dependent variable. ;
Four types of solutions are shown in Figure 2, In Figure b
2-A no interaction is present, while in Figure 2-B an im-
portant type of disordinal interaction is shown, warning of :
the presence of interactions that the unaugmented screening .
design is poorly equipped to handle. Figures 2-C and 2-D ;
suggest the presence of ceiling and floor effects, respectively, '
which may be reduced through appropriate scaling. z

X
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Selecting the Screening Design

Two major considerations in selecting a screening design

are:
1) whether or not one wishes to isolate main

and two-factor interaction effects immed-

iately before examining part of the data;

2) the number of factors to be studied.
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Performance

Performance

A. NO INTERACTION

//////,acom)sumn
./////// POOR SUBJ.
| 1
HARD EASY

Task

C. CEILING EFFECT

.—8 GOOD SUBJ.
POOR SUBJ.
1 . |
HARD EASY
Task
Figure 2

Examples of Types of Interactions Including No Interaction
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Resolution III or IV designs. It would be unusual for f
an investigator performing human factors engineering experi-
ments (or any behavioral science study) not to want to isolate
main from two-factor interaction effects. Two-factor interactions
occur too frequently to risk their distorting main effects, even
in a screening study. On that basis, an investigator may
wish to use a Resolution IV design from the beginning with-
out resorting to blocking. The added advantage of the
Resolution IV design is robustness to trends (more so than a
Resolution III design). .

KX
LSNP e e bt . n O D L R N D e L S S A e TS

As more factors ave tc be investigated and the cost of
data collection becomes uncomfortably high, there may be
stronger reasons to begin with a Resolution III design, as the |
first block, and then later add a second Resolution III |
design to create a Resolution IV design. First of all,
blocking enables data to be examined and factors added or
dropped, or their ranges changed if necessary, after half as
much data has been collected as would be required were the
full Resolution IV design completed first. Second, blocking ]
facilitates the control of certain irrelevant sources of
variance (Simon, 1970a; 1974 pp 100-103). Finally, running
experiments in small blocks reduces the chances that some
disruptive force would destroy the entire experiment.
Equipment breakdowns may be less likely to occur and subject
sickness may be easier to avoid. In either case, it is
easier to recoup from the loss of a small block of data
than it would be if an entire study were lost because of
some disturbance occurring part wav through the experiment. :
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In this report, only the Resolution IV plans will be
discussed, Resolution III plus foldover plans were dis- ;
cussed in an earlier report (Simon, 1973, pp 89-125).
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Number of factors. The Resolution IV designs provided
in this report are capable cf handling up to 8, 16, or 32
factors (and others capable of handling up to 25, 27 .., 20
factors can be created by the same process). However, the
number of experimgntal factors that can be studied in any
design will be reduced if the investigator plans to isolate
Z trend effects or is restricted by particular combinations of
factors, interactions, and trend contamination.

(0 OSSP BT NSADAS A grtsln Bod choal e SRKesg SR T

b R B i K et W S TR

The investigator must allow for making trend estimates,
losing one column (or experimental factor) for each trend
(linear, quadratic, and/o; cubic) effect that is to be iso-
lated. Further restrictions on the number of available
columns (and therefore factors to be studied) may occur if an
investigator wants to keep certain combinations of main and
interaction effects robust to linear or quadratic effects.

If he decides to block his design, he must sacrifice still
more columns,which reduces the number of factors that can

be studied still more. For all of these reasons, an investi-
gator must select a design large enough to handle more than

just the number of experimental factors.

The Designs

The following basic Resolution IV screening designs and

supporting data are provided in this report:

AL S S R e i

Py
=
NaE

36

Rl

e sl e e - A LA T 2 NP e T aman o LR A P Tur | - i,
g — . * %,
L , 2y _ -2 a .




ke, M- indk- il D A
SRR BRSNS T T S
X - K

T T
25 - pgnn HAT .

2 ,
LE Minimum Number of
34 Observations (N)
Number of Factors for a Single

Design to be Studied Replication Design to Use
2:;“ Up to eight 16 Table 1, Appendix I
21;;’1 Nine to 16 32 Appendix II
432726 -
Chget Seventeen to 31 64 Appendix III

The following information is provided with each design:

. The sign matrix
The experimental conditions

The original factorial design labels

The new screening design labels
Trend-robust test order

A U W N R
L]

Percentage overlap between linear, quadratic,
and cubic trend effects and experimental
design effects

7. Number of changes made between levels for
each factor

8. Two-factor interaction aliases
9. Three-factor aliases of main effects

10. Inter-product sums used to adjust factors for
trend effects

Assigning Factors to the Columns of the Design

In assigning the real-world factors to the’'columns of
the design matrix, the investigator will be concerned with
which main effects and which interactions must be kept trend-
robust and which will require the fewest number of factor-

level changes. These decisions, of cuvurse, will depend on:

a) Which ones are the most important and thus
should be estimated with the smallest amount
of trend bias.
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b) Which ones are important but are so unques-
tionably large that they will be identified
even though the data is somewhat distorted.

c) Which ones are the most difficult or most
time~-consuming to change from level to level.

d) Which ones are likely to show large two-
factor, disordinal interaction effects.

Trends. In each table, the percentage overlap at the
bottom of the columns shows the investigator how much each
column will be contaminated with trend effects. Columns
affected by linear trends are not affected by quadratic
trends. In making his selection, however, the investigator
should realize that in human factors performance data, linear
effects are generally larger than gquadratic, and both are
generally larger than cubic effects. Thus, a 10% overlap
for a linear effect would ordinarily be much more likely to
distort the data than a 10% quadratic overlap. Thcre are,
of course, no absolute rules and the investigator is ob-
ligated to minimize these effects by his experimental
procedures (Simon, 1974, pp 21-26) so that when trends do
appear, relative to the effects under investigation, they
will be small to begin with, making the absolute amount of
overlap even smaller.

Special problems of assignment arise when the investi-
gator wishes to keep both main effects and the two-factor
interactions reasonably trend-free. There are fewer inter-
action columns that are trend-free cor trend-robust, and the
magnitude of the overlap is, on the average, higher than in the
main effect columns. Anything not overlapping more than
10% with a linear trend is probably reasonable to use.
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An overlap of less than 30% and 50% between interactions and
quadratic or cubic effects, respectively, would also probably
be acceptable if the investigator had no reason to bhelieve
that this type of trend would be present to any degree and
had done his best to reduce them through his data collec-
tion procedures. These percentages are of course arbitrary,
and depend in part on how cautious an investigator feels he

must be.

As the nunber of factors increases, i.e., the larger the
designs, the options available to an investigator in this
regard, increase. Even if the investigator can't get a
trend-free interactida column with these designs, he still
has two options, First, he can make adjustments for trends
{to be discussed in the section on Analysis). Second, he
may modify the design (to be discussed later in this section).

Count. Screening designs are valuable because they
permit a large number of factors to be investigated
quickly. But if it takes a great deal of time to change
the factor ievels from trial to trial, this prime advantage
will be lost. The sophisticated experimenter -- if he has
any say ir the matter -- will see that every means is taken
when the experimental apparati are being built to insure
that a rapid and accurate change can be made between levels
of all factors. Delays may affect the subject's motivation
and performance, and errors in settings can destroy the value
of the data. When normal precautions are taken, however, it
is more common to find that only a few of the total number
of factors have serious difficulties insofar as changing

the factor levels is concerned.

The problem of assigning the factors to the proper
columns of the design depends, therefore, on both the number of
factors that must be considered as well as the degree of
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difficulty in making the factor-level changes. For example,
if it takes a day to make a change in the level of a particu-
lar factor, then the investigator would probably prefer to
assign the main effect of that factor to a column requiring
only a single change. If it takes only several minutes, he
may be content to assign it to a column requiring more

changes.

Unfortunately, with the designs provided in this report,
the main effects are all associated with columns that require
at least N/2 or more changes, where N is the number of ex-
perimental conditions in the design. This means that even
the main effect column with the smallest factor-level change
count still requires a great many changes. Furthermore, this
problem increases as the size of the design increases.

The problem of factor assignment is further complicated
if the¢ ‘investigator wishes the column selected for its
minimum number of changes also to be reasonably robust to
trend effects. But it is apparent from the designs, that,
on the average, those columns most robust to trends are the
ones requiring the greatest number of factor-level changes.
The designs, as they have been arranged for this paper,
maximize this inverse relationship. For example, in the
2126’1 design (Appendix II) the column identified as the
string containing the AB interaction is the one requiriig
only a single factor-level change, but it also is the one
with the cubic trend. The column requiring only two factor-
level changes (i.e., the string of two-factor interactions
with AF in it) has a 71% overlap with the cuadratic trend, a
somewhat better situation, but not a comfortable one. About
the first reasonable compromise in the 32-run design would
be the column identified as the two-factor interaction
string including AH, requiring four factor-level changes and
an overlap of only 4% with the quadratic trend.
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Thus,; it seems that with the designs given in this
report, in order to have only a few factor-level changes, a
main effect must be assigned to one of the columns made up
of two-factor interaction strings. While this is possible,
since it has already been noted that we may assign any
labels to the columns, it is still not a simple matter, for
it triggers a series of reactions invoiving the other
columns in order to maintain the appropriate relationships
among main and interaction effects. However, there is a
solution that an investigator may use if necessary. The
given designs are intended to optimize the robustness to
trends, but if it is also necessary to be concerned with
factor~level changes at the same time, the designs can be

easily modified to meet this need.

Modifying the Given Designs

With the given designs, the smallest factor-level change
count for a main effect will be equal to N/2, where N is the
number of observations in the study, and in the 2;;“ designs,

no linear nor quadratic trend sffect overlaps a main effect
by 10% or more. If it is necessary to reduce the factor-
level count, by sacrificing the robustness to trend,

one may repeat the procedures given in this report to create
the original designs in Table 1 and Appendices II and III ex-
cept that instead of assigning to main effects all of the columns
containing a Factor A in the original labels, we would assign

all those containing Factor B, or Factor C, or Factor D and
so forth in the original labels, instead, depending on what
mixture of factor-level count and trend resistance is

required.

For example, with the 21261‘ design, if we used all
columns originally labeled with Factor B in them for the
main effects, then the smallest factor-level change count
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associated with a main effect would be four, but now only one
out of eight main effects is overlapped by linear or quad-
ratic trendsbhy more than 10%. If all columns labeled with
Factor C in them had been used for the main effects, then
the smallest count would be two and only two of the eight
factors would overlap linear and quadratic trend effects hy
more than 10%. At the same time that trend-resislance
among main effects is decreasing, more trend-resistant
columns are being associated with the two-factor interaction
strings. The effects of building a 2‘;;1‘ screening design
where the main effects are associated with the columns of
the original Factors A, B, C, or D are shown in Table 3*,

*

For completeness, the reader should be aware of other
efforts to develop experimental plans that are robust to trend
while minimizing the number of factor-level changes required.
Simon (1974, pp 138~146) described the methods proposed by
Draper and Stoneman (1968) and Dickinson (1974). Their plans
were limited in two ways: 1) they were robust only against
linear time trends and 2) their robustness was only for main
effects. They arrived at what they believed were optimum
designs through a systematic exawmination of each alternative;
this becomes incrcasingly expensive as the size of the
design increases and it also reduces experimenter options.
Joiner and Campbell (1976) proposed to reduce the costs by
searching optimum combinations of a random subset of the
various alternatives. Lancaster and Reynolds (1976) proposed
a method whersby the investigator could select the optimum
combinations for both main and interaction effects.
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Once the columns have been rearranged in an order that
produces a satisfactory factor-level change count and trend
resistant combination, it is necessary to assign the new
screening design labels. If the design is arranged in the
same manner described when Factor A terms were used, then all
new screening-design labels for both main and interaction
effects and their aliases will remain the same.

Finally, the new experimental conditions must be renamed
because when the columns have been reordered and assigned to
different main effects, the order in which the experimental
conditions will occur will also change. This is accomplished
by merely writing down the letters (using smell letters for
the conditions) associated with all main effects with a plus

sign in each row.

When fewer than the maximum possible number of factors
are studied. The designs in Table 1 and Appendices I, II
and III are suitable for investigating up to a maximum of 8,
16, and 32 experimental factors, respectively, less of course
the number set aside to handle trend or blocking. Quite
often, however, an investigator will not want to investigate

the maximum number possible, and will want to modify the
given designs accordingly. This is done by simply striking
out each letter representing the label of each unused column
from the letter designations of the experimental conditions,
and by removing all interactions in the strings of aliases
containing those letters. This may create an uneven number

of interactions among the strings.

For example, in Table 1, if there were only six factors
in the experiment and no G and H factors were used, tnen the

experimental conditions would be changed as follows:
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With G & H Without G & H

aefg aef

bedh bed

befg bef

adeh ade !

bdeg bde | d
etc, E

and Main Effect A would only be aliased with BCE, and BDF
and Interaction AF would only be aliased with BD, since all
interactions with the letters G and H in them would be

eliminated.

The columns in which no main effects are located are
now used to estimate directly the effects of particular

strings of three~factor interactions.
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III. EFFECTIVE USE OF CENTER POINTS IN SCREENING DESIGNS

Unreplicated kP screening designs have two distinct

R = PET NPV

limitations: 1) they cannot measure possible curvilinear re-
lations between independent and dependent quantitative :
variables; 2) they provide no direct estimate of the experi- ;
mental error variance. These are recognized, but to obtain b
such information would be costly and, for screening purposes,
would be of little value and certainly not cost-effective. In ,
later stages of research, this information does become impor-
tant. Since the investigator can ordinarily anticipate con-
tinuing his experiment beyond the screening phase, he would

fit a non-linear model, if necessary, and obtain an external

S N P

error estimate at that time.

Data from at least three levels of each continuous

factor is needed to measure the curvature of the response
surface. Screening designs ordinarily have only two levels.
Design points must be replicated several times to estimate
error variance., Replication for this purpose is usually
discouraged in the screening study. However, once the
decision is made to get this information, it can be obtained

A 2 RS 0 ten E AN L By s et o b,

L%

most economically by adding data-collection points at the

center of the experimental design. Data collected at the

center of the design (with coded coordinates 0,0..., 0, when
the original screening design coded coordinates were +1 and
-1) will provide some estimate of curvilinearity for every

factor.

By adding a single point at the center of the experi-
mental design, a third -- middle -- level of every factor
of the screening design is measured. This is illustrated in
Figure 3. With three levels, -1, 0, and +1, performance at
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Three levels
for
Factor A

Figure 3

Illustrating How Sinyle Center Point Enables Each
Factor to be Tested at Three Levels. [

2
L

ol

each end point is estimated by averaging one half of the
experimental conditions in the original screening design.

The center position, however, would be estimated from !
the performance of only the single center point. Because
of this uneven precision along the dimension, with the
poorest being at the center of interest, repeated measures
should be made at the center of the design. This center-
point replication will also provide an empirically derived
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estimate of the experimental error.
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CENTRAL-COMPOSITE DESIGNS

Box and Hunter (1958) propose using this center-point
replication technique in their central-composite designs,
where there are still more advantages than indicated above.
Since central-composite designs follow in the research
program once the critical factors* have been screened, mul-
tiple center points should be included in the screening
designs whenever appropriate. The number of center-points
in central~composite designs affect the following design

characteristics and functions:

1. The test for the presence of quadratic effects
in the first-order model and higher-order

effects in the second-order model.

2. The estimate of "pure" error variance needed
to test the statistical significance of lack

of fit.

3. The uniformity of the "information" profile
(which is based on the number of observa-
tions at each point in the response surface).

4, The orthogonality of the central-composite

design.

*An optimum design strategy would use the data collected
in the screening design as a block of data making up the cube
portion of the central-composite design. The methodology for
handling this transition will not be discussed in this report

48

Ty

k

%
s%%
o
b
ﬁ.‘
9
b
¥
4
i
s
4
:
3
g
(:t
i
X
£
a
4
3

N i e R e et At RO i oo g Y, S AR AR

- e e rm——

s, .
A P I P R P

P FOVSIRNINS

LA v i e

i
i
b
8 3t s Aves ot



T T T IR - e D oI ap—
= ' AR ST P AR dvak T T
- ERCE AR R S 02 X Wt Sour ot vt e e ot e e S oy v s
N e . IR v LN o Jar vy LR N PO e M Srgcemtp b, pro;

- ~ . -

5. The "rotatability" of the central-composite

design.

6. The ability to isolate block and trend effects.

)
o
3
?
s
3

As applied to the central-composite design, the above items

are discussed in considerable detail by Box and Hunter

(1958, pp 152-168) and Simon (1974, p 102; 1976a, pp 22-28). f
Lack-of-fit tests can be applied to screening designs sup- :
plemented with multiple center points. These will be
discussed in the Analysis section of this report. L

SCALING

Once an experimenter has decided to add center points to ]
the screening design, he is forced for the first time to con-
sider what measurement scale to use for each factor. Up to
now, since basic screening designs are made up with two levels

S R T R IO NP PPN

per factor, only a linear response surface could be estimated
regardless of what shape might actually exist in the real world.

PRI

Adding center points complicates the situation.
]

[P V. Jeo

Let us, for example, consider a 2% factorial study
involving Sensor Resolution (5 and 15 feet), Target Bright-
ness (10 and 100 foot-lamberts), and Vehicular Speed (300
and 600 knots). The pairs of values set the limits of the

three-dimensional experimental space. The experimenter who
decides to add center points should not automatically

select the point with coordinates in the center of each
dimension, i.e., 10 feet resolution, 55 foot-lamberts
brightness, and 450 knots vehicular speed. Instead, he
should first consider what scale will enable the experimental

space to be tepresented by as simple a function as possible.

o ey o e ———ca
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To illustrate this, let us consider the brightness scale.
With a center point at 55 foot-lamberts, experience has shown
that the scale would relate non-linearly with a visual per-
formance task {Figure 4A). On the other hand, when brightness

s ek L e rnratal S it s BT R R Yy

data is plotted on a logarithmic scale, the relation would more ;
nearly approximate a straight line (Figure 4B). i
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Figure 4. !
Plotting Brightness on Linear and lLogarithmic Scales '
Since economical multifactor research is most successful

the simpler the relationship and since fewer conditions need
be studied to approximate the less complex functions, the
experimenter would be better off using a log foot-lambert
scale while maintaini:ig the range between 10 and 100 foot-
lamberts (i.e., one and two log foot-lamberts). This means:
that the center point on that scale would be at 1.5 log foot-
lamberts, or 31.6 foot-lamberts instead of 55 foot-lamberts.




A similar decision must be made for the Vehicular Speed.
The experimenter would want to consider whether speed or
rate (the reciprocal of one another) is likely to give the
simplest function. The cholce will determine whether 450
knots or its reciprocal in seconds would be used.

QUALITATIVE FACTORS

Center points can be added to a design only when the
factors are guantitative and continuous. Categorical varia-
bles have no crder and therefore no center values. However,
when quantitative and qualitative variables are studied in
the same experiment, center points can still be added. 1In
that case, the condition would be centered only within the
space defined by the quantitative, continuous variables.
This restricted center point would be replicated once for
each unique combination of the gualitative variables.

This is illustrated in Table 4. A sign matrix is given
for an experiment with two qualitative and two quantitative
factors. The first sixteen conditions are those of a
full 2% factérial, with + and - representing the coded +1
and -1, high and low values. The last four conditions show
how center points (0,0 in the coded terms) for the quantita-

tive variables are added.
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TABLE 4

CENTER POINTS IN AN EXPERIMENTAL DESIGN
INVOLVING QUANTITATIVE AND QUALITATIVE FACTORS
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IV. INTRODUCING SUBJECTS INTO 'THE SCREENING
DESIGN AS FACTORS AND AS REPLICATIONS

Subjects in psychological experiments either appear as
1) identifiabla types who can be represented as composite
levels of subject factors,or as 2) unidentified masses,
presumed to be homogeneous members of the same population.

SUBJECT CHARACTERISTICS AS EXPERIMENTAL FACTORS

There are two situations that can exist when we wish to
include subject characteristics as factors along with equip-
ment/environment factors and temporal factors. In one, each
subject is selected having the characteristics required by
the sign matrix., In the other, measurable subject character-
istics are known but it is difficult to impossible to select

subjects with the required combinations,

Measuring Subject Characteristics as Part of the Design

If each subject characteristic were to be investigated
at two levels, and there are f characteristics, Zf subjects
would be required to exhibit all of the required combina-~
tions of characteristics. Each subject would be tested on
a particular combination of the remaining factor levels,
where the combined characteristics of subjects and other
factors would represent a specific experimental condition
as defined by the sign matrix.

A study on target acquisition performed at the Naval
Weapons Center, China Lake, California (Grossman and White-
hurst, 1976) illustrates how subject characteristics can and
should be introduced into the experimental design of the
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screening study. Three of eleven factors in that study were
subject factors.* This required a minimum of 23= 8 subjects,
each having the appropriate combination of characteristics

as indicated in the following sign matrix:

Subject # Acuity(a) Depth Perception (B) Color Vision(C)

1 - - -
2 + - -
3 - + -
4 + + -
5 - - +
6 + - N
7 - + +
8 + +

Where - represents the poor condition and + represents the
good, according to specified criteria.

Each subject was tested under appropriate combinations
of the eleven equipment/environment factors required to
complete the 16 experimental conditions of the complete
2'177 Resolution III design. For example:

*A fourth, labeled Experience (D) might be considered
a subject characteristic but was introduced into this ex-
perimental design as a temporal factor. Each subject ran
through the experiment twice, The first measurement of each
condition was considered low experience and the second
measurement of each was considered high experience,
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Columns A through K Strings of two-

represent main effects factor inter-

aliased -:.-.h two- actions not

factor inieractions aliased to main :

and higher effects i}
Source of Var. SUBJECT TIME EQUIPMENT/ENVIRONMENT f §
Factor Label A B CDEUVPFGHTI J KJ(ad) (bc) (bd) (cd) g

s
<

e

Exptl. Cond. 1 | = = -} +# = = = = + +| + + + +

Exptl. Cond. 2|+ - = =] = + =~ + + - -~ - + + +

Subject 1 Subject 2
First Trial First Trial

Although a number of suk‘ects are involved, each
experimental condition is represented only once in an
unreplicated design. If one considers subject factors
equally as important as equipment factors, then no distinc-
tion need be made in the analysis of the data. Tf the
purpose is to order the factors whatever the source, accord-
ing to their relative effects on the performance of the task
under investigation, then this screening design can be used.

Measuring Subject Characteristics Not in the Design

When it is not possible to vary subject parameters by
systematically selecting a subject with precisely the correct
combination of characteristics, then measurements should be
made of the characteristics as they actually exist in the
subjects who are used. If over the entire experiment the
variables tend to distribute themselves relatively normally,
then their effects can be estimated along with the more sys-
tematic ones using a regression analysis. One can visualize
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the variables laid out as terms of a polynomial to estimate

performance, y:

A
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wiiere the italicized letters represent measured values of the
uncontrolled variables (probably correlated amon:: one another
and the other variakles) while the Roman letters represent
selected levels of the controlled factors of the factorial
(or fractional factorial). The ﬁi are the weights of each
variable as determined by a regression analysis, preferably
ridge reqression analysis (Simon, 1975). As the correlation
among variables increases, ridge regression analysis is
superior to the conventional multiple regression analysis for
this purpose. However, when uncontrolled variables are to .
be measured and analyzed along with the controlled variables

in the experimental desiqn, enough extra observations must be

A W T I WO

2
b

made to provide the degrees of freedom nceded to cover the
additional uncontrolled variables.* These degrees of freedom

may be obtained if the basic design is replicated using a

SRR Tt bt s

23

representative sample of different subjects selected in

ATRNE P4

some random manner. The required number of degrees

of freedom may also be obtained if the orthogonal
design is analyzed first in the prescribed manner, and those
factors thaut arc definitely trivial are diopped from the
analysis. Presuming the number of factors dropped is equal
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2 * .

A Use of this technique need not be limited to uncon-
s trolled subject variables, but can be applied for any type
' of uncontrolled variable.
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or greater than the number of measured variables, then there
will be enough degrees of freedom available to re-analyze
data to include the uncontrolled but measured variables
(co-variables). While there are some dangers associated with
this latter procedure, an alert investigator should be able
to detect them if they arise. The odds favor the latter
approach which maintains the integrity of economy in a

screening study.

SUBJECTS AS REPLICATION
§

Replication is the antithesis of experimental economy.
In some cases, it 1s used unreasonably. Such is the case
when an investigator replicates a fractional factorial design. |
If he intends to expend this additional effort collecting
more data, it would be far more informative to add a dif-
ferent fraction to the design than it would be to replicate
the original fraction. In this way, more sources of variance
in aliased strings could be isolated, increasing the inves-
; tigator's understanding of the situation. As Daniel (1976,
3 p 10) says: "The most useful replication will be that which
best samples the pcpulation of conditions about which E wants
to make inferences. In this sense, the best replication is
done under different conditions, not under the same condi-
tions." Simon (1973, pp 19-32) reviewed the arguments psy- ;
chologists frequently give for replicating, and indicated '
their weaknesses and alternative solutions.,
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Two valid reasons for "replicating" with subjects, after
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all other alternatives have been exhausted, are to establish
inter-subject reliability and to obtain confidence intervals
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Replicating for Inter-subject Reliability

An investigator never really knows if there are unwanted
and unknown sources of va-' .ance affecting his experimentcl
data. No matter how careful he may be -- and there appears
to be large investigator differences in the care with which
they collect experimental data (Simon, 1976b) ~- an investi-
gator should impose checks on the quality and consistency of
his data. This means that when a second subject is tested on
all the experimental conditions, the data from each subject
should be analyzed separately and compared. This not only
permits a check on the consistency of responses among homo-
geneous subjects as well as the assumption of homogeneity,
but also helps detect distortions and outliers in the data.
Some hints in this regard are discussed in the section on
Analysis. The investigator may even wish to test more
subjects (still making individual examinations of the results)
until he builds confidence in a particular set of conclusions
or discovers reasons for not accepting them.

While methods of isolating experimental from trend
effects in screening studies have been described, an investi-
gator may be as concerned with cross-over effects as he is
with trends. If so, he may decide to present the experimental
conditions to several subjects in different orders in a way
which will enable cross-over effects to be isolated from ex-
perimental effects (Simon, 1974, pp 27-90)*

*
Economical designs that are robust both to trend and

cross-over effects have not been worked out,
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Replicating to Establish Confidence Intervals : §
The appropriate research strateqgy is to establish %
confidence intervals at the end of the experimental program. §
Once an equation containing all of the critical factors has §
been derived, those combinations of factor values that 3 f
optimize performance or represent combinations of practical §
interest would be used to test a group of "truly" homogeneous 2
subjects. Subjects can be considered homogeneous after the é
invescigator has separated them into groups on the basis of é
critical subject variables and any remaining within-group i ﬁ
¥

subject variability is small and not readily identifiable. ; %
It's the "what's left over" after all efforts to identify %
the sources have been exhausted. Generally, establishing 2
confidence intervals would be done in the operational environ- ;
ment where that information would be most useful. i
;;
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DATA ANALYSIS

How to calculate the criteria for deciding which
factors are critical to the task under inves-
tigation and which are marginal or trivial:
effects, eta squared, cumulative proportion
of variance, half-normal plots,

How to analyze subjects used to replicate the
basic screening design.

