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by
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ABSTRACT

This report contains a method of approach and theoretical
framework which advances the state of the art in the design of
reliable multivariable control systems, with special emphasis on
actuator failures and necessary actuator redundancy levels.

The mathematical model consists of a linear time invariant
discrete time dynam ical system. Configuration changes in the
system dynamics , (such as actuator failures, repairs, introduction
of a back up actuator) are governed by a Markov chain that inc1u~es
transition probabilities from one configuration state to another.
The performance index is a standard quadratic cost functional ,

- ‘ over an infinite time interval.
If the dynamic system contains either process white noise

and/or noisy measurements of the state , then the stochastic
optimal control problem reduces , in general , to a dual problem ,
and no analytical or efficient algorithmic solution is possible .
Thus, the results are obtained under the assumption of full state
variable measurements, and in the absence of additive process
white noise.

Under the above assumptions , the optimal stochastic control
solution can be obtained . The actual system configura tion can
be deduced with an one step delay. The calculation of the optimal
control law requires the solution of a set of highly coupled
Riccati-like matrix difference equations; if these converge (as
the terminal time goes to inf in ity) one has a reliable desi gn with
swi tching feedback gains, and , if they diverge , the design is
unreliable and the system cannot be stabilized unless more reliable
actuators or more redundant actuators are employed . For the
reliable designs , the feedback system requires a switching gain
solution , that is , whenever a system change is detected, the feed-
back gains must be reconfigured . On the other hand , the necessary
reconfiguration gains can be precomputed , from the off-line solu- —

tions of the Riccati-like matrix difference equations.
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Through the use of the matrix discrete minimum principle , a
suboptimal solution can also be obtained . In this approach , one
w ishes to avoid the reconfiguration of the feedback system , and
one wishes to know whether or not it is possible to stabilize the
system with a constant feedback gain , which does not change even
if the system changes. Once more this can be deduced from another
set of coupled Iticcati-like matrix difference equations. If they
-diverge as the terminal time goes to infinity , then a constant
gain implementation is unreliable, because it cannot stabilize the
system. If, on the other hand , there exists an asymptotic solution
to this set of Riccati—like equations then a reliable control
system without feedback reconfiguration can be obtained. The
implementation requires constant gain state variable feedback , and
the feedback gains can be calculated off-line.

In summary , these results can be used for off-line studies
relating the open loop dynamics , required performance , actuator
mean time to failure , and functional or identical actuator
redundancy, with and without feedback gain reconfiguration
strategies.

Thesis Supervisor : Michael Athans
Title : Professor of Electrical Engineering and Computer Science



pr- -
~~~~~~~~~~

- 
~~~~~~~ -‘----— .- 

~~~—~
---.

~- - -
~~~~

. ---- .
~- - - “~-.--‘ -— -—,.,-- -—“~~~~~

-- --,- 
- .-------—--.-.-..,

_ ____

~~
_—.,__., .

~T

S

ACKNOWLEDGMENT

I deeply appreciate the guidance and encouragement of my thesis
supervisor , Professor Michael Athans. I thank him for the oppor-
tuni ty to observe his unique ins igh t and approach to systems theory .

I than k my readers, Prof. Alan Wilisky, Prof. Nils Sandell , and
Dr. David Castanon , for their valuable advice. I am especially
grateful to Dr. Castanon for the time he spent with me , and for his
assistance , in the development of the non-switching gain methodology .

I would like to acknowledge the many hours of discussion with my
fellow studen ts, in par ticular , with Mr. C. Greene , Mr. W.-H. Lee,
and Dr. M. Safonov. I would also like to acknowledge Mr. J. Carrig ,
who wrote the computer routines for this research. A special thanks
goes to Dr. Tse-Wei Wang for the many hours she spent helping type
this report. Lastly , I thank my paren ts, Mr. and Mrs. Louis T.
Birdwell , for their support and encourzgement during the last four
years.

This research was conducted at the M.I.T. Electronic Systems
Laboratory. Stipend and tuition support was from a fellowship
from the Fannie and John Hertz Foundation; additional support
was from NASA Ames grant NGL-22-009—l24 and AFOSR grant 77-3281. 

._
~__-..- - -~ . -~~~ ,_~_~_~ _: ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ —.- -



-~~~
- -

6

TABLE OF CONTENTS

ABSTRACT 3

ACKNOWLEDGMENT 5

TABLE OF CONTENTS 6

LIST OF FIGURES 10

LIST OF TABLES 11

1. INTRODUCTION 12

1.1 Motivation for the Research. 12

1.2 General Nature of the Problem . 13
1.2.1 Reliability Theory. 13
1.2.2 Control Theory. 22
1.2.3 General Nature of Results. 27

1.3 Relations with Previous Literature. 29

1.4 Sunm~ary of Main Contributions. 35

1.5 Outline of Report. 36

2. CLARIFICATION AND MOTIVATION OF RESEARCH 38

2.1 Introduction. . 38

2.2 A Simple Example--The Optimal Solution . 39
2.2.1 Problem Statement. 39
2.2.2 Sunlnary of Solution. 41

2.3 The Dual Control Effect. 43
2.3.1 A Special Case. 46

2.4 Existence of a Steady-State Solution. 48

2.5 Conclusions on the Switching Gain Methodology. 49
2.5.1 Implications of the Dual control Effect. 50
2.5.2 Existence of a Steady—State. 50 

-~~ 
- - - -



— -—-— —--—-.— ,- -—-——~ -~ .—~ --,, ---— --— --..‘—--.—-,—.--,-,-~ —-.-‘— ---—--, —- -
~~~~~~

7

2.6 A Simple Example--The Non—Switching Solution . 52
2.b.1 Problem Statement. 53
2 .6. 2 Summary of Solution . 54

2.7 Existence of a Steady—State Solution and the 56
Uncertainty Threshold Principle .
2.7.1 Formulation of Existence Problem. 56
2 . 7 . 2  Summary of Solution . 57
2 . 7 . 3  Graphical I l lust ra t ion of Solution . 59
2.7.4 Best Control with Infinite Cost. 61
2.7.5 Conclusion . 66

2.8 Summary . 66

3. THE SWITCHING GAIN SOLUTiON 68

3.1 Introduction. 68

3.2 Mathematical Formulation. 70

3.3 The Switching Gain Solution . 72

3.4 Discussion of Results. 74 -

3.5 Examples. 78

3.6 summary. 86

4. EXTENSIONS TO THE STOCHASTIC CASE 87

4.1 Introduction. 87

4 .2  Hypothesis Testing Identif icat ion. 88

4.3 Dual Identification . 90

4.4 Examples. 94

4.5 Summary. 100

5. THE NON-SWITCHING GAIN SOLUTION 101

5.1 Introduction. 101

5.2 Problem Statement. 103

5.3 Problem A. 104



—
~
- - 

e-.~~~~~~
.

8

5.4 The Method of Solution . 106

5.5 The Nt~c~ ss~uy Conditions. 111

5 .t~ Problem B: The Non-Switching Solution . 114

5. 7 S tab i li t . and the Steady-State Solutions. 119
.7.1 S tabi l i ty  and Co~ t—Stabi 1ity . 119

5. 7.2 Definition of the Infinite-Time Cost. 120
5.7.3 Bounded Cost and Mean-Square Stability. 121
5.7.4 Cost-Stability . 121

.7 .5 Equivalence of Problems AE and B. 122
5. 7 .6 The Steady-State Solution . 123

5.7.6.1 Steady-State Solution to Problem AE. 124
5.7.6.2 Steady-State Solution to Problem B. 125

5.7 .7 The Possibi l i ty  of Limit Cycles. 126

5.8 Equality of and 127

5.9 Robustness. 130

5.10 Examples. 132

5.11 Sununary . 141

6. COMPUTER-AIDED DESIGN 143

6.1 Introduction. 143

6.2  The Design Decision. 143

6.3 A Trade-Off of System Performance Versus Reliability. 163

6.4 Summary. 173

7 . CRITIQUE 174

7.1 Introduction . 174

7.2 The Switching Gain Solution. 174
7 . 2 . 1  Deterministic Optima l Solution. 175
7.2.2 Non-Extendability to Stochastic Systems. 175
7 . 2 . 3  Suboptimal Extensions . 176

.

~ 

. — — ..-
~~~~~~ 1-~~i~~~-~



— ~~w 
- - — - — — .r - -.. --

- —

9

7.3 The Non—Switching Gain Solution. 178
7.3.1 The Necessary Conditions--Unsolvability. 178
7.3.2 The Equivalent Problem. 178
7 . 3 .3  Existence of a Stabi l iz ing Gain.  179
7.3.4 Problems with Convergence . 17’)
7.3.5 Existence of a Robust Gain. 180

7 .4  Computer-Aided Desi gn. 182

7.5 Suggestions for Future Research. 185

7.6 Summary. 187

APPENDI CES 189

Appendix to Chapter 1. 190

Appendix to Chapter 2. 192
A2.l Exact Optimal Solution for Deterministic Case, 193

Chapter 2 , Section 2.
A2.2 Exact Optimal Solution for Stochastic Case , 194

T = 0, 1, 2 T
f
. (1-d example).

A2.3 Exact Solution of Stochastic Case Over 1’ = 0, 1, 199
2 = T

f 
for a Specific Form of p (E), Chapter 2 ,

Section 2.3.1.
A2.4 Existence of Steady-State Solution for l-d Example. 202

Appendix to Chapter 3. 206
A3.l Proof of Theorem 1. 207
A3.2 Optimal Solution for Deterministic Problem. 208
A3.3 Proof of Lemma 1. 211

Appendix to Chapter 5. 213
A5.l Proof of Theorem 1, Chapter 5. 214
A5 .2 Proof of Remark on Theorem 1, Chapter 5. 216
1i5.3 Proo f of Theorem 2, Chapter 5. 217
A5 .4 Proof of Theorem 3 , Chapter 5. 219
A5 .5 Proof of Lemma 2, Chapter 5. 220
A5.6 Proof of Lemma 3, Chapter 5. 221
A5.7 Proof of Theorem 4 , Chapter 5. 222

COMPUTER ROUTINES 22 3

LIST OF’ REFERENCES 256

____________ -~~-----——



L

10

LIST OF FIGURES

1.1 Exponential failure distribution. 16

1.2 Typical hazard rate function for a transistor. 17

1.3 Three hypothetical system structures. 20

1.4 Configuration for structures in Figure 1.3. 21

1.5 Two possible structural trajectories. 23

2.1 A probability distribution for ampli tude-l imited 47
white noise.

2.2  Ia l~h h l d  versus p, b. 60

2.3a h versus p, b. 62
2.3b h versus p, b. 63

2.4 g versus p, b. 65

3.1 The switching gain control law. 75

3.2 Markov transition probabIlities for Example 3.1. 79 ‘

5.1 Markov transition probabilities for Example 5.2. 137

- ~~~~~~~~~~~~~~~~ ~~~~~~~ - - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 11

LIST OF TABLES

2.1 The optima l control u0 versus x0 and ~~~. 45

11.
—— __-=