How to adjust experimental effects for trends.

How to aralyze multiple responses: graphical
and statistical methods.

How to evaluate how well first and second order
regression equations fit the empirical data.

How to analyze an incomplete screening design.

60

pr—
PP e e p o e e R

- ——

VA £ ar o e b TS AU i B L AR e g S S

rarra 4

[ L R I P U S S

—

o AT Y ek oy abores, EY] TR TR LN LAV BT SRR S

PR CoRU T

T




V. CALCULATING CRITERIA TO SELECT NON-TRIVIAL FACTORS

Since the purpose of the screening study is to identify
those factors out of a larger candidate group which have non-
trivial effects on performance, the first step of the analy~
sis is to calcuiate a number of criteria which will help the
experimenter make that judgment. It is appropriate at this
time, before the analysis begins, to emphasize the point that
there are no mechanical methods of selecting the trivial and
non-trivial factors., Lest the unsophisticated investigator
believe that requiring subjective decisions on the part of
the investigator is unscientific and is a weakness confined
to these screening studies, let him be assured that this is
not the case. Evaluating the results from a screening
designs study is no different from evaluating the results
from an analysis of variance by hypothesis testing. Accept-
ing or rejecting the hypothesis is done by the investigator,
not the F-test (Bakan, 1967). Statistics applied to the
empirical data may facilitate a decision.

SELECTION CRITERIA

Whether or not a factor is considered non-trivial will

be based on the following criteria:

l. Does it have a practical effect on performance?
This can be determined by calculating its effect,
i.e., the mean difference between the high and

the low value of that factor.

Precaution: If the pair of values per factor in
the experimental design does not cover the full

range of interest, an estimated effect will not

he indicative of the full strength of this

factor.
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Does the factor account for a meaningful pro-

portion of the variance in the experiment?

This is determined by calculating Eta squared,
or the ratio of the sum of squares for the
factor to the total sum of squares.

Precaution: If the candidate list does not
include essentially all of the critical factors
affecting performance under operational
conditions, then proportions obtained in the
experiment will be deflated when applied to

a real-world problem.

Does including the factor materially improve

the ability to predict performance under

operational conditions?

This is determined by examining the cumula-
tive proportion of variance obtained when
the effects of the factors are combined.

Precaution: If an effect is due to chance in
this sample, including it will lead to poorer

prediction in subsequent tests (shrinkage).

Could the observed effect have been due to chance?

Without a source of error variance, the investi-
gator must rely on less direct indications (i.e.,
internal tests) of a chance phenomenon. Examining
the data using "half-normal plots" may be useful
for this purpose.

Precaution: This graphic inspection of portions
of the data is still a poorly developed art.
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5. Can the cumulative effects of a large number of
non-critical factors be ignored?
While some factors may show only small effects,
nevertheless, they have an impact on performance.
If there is a large number of marginal factors,
and according to the principle of maldistribu-
tion that is what we expect, we may wish to
exclude them during an initial screening, but to
examine them more carefully during the refine-
ment phase of the program. Together they may

improve prediction considerably.

In applying the above criteria, the investigator will temper

his judgment with the cost of each decision, as well as by
satisfying the interests of those who have sponsored the
research. With an iterative research strategy, and decisions
are constantly being tested, no decision need be final. Factors
included or excluded early in the program may be excluded or
included later in the program, if necessary. Generally

the error in decision will occur with the marginal factors
where the practijcal effect of an error is the smallest,

Estimating the Effects

The "effect" of a factor is the mean difference between
the performances measured on the two levels or conditions of
that factor.* An investigator has several methods at his
disposal for estimating effects in the 2k-p screening design.

*
Some statisticians use the term "contrast," instead
of "effect."
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The conventional method (for psychologists) of finding
the effect of Factor A, for example, in a 2k—p design, would

be to add up all of the performance values in all the cells A
associated with one condition of Factor A and to add up all g
of the performance values associated with the other condition ,g
of Factor A. The means of these sums would represent the %
mean performance on the two conditions and the difference %
between the two means is referred to as the "effect." This :?

is illustrated with some fictitious data in Table 5.

As more factors are included in the screening experiment,
the sign matrix can be used to facilitate the analysis. The
sign matrix for a 223‘ design, along with fictitious perfor-

mance data, is used to show how a sign matrix is used (Table
5). For example, the effect of Factor A is estimated by
summing all performance scores, obtained when the "high" (+)
condition of A is being tested, e.qg.:

4 + (-5) + 3 +5 =7

This sum is divided by 4, giving the mean performance of 1.75
for the high condition. Next, all performance scores, ob-
tained when the "low" (~) condition of A was being tested,
are summed, e.g.:

2+ 3 +1+ (=2) =4
This sum is divided by 4, giving a mean performance value of
1.00 for the low condition. Subtracting the low from the

high gives a mean difference of 0.75, the effect of Factor A.

Similarly, the effect of the interaction AB would be
obtained as follows:

it
—
($4]
¢

4

(+4 + 3 + 1 + 5) - (+2 -5 +3 -2) 3.75
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TABLE 5. CONVENTIONAL METHOD OF ANALYZING 2™ DESIGN

P

Factor (-2/4)
a 4
/
- N %
Mean \ Two performance

scores in each
cell. (N=8)

(9/4)

Effect of B = =7/4 = -1.75

O a0 ™

/7 3
e N\

Mean (7/%&\\///2#4/4) N
\
(13/4)

Effect of A = ~3/4 = -.75 \

wm
1
nN
e e ——————— . e
AR Rt om0k ation o st B R

4
b
K4

[Effect of Interaction AB =
15/4 = 2.75

Grand mean = 11/4 = 2,75

TABLE 6. SIG. MATRIX METHOD OF ANALYZING 2k DESIGN

Factor Sources A
Performance ;
A B AB - + ;
] - - + 4 4 2 E
3 a|+ - - 2 -5 3 ;
§| b |- + - -5 3 1
gtﬁ ab | + + + 3 5 -2
Tdlab | + + + 1 7 4
§'§ b | - + - 3
£ a + - - -2 -7+ 4
Effect of A = =
g - - + 5 3
-3/4 = -.75
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The divisors for the means in these cases always equal half
the total number of performance values. Each column of the
matrix, i.e., each source of variance, is treated in the same

way.

Yates' algorithm. When the effects of a large number

of factors must be e¢stimated, using the sign matrix can
become tedious and the chance of making arithmetic errors
increases j¥ a computer is not used.* Yates (1937) devel-
oped a systematic tabular method of calculating the effects
of 2k designs which is adaptable to 2 k-p designs including
screening designs. An example of the analysis of a 2? design
using Yates' algorithm is given in Table 7. The steps are
these:

1. List the 2k experimental conditions in the Standard
Order (Column I). This Standard Order is (1), a, b,
ab, ¢, ac, bc, abe, 4, ad, bd, abd, cd, and so forth,
where after the (1) condition, a factor at a time
is added, followed by all interactions between that
factor and each previous factor combination before
a new factor is added.

2. List each performance score adjacent to the corres-
ponding conditions (Column II). If it will simplify

*

Even if the calculations are done with a computer,
there is a material advantage in using Yates' algorithm.
Because the Standard Order is assumed (or corrected for later
if the initial assumptior. is incorrect), the only inputs to
the computer are the performance scores. No 2% or 2°"7F matrix
need be input, a savings in the programming and card punching
requirements.

66




&3
£
5.

Py Wi iy

-

T T s I R S A @ s I U o o v

TABLE 7

YATES' ALGORITHM FOR ANALYZING A 2k FACTORIAL

FA e

v

ITI

11

PR ETEY

Effect-

Effect

tatal

Standard Experimental

LT T

P,

+ (N/2) Source

3

Condition Performance

Order

Mean x 2

2.75
~.75
-1.75

11

(1)

1)

2)

3)

AB

.75
.75
-3.75

4)

PREELNE

-8

-2

5)

AC

~15

)

BC
ABC

2.25
-1.25

9
-5

-7 10

7)

1)

8)
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calculations, a constant can be subtracted from
every score without affecting the estimation of the
effects. Only the mean must be corrected by that
constant amount.

Separate the nuribers in Column II into pairs and
add the two values in each pair, taking signs into
consideration, List these sums in order in the

upper haif of Column 1.

Next, start again at the top and subtract the FIRST

number fcom the second of each pair in Column B and

list the differences in order in the lower half of
Column 1.

Repeat this process to create Column 2 using the
numbers in Column 1.

Continue to add and subtract adjacent pairs in each
list to create a new list until there is a total

of k numbered columns for 2K experimental conditions.

In the example in Table 7, with 8 = 2? conditions,

there are three numbered columns (Columns 1, 2, and 3).

The effect for each factor is obtained by dividing
the appropriate value in the last numbered column,
referred to as the "effect-total,"* by a value equal
to half the total number of observations in the
experiment (Column III).

*
Sometimes called the "contrast-sum."

£
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The effects thus calculated will also be listed in the Stan-
dard Order, the first value being equal to twice the mean* of

' all the data, the second being the effect of Pactor A, the
third being the effect of Factor B, the AB, C, AC, BC, ABC,
D, AD, and so forth (Column 1V},

T When this analysis is used with screening (ov other
fractional factorial) designs in which the original factorial
labels are changed to new screening design labels, and
effects are aliased, an equivalent change must be made in

. the factor labels of the analysis using Yates' algorithm.
Corresponding new labels must be substituted for the old
labels that appear in the Standard Ovder in the effeocts column.

) Daniel (1956, p 93) writes: "With N, as lavge as 32,
Yates' computational form may be split into twe forms of
size 16, using sum and differences of pairs over the last
factor, instead of the original single results. This sub-

division may be continued further for N, larvger than 32.°

R
Thig is illustrated in ‘Table 8. The performance values
(Column B) of the experimental conditions (Column A) listed
in Standavd Order would be divided in half, with performances
associated with all low conditiouns of the last factor (i.c.,
C in this example) being analyzed with Yates' algorithm as
one problem and pertormance associated with all high con-
ditions of the last factor analyzed as a scparvate problem.
Since only half the data is in each problem  theve will be
one less column in each sub-analysis {Columns 1 and 2) than

would be in the full analysis. When the effect/total values

x
We divided by N/2 in Step 6. To get the mean, we
would of course divide by N.
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TABLE 8
USING A SPLIT-YATES& ALGORITHM
TO ANALYZE A 27 DESIGN
1 11 1 2 2! 2" 3 (14 111
Half (1) a a+b atbtctd = (4 | ArE -
with a b ctd b-atd-c = (R I PP A
o b c b-a c¢td-a-b = (( ol O+ B
ab qa d-c¢ d-c-bta = (D ¥ D+H AB
Half c e e+f e+f+g+th = (¥ ¢ k-4 ¢
with ac f g+th f-eth~g = (F G F-RB AC
C+ be g f-e gth-e-f = (g D u-C BC
~ abc h h-g h-g-f+e = (} i ‘- ABC
Original {Performance |Applying EBffect- jEffect~|Overall [Combined
exptl. values Yates' totals totals |effect- |effects
conditions algorithm for each|of each |totals in
in (symbolic) |[separately [half of }half for Standard
Standard to each total after complete jOrder
Order half split jeaper. palring lexper,
on low
level and
high level
of factor C
1 11 1 2 2 X 3 11t
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are obtained for each half (Column 2') they would be inter-
mingled, alternating with the first effect-total in the low-
condition analysis followed by the first effect-total in the
high~condition analysis, and continued to alternate in this

fashion until the two halves are completely paired (Column 2").

This new column is then treated to the sum-difference analysis
as if it had been the next to last column, the effect-total

values, of the full analysis (Column 3). Then in this example,

if Column 3 is divided by N/2 = 4, we obtain the mean doubled
and the effects in Standard Order.

Estimating the coefficients of the multiple regression

equation. In screening designs, the equation would take the

form:

§ = boxo + baxa .o bkxk + bghxgg + bggxqg ces + bggxgg
where

; = estimated performance

bi = coefficient for factor i, where i = a to k

Xi = term representing the level of factor i; XO = ]

bi' = coefficient for the string of two-factor inter-
2l actions

Xi. = term representing the string of two-factor inter-
1 actions

The regqression coefficient, bi' equals nyx /Exi. However,

i
in the basic screening design, xxi = N and xyxi equals the
effect-total in the Yates' algorithm. Thus the regression
coefficient for a multiple reqression equation can be ob-
tained as follows:
b = Effect-total _ _Effect
N 2
71
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Interpreting effects data. The effects data shows the

change in performance that occurs between the two levels of
each factor. If these levels represent the extremes of the
operational space, or the upper and lower limits of perfor-
mance, then the magnitude of the effects tells us something

of the practical importance of that factor for the task under
consideration. Thus, it is not possible to make a meaningful
interpretation of the results without fully understanding the
design and its context in the real world. 1In Figure 5

(sclid line), the effects of resolution might be quite differ-
ent depending on which two levels had been selected for the

conditions of the experiment:

Trivial: AB, DE

Mild: CD
Large: BD
Large
Tgts.

PERFIORMANCE Y

3
i
A

0
@]
o

RESOLUTION X

Figure 5. 1Illustration of How Experimental Context
(i.e., task difficulty) Affects Performance

All this could change as a function of other parameters. For
example, the effect between levels B and C might have been

trivial if all targets had been so large that differences in
resolution were inconsequential. This is illustrated by the

dotted line.
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When effects are evaluated, however, the interpretation
must be made in the context of the operational situation
¥ rather than the experiment. It is equally important that the
performance also he measured in terms of operationally rele-
vant parameters. For example, a 2.4-second difference in the
speed of reading a full-size newspeper page would probably
¥ not be an important consideration in selecting one of two
styles of _ype. On the other hand, a 2.4-second difference
might be quite critical in selecting the design of a safety
switch on a nuclear reactor. The experimenter must look at
the effect and decide if one that size is critical in the per-
formance of the real-world task. “f it is definitely not, then
that source of variance can be excluded until new evidence
negates that decision. If it is a marginal effect, other
considerations involving costs and convenience will determine
whether it should be excluded at this time or not. If the
effect being considered represents the sum of a string of two-
factor or three-factor interactions, the investigator should
determine whether or not any of the larger main effects are
paired in the string. 1f so, it is 1likely (though

definitely not certain) that the string represents an ordinal
interaction which is of secondary importance, Deciding
whether a string contains an ordinal or disordinal interaction
may require more data to be collected (Simon, 1973, p 116-124).

Estimating the Proportion of vVariance Accounted For

For an unreplicated 2k—p screening design, the variance,
or mean square, can be calculated gquite simply once the

offacts for each source have been obtained,

First the Sum of Squares for each individual source of

variance is calculated as tfollows:

sum of Squares = N—ih£§9££L— !

/3
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where N is equal to the total number of observations in the
experiment. Since these designs involve factors at only two
levels, cach source has only one degree of freedom. Therefore,

the sum of squares and variance for each effect are equal.

Eta squared. The proportion of total performance
variance in the experiment, accounted for by cach source of

variance, is calculated as follows:

. _. Sum of squares for particular source
Eta squared Total sum of squares

Total sum of squares is obtained by summing the sums of
squares for all N-1 sources of variance, including those
between bhlocks, if any, in the experiment. The mean is not

included.

Interpreting proportion of variance data. In interpret-

ing the proportion of variance associated with a single source
of variance, two things must be remembered: one, it is a
relative measure and two, its importance depends on how many
critical factors are included in the experiment. As a rela-
tive measure, the magnitude of an eta squared depends on the
magnitude of the other sources of variance in an experiment.
Since there is always an upper limit of 1.00 on the proportion
of total variance that can be accounted for, a source that
shows a mean difference of 30 seconds may, for example,
account for 25% or 75% of the total variance depending on
whether the other effects and error in the experiment are
relatively large or small, enhancing or decreasing the abso-
lute total variance, and changing the relative proportion
accounted for by any single effect. With only one factor
plus some random error variance, a factor may account for 90%
or 10% of the total variance depending whether or not it is

a "clean" experiment with a little or a lot of random error
respectively. Thus, in interpreting eta squared, a source
that accounts for a small proportion of variance is likely to
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be a non-critical source of variance, but a source that
accounts for a large proportion of variance cannot per se ’
be considered critical. It may have accounted for most of ,
the performance variability in the experiment, but in the

real world where a great many factors are likely to be opera-
ting, it will account for relatively little, It is the case

P -
st A E S RN RN G £ i8La,

La

of a big frog in a small pond.

The only time when a source with a large proportion-of-

variance value can he considered critical -- with confidence --

is when a large number of factors has been included in the

experiment and these are believed to include most of those
Other i

ORI BIAIL S v AR ety a8t

e

likely to be critical under operational conditions.
considerations in the interpretation of eta squared are dis-

cussed by Simon (1976b, pp 37-43). ;

Cumulative Prapcrtion of Variance ,

When the sources of variance are ordered from largest to
smallest according to the size of each one's effect and the pro-
portion of variance accounted for by each is calculated, these
proportions may be added, one at a time, sc that as each new
source is added incrementally, the cumulative proportion of
the total variance accounted for by all sources of variance,
both factors and interactions strings, up to that point, is

. T PR «
SIS TR IR 200 %058 NI 3 D tan B RO A R el SRl

PRI

.

indicated.

Since the sources in a screening design are independent,

U 0

each cumulative proportion of variance represents the square
of the multiple regression coefficient (R?) for an equation
composed of all sources included up to that point. Each new :
source adds some incremental amount, which may or may not be
important -- whicn is what the investigator is trying to
decide -~ and which may in fact have been a chance effect for
the particular sample and would not likely re-occur were the
As stated earlier, we have no way in i

experiment repeated.
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the single replication screening design of directly measuring
the error variance with which to test the reliability of each
new term. Several indirect (or internal comparison) measures

will be suggested later on.

When we stop at a particular point along the ordered
continuum of sources and calculate the cumulative proportion
of variance (or R?), we are implicitly assuming --
tentatively at least ~- that the remaining proportion of var-
iance not accounted for (i.e., 1 - R?) is error. This estimate
of error might be used to determine at what point the addi-
tion of another term (source of variance) results in a drop
in _rne population R?, which is estimated by applying certain
correction factors to the sample R?. Quite obviously, the R?
value for the sample must increase toward 1.00 as more sources
of variance are added, but the population R? reaches a point
where instead of increasing as more sources are added, will
decrcase. This could be used as a clue as to where to stop

adding more sources.

While there are a number of formulas to calculate
"shrinkage" (Kerlinger and Pedhazur, 1973; Url and Eisenberg
1970), the following one is probably as effective as any for

our present purpose and is simple to use:

R2=l-g—%—l—:——f(l“R2)

where R is the population multiple correlation corrected for
shrinkage

R is the uncorrected sample multiple correlation for
the k factors

N is the total number of observations

k is the number cf factors (or sources of variance)
included in the equation
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At some point, as k increases, ﬁz will begin to decrease.

This is the maximum number of sources that should be considered.
In practice, however, this formula gives an overestimation,

and the k sources are probably too many to include.

Because a successful experiment should account for most¥
of the performance variance, there is often a tendency to
want to include more sources of variance than are probably
necessary. Still, the final decision of what to include or
not will be made more on the basis of practical considerations
and the dangers of an erroneous decision than on the results
of a statistical test. The decision is made more difficult, §
however, when we look at the cumulative proportion than at
the proportion accounted for by an individual term factor.
For in individual cases, we may see a small value, e.g., a !
; proportion of .01, and decide that even if it were a real |
effect, it is marginal and if we omit it erroneously it is
not going to be too critical. On the other hand, we might
hesitate dropping ten or fifteen effects that individually E
might each account for a probability value cf .01 or less,
since cumulatively they might, for example, account for .10 )
to .20 of the total variance. Luckily, the problem is !
easier to resolve in the screening phase when we are only :
asking whether a particular factor should be included in

S e

*Without more experience, what proportion should be
accounted for by a screening design cannot be stated with any
degree of confidence. Still, as a personal guess, if we
started with a 30-factor study (and an astute experimenter),
one ought not to be happy unless one accounts for more than
.80 of the variance in the experiment with real eftects.

“
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subsequent studies than it would be in the refinement phase
near the end of the research problem, when even small amounts
(as lonj as they are real effects) should not be ignored.

But in the screening phase, if even a series of factors shows
a sizeable cumulative effect, if they have been preceded by
a great many interaction strings each with meager effects,
and occur in the second half of the ordered sources of var-

iance, it is unlikely that any effect will be critical.

Reverse Yates' algorithm. Daniel (1976, p 73) examines

the cumulative proportion of variance one step at a time using

a reverse Yates' algorithm as a computational aid. Beginning

after a reasonable number of terms has been included in the

cumulative proportion, he calculates the predicted value at
each experimental data-collection point in the design and
compares it with the empirically obtained value. Calculating
the predicted values could be done using the regression equa-
tion, however, Daniel's application of the reverse Yates'
algorithm is the same as for the forward Yates' with the

following exceptions:

l. Begin by writing the effects in the
Standard Order, but inverted.

2. Pead off the estimated values at the
end of the procedure with the condi-
tions in an inverted Standard Order.

If one begins this reverse analysis with the effects, then
the values in what would ordinarily be the effects-total

column must be divided by N/2 to get the estimated per-

formance values. However, if instead of beginning with

the effects one begins with the regression coefficients,

then no division is required. The values in the effect-
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totalsposition of the reverse Yates' are the estimated

performance values.

For example:

FORWARD YATES'

Exptl.

Cond.  Perf. (y) 1 2 (+2) Effect Source
(1) 3 11 18 9 2(M) *
a 8 7 2 1 A
b 5 5 -4 -2 B
ab 2 -3 -8 -4 AB

REVERSE YATES'
Est. Exptl.

Source Effect 1 2 (%#2) Perf. ¥ Cond,
AB -4 -6 2 ab
B -2 10 10 5 b
A 1 2 16 8 a

2(M) * 9 8 6 3 (1)

The proportions of variance accounted for by A, B, and AB

are .048, .190, and .762, respectively.

If these were ordered

from largest to smallest, the cumulative proportion would be:

AB .762
AB + B .952
AB + B+ A 1.000

In this simplified example, Daniel might propose to find out

what the estimated performance vould be for each condition

if we assume that A is actually zero for all practical

purposes.

Using the reverse Yates' he would get:

*Value in Effect column is twice the value of the mean.
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Exptl.
Source 1 2 3 (#2) _§ y (y - §) cond.
AB -4 -6 3 1.5 2 .5 ab
B -2 9 11 5.5 5 -.5 b
A 0 2 15 7.5 8 .5 a
(M) 9 9 7 3.5 3 =5 (1)

A

where y is the estimated value and y is the obtained one. He

would test to see if the residual, (y-y), could be tolerated

or not, and thereby decide whether the dropped variable, A,

can be excluded or not. 1In this artificial example there

was no mean difference and no source of error variance, so no

cignificance test would be meaningful. In the case of larger

designs, however, this is yet another tool to help the in-
vestigator judge whether to include or omit a source of

variance.

Daniel also uses this calculation to discover whether

there are distortions in the data and whether transformations

could be used to simplify the model. 1In particular, he

plotted the residuals (i.e., the y - y) against their cor-
responding performance (y) values as proposed by Anscombe

and Tukey (1963), and also their distribution on a normal
cumulative distribution grid. He next searched these for
patterns that would be indicative of distortions in the data.
While the study of residual patterns is an important part of
the data analysis process, no further discussion on this
topic will be given in this report. It is described in

detail in Daniel's (1976, pp 71) book.

Interpreting the cumulative effects of non-critical
factors. There is something disconcerting when it is dis-~
covered that the non-critical factors, (i.e., the ones that
individually account for only a small proportion of the var-

iance) in combination, account for a large chunk, perhaps .30,
That is a great deal of unexplained

of the tptal variance.
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variance and it may cause an investigator to think that pos-
sibly some of the non-critical factors may be marginal ones
of minor but practical interest. He may wish to examine
these non-critical factors in order to decide which he still
believes are trivial and which might be considered real but
"marginal." Some considerations in this regard are listed

below:

1.

e aPhan S TG AL RN {4 S L,

The small effect may in fact be trivial, a chance
perturbation. It is unlikely to be found on sub-

sequent tests.

A noticeable effect might be due to error, an in-
frequent and intermittent disturbance in a few cells,
affect ing by chance a particular effect or two.

For example, momentary losses of attention on the
part of the subject, an irrelevant but intermittent
occurence in the environment, or erroneous settings
of the simulation equipment. The momentary effects
are large, but are averaged down in the analysis.

An examination of the raw data or a half-normal

plot may reveal this,

The effect may reflect an unexpected confounding
with some concomitant, systematic, but irrelevant
source of variance. This might not occur if the
study were repeated and can often be avoided with
better planning during the problem definition phase.
The size of the observed effect may be distorted due

to the confounding effect a) inflating a factor's
otherwise trivial effect, or b) deflating an impor-

tant factor's effect.
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4. The effect may be reliable, but small,
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will be required to see if the effect occurs con-
sistently. It might have been larger had a d.ifer-
ent part of the operational space been included in

the experiment.*

The investigator, faced with the decision to include or ex-

clude the marginal factors, realizes that:

a)

b)

If he includes a marginal factor, he adds to
the expense in subsequent efforts that must
allot mcre observations to study that factor,
more time to change the factor during the ex-
periment, and more money and manpower to build
and maintain the factor into the simulation.
If there are no major expenses associated with
the inclusion of a marginal factor, then it
might as well be included. If it is a wrong
decision to include it, i.e., if it is not a
reliable effect, it can be deleted later.

If he excludes a marginal factor, he will be
able to reduce the size of subsequent studies
and possibly their costs, but if it is a real
effect, his ability to predict will be reduced.
Since it is a marginal factor, the error -- to
exclude or include incorrectly -- will be rel-
atively small. The balance arises when the
fewest factors account for most of the variance
in the experiment. By building a framework --

*

This does not mean that one should artificially extend
the boundaries of a factor just to get a larger (or more
significant) effect. We wish to order effects by their size

within a particular operational space.

More measures
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§ a response surface -- involving these critical 3
% variables, the marginal factors can be intro~ ?
% duced into it at a later phase of the research 3
ﬁ program -- to refine the original equation -- i
f when they can be investigated more thoroughly %
3 and with more precision than if they had been %
g entered early during the screening phase. §
? Costs, interest, probable impact, difficulty, realism, f
é reliability and so forth, are all weighed in the inclusion/

i

exclusion decision regarding marginal factors.

N

Half-normal Plots (Daniel)

When a large number of effects are being investigated,

the largest effects can be several times larger than the av-

erage even when no effect is real. In an experiment with 31

effects, the s8ize of the largest effect could be 2.4 times
larger than the average 8ize when in fact the difference was
due only to chance. Using the traditional .05 significance
level in such an experiment would cause unreal effects to be
judged real in over half of all experiments done (Daniel,
1959, p 312). While an examination of mean differenc:s and
eta squared values can help the investigator avoid trivial
effects, these measurements do not provide sufficient data
to protect the investigator from including effects which may
appear to be non-trivial but which are, in fact, chance

deviations.
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Conventionally, t- or F-tests are used to protect the
investigator from overenthusiasm regarding a large effect.
Since economy is of paramount importance and replication is
avoided in the screening design, there is no internal data
with which to estimate the error variance needed for the
significance test. In the physical sciences, error variance
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can be estimated from the results of other experiments
studying the same problems; this would be foclhardy to try

in psychology. Psychologists, who run unreplicated factorial
designs, often use higher-order interactions -~ generally
more than three factors -- to estimate the error variance.
This is done on the assumption that the effects of these
interactions are negligible. However, in screening designs
this is not possible since all higher-order interactions are
confounded with main and two-factor interaction effects,

Of course, if any strings of two~- and three-factor
interactions are trivial, they can be used to estimate error.
But here we are faced with an enigma since we have no error
term to test whaether these interaction strings are trivial,
Birnbaum (1959) suggests that instead of assuming that certain
interactions are zerc, an inference procedure be used which
assumes that a specified number of effects out of a total
number are non-zero. However, he develops the mathematics
only for the case where it is necessary to discover whether
one effect out of many is real or not. He concluded that his
statistic in that situation would be about as sensitive in
detecting one real effect among thirty-one effects (if one
real one were present) as traditional multiple t~tests were
capable of detecting one among 15 possible effects with ten
degrees of freedom for error, or one from 31 possible effects
with over 20 degrees of freedom for error., We are, of course,
more interested in those situations where more than one
source of variance is likely to be critical.

Daniel (1956; 1959) developed a graphic method (corres-
ponding in principle to Birnbaum's statistic) for examining
the results from an unreplicated design to help judge the
reality of the largest main effects and interactijons, and to
indicate the piesence of unruly data. His method is to
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graphically compare the empirically derived cumulative distrib-
ution of the effects with a cumulative distribution derived

from a normally distributed population. To do this, the j
- results from the experiment are plotted on "half-normal grid" !

paper.
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Preparing half-normal grids. The steps to produce a
half-normal grid are as follows:

R 2" a2 b

1. Obtain a sheet of Probability Scale graph paper.
This paper is produced commercially (e.g., Keuffel

R

¢
i and Esser Co., #358-23). On this paper, a graph of §
] the theoretical normal distribution would be a .
; straight line through the origin. 5
{. 2. Use that portion of the grid that begins with the §
g' probability, P, of 50 and goes up to a value greater g
%' than 99. (Note: These "probability" values, of ;%
g course, are multiplied by 100 to eliminate having to {g
g print the decimal.) f?
% 3. Rescale the graph paper with new probability values, ?%
? P', calculated from the old values, P, where f;
‘ P' = 2P - 100. E
For example, P = 70, and P' = 2 x 70 ~ 100 = 40. i?
i
4. Locate the P' along the ordinate of the grid where ;
each ordered effect (i.e., ordered contrast) must lie. 3
A different set of values is required for each B

analysis in which the total number of effects is
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different. The equation to find the P' value for
each particular rank is:

P' = [(R - 0.5)/(N-1)] X 100* =

where R is the rank of the ordered effect and (N=-1l)
is the number of effects that will be plotted; it
is also the total degrees of freedom with N obser-

vations.
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For example, in a 21§34 screening design. there are

31 effects to be plotted. The largest effect, ranked
31, would be plotted at P' = [(31 - 0,.5)/31] X 100 =
98.39. The effect tenth from the top, rank 22, would
be plotted at P' = [(22 - 0.5)/31] X 100 = 69,35,

For a 23;',26 screening design, with 63 effects, the
effect ranked 22 would be plotted at P' = [(22 - 0.5)/
63) X 100 = 34,13. The P and P' values for all
ranks of designs with 15, 31, and 63 degrees of
freedom (and effects) are given in Table 9. P values
are probabilities (X 100) for each rank plotted on
normal probability grids. P' values are the corres-
ponding probabilities (X 100) plotted on half-normal
grids. An example of a 3l-effect grid is shown in

Figure 6.
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*To determine the standard score, z, of each rank
position on a unit normal curve (where the N and standard <
deviation are both assumed to be 1) we may refer to any .
normal distribution table such as Beyer (1966, p 117) and "
look up the P -- not the P' -- value (% 100) associated with
that rank. Four example, in the above illustration
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2-values can be used to determine the height of each rank
position above zero on the ordinate of a half-normal grid
which could be drawn directly rather than by extracting them
from a plot on normal probability paper. The z-value will
also be useful later in this paper when Zahn's work is
discussed.
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TABLE 9

PROBABILITY* VALUES FOR
CONSTRUCTING HALF-NORMAL GRIDS**

Doy
. é
: § ﬁ
4 dafs =15 defen dafs r 63 .
pank it n fieok B 2 fRek R b frwk B0 P ;},
15 96,67 903§ 31 98.39 99.19 ) 63 99.21 99.60 3
g8 1 9n.00 95.c0f 20 95,06 0753 [ 62 9762 98,81 | 31 uBLL w21 1§
- 13 B33 9671 29 91.9% 9597 § €1 96,00 9B.02 | 30 46.8) 734 El
% 12 76,67 88,3 ] 28 AR guys | 6o guab 972 | 29 bs.2s 92,6k P
£ *11 70,00 85.00 | 27 85,48 92,7 | 59 92,86 96,43 | 2B 4365 71.92 i
3 10 63,3 81,67 § 26 82,26 91,13 | 8 91.27 95.63 | 27 42,06 71,03 b
¢ 9 s6.67 78,33 25 w0.03 A9.52 | 57 mg.en ou.ou | 26 hows ro.2 3
S 8 50,00 75.00 ] 25 95,81 N7,90 | %6 #8.00 94,05 | 25 38.89 €9.Lb i\ 3
2] 7 8333 767 | 23 72,58 86,20 | 55 B6.51 §3.25 | 24 3230 €8.¢¢ k.
5 ] 6 36.67 6133 |22 69,35 Su.6R | v Bu.9z 926 | 23 3sm 6.0¢ ?
7 s 30,00 65.00 ) 21 66,13 83.06 § 53 83.33 91.¢7 | 22 .Y 67,0¢
4 2333 &.471 @0 62,90 81.b5 | s2 81.75 90,87 | 21 2.5k 66,27
; 3 16,67 s3] 10 59,68 79,84 ] s1 BoO.16 50,08 ] 20 30.95 65.u°
EX 2 10,00 ss.00 | 18 s6.ks 78,23 § 50 78,57 89.29 | 15 29,37 6,0
% G 1 2.3 567 |17 53,20 76,61 § 49 96,98 s88.g |18 27.yn 63.%¢
3 o o 50,00 | 14 55,00 75.00 } 48 ?75.k0 87,70 117 26,19 €3.1°
& 15 46,78 73,39 § 47 2301 86.90 |15 2460 62,32
3 W 63,55 71,77 P A6 72,22 £6.11 |15 23,02 61,51
i 13} k0,32 70,16 § 45 70,63 85,32 |14 21,4) Go.71
B 12 3700 €8.55 pun g9.05 au,s2 |1 5.8 ro.6:
£l ¢ 11 33,87 66,04 fu3 67,45 83,73 |12 18,25 59.12
;2 10 20,65 65%.37 | k2 65.87 82,54 [11 16,67 5%,
£3 9 27,t2 6371 Phl 6u,2¢ 82,18 |10 15,08 s7.st
sk 8 2,00 62,0 Juo 62,70 91435 § 9 1dhy uE,7:
gt; 7 2797 60,48 F 39 61,11 BRO,56 8 11,90 55,95
B} 6 17,78 53,87 Ba8 s9.52 79,76 ? 10,32 $5.1f
3 S .52 57.26 § 37 suon tRr | € 8,73 st.a0
S Y b 11,20 S$5.65 § 36 S6.35 ve.1? | 5 7. 5357
£ 30,06 58,03 |35 576 77,38 | o 556 st
B 2 Wk os2.62 fab saa7 %6059 3 297 s1.92 5
£ 1 L6 x.81 FI) 51,59 7529 [ 2 2038 519 3
H o o 50,00 ) 32 s0.00 7500 |1 79 seukd F,
& . ¢ 0 50.00 &
X
*P values are probabilities (X 100) to be used on normal prob-

ability grids., Adjacent P' values are probabilities (X 100) at the !
same rank when half-normal probability grid is used.

**If normal probability paper is not available, grids may be con- {
structed directly by finding the z-score equivalent to the P-value (+ 100) '
for each rank and using it to measure off the distance on the ordinate
scale. Z-scores can be found in most normal distribution tables, e.g.,
Beyer (1966, p 117).
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3 5. Write a scale along the abscissa of the grid that

ﬁ covars the range of absolute* values of the effects.

Plotting the data. The absolute effects obtained from
the analysis of the axperimental data are ordered from largest
to smallest and given the ranks from (N-1) to 1, respectively.
The coordinates of a point representing the largest effect -~
ianoring signs -- would bs where the P' for the highest rank
(along the ordinate) and the proper abiolute value (along the
G abscissa) intersect. Each subsequent effect ias plotted on the
line of its appropriate rank. Daniel (1959, p 314) suggests
that it is not necessary to plot every one of the smaller
effects at the lower ranks since they tend to be correlated.
The mean is not plotted but block differences and higher-
order interaction atrings, if they exist, are.
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Interpreting half-normal plots. If none of the effects
in the experiment are real, that is, if the sizes of the
effects are no greater than might be expected to occur by
chance, the standard deviation of the values would be approx-

; imated by value of the effect at the rank order nearest to

§§ the P = 68,3 quantiie. In other words, the standard deviation

g would equal the value of the effects, Xp, when R = .683(N-1)-0.5.
For 15, 31, and 63 degrees of freedom (or N~l1l) this

would be the value at rank positions 11, 22, and 44 respec-

- tively. Under the null hypothesis, therefore, the plotted
points would theoretically approximate a straight line

*
The effects are ordered disregarding signs.
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through the origin and the point made by tne rank at the
68.3 quantile. This straight line, the "chancae" line, is

3 the cumulative distribution of a normal curve (the classic

\ S-shaped curve) as it would appear when plotted on proba-
bility paper. Daniel (1959, p 316) plotted ten samples of
31 effects from purely random data. While the average of

the ten approximates a straight line very well, individually
they wander about the line in an irregular pattern, though
not enough to be misinterpreted as being real effects.
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In practice, since some effects may be real, we do not
know exactly where the slope of the line should be. 1Instead,
we allow the gata to determine where the straight line will
lie. It would be drawn by eye through points representing
thesmaller half of the ranked data. Ordinarily these should
go through the origin, but occasionally may not. The ;
farther the larqger effects deviate to the right of this line, %
the more probable it is that they did not occur by chance :
and are in fact reliable erfects.
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Interpretation tactics. Krane (1963) who adapted the
use of half-normal plots to multi-level factorial experi-
%ﬁé - ments, suggests an iterative approach to the selection of
g_i the real effects. He examines the largest point first to
? ! see if it lies far enough to the right of the line to be
2 judged real, and if so, removes it and replots the remaining
effects and again decides if the largest of the remaining
?'? effacts deviates far enough from the straight line to be
judged real. This continues until he no longer believes

that an effect is real.
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In practice, he may make a crude test of a number cf the
largest effects by drawing a vertical line from ithe point
where the horizontal line on which the largest rank is located
intersects the empirically constructed cumulative distribution
line. He then considers only those effects lying to the right
of the vertical line. Next, he replots the effects after
having eliminated those largest effects already judged to be
real, draws a new line and again judges whether effects to
the right are real.

In the replotting, since there are fewer cases each time,
the position of the rank order-lines on the P' scale must
change. For example, the 31st line in Figure 6 is at P = 99,19
on the full-normal probability scale or P' = 98.39 on the half-
normal plot. These values can be found in Table 9 of the
effect on the 31st rank is considered real and is removed, and
the remaining 30 values are replotted, the probability position
of the 30th rank is now based on an (N-1)=30 rather than 31.
Therefore, it cannot be plotted on the original half-normal
grid in Figure 6. The new P' for each rank must be replotted

using the equation:
P' = [(R - 0.5)/(N-1)] X 100

as was done before. Or, if it is apparent that the first four
largest effects can be removed, then a new P' value for the
rank 27 effect would have to be calculated. P' woull be 98.15,

Since a special grid has not been prepared for any size
other than 31, the reader can make his own by marking off the
correct grid on the upper half of the normal probability
paper. In this case, he would have to work backwards in his
calculations, first determining what the P' value would be
for a particular rank and a particular (N-1), and then
finding that position on the half of the normal probability
paper at P, where P = 0.5(P' + 100).
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g To facilitate this effort however, calculations of P’ :g
é and P for the first four largest ranks for values of (N-l) 5
%. from 63 down to 4 is given in Appendix V. For example, if

(N=1) equalas 27, then from Appendix V we would plot on one
half of a piece of full-normal probability paper the first
four largest ranks at the following positions:
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Rank P

a1 99.07
26 97.22 ¢
as 95.37
24 93.52

T TR

and assign the new P' = 2pP-100.
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Detecting defective values. Krane (1963, p 284-285) 3
discusses Daniel's 1966 conclusions regarding the use of %
half-normal plots to detect defective values, These are . 4
cited here briefly to inform the reader who may be interested v
in pursuing this form of analysis on his own but for whom b
Krane's paper may not be readily available. Krane noted that
the half-normal plot of an experiment involving a number of
small but real interactions may appear very asimilar to the
results induced by plot-splitting, because "split plot error
contrasts invariably contain a relatively larger number of
the higher order contrasts." He added. "Our practice is
generally to employ a split plot analysis only when knowledge
of the experimental techniques indicate ita propriety."

Krane also noted that because his analysis was usually based
on tranaformed data, he seldom experienced the downward con- §
vexity of half-normal plots that Daniel, in his 1966 paper,
believed indicated the presence of an antilognormal distribu-
tion of error. Krane pointed out, on the other hand, that
"the removal of a moderate number of points representing
apparently real effects often results in a dowaward convexity
of the upper portion of the plot. We generally attribute
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this appearance to the inadvertent removal of one or more
points representing error contrasts, for the results look
very much like the plot of a normal distribution with

truncated upper tail."

Daniel, in 1959, felt that half-normal plots could be
ugsed to detect defective values in the data. By the time he
had published his book in 1976, he no longer believed that
to be the case. In his book, Daniel (1976, p 149) felt that
"the signed contrasts in standard order have more information
in them than do the unsigned contrasts ordered by magnitude.”
He spends a good part of his book showing how residual analysis
can be used to detect distorted experimental values. This
should be an important part of the analysis of any experimental
data and can be of particular value in studies employing
economical multifactor designs with minimum replication.
Anscombe and Tukey (1963) also treat the subject of residual
analysis. This topic will not be treated in this report.
Both of Daniel's books (1976; Daniel and Wood, 1971) are
recommended reading for anyone analyzing applied experimental
data. Unlike the authors of many textbooks on statistics,
Daniel discusses and deals with the interpretation problem
from a practical point of view based on years of experience.

Standardized Half-Normal Plot (Zahn)*

If Daniel had proposed no more than the foregoing dis-
cugssion of half-normal plots, he would have made a major
contribution to the analysis and interpretation of unreplicated
screening design data. At the least, this type of plot warns
the user that large effects might in fact be due to chance.

At the most, in this computer age, it encourages the investi-
gator to engage in that almost forgotten art of studying his

*Just when this report was ready to go to press, the
papers by Zahn (1975a, 1975b) were discovered. 2ahn's work

(continued on next page)
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data directly. But Daniel did not stop there. 1Instead he
proposed the concept of a "standardized" half-normal plot
(dDaniel, 1959, p 322).

Daniel proposed that a acale-free, standardized half-
ncsmal grid be used on which fixed limits could be placed
to identify how far from the line deviant effects must be
to have a specified probability of being a real, rather
than a chance, effect. The advantage of this plan is that
it facilitates comparirons among sets of data using differ-~
ent criteria. Furthermore, it aserves as a graphic test of
statistical significance, alerting the investigator to the
possibility that he might be making Type I errors.

In the standardized version, Daniel's premise was that
with no real effects present in the data, the standardized
values of the absolute effects, when plotted on a half-
normal grid, would lie along a straight line through the
origin and the coordinate of the ordered effect at the rank
having the value approximating the standard deviation of
the data. The standardized values are obtained by dividing
the absolute effects by the estimated standard deviation,
Daniel estimated the standard deviation to pe the value of
the effect at rank, R = ,683 Y + 0.5 (with Y = the largest
possible rank for the set of data). For data involving

points out flaws in Daniel's method of producing "standarad-
ized half-normal plots." Since it is believed that half-
normal plots are powerful tools for interpreting unreplicated
screening data, the original discussion regarding Daniel's
method was removed from this report and this brief notation
regarding Zahn's work was introduced in its place. The
reader is encouraged to read Zahn's original papers and to
use his version of the "standardized half-normal plots."
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15, 31, and 63 effects, the standard deviations would be
approximated by the values at ranks 11, 22, and 44, respec-
tively, when no real effects are present in the data.

Based on the theoretical work by Birnbaum (1959),
Daniel (1959, p 322) provides the data for calculating
probability guidelines -~ "guardrails" -- which indicate
the limits above the "chance" line at which points may fall,
purely by cliance, a2 specified proportion of the time. This
is a form of graphic significance test.

Zahn (1975a, 1975b) recently proposed modifications to
Daniel's version of the standardized half-normal plot. He
notes a minor flaw in the plotting positions and a major
flaw in the method of calculating the guardrails for the
standardized half-normal plots. Zahn describes two versions --
X and 8 -~ of his own, but based on an empirical study, he
concludes that his version S is the superior one (Zahn,
1975b, p 210). The difference is primarily in the way the
standard deviation is calculated.

Zahn (1975a) proposes these changes in Daniel's
approach to standardized half-normal plots. Two minor
changes are:

1. Reorient the position of the grid so that effects

are on the ordinate axis and the rank orders

are on the abscissa axis. This corresponds, he
felt, "to the usual regression analysis graph
on which the random variable is plotted as the
ordinate" (p 191). He also suggests using the
raw effect values rather than the standardized
scors be used,
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2. MNake minor changes in the plotting positions
(i.@a., the z~values of P and P') on Daniel's grid
aince the standardized effects that Daniel uses
are hot actually half-noxmally distributed. :
sahn (p 192-192) recommenda minor changes when
there are 13 effecta and none when there are 20

¢ or more effects to be plotted.
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For n = 15, the ranks and Daniel's z=values are shown
below along with 3ahn's (1975, p 192, Table 2) recommended :
G z~values for the new plotting positions:

™
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s B

Rank Daniel's = Sahn's 3 g
15 2.12 2,050 !
14 1.64 1.626 ,
13 1.39 1.376 |
12 1.19 1.191
1 1,04 1.040

'90 .910

.78 794

.67 .688

.57 .589

.48 496

.39 .408

.30 .322

.21 .239

13 ,158

.04 .079
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P and P' values associated with Daniel's z's (d.f, = 15) can
be found in Table 9, this report, These values would shift’
for Zahn's 3. However, given the z-values, there is no
reason to obtain the probability values.
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The two major changes are:

1.

2.

Bt Mo Bt

Daniel makes his initial estimate of the standard
deviation of the data on the basis of a single
value, the effect at the rank position closest to
P' = 68.3. For more stability, Zahn proposes, in
his version S, to use a value based or the slope
of the ordinary least syuares regression line
through the origin of the standardized half-normal
grid, and fitted to the points of the smallest non-
real ("error contrasta") effects, i.e., from the
lowest rank, 1, up to rank a, where a equals
[0.683(n + 1) ].

The estimated standard deviation so defined is:

. . a
9 =) xr ) asr
(an) 2, 71 ii//i-l ir

wheare

0.683(n + 1) = number of effects to be
fitted

r = largest rank
X, = absolute effect at rank i
2i, ™ standard score of rank i on unit normal

probability curve (see footnote, page
86, this paper)

Zahn (p 195) proposes different criteria for deter-
mining the guardrails and therefore computes new
guardrails. The guardrails represent the distance
above the "chance" line, (i.e., the line through
the smallest non-real effects) at which different
probabilities of making a Type 1 error would occur
if effects plotted above those quardrails were
hypotheasized as real. Specifically, Daniel's
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approach failed to take into account the fact that
in the single experiment we are trying to estimate
whether a family of effects is significant. The
probability error rate (PER) is the probability that
there is at least one false positive in the family
of statements. Daniel's guardrails have a valid PER
only if no real contrasts are present. They were
appropriate for detecting one false positive. 1In
screaning designs, we expect more and thus we would
want to employ a different PER. For example, if we
wishk to have the Type I error rate for k = 9 real
effects to be a = ,05, then the guardrail beyond
which significant effects would be located on the
grid would have to have a probability error rate of:

PER = 1 - (1 = )X = ,37

Zahn (197%5a) uses rather elaborate statistics to
calculate the guardrails for his version X (p 196) and an
empirical Monte Carlo sampling study to determine the
guardrails for his version S (p 197). He does provide the
critical values by which new guardrails (for PER = 0.05,
0.20, and 0.40) can be plotted for N = 15 for his version
S model and N = 15, 31, and 63 for his version X model.
These are provided in Appendix VIII,

Zahn (1977) stated that he had done little with this
work since the papers were published. As far as he knew,
no one had determined critical values for N = 31 or 63 for
his version S model. He suggested that the guardrails for
version X might be used instead, along with the more
reliable version 8 estimate of the standard deviation, as
long as the investigator realizes that version S requires
slightly larger effects than version X for the same
significance level. The differences for N = 15 can be
observed by comparing the values in his Table 5 and Table
7 (also reprinted in Appendix VIII of this paper) or by
studying the plots, shown in his Figures 4 a and 9.
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In the behavioral sciences, one can use this approach,
but must beware of assuming that very precise judgments can
be made. For example, in applying half-normal plots to
screening designs, it is not certain that the distribution
of effects (representing values from aliased sources) is
necessarily the same as that of a full factorial with the
same number of effects, Also, the guardrails cited here
are calculated based on the assumption that a specific
number of effecta might be real. Thus, the critical values
for plotting guardrails can vary considerably depending on
the assumptions of the investigator (or the model employed
in the calculation). If we do not take these mathematically
precise values too seriously, we can make effective use of
the half-normal plots.

These plotted values are only one of a number of
criteria to be used for screening and selecting the most
important variables for future study. The half-normal plots
provide a check on an investigator overenthusiastically
declaring effects to be real when they might have bLeen chance.
Whether the probability of the Type I error is precisely 0,40
or 0.30 is not critical in this case. Used judiciously --
and we do need more experience in using them in behavioral
research -- these half-normal plots can be expected to be
extremely useful evaluative tools.

USING ORDERED DISTANCES WITH MULTIPLE RESPONSE DATA

Wilk and Gnanadesikan (1961) propose a method of graphical
analysis using ordered distances which represent a generaliza-
tion and extension of half-normal plotting. This will be dis-
cussed later in this report. Gnanadesikan {(19v3) illuatrates
haw these techniques might be used. His comments regarding
the use of these "internal comparison procedures" are important
from the point of view of research strategy and worth noting

here. He said (p 22~23):
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While formal proaedures, with formal or informal
interpretations, are useful in their oum way, yet,
a8 anyone who uses statistioa learns rapidly,

they do not aatiafy all needs, It is neithsr us-
ual nor productive to think that the real insights
into datq are gained by posing a few iucstiona in
terms of a few parameters and by seeking for their
answers through the use of ocertain formal tech-
niques. Statietioal proocedures, with or without a
Jomal probabilistio framework, whioh are aids, in
a sense, to "allowing the data to analyse them-
selves” are valuable tools in gaining ineights
into the structure of data . . . .

Informal procedures, with their ohief purpose of
serving as atds to learning from data a:zf ina
sense, unhampered by oconsiderations of probability
atatementa, should guide and stimulate the experi-
menter into partitioning the data, and studying the
partitions aeparately, both with respeot to the
treatment structure and with respeot to the response
atructure in the problem. Also, informal procedures
should depend on prior ae well as posterior (after
eeaing the data) considerations and judgment.

Perhaps the main advantage of a tool such as half-normal
plotting is that it encourages the investigator to leave his
computer outputs and immerse himself in his data,

VALIDATION TEST

Wilburn (1963, p 23) proposes a validation test on the
final selection of critical factors (and noteworthy interactions)
to ascertain that no large distortions occurred in the actual
responses that could have seriously altered the mean effaects.
He writes: "The procedure used was to determine the standard
error of the individual observed responses by analyzing the
thirty-one mean effects. A second standard error, for the
difference between observed and predicted responses, was then
obtained with the predicted responses based on the assumptions
that all mean effects other than those for [the critical
factors] were indeed zero. If the two standard errors would
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¢
then be equivalent, both the total experiment and the conclu-

¢ sions derived from it would be proved valid."”

The first standard error is estimated by ordering all of
the effects of the sources of variance judged to be non-

P critical and using the value at the rank position R for which
P' is most nearly 0,683, obtained from the equation:

{R=+0,683 (N-1) + ,5

¢
This would mean, for example, that the effect at rank 16
would serve as 3 rough estimate of the standard error of
23 sources, all considered non-critical.*

¢

fR= 0,683 (23 -~ 1) +0.5 = 16]
The second standard error is calculated as follows.

c First, do a reverse Yates' algorithm computation on the cal-
culated effects after making the effects of all non-critical
sources equal to zero., The answers so obtained are the
"predicted"” responses. Second, subtract the predicted

€ response from the actual, observed response for each condi-
tion. Third, rank order these differences including signs.
Pourth, plot them on normal probability paper
[P = (R - .05)/(N-1)] including signs. The difference value

¢ scale is along the ordinate; the probability (P) value scale
is along the abscissa, Fifth, draw a line through the plots
approximating the least squares fit, BSixth, determine the

vertical distance between the .50 and the .84 P values.

*The rank nearest to P =0,683 for all cases of n from 63
down to four are given in Appendix V,
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This distance read from the ordinate scale represents the
standard error of these differences between predicted and
observed responses., If the two atandard errors are essentially ;
equivalent, this is sufficient, Wilburn claims, to accept the {
experiment as being valid., (Note: Obviously, it is "valid"
only insofar as the mathematics is concerned. Validity of :
simulation, representativeness of the subjects and task, and ) 3
other features determine ultimate validity). 3

R S R T R T PN TP ST

NUMERICAL EXAMPLE OF A SCREENING STUDY ANALYSIS

An experiment was performed at the U. S. Naval Weapons
Station, China Lake, California that may represent the first
attempt on the part of engineering psychologiats to employ
a saturated fractional factorial and foldover design for
screening purposes. (Grossman and Whitehurst, 1976). In
this study the effects of eleven factors on the location and
identification of targets in a simulated terrain model wars
investigated to ascertain their rslative importance in that
task and to generate curves to indicate how performance
varied as a function of the more important effects.