~~~-_ - - -
- ~u- -

~~~~~~ _~- —~~~~~~~ - -~~~~~ - ~~~~~~ ——



12
CHAPTER 1

INTRODUCTION

1.1 Motivation for the Research.

This report addresses some of the current problems in interfacing

systems theory and reliability , and puts this research in perspective

with the open questions in this f ield . Reliability is a relative concept ;

it is , roughly, the probability that a system wi l l  perform according

to specifications for a given amount of time. The motivating question

behind this  report is: What constitutes a reliable system?

Knowledge of the reliability or a system is crucial.  In this

report , a system is reliable if it has a (quantitative) reliability of . -

one , i . e . ,  if the probability that the system will not perform accordiny

to specifications for a given period of time is zero. Therefore, the

question “What constitutes a reliable system?” can be restated as:

What are the specifications which a system must meet in order to be

reliable? —

A system is normally designed in two stages: First, the components

are selected in such a way as to meet the reliability specifications;

second , the control problem is formulated and solved for that configura-

tion of components. Although this procedure is over-simplified, it

illustrates a second question : Should the control problem influence the

choice of the configuration, and if so, how can this be achieved? The

first part of the question is answered by history : The control problem

influences configuration design now by iteration between the two stages

of design. This is most likely not the best methodi If a theory were

— - 
—— -- —— -—-.-—- - - .- - -— - - -a--
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available which allowed a comparison between al ternate  designs , based

on both the expected system reliability and the expected system perfor-

mance , it would greatly simplify the current design methodology . It i~;

unf or tunate that at present there is no accepted methodology for a

determina tion of expected system performance which accounts for changes

in the performance characteristics due to failure , repair or reconf igura-

tion of system functions. This report presents such a methodology for a

specific class of linear systems with quadratic cost criteria.

1.2 General Nature of the Problem.

This Section presents the general theoretical framework necessary to

approach the problem of reliable control system c~esign. First, a

discussion of some of the concepts in reliability theory will be present-

ed. The control-theoretic framework for the specific topics covered in

this report will then be developed. Finally, the interrelationships

between systems theory and reliability theory will be explored , leading

to a mathematical formulation of the reliable control system design

problem and a discussion of the general nature of the results presented

in the remainder of this report.

1.2.1 Reliability Theory.

The generally accepted definition of reliability is stated in

Appendix 1. Basically , the reliability of a system is the probability

that the system will perform according to specifications for a given

amount of time. In a system-theoretic context, the specification which

a system must meet is stability; also, since , at least for most mathemati-

cal models of systems, stability is a long-term attribute of the system,

- —-- --- -- — -- -.~---~~-rn .~.-- —~~-~~~-— -~~~~~~-- —
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the amount of time for which the system must remain stable is taken t o

be infinite . Therefore , the following definitions of system reliability

are used in this report:

Definition 1: A system (implying the hardware configuration , or mathe-

matical model of tha t configuration , and its associated control and

estimation structure) has reliability r where r is the probability that

the system will be stable for all time.

Definition 2: A system is said to be reliable if r = 1.

Definition 3: A system design , or conf iguration , is reliable if it

is stabilizable with probability one.

The se definitions of reliability depend on the definition of stability,

and for systems which can have more than one mode of operation, stability

is not that easy to determine. In this report, stability will mean

either mean-square stability (over some random space which will be left

unspecified for the moment), or cost-stability (again , an expectation

over a certain random space), which is basically the proper ty that the

accumulated cost of system operation is bounded with probability one.

(The definition of cost is also deferred.)

The reliability of a system wil l  depend on the reliabilities of its

various components and on their interconnections. Thus, the systems

engineer must have an understanding of the probabilistic mechanisms of

component failure , repair , and system reconfiguration . There are a

multitude of models which can be used for component failure and repair ,

and reconfiguration. Two good references to the mechanics of reliabilit’~’

— .-—-=----- ---- —-~---— .-~ -.- — — — -..- —
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theory are [Shooman , 1] and [Green and Bourne, 2).

Consider a device which begins operation at time 0 and can experi-

ence catastrophic (i.e., instantaneous) failure to a non-operational

state. Let the probability of Tailure of this device occuring in the

interval (0,t] be

F(t) = prob. of failure in [0,t) (1.2.1)

This is the definition of the failure distribution function [Shoontan, 1).

Define the hazard rate as

dF(t)
dtz ( t )  = 1 — F( t  ( 1 .2 .2)

from [Shooman, 1]. The hazard rate is the incremental failure probabil-

ity at time t , given that the device is operational at time t. Now,

suppose the hazard rate of the device is independent of time; i.e., the

probability that the device will fail sometime in a time interval

starting at the present time is independent of how long the device has

been operational. This constant hazard rate

z(t) = c (1.2.3)

results in the exponential failure distribution shown in Figure 1.1.

The constant hazard rate is a close approximation to the actual hazard

rate of many devices. For example, the transistor has a hazard rate

similar to that shown in Figure 1.2. This type of function is quite

common [Shooman , 11. Early failures in Region I of Figure 1.2 are

failures during the “burning-in” of the device ; they are associated with

poor assembly, defective materials and other random fluctuations in the

manufacturing process. Failures in Region III are due to the wearing out

of elements in the part. Region II is relatively constant and closely

- -~~ -~~~~~~~~~ ~~~~~~~~~ -— - - -  --~~~~ - - ~ - —~~~~~~~
— 
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F( t)

Figure 1.1: Exponential failure distribution .
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Z ( t )

Figure 1.2: Typical hazard rate function for a transistor.
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approximates the constant hazard rate function. In a large system , parts

are general ly “burned—in ” before assembly is completed ; there fore , the

system begins operation in Region II. As the system ages, periothc

maintenance removes old parts before the hazard rate rises in Region III.

Therefore, the assumption of a constant hazard rate is usually justified .

In this report, the constant hazard rate function is used exclusively .

This is due not only to its broad applicability, but also to the fact tha t

any non-constant hazard rate requires a reliable control system to keep

track of the starting times of the system ’s mode of operation.

In the discrete—time case, to which this report is confined exclu-

sively , the hazard rate becomes the probability of failure (or repair or

reconfiguration) between time t and time t+l. For a system with many

operating modes , the probability of being in a given mode at a given

time, given some past probability vector over the various operating

modes, can be modeled by a Markov chain. If is a vector

C R1’~~ (1.2.4)

where there are L+l operating modes, then is propogated in time by

~~t+l 
= (1.2.5)

where

P = (p .. ) C RL~~~~~~~ (1.2.6)

and

p .. = prob. of system being in mode i at time t+l , given it
was in mode j at time t

(1.2.7)

(see (Paz , 3fl. The probability p .. is the discrete-time equivalent of

the hazard rate , and is t ime-invar iant .  In the future , a t ime-invari-

ant Markov chain will be assumed as a model of the modes of operation

- ---~~~-—~~~~~~ ---- - —--~~~~~~ —- - - - —-  -~
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and the s t a ti st i c s  of the  random switchings between modes.

It is now nt~ces~;ary to d e f i n e  precisely these modes of operation

and their dynamic transitions. The terms system configura tion and

~ystem structure will be used.

Definition 4: System Structure: A possible mode of operation for a

given system; the components, their interconnections, and the informa-

tion flow in the system at a given time.

Definition 5: System Configuration: The original design of the system ,

accounting for all modeled modes of operation , and the Markov chain

governing the configuration, or structural, dynamics (transitions among

the various structures).

An example of three possible structures for a given system is shown

gr aphica l ly  in Figure 1.3. In this report , structu~ 3S are referenced by

convention by the set of non-negative integers

(0 , 1, 2 , 3 ,.  . . , L} ( 1.2.8)

The configurat ion for the design il lus t ra ted in Figure 1.3 is depicted

graphica l ly  in Figure 1.4. The nodes of the graph in Figure 1.4

represent the system structures of Figure 1.3. The edges of the graph

represent probabilities of transfer from one node to another, and are

elements of the matrix P.

prob. structure i at time t+1 given structure j at
time t.

(1.2.9)

The stAte of the system configuration at time t is the structure in

which the system is operating at that time.

- -  - - --~~~~~~~ -~~ ---~~~~~~~~ - -~~~~~~~~~~ --~~~ -~~~-- - - -~~- - -—-
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Figure 1.3: Three hypothetical system structures.
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Figure 1.4: Configuration for structures in Figure 1.3.
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k(t) = structura l s ta te  at time t (1.2.10)

k ( t)  ~ I ( 1.2 . 1 1 )

This structural state evolves in time to form the structural

— (of length T+1)

X
T 

= (k(0) ,k(1), . . . ,k(T)) (1.2.12)

In general , this structural trajectory is a random variable with apriori

probability of occurance

I) ( X
T

) 

~k(0),0~~ k(1)k(0)~~k(2)k(l) ~k(T)k(T—1) 
(1.2.13)

(Figure 1.5).

P
1.2.2 Control Theory .

In this report, only linear systems with a quadratic cost index

are considered. At this t ime , any more general formulation is of dubious

value in that the l inear  quadrat ic  Problems can demonstrate many of the

fundamental concepts of reliable control system design. It is

doubtful that any other formulation could be solved without the knowledge

gained from the linear quadratic solutions presented in the remainder of

this report. As a further restriction , perfect observation of the system

state is assumed . The general class of l inear  systems dis~:usst ’~I in

this report is of the form

~~t÷l 
= 

~~k(t) ~~t ~ ~~k(t) ~~ 
(1.2.14)

The set of pairs 
~~k 
‘!k 

) describe the possible system structures ,

where

k(t) c I (1.2.15)

The remainder of the configuration is specified by the Markov c h a i n

equation (1.2.5). The objective of this research is to develop control

- ~~~~~~~~~~~~~ 
~~~~~~~~~~~

. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~ —- - —-— .



~

‘I

23

76265AW022

1 -

4 -  I~~~~~iI I  S
I —,

S S

t ime

Figure 1.5: Two possible structural trajectories.
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• laws which account for the possible structural trajectories (1.2.12)

while minimizing some function of the cost. The cost function for a

given random state and control tra jectory 
~~~~ 

•
~~~~~

-
~ ~~~~

‘
~~T

’ ‘~~~

3T ~~t
2
~ t 

+ 
~-~~-~~ -t 

+ 

~~~~~~ 
(1.2.16)

The function of the cost which is minimized is generally taken to be the
I,

expected value of over all possible structural trajectories X
T

. It

is shown that this class of optimization problems yields solutions

which are sensitive to both system performance and system reliability ,

as modeled in the ronfiguration .

In the remainder of the repor t , only variations in the B—matrix ,

or actuators are considered . An actuator is a device which transfers

the control input to the system dyr~ mics. The actuator in the B-matrix

may model a phy sical linkage, such as is fc’~nd on the control sur fa ces of

aircraft , or , for example , the effectiveness of a tax reduction on the

economy . A single actuator may fail in many different modes. For

examp le , the B—matrix can be of the form

= 
~~o ~ i 

1 (1.2.17)

where the b . ‘s are actuators wh ich may fail to an actuator having zero

gain with a failure probaflity per unit time Pf
:

b. ~ 0 (1.2.18)
— 1  —

Then the system structures representing modes of failure wouH be modeled

as B—matrices having at least one zero column .

This class of linear models can also be used as a model for self—

reorqanizing systems ; the only restriction is that the reorganization ,

or reconfiguration , process M IS t be modeled with a constant hazard rate.

1~~--— ~~~~~~~~~~~~~~ - - •,__ --~ -—----- —~ - 
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An important aspect of this research is the study of various types - 
-

of redundancy . At present, the effect of redundancy on system performance

is poorly understood . There are two basic types of redundancy : component

redundancy and functional redundancy . Component redundancy is the use

of two or more identical components (in this report, actuators) for the

same task. A good example is provided by equation (1.2.17). Suppose

two actuators, b . and b . , are identical. If b i 
fails (equation (1.2.18)),

b . is still operational, and vice-versa. In order to lose the function

of actuators b . and b , both actuators must fail; this event will
—•1

have a lower probability of occurance than the event of the failure

of if b~ were not in the configuration the function of actuator

b - would be lost.
— i

The problem with component redundancy in control theory is how

should the allocation of control resources be allocated to the redun-

dant components, and how should the component reliabilities affect the

choice of an optimal control law? The control methodologies presented

in this report answer the question for a specific class system confi-

gurations.

Functional redundancy implies the overlapping of function of two

or more components in a system. If one of the components fails , part

of its function is still performed by the other (redundant) component(s).

Functionally redundant actuators are modeled in this report in the same

way as component redundancy. The functional redundancy is accounted for

in the expectaion of the cost index over the structural trajectories.

The dynamics of repair and reconfiguration are all modeled in this

report as exponential failure distributions (constant hazard rates).

1- 

- -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~-~ -~~~
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As an example, if two actuators (b
0 

and are in a system configura-

tion and can each fail with probability Pf 
and Pf per unit time,

0 1
respectively , to an actuator with zero gain (0), then the configuration

dynamics are , assuming independence of failures:

= 

~~~~~~~~ 
(1.2.19)

= [ 2~~~~~
] (1.2.20)

= (1.2.21)

= [2I~
] (1.2.22)

~ ~~l 
with probability Pf 

(l-P
f 

) per unit time (1.2.23)
0 1

~ 
with probability Pf 

(l—P
f 

) per unit ~.ime (1.2.24)
1 0

-
~ B

3 
with probability Pf Pf 

per unit time (1.2.25)
1 2

with probability Pf per unit time (1.2.26)
2

+ B
3 

with probability Pf per unit time (1.2.27)
1

From this information , the Markov chain transition matrix P can be formed :

l P f Pf +Pf Pf 0 0 0
0 1 0 1

Pf 
(l~~~Pf 

) l—P~ 0 0
P = 0 1 2 (1.2.28)

Pf 
(l~ Pf 

) 0 l~ P f 
0

1 0 1

Pf Pf Pf Pf 
1

0 1 2 1

Repair is considered to be component replacement , and is modeled in the

same manner; e.g.,

• 
-‘. with probability p . p (1.2.29)

r
1 

r
2

- -



27
Reconfiguration is the restructuring of the (actua tor) conf igura t ion  to

compensate for failure , and is modeled as

~ 8~ with probability p41 (1.2.30)

where 8
4 

is a new actuator configuration which will be used on reconf i-

guration after failure.

The methodologies presented allow the study of the effects of

fa i lure , repair and reconfiguration on the optimal control of linear

systems; they yield a quantitative analysis of the effectiveness of a

gi ven system design , where effectiveness is a quantity relating both

the performance and the reliability of a configuration design (see

Appendix 1).

1.2.3 General Nature of Results.

There are three classes of reliable controller methodologies:

I) Passive (Robust) Controller Design

— II) Active (switching) Controller , Passive Configuration Design

III) Active Controller , Active Configuration Design

This report concentrates entirely on classes I) and II). Class III)

methodologies are much more difficult to study. The Markov chain models

of configuration dynamics which work in classes I) and II) do not hold

in class III); as yet, there is no satisfactory way to model the

configuration dynamics of a system in such a way that the control rules

are well-defined .

Class I) methodologies are passive designs. These designs account

for the occurance of failures In the initial selection of the control

law; on—line , this class of designs does not use any current estimate of

the structural state of the configuration . The design is “conservative ”

— 
— 
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in that it continues to stabilize the system without regard to the current

structural state. A special sub—class of these designs is the robust

controller designs. A robust controller will stabilize any structure of

the system without regard to the configuration dinamics; i.e . ,  if the

system remains in any structural state forever , it will  still be

stabilized. The class I) methodologies are represented by the

non-switching gain methodology of Chapter 5.

Class II) methodologies are active controllers; in some sense,

they are adaptive. From knowledge of the system ’s past , these controllers

switch their control law on-line in order to compensate for what they

estimate to be the correct structural state. For deterministic systems,

these controllers can be determined analytically . For stochastic

systems, the optimization problems cannot be solved analytically in

genera l due to the dual control ef fect  lFel’dbaum , 4- 7 1.  Thus ,

suboptimal control strategies must be used . The class II) methodologies

are represented by the switching gain methodology in Chapter 3 and

its suboptimal extensions in Chapter 4.

, 

~~~- — — ~~~ — ~~~~~~~~~-~~~~~~~ —_ - — ~~~~~~~—-~——— —  —
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1.3 Relations with Previous L.iterature.