BT o B0 A B T 5 S 8 bt e p

RS A N e 7, ¢ Ry owSan

The eleven factors that were investigated are listed in
Table 10. These factors could be divided into three classes
depending on whetlier they were subject, time, or environment
related. How the investigators handled the subject-related
factors within the uxperimental design was discussed earlier 2
in the section on the design of screening experiments. While ~
the investigators were primarily interested in the effects of y
the single factor, Visual Acuity, on target acquisition, the
use of this multifactor plan illustrates how a much more gen-
eralizable data hase can be achieved with this apprcach than

had acuity been studied alone.
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TABLE 10

% THE ELEVEN FACTORS AND THE TWO LEVELS ASSIGNED EACH FACTOR
g Levels |
E Factors - + .
4
i A. Visual Acuity 20/40 20/20 |
3 B. Depth Parception Poor Good i
: C. Color Vision Deficient  Good ;

D. Experience 2 Trials 14 Trials

E. Slant Range 1600 m 800 m

F. Target Type APC Tank

G. Masking 50-75% None

H. T/B Contrast 1.15 2.40

I. Pattern Painting . Pattern Sclid

J. Target Orientation 45 deg 90 deg

K. Target Density 1 Target 3 Targets

The 21§;7 experimental design was constructed from two
2377 basic and foldover blocks (Simon, 1973). This design
was made up of 32 experimental conditions and was capable of
estimating eleven main effects, fifteen strings of two-factor
interactions, four strings of three-factor interactions
(other than those confounded with main effects), and a block
effect. Four measures taken on each experimental condition
1 were combined into a proportion-of-targets-found score. No
;ﬁ effort was made to minimize or control sequence effects. The
: experimental conditions and the performance scores are shown
in Table 11.
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i Analyses of the 31 sources of variance are shown in
Table 12.* In it are given the Effects, the Variance, and

. . -
W i ¢ g Cr———— g . o0 3 gomnes
3 G T i A obabE R D o i L

*
C These are not the analyses found in the Navy report, which
left much to be desired in this regard. The analyses and con-
clusions in this report are solely those of this author.
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EXPERIMENTAL CONDITIONS AND PERFORMANCE
SCORES FOR_NAVAL WEAPONS CENTER STUDY

TABLE 11

Block I (Basic 230 7) Block II  (Foldover 23;7)
l ek . 250 17  abecdfghi 1.000
2 afhi +625 18  bcdegik 150
3 Dbfghk 128 19  acdei] 628
4 abegij 150 20 cdfhk 125
5 cfglj .250 21  abkdehk .87%
6 aceghk .750 22 bdtij 0
7 Dbcehi .250 23  adfgik .875
8 abefik 625 24 deghi 625
9 dghijk .87% 25  abcef . 150
10 adefyg 1.000 26 bchij 378
11  Dbdefik .875% 27 acghj .500
12  abdhj 0 28 cefgik .87%
13 cdefhj .625 29  abgik 378
14  acdik 250 30 Ddefghi 150
15 bedg 0 31  aethiikx 625
16 abcdefghijk 1.000 32 (1) 0
Oxder of Effects Acxoss Design Matrix in Block I*
New Strings
Screening | A | B | C|D] B JF|G]|H|I]JI]K/|(AD](B)](BD)](CD)
Label
Original
Factorial A | B | C D rBCD ABC|BCD{ARDIACDIAB |AC | AD | BC BD | CD
Label

*Block 11 is fold-over form. (See Simon, 1973)
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§ TABLE 12, ANALYSES OF NAVAL WEAPONS CENTER EXPERIMENTAL DATA
5 Cumulative !
q Nean Mean Eta Proportion ‘
Rank Difference Square Squared of Variance
1 (laxgest lst) gource (5ffect) (Variance) (n®) Acct'd For \
] 1 E .3359 .9026 .2662 .2662 : ; f
< 30 A .2422 .4692 .1384 4046 ;
29 G . 2266 .4108 1212 .5258 f
= a8 (mptoc). - 32266 -‘108 .1212 06‘70 3
o 7 r 1797 .2583 .0762 7232 P
e 26 X 1172 +1099 0324 1556 ; i
- 2s BC,DG,AF,HI,JK 1172 <1099 .0324 .7880 :
i 24 D <1016 .0826 .0244 .8124 !
23 ¥K,AJ,EX - .1016 .0826 .0244 .8368
4 22 AK,EH,FJ - .1016 .0826 .0244 .8612
A 21 BE,DX,GJ 1016 .0826 0244 .8856
P 20 AI,BG,CD,BJ,FH - .1016 .0826 .0244 9100
. 19 1 .0859 .0590 .0174 (9274
4 18 BX,CJ,DR .0703 .0395 .0116 9390
17 AB,HK, 1J - .0703 .0395 .0116 .9506
16 Block Difference - .0547 .0239 .Q070 .9576
15 H .0547 .0239 .0070 .9646 :
1‘ (ACE. . ‘.)‘ - .05‘7 .0239 00070 09716 | ;
13 AB,CF,DH,GI .0391 0122 .0036 .9752 P
2 12 AC,BF,GH,DI 0391 0122 .0036 .9788 gg;
\ 11 AH,BD,CG,ER,FJ - .039) 0122 .0036 .9824 ' 3
4 9 J 0234 .0044 .0013 .9650 P2
3 8 (ABE,...)* =~ .0234 .0044 .0013 .9863 P
3 7 BJ,CK,EG -~ (0234 .0044 .0013 .9876 ?‘1
2 6 EF,HJ,1IK L0234 .0044 .0013 .9889 ]
by 5 CE,DJ,GK - .0234 .0044 .0013 .9902 .
9 3 c .0078 .0005 .0001 .9916 ! %
Z 2 (ADE,...)* .0078 .0005 .0001 .9917 | 3
3 1 AG,BI,CH,DF .0078 .0005 .0001 .9918 .
k- b
1
4 ‘_‘i* 5
f ! *Represents a string of three-factor interactions. > t ‘)
[ S
§ f §
o
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sta squared for each source along with the Cumulative Propor-
tion of Variance Accounted For.

5 {.‘ér’ )

In the table, the sources have been ranked from the
largest to the smalleat effects. From that data, half-normal
plots are supplied for this experiment (Figure 7-A) and for a
second experiment (Figure 7-B) that was a repetition of the i
first but with different subjects. No other data is given ;
here for the saeacond expariment.
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No detailed discussion of these results will be given
here except to note that from an examination of all the data,
it appears that at least four or five factors (E,A,G,F, and
possibly K} out of the eleven appear to be critical. One
three-factor interaction showed a large effect and a cursory
examination revealed that out of the triple interactions in
the string, one was Interaction AEF. Also the string of two=
factor interactions showing the largest effect included
Interaction AF, Since these both include the factors showing
large (even larger) main effects, it suggests that both might
be ordinal, and would not change the decision regarding the
criticalness of any factor. From the half-normal plots
(Pigure 7), the only real difference between the results of
experiments A and B is the increased importance of Factor K
(target density).

G
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&

No effort was made to diacover why Factor X took on im-
portance (i.e., eta squared = .139) for the second group,
whether it was subject-~by~factor interaction effect or the
reasult of some unsystematic disturbance to the data. Factor
D, on the other hand, was not considered a critical factor
within the limits of the Experience (i.e., familiarity with
the terrain) levels in this study, for three reasons: 1) it
does not show up as a better-than-chance effect on either
half-normal plo:; 2) its effect is trivial in the second
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experiment (i.e., eta squared = ,002); and 3) in the design
used for that experiment, the D effect could be severely
confounded with a quadratic trend effect (i.e., 718) if one
exists. No centsr points were included in the original ex-
perimental design which might have provided a measure of
trend through the data, as well as the basic for a test for
lack of fit of the linear model of the screening design.

The investigators at the Naval Weapons Center ran
another study using factors A,D,E, G* in a 2%x4? factorial
design and did an analysis of variance on the data. All
factors but D were statistically significant at better than
p = .00l, while the F for Factor D was less than 1. The four
factors plus several of their interactions accounted for .86
of the variance in that experiment, suggesting that the
screening study was successfully picking important factors.
Two-hundred fifty-six observations were required for this
factorial study, and although functions were approximated
through the mean data points for several pairs of factors, no
overall function was calculated. Considerably more informa-
tion in more useful form might have been obtained more cheaply
had the original screening study been augmented with addi-
tional data points to create a central-composite design to be
analyzed by a regression analysis.

1.'l‘hesle letters refer to the factors as labeled in
Table 10,
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VI. ANALYZING SUBJECTS AS REPLICATIONS*

In the typical psychology experiment, when several
subjects are tested on the same axperimental condition,**
the investigutor will analyze the subject data by averaging
each effect across subjects. Even when subject variance is
isolated in these experiments, subject-by-fact-r interactions
are usually included in the estimate of the "error" variance.
This so-called error variance then is used to test the stut-
istical significance of the estimated experimental effects.
Of all the uses of subject replication, this most common use
is probably the least informative.

When subjects are used in an experiment for replication
purposes (which implies no interest in critical subject
characteristics insofar as the replication group is concerned;
the groups are presumed to be homogeneous), two kinds of
analysis can be performed that will be considerably more in-
formative than a test of statistical significance. In the
early stages of the research program, the screening stage,
where economy is being emphasized and little replication is
anticipated, each subject as a raplication who is added
should represent a separate verification study. Each individ-
ual's data should be independently analyzed and the results

*Thia designation is used to distinguish this use of
subjecis from the case in which subjects are introduced into
the experiment to represent specific combinations of subject
characteristics. We expect subjects as factors to show a
difference, or at least, would not be surprised if they do.
On the other hand, we "hope" that subjects as replications
will not differ in their performances, but would be
interaated to know if they do.

In a survey of 239 experiments published in the Human
Factors Journal, the NMedian number of subjects as replications
was nine (Simon, 1976b, p 27).
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compared among subjects. 1In this way differences due to a
bad measure or to important subject-by-factor interactions
can be detected rather than hidden among the averages. At
the end of an experimental program, the data from subjects
as replications would be used to establish confidence limits,
which from an operationai point of view is far more useful
information than a test of statistical significance.

ESTIMATING CONFIDENCE LIMITS

Cochran and Cox (1957, p 5) have this to say about signi=-
ficance tests and confidence limits: ". . . tests of signifi~
cance are less frequently useful in experimental work than
confidence limitas. In many experinents it seems obvious
that the different treatments must have produced some dif-
ference, however small, in effect. Thus the hypothesis that
there is no difference is unrealistic: the real problem is
to obtain estimates of the sizes of the differences. The
construction of confidence limits may add something to the
intsrpretation of a test of significance." They note that if
the difference between performances on two machines is not
found to be statistically asignificant, it does not prove
that the performances (and thus the machines) are identical.
They argue that if the 95% confidence limits for the dif-
ferences in performance were relatively amall, then the true
differences would probably be of no practical significance,
and ", . . consequently, it could be said that for all
practical purposes the 2 machines are identical in speed.
This is much more positive and useful than the mere
statement that the difference in speeds was not atatis-
tically significant." Conversely, they add, if the confi-
donce limits are large, then ". . . there is noc justification
for the conclusion that the machines can be regarded as
equivalent. All that we have learned is that the data are
not sufiiciently accurate to show whether there is a
difference in speed that is of practical importance.”

110

s .

. I Ty
R PN AT YT )

Y Re ARSIV IS

bt 58 50 10 frsrss..

ATy S

figttenin

)

stk

T T o 7 S s,

Jov




EPOTRR SNBSS+ maen wowma v -

(R R A

In problems of equipment design, valid confidence limits
are of considerable operational importance. While mean
performance is useful to know, knowing the limits -- i.e., the
estimated performance of the 95th or the 5th percentile man --
may be even more important from the standpoint of safety
and/or mission success.

Confidence limits can be estimated with the following
equation:

ts
100 (1 - a)%s Confidence Limits = Mean ¥ :

Where: t is the Student t for n-l degrees of freedom at
the error level

a 1is the probability of Type I error the investigator
is willing to risk

is the number of observations on the condition
8 1s the standard deviation of the replications

INTERPRETING MULTI-SUBJECT DATA

Subjects as replications should not be averaged together
until it has been established that they are in fact homogen-~
eous, at which time averaging becomes a cleaner way of
handling the data although a less informative one.

When subjects are used as replications, a complete analysis
should be performed on the data from each one separately and
the results compared. A number of possible outcomes may be
anticipated, each with its own particular interpretation.
For example:

1. The rank order of the different sources of var-
iances (based on the magnitude of their effects)
is essentially the same for all subjects.

111

..W»...w.,uw«",.,-_“-
PRS0 a o2

)

I
v
'z
,!f
b3
i
bod
r
i
t
5




LY R i S

2. A few sources are consistently ranked first for
all subjects but after that there is little
agreement.,

3, The ranks agree among some subjects but not
among others.

4. There is essentially no agreement in the ranks of
the sources among subjects.

If the overall ranking of a majority of factors in a
screening study agrees across subjects, there is reason for
confidence that the results are probably accurate. It can
be argued, of course, that just because two or three subjects
agree that is no reason to believe that the results from 15
to 20 subjects would also agree. A sample of three, the
argument goes, is just too small. It could, of course, be
argued that in a population of thousands, 15 or 20 subjects
are also a rather small number. However, it should not be
forgotten that the purpose of this strategy is to check for
gross errors and to do so as economically as possible. 1If,
in fact, neither time nor economy are major considerations,
then one might run the thousands of subjects. This still would
not deny the importance of examining the results from each
one at a time to find discrepancies. One strategy to increase
one's confidence in the data from a few subjects is to
select the faw subjects at opposite extremes of skill or
experience, for example, to test the limits. But when the
agreemen. .; good, for a screening study, only a few subjects
(and a competent investigator) will ordinarily suffice.

As the differences in rank become more evident, more
subjects may be required to understand why this is so.
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If there is essentially no agreement in the source-ranks
among subjects, it may be due to:

1. The collection of analysis of the data was sloppy
with either considerable measurement or observa-

tion errors.

sk e U AL I A i R eV R A

vt st

2. The performance measure may not be relevant to
the problem or the task.

2 Ao ey ke

3. The factors actually have trivial or no effects
cn performance.

4. The task is either too difficult or too easy and
little differentiation in performance is occurring.

R ler e SR8 PR B 2F B ntdanad

When a few factors consistently rank first among subjects, '
but the remainder fail to agree, it is likely that those not gf
agreeing are non-critical sources of variance and therefore :
show a variability both within and between subjects due to
chance. The magnitude, as well as the ranks, will help de~
termine if this interpretation is correct.

- v
vz ray

When the source-ranks among some subjects agree and
disagree among others, several explanations are possible.

i

i

{

1. If the results show several groups of subjects %
!

}

. For example:
consistent within but not between groups, then %
) it suggests that there may be unidentified subject :
€ factors interacting with the other factors. This §
is an important finding and should be investigated ;
further. 3
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¢ 2. If there is some consistency in the source-ranks
E’ among some subjects and no consistency observed
% among some others, this may mean that:

4

e a. The inconsistent subjects were doing so

§| poorly that nothing really mattered,

5 b. There were data-collection errors among

the inconsistent.

mental effects.

mental effects.

tion.

assumption that this is a cleansing process.

results may lead to a distortion of the truth.

114

L L SN . N _ N _ N R

c. The inconsistent subjects had not stabilized 3 4
their procedures before beginning the experi- [
ment and either changed their approach to the
task in mid-study or exhibited learning (or
fatigue) effects that distorted the experi-

d. The inconsistent subjects were tested across
conditions in a different order and unisolated
sequence effects might be distorting experi-

Inspection of the raw data will often help find the explana-

These are only a few possibilities. Only by inspecting
f the raw data before it is aggregated can an investigator

3 begin to have faith in his results, particularly when the
amount of data is small. Certainly wlen inconsistencies are
obgserved, they should not be hidden by averaging on the

It is not.
Averaging at the screening phase may hide important effects
or the fact that the data is poor. Interpreting averaged
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VII, ADJUSTING EXPERIMENTAL EFFECTS FOR TRENDS

Although the screening designs proposed in this report
are robust to trends, when any overlap with a trend effect
might distort the data more than is deemed incidental, the
investigator may wish to adjust statistically the experi-
mental effects for trends. An examination of the Percent
Overlap data at the bottom of design matrices for the 16,
32, and 64 factors (Table 1, Appendices II and III,respectively)
show which effects require adjustment. Even if the investi-
gator has used procedures that are likely to minimize any
trend effects, he may atill wish to adjust as a precaution.
It is apparent from the tables that those effects which must
be adjusted for linear and cubic trends need not be adjusted
for quadratic, and vice versa.

The methods of adjustment described here were taken from
a paper by Daniel and Wilcoxin (1966)*. They applied the
technique only to linear and quadratic trends. Methods for
adjusting for cubic trends are also included in this report.
When linear and cubic trends are both confounded with an
effect, both must be adjusted simultaneously.

*Those who wish to refer to the original paper by Daniel
and Wilcoxin (1966) to learn how the equations for the cor-
rection values are derived, will find the following pages in
that paper the most informative. The general equation for
deriving the correction factor for linear or quadratic trends
is (4.10) on page 273; no equation was provided for calculating
the cubic trend. The (L) term [or (Q) term] in that equation
can be calculated from the sequence of identities (4.1) and
(4.2) shown on page 269. It may also be calculated as the
sum of the cross products between the particular integer
Tchebycheff orthogonal polynomial coefficients and perfor-
mance. Equations (4.7), (4.8) and so forth on page 272 are to
be used to correct the appropriate estimated effects for
trend. In Appendix VI of this report the derivations are
given for the aquations needed to adjust for both linear and
a cubic trend together,
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CONSTRUCTING AN ARTIFICIAL PROBLEM WITH TREND EFFBCTS

To illustrate how corrections for trends are calculated
and used, artificial data generated for a two-factor experi-
ment, replicated twice, will be used. There are, therafore,
eight observations and three effecta, A, B, and AB. When
the experimental conditions are arranged in the Standard
Order, i.e., (1),a,b,ab,(1),a,b,ab, the performance scores,
unbiased by trend effects, are:

"7' '.'10 "3' '.’9' "7' +10 "3. *‘9

respectively. These yield a mean performance of zero, re-
gression coefficients of 5, 3, and 1 for the effects A, B,
and AB, respectively, and no error. The equation formed from

that data is:

Y = 5A + 3B + 1AB

To introduce trend effecta into the data, linear,
quadratic, and ocubic coefficients of the integer Tchebycheff
orthogonal polynomial (Fisher and Yates, 1963; Bayer, 1966;
DeLury, 1950) were multiplied by a factor of -4, 2, and 1},
respectively, and added to the experimental performance data.
The total design, with supplemental data to illustrate how
the pertormance data was produced, along with other calcu-
lations to be used later to adjust for trend effects, is
shown in Table 13, The differences between the trend-free
and trend-biased effects in this example are shown in Figure 8.

The trend-free and trend-biased performance values from
Table 13 can be analyzed using Yates' algorithm to esti-
mate the effects of A, B, and AB. These analyses are shown
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in Table 14. A comparison of the coefficients of the three
effects before and after they have been biased by trends
reveals:

Effect Trend-free Trend-biased

A 5 3
B 3 2
AB l 3

Y u ey Ak e F AN DR T S e A AR

AT

T DR
SRR IR R TR

The differences are striking. In addition, no replication 3
or replication interaction effects are indicated with the
trend-free data but (as can be seen in Table 14-B) both
show large effects in the trend-hias data. This would
ordinarily be delegated to an error variance.

In practice, were this a real experiment, the investi-
gator would have no idea what the true trend-free results
should be. After all, the purpose of his experiment is to
discover that from the sample data. All he knows are the
performance scores and the results of their analysis. 1If
he has no way of measuring the trend effects, or for that
matter, even know for a fact that they exist, there is the
real and ever-present danger that the only information he
has will be distorted as in this example. Neither he nor
his publj :, if he publishes, can know for sure. Eventually
this distorted data becomes part of the lore naively referred
to by some as "scientific" fact. It is not necessarily true,
as some defenders of poor experimentation like to claim,
that some informatior (however poor) is better than no
information. When poor information can lead to erroneous
decisions, it is batter to have no information.

To offset these possibilities, the conscientious ex-
perimenter should first use procedures that help reduce or
eliminate unwanted trend effects. Next, he should assign
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TABLE 14

ESTTMATING EXPERIMENTAL EFFECTS IN THE
SSENCE AND PRESENCE OF TREND EFFECTS

3 Unbiased
Bxptl. Effect- Coeff.
Cond.  Perform, 1 2_Totals 18 Source
(1) -7 -6 0 0 0
a +1 +6 0 40 ) A
) -3 -6 20 24 3 B
_ab +9 +6 20 8 1 AB
Q) -7 +8 12 0 0
a +1 +12 12 0 0 Errorx
b -3 +8 4 0 0
_ab_ +9 +12 4 0 0
(14-A) EXAMPLE OF ANALYSIS OF DATA WITHOUT TREND BIAS
3 Biased
Exptl. Effect- Coeff. Unbiaged
Cond.  Perform,. 1 2_Totals 8 Source Coxraction Coeff.
(1) 28 56 72 0 0 0
a 28 16 -72 24 3 A - L=2C = )
b 10 -48 -4 16 -2 B -«2L=3C = 3
ab 6 ~24 28 24 3 AB ~Q = 1
(1) -24 0 =40 =144 -18 C  Repl 0
a ~24 -4 24 32 4 AC 0
b <26 0 <4 64 8 BC }(E’“" - 0
ab 2 28 a8 32 4 ABC 0

e e i

(14-B) EXAMPLE OF ANALYSIS OF DATA WITH TREND BIAS,
SHOWING HOW BIAS IS CORRECTED
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for whatever trend remains. The method supplied by Daniel
and Wilcoxin (1966) and supplemented by Webb (1977) is
described next.

L

{

;

s
4

his moat important factors to trend-free columns. Then, as d

" a final precaution, he should adjust the estimated effects g
P

VAR

DETERMINING THE VALUE OF TREND~ADJUSTMENT FACTORS \

iR R s e

If the investigator wishes to correct for linear or |
quadratic or cubic trend effects alone, each of these can
be calculated independently of one another using equations
I or II or IIl,respectively, in Table 15. If he wishes also
to adjust for cubic'trends as well, when they are correlated
with linear trends, the adjustment factors for the two
trends must be calculated simultaneously using the pair of
equations, IV a and b in Table 15. The information required
to solve these equations will be found in Appendices I, II
and III as well as the equivalents of Table 14-B for new
problems. In the discussion that follows, the artificial
trend-biased data from the functional design described in
the previous section will be adjusted for trende. How to
perform the analysis when a screening design ratherx than a
factorial deaign is involved will be discussed later,

o
MR T 52

Linear Adjustment Factor L

Equation I in Table 15 is needed to calculate the linear
adjustment factor. The numerical substitutions for symbolic
values in this example are shown below:

-
)

[8(168) - (8)2 - (16)2]L = B(-584) - (8) (24) - (16) (~16)

3

{1024) L = =4672 -192 + 256 = -4608

*

L bd "4.5

,»WW‘wme’mwmmww@;g:»uwmm ST B b e e e
.
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é EQUATIONS NEEDED TO FIND TIB LINEAR, QUADRATIC, AND LINEAR/CUBIC CORRECTION VALUES fj
. | ]
3
B !
E I. Eguation to Determinec tho lLinear Correction Value g{; i %
} ke
¢ (V- -0 2w ] L e 0e) - WO - WO - (LR ()., i g
g 11. Equation to Determine the Quadratic Corracticn Value g§z E
g . Inte-n -0 02,1 G = NlER) - (OX) () - @YY - Q2 D)., i
5 I1I1. Eguation to Determine the Cubic Corrcction Value ]iz ﬁ
& [N« (k) 2= (k02 (x3) 2..0) K = NIRP) = (KK (XD = (KYD(Y) = (K2)(D)...
£ .
g IV, Simultaneous Bquations for Determining Linear gizglus Cubic gi) Correction Values ?
1 »
: &) (Niet) - )2+ 2d - L) L - [(X) (KK) ¢ (1Y) (KY) 4.0] K = N(LP) = (LX) (K) = (LY)(Y) =... ;
@ B} =[ULX) (K) 4 (L) (KY) ¢00 ] L 4 (KR~ (002 - (kD200 ] K » NKRY= (KKD (XD = (KYD(Y) =... .

SYMBOLOGY FOR TABLE 15

N = Total number of observations, r2X"F, whore p may be any valus from 0 up
to (k-1), and r is the number of times design is replicated.

soeizy . -
e R LA s E R A T WP R P I vT Tt

LA CIP bie 234tz oy - ! “ . T
e Fass et i ALBAER S e AT desd e s e o S b i s s ST

L.Q, o K = Ordered integer Tchebycheff orthogonal polynomial coefficicnts for iineav,
quadratic, or cubic trends, respectively. (Found in Fisher & Yates, 1363;
. Bayer, 19663 DeLury, 1950).

[t

LL,QQ, or KK = Sum of squared L, Q, or K Tchebycheff corfficients, respectively.

., P . o Performance values (as found in Table 14, second column). .}
LP,QP, or XP = Sum of cross products between Tchebycheff coefficients for a specific
‘, trend (L, Q, or X, respectively) and the cotrespondinq rerformance values

for the ordered experimental conditions.

X,Y,2, stc = Ordered cxperimental conditions {*1) for Effects X,Y,2 etc (as found in
experimental design). (Numbex of effects involved depends on how many
are corxrelated with particular trends being corrected.)

-

1X,LY,L2Z, etc or
 #] QX,QY,Q7, otc or

KX, XY, X2, etc = Sum of cross products (called “"inner products”) between Tchebycheff
coefficients for a specific trend (L,Q, or K, respectively) and the
ordered experimantal conditions (% 1) for Effects «,Y,2 etc (depending
on how many are correlated with the particular trend being corrected).
{Inner products for the desiqns in this report can be found in
Appendix 1-C, 11-D, and 1I11-D.)

n.-.,?'nﬂ?—-: ”r .

L €] (X),(¥),(2), etc » Effect-totals for Effects X,Y,Z etc (depending on how many are
correlated with particular trend being corrected). (Effnct-totals are
found in the last column of Yates' analysis, before dividing by N, e.q.
as illustrated in Table 14.)

o vy ———

< L] L]
L, Q, or X = The unknown trend (L, Q, or X, respectively) co:irection value to be

determined. .
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Note that while A, B, and AB are the only real experimental
effects in this example, with eight observations, in theory,
all effects of a 2! factorial can be estimated. For example,
in Table 14-B we see that the effect-~totals of the imagin-
ary factor C is ~144. 1In fact, this C represents a block
effect, the difference between the two halves of the repli-
cated experiment. At least one of the effects that is
correlated with a linear trend cannot be used as an experi-
mental factor in order to provide the necessary degree of
freedom for the trend estimate. Factor C, the block effect,
therefore would serve this purpose, it being the only
remaining source of variance confounded with a linear trend.

Instead of using Squation I, Table 15, to make the
calculation shown above, the adjustment for linear trend
could have been done this way:

(1024) L = LC(C)
(1024) L = 32(-144) = -4608
L = =4.5

In this calculation we used
[Lc(c)] instead of [N(LP) - (LA)(A) - (LB)(B)]

since they are equivalent. The equation on the right
removes from the total, N(LP), the (LX) (X) terms of all
sources of variance that were included as experimental
factors correlated with linear trend (i.e., A and B).

That would leave as a remainder, the value for all sources
of variance that were not included in the experiment but
were correlated with linear trend (i.e., C), which is
what LC(C) represents.
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Quadratic Adjustment Factor Q

The calculations for isolating linear and quadratic :
adjustment factors are the same except that Q-values are ? g
substituted for L-values, as shown in Table 15, Equation
II. The substitution of numerical for symbolic values in
this problem are shown below:

[8(168) - (8)2]Q = B(+344) - 8(+24)
(1280)Q = 2752 - 192 = 2560

[ P ST
"

6--0-2

As was done when estimating the linear trend adjustment
factor, all the non-experiment =ources of variance correla~
ted with a gyuadratic trend could have been used to arrive
at the same answer. For example:

1280 Q = 16(32) + 32(64) = 2560
Q = 42

Cubic Adjustment Factor K

This calculation would parallel the linear or the quad-
ratic examples, except of course, only the terms that were
a source of variance in the experiment and were correlated
with a cubic trend would be involved. These are shown in
Table 15, Equation III, The calculation would be:

[8(264) - (16)% ~ (32)%]K = 8(416) -~ 16(24) - 24(-16)
(832)E = 3328

K=~ {4

124

S VE AU SR 1 S o)




R s

TR S T T T T e s < e iy

SR o S R o R 2

Linear Plus Cubic Adjustment Factors

Because the data was generated artificially, we know
that both the linear and cubic adjustment factors just
calculated are not correct. The linear one should not be
-4.5 but -4, and the cubic should not be 4 but 1. These
discrepancies ocour because the linear and cubic trend
effects are correlated with one another and if we intend to
adjust the effects for both, then the adjustment factors
must be determined for both simultaneously, This means
that one may carrect for linear and/or quadratic trend
effects, but that if one were intending to correct for
cubic and linear, the set of simultaneous equationa, IV-A
and B in Table 15 should be used to determine the pair of
adjustment factors.* The substitutiona of numerical for
symbolic values in this problem are shown below:

a) 8(168) - (8)%- (16)* L - 8(16) + 16(24) i = 8(-564)-[8(24) + 1€(-16)]

b) - 8(16) + 16(24) L+ 8(264) - (16)2 (24)°K + 8(416) -[16(24)+24(-16)]

which can be simplified to:

1024 § -~ 512 K = -4608

=512 L + 1280 X = 3328

.ThOIG equations were derived by Dr. Steve Webb. The
derivations are shown in Appendix VI.
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If we multiply the sacond equation by two, we can eliminate

L, and solve for iz

1024 L - 512 K = -4608 !

-
= 2
21 s TR SN s S S i e e

*

| =1024 L + 2560 K = 6656
'8 .
: 2048 X = 2048

K= 1

e Substituting this in BEquation IV-a,

1024 L - 512 (1) = -4608

,.(.‘!-!. e

f. we simplify and get

1024 L = -4096

L= -4
L«
These values of £,~4, and ﬁ,l, are the weighting factors
that we reused to create the artificial data.
e Making the Adjustment for Trend
The equation for adjusting for any single trenr? effect is:
a X = (X) - TX (T)

N
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wharez§ is the adjusted effect

(X) is the effect-total of the source being adjusted
(e.g., A, B, AB, etc)

T is the particular trend correction factor (e.g.,
L or Q etec)

TX is the sum of the cross products between the
coefficients of the particular trend and the
source (e,g.,, LA or QA or LB, etc)

N is the number of independent observations in the

expariment

For example, in our fictitious data in Table 14-B, the
coefficient for the biased estimate of Interaction AB is 3.
To correct that value for the bias introduced by the quad-
ratic trend, we solve this equation:

A.Bl' (AB ;': X (

A'BH 24 -9' 8(2)

-

AB = +1

The trend-free estimate of the coefficient for Interaction
AB is 1.

To adjust on effect for both the linear and the cubic
trend, the general equation is:

(X) = LX(L) - KX(K)
N

X =

Thus to correct Factor A for both linear and cubic trend
bias, we substitute:
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, 5
K 1
4
g
a4 - 8(-4& - 16 (1) _ +5 %
10 and for B: %
=16 - 16(-4) = 241) . oy o
» both of which are the coefficients we had derived before |
trends had been introduced to distort the data. o
L3
If one were to apply these same adjustments to the z j
g trend-biased effect~totals for the sources of variance B
associated with the block (replication) differences and ‘é
each block~-by-factor interaction, the corrected values f
would all be zero as they should be in our fictitious data. :
s :
Applying Trend-Adjustment Techniques to Screening Designs :
Applying these technigues to screening designs involves )
2 no unique problems as long as the analysis is done with the g .
original factorial labels in mind. The results from the P
Yates' algorithm will automatically rank the data in Standard P
Order using the original labels. These ariginal labels are to ~§i
s be used as references to find in each screening design the '
values needed to make the trend adjustments for the partic- o
ular effect. After the corrections have been made, the new %
screening design labels would be substituted for the ;‘
s original factorial labels. '
;
i
b
s .’
s
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VIII. HANDLING MULTIPLE RESPONSES IN SCREENING STUDIES

Human performance is situation-specific and complex.
To understand and predict performance, therefore, it is
necessary to examine all of the critical factors operating
at the time performance is being measured (including those
associated with antecedent events that also can affect per-
formance). Equally important, but more frequently ignored,
is the importance of providing measures that reflect the
complexity of performance in toto.

Although methods of handling multiple performance
criteria have been around for decades, experimental psychol-
ogists in general, and engineering psychologists specifically,
have tended to examine the effects of experimental factors on
multiple performance measures, a criterion at a time. As
performance under operational conditions is generally complex,
this one-at-a-time approach regarding responses is no more
acceptable than it is regarding stimuli or the task situation.
Informative results will be obtained only when it becomes
common practice to perform bilateral multivariate experiments.

ADVANTAGES OF BILATERAL MULTIVARIATE EXPERIMENTS

The following are reasons why an investigator would want
to include multiple responses as an integral part of his
experimental plan and analysis:

l. A single measure usually does not adequately
represent the typical complex performance under

investigation,

2. A single measure may be an acceptable unitary
concept but understanding would be improved if
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it were broken down into component measures,
rather than tying it to any single one.

Discovering evidence of interaction among response
measures improves one's understanding of a phe-~
nomenon.

An analysis of multiple effects jointly may lead
to different conclusions than would the sum of
respunses analyzed individually.

Understanding the joint contribution of several
response variables can make it possible to select
a smaller but most efficient combination of
variables with which to measure performance.

It ic more economical to carry out a single test
rather than a number of separate tests for each
response before a significant effect is detected,

Multiple responses increase the generality of the
results.

A multiple response measure of performance in many
situations is the more natural condition, whereas
if efforts were made to hold some measures con-~
stant, artificial restrictions are introduced into
the data to distort the interpretation. However,
comparisons and assessments of factors and inter-~
actions when there are multiple responses are
complicated by the fact that there is no unique
linear ordering for vectora. Different approaches
have been devised to overcome this.
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g The independent variables in screening designs are é
%‘ . orthogonal (uncorrelated)., However, it is highly likely 5
%; that the dependent variables -- the responsea, the criteria -- 3
5? will ba correlated to some degree. ;
gﬂ . Once an investigator has decided to make multiple §§
%ﬂ responses a critical part of his investigation, he must %;
%ﬁ then decide how he should analyze his data. It is not if
%ﬁ alwaya obvious -- and in fact, it may be counterproductive -~ §é
%%:K to use the most sophisticated and formal methods of analysis fé
% available. % ;
% A statement by Gnanadesikan (1963, p 23) is apprcpriate g
£5,€ here: ié
Whila the majority of multiresponse techniques, if
; especially those in the formal framework of hy- .
5? - pothesis testing, have been thought of as ;;
-1 analogues of certain uniresponse prooedures, ok
§;§ yet from the standpoint of useful interoreta- ?%
;f tions quite often thase procedures are not such %?
é;; - analogues . . . . It should, therefore, be em- %%
- phasiaed that a multiresponse analysie should be i3
E ; congidered as supplement to and not replacement %
o for parallel uniresponse analyses. Methods ‘

which stimulate the user to look at subsets of
reaponges, including the study of several
responses individually, are thus very useful, £

L A R e R P T AP

In summary, the sophisticated investigator avoids a single
cookbook analysis but instead examines his data with any
technique that is likely to provide useful information.
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Scope of This Section

A great many papers and books -- dating back to the
mid-1930's ~~ have been written about the methods for
analyzing experimental data involving multiple responses.

In this section, therefore, no attempt will be made to
explain the derivations of these methods in depth, nor to
provide the reader with more than a cursory ~- conceptual -~
description of how to use them. The purpose of this section
is to alert the experimentzl psychologist to the advantages
of techniques of multivariate analysis and to encourage him
to use them as a normal part of his experimental program,

To do this, some of the more popular as well as some less
familiar methods will be described. In some cases, enough
information will be provided, hopefully, to take some of

the mystery out of less familiar statistics, at least enough
to make them easier to understand when the user must go to
original papers to learn the mechanics of how to use them.

Some simple methods of analyzing multiple response
methods are described because in many cases they will be
more responsive to an investigator's needs than one of the
more sophisticated analyses. For some of the more complex
analyses, recent innovations that facilitate the interpre-
tation of the data will be described. 1In some cases a
method may be selected to avoid a large or unusual computer

effort.
As Wilk and Gnanadesikan (1964, p 613) wrote:

« + . there 18 a long existeant need for procedures
to handle data involving multivariate responses in
such a way that the resulting statistical summary
and analysis (i) takes some account of the multi-
variate structure, and (ii) encourages insight
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into the experimental stituation (as distiiot from
aarrying out artifioial and often pointless tests
of hypotheses). The indefinitenses and complexity
of objsatives of statistioal analysis of multi-
response data emphasize the need for general
informal procedures whioh help to convey to the
data analyser some of the tnformation tmplicit

in the data.

Hopefully, this section, while in many respecis meager, will
at least show the reader that there are choices to be made
and provide enough detail to help him make the choice.

WEIGHTED CRITERIA

If the relative importance among n different sets of
responses is known and can be quantified, the investigator
can reduce the multiplicity of responses to a single value
and treat the data as a unilateral analysis. For example,
if all of the responses or criteria can be associated with
a dollar value, or weighted according to their contribution
to some other single coacept, then they could be combined
into a composite variate, W.

Before the weights are assigned, however, each set of
performance scores must he transformed into standard scores.
The standard score for each set of responses would he:

z, = =3 (1 = 1 to n sets of responses)

where y is the mean of the particular set of performance
values. Each set of performance measures, 2; through zn
would be assigned the weighted values b, through bn
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respectively and a composite score, Wy for each experimental
condition would be caloculated, thus:

GRAPHIC INSPECTION

If the independent factors are quantitative and contin-
uous, each performance measure may be presented graphically
as a "response surface," which, with two predictor factors,
has the appearance of a contour map with equal performance
contours (e.g., Figure 9a)., The hills and valleys of these
response surface contours indicate the maxima and minima
performance positions that can he associated with the co-
ordinates (or values) of the independent factors. When
optimum locations among multiple criteria do not coincide,
the investigator must find a way of studying the data in
order to make the best and most practical compromise.

If an investigator wished to find the optimum values
of two predictor factors for a combination of performance
measures, the contours for each measure could be drawn on
a common coordinate aystem (e.g., Figure 9b). However, when
there are more than two or three predictor factors, this
graphic method bacomes awkward to use unless it is meaning-
ful to fix all but two of the predictor factors.

Given ovarlapping response surfaces, for example, one
showing performance and the other showing costs, an investi-
gator may visually search for the values of the equipment
parameters (the predictor variables) that lead to some ac~
ceptable compromise between the two criteria,
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Figure 9. Artificial Data Illustrating Graphic
Overlapping of Two Response Surfaces
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USING LA GRANGE MULTIPLIERS

When there are too many independaent variables to plot
on a two-dimensional piece of paper (or attempt to draw as
a three-dimaensional surface), some technique other than
overlapping plots of the response surfaces must be used.

A procedure proposed by Umland and Smith (1959) may be
employed. While their description treats the topic when
only two criteria measures are being considered, it can be
extended to handle more criteria.

They propose to use LaGrange multipliers* to find the
optimum level of one fitted second (or first) order response
function -- subject to the constraint provided by a second

fitted second (or first) order response function. For example,

assume we have two functions, one, the cost of building
each particular equipment configuration (as represented by
the experimental condition) and two, the level of operator
performance at each condition. It would be possible to
determine the combination of equipment parameters that opti-
mized performance at some specified level while keeping the
ccst of the equipqgnt within specified bounds. The converse
could also be dstermined, i.e., the lowest cost for some
fixed performance value. The procedure, a general cutline of
which is illustrated in Umland and Smith's (1959, pp 290-291)
raper, is as follows:

*The general theory of LaGrange multipliers for solving
constrained optimization problems is clearly presented in
R. Courant, Differential and Integral Calculus, 1936, Vol. II,

pp 188-202.
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1, Two response surfaces are calculated uging regression b

analysis to obtain the conventional least squares

el S A alBE T e

e
fit, Only firBE- or second-order surfaces can be
handled, e.g., ¥ = 8, X, + Bxi + Bxixj ‘
|
2. Differential equations are derived for each predictor §
¢ factor in the two (or more) equations.

3. A new set of non-linear equations, using LaGrange
multipliers is written.

: 4. These non~linear equations muast be solved with one -

d ¢ of a number of available computer programs. Umland ‘ ;

and Smith (1959, p 291) suggest a method of steepest

ascent as given by Booth (1955) for an IBM 650

Computer. However, a more recent program which i

2 800 2 2 0N S IR i, A D SN B ot

1€ Singer (1977) found useful was Subroutine 2zXSSQ in
the IMSL Library 1 (IBM 370 series computer).*
Additional programming is required to fit the program
¢ to this particular application.

The results obtained would be the value of the two pre- , 3
dictor factors for the optimum level of one criterion con- i
straine® by sone value of the second.

Several precautions should be taken in using this

bl R A LR e e N v R
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technique: ;

xi‘
.

Ty

1. An inspection of the surfaces individually will
show whether they all have optima. Some surfaces
appear as ridges rather than peaks which could cause
the computer to either supply numerous correct
answers or, more likely in the search mode, be unable

to arrive at a solution.

3.

;
S UL FE R N O P LR TR TP 1,

. AR B EEAR e en L

~a
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'Inltitute of Mathematics and Statistics Libraries, Inc.,
Sixth Floor, GNB Bldg., 750U Bellaire, Houston, Texas 77036.
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2. Since optimum responses may not fall within the
limits of the experimental aspace, limits must be
written into the computer program to assure that
the solutions obtained automatically by the com-
puter will be useful.

A Ao Fon I ngla il ot ‘m
73
s

e vk s Se i Lot Sl

e A

3. Coding the independent variables can simplify the
magnitude of certain calculations which may © 3
overload the computer. ‘

STEP-DOWN PROCEDURE

If the investigator cannot assign quantitative values to ;
his response, but is able to rank them in order of importance,
he may assess the predictor factors in terms of the multiple é
responses as a series of single-response assessments, using
a "step-down" procedure proposed by Roy (1958, p 1177) who

notes: % %

The step-down procedure obviously is not invariant ;3
under a permutation of the variates and ehould be ;
used only when the variates can be arranged on a

priori grounds. Some advantages of the step-down

procedure are (i) the procedure uses widely Fnawn

statistics like the variance-ratio, (ii) the test

i8 oarried out in successive stages and if aigni-

fioance is established at a certain stage, one can I
stop at that stage and no further computations are
needed, and (i1i) it leads to simultaneous aonfi-
dence-bounds on certain meaningful parametric

functiona.

S e SRR W R A R R

T o e ———a— oy v ——— -

The investigator would use an ordinary F-test at each
step of the analysis. He would begin by examining the most
important response alone, and perform the analysis of variance
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and F-test on that, He would next use the second most
important response to assess the data as a uniresponse
analysis and F-test, but it would be conditional on the
firat response used. That is, he would perform an analysis
of covariance, y;,,, i.e., response y; with the effects of
y1 removed. Each succeeding response measure is made con-
ditional on all previous response measures in the ordered
sequence. This would continue until p response measures
and p independent uniresponse assessments have been made,

Gnanadesikan (1963, p 23), in describing this technique,

writes the following in regard to setting the probability
value for rejecting the null hypothesis with this step-~down

procedure:

The hypothesis for the multiresponse situa-
tion is not rejected if and only if none of
the sequence of uniresponse hvpotheses is
rejected. Under the overall (i.e., com-
plete multiresponse) hypothesis of no
treatment effects,the separate F statistics
are independently distributed. Hence, if
A1) A2, ooy ap are the a-risks associated

reapectively with the p F-tests.pthen the
overall a-risk is given by 1 - g, - an.

Roy (1958) describes how to choose the value of the a-risk
(probability of error) at each step, so as to insure a
desired overall a-risk for the combined data.

Gnanadesikan (1963, p 25) provides an example of this

technique including a chi-squared-with-one-deyree-of-freedom

probability plot of the squared estimates of the different

affects,
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MULTIPLE ANALYSIS OF VARIANCE (MANOVA)

The use of MANOVA to analyze multiple response data is
analogous to the use of analysis of variance to analyze
single response data. The former iakes into consideration
the fact that multiple criteria are seldom completely inde-
pendent and may depend upon one another or be hidden aliases
of a single more fundamental criterion. As with ANOVA, an
investigator may use MANOVA to:

1. Estimate the probability that two or more groups
are really different, i.e., that an observed
effact is a reliable one,

2, Determine the proportion of total variance
accounted for by each factor, i.e., eta squared.

Instead of differences among means, we examine differ-
ences among centroids. Instead of studying the variance,
we study the dispersion of the multiple responses in a multi-
variate space. Detailed discussions on MANOVA can be found
in most references on multivariate analysis (e.g., Kerlinger
and Pedhazur, 1973; Cattell, 1966; Cooley and Lohnes, 1971).

Making separate analyses for each of a number of response
variables can lead to incorrect conclusions. Separate re-
sponses are seldom completely independent and in fact may
be aliases of a single, more fundamental criterion. It is
possible that no univariate criterion alone would distinguish
among several groups, while a MANOVA would. This is illus-
trated with some fictitious data (Figure 10) taken from
Kerlinger and Pedhazur (1973, p 359). It can be seen that
when the means of conditicns A;, A;, and As are projected

on either of the two dimensions, they are not well separated.
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condition A~l1 = o
Condition A-2 = *

10
Condition A-3 = X

[ ]

"
Response Variable 2

waammq
A J
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1 2 3 ¢ 6 7 8 9 10

Response variable 1

Figure 10. Illustration Showing How Analysis of Single
Responses in Multiple-response Experiments
May Fail to Detect Real Differences

(From Kerlinger and Pedhazur, 1973, p 359]
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Yet an inspection of the two-dimensional plot shows that the §
three groups are clearly separated. This is what MANOVA ;

8 would detect. , %

We will begin our discussion of MANOVA with eta squared, g ’
since in screening designs, this information would ordinarily % §

( be more important than significance tests. fé

B

MANOVA Eta Squared P

Ny

¢ Eta squared (n?) from multiple response analysis of §

variance problems will be calculated in one of two ways.

YRR e 5T b

One-way designs. The first, which is not too important
[ 3 for screening studies, is used in a one-wav design with only

a single factor,

"2 . L
n Lo

where |W| and |T| are the determinants of a within-treatment ;o
and a total-treatment matrix respectively.* This is anala- ;;
gous to the eta sguared for the single-response ANOVA. Eta '
squared for ANOVA is equal to ,

s S LA S5 RIS S A SO s s 4

where ss, and ss, are within-group sum of sgquares and total

sum of squares respectively. By subtracting that proportion

S0 e M s L N

*
In Appendix A of their book, Kerlinger and Pedhazur
(1973) provide an easily understood short course in matrix
algebra.
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Within-group sum of squares is obtained by subtraction:

— TN T s e G AR mwmﬁwm‘mmﬁiw..;?@mwm&%:mw e :ﬂ
§ of the total accounted for by the within group, i.e., |W|/|T| 3
#

i from one, we have the proportion accounted for by the groups f

g under consideration. %

y i ,;

%‘ For a two-response study, the within-treatment matrix, | é

i W, and the total treatment matrix, T, would consist of the o

A following elements: o

{ P

3 sp €

% ‘- 88, w .

E 5Py, 8842 DA

and the total treatment matrix, T, f

sp -

- ﬁstl t

\sPt 88¢2

The elements of the matrices are calculated as follows. { ]

For a total of N observations, with r groups and n observa- ; 5

tions per group, the s8s (sum of squares) and the sp (sum of .

products) are calculated in the conventional way. The total g

sum of squares would be: ‘f

; n N i

: ss, = IX? - (£X)° .

. T ;

: Between-group sum of squares would be: -

a n i ;

: X 2 n N %

s ss, = I % - (x)?

L b0 -4 S |3
; < |

E - ’ 4
3 :
}

” SSt - SSb = SSw

otali e, i s A

] These must be calculated for each response measure (1 and 2,
C in our example which we call X and Y in our two-response

example).
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The sum of products (or sum of cross products between
X and Y, or product-sum as it has been called) is calculated
essentially the same as the sum of squares, except that
instead of multiplying X times X to get X?, we now multiply
X times Y to get XY. Similarly, instead of multiplying
IX times IX to get (IX)?, we multiply IX times IY to get
(ZX) (LY). Thus, for a total of N observations, with ¥ groups
and n observations per group, the total sum of products would
be:

the between.group sum of products would be:
B B n n
- p(IX)(ZY)(IX) (2

! n - N

spb

and the within-group sum of products woula be obtained by
subtraction, thus:

8P, = 8P, = 8P,

Within each matrix, the sums of products in corresponding
positions on either side of the main diagonal, are the same
(since sp:, is the same as sp;:).

Multifactor (and screening) designs. When the study
involves more than one factor, as in the screening design,
and there are multiple responses, the equation for eta

squared is

telprE

Tl

2
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Note once again the analogy between this eta squared for
multiple-response data and eta squared calculated from
single-response data. For single response da*a, eta squared
would be the ratio of the sum of squares for the particular
factor or interaction over total sum of fquares. 1In the
multiple-response case, it is the ratio of the determinants
of the factor matrix (F) plus error (E) matrix over the
total matrix.*

For screening designs, the F-matrix represents both main
and interaction effects. The E-matrix is equivalent to the W-
matrix in the previous equation for eta squared, both being
the residuals after all sources of variability between groups
have been removed from the total variance, or dispersion.
Thus, in MANOVA with multifactors, the between groups disper-
sion can be partitioned into matrices for the individual
factors and the interactions, and eta squared values determined

*

It should be noted that in the first equation it is
necessary to work from the within Matrix rather than get eta
squared from a between matrix directly. In the second equa-~
tion, it is necessary to add the grror matrix to the particular
factor matrix before finding the determinant. These are
necessary because all hetween-treatment matrices (which include
a factor or interaction matrix) are singular. That means that
at least two columns (or rows) of the matrix are proportional
to one another, e.g., 1 2 3 and 2 4 6; the determinant of
a singular matrix is always zero. This "no solution" situa-
tion is avoided by working with the Within -droups and then

subtracting, or by adding the error matrix to the between-matrix.

Becaugse of this restriction, no eta squared can be calculated

for a screening design unless it 1s repeated at least twice
and an error term is obtained. At least, the author was unable

to £Ind another solution by the time this report went to press.
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for each of them as in the ANOVA case. Of course, with
Resolution III designs, interaction terms are not isolated
from main effects., With Resolution IV designs the two-
factor interactions are in fact strings. This does not
change the calculations. For MANOVA, the sources of variance
are partitioned in the same manner as in single response
ANOVAs. 1In a two-response study, for example, the matrix
for Factor A would look like this:

SSa1 5P
A =
8P, S8, 5
and for Interaction AB, for example, like this:

%8a1 SPap
AB =

SPap S8ap2

Elements in the matrices for main effects are calculated
in the same manner they would be for the between-treatments
matrix. The only new elements are those for the interac-
tions, and these are not difficult to calculate with screening
designs in which all the interactions are linear products of
two two-level main effects. Thus the same equation is used
> to calculate each element of the interaction matrices as the
§ main effects. The only difference in the calculation is that
% with main effects, the in and EYi , represent the summing of
§ performance scores obtained under all high or all low
conditions, while with interaction effects one would sum
either all conditions in which both factors levels were high
and both were low, or one would sum all conditions in which
the factors levels were always mixed, one high and one low.

o
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These two sums now represent the sum of two "groups" from
which sums of squares and sums of products are calculated.

7

f' Once the appropriate sum of squares and sum of procducts %
f; are obtained, the equation for eta squared requires that ma- §
3 trices F and E be added. To add two matrices, in this case §
é* & F and E, it only is necessary to add the elements in corres- %
e ponding positions in each matrix to form the matrix sum, :

i For example:

3 s 1 8 ¢ 13
+ = ‘?
2 6 5 9 7 15 :

with 4 obtained by adding 3 plus 1, and 13 obtained by {
adding 5 plus 8, and so forth. (You can not obtain the
determinants for F and £ and add them to get the determin-
ant for the sum., One must sum firast and then get the
determinant.)