This research is based on a background knowledge in both reliability

theory and systems theory. Both mathematics and probability theory are

fundamental in these fields. As general references to the techniques

used in this report, in real analysis, and measure and integration

theory , (Rudin,81, (Segal *~ Kunze, 9],  and Illalmos,lOl are good; in

matrix theory , IGantmacher ,ll j is the standard reference. In probabil-

ity theory , IBauer 12] and (Doob ,131 are definitive ; expansions on the

theory of Markov chains are found in (Chung ,l41 and LDerman ,lSl .

There are several good texts on reliability theory; of these,

Greene & Bourne , 21 and lShooman, 1] are possibly the best. tCox,l61

and ~Corcoran ,l71 demonstrate the current methods of the scheduling and

use of redundancy in reliability technology . Other good treatments are

found in IBarlow and Proschan ,18) and [Gnedenko ,l9].

In control theory , a good treatment of the deterministic linear

quadratic regulator problem is found in the IEEE Transactions Special

Issue edited by (A tha ns,20) ,  and in (Athans & Faib ,21). The dual

control problem is described in EFel’dbaum , 4- 7] and several other

publications.
,

Previously , several authors have studied the optimal control of

systems with randomly varying structure. Most notable among these is

(Wonham ,22], where the solution to the continuous time linear regulator

problem with randomly jumping parameters is developed. This solution is

similar to the discrete time switching gain solution presented in

Chapter 3. The random parameters are restricted to be a continuous

time Markov chain. The most notable difference is that in [Wonhaxn ,22), 

~~~~~
_ 
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the assumption is made that the controller has perfect information about

the pLeseut state of the random process on-line. The solution switches

gains in a linear state feedback control law whenever the (Markovian)

random parameter jumps. In the discrete time switching gain solution

present ed in Chapter 3 , the control law is determined from past observa-

tions which allow the deduction of the exact state of the random para-

meter process, and then the random parameter may switch values according

to the statistics given by the f4arkov chain. Thus, the control may be

applied to one of a number of possible structures at the nex t time

instant. In Wonham ’s development , the optimal control law is matched

specifically to one structure. The analogous continuous time version

to the switching gain solution of Chapter 3 would be to assume on-line

perfect observat~on of the random parameter with a fixed time delay .

Wonham ’s result has no such time delay .

Wonham also proves an existence result for the steady-state optimal

solution to the control of systems with randomly varying structure.

This result is based on conditions of stabilizability of each system

structure and observability of each structure with respect to the

cost functional. The conclusion is only sufficient; it is not necessary
/

for existence of a steady-state solution . Similar results were obtained

in (Beard ,23) for the existence of a stabilizing gain , where the

structures were of a highl~ specific form ; these results were necessary

and sufficient algebraic conditions, but cannot be readily qent’ralized

to less specific classes of problems.

The time—varying solution of (Wonham ,221 is computed using •~ set et

coupled Riccat i — like matrix equat ions. The coup i n•~ is in t he  form ot

- — -_ - 
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a linear term in the solution to the matrix equations added to the normal

linear quadratic Riccati equation. The solution can be precomputed by

solving the coupled Riccati—like equations off-line ; the control law is

then switched on—line to a gain which corresponds to the current state

of the Markov process. The optimal solution requires perfect knowledge

of the structure.

In reality, the structure is seldom known perfectly , and a noisy

observation of the random process leads to a dual control problem.

Although much of Chapter 3 is based on the fact that the controller can

obtain the structural state with one—step delay in the deterministic

discrete time problem, this report makes the connection , for the f i rst

time, of the existence of a steady—state switching gain controller with

that system ’s reliability and effectiveness.

[Sworder ,24] has developed , using a version of the stochastic

maximum principle , an optimal feedback control law for a class of linear

systems with jump parameters which is almost identical to that of

frZa~ham ,22J; the coupled Riccati—like equations are identical except for

notation. The only difference is Sworder ’s assumption that the random

process is instantaneously observable from a set of sensors which are

unaffected by the choice of the control law. Using this assumption ,

Sworder avoids the problems of dual control.

Sworder also comments on the usefulness of linear system models

with jump parameters in modeling possible failures in the system

( Sworder ,2 4 ] .  (Ratner & Luenberger ,25 1 derive a control law for a

continuous time linear system. The system has one failure mode , and a

maximum number of renewals (repairs) can take place. The objective is 

—- . — _--~
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~
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to determine apriori the optimal time intervals in which the system

should operate in the failure mode, and the optimal control law, jiven

the mode of operation , over a finite time interval. The failure process

is assumed to have an exponential fa ilure distribution (constant hazard

rate); the renewal process is controlled , and is not random. The

control law is of the switching gain type, and the solution is in the

form of two coupled Riccati-like matrix equations quite similar to those

in [Wonham ,22 ] and [Sworder ,241. The optimal control policy and the

optimal renewal policy can both be calculated off-line . This class of

problems is further investigated by [Sworder ,26) to determine over what

region immediate renewal is the optimal policy. Both of these papers

illustrate examples of class III) control methodologies; the structural

State as well as the system state is under the influence of the control-

ler. The simple structure of the class of systems studied by [Ratner &

Luenberger ,251 allows a solution. There is need for much more work in

this area.

Still a third approach to the problems associated with multiple-

structure systems is given in (Bar—Shalom & Sivan ,271. Here, the

measurements of the system state are corrupted by additive noise. The

open-loop controller and the open-loop feedback controller are derived

using dynamic programming . Knowledge of the presentstate of the random

process governing the system configuration is not assumed . Therefore ,

the (optimal) closed-loop controller would be a dual control law. The

open-loop controller assumes no on-line measurements of the system state ;

- 
the open-loop feedback controller assumes future on-line measurements

and thereby improves its performance. There is l ittle correlation
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between this paper and the research on which this report is based.

[Willner ,28) developed a suboptimal control scheme , which allowed

for imperfect observation of the random parameter process, known as

mul tiple-model adaptive control. In this method , the parameters could

only take a discrete set of values, a cause of recent disfavor, as MMAC

does not always work well when the parameters vary continuously and are

approximated by the mathematics. Similar work has been done in [Pierce &

Sworder ,29]. The MMAC methodology is optimal one step backward from the

f inal time , as is the switching gain methodology in the example of

Chapter 2 when applied to systems with additive white control noise.

The dual problem of state estimation with a system with random

parameter variations over a f in ite set was studied in [Chang & Athans,3O~ .

It is shown there tha t the optimal estimator consists of a geometrically

increasing set of Kalman f i lters , one for each possible structural

trajectory of length t+l at time t, and an averaging process to compute

the minimum mean—square error estimate from the filter estimates. It

is also shown that when the parameter process is Markovian , a bank of

N
2 estimators is optimal , where there are N possible values of the

parameters. Each estimator is then conditioned on the possible values

of the parameters at the two previous time instants.

Recently, the robustness of the linear quadratic regulator has been

studied in depth. This work is described in [Wong , et. al.,3l] and

in (Safonov & Athans , 3 2) .  A long-standing problem with the linear

quadratic design methodology has been the lack of analogs to the various

stability and robustness criteria of classical systems theory. This

research was aimed at characterizations of robust solutions to,

- - ~~-~~~--
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specifically, the linear quadratic regulator. Supporting research is

reported in (Safonov & Athans ,33J , [Wong & Athans,34], [Wong,35), and

(Safonov ,36J . The research in this report is related to the robust

controller problem , but the approach is d i f fe rent in that the performa nce

cri ter ion is modif ied to account for possible var iations in structure,

such as those caused by failures , rather than depending on certa in

properties of the linear quadrat ic regulator solution to guaran tee

robustness. In this research , the concept of stability is related to

the existence of a finite cost solution to the non—switching gain

problem. For a specif ic class of configurations, this approach solves

the robust controller problem (Chapter 5, Section 9).

The existence of an uncertainty threshold for the non-switching

controller of Chapter 5 , that limit on parameter uncertainty beyond

which no controller can stabilize the system , is proven for an one-

dimensional example. This work is similar to the work by [Athans ,

et. al.,371 on the Uncertainty Threshold Principle and the related

papers by [Ku & Athans ,38 ) and (Ku , et. al.,39]. This research is

repor ted in Chapter 2, Section 7 .

Lastly, parts -~f this research have been presented in an unpub-

lished form at the 1977 Joint Automatic Control Conference in San

Franc i sco, and published for the 1977 IEEE Conference on Decision arid

Control Theory in New Orleans (Birdwell & Athans,40).
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1.4 Summary of Main Contributions.

There are two major contributions of this research. First , the

classification of a system desiyn as reliable or unreliable, for the

deterministic variable actuator linear system in Chapter 3, has been

equated with the existence of a steady-state switching gain and cost

for that design. If the steady—state switching gain does not exist,

then the system design cannot be stabilized; hence, it is unreliable.

The only recourse in such a case is to use more rel iable components

and/or more redundancy . Reliability of a system design can therefore

be determined by a test for convergence of the set of coupled Riccati—

like equations (3.3.6) as the final time goes to infinity .

A similar result holds for the non-switching gain methodology of

Chapter 5. Here, the system design is classified as reliable or

unreliable with respect to a constant ~~~~ linear feedback control law,

depending on the convergence , or divergence , respectively, of equation

(5.6.16) as the final time goes to infinity. If equation (5.6.16)

converges to a limit cycle, then that limit cycle produces a stabilizing

cyclic steady—state gain.

The second major contribution lies in the robustness implications

of the non—switching gain methodology . Precisely , a constant gain for

a linear feedback control law for a set of linear systems is said to

be robust if that gain stabilizes each linear system individually, i.e.,

without regard to the configuration dynamics. The problem of determining

when such a gain exists , and of finding a robust gain , can be formulated

in the context of the non-switching gain methodology . As a result, the

non-switching gain methodology gives an algorithm for determining a
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robust gain for a set of linear systems which is optimal with respect to

a quadratic co~;t criterion . If the algorithm does not converge , then

no robust ~~~~ exists.

The following Section of this Chapter will outline the remainder

of this report.

1.5 Outline of Retort.

In Chapter 2, several one—dimensional examples are examined as

a clarification and motivation for the methodologies presented in

Chapters 3 through 5. In addition , Chapter 2, Section 7, deals with

the relationship between the Uncertainty Threshold Principle and the

existence of a steady—state solution to the non—switching gain problem .

Chapter 3 develops the optimal solution to the class of r oblems

described in Section 2 of this Chapter. The solution is labeled the

switching ~~~~ solution because the gain of a linear feedback control

law switches in response to the exact observation of the system

structure with one-step delay .

Since Chapter 3 deals entirely with deterministic systems , and the

switching gain solution does not extend optimally to the stochastic

case, Chapter 4 presents some suboptimal methods which can be used to

extend the switching gain solution to stochastic problems. Two

methodologies are presented . One (hypothesis testing) is based entirely

on estimation of the structure. The second (dual identification) uses

the dual effect of the control law to determine more precisely what the

structure is with the next observation . The optima l control law would

have some characteristics of both methodologies , as is shown by example
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in Chapter 2, Section 5.

Chapter 5 derives a control law which ignores any on—line informa-

tion which might be gathered about the structural state, and results

in a non—switching gain solution used in a linear feedback control law .

The stability of this non—switching solution is explored , along with

the existence of a steady-state solution , in Secion 7. In Section 9,

the robustness issue is addressed , and the non-switching methodology is

used to define an algorithm which can determine the existence of a

robust gain and calculate an optimal robust gain with respect to a

quadratic cost functional , when one exists.

Chapter 6 focuses on the issues of computer-aided design and the

application of the non-switching gain methodology to design problems.

Two examples are used to demonstrate the effectiveness of the non-

switching methodology in design.

Chapter 7 reviews the results described in the report and suggests

new directions for future research. 

— ---. 
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- . CHAPTE k 2

CLARIFICATION AND MOTIVATION OF’ RESEARCH

2.1 Introduction.

The purpose of this Chapter is to motivate all subsequent more

general Chapters with simple one—dimensional examples. In particular ,

in Section 2, a one-dimensional problem is formulated and solved to

illustrate the optimal (switching gain) deterministic control for

linear quadratic systems with variable actuator configurations.

The ef f e c t s  of process no ise on thi s solu tion are exam ined in

Section 3. The dual effects which occur in the stochastic systems

motivate the suboptimal. approaches described in Chapter 4.

The possibility of steady-state control of variable actuator

conf iguration systems with a single linear independent control law

is discussed in Section 6, motivating the work on the non-switching

gain solution and robust con trol laws in Chapter 5. In addition ,

the possibility of existence of a steady-state stabilizing linea i

feedback control law with constant gain is compared with the work on

the Uncertainty Threshold Principle rAthans ,et.aL ,37~ in Section 7.

Section 7 contains the only case of this report wheie exact algebraic

conditions for the existence of a steady-state solution have been

derived. Unrortunately, these results do not read i ly extend in an

analytical manner to higher dimensions.

The question of cXistence of a steady—state solution I e these

problems is of great importance . A system design is defined t~ is-

rel iable  w i t h  respect to a certain class of cont i ~ l laws ii t hei- t - 

~~ - :-~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~ -
~~~~~

- -
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exist - s a control law from that class for which the infinite time

cost incurred using that control law is finite . Since the switching

and non—switching gain solutions are the optimal solutions for their

respective classes of control laws , if they incur an i n f i n i te cost, so

j  will any other control ~.aw from that class. In addition , since the

switching gain solution is the optimal control law for the determin-

istic problem , a system design is termed deterministically reliable,

or reliable if and only if the incurred infinite time expected cost

is finite.