AP Ry

In Appendix VII, algebraic equations are given to
I calculate the determinants for 2 x 2 and 3 x 3 matrices,
T used when there are two or three responses in the MANOVA. :
; When there w«re more responses, the analysis is sufficiently b
complex to require a computer. ‘
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Multi-variate Test of Significance

'

much attention -~ has been directed at tests of atatistical
significance. Such tests, for a null hypothesis of "no

effect" against the completely general alternate hypothesis,
have important limitations. Wwhile a number of tests have :
Leen devised, choice among them is based largely on intuition. :

In multivariate analyses, much attention -- possaibly too g:
i
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£ g
: Wilks' lambda (A) (generalized mean) test is one of the g
2. more popular tests of significant differences between groups %
9 in multiple response studies and will be described here. It %
; determines a probability level for the null hypothesis of ' E
: equality of population centroids (mean vectors) on the §
; assumption of equality of dispersion (variance-covariance i %
¢ matrices). The assumption is analogous to that of homogen- %
eity of variance in the univariate F-ratio test of equality ? é
of means. f
. ‘
The equation for Wilks' lambda is: ] 3
P
A= Wl W] « —JdEl |
'. | T |B + E| |F + E|
Matrix T is equal to matrix (B + E), which is not surprising
since the total is equal to the between plus the within. We have
e already indicated that both | and [ are residual matrices that
are left after (1l known sources of variance have been removed

from the total.* 1In multifactor designs the B-matrix would
become a matrix (F) for each particular factor or interaction.

Although the explicit distribution of Wilks' lambda is
not known except for a few special cases, there are a number
of transformations which enable lambda to approximate the
classical F-distribution. Most of them, as given, are
usually suitable only for the one-way MANOVA design. Tatsuoka
(1971, p 200) gives the formula for Rao's R-statistic having

*
We shall assume that we are always dealing in screening
designs with a Model I (final effects) experiment.
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an approximate F-distribution which is suitable for the
multiple independent variable (and screening design) case,
provided there is an estimate of error variance and co-
variance possible. The equation he gives is:

4
- \Vs -
R4 (ms vy, /7 2) + 1
Al/’l \ pvh

with m=vy + vy = (p+ v + 1)/2

(PVh)z - 4
p34 vﬁ -5

with PV and ms -~ (pvh/?) + 1 degrees of freedom. Also

Vo = Number of observations in basic screening
design multiplied by number of repeats
beyond the original plan.

= Number of groups in factor being investi-
gated, minus one. In screening designs
this value will be 1 for main and
interaction strings.

h

p = Number of dependent variables.

MANOVA Versus Multiple Discriminant Analysis

Although it is not the intention in this report to
review every form of multivariate analysis available, some
comments regarding multiple discriminant analysis as it
relates to MANOVA may be helpful. Both techniques may be used
to examine one-way designs (single factor, multiple condi-
tions) with multiple response data. For a given set of data,
both techniques will produce identical overall tests of

statistical significance.
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But MANOVA stops with this test of significance, while
multiple discriminant analysis provides the user with some
indication as to the nature of the difference. It does this
by providing a set of weights or coefficients for the several v
dependent measures that will separate the mean values of the §
conditions to the maximum extent. Essentially what is
happening is that they are turning the original dependent
variables into new orthogonal dimensions (i.e., canonical
variables) which, like the factors of factor analysis, may 1
not be readily named. In certain human factors for equip- |
ment design problems one may not find the orthogonal, arti-
ficial variables as useful as the real world ones. The
canonical variables may provide clues for better understand-
ing, yet the original variables may still be of greater
practical value., Multiple discriminant analyses were
developed to handle one-way designs. In a multiple~-response,
multifactor screening design, there are separate discrimin- .3
ant analyses, one for each main and interaction effect. .
Multiple discriminant analysis can be found in most books :‘
on multivariate techniques (e.g., Cooley and Lohnes, 1971; ; f
Rerlinger and Pedhazur, 1973). i
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GRAPHICAL ANALYSIS USING ORDERED DISTANCES

Wilk and Gnanadesikan (1961; 1764) describe a procedure
for graphical analysis of multiple response data by means
of ‘brobability plots." Their procaeadure represents a gener-
alization and an extension of the technique of half~normal
plotting proposed by Daniel (1959) for the graphical analysis
of single-response data. It was proposed specifically to
be used with two-level factorials where there is a meaningful
decomposition of the treatment structure into orthogonal
single degrees of freedom contrasts. It can also be
applied to results from the fractional factorial and
screening experiments. Where no independent estimate of
error is available, the use of this "internal comparison"*

method has several advantages:

1. It may reveal significont effects when
single-response analysis does not.

2. It may lead to smoother, more stable
statistical configurations than a single-
response analysis.

3. It provides an easily assimilable
summary of experimental results that
facilitates investigator personal
inspection of the data.

*"Internal comparison" refers to comparisons based on
a statistical standard set by the data.
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4. It helps clarify the interpretation
of data when different responses are
not orthogonal to one another.

Throughout the many references to this technique, the point
is made continually that the intent is not to supplant the
marginal analysis of individual responses. Instead, bo:h

types of analysis should be used to supplement one another.
Roy, Gnanadesikan, and Srivastava (1971, pp 97-112) devote

an entire chapter to graphical methods and internal compari-

son evaluation procedures for multiple response data,
including examples.

General Description

Analaogous to the case of the half-normal plot, the
multiple response method of graphical analysis is based on
probability plots of ordered squared distances (defined as
"positive semi-definite quadratic forms"). Ordered
distances are judged to be real when they deviate consid-~
erably from a straight line plott:d on appropriately
scaled paper. Several problems arise, however, with
multiple response analysis that are not present in single
response analysis. One, in multiple response analysis, it
is necessary to appr~ximate and estimate the distribution
which serves as the appropriate basis for the probability
plotg. A procedure for doing this may be based on order
statistics from the gamma distribution and tables to
facilitate the required estimation. Two, while the uni-
variate analysis may be based on the half-normal distribu-
tion (i.e., chi-square distribution with one degree of
freedom), the multivariate analysis uses the standardized
gamma distribution of a particular shape determined by the
data. Three, unlike the univariate case, the problem of
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linearly ordering multivariate data is complicated by the
lack of a convenient measure of "size." Gnanadesikan and
his co~workera have developed techniques to help solve
these problems. Only a general description of these tech~-
niques will be supplied here. The reader is referred to
the original papers and other references on the topic for
a working knowledge.

Gamma distribution paper. This technique requires that
the squared distances be ordered and plotted against the
corresponding quantiles of the gamma distribution. Psychol-
ogists are familiar with special cases of the gamma
distribution, e.g., the chi-square and exponential distri=-
butions. Unfortunately, unlike the uniresponse procedure
proposed by Daniel for which special "probability" paper can
be prepared, no single general probability paper can be
prepared for the gamma distribution. This is because the
distribution can be standardized through a linear trans-
formation for only two of the three parameters defining the
distribution, that is, for the origin and the scale, but
not for the shape. Special approximation tables or a high-
speed computer are required to calculate the actual
percentage points of ordered effects. Wilk, Gnanadesikan,
and Huyett (1962) and Roy, Gnanadesikan, and Srivastava
(1971) provide tables of percentage points for the reduced
gamma distribution, together with the numerical procedures
and approximations employed. Wilk, et al (1962, pp 102-103)
describe the procedure step by step and note that the
entire procedure is mechanized and in use at Bell Telephone
Laboratories for the IBM 7094 and GE 635 computers.
Computer programs for these calculations are also given in

Roy, et al (1971).

153

T ey v s e -
R

L i # Attty St 3 4 s

4w et s arrw g o oos g - .-

SRR 8 gt e

AT

o o,

gk

o FL

nte w. rhalBlt S a0




-

a,:.u-ﬂmw RERe TR F"“WWM" i ce 'r.gwm’% AT RIFTYEY, -

WAV

)
&
i
5
i
3y
B
g
b
¥
5
b
iy
i}l
5
.

L P S S

Calculating the Ordered Distances

The effect of a factor in the univariate case is the
mean difference in performances between high and low levels
of the factor. With multiple responses, the measure of the
main effect of a factor would be the "distance" between the
high and low centroids in the multi-dimensional response
surface. For example, if there were three independent
factors with two levels in each and two responses, one
might graphically represent the data as shown in Figure 1ll.
The performances on conditions involving high and low levels
for Factor A are indicated by squares and circles,
respectively. The centroids are the darkened symbols,

Roy, et al (1971) describe the calculation this way:

3 T
ob¢ o Aot low leve]
' , B A o high level
[ 4
[ ® Low Levit CENTRoOI
¢ ® R HIGH LEVEL CENTRMD
c n
o -] {1) abe
W ab .
=2 -]
& s
"4
< 3¢ a
9 8
a
°o a - v T3 T 7Y 13

é
RESPONSE

Figure 1l. Geometric Representation of One Main Effect, A,
in a 2° Experiment with Two Responses, [From
Wilk and Gnanadesikan (1964, p 619, Fig. 1.]
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For the bivariate response, therefore, a
natural measure of the main effect A would
be the "distance" between the centroids in
the two-dimensional response space. 1f x,
is the contrast vector corresponding to the
main effect A, then the "distance" between
the two centroids is proportional to the
"length" of x,. For instance, choosing the
compounding matrix 4, in the defining equa-

tion
Eii = xiAm{, i=1,2,...L(sn"1) responseg]

as the identity matrix of order 2 in this
case, so that d; = x{x,, we get the squared
Euclidian distance between the two centroids
corresponding to the definition of the main
effect A. More generally, the (n-1l) contrast
vectors a;'s may be visualized as (n-1)
points in the p-dimensional space, as

squared lengths, or squared distances from
the origin, associated with the contrast

vectors.

Selecting the compounding matrix. The defining equation,

written with matrix symbols, can be expanded to look like this:

Squared re —_—
Distance = ‘e .

3 ' Elx2I xg la alj 2y

i 2 Z2

COMPOUNDING ai: . :

> a 2

MATRIX J L

W — e

It is necessary for the investigator to arbitrarily specify
the values of the a weights of the compounding matrix with
the single restriction that the squared distances are
greater than or equal to zero. Symbolically:

a'Ae > 0
Wilk and Gnanadesikan (1961, p 1210) state that the

elements in the 4 matrix are non-negative definite
quadratic forms. Some possible examples of the 4 matrix
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might be a) the identity matrix, (I), b) a diagonal matrix
of reciprocals of estimates of the variances of the p

responses, (D;£~), or ¢) the inverse of the covariance matrix
1
)

of the original responses, (S~

The inverse of the covariance matrix, S'l, is a

particularly useful compounding metrix since it provides a
linear invariance and makes statistical allowance for
differing variances and correlations among the elements of
the effects vectors. However, it is recommended that an

S'l matrix be derived from the sum of squares and sum of
products of r effects (contrast) vectors, where r is a

subset of the total number of effect vectors. 1In the case

of orderec values, the subset of r vectors might include the
smaller half of the effects. This removes the larger effects
from the estimates, for if they are real, including them
would reduce the number of effects that would appear to

stand out from the rest. Excluding them gives the

smaller, but real effects a better chance of being detected.*

T™wo other useful compounding matrices, r and Dgl— , are
diagonal matrices. The diagonal matrix with weights
inversely proportional to estimated variances, has been
found to yield a more sensitive analysis than equal weighting
as long as the estimated variances are based on the smaller
half of the ordered effects vectors (as proposed for s-1y,

Roy, et al, recommend that several different compounding
matrices be tried in estimating the squared distance and the
researcher should realize that whatever compounding matrix
is used, subsequent inferences regarding the data should be
"conditional" on this choice.

*
Note the similarity between that tactic and that proposed
by Zahn when he calculates the standard deviation for the half-

normal plot (see p 97, this report).
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Analyzing Subgroups

Graphical internal compérison procedures may also be
applied to subgroups of the effects vectors, selected ac-
cording to meaningful criteria which are independent of
the data. For example, one might look at different orders
of effects separately, e.g., main and two-factor inter-
actions, or isolate all higher-than-second-order interac- }
tions and examine them.

Plotting and Evaluating the Ordered Distances

It has already been stated that under the null g
hypothesis, i.e., no systematic effects, the ordered E
distances would behave like a random sample from a gamma ;

distribution with its denszity defined by origin, scale, ’&
and shape parameters. By keeping the origin at 0 and the ‘
scale at 1, only the shape parameter is unknown. If it ;
& were known, then when the ordered distances were plotted .

against corresponding quantiles of the gamma distribution,

the points would appear in a straight-line configuration

if there are no real effects. Major departures from the '
€ straight line by the largest effects will suggest that ‘
those effects are probably real.

AP TR bR R4 T R RISy R i Hi

Conclusion

AT,

While there is much to learn before one can comfortably
use this graphical, internal comparison method, there seems
to be sufficient justification to apply it to screening
S problems. Since without replication, the screening plans
have no independent estimate of error variance to test
the significance (reliability) of an effect, this internal
comparison procedure serves as a useful alternative. Before
anyone can assess how valuable the technique is, more ex-
perience is needed in using it and applying it to behavioral

data.

R TR

e S M e g Aot et ey v ome pre
g

A A A

157

SREEIL U BT A RL
b R YNNI R ST,
5 )
-
«




PR e A AR T T T T T T T e e e s e S e s £ LY A ST e
Y ST R I R T T R T el S Py S ey T ey -
S T R A N S D TR B :»"‘ﬂ

(I

Boe. ., L
E

G

5 i St A Bt o e S

CANONICAL CORRELATION ANALYSIS

i

ELLRRWY 'Y 2

Canonical correlation analysis is the generalization
of univariate multiple correlation analysis to two sets of ,
variables, usually, but not always, multiple independent |
and multiple dependent variables. Canonical analysis provides !
a measure of the degree of association between the two sets '
of variables and may be useful for learning something about !
the underlying relationships among the variables of the two

sets.
i

Applications

Examples of two sets of multivariate data to which

canonical correlation analysis might be applied to deter=-
mine the degree of association and underlying relationships !

S L St TR L, %

are:

1. Flight performance measures at the beginning £

and the end of a training program. L4

U

i ]

2. Instructors'characteristics versus trainees' -

flight performance measures. %

3. Instrument design factors versus multiple : g

cost criteria (e.g., dollars, performance). t é

v

: o
] 4. Pilot selection test scores versus flight i 4
performance data. j

s

. i

& 5. Pilot training-simulator design parameters b
versus multiple transfer-of-training ;

criteria. 4

m‘n.m;m,A‘:‘@&"”mﬁww. SR
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Process

Many books have been written on canonical correlation
analysis, the theory and the mathematics, (e.g., Cattel,
1966; Kerlinger and Pedhazur, 1973; Nie, Hull, et al, 1975;
Bock and Haggard, 1968; Tatsuoka, 1971). These will not
be discussed here. Although that background is important,
at the end of this section an improved canonical analysis
will be described. Therefore at this time, only the
fundamental process involved in the canonical analysis will
be discussed.

We begin with a table showing the coordinates of the
experimental space at which the data was collected and
the set of measures made on that set of conditions. 1In
screening designs, the coordinates are the conditions of
a fractional factorial and therefore, orthogonal. The
response measures are almost always correlated. Thus the
raw data matrix for three independent and two dependent
variables would look like this:

Set 1 Set 2
Observation Independant Dependent
Number A B C X Y
1 -1 -1 <1 .3 14
2 +41 -1 -1 .71 21
3 -1 +1 -1 .1 13
4 -1 +1 -1 .5 11

...etc etc etc...

From this data a table of intercorrelations is con-
structed by finding the correlation between every pair of
columns, and locating them in the intercorrelation table

as follows:
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Independent Dependent 3
3
® A_B ¢ X Y 3
Al Taa Tab "ac | Fax Fay 3
(1) B oa Tob be | Tbx by -
¢ rca x'<:l:) l:cc: Fox rc:y :
¢ vl
X | Txa %xb “xc | Txx  Txy .
(D) v
Y r r. r r X P
ya "yb “yc yx Yy X
P
which can be simplified using matrix algebra and symbols as: i
— : -
Fia Ra :
! 12
R = .-: - ; :
{ .
fa 1 R b4
L - v

where R is the entire correlation matrix, Rll represents
the correlations among the independent variables, R22
represents the correlations among the dependent variables,
Rlz represents the correlations between independent and
dependent variables, and 321 represents the transpose of
R

-.»..u
i R

O R

12°

Computer programs exist that would work from the data
in the above matrix to find the solution to the canonical
correlation analysis. This in essence is what it would do.
It would search out a set of weights (i.e., Beta coeffi-
cients) to assign to the independent variables and another
set of weights to assign to the dependent variables. With
these, two sets of canonical variates would be calculated.

A "variate" is a rotated dimension in the multivariate
space made up of composite scores derived from the weighted
values of the two sets of raw data.
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The weights for the two sets are selected in a way that will
cause the correlation between the pair of variates to be a
maximum., The square of this correlation indicates the
proportion of the variance of the single criterion composite
accounted for by the predictor composite.* Next, a

second pair of variates could then be calculated that would
account for as much as possible of the variance between

the two sets that were left unaccounted for by the first
pair of variates. This procedure can continue, the maximum
number of iterations being equal to the number of variables
in the smaller of the two groups. Each new pair of variates
is completely orthogonal to all previous pairs of variates.
It may not be necessary to complete them all since most of
the variance may be accounted for by the first few pairs.

Since the new variates are formed in pairs, the existence
of large weighting (coefficients) on the old variables in
the two groups would identify which ones were responsible
for the degree of correlation that was found. For example,

an idealized result might pe:

0ld New Variates
variables 1 11 Coefficients

1l H L H = high weight
Group I 2 H L L = low weight

3 L B

4 L H

5 L H
Group 1I 6 L H

7 H L

8 H L
Canonical Correlation: (.85) {(.75)

*Thorndike (1975) discusses general considerations in interpreting
canonical corialations and specifically (pp 82-83) some problems in inter-
preting the index of proportion of variance. A "redundancy index" is
propoged instead.
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These results could be interpreted as follows. In the
first variate (I), approximately 72% of the variance due to
Variables 1 and 2 were accounted for by Variables 7 and 8.
In the second variate (II), approximately 56% of the
remaining variance (after Variate I was discounted) in
Variables 3 and 4 were accounted for by Variables 5 and 6.
As in factor analysis, it may be possible to find the
common element among the heavily weigited variables to be
able to name the variates in the two groups of data.

Limitations of Canonical Correlation Analysis

With real data, these clear cut divisions and associa-
tions found in the above example seldom occur. The problem
of interpretation may be difficult. Trying to "name" the
new variates may also be difficult.

Perhaps the major limitations of a canonical correlation
analysis lies in the unreliability of the weights. The
problems that arise in trying to examine the coefficients of
individual terms in multiple regression problems when the
variables are correlated are only complicated further in
these bilateral regression analyses. Hoerl and Kennard
(1970a, b), cite the following characteristics of coef-
ficients estimated from ill-conditioned experimental designs:

1., The coefficients become too large in absolute
value.

2. Some coefficients have the wrong sign.
3. Collectively the coefficients are unstable;

another set of performance data would be
unlikely to give the same beta values.
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4. Individual coefficients may be over or under
estimates of the strength of a particular factor.

To try to interpret the results from a canonical correlation
analysis by examining the individual weights, therefore,
seems to be overly optimistic. The more non~orthogonal the
original matrices, the less reliance can be placed on the
interpretation of individual coefficients, (See Simon,

1975 for more discussion of this problem.)

An Improved Method of Canonical Correlation Analysis

Hoerl and Kennard (1970a, b) proposed to use "ridge
regression" to improve the analysis of an ill-conditioned
multiple regression matrix. This analysis, they suggest,
will obtain a better prediction equatior in which:

1. The estimated coefficients will be closer to
the true coefficients on the average.

2. The signs attached to the coefficients will be
more meaningful.

3. A point estimate of a response can be made
with a smaller mean square error.

4. The coefficients will be more stable and likely
to be repeated if new data is taken.

Hoerl and Kennard's (1970a, b) original papers provide a
description of the philosophy and underlying mathematics
for ridge regression analysis. A simpler explanation has

been provided by Simon (1975) and will not be repeated here.

Mechanically what is done is to add a small constant to the
unit diagonal of the intercorrelation tables, and then
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analyze this modified ‘- ata by a multiple regression analysis
as usual. Finding the proper constant (usually less than
' .05) depends on a study of a plot of the coefficients
obtained with each constant after trying a range of values.
A number of studies have found that for highly correlated
L matrices, ridge regression analysis provides a more stable
.. ! set of coefficients and a smaller prediction error than
conventional multiple regression.
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: Carney (1975) proposes using ridge regression analysis
"é & rather than multiple regression analysis to obtain canonical
: correlations. As witii the single response case, this would
reduce the instability and the errors in the estimates of
g the weights used to obtain the canonical variates. He

i@f & developed a computer program that would provide Monte Carlo
~ data to evaluate and solve the "canonical ridge

estimates"” (Carney and Anderson, 1974).

& The investigator must decide what constant, k, to

add to the unit diagonals of two matrices, Rll and R22, for

the canonical ridge analysis. Carney (1975, p 9) says:

_ "There seems to be no theoretical criterion for choosing
& k-values for canonical ridge estimates" but he suggests

several possible empirical approaches:

1. Try a series of k~values and select the solutions
¥ in which the coefficients appear not to change
much over a range of k's. (This is feasible for
ridge regression, with a single set of coefficients,
but can be more difficult with the many coeificiente
t in the canonical ridge case).

2. Limit the application of ridge to the first
canonical correlates only.
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é 7,
Proceed as in the Monte Carlo experiments, treating ‘%

the sample covariance matrix as if it were a g
population matrix, generatiny ariificial samples, o

and selecting k-values to minimize "mean square y
error," | §

L
Perturb the data matrix and attempt to find k-values 5 é
for which the perturbations have little effect. g :
Subdivide the sample and select k-values for : E

which stability across subsamples occur.
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IX. EVALUATING THE ADEQUACY OF THE REGRESSION EQUATION

One of the better features of central-composite designs
is the procedure that enables the investigator to:

e P WAL e B R bt «gzmmm«immmisﬁ

0 Collect data sequentially in blocks, beginning |
with only enough for a first-order model when é
no function is assumed

0 Determine whether the order model adequately
fits the actual data

0 Collect more data when lack of fit is significant
in order to fit the next higher-order model.

¢ —— it wr e w g srmvelhenmms ¢ o v
5 ” 3

The analysis of variance of the classical central- :
composite designs (Box and Wilson, 1951; Box and Hunter, C ]
1956; Simon, 1970b, 1973), composed of 2P fractional :
factorials and center points in the first-order model plus
"gtar" points in the second-order model, would ordinarily \

take the form of these examples: )

First Order (3 factors, 4 center points, 12 observations) ,

¢ bt e Dt o o G W §

Source da.f. ;
First order terms 3 ; 3
Xh 1 ' ‘
X2 1 < i 3
X3 1 ) ’
Lack of fit b
Error b

*Most of the material for this section was taken from a 3
paper by Draper and Herzberg (1971). Mr. Edward J. Dragavon %
helped interpret the paper and prepare the example. :
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Second Order (3 factors, 6 center points, 30 observa-

tions)
Source d.f. :
First order terms 3 . T
Second order terms 6 :
Lack of Fit 5 § ;
Error 5 ‘ ;

Draper and Herzberg (1971) show how the lack of fit in each
of these two types of designs -~ first or second-order --
can be split into two sources that can help the investigator
decide where the lack of fit (bias) lies and what his next I

step should be.

e L8,

SR,

SPLITTING THE LACK OF FIT OF THE FIRST~ORDER DESIGNS

The sum of squares for the first-order lack of fit

can be split into:
Liy: Sum of squares due to lack of fit of

MR Eakialirnaaue b
T

the interaction effects .
.

? Lz: Sum of squares due to lack of fit of '
,‘ curvature o
3 The calculation for L sum of squares for estimating curva- : ;
é tures' lack of fit is given by Draper and Herzberg (1971), ! a
g‘ Cochran and Cox (1957, p 342), Peng (1967, p 160), and \ : é
¢ Meyer (1971, p 116) is: N i /
2 R
g nn, S ooy 2 b
' Sum of squares Ly = p—pr— (y -V ) o
i.‘ 1 2 ;
£ 3
s |
. ;
[ A
’ £
|
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where:
ny = Number of replicated center points

na2 = Number of non-center points (fractional
factorial portion)

§x = Mean response at center points
Y2 = Mean response at non-center points
L2 has one degree of freedom and is the sum of the Bii

aliased in a single string.

The L; sum of squares (for estimating interaction lack
of fit) can be calculated as follows:

Sum of Squares L; = | Total Lack of Fit| minus [L, sum of squares
sum of squares

L1 has one less degree of freedom than the total Lack

of Fit sum of squares had.

Variances are formed for L; and L; by dividing the sum of
squares by the degrees of freedom. These can be tested for sig-
nificance using the error term in the conventional way. 1If
there are so few degrees of freedom in the error term of the
unreplicated basic central-composite design as to make the
power of such a test questionable, it would le wiser for the
investigator to inspect the relative magnitudes of the
proportions of variance accounted for by each of the sources

of variance. (See Simon, 1976a),

Meyer (1971, p 116) shows how this technique would be
used with a fractional factorial Resolution IV design
augmented with center points. 1In his analysis (p 117), he
isolated all linear model terms plus lack of fit and then
error. The four degrees of the lack-of-fit term were further
isolated into 3 degrees of freedom for the cross-product
sources (Li) and one degree of freedom for the quadratic
sources (L:). In this 2;;‘ design, the 3 degrees of freedom
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for the cross-product source were actually for three
strings each with two two-factor interactions aliased with
one another. The single degree of freedom for the quad-
ratic source represents the sum of the coefficients of all

quadratic terms.

While the wording in Draper and Herzberq's paper (1971,
p 234, para 3.1) seems to suggest that this splitting of
the lack of fit in a first-order model is appropriate only
when the Zk'p fractional factorial design is of "resolution
greater than four," this is not the case. This procedure
then could be used with Resolution IV screening designs to
determine whether an observed lack of fit is the result of
inadequate curvature of cross-product information, or both,
in the first order model.

Meyer (1971, p 123) later makes an important point
when he warns his readers that the aggregate sources of
variance that make up the lack of fit will differ depending
on the experimental design. He writes: "Essentially, they
represent terms that the expcrimenter could have included
in the model but didn't." Thus, if a lack of fit test is
not significant, implying an adequate representation, the
investigator should be sure that the terms of interest are
included in the design. Otherwise, prediction will suffer.

SPLITTING THE LACK OF FIT OF SECOND ORDER DESIGNS

Draper and Herzberg (1971, p 235) specify that this
procedure for splitting the Lack of Fits sum of squares for
a second order central-composite design should be used only
when the cube part of the design is Resolution VII or higher.
A Resolution VII design enables all main and two- and three-
factor interaction effects to be isolated from one another.
In this case, L': is used to check for fourth order biases.
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Since for most psychological research valid fourth order
effects are extremely unlikely (Simon, 1976b) any signifi-
cant Lack of Fit of the L', term would suggest that
unwanted sources of variance are distorting the data.

Calculations. L'; will provide a test of third order
biases. The calculation of L'; for the second order model
is more complicated than for the first order model. Draper
and Herzberqg (1971, p 235) provide the following equation:

_ - k
L'; SS = d(1 + dt) -1 {t(n-d)y; ~ Y, + sigl ui}’

The meaning of each symbol is given in Table 16. The
L'2 SS has one degree of freedom.

L; is obtained by subtracting the sum of squares for L':
from the total Lack of Fit sum of squares, thus:

L'y 8S = (Total LoF SS) - (L', SS)

The L'y SS has one degree of freedom less than the
Total SS.

If the second-order design is orthogonally blocked,
the sum of squares for blocking can be removed as usual.
Since L', is four2 by subtraction, removing the sum of
squares for blocks will reduce the size of L', but will not

affect L',.

170

. ’
%

LLP R R AN AL

AT .

L ot aas 20

2y g 2




TABLE 16

SYMBOLS USED IN EQUATIONS TO CALCULATE L'; SUM OF SQUARES

FOR THE SECOND-ORDER CENTRAL-COMPOSITE DESIGN

Number of center points

Total number of observations

Number of factors (independent variables)

Sum of non-center point coefficients squared

Sum of non-center point coefficients raised to 4th power

Sum of cross products between_any pair of coefficients
squared over all non-center points*

Mean performance at non-center points

Mean performance at center points

g+ h (k - 1)
tn -a) [g+nk ~1] - ke?
-ot

g +hik - 1)

Sum of cross products between performance and coefficients
squared of factor i over all non-center points (where
i=1,2,...k)

*
In the conventional central-composite design, this sum will

equal the number of non-center points.
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EFFECTS OF REPLICATING NON-CENTER PNINTS OF THE CCD

Draper and Herzherg (1971, p 233) comment on this
stating that ". . . if the center points are not the only
replicated points in the design there are slight changes
in the above which do not materially affect the situation."
They cite some notational changes that might be made but
indicate that it would not be necessary to make any changes
in the calculation of L, or L',. Although L; and L',
would be affected by the change, the computations remain the
same since their sums of squares is obtained by subtraction.

ADDITIONAL CRITERION FOR EVALUATING THE EQUATION

Suich and Derringer (1977, p 213) note that ". . . the
signiiicance of the regression F~ratio and the nonsignifi-
cancerf the lack-of~fit F-ratio do not necesshrily imply
that Y(X) is an adequate [predictive] model." At best,
when the regression F-ratio exceeds the critical F value
for significance, this only indicates that the fitted equa-
tion is probably a better predictor of performance than the
mean of the data would be. Such information is of little
practical value. Draper and Smith (1966, p 64) suggest that
". . . unless the range of values predicted by the fitted
equation is considerably greater than the size of the random
error, prediction will often be of no value even though a
'‘gsignificant' F-value haz been obtained, since the equation
will be 'fitted to the errors' only." J. M. Wetz (1964), a
student of G. E. P. Box, in a Ph.D. dissertation, suggested
that the F-ratio of the equation would have to exceed some
criterion F-value by about a factor of four to be rated as

a satisfactiory prediction tool.
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Suich and Derringer (1977) provide ". . . a numerical
criterion,y , which quantifies the range of values predicted
by [a second degree polynomial] relative to the size of the
standard error. That is, the importance of the standard
error is considered in light of the magnitude of the changes 3
to be estimated by the model itself . . ." (p 213). This
equation is:

PRIV RN ST IR L PSR Y

- P2

y = xzx (!i Y) X
‘m (Y = ¥)*¢

i=-1 n

where &
Each performance score

=
]

]
[

Mean performance

Number of terms in equation excluding the constant

2
]

Number of observations =

=
]

Calculation and Test ©

Instead of wishing to compare the F-value obtained by the i %
usual method: s

Regression mean square
Error mean square -

with the standard F-value taken from a central-F distribution
(published in most statistics books *hat deal with the
analysis o7 variance), that is, to test the hypothesis that Y
is or is not greater than some non-zero value considered to
be an important difference for a particular situation. To do
this, they develop an equation to calculate a non-central
F~value to compare with the F obtained from the experimental
data. This non-central F (i.e., F?a,m,n-m-l,YZ) can be
estimated for any risk level, a, and particular pairs of
degrees of freedom, m and (n-m-1) by adjusting the standard
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F-value found in the conventional tables. This relationship
is:
~ 2
Fo't,m,n-m—l.y2 = (1+y7) P b, n-m-1
where:
p = M+Y?

(1+2v?)

and (n-m-1) is the degrees of freedom, and o is the accep-
table risk level of committing a Type I error (i.e., stating
that a difference exists when in fact it doesn't).

The Yy substituted in this equation is not calculated
from the data, but is the degree of variation required for

importance.* To select an F' to be approximately four times

*
We could decide to use a Y value calculated from the

data using the aforementioned equation and substitute that

into the equation relating F' to F, but reversed thus:

F’
(1+v?)

with the appropriate degrees of freedom indicated above for
both F and F', Then by using the standard F-distribution
tables, along with some interpolation, we could find the

risk level, o, for accepting the equation as a predictor by
searching the table for the F value for the indicated degrees
of freedom closest to the one calculated above. One would
need a set of F-tables that givesF-values for a range of
probability values (e.g., Fisher and Yates, 1963).

F =
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the size of F (as Wetz had suggested), then making Y equal
to 2 would roughly produce that result. However, the
decision of how large this value should be is up to the
investigator and a matter of experience. The experiences

of the statisticians who have suggested the value might be
four were not working with human performance data -- more
likely it was chemical engineering data -- so we will have
to try it and see how it works. Certainly any more critical
criterion than the one currently in use is likely to produce
a better predictive equation, although Suich and Derringer
say it ". . . is not meant to be a final answer to the
problem but more as a benchmark or rule-of-thumb to help

in answering this difficult question. . ." (p 216).

If the regression F-value is less than F', the investi-
gator would reexamine two things: 1) is his error variance
too large because of too small a sample? 2) is the equation
model adequate or should it be expanded? Both require more
data to be collected. If the regression F equals or is
larger than F', then we have increased our confidence in the
equation as a predictive model. Suich and Derringer provide
an example of this test (pp 214-216).
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X. ANALYZING THE DATA FROM AN
INCOMPLETE SCREENING EXPERIMENT

An experimentc: may be required to do an analy-~
sis "on-line" each time a new piece of data has been collec~-
ted. For example, he may wish to check his results as soon
as the data is collected in order to decide whether to stop
or to modify the experimental program. Or, he may wish to
keep abreast of the data in the event the experiment is inad-
vertently terminated prematurely. While a regression analysis
can be performed relatively quickly with a modern computer,
it may not be convenient or may be too costly to make one
available for this purpose.

Hunter (1964) has provided a "predictor-corrector" (P-C)
equation that can be used to determine the regression coeffic-
ients in a polynomial model after the data has been collected
on each experimental condition of a screening design (or for
that matter, any 2¥ ang 2K°P design), provided that an
initial set of orthogonal estimates of the coefficients is
available. This means that if a screening design is made up
of blocks of Resolution III designs, then once the first
block has been completed -- enabling the coefficients of a
first order polynomial to be estimated -- a new eguation
can be determined relatively quickly after data has been
collected at a new data point. The predictor-corrector
& equation provides an exact least squares estimate, an update,
of all the coefficients without elaborate calculations or

the need for a high-speed computer.
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REQUIREMENTS FOR USING THE P-C EQUATION

Two conditions must be satisfied before the equation

can be used:

1) The estimated coefficients from at least a single
Resolution III block must be available. More, or
higher resolution blocks are acceptable.

2) The rows of the new data points must be orthogonal.
That means that the sum of the cross products
between adjacent coefficients (i.e., plus and minus
ones) of the sign matrix making up any two rows
must equal zero.

k-p

Both conditions are met in a 2 screening design made up

of two Resolution III blocks. They would also be met if
one Resolution IV design, to represent the irnitial block,
had been completed and was in the process of being replica-

ted, or a new plan begun.

PREDICTOR-CORRECTION EQUATION

LR R A L SR e . gt o e o N TITTT ™

The P-C equation provided by Hunter (1964, p 43) is:

i .
1P 4 = arg Yoo ) oy
2 where:
q = number of coefficients in the model; q SN
m = number of blocks of N conditions already
completed

N = number of conditions per complete block
row vector of coefficients (i.e., * 1) of

it ]
[}

*
Italicized letters are matrix symbols.
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independent variables associated with
the ith experimental condition

Yi = new performance score associated with ”i

Yi a predicted performance score associated with
ith observation (r;B)

The correction constants, d;, for the ith condition is
combined with the coefficients (B) from the previous block
to get the revised coefficients (B*), thus:

B* = B + d
}i

The variance of each coefficient is calculated:

L P 62
Variance (b*) = mN -mN + g

EXAMPLE

How the equation is used can best be explained by means
of an illustration. Fictitious data for a 22*! fractional
factorial experiment with 8 observations is given in Table
XVII. Eight observations enables two Resolution III blocks
of data to be collected. We will presume that the first
block was run and the coefficients for the linear terms were
calculated. We will use the predictor-corrector equation
to obtain the least squares equation after the results from
the 5th and 6th data points are each obtained. The proce-
dure for calculating the new coefficients after each new
experimental condition has been completed is as follows:

1. cCalculate the q coefficients from the N experimental
conditions in Block I. Yates' algorithm can be used

to obtain the effects-total, which are divided by N
to obtain the coefficients. The first four (N)
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TABLE 17 '

IMAGINARY DATA WITH WHICH TO ILLUSTRATE
AN INCOMPLETE ANALYSIS

# Exptl. Condition (I) A B ¢ Performance
1 c - - - + 1.3
Block I 2 a - + - - 3.6
(I=ABC) 3 b - - + - 2.4
4 abc - + +  + 1.7
5 ab + + + - 2.5
Block I1 6 be + - 4+  + 1.5
(I=ABC) 7 ac + + -+ 2.8
8 (1) + - - - 3.4
9 c - - - + 1.2
TABLE 18

WORKING DATA TO OBTAIN UPDATED EQUATIONS

cl
Y d

(1) A B ¢ Y Y i
2.50 .40 -.20 -.75
Exptl. cond. #5 + + - + 2.5 2.35 .0188
Exptl. cond. #6 + - + + 1.5 1.15 .0438
Coef. I+5 2,519,419 -~,219 ~,731
Coef, I+6 2.544 .356 ~.15% -~.706
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experimontal conditions in Table 17 make up
Block I and the four (q) coefficients for this
data are shown in Table 18 at [A].

2. Solva for the denominator of Ji' the correction

conatants:

1
4y T EF q vy

- Yyry

In this exanmple, q
m = 1 block already completed
N = 4 conditions in the complete block {

q = 4 coefficients in the model
(including mean)

NIN AT kA

£ 28 e 2

Therefore, tho P-C equation for this problem reduces

to: 3
E

TN eaNo s o

S T T ,
di = ey Yy oy

-

(Y

- -~ Y. ) ;
dy i i i

8

3. Dotermine th? ostimatod performance for the naw
data point, Y. Thi« 18 the sum of the cross
products between the Block 1 coefficients and
corresponding +1 coefficients of the new data
point. Include the plus and minus signs in this

oparation.
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For example, in Table 17 to obtain the estimated
performance for experimental condition #5, the
following steps are performed:

Block I +2.50 +,40 -.20 =~.75

Coefficients { Exptl.

Cond. #5: +1 +1 -1 -1

YS = +(+2,50) +(+.40) -(-.20) -(-.75) = 2.35

This value is located in Table 18 at IE].

Calculate the correction constant, by subtracting
the estimated performance, Qi' for experimental
condition i (such as the one just calculated for
experimental condition #5) from the actual perfor-
mance, Yi' (found in Table 17 and located in
Table 18 at |[C]). Divide this difference by
the denominator of di' which was calculated in

step 2:

2.5

<o
i

il

2.35
.15 divided by 8 = ,01875 = +,019

which is the correction constant for experimental

condition #5.

Add this correction constant (using the sign
vector of the particular experimental condition)

to the corresponding coefficients from the previous
estimate to obtain the new estimates. These are
the coefficients for the new fitted equation.
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Continuing with our example: {

Coefficients of previous equation
(Btock I) 2,50 +,40 ~-,20 -.,75

Constant w/signs of coefticients
of experimental condition #5 +.019 +.,019 ~-,019 +.019

New equation: combined data from
Block I and experimental
Condition #5 2.519¢,.419A-,219B~.731C

6. The procedure would be repeated when performance for
a new data po{nt (#6) is obtained. The estimated .
performance, Y, is still obtained using the co- ,
efficients from Block I. The coefficients for the
new equation, however, are obtained by adding the
new correction constant, multiplied by the coeffi-
cient of the corresponding columns of experimental
condition #6, to the corresponding coefficients of
the previous equation derived by combining Block I

and experimental condition #5.

. Block T 2.50 .40  -.20 -.75
Coefficients {Exptl. Cond. k6 +1 -1 +1  41 :
Y = 2.50 -.40 -.20 -.75 = 1.15
Y = 1.5
(¥ - v)/8 = 1.5 = 1.15 = .35/8 =+.04375 Corrac-

tion Constant

[ 253

Equation T1+5. 509 .409 -,207 -.741

Congtant w/
signs #6 +.044 -.044 +.044 +,044

New equation
for combined

data from

block #1 and

exptl. cond. A

#5 and #6 Y = 2,5+ ,3A - .1B - |7C

This procedure continues as each new data point is
added.

Lresns Avaaten e vt
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If it is not necessary to estimate the equation each
time a new data point is added, the correction constants
along with the appropriate signs for the specific experimen-
tal conditions can be summed together and added to the
original block coefficients. For example, after both experi-
mental conditions #5 and #6 have been taken, the new coef-
ficient for Factor A in the above example would be:

Coeff. from Original Block: .40
#5 constant: +(+.01875)
#6 constant: ~-(+.04375)

New coefficient: .025 (Factor A)

Computations can be made more easily when many data points are
to be added if a tab with the list of correction factors (with
signs) listad on it is laid next to each sign column and

added or subtracted accordingly.

If a second block of N = q experimental conditions is
run -- in this example, eight more -- further revisions of
the equation would be based on the coefficients derived from
the data from both blocks. This would also require a change
in the denominator of the correction constant:

e If the number of coefficients to be estimated
continued to be 4 (q), then since there are now
2 (m) blocks completed with 4 (N) conditions per
block, the denominator of the correction coanstant
would be: (2 x 4) + 4 = 12

e If the number of coefficients, q, including the

mean, 18 expanded to 8 (which is possible with
8 independent observations), this would make
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the block size, N, equal to 8, now to be considered
a single block. The denominator of the correction
congtant would be: (1 x 8) + 8 = 16.

Remember, all estimates are based on the data from the most
recently completed block of a size capable of estimating all
the coefficients,

MISSING DATA

At first glance it would appear that this process could
be used to fill in missing data. For example, if all data
points of the first block and all but one somewhere in the
second block were completed, then a 1least squares fit of
the available data made by using the P-C equation could be
used to predict performance in the missing cell. In theory,
this is true. 1In practice, for any cell of a k=P design,
the equation obtained from the Block I data would provide
the gsame estimate of a missing performance value at a point
within the experimental design as would an equation derived
after the data from the incomplete block has been added to

that of the tirst block. This anomoly occurs because each
condition in the new block is orthogonal to the first block
and therefore does not affect the original estimates.

However, the equation based on the old block data plus
the data from the new incomplete block will provide better

estimates of data points anywhere in the experimental space
except those that are a part of the experimental design.
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APPENDIX I-A

THREE-FACTOR INTERACTION STRINGS ALIASED TO MAIN EFFECTS

Original Factorial Labels AD ACD AC ABD ABCD ABC AB A

Three-Factor Interaction ABIl ABF ABD ABE BCE ACE ABC ABG
Strings ACD ACG ACH ADG BDF ADFP ADH ACF
Aliased with AEF AEH AEG AFH BGH AGH AFG ADE
Main Effect BCF BCH BCG BDH CDG CDH BDG BCD

BDF BEG BEH BFG CFH CFG BFH BEF
CEH CEF CDE DEF DEH DEG CDF CEG .
DFH FGH OLGH EGH EFG EFH CGH DFG !

New Factor Main Effects G D F_ C A B E H

APPENDIX I-B

TWO-FACTOR INTERACTIONS ALIASED IN STRINGS

Original Factorial Labels D ¢ ¢ BD BCD BC B
Two-Factor Interaction AR AE AC AF AR AG AD
Strings CE BC BE BD BG BH BF
Aliased with DR DH DG CH CP CcD CG
Main Effact GH G FH EG DI EF IH

L]
For exporimental design, Table 1, page 15 in text.
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APPENDIX 1II.

DATA FOR 2

16-11
v

R R R A TR S e T,

R DU TR S g e s Sit-sr s ws > p b s v

SCREENING DESIGNS, N = 32

216711 screenng pEstaN

APPENDIX II-~-A

TEST EXPERIMENTAL NEW SCREENING
ORDER CONDITION (MAIN EFFECTS)®
' (h A B C D E F 6 H I J XK L M N O | L
1 BCDELMNO + - + + + + - - - - - - + + + + _
2 AFGHIJKP + + - - - - + + <+ + + + - - - - +
3 AEFGHMNO + + - - - + + + + - - - - + + + -
4 BCDIJKLP + - + + + - - - - + + + + - - - +
5 ADFIJLNO + + - - + - + - - + + - + - + + -
5 BCEGHKMP + - + + - +.| - + + - - + - + - - +
7 BCGHIJNO +| -] +1 4§ -1 - O T B I I T e -1 + | + -
8 ADEFKLMP + + - - + + + - - - - + + + - - +
9 ACGIKLMO +| + -] + - - - + - + - + | + + - + -
10 BDEFHJNP + 0 -1+ -0 +] + ] +| -1+ -] + - - -1 + ] - +
11 BDFHIKMO + - + - + - + - + + - + - + - + -
12 ACEGJLNP + ] + - + - + - + - - + - + - + - +
13 BEFGJKLO + - + - - + + + - - + + + - - + -
14 ACDHIMNP + + - + + - - - + + - - - + + - +
15 ACDEHJKO + + - + + + - - + - + + - - - + -
16 BFGILMNP + - + - - - + + - + - - + + + - +
17 ABHJKLMN + + + - - - - - + - + + + + + - -
18 CDEFGIOP + - - + + + + + - + - - - - - + +
19 CDFGJKMN + - - + + - + + - - + + - + + - -
20 ABEHILOP + 0 +] + - -1 + - - |+ + - - + - - + +
21 CEFHIKLN + - - + - 1.+ + - + + - + + - + - -
22 ABDGJMOP + + + - + - - . - -~ + - - + - + +
23 ABDEGIKN + + + - + + - + - + - +q - - + - -
24 CFHJLMOP + - - + - - + - + ~ + - + + - + +
25 DEGHIJLM + - - - + + - + + + + - + + - - -
26 ABCFKNOP T30 2 BEE O R B RS B B N B AR B BT RO B B +
27 ABCEFIJM + + + + - + + - - + + - - + - - -
28 DGHKLNOP + 1 - il I o I I -~ -] + I -1+ + +
29 G + + - - - - - - - -
30 2?52:1 g!; + - - - - + - - - + |+ + - + | + + +
+ - - - - - - - - - - - - - - - -
g% ABCéEWP + + + + + + 4+ + + + + + + + + + +
: & > | >|»
( alzl&| &8 > > > | >
ORIGINAL FACTORIAL LABELS DIgIBIB 8|8 2B |B|BIBIE|l= |z zla |-
PERCENT# | Lineas 0
TREND/EFFECT | QuapRaTIc 0 j0j 011
OVERLAP*** | CuicC 010 j0j0]|1})2
FACTOR LEVEL CHANGE COUNT | 0 {21 |20 {22 118 126 {25 |19 |17 {27 {25 29 {16 jou |28 |30 |31

SPACES WITH ZEROES IN THEM REPRESENT SOME PERCENT SMALLER THAM 1%

*THREE-FACTOR INTERACTION STRINGS ALIASED WITH MAIN EFFECTS ARE LISTED IN AppENDIX [I-B
**Tvio-FACTOR INTERACTION STRINGS ALIASED WITH TWO-FACTOR INTERACTION LABELS LISTED 1N APPENDIX 11-C
***NNER-PRODUCT SuMS LISTED IN Aepenpix 11-D
#BLANK SPACES REPRESENT ZERO PERCENT,
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APPIRDIX 1I-B

THREE-FACTOR INTERACTION STRINGS ALIASED TO MAIN l‘.‘l"I;‘ECTS

NEW ORIGINAL .
MAIN FACTOR ALIASED ‘fHREE-FACTOR INTERACTION STRINGS
EPFECTS LABELS i
(o] . AE ABP ACK ADJ AEH AFN AGIl AIL BCN BDM BEL BPFK BGJ BHI CDE GhL |

CFP CGI OCHJ CLM DP1 DCP DHK DLN EFG EIP EJK EMN FHK FJL GHR
HLP 1JN (KN J%P KNP

E ABN ACU ADE AFP AGI AHJ ALM BCP BDl 3EG BFO BHM BJL CDJ CEH
® AP CFN CGM CI1L DFW DGN DHo DLP EFL EIN EJO ENP FGJ FHI GHP GLU
HLN IJP INO JNN NOP

ACP ADI AEG AFL AHY AJL BCO BPE BFP BGl BHJ BLM com C:iL
" A2 égi ¢GJ CHI DFJ DGh DHP DLO EFH ElK EJP EMO FGh FLL GHO GLP
HKL 1J0 IhP JKNM KOP

AB ACE ADU AF1 AGP AMK ALN BC1 BDP BEP BGO BHN BKL CDK CFu
7 ACE CGh CHO CLP DEH DFN DGM DIL EGL EIM EKO ENP FGK "FHP FLO GHI

HLM IKP INU KER MCP

F ABC |ABC ADL AEM AGH AIJ ANP ANC BDH BEJ BGL BIM BKL BNP CDG CEI
CHL CJM CKN CuP DEP DI0U DJN DhM EGO EHN EKL G1P GJK GMN HIK
HJP HNMO ILN JLOU LWP :

L AB AZH ACG ADF AEP AlIO0 AJN AXM BCD BEU BFG BiP BJh BNN CEN CFH
CiKk CJP CHMO DEM DGH DiJ DKP DNO EFK EGJ EHI FIN FJO FMP Glb
GKG GNP HJi. HKN HuP .

P A ABU ACN ADM AEL AFK AGJ AHI BCK BDJ BEH BFN BGM BIL CDI CEC
CFU CHr CJL DEF DGO DHN DKL EI0 EJN EKM PG1 FHJ FLN GHK GLN
HW 1Jk 1KN JWO  KNO

E . ACDE ABI ACJ ADK AFN AGN AHO ALP BCK BDN BFJ BGK BHP BLO CDv CFi
CGP CHK CLN DFP DGI DHJ DL FGO FiN PFKL GHM GJL HIL 1k IAb
IVP JKO JNP KMP INO

I ACD ABE ACY ADK AFJ AGK AHP ALU BCJ BDK BFM BGN BHu BLP CDP CEF
. CGO CHN CKL DEG DFU DuM DJL EHL EJK EKN ECP FGP FHK FLN GHJ
GLM JKP JNO KNMO WNP

M AC ABJ ACI ADP AEFP AGO AKN AKL BCE BDO BFI BGP BHK BLN CDN CFJ
CiK CHP CLO DEL DFK DGJ DHI EGH EIJ EKP ENU PGN FHL FLP GlL
HIL iKO INP JKN JuP

H ABE ABL ACD AEL AFG AIP AJK AMN BCG BDF BEP BI0O BJN BERM CEK CFL
CIN CJO C¥P DEJ DGL DIM DKO DNP EFN EGM EIL FlK FJP FMO Glu
GKP GNO JLM KLN IUP

D ABDE ABG ACH AEK AFL AIN AJO AMP BCL BEN BFH BlK BJP BM CEO CFG
CiP CJK CNN EFP EGI ENJ ELM PFI0O FIN FKM GHL GJM GKN GUP HIM
HKP  HNO ILM KLU LNP

c ABCE ABF  ADH AEJ AGL AIM ARO ANP RDL BEM BGH BIJ BKP BNU DEU DFJ
DIP DJK DN EFI EGP EHK ELN FHL FJM FKN PUP G10 QUN GKN HIN
HJO HMP IKL JLP LhoO ’

A ABCDE |BCF BDG Bel BHL BJM hiN BOP CDH CEJ CGL CIM CKO CNP DEMN DFL
DIN DJO DLP EFM EGN EHO ELP FGH Fl1J FKP FNO GIK GJP GMO HIP
HIK HMN ILO JLN KLk

B ABCD ACF ADG AEl AHL AJV AKN AUP CDL CEM CGH CiJ ChP CNO DEN DFH
DIK DJP DNO EFJ EGh EHP ELO FGL Fikx FhO FNP GIN GJU GNP HIO
HIN HkM ILP JaL IaN

G ABD ABD ACL AFN AP AIK AIP ANMO BCE BEK BFT BIN BJO BMP CDP CEP
CIO CJIN CKFM DEI DHL DIJM DKN DOP EFO FHM EJL FIP FJX FMN HIJ
EKP ENO IL! KLO LNP .
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APPENDIX IV

COMPUTER PROGRAM FOR OBTAINING SCREENING DESIGN ALIASES j
STAT /o FROGRAN ALIAS \4
/° WRITTEN BY HOWAKC B, LEE 4

/% THIS COMPUTER TROGRAM LAS BESIN WRITTZN IN PL/1 POR AR IDN 360/91 */
/¢ CONMBOT™R, b
/% FRCGEAN POP COMPUTING TWO AND THREDR WAY ALIASES PCR PRACTIONAL s/
/% EACTORIAL CLSIGNS (SCREENING CESIGNS) s/
ALICITROC CETIONS (MAIN)
ICL GCOG PILL STREAN CUTPUT;
DCL F{32,8) CHAR(Y),DZ(3,32) CUAR(Y),n(32) PIXZD BINARY (15,0);
CCL 22 CHAR(6) ,a(32,8) CHAR(1),NP(32) PIXED BINRARY(15,0);
LCL N%(32) FIXID EINNFY(15,0),0% CHAR(2):
LCL F(4961) CUAL({8) ,0 (42061} CHAR(I); '
LCL LOC(uYLY) FINEL BINARY {15,0);
CCl  KCC{4961) PFIXIL EBINAKY (3,0):
KIpais;
/* A4
/* THIS ENUTINE IS USSC TO COPUT? THE ALIASES FOR FOINH TUO FACTOR ./
/% INTERACTIONS AND THREE FACTOR INTERACTIONS, */
/% ¢/
10 ALTASIPROC (N, A5, N, NP, X,L,1L,82,0,KP,KB,TRIP);
1" LCL $(12,8) CUAR(Y);
12 TCL X(*,%) CHIR(1),P(®,®) CHAR(Y);
13 ECL (N(%) ,NF(*)}) FIXEL BINARY (15,9);
14 OCL (N, 85,1, 1L,KF) PIXEL BINARY (19,0);
15 BCL 1% CUAP(Y):
16 CCL 2E CUMR(Y);
’* Y
/¢ COMPUTATIONS TO FIND THE TWO PACTOR INTERACTION TRRNS s/
/% CHECKS THE LETTELS CP ONE LI3T AGAINST THE OTHEG, WHEN THERR XS A e/
/% MATCH, THF PROGRAM SKIDPS TO THE NUST LETTER AXL CHECKS IT AGAINST ¢/
/% THY LETTERS OF TUE SECOMD LIST, IP NO KATCH IS FOUND, IT IS STORES/
/¢ T 1IN THT ABSAY P TIC CHECA FOR THL POSSIOLISY THAT A BATCH NAY o/ .
/® MOT OCCYE WHEN AATCHING EACH ELEMSNT OF TUE SECOND LIST AGAINST ¢/
/% TN® PIFST, THE SFALCH Is DPLRFOKSSD IR THY OPPCSITE CIRRECTION s/

OB -JONBE WP =

e Y
17 xesy;
18 LCCP:Br w1 TC N; £ Je=1 TO NE;

20 17 X(L,I)=X(LL,J) THEK GO TO HILL;
22 LED: E(KK,KP)ai(L,I}; KPeKPeY;
2% hELlt END LOOT;

26 FLVEP:CC TsY TC NP DO J=1 TO N;

28 TP X(LL,U)sX(L,J) THEK GO 70 KIAVLN; INE;

3 KEfeKE=1;

12 IEAX(LL,I)
/4 s/
/* THOSL LYTTFFS THAT RAVE NO NATCH IN EACH LIST ARE SORTED TO APYEARS/
/: IN A NICE MANN:R . TUESE ARE THE PINISHID PRODUCT. LY
/ .