In the next Section , a one-dimensional example is presented

which will be used to motivate the remainder of this report by

examining the ramifications of the switching and non-switching gain

solutions through their specific application to the example.

2.2 A Simple Example--The Optimal Solution.

The following one—dimensional example is used to demonstrate the

switching gain methodology presented in Chapter 3, and to show that

the general stochastic problem is analytically intractable. All proofs

and derivations are given in Appendix 2.

2.2.1 Problem Statement.

I,-~t the discrete-time system be one-dimensional with one control

variable u
~ 

and state variable x
~ 

related by

= ax
~ 

+ bkut 
(2.2.1)

The value of the control mul tiplier (b
k

l is a random variable which

takes on one of two discrete values at each time t.

~~~~~~~— — ~—-~~ _ _ _ _  
—-n—--
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b if  k = 0
b
k
(t) = ( 2 . 2 . 2 )

1/b if k = 1

The random process k(t) is governed by the Markov chain represented

by

= 
~-~ -t 

(2.2.3)

where

C (2.2.4)

p11 p12P = ( 2 . 2 . 5 )
p21 p22

At any given time t, the following sequence of events occurs:

I) x~ is observed exactly , bk ( t l) is computed , and k(t—l)is

- 
. set to 0 or 1 depending on b

k(t l)~ 
where k(t-l)is the

variable representing the Markov chain ;

II ) bk ( t l) may change values to bk (~~)
;

III) u~ is applied .

For any given sample path, the performance index is given by

J = ~~~ (qx~ + ru~) (2.2.6)

where {o,i,.. . ,T} is the time set over which the system is to be

controlled. The objective of the control problem is to minimize the

expected cost-to-go at time t , given by

V ( x t , k ( t _ l ) , u
~~

, t)  
E F ~~~ 

(qx~ + ru
~
)lk(t_1)1 (2.2.7)

where the expectation is taken over all possible sample Paths of

k ( T ) ,  t < r < T .

--~~~~~~~ --~~ ~~~~~~~-- - - -—~~~~~~~ - —-
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2.2.2 Summary of Solution.

From Appendix 2.1 , we f ind tha t the optimal control is given

by

U
t

= — ~~~~ 
abS0~~ + 

~~~~ 
(a/b)S

1~~ ÷1 x~ (2.2.8)
r + T

O t  
b
~
S
o~~ 

+ (1/b )S
1~~ +1

- - where

= 

~ I = 

~~~t-l 
(2.2.9)

Thus , the control law is linear in the state x~ , and switches between

two precontputable gains, depending on the value of k(t-l).

Given x~ , x~~1 
and u

~~i

if t t l  
= b

it = (2 .2. 10)
—t—l 

1o1 
x
~
_ax

~~1 = 1/b
1 u

~...1

and k (t—1) 0 if 
~~~~~~~ OP 

or 1 if !L~ -1 ’° ‘~~~
‘
~~

The optimal cost-to-go is

V*(xt,k=i,t) = x
~
S1~~ 

(2.2.11)

where S and S are propagated backward in time by the following
O,t l,t

equations:

• — -~~~~~~~~~~ • -~~~~~—~~~~~~~~~~~ ~~~~ —~~ —•——- - -- 
—=~

--

~~~ ~~~• 
—-

~~ - -~ ~~~~ • - -~~
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Assuming k=O at time t, then = [p 11 p21
] ’  and

r (p
11
abS

0~~+1
+p21 (a/b)S

1~~ +1)
2

= q +

+ p (a — 
b (P i1abS

0 ~+1+p2i (a/b)S1 t+l~ \

2

- t 11 

~ 
r+p11b

2
S
0~~÷1

+p21 (l/b 2)S
1,~ +1 / 0~t+1

/ P11abS0~~+1+P21 (a/b) S1 t+i 
\2

+ P2l ka 
- 

b [r+p 11b2S0 t+14
~ 2l5l ~+1/b

2 ) ) S1~~~ 1 (2.2.12)

Assuming k=l at time t, then = 
~1 12 P22 1 ’ and

2

— 

r (p 12abS
0~~+1+p 22 (a/b)S

1~~+1J
S
1~~~~~~~

+ 2 2
‘ (r+p 12b S

o~~+1+P 2�(l/b )S
1~~÷11

/
I b (p 12abS0~~+1+p 22 (a/b)S

1~~+1J 
~

+ pl2~~~ 
- 

r+p l2b
2
SO t+1+p22 (l/b2)S

1 t+l) 

S
0~~~ 1

I p12ab5o,~ +1
+p22 (a/b) 5

1,t+1 
\2

+ P2 2k a  
— 

b [r+p 12b
2
S
0 ~~1

+p22S1 ~~~~~~~ / S
1~~~ 1 (2.2.13)

Note from equation (2.2.8) that u~ switches from one linear gain

to another , depending on the value of x~ -- thus, this solution depends

on an exact knowledge of x~ . If knowledge o~’ x~ 
is corrupted by measure-

ment noise (or , if u
~ 

is corrupted by control noise), then it will be

shown by example that this becomes a dual control problem .
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2.3 The Dual Control Effect.

To demonstrate the difficulties encountered when white process

noise is present, the optima l solution for the one dimensional

example is derived over the time interval {O,l,2} with additive white

control noise present. The system is now represented by

x~~ 1 
= ax~ + bk(~)

u
~ 
+ 

~t 
(2.3.1)

is discrete time white noise with zero mean, ER
~
f I  =

probability distribution p(~ ), and is uncorrelated with x~ and k(r)

for t < t .

Thus, the problem is to find u~ and u1 
such that the expected

cost-to-go is minimized.

From Appendix 2.2, the optimal control one step back in time

(at t=l) is

* I~ 
7T (l~1)b.~ qa

u
1 

= — x
1 

(2.3.2)

r + it . (l(l)b? q

where ir~~(lI1) is the probability that k1 
= i , given the informa tion

set = {it
0 
,x0

,u
0
,x
1
}. As expected , this control is of the same

form as is the deterministic control law, equation (2.2.8), since

there is no benefit in trying to determine k
1 

more accurately through

the use of a special control value. In other words, there is no dual

control effect at t = T
f
-l (in this example , t=l).

At t=O , the situation is different. Now, the optimal control will

force the system to supply more information through the state at t=l

than it normally would in the absence of the process white noise
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In order to compute u0, a numerical minimization of a numerical

integration (in general) must be performed. Thus, u0 
is the

solution of

* ~~~2 2 —V (x0,0) = nun x~q + u
0r +

u0=~0 (Z 0 ) (

÷ 
k~~~ [k~~~ J

~~~ jq(l+a
2)

1
2 2 2

~~~ it . ( 1 ( l) b ~j  
q a

- 

:÷ ~~~~ n
i(uil)b~~j 

q 

dp (x l j k l
,k

O
,Z

O
)p

k k  
~

(2.3.3)

where

- 

it
k
(l
~
l) = 

~~~ 
l 0 j 0 ) , O 

(2.3.4)

P(x1
_ax

0
-b
~
u
0
)it
~ ,0

and p (x
11k 1

,k
0
,Z
0
) is the probability measure of x 1 over

the range of x1, given k]~ k0
, and Z~ .

Equation (2.3.3) is very difficult to solve numerically , and

for any realistically—sized problem would be economically infeasible.

For the limited amount of computation that has been done with equation

(2.3.3), the dual control effect is evident from Table 2.1. Note

that as the process noise variance increases, the trend is for the

control u0 
to increase. This is due to the need for a larger control

to lessen the effect of noise on future estimations of the structure . 

—- —-~~~~~
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Table 2.1

The optima l control u
0 
versus x

0 
and E.

x0 u~ (E= 3) u
0 
(E=6) u

0 
(E=1O)

—2.0 2.3170089 2.3188635 2.3201611
— 1.6 * 1.8550055 1.8559061
—1.2 1.3898305 1.3907551 1.3912676
—0.8 - 0.9255912 0.9259997 0.9261950
—0.4 0.4606236 0.4606920 0.4607206
0.0 -0.005 -0.005 —0 .005
0.4 -0.4706236 -0.4706920 -0.4707206
0.8 —0.9355912 —0.9359997 —0.9361950
1.2 -1.3998305 -1.4007551 —1.4012676
1.6 —1.8635511 —1.8650055 —1.8659061

* — calculation did not converge due to numerical errors

The system used in the calculations is described by equation

(2.2.1) where

a = 2 .
k(t) is 0 or 1
b0 =2 .

= .5
q = 3.
r = 1 .

— 
.7 .3
.3 .7

.5
= .s

Table 2.1 is only intended to demonstrate the difference in the

optimal control laws at time 0 for a two—stage process; numerical

accuracy is not assured . Specifically,  the values of -.005 for

u0 (x0 
= 0) are highly doubtful , as well as the consistent

asyninetry between positive and negative values in the Table.
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2.3.1 A Special Case.

It is interesting that for one specialized probability distribu-

tion p(F~) ,  when the optimal control u~ is large enough , the optima l

solution is identical with the deterministic solution of Section 2.

From Appendix 2.3, assuming

~ ~~ 
for -v’~~ <

p(
~
) = (2.3.5)( 0 otherwise

as shown in Figure 2.1, if u
0 

from the deterministic solution (equation

2.2.8) satisfies

I (bk — b.)u
0~ 

> 2/i! for k
0 ~ 

i (2.3.6)

then u
0 
is also the solution to the stochastic control problem.

Physically , because the noise is amplitude limited , it is easy

to exactly deduce the structure if the control is large enough.

- •--~~~~~~~~~~~~
• -~~~~~ —— —  ~~~~~~~~~~~~~~~~~~~~~ -
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76265AW023

p(~~)

_
s/~~~~

_

Figure 2.1: A probability distribution for amplitude-limited
white noise.
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2 .4  Existence of a Steady—State Solution.

Al though , as will be stated in Chapter 3, little can be said

about the existence of a steady-state solution to the general n-dim-

ensional switching gain problem, for the one-dimensional example,

exact conditions for the existence of a steady-state solution can

be found. They are in the form of two simultaneous algebraic equations

which can be solved analytically.

/ b [p 11ab+p21(a/b)hJ \ 2I-’ = p
11~~a —  2 2\ ~~ 1

b +p21(l/b )h

i p11ab+p21 (a/~ )h  \ 2
+ p21 ( a — 

2 2 ~ h (2.4.1)

\ b(p 11b +p21h/b /

/ b [p 12ab+p
22
(a/b)h) \ 2

h F =  p12 (a— 2 2
\ p12b +p22 (1/b )h

/ p12ab+p22 (alb) h \ 2
+ 
~
‘22 (a 

— 
2 2 

) h (2.4.2)
\ b[p12b +p22h/b I I

The equations are derived in Appendix 2.4. In these equations the

variables r and h are defined as

S
F = u r n  (2.4.3)

t~—~ O,t+l

and

S
h = lim ( 2 . 4 . 4 )

t-~-—~ O,t

whenever both S and S increase without bound as t -
~ 

-
~~~~, as defined

O,t 1,t

in equations (2.2.12) and 2.2.13). 

--—--- - -
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Since F is the limiting value of the ratio of the next value of

- - S
0 ~ 

to the present value s0 1’ it is necessary that, ,t+

I’ > 1 (2.4.5)

for

S
0 ~ 

-

~ 
(2.4.6)

Similarily , if S
0~~ 

has a limit, then F can have a maximum value of

1. Therefore, a test can be made on the solution (h ,r) to equations

(2.4.1) and (2.4.2) for the existence of a steady-state solution:

If

h~~~~0 o r~~ ( 2 . 4 . 7 )

then

S0~~
, S

1~~
4- if F > 1 (2.4.8)

S0~~~ S1~~ converge if r < 1 (2.4.9)

and there is no conclusion if F = 1.

By way of eliminating all possibilities, as an aside, a limit cycle

to the solution of equations (2.2.12) and (2.2.13) cannot occur by

Leimna 1 of Chapter 3.

2.5 Conclusions on the Switching Gain Methodology .

The purpose of the last three Sections on the one-dimensional

switching gain example was to clarify the approach of this phase of the

research, and to motivate the approach of Chapters 3 and 4. In this

Section, some implications of the one-dimensional example will be

discussed.

r 

— - - 
____
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2.5.1 Implications of the Dual Control Effect.

It was shown in Section 2 that the optimal solution to the deter-

min istic class of variable actua tor linear quadra tic control problems ,

i.e., the switching gain solution , is conceptually straightforward,

although computationally complex off-line. Unfortunately, in Section 3,

it was demonstrated that the opt imal solu tion of the stochastic version

of the same problem is infeasible . (Witness the problems of calculating

the two-step optimal solution.) Therefore , since the switching gain

determin istic solution is essentially the only solution which can be

described analytically , the research involved in developing the

n—dimensional switching gain solution is justified . This is exactly

what is presented in Chapter 3.

It then remains to investigate any extensions (which will of

necessity be suboptimal) which may be made to the switching gain

solution to adapt the solution to the stochastic problem. In Chapter

4, a start is made in that direction . These are two basic routes

to follow: The various hypothesis testing algorithms in combination

with the switching gain solution , and a formulation developed in

Chapter 4 which gives the control vector a dual effect; the control

is changed to increase the accuracy of the estimation algorithm.

The optimal control would use techniques from both categories , as the

dua l effect is clearly seen in Table 2.1.

2.5.2 Existence of a Steady—State.

Although for the one-dimensional example , it is possible to

determine the condition for convergence of the Riccati-like equations 

~~~~~~~~~~~~ — - —- ——----—----.--— - - —- ~~~~~~~~~~~~~ : . _-~~~ -



-- — — — -- - 

—

(1. . I .‘ ) ,tn ~ 1 ( .
~ 
. 2 . 1 1) , liii method ~Ite ~ not extend to t he n—dimen—

ion.~ I saint ton . It i .it present unknown under what cond i t  i on:;

t hi’ R i  s -cdt i — Ii k~- equ I t. I uris for the n— d imcns I on.-~ I problem t-onvel gt’

h~’ ri’ t o l e , (hi’ ic L S littl e cottunent on cond it I oil:. for coiivt’rijeflci’ in

the  remainder of this report.

—- 
- -L r .~~~~~~~~~



- ~~~~~1Lt
- ‘ 

-,-.—--- -•--- ---—-.------ - -•- — - -------—-——-•——---- —-—. •
~ _.•-~.---- --.__--- - ---~.-- r1 .

~!

IL 
_ _  _ _  _ _ _  _ _

52

2.6 A Simple Example--The Non-Switchin9 Solution.

tn the previous sections at th is  Chapter , motivat ion was g iven

for  the development of the optimal (swi tching ) solut ion to the 1 il lear

- 
q u adr at i c  variable actuator  c o n f i g u r a t i o n  control  problem .

Several problems wi th  the method were pointed out in Section “.

Spe citi cull y, the methodology does not extend o p t i m a l l y  to the st uch . i s—

tic case due to the dual control effect. Secondly, the increase in

on-line complexity over the usual linear quadratic contrc-l problem

is significant , especially in the suboptima l stochastic schemes.

In many instances , a stabilizing solution to t h is  class of

control problems is desired which exhibits I-he same complexity as

does the usual linear quadratic controller. For instance , it. may Is-

desired that a control law stabil i ;~~~‘ a system without requiring

error detect ion st r I L e q  I es and switch; i iiq to a new form upon det ccl ion

of failure . A subclass of these problems occur when a robust ~ ; i  in

(one which stahil tzes each confiquration without regard for thi’

dynamics of structural chanqes) for a set of linea r systems is

desired. The first problem within t h is  subclass de~iIs with t h e

existence of such a gain. The second problem dea Is with tin’ cho i ct’

of an optimum robust gain with respect to some cast i ndex.

In the following Subsect ions , an example of 11011—SW i tch ;  I ug gain

methodology is given .1:; an i I lust rat ion  of the  i -o ni ’ept c- ;  s in c e  the

(IC rivat ions are quit i’ comi’ Iex, i au is a re  di’ fe i i ed u n t  I 1 ~‘1 sipt t~~ t 
I~

where the • ent i ru’ deve lopment of the non—sw i -1; I so lut r an i ‘; ~-s~- z ; t esl

_ _ _ _

-- _ _ _
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The following formulation is only for the steady-state solution ;

in Section 7, the conditions for existence of the steady—state solu-

tion wi l l  be given and related to the Uncertainty Threshold Principle

L Athans,et. al., I

2.6.1 Problem Statement

In Chapter 5. the non-switching control problem is solved for

li near :~ystcms with variable actuator configurations and quadratic

cost. It was stated in the conclusion of the previous Section that

a relatioaship exists between the existence of a steady—state solution

and the Uncertainty Threshold Principle. In this Subsection , the

existence of a steady-state non-switching solution to the one dimen-

sional example presented in Section 2 will be studied to illustrate

this relationship.

The system to be used is

x~~~1
= ax~~+ b

k
u
t 

(2.6.1)

where x, a, b1 and u are scalars, k can be either 0 or 1
, and t takes

on integer values.

b if k=0
b. = (2.6.2)

1/b if k=l

The index k represents the structural state of the system, and

is a random variable with statistics generated by the Markov chain
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~-t+l 
£. 

~~
- 

(2.o.3)

j~ i—p
P =

l~~’ P

where is the probability that the structural state is i at time

given some in it ia l  condi tion IT (T -- — 1nIt

The infinite—time , or steady-state non-switching control problem

is formulated by specifing that the solution u is to minimize the

cost of a trajectory (k , u 
~ ~ t=T - 

given by the sum
2 

m i t
= 

- - 

qx ~~ + ru
t. 

(2.6.5)

m i t

2.6.2 Summary of Solution

The solution is computed , from Chapter 5 , equations (5.7.17)

and (5.7.18), when it exists , as the solution (S ,S
1
) of

2 / / (bS
0
+S
1
/b)bS

0 
(bS

0
+S

1
/b)

2
(r-fb

2
S
0
)

5
0 — a  Ip (~~0

- 2 2 + 
2 2

~ (b S0
+S

1
/b )+r 4(t2(b S+5

1
/b )+r)

(bS
0
+s

1
/b)S

1 
(bS

0
-i-s

1
/b) (r+S

1/b
2
)

+ (l—p) — 
2 2 

+ 
2 ‘ 2 

—

(.(b 5
0
+S

1/b 
)+r)b 4(12W S+S 1/b~

)+r)

+ q (2.6.6)

21 / (bS
0
+S

1
/b)bS

0 
(bS

0
+S

1
/b)

2
(r+b

2
S
0
)

S
1 

= a (‘-P) I S0 2 2 
+ 

2 2\ ~ (b S0+S1/b )+r -l (’2(h S0
-e’S

1
/h~ )+r)

/ (bS
0
+S

1
/b) S

1 
(bS

0
+S

1
/b) 

2 ( + S /b2
)

+ 

~~~1 (‘~(b2S
0
+S

1
/b

2
)+r)b 

+ 
2

( 2 . t~~ 7) 

- - ~~~~~~~~~ 
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and the control is given by

* 
(bS

0
+S

1
/b)a - 

I

= — 

2 
— .  x~ (2.6.8)

(r+~~(b S0
-*-S

1/b
2) )

Note that the steady-state solution is a linear feedback control

law with a constant gain which is pre—computable using equations

(2.6.6) and (2.6.7). The on-line implementation of this solution has

the same complexity as does the usual linear quadratic steady-state

solution.

- ~~~~~~ ~~~~~ .. ________________
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2.7 Existence of a Steady—State Solution and the Uncertainty
Threshold Principle.

In this Section , the existence of a steady-state solution to

equations (2.6.6) and (2.6.7) is related to the Uncer tain ty Threshold

Principle (A thans et. al.,37]. This Principle states that for a

certain class of systems , there exists a threshold , or bound , on the

degree of uncertainty in the system dynamics beyond which no control

law will stabilize the system . Furthermore , it is noted in

H [Athans et. al.,37) that there does exist a “minimizing” control even

though the infinite—time cost in infinite .

For the non-switching gain class of controllers , it wi l l  be

shown in this Section that , at least for the one-dimensional example

of Sections 2 and 6, such a threshold does exist ; furthermore , it will

I -
~ be explicitly calculated. In addition , it wil l  be demonstrated that

the non-switching control gain converges even when no finite cost

steady—state solution exists.

• 2.7.1 Formulation of Existence Problem.

The question is now asked : When does the steady state solution

exist? I.e. , when is the cost , given by

.J = ½ (S0 
+ S1)x~ 

(2.7.1)

f in i t e?

This problem is solved by showing when the solution does not

exist.

Allowing

S0 
-
~~ 

(2. ~~. 2)

and setting 

- - ----—-—-•—--- --- -—- - -- -- -— -=---‘-‘--‘=~~~~~
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- I S
- J_ ,t -

h = 1mm (2.7.3)
t+—~ 0,t

I’ = lim O,t (2.7.4)
t~’-~ 0,t+l

where S
0~~ 

and S
1~~ 

are the values of the r.h.s. of equations (2.6.6)

and (2.6.7) iterated backwards t times from an initial value S
1 0

=Q,

equations (2.6.6) and (2.6.7) become

r = a2(p (i - 
(b+l-i/b)b 

+ 
(b+h/b) 2b2

\ \ ½(b +h/b ) (b +h/b )

+ (1 p) ( h  (1 (b+h/b) 
2 + 

(b+h/b )2~~
2 

(2.7.5)

\ \ ½ (b +h/b )b (b -th/b ) ///

hr = a2 ((1_p) (1 - 
(b+h/b)b ,~ (b+h/b ) 2b2

\ ½ (b +h/b )

+ p/h 11 - 
(b+h/b ) 

+ 
(b+h/b ) 2/b2 \ \ \  (2 .7 .6)

\ \ ½ (b
2+h/b2)b (b2+h/b2)2 /1/

2.7.2 Summary of Solution.

Equations (2.7.5) and (2.7.6) have 5 solutions. The solutions of h

and 1’ of interest are:

For p~~~½;

h = —(p(b4(6—2W)-3b8—3)+((2b4—2)p-.b4+l)V

+(4b8—2b4+2)p2-fb8—2b
4+l)/((2b4+2)p2—2pW) (2.7.7)

r = a2(—p(b
4
(2p2-s.4p—2)+(b8+l) (p

2_2p+l)1½+(b4+l)p2)

/ ( (b 2+1) 2(2p—l) (2.7.8) 

-~~~~ . -- ---—-~~~~~~~~~~~~~~~~~~~ -
— -- -- — ---~~~~~ ~~~~~~~~~ -
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- 

- 
where

V = (b4(p(4_4[b 4(2p 2+4p_2)+bS (p 2_2p+l)+p2_2p+11 2)

+2p2_2)+b8(5p
2_2p+l)+p

2_2p+l1 2 (2.7.9)

and

W = ( ( bS+2b4+ 1)p2+(_2b8+4b4_2)p+b
S_2b4+ 1) 2 (2.7.10)

For p = ½;

h = 1 (2.7.11)

2 2  2
r = 

a(b —1) (2.7.12)
2(b4+l) 

m-~~~-- -- - ---- - - - - _ _
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2.7.3 Graphical Illustration of Solution .

Equations (2.7.7) through (2.7.12) are too complex for much

information to be gleaned from study. Therefore, their significance

is demonstrated graph ically in this section.

These equations are used to compute the absolute values of a

versus b and p above which no stabilizing non-switching control exists;

i.e., since 1’ is the limi ting ratio of S
0~~ 

to 
~~~~~~~~~~~ 

wha t threshold

value of l a l  yields I’ 1? Since the system (2.6.1) is a discrete

time one, this threshold quantifies how unstable the open—loop system

must be for there to be no stabilizing solution . This quantity is

called the uncertainty threshold value of la l . For the case p = ½,

~~~~~~~~~~ is easy to compute from equation (2.7.12)

Ia I~h hold = 
(2~~

4
~~)1

½ 
(2 .7.13)

For p # ½,

Ia l threshold 
= (b2+l)U2p—1)

4 4 2 8 2 
~
- ½/(p((b +l)p—lb (2p +4p—2)+(b +1) (p —2p+1] 2) ) )

(2.7.14)

A plot of Ial threshold 
versus p (long axis) and b is shown in Figure 2.2. 

~~~~~~~~~~~~~~~~~~~~~~~~ 
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versus I’ , b.
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The ln(b) axis is used because t a t  is s y m met r i c  w i t h ;  1~ ’~;1 cct
threshold

to ln(b) around zero (t a t (b) = t a t (1/b) ). b varie s
threshold threshold

f rom e 2
~
5 
to e~~~

°5 ; p varies from p 1 to 
~ 

.01 • Note that

h i d  ~“ as b 1 and/or p -~~ 0. This is because as b 1, I-li e

system looks more and more like

= ax~ + bu
t. 

(2.7.15)

which is controllable for all values of a. As p 0, the system is

swi tching more and more rapidly between the two structures; therefore ,

each structure has less time to influence the system unfavorably and

the system becomes easier to control, leading to ta (t.h h l d  
+ 

~~~~

2.7.4 Best Control with Infinite Cost.

Al though the cost may be inf in ite, a finite gain control exists.

From equation (2.6.8), and allowing S0 
+ 

~ and S
1
/S0 

+ h, the control

becomes
I

= — (b+h/b)a (2.7.16)
t (b2+h/b

2) ~

Note that the control gain does not depend on q or r , but only on p ,

a and b, as in the work with the undertainty Threshold Principle. A

plot of h versus p (long axis) and b is given in Figures 2.3a and 2.3b,

in the same manner as for r. Note that as p -~ O~ , h -~ ~ (except at

b = 1). For this boundary , we rely on a symmetric argument , switching

the roles of S0 and S1, since we only know that S1 
-*

An interesting symmetry exists in h with respect to p. If h is

defined as

h u r n  h (2.7.17)

_________ ______________
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I 

p r .1

8-

-
~~ h

6 _

e ’5

-
~~~~ b

Figure 2.3b: h versus p, b. 
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• then

i-i = (2.7.18)
p

Letting p = + x,

h(x) = (2 .7 .19)

and

h ( x ) = 
1 

(2.7.20)
h(-x)

Thus, lnEh(p)] is symmetric around p = .5 . This solves the boundary

problem , because as p + 1, h -
~‘ 0 (except at b = 1),  and the condition

S
0 

-
~~ 

u is satisfied (S
1

-* 0). Since h is symmetric , and h(p,b) +h (p)

for p~~0, the solution is well-defined at p = 0.

In Figure 2.4, the control gain divided by a , g, is plotted as a

function of p and b•

*

U
t 

= 
_
~ax~ (2.7.21)

Note that a s p+ 0
+ 

(and h -*~~ ), g~~~ b, and as p- * 1 (andh - ~~O),

g -
~ 1/b , and that b0 = b and b

1 
= 1/b . Thus , as p 4- 0~~, the optimal gain

tends towards the deadbeat controller for the system in structural

state 1, and as p -“ 1 , the optima l gain tends towards the deadbea t

controller for the system in structural state 0.
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- . 2.7.5 Conclusion .

In this Section , the steady—state properties of the non—switching

solution to a specific example of actuator failure were stud i ed , and

were related to the Uncertainty Threshold Principle. In particular ,

the existence of an uncertainty threshold has been established , and

with the help of the high degree of symmetry in the example, the values

for fa t , given b and p. were calculated . It was also shownthreshold

that the best control with infinite cost is a function only of a, b and

p, a situation analogous to the solution obtained in the papers on the

Uncertainty Threshold Principle [Athans et. al.,37).

An analogous solution to that presented here should exi- ;~ for the

switch ing gain problem , and in fact, the rudiments of ~;uch a solut i on

are given in Section 4. As a guide for future research , it would be

in teresting to compare the two methodologies on the basis of these

solutions. Unfortunately , it is mathematically intractable to extend

this result to the multivariable case, although another approach may

be found .

2.8 Summary.

The un i fy ing  issue in thi s research is the in ter re la ti onsh ip

between the issues of control and reliability . Section 7 brushes on

- the question of when a system design is considered a reliable desi~)n.

In Chapter 3 , a reliable design will b~ d e f i n e d  as one i n  which  t he

s teady—state  s w i t c h i n g  gain so lu t ion  ex i st s .  Therefore , 1 1T 2 , ’ S t  ~oI;s

concerning the existence of such solutions become q uit e  important.

U n f o rt u n a t e l y , l i t t le  headway has been made in the deve l opment ~ t any

simple test for the oX istence of the st oad y — s t at i ’  ;o lut  ion . t ) n l y  i n  

~~~ _&•-~~~~~~

__ 
-~~ ~~

_ -- - _ _ _  - - : — .  ~~~~ ~~~~-- ~~~~~~~~~~~~~~~~~~~~ -
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Section 7, in the specific case of the non-switching gain solution ,

for a specific (relatively trivial) example, and in Section 4 for the

same example with the optimal solution , have condi t ions for exi stence

of a steady—state been resolved. In Section 7, these conditions are

given explicitly ; in Section 4, they are given as the solution to two

simultaneous equations. For the general n-dimensional problems in the

- remainder of this report , existence can only be tested by iteration of

the solution equations.

— - C- - ~~~~~~~
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CHAPTER 3

THE SWITCHING GAIN SOLUTION

3.1 Introduction.

In this Chapter , a control methodology for linear systems with

quadratic cost criteria and variable actuator configurations will be

developed which accoun ts for the fa i lure , repair and reconfiguration

of the actuators by switching the control gain on detection of a

change in configuration . This problem is viewed as a control problem

• rather than as the traditional estimation problem. Therefore, a

determinist ic  model is assumed , except for the random changes in

configuration , which are modeled by a Markov chain. This methodology

has the advantage that all gain and expected cost calculations are

done off—line. The gains switch on—line with changes in the configura-

- 
- 

tion , which are observable with one-step delay for almost all values

of (i.e., except for a set of measure zero). In addition , the

method is useful  in the stochast ic case, though. not optimal , in

conjunction with identification methods such as hypothesis testing

and dual identification , which will be described in Chapter 4. The

gain and expected cost calculations can he used as an evaluation

technique in computer—aided design of linear systems. An example

would be in trade-off studies of various redundancy configurations

with respect to performance , reliability , and system effectiv~ iu’ss.

The disadvantages of the technique as it is presented here are that it

requires perfec t measurement of the state and tha t only mu l tip le
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actuator configurations are considered . The multiple sensor configura-

tion problem should be dual to this work. Changes in the A I f la t t iX

are a minor ex tension ; however , the general problem allowing variations

in both the actuators and the observers would be a major result. 
- 

I

Previously, several authors have studied the optima l control of

systems with randomly varying structure. Most notable among these is

(Wonham ,221, where he develops a solution to the linear regulator

problem with randomly jumping parameters in continuous time. The

solution assumes apriori that the controller has perfect information

about the present state of the random parameter process. Little work

was done on the steady-state existence problem.

The solution presented in this Chapter is analogous to tha t of

Wonham ’s; however , the discrete time formulation of the problem allows

the controller to observe exactly with one step delay the value of the

Markov parameter process. Thus, it is shown that for the discrete-

time process, the optimal controller is not dual. 
-

In addition to this conclusion, this research makes the connection,

- 
- for the first time , of control and system reliability and effectiveness.

This is the unif ying concept in the entire report, and has been discuss-

ed in detail in Chapter 1.

The procedure for determining the existence of a steady-state

solution to the switching gain control problem divides system designs

into two classes: If a design allows a steady-state solution , then

that solution is stabilizing (see Section 7, Chapter 5); therefore,

that design is classified as a reliable design. On the other hand , if

Ii 
— - --— ---- - — - - -~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —— - -- •
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no steady-state solution exists, then that design is classified as

inherently unreliable.

Although no easy test exists for the existence of a steady-state

solution , the computer can always be used to iterate equation (3.3.6)

backward in time and check for stability. Therefore , this methodology

yields a classification of systems into those which are inherently

reliable and those which are not.

3.2 Mathematical Formulation.

In this Section, the n-dimensional extension to the one-dimension-

al switrhinq gain result presented in Chapter 2 will be developed .

The only non-trivial task is to prove that the system structure is

observable for almost all values of the control. The system model is

~~t+l ~~~~ 
+ H

k() U (3.2.1)

where

~ 
R’1 (3.2.2)

£ R
m (3.2.3)

flx nA C R (3.2.4)

and , for each k , an element of an indexing set I

k c I = [0,1,2 , . . . ,L} (3.2.5)

n X m
~ R (3.2.6)

where

it I 
(3.2.7)

The index k(t) is a random variable taking values in I which is

governed by a Markov chain and 

r ‘w,,tst.r ,~~r— --- —- ——- - -
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(3.2.8)

~~ 
£R

L
~~ (3.2.9)

where 
~ i,t 

is the probability of k (t) = i, given noon line infortnation

about k ( t), and 1T~~ is the initial distribution over I.

It is assumed that the following sequence of events occurs at

each time t:

1) is observed exactly

2) !k(t l) 
switches to

is applied .

The control interval is assumed to be

(0,1,2, . . . ,T} (3.2.10)

and the cost function is selected as

T- 1
~ ~~ t’~ -t~t=0 

‘
~ -T~

= ~~ !c t 2!~t + ~~t~~~-t 
+ 

~!T~~~~T 
(3 .2.11)

The objective is to choose a feedback control law, which may

depend on any past information about x~~
or u ,~ , mapping x~ into

R~~,4R
m (3.2.12)

(3.2.13)

such that the expected value of the cost function from equation

(3.2.11)

= E [J T
III O

) (3.2.14) —

i~ minimized over all 
possible mappings 

~~~
at 

~~

—
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3.3 The Switching Gain Solution.

Normal ly ,  a control law of the form (3.2.13) must provide both

a control and an estimation function in this type of problem; hence

the label dual control is used. Here , the structure of the problem

allows the exact determination of k(t-l) from 
~~~~

_ and

for almost all values of . This result is stated and proved in

the following theorem.

Theorem 1: For the set fB
k
} 
ke ~~ 

where the ‘s are distinct , the

set 
~~k t+1 

= + 

~~k~~-t
1
k=o 

has distinct members for almost all

values of

Proof: See Appendix 3.1.

Ignoring the set of controls of measure zero for which the

members of

~~k,t+l~k’0 
(3.3.1)

are not distinct, then for (almost) any control which the optimal

algorithm selects , the resulting state 
~~t+l 

can be compared wi th the

members of the set (3.3.1) for an exact match (of which there is only

one wi th probability 1), and k ( t) is identified as the genera tor of

that matching member 
~-k ,t+l

Since perfect identif ication is the best any algorithm can achieve ,

the optima l control law u
~ 

= 
~~~

(x
~~
) can be calculated with the

assumption that k(t—l ) is known , since thi s is the case wi th probabil ity

one. Thus, this solution will be labeled the switching ~~~~ solution,

since, for each time t, L+l optimal solutions are calculated apriori,

and one solution is chosen on—line for each time t, based on the past
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measurements • 
~~t-l 

and , which yield perfect knowledge of

k(t—1).

Dynamic programming will be used to derive the optimal switching

gain solution. At each time t, the expected cost—to-go using the

control sequence

* * *
~~t+1 

‘ 
~~t+2 ‘ • ‘ -~ T—l 

(3.3.2)

and given the value of k(t-l) is defined as

V(x
~ ~~~ 

,k(t—l),t) 
-

T T
= +

+ Ek ( t ) {V (xt+l ,k ( t ) ,t+l) I k(t—l)} (3.3.3)

where * denotes the optimum value and V~ is the optimal value of V.

Then , by dynamic programming

V(x t 
,k(t—l),t) = nt in (x~~~~x~~ 

+

~~~ ~~~~~~~~

+ Ek ( t )~
V (x t 1 ,k(t),t+l) I k(t_l4) (3.3.4)

It is proved , from Appendix 3.2, that

v(x
~~~

k(t
~
l),t) = X

’
~
Sk t X

t 
(3.3.5)

where the 
~~k,t 

are determined by a set of L+l coupled Riccati-like

equations (one for each possible configuration):

~ k,t = A T 

~~~ ~ik ~-i ,t+l

- 
~ik ~~i,t+l -~~i 

! + 

~ ik ~~i~~.i ,t+l~~ i]

~ik 
!~~!i,t+l j 

~ 

+ 2 (3.3.6) 

— -~~ - •—-~~~——-- 
~~ r. — ——- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ —‘---- .-~
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-

The optimal control , given k(t-1) = k, is

U - + 

~ ik !i~~i,t+i~~ij

• 
~~~~~~~~~~~~~~~~~~~~~~ 

(3.3.7)

Wri ting

= 
~~k,t~~ t 

(3.3.8)

then

— + 

~ik 
!i!i,t+l~~ i]

~ ik ~-i - ~~i,t+l -~ 
(3.3.9)

Thus, u =4L~(x~~ is a switching ~~~~ linear control law which

depends on k(t-l). The variable k(t-l) is determined by

k(t—l) = i i f f  x = A x  + B . u (3.3.10)
— t —— t—l —i--- t—l

Note that the S . ‘s and the optimal gains G can be computed
k,t

off—line and stored. Then , at each time t, the proper gain is selected

on—line from k(t—l), using equation (3.3.10), as in Figure 3.1.

3.4 Discussion of Results.

The solution in section 3 is quite complex relative to the struc-

ture of the usual linear quadratic solution . Each of the Riccati-like

equations (3.3.6) involves the same complexity as the Riccati equation

for the linear quadratic solution . In addition , there is the on—line

complexity arising from the implementation of gain scheduling. In

Chapter 5, a non—switching gain solution will be presented which has

an identical on—line structure to that of the linear quadratic

- 
~~~~~~~~~~~~~~ •

• —- - •- —•~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -~~ - --~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ - -
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___________1~L-k(t —1 ) : L... _J

Figure 3.1: The switching gain control law.
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solution , but has similar off-line computational complexity to that of

the switching gain solution. Depending on the system requirements,

either solution could be used ; the non-switching gain solution is

suboptimal, but requires less on—line complexity . This trade-off may

favor the non—switching solution in some cases.

A steady-state solution to equation (3.3.6) may exist, but the

conditions for its existence are unknown . The steady-state solution

would have the advantage that a time—invariant set of gains result.

Thus , only one set of gains need be stored on—line , instead of requir-

ing a set of gains to be stored for each time t. Since the steady-

state solution is simply the value to which equation (3.3.6) converges

as it is iterated backward in time , at present, the equations can

be iterated numerically until either they converge or meet some test

of non-convergence. Unlike the non-switching solution presented in

Chapter 5, the possibility of limit cycle solutions in the switching

gain computations is excluded by the following lemma:

Lemma 1: If the optimal expected cost-to-go at time t is bounded

for all t, then equation (3.3.6) converges.

Proof: See Appendix 3.3.

Once again, it is stressed that the existence of a steady-state

solution to the switching gain problem establishes a division of

system designs into those which are inherently reliable and those

which are unreliable. Even though conditicris to test for the exis-

tence of the steady-state solution are unavailable,software can be

used with iteration for the test.

-- - -- - 
• - -— —-~~~~~~ —~~~~~~ ~~~~~~~~~------- .-
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In Section 5, some numerical examples are given to illustra te

the switching gain solution.
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3.S Examples.

In this Section , a two-dimensional example is presented with three

di f ferent switching ga in solutions to i l lustrate the switch ing ga in

computational methodology. The computer routines which are used in

the calculation of the switch ing gain solution are listed in the

Appendix. The primary subroutine is READY; it calls WEIGHT . Any other

routines wh ich are used are from the standard ESL subroutine library .

The main program RDYMAIN is used to call READY.

Example 3.1 is a two-dimensional system with four structural

states corresponding to the failure modes of two actuators. In this

example, failure of an actuator is modeled as an actuator gain of

zero. Thus, the four structures are: I) Both actuators working (B
0 
);

II ) One actuator failed (B
1

and B
2

) ,  and III) Both actuators failed

(B
3
). The system is controllable in all structures except for the

sturcture represented by B
3 
.

Actuator failures and repairs are assumed to be independent events

with probabilities of fa i lure  and repair , per unit time , of Pf and

respectively , for both actuators.

In Example 3.1, the matrixes 2 and B are the quadratic weighting

matrices for the state and the control , respectively . The

matrix P is the Markov transition matrix, which is calculated from knowl-

edge of the system configuration dynamics, represented graphically

in Figure 3.2.

I
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Figure 1.2: Markov transition probabilities for Example 3.1.
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There are three Cases to Example 3.1. Each Case assumes a different

failure rate and repair rate for the actuators. Case i) has a high

probability of failure and a low probability of repair, relative to

Cases ii) and iii). The switching gain solution is not convergent for

Case i); the gains themselves converge , but the expected costs do not.

• Only configuration state 0 is stabilized with its corresponding gain,

~~O
.

Cases ii) and iii) both assume more reliable actuators than does

Case i). Both Cases ii) and iii) have convergent switching gain

solutions. Therefore , both Cases ii) and iii) represent reliable

configuration designs, while Case i) is unreliable. This difference

is due entirely to the different component reliabilities. Equivalently ,

Cases ii) and iii) are stabilized by the switching gain solution , while

L Case i) is not. Note that in this Example, stabilizability is not

equivalent to stability in each configuration state, or robustness.

For this example, no robust gain exists because the system is

uncontrollable from configuration state 3.

Cases ii) and iii) are also presented in Chapter 5, where their

non—switching gain solutions are given. According to the theory, it

should be more diff icult to stabilize a given system with the non-switch-

ing gain than it is with the switching gain , because of the optimality

of the switching gain solution. This is demonstrated for this example ;

in Chapter 5, the non-switching gain solution to Case ii) is not

- 
- 

convergent.

_____________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~—• --~~~~~~~~~~~ • • - • ~~~
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• Example 3.1:

2.71828 0.0]

I
0.0 .36788J

(1.7182 8 1.718281 (o.o 1.71828
B 

~ I ! I—0 
~ — .63212 .63212J 1 

[o .o .63212

11.71828 0.0] [0.0 0.0
B
2

= I I— 

[— .63212 o.oJ [o.o 0.0

[14. 8.] fi.o 0.0.1 R
8 6 0 0 1 0

l_2P
f+P~ ~~f~~ r ~f~~ r

= 

Pf(lP f)
2 

~~~~~~~~~~~ ~r~f
— 

Pf(l—P f
)2 

~r~ f f~~r~~ f~r ~~~~~~~~2 2Pf 
~~~~~~~ ~r~~f 

1 2
~r~~r

The system dynamics are

~~t+1 = 
~~~~ 

+ 
!k ( t)  ~~~ 

Ex i t  x2 t J T

k ( t )  C (0 ,1,2 ,3)

The cost , which is to be minimized, is

J E[Ex~~2.x t + u T
Ru I 7r

j

- -~~~~~~~~~ - - ~~~~~~~ - • --~ --~~-- -
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Pf

.3

1)
r~~~~

7 .21
P11 = =

.21 IT
2

.09 11
3

Non-Convergent ; but gains converge :

[— .9636 1.094 x io 6

G 1  60 
~— .9l34 —5.835 x 10

[- .9234 1.740 x io 6

G
1 ‘ 6

(~-.8699 —5.136 x 10

[-.8094 .9186 x 10
6

G = I  62 
L—l .020 —4.05 x 10

[— .9636 .7353 x
G 1  6~ 

~ — .9l34 —3.923 x 10

Stability :

Confi guration Stable

0 (B
0

) yes

1 (B
1

) no

2 (B 2 ) no

3 (B 3 ) no 

-•-- • - -  : - : ~~~~~~~~~~~~ .. - -  - - V __________________—.—-----

~
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Example 3.1, Case ii) . . — —

Pf = .1, 1
~r 

= .81 11o

.09

.09 11
2

.01 11
3

Convergent Coupled Riccati Equations :

-.8890 .04222
G. =
—1 

— .7752 — .09914

for i = 0,1,2,3

[25.57 8.611
S . =
‘ 6.398

Stability :

Configuration Stable

0 yes

1 (B1
) 50

2 
~~~~ 

no

3 (p. 3 )

-. _____ • - 
- 

• • •~~~• _ • ~~~•



= - --
•~~

- 
~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ •~ .• • .- - •~~• _ __

84
Example 3.1, Case iii) - . - —

Pf 
= ~~~ ~r 

= .98 .9799 _if
o - -

.009999 11
11=  = 

1
— 

.009999 11
2

.0001020 11
3

Convergent Coupled Riccati Equations:

[— .7558 .1270
G 

~~~0 
[— .8073 -.1786

[15.88 8.105
S = 10 [8. 105 6.137

[-.7060 .1186
G 11 

t— .8441 —1.723

[16.06 8.074
S =

~~ [s.o7~ 6.143

[-.8375 .1090

~~- -) = I
• 

- 

~~~~ 
- .1669

[16.31 8. 199
S
2
= 
~
[8.199 6.158 

~~~~~~~~~~~~~~~~~ ~~~~—~~~~ • ~- - •
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[— .7863 .1023
G
3 ~

[— .7926 — .1619

- [16.54 8.170]
- s = I  I

~~~ [8.170 6.l62j

- 1  Stability:

• Configuration Stable

0 yes

1 (B
i
) no

2(!
2
) ~°

3 ( B
3
) no

L 
•
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3.6 Summary.

In this chapter , the optimal solution to the linear control

problem with variable actuator configuration was developed. It was

shown that the optimal solution uses a linear switching feedback gain

which depends on the previous configuration . This configuration is

directly computable from the past measurements; this fact allows the

development of the switching gain solution by eliminating dual con-

trol considerations. The exact measurement of the configuration with

one—step delay holds only for the deterministic case, where there is

no corruption of the state or control observations by noise.

In Chapter 4, the use of the switching gain methods will be

demonstrated for stochastic problems in conjunction with two different

forms of identification: Hypothesis testing and dual identification ,

a technique for “pushing” the control variable out of the noisy

region , when the noise is amplitude limited, to obtain an exact

identification of the system structure.

— — _________________ _=~~-_‘-=_-- --—-—-,-- -— - - _sil~ 

-
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CHAPTER 4

EXTENSIONS TO THE STOCHASTIC CASE

4.1 Introduction.

In Chapter 3, the optimal solution to the deterministic linear

quadratic control problem with variable actuator configuration was

developed. It was also demonstrated that the optimal solution of

the general stochastic linear quadratic problem is hopelessly complex

in Chapter 2. Therefore , in this Chapter, extensions to the deter-

ministic solution to allow its operation in a stochastic .nvironment

will be studied.

From the derivation of the switching gain solution, whenever

the structure of the system is known perfectly with one step delay ,

and if it is assumed that it will be measured perfectly at the next

time instant , the optimal solution is the deterministic switching

gain solution. In designing a suboptimal control system , a method

of identi fy ing the system structure is used , with the assumption that

the identification is perfect , and the appropriate deterministic

gain is selected. —

Two conceptually different methods of structure identification

will be presented in this Chapter. The first is classical hypothesis

testing. It is the easiest to implement , although extensions to

F n—step hypothesis testing can be made which are very complex. The

second method is labeled dual identification ; the expression is used

because it takes advantage of the dual effect of the control law to

guarantee perfect identification. In this method , a perturbation 

V 
- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
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- - ~~~~~~~~~~~~~~~~~ -~~~~~- - - • 
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(which may or may not be that small) to the deterministic control is

introduced which separates the effect of amplitude limited white

control noise from that of the system structure. As a worst case

control law, this perturbation would be applied at each time instant,

but in practice , it would only be applied once every n time instances

so that its overall effect on system performance would be lessened.

In the next Section, the system modI -l will be described, and the

hypothesis testing identification algorithm will be presented .

4.2 Hypothesis Testing Identification.

The system model used here is the same as in Chapter 3, but with

the exception that additive white noise is introduced into the

dynamics:

!t+l = + B k ( )  U
t 

+ (4.2.1)

For the hypothesis testing identification method, is assumed to be

zero mean white noise with probability distribution p (~ ). It is

assumed to be uncorrelated with k(t) and . Perfect measurement of

the state is retained. V

The basic hypothesis testing method is very simple: At each time

t, one of L+l hypotheses is chosen, where each hypothesis H . is

• H . : k(t—l) = i (4.2.2)
1

With each hypothesis H .,  there is a probability of H
i 
being

correct, given the measurement and the past information: IT (t—llt—l),

the probability distribution of k(t—l), given the measurements through

Then the updated probability (see App_;~dix 2) 1T~~
(t_lIt), the

probability of k(t-l) = i, given all measurements through 
~~ 

‘ 
is

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
• -

- V - - .--— — • — _ j
~~~~~~ . ~~— •- ---~~~~
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given by

p(x — A x  - B . u )ir . (t—lIt—1)
Tr . (t-.ljt) = —t —— t—l — 1—t—l 1 

(4.2.3)

~~~~ ~~~~~~~~~~~~~~ 

—

Hypothesis H is assumed to be correct if

IT . (t—lIt) > 1T .(t—llt) for all j ~ i (4.2.4)

Ties are resolved arbitrarily. Then , given the correct hypothesis H
1,

the corresponding deterministic optimal switching gain is used to

compute the control at time t

= E~ 
(4.2.5)

as in equations (3.3.8) and (3.3.9).

The probability distribution is then propagated with the Markov

chain equation —

!(tlt) = P -TI (t—ljt) (4.2.6)

and the process repeats.

This algorithm can work well if there are significant differences

in the effect of the control variable between configurations. When

the differences are slight , a mistracking will result until the errors

are large enough to be detected through equation (4.2.3). The method

does not exploit any of the dual effect of the control variable on

the measurement of the configuration. The method presented next does

use the dual effect to identify the correct structure. Analytically ,

it cannot be said which method is best, as the optimal control law

will lie somewhere between the two . It is possible to extend the

hypothesis testing procedure to n-step hypothesis testing where a

• hypothesis is made about the last n values of k(t) and i~ then tested .
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Since this investigation is not within the primary scope of this

research, it is left as an open problem for future research. It is

also possible that a combination of hypothesis testing and dual identi-

fication may be used to gain some of the advantages of both methods;

dual identification yields fast identification of the correct structure ,

• while hypothesis testing does not sacrifice control of the system

while there is a high probability that the structure is correctly

identified.

4.3 Dual Identification.

The underlying concept of dual identification is to periodically

change the control in order to increase the accuracy of identification

of the structure. In the limiting case, the control is changed

enough to guarantee perfect identification of the current structure

with the next observation. For this case only amplitude limited noise

is considered . The system model is

~~~~~ 
= 

~~ .t + !k(t) ~.t 
+ (4.3.1)

where is R—dimensional white noise which takes on values in the

unit sphere with distribution p(~~
) and is uncorrelated with and

k(t). M is an nx~~ matrix which defines the ellipsoid in R
n which

contains

Normally, if no identification were to be performed , and if k(t—l)

were known , the optimal deterministic switching gain 
~~k t-l),t 

from

equation (3.3.9) would be used to compute .

= 

~~k(t—l),t~~ t 
(4.3.2)

In dual identification, the goa l is to compute a gain offset 
~~~~~~~~~~ 

--- -- ~~~~~~~~~~ - - - -  V - • ~~- - - -• -~~~~ • — -_ - ~~~~~--~~ - -
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such that when the control

= ‘ 

~~l,t 
(4.3.3)

is applied to the system, identification of the structure k(t) with

the observation is guaranteed. To accomplish this, note that,

for a given !k ‘ ~~~~~~~ 
will be in a bounded convex set determined by

and ti. Thus,

~~t+l 
— 

~~~ t ~~k~~ t 
+ (4.3.4)

and can be any element in the unit sphere S(R
i
). Therefore ,

perfect identification of k(t) is guaranteed if no two of the domains

of corresponding of the B
k
’S have a non-empty open intersection.

That is, the following condition must be satisfied for each pair of

and every 
~~l 

and 
~~2 

of S(RL):

— + 

~~ -~ i ~~2 
~ 0 (4.3.5)

1 2

This condition is the same as

V (
~ !.i

# 
~~k1 

— 

~~k2 ~~
t 

> 2

~~ ~-~~k 
- 

~~k ~~ t 
~ N (M )

1 2

otherwise,

- 

~~k ~~~ ~ 0 (4.3.6)
1 2

where is the generalized inverse of M and N(M) is the nullspace

of H. Note that the inequality of (4.3.6) can be relaxed to equality,

- 
. since the intersection of the two domains of 

~-t+l 
would only be at

the point of tangency , a set of measure zero in either domain.

The objective is to choose 
~~~~~~~~~~ 

such that (4.3.6) is satisfied

for all pairs B and B in the reachable subset of alA actuator
—k

1 
k
2

- -
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configurations. The reachable subset refers to the subset of configu-

rations which have a non-zero probability of occurance at time t,

given that the configuration was !k ( t 1) at t-l. This is the same as

the condition that

B . is in the reachable subset from B
—i —k (t—l)

~~ 
~ik(t—l) 

>0 (4.3.7)

Suppose that there are J conf igurations in the reachable subset from

~~k(t-l) 
. Then there are J (J+l)/ 2  pairs of configurations for which

condition (4.3.6) must be satisfied . Also, since 
~~l ~ 

affects the

state , it is reasonable to minimize its effect. Therefore ,

since the effect of is modified by 8k ( t) , it is reasonable to

minimize the norm of . Thus, the minimization problem is formu-

lated subject to the constraints (4.3.6) .

2
j  mm ii 

~~l t

~~l,t

subject to

* 2
— 

~ ~~k 
1
~~t~~ ~
!i,t~ 

ii ~ 0 (4.3.8)

where

D. . = M
#
(B. — B .) (4.3.9)—i+(j—l)*J — — 1  — J

p 
Formulating this as a nonlinear programming problem , the

Hamiltonian is

H(
~~i t  ~~~~ 

= ~J 
~~~~~~~~~~~ 

j~ 
2 

+ 

~~~ 
A
k

4_ 11
~~k ~~~ 

+ 

~~l,t
1 IJ 2

x 0 (4.3.10)

Ak 
= 0 if 4- 

~~k ~~t~~~~ l,t1 11 2 < 0 (4.3.11)

Differentiating H with respect to A, and solving for 
~~l,t 

as a

function of u~ and the parameter ~~~~
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= = 2
~~~l.t 

- 

~~ 
2xkD~~

D
k[u:+ 

(4 3 12)

or,

= - 

~~~
Ak.~ kQk

) 
~~~

A
k~ k~~k~~t 

(4.3.13)

Now, using (4.3.13) in the constraint equation (4.3.11)

~ 1’
~~ k~~ -~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 11 2 < o

(4.3.14)

Noting that

(!- X(I + AD TD)
1
D
T
DI = El + AD

T
D1~~ (4.3.15)

then (4.3.14) simplifies to

4 — 

~ 2.~ 
[! - 

~~~ 
Ak~ k,~ k 

] 1
~u fi < 0 (4.3.16)

and if (4.3.16) is a strict inequality, then = 0. In general,

a numerical algorithm must be used to solve for A in the set of

equations (4.3.16) ; this can be a major drawback to the application

of this methodology if the on-line computer resources are unavailable.

Although the computational burden of this technique is a disadvantage,

dual identification would most likely be implemented in combination

with a hypothesis testing algorithm. Dual identification would then

form a test to be performed on the system after some interval of time

to ensure that the hypothesis testing algorithm correctly tracked the

configuration.

—-—.-.

~

— - - —--- - —
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4.4 Examples.

3 In this Section , the one-dimensional example of Chapter 2, Section 1

Ic implemented with additive white noise applied to the control i nput .

Three suboptimal control algorithms derived from this Chapter are imple-

mented : Hypothesis testing , dual identification , and hypothesis

testing in combination with dual identification , which is utilized every

fifth time instant. The purpose of this example is to illustrate the

degrading effect of the dual identification algorithm on the system

state.

The principle subroutine used to generate the computer simulations

of Example 4.1 is SWITCH; it is listed in the Appendix. SWITCH calls

FIG and UCALC , also in the Appendix; any other routines which are used

are in the ESL subroutine library.

The system in Example 4.1 has two structures, represented by the

matrices B
0 

(b = 2.) and B
i 

(1/b .5); the Markov transition probabili-

ties are given by the matrix P. The switching gain solution was calcu-

lated using the software described in Chapter 3, Section 5. Case i)

of the Example corresponds to the hypothesis testing methodology described

in Section 2. The additive white noise was amplitude-limited with zero

mean and variance = 1. Case ii) of the example demonstrates the perfor-

mance degradation due to the exclusive use of dual. identification . Note

that the variation among the values of the state and control are larger

than in Case i). The advantage of dual i dentification is that , for

amplitude-limited white noise, perfect identification of the system

structure with one—step delay is guaranteed. In Case iii), hypothesis

testing is used four-fifths of the time to partially avoid the degradat ion

~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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due to dual identification . The control is more effective in Case iii)

than in Case ii); however, for this example, it is not clear that the

use of dual identification one-fifth of the time is warranted , since a

performance degradation of Case iii) over Case i) is still evident in

this particular simulation. More simulation would have to be carried

out before the proper ratio of the use of hypothesis testing to the

use of dual identification could be determined.
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Example 4.1:

A = 1.414

= 2.000 B
1 

= .5000

Q = 3.000 R = 1.000

.7 .3

.3 .7

Switching Gain Deterministic Solution:

c0
= — .7569

G1 
= -1.008

The system dynamics are

x~~ 1 = +

k(t) c

The cost function which was minimized is

J = EfE Qx
~~
+Ru

~~
P 1t
]t=0

where

= E½ ½1~
Structural transitions are of the form

.3
80 ~~~~

8l

When dual identification was employed , the control was set to

= l .25 (sign (u ~ ) )

This control was the minimum value required to establish perfect

identjfj~atjon.

L —- .~~~~~~~~~~~~~ . - ~~ .--. ~~~~ ~-~~_____
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4.5 Summary.

In this Chapter, two methods have been proposed to extend the

deterministic optimal switching gain solution of Chapter 3 to the

stochastic case. The two methods represent the two fundamental

concepts of identification: Estimation and dual control. The

optimal stochastic control law, if it cou ld be computed, would rely

on both concepts, using estimation when the control variable is

large (and the state is far from the orijin) and dual control to

• enhance estimation when the control and state variables are small.

In the dual identification technique presented here, control is

sacr ificed to obtain an exact observation of the structure. Thus,

the system response would be roughly periodic, with the state being

driven away from the origin in order to obtain an accurate estimate

of the configuration, and decaying back toward zero between identif i-

cations. In the period when the control is not modified, hypothesis

testing would be used to track the configuration.

I
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CHAPTER 5

THE NON-SWITCHING GAIN SOLUTION

5,i Introduction

In the previous two chapters, the switching gain solution was

developed and studied. In this chapter, attention will be focused

on obtaining a constant, robust, or non—switching gain which solves

a variable actuator configuration linear quadratic control problem ,

with minimum cost for this class of solutions. It must be stressed

that this is a suboptimal solution ; for the deterministic case,

Chapter 3 gives the optimal solution. The interest in this chapter

lies in determining a sequence of gains, for a linear c~ontro1 law,

which do not switch in response to the detection of a change in system

structure. For instance , it may be desirable to ensure the stability

of a control system under certain types of failure without creating

the complexity necessary to detect those failures and compensate for

them, as is done in the switching gain solution.

This class of solutions is related to the overall robustness

problem where fault—tolerant control systems are desired . Although

not formulated in this manner , the research described in this Chapter,

as in Chapter 3 , is readily extendable to system with variable system

matrices as well; i.e., where the system can be represented as a set

of possible structures (~~~, ~~ ) over some suitable index, even though

this class of problems is not as directly related to the underlying — 

~~~~~~~~~~~~~~~~~~~~ — - - - --~ - _ - .- 
-
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reliabilit y theme of t h i s  r epo r t .

Non-~-wi t ch i ng  gain solutions to the variable actuator configura-

tio n class of problems c~tn be obtained in different mathematical ways.

Problem A of Section 3 is reformulated as a deterministic control

problem (Problem AE), and is solved using the necessary condi tions of

the Matrix Minimum Principle [Athans ,41) in Section 5. Unfortunately

thLs approach , although yielding the necessary conditions for an opti-

mum , does not allow an analytic solution. Therefore , in Section 6,

a second problem (Problem B) is formulated and solved using dynamic

programming .

Section 7 is by far  the most detailed and one of the most impor-

tant sections of the repor t, along with Sections 8 and 9. In Section

7, the concepts of stability and cost—stability are defined and are

used to prove an equivalence between the infinite—time versions of

Problems AE and B. In Subsection 7.6, the steady—state solutions for

both problems are defined. Unfortunately, nothing in the mathematics

appears to rule out the possibility of limit cycles in the infinite—

time solution; this is discussed in Subsection 7.7. When the constant

steady-state solutions to the two problems exist , it is proved in

Section 8 that they are identical. This is a very important result, as

it allows the steaey-state solution of a complex two—point boundary

value problem which is much more tractable.

In Section 9, it is demonstrated that the general robustness problem

for linear systems (where one wishes to determine a single stabilizing

LA ~~~~~~~~~~~~~~~ - - - - - -
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gain for a set of linear systems) is solved in this framework for the

class of systems with variable actuator configurations. Examples of

both the non-switching solution to Problem B and the robustness

result are given in Section 10, and a chapter summary in Section 11.

5.2 Problem Statement.

The objective of the research described in this Chapter is to

form a methodology which will be used to compute apriori a gain Q

(either time-varying or steady—state) which minimizes the expectation

of the quadratic performance index over a set of linear systems with

actuator variation and known transition probabilities of structural

change (Problem A). The necessary conditions for minimization are

given which this optimal gain must satisfy ; it is shown that these

conditions result in a complex two-point boundary value problem.

A second optimization problem is formulated which is based on

the restriction to non—learning control laws which are precomputed ;

i.e., it is assumed that the control law cannot benefit from knowledge

of it s past. Although this formulation appears to be much weaker

than that of Problem A , it is shown in Theorem 2 that if steady-state

solutions to the two problems exist , then the steady-state solution

to Problem A is stabilizing (in the sense that the mean square value

of the trajectory is exponentially bounded) if and only if the steady-

state solution to Problem B yields a system which is exponentially

stable. This result is very significant, in that a Corollary to this
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Theorem solves the problem of finding a robust gain fot a ‘;et of l i nea r

systems and yields  an explicit procedure for its calculation .

The last Theorem (Theorem 3) of the Chapter proves that the steady-

ctate solutions to the two optimization problems are identical. This

implies that not only does the procedure mentioned above determine a

robust gain i f and only if such a gain ex ists, but also that the steady-

- 

- 
state gain is optimal with respect to the specified quadratic cost

criterion .

5.3 Problem A.

Consider the system

= 
-~ -~~t~ ~~k(t) 

B t 
(5.3.1)

where

C Rn ( 5 . 3 .2 )

L R
m

k(t) c I ={ 0,l,2,” ,L) (5.3.4)

I is an indexing set for the possible actuator stru~~ures

where

C R
flX

~~ (5 3 5)

k(t) is a random variable with sufficient statistics given by the

Markov transition probabilities p .., where the matrix

P = (p..) (5.3.6)

is a stochastic matrix , and the initial probability distribution is 

-~~- • - -~~~~~--•~~~~~~~~~~~ -
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• lO 
= 

~~i 
(5.3.7)

Since k(t) is assumed to be a Markov chain , the probability vector

is propagated in time by

~~t+l ~ -~ t 
(5.3.9)

where there is no real-time observation with which to update

Consider the structure