3 LAPITO AK=Y TC KPP; /

Ju IF 2F <P (MK, KK) TEEN DN;

Yo TESP (KR ,KK) }

37 B(KR,KK)=2F;

18 28Ty

39 END; BND LAES

" F(KJ,40) =2y, KP2KPe1; HEAVZN:END REVER;
’¢ C:HFUTATZONS YOR THE TUK®Z PACTOR INTERACTION IEFMS, s/

(1) KPs i,

45  IF TRIE=0 THEN GC TO ZAD;
/% CH"CKS THY TNO TERM INFEIACTIONS AGAINST A THISL LIST FOR A NATCH o/
47 DC Kellet 7C w1

ai K213

4y LC Is1 710 KP-1; Lo J=1 20 4 (X);
Z® IF L MAICH CCCURS, SKIP TO THE NOXT LETTER IN THE LIST, IP MO s
/% MATCH OCCURS, THEN ASSIGR SHAT LETIER DO THE ARRAY S, 74

61 IP P(NS,I)=M(X,J) THEN GO TO Hpi;

$3  IND;

54 S (KD,KE) oF (KR,1) ;
55 KEsK20Y;
56 HERIINC;
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/°® Y
/% NEXT, WP CHECK POR NC NATCH OF LETTERS IN THE FEVERSE ORDER ./
/* Y

RIPICO Iel TO M(X);
£C Jds1 TC KP~1;
IF X(K,T)=P(KF,J) THIN GQ TO SHOW;
LAY H
S(KD,KE)sX(K,1) 3
KEnKEFe1,;
SECUIYND nEP;
NE(KB) nKE=Y;
KE2KBe1;
ENT;
KE=KP;
CC I«t 10 Ku=;
I YAN
¢* SORT THE LFTTERS X THE THIRD CFDER INIERACTION TERNS INTO ORDER,.%/
BC WUTLE(SW-xT) Su=0;
CO Je2 TO NPF(I);
TE 3({I,3)<S(I,J~1) THEN DO;
1E=S(I,9); S{I,d)=S(I,0-1);
Skl
EANCS
M H
EANDS
/% FLACE TH® THIRD ORDEE INTERACTIONS BACK INTO TN! ARRAY P.
CC J=* ~C NF{I});
PLT,)=3(1,9);
EM;
MG
GC TC HARF;
ZAPINT (AR) sKP~1;
KFeKFel;
HARPSEND ALIAS;

S(1,1~1)=T8;

¢/

/% END OF Tl SULGGUTIRE ALIAS, o/
FFAD T MZ, THS NUMBEF OF LISTS TC SE COAEBINEC IK TNO AND THAZE */
INTERACTICNS, NeXT KEAD IN SHE LENGTH O? THE FIRST LIST AND THEN®,
REAC IX THAT LIST INTC THR ARRAY A, THIS IS ICLLOWED DY THE 4
MINPER OF LFTTLERS IN THE NEW CODING SCHEME, WHICH IN TURN IS ./
FOLLOWED BY THE LIST FCR THE Kiw CODINGS, H1S IS BEPEATED rod ./
® AS MANY AS INDICATEC N NZ, ¢/
GET EDIT(NZ) (COL(V),P(2)):
DS 12t TO 92
G UDIT(N, (A(I,J) CO Jat TO N) ,NA,{B2(J,I) CO J=l TO NA))
(XEN PN XN, (N 3], X0V, (0),X (1), (NA) MiY));
LEMELH
MP(T) aNA;
EXND;
"¢ TIBIP=) TO 1
Jde 1,
£S Lsl 70 NZ:
DC 1l=Y TO NI
LHERH
It D>stL THEN GO TO Siw;
/% CALL THE SUBFOUTIN® ALIAS TO CCHPUTE THE
/¢ INTERACTION TLSAS,
CALL AMLIAS(M(L) ,N{LL) N, NP, A, L, LL,H2,P,KA,KQR,TRIP)}
KCsKR=1;
D¢ I=1 T¢ X(C;
/® STIRE THT FINDINGS IM THT MATEIX B, CONCATINATING EACH LETTER
/% FORP A NICE STRING CF CHARATLRSG 70 BE OUTPUTTEC.
/¢ THIS IS FIOR IHZ ORIGINAL OF OIL COCING SCHEME
F )t N
1 NE(I) st TUEN KR(JJI)sP(I,%);
FLSE IP NP(I)=2 THEN R{JJ)=T({I,?
ELSE IP NP(I)=3 THEN F(JJ)sP(IL,
SLEE IF NF(I)ul TH™N R{s)«P({I,0
SLYE Ly NP(I) =5 ThEN A{Jd) =D (I,
*LSE TP NP (I) =6 THEN R(JJ)wF(I,V) |
P(1,6);

*/

THO AND THREE WAY
. Y

0 ey
*/
./

Jite
N H
yie
) HT
ey

5 e o D
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B SR N S e e Ry RN ety

:
E

129 ARERRTEY

101 END;

122 sewsENe;

123 ryoy

124 TR N |

125 pe ret 10 A2 20 Js1 TO #2; IP Ideg THEN GC TO JIN; ‘
/% THT SECOND OFDER INTERACTION TERRS FOR THE NEW CODING ARE CONPUTED®/
129 1F YRIPeY THTN LO;

V31 py mqrys28nn(d)s2 THIN GLKK)=DBZ (Y, I) 0 1B2 (2, 501102 (V,3) 11B2(2,9);

133 mpsr TF AR (1) eNErR(J) 22 THYN Q(XK)wBR (1, 1) L1EZ(V,) |1 B2(2,4);

135 prse rr AN(I)s26MP{S) et TUSN Q(KKMeBZ (Y, T1) 1 {BZ (3, 1)1 182(1,d)

VI ppee CUKK) aBZ(1,1)}182(V,0);

114 AKEKKeY;

119 GC TC JIN;

180 ¥RO; .
/% I5S THIRD ORDER INTEGACTION TERNS FCB NE NP ARR
e CRUATED B NZW COCIMG SCHENY Anp :;

1419 0C K1 10 NE;
142 TF K<al|h<xd THEN GO TO KIN;
144 1P NN (2) 22 THLN 20;
16 DRNOZILT) 1L T)
T IF WN() 2268(5) 52 THEN Q(KK) =PEQ 192 (1,9) |1EZ (2,9) 1 [EZ {1,K) | | D2 (2,K) ;
::3 ELer e :2:3:-;52:::;r€ TUSN QUKK)=PCI 12 (1,d) 1 1EZ (Y, K) | 1ER (2,K) ;5 i
LR ALk s1 THEN Q(KKy =PI 02 (Y, Lz2(2,d BZ{1,X);
153 FLST C(KK) <PE{|BZ(1,) 4 (D2 (1,K) ANEA B
154 ENC;
158 FLEY pa;
156 ;;‘;aéf{ozcnn(x)-z TUEN Q(KK)=BZ (1,T) §1B2 (1,3} 1182(2,3) [ 1BZ (1,K) |}
[ .
1%8 Eln.zl'zli)'(ﬂ(s))l1 6 PN(N)w2 THEN Q(KK)-B!(\,!)||BZ|1,J)||BZ(1,K) 11
160 P::?1x:)nn(a)-z © RN(K)et THEN Q(NK)SBZ(N,T) 1403 (1,d) 11BZ (2,9) ||
K
162 TLSE G(KK)*BZ(1,1)1182(1,d) | (62 (1,K ;
163 ENC; KKsKKe1;  KIFSEND; JlAseND; ENCS

e

166 LQsuze (N2-1)/2;

169 TF TRIP~20 THER LyzNZe(N2-1)%(N2-2)/06; R
/® SOE™ THT ALYASES POF TUE OLD CODING SCHEAE INTC ASCFNDING OKDER o/
/¢ THIS IS DONF ORLY IF TWE NIMSER NP ALIASES ARE LESS THAN 1000, o/

L T TN me s

33 /% WITH RORP THAN 1900 TIE COMPULER TINZ 1S TNO CCSTLY, FOR THER ./
£g 4 /% SITUA.ZOK RNSRE THE MIRBER OF ALAISSS ARE GPEATIR THAK 1000, THRUY ¢/
§ % /* AFL OUTRPUTTEL 70 AN LXTERNAL FILE ON Q15K Oa TAPR, USING IBK SORTe/ :
o : /¢ ROUTIN®, SHICH I5 NUCH PASTSER, THE ALTASES ARY SOKTEC FOR THE OLL e/
E'g /% CODING SCHENE, THEN IN ANOTHER SHORT PROGRAM, CONTIN, THEZ SOATED ¢/
5 3 /% ALI2SSR APY FR%2C BACK INTO THE CONPUSES ANC JUTEUZTED IN NICR PORN®/ !
F i /% \LCHG VWITH THE NEW CCDING SCUEAE, s/
/¢ 1P THY NUMBYE OF ALIASES \R® LEXS JUAN 1000, Tht EBCCESS OR SORTINe/

E /%G AND OQUTLUITING ARE AUTCHATCE. L4
; 171 1P LU>199) TUSN G2 IO LGCF;

173 DC Jx1 TO LQ;

174 LCC (3) 33 44 N

176 Shal; CO WHILE (SW-~s)); Su=);

179 ¢¢ J=2 I0 LG 12L0C{J) LleiCC(3-1);

- 182  IF R(1)<%({LL) THEN DO; ITI=L8C () 5 Lec(a)=Loc (J=1);
186 LCC(I=1)*1TT; Sux1; LD END3 END;
"1 TC Je1 TO LQ; KCC(JY 2 INDEX (B (J),* *)=1; END;

195 Shat; CO MNILZ(SK~:0); SNs3;
197  £0 J3=2 TC LQ; LaLCC (o) LLeLAC(d=1);

200 IF ROC({L)KNCC{LL) TUEN CO; TTal0C(J);
203 LCC(a)stec(d-); LEC(J-1)=1ITT; SW=1%;
205 ENC; END; END;

209 TUT LISI{' *); TUT SKIP(W);
311 1P 1FIP2C THEN GC 1C MARS; IK=1;

4 PLT FCITIR(LOC (1)), QULCC{t}) {COL (V) ,A(6),2(2),A(6));
215 pC 1s2 ?c L Lasiket; 1 !!(LCC(I))nR(L'C;(!-'])‘) I)ll'EN ne;
219 IXv1: PUT EZCIT(R(LOC(I})) (SKTR(3),COL{}),A(6)); ENE:
222 1P LKX1S THEX £OJ  PUL ECIT(Q(LOC(I))) (CCL{11),A (o), ;
225 tke1; GO IC Y{ §MD;
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228 PUT FOYTLQ(LOCHII)) (X({2),A(6));
229 YIIND;

& 230 PUT SKIB(3);
: 21t GC TC ¢Q:
232 tocmy

PUT EDIT{' THT CATA 30 AY SORTED WAS TOO NUCH. IT IS BEING WAITTEM
TO AN EXTESNAL FILEY) (SKIDP(4),CUL(V .M}
231 CUT PDIT(* TO RECOVEE SOKTED DATA, US® IBN SORT SOUTINE AND THEN THR
SHCFT THOGRAN CCNTIN TO OUTPUT PINAL ALIASY) (SKIP{3),COL(1),A)3 ,
234 N0 Jel 10 LG i
235 POT PILE{GGOG) EDIT(R(J),KOC{I), 0 (3)) (COL (V) ,A(6),X(2),P{4),% ), A(8)); 7

& 236 END3
217 6C 10 GY3 NAKS:
239 NSTWA/2{  NPA=Y;  LKKs13  LLLSKIPSNSP; APEw);
243 DO KAKe1 10 1Q BY LLL;
. 244 EUT SKIP{4); PUT BOIT(R(LOC(NPA))) {COL (D), {6)): i
286 NPASNSPeNpA; !
247 DO Ta¥PA TO LG DY NSP;
243 LRKSLEKs 1; IF LKKDKIE THEN 0; i
251 NPAel} LEK= Y} G0 10 SEA; :
& 254 END; ;
: 255 PUT ECIT{B(LCC(I))) (X12),A(6)); i
256 IND} . '
257 SEAT NISKAKeRSTV; ¥UT SKIP (3);

259 DO JsKAK TO RZg

260 Kitsig PUT EDITIQ(LOC(J))) {COL(3),A(6}):

262 0C InJexS® 10 LO EY NSP

263 ALlaNLiel; IP KLLOKIF THER DO; KLla=d; GO TO LCC;

264 ENDY

- ] 269  FUT BRIT{C(LOC(I))) (X(2),A(6))}
270 M H LOCIEANC; £ 1 H
2730C 1 ENE;

27 EIND ALRO;

€y aw cer o
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For each set, the number in parentheses is the rank, Rg, where

PROBABILITY VALUES FOR CONSTRUCTING HALF-NORMAL GRIDS

T R RN B & CRTRYRT LT R
e 1P PR G PR

o *-»r'iﬁ'_g‘;w‘.‘;pmw«w”,.,.ﬂ TN L
EN 4

APPENDIX V

e R O v EL S G OO R S A e S DT a2 S T iy, T AT iy

The table below provides the probability values at which the first four
largest effects would be plotted on grids for grids with from 63 to 8 ranks.

R
X

= ,683 Y + 0.5

(Y = largest rank; also N-l1)

representing the estimated standard deviation for a Y-size grid (Daniel, 1959,

p 322).

ity paper, and P', the new probability values for the half-normal grid, is
Grids can be properly spaced by relating the
original P values to their corresponding Z-values (where 0 = 1) found in most

explained on page 85 in the text,

normal distribution tables.

The relationship between P, the probability value on normal probabil-

RANK p! P RANK p! P RANK p! P RANK p! P
63 99.21 99.60 62 99.19 Y9.60 61 99.18 99.59 60 99.17 99.58
62 97.62 98.81 61 97.58 98,79 60 97.54 98.77 59 97.50 98,75
61 96.03 98.02 60 95.97 97.98 59 95.90 97.95 58 95,83 97.92
60 94.44 97.22 59 94.35 97.18 58 94.26 97.13 57 94.17 97.08
(44) (43) (42) (41)

59 99,15 99.58 58 99.14 99.57 87 99.12 99.56 56 99.11 99.55
58 97.46 98.73 57 97.41 98.71 56 97.37 98.68 55 97.32 98.66
57 95,76 97.88 56 95.69 97.34 55 95.61 97.81 54 95.54 97.77
56 94.07 97.03 55 93.97 96.98 54 93.86 96.93 53 93.75 96.88
(41) (40) (39) 139)

55 99.09 99.55 54 99.07 99.54 53 99.06 99.53 52 99.04 99.52
54 97.27 98.64 53 97.22 98.6l 52 97.17 98.58 51 97.12 98.56
53 95.45 97.73 52 95.37 97.69 51 95.28 97.64 50 95.19 97.60
52 93.64 96.82 51 93.52 96.76 50 93.40 96.70 49 93.27 96.63
(38) (37) (37) (36)

51 99.02 99.51 50 99.00 99.50 49 98.98 99.49 48 98.96 99.48
50 97.06 98,53 49 97.00 28.50 48 96.94 98.47 47 96.88 98.44
49 95.10 97.55 48 95.00 97.50 47 94.90 97.45 46 94.79 97.40
48 S93.14 96.57 47 93.00 96.50 46 92.86 96.43 45 92.71 96.35
(35) (35) (34) (33)

47 98.94 99.47 46 98.91 99.46 45 98.89 99.44 44 98.86 99.43
46 96.81 98.40 45 96.74 98.37 44 96.67 98.33 43 96,59 98,30
45 94.68 97.34 44 94.56 97.28 43 94.44 97.22 42 94.32 97.16
44 92,55 96.28 43 92.39 96.20 42 92.22 96.11 41 92.05 96.02
(33) (32) (31) (31)

43 98.84 99.42 42 98.81 99.40 41 98.78 99.39 40 98,75 99.38
42 96.51 98.26 41 96.43 98.24 40 96.34 98.17 39  96.25 98.12
41 94.19 97.09 40 94.05 87.02 39 93,90 96.95 8 93.75 96.88
40 91.86 95.93 39 91.67 ¢5.83 38 91.46 95.73 37 91.25 95.62
(30) (29) (29) (28)
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PROBABILITY VALUES FOR CONSTRUCTING HALF-NORMAL GRIDS (Continued)
RANK P! P RANK p! P RANK p! P RANK p! P

39 98.72 99.36 38 98.68 99.34 37 98.65 99,32 36 98.61 93.31
38 96.15 98,08 37 96.05 98.03 36 95.95 97.97 35 95.83 97.92
37 93.59 96.79 36 93.42 96.71 35 93.24 96.62 34 93.06 96.53
36 91.03 95.51 35 90.79 95.39 34 90.54 95.27 33 90.28 95.14
(27) (26) (26) (25)

35 98.57 99.29 34 98,53 99.26 33 98.48 99.24 32 98.44 99.22
34 95.71 97.86 33 95.59 97.79 32 95.45 97.73 31 95.3L 97.66
33 92.86 96.43 32 92.65 96.32 31 92.42 96.21 30 92.19 96.09
32 90.00 95.00 31 89.71 94.85 30 89.39 94.70 29 89.06 94.53

(24) (24) (23) (22)
31 98.39 99.19 30 98.33 99.17 29 98.28 99.14 28 98.21 99.11 :
30 95.16 97.58 29 95,00 97.50 28 94.83 97.41 27  94.64 97.32 {

29 91.94 95.97 28 91.67 95.83 27 91.38 95.69 26 91.07 95.54 k
28 88.71 94.35 27 88.33 94.17 26 87.93 93.97 25 87.50 93.75

(22) (21) (20) (20)

27 98.15 99.07 26 98.08 99.04 25 98.00 99.00 24 97.92 98.96 ’
26 94.44 97.22 25 94.23 97.12 24 94.00 97.00 23 93,75 96.88

25 90.74 95.37 24 90.38 95.19 23 90.00 95.00 22 89.58 94.79 i
24 87.04 93,52 23 86,54 93.27 22 86.00 93.00 21 $5.42 92.71 |
(19) (18) (18) {17)

23 97.83 98.91 22 97.73 98.836 21 97.62 98.81 20 97.50 98.75
22 93.48 96.74 21 93.18 96.59 20 92.86 96.43 19 32.50 96.25
21 89.13 94.57 20 88.64 94.32 19 88.10 94.05 18 87.50 93.75
20 84.78 92.39 19 84.09 92.05 18 83.33 91,67 17 82.50 91.25
(16) (16) (15) (14)

19 97.37 98.68 18 97.22 92.61 17 97.06 98.53 16 96.88 98.44
18 92.11 96.05 17 91.67 95.83 16 91.18 95.59 15 90.62 95.31
17 86.84 93.42 16 86.11 93.06 15 85.29 92.65 14 84.38 92.19
16 81.58 9¢C 79 15 80.56 90.28 14 79.41 89,71 13 78.12 89.06
(13) (13) (12) (11)

15 96.67 98.33 14 96.43 98.21 13 96.15 98.08 12 95.83 97.92
14 90.00 95.00 13 89.29 94.64 12 88.46 94.23 11 87.50 93.75
13 83.33 91,67 12 82.14 91.07 11 80.77 90.3U 10 79.17 89.58

12 76.67 88,33 11 75.00 87.50 10 73.08 86.54 9 70.83 85.42

(11) (10) ( 9) (9)

11 95,45 97.73 10 95.00 97.50 9 94.44 97.22 8 93.75 96.88
10 86.36 93.18 9 85.00 92.50 8 83.33 91.67 7 81.25 90.62
9 72.27 88.64 8 75,00 87.50 7  72.22 86.11 6 68.75 84.33
8 68.18 84.09 7 65.00 82.50 6 61.00 80.56 5 56.25 78.12

(_8) (7) (7 ( 6)
7 92.86 96.43 6 91.67 95.83 5 90.00 95.00 4 87.50 93.75
6 78.57 89.29 5 75.00 87.50 4 70.00 85.00 3  62.50 81,25
5 64.29 82,14 4 58.33 79.17 3  50.00 75.00 2 37.50 68.75
4 50.00 75.00 3  41.67 70.83 2 30,00 65.00 1 12.50 56.25

(5) ( 5) ( 4) { 3)

¢
A
I
-4
A
-
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APPENDIX VI

DERIVATION OF COMBINED LINEAR AND CUBIC
TREND~ADJUSTMENT EQUATIONS

Dr. Steve R. Webb

The following derivation parallels the ones used to

obtain the linear and quadratic trend-correction equations
described by Daniel and Wilcoxin (1966, pp 272-273).

1.

Normal equations for ordered 2P plans to correct for
linear (L) and cubic (K) trends.

L + %X+ xX + yY + I ST = (L) (1.1)
KK T s = (¥) (1.2)
x'K + xL + NX = (X) (1.3)
y'ﬁ + y£ + NY = (Y) (1.4)
2'K + 2L + nZ = (2) (1.5)
etc.
where & = [LL], x = [LX], v = [vY], z = [LZ]

k = [KK], x'= [Kx], y' = [KY], z' = [Kz2]

The meaning of the alternate symbols can be found in Table 15 in
the text. N = 2p and (X), (Y), (2) are the contrasts corvelated

with (L) and (K). A dot over a letter indicates it is an unknown
term.

From equations (1.3), ‘1.4) and (l1.5) we can obtain

NX = (X) - xL - x'K (1.6)
NY = (¥) - yL - y'K (1.7)
NZ = (2) - zL - z'K (1.8)
etc.

Substituting these equations into (1.1) and (1.2)
we obtain:

(N - x2- y2~zz—...)£ + (-xx'=yy'-...)K = N(L)=-x(X)-y (¥)...(1.9)
(=x"x=y'Y...)L + (Nk=x'2=y'2=, . )K = N(K)~x' (X)=y' (¥)..... (1.10)

With the solutions for L and K in terms of the obser-
vations and the design parameters, we can evaluate the
regression coefficients directly from equations (1.6)

to (1.8),

Equations 1.9 and 1.0 are written using the alternate
symbols in Table 15, Equations IIIa and b, in the text.
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APPENDIX VII
CALCULATING DETERMINANTS

Determinants for a 2 x 2 matrix as shown in this
illustration are easy to calculate. For example, if the
elements of the matrix were:

a b
c d\)
then the determinant of the matrix (indicated by the
vertical lines), is:
'a b
= Ic al=

)] (ad - be)

when the a and d are sum of squares and b and ¢, sum of
products in our application.

If there are three responses, then the matrices become
larger to include tha additional sum of products (e.g.,
betveen responses 1 and 2, 2 and 3, and 1 and 3. Thus, for
three responses, the total matrix, by way of illustration,
would be:

5S¢y SPyy2 SPe1s

=1 SPr12 %S¢ SPy23

SPr13  SPra3 883
a symmetrical matrix with the sum of squares for each
response, 1, 2, and 3, on the diagonal, and the sum of
products in the appropriate columns and rows off the
diagonal. The determinant of a 3 x 3 matrix is:

a b c
D= |d e f = aeil + bfg + dhc - gec - dbi - ahf
g h i

A computer would be usad to calculate determinants for

larger matrices.
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APPENDIX VIII

ZAHN'S GUARDRAILS FOR HALF-NORMAL PLOTS

Zahn (1975a) provides critical values for plotting
guardrails for PER = a = 0.05, 0.20, and 0.40 on the half-
normal grids.

For version S, he provides them only for N = 15,

assuming four real effects. This could be used if the results
8-4
from a 2IV

values, taken from Zahn's (1975a, p 197) Table 5, are:

screening design were plotted. The critical

a 0.05 0.20 0.40
R
15 3.137 2.61 2.20
14 3.00 2.34 1.97
13 2.61 2.06 1.76
12 2.21 1.76 1.51

Unlike Daniel's, 2ahn's yuardarails will appear curved, as
shown in this reproduction from his Figure 9 (n 198):

. Guardrail
/
- 44— _.ff._,_‘
2 it g
RaRS - - 11' — 0.03
[ W -
é B P.E.R.
- 0.10
8 ~4-4 o o 17 »,j 3
O palu :'_» o . "—' 0.40
R 8 53 5 5 o Skt S ¥t =z
g L%VZ:;jf£§JfE§
Estimated 7 EE R N s o o5 g o o
Standard ﬂ =
Deviation ou frivies SRR "Chance"
o - .
s S o 1t O e 02 Line
oo B LT et S
RANK: 0 3 & s 12 [TEERY) N 1

LIS FES LI L [FRTINYS T NS WY ) | 1.0%

2y,15°
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Appendix VIII (Continued) i

L For version X, Zahn (1975a, p 195) provides the critical
values for N = 15, 31, 63, and 127. Taken from his Table 7,
the critical values for N = 15, 31, and 63 are:

¢ n=15 a 0.05 0.20 0.40
15 3,230 2.470 2.066
14 2.840 2.177 1.827
13 2.427 1.866 1.574
12 2.065 1.533 1.298 |
{
n=31 31 3.351 2.730 2.372
30 3.173 2.586 2.247
29 2.992 2.439 2.121 |
28 2.807 2.288 1.891 |
27 2.615 2.133 1.857 ;
n=63 63 3.470 2.945 2.629
62 3.384 2.872 2.564
61 3.297 2.797 2.497
60 3,209 2.722 2.431
59 3.120 2.647 2.363
58 3.030 2.570 2.295 '
;
§ !
F‘“ ’
3 ;
g !
: 3
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éz ‘
|
&
2
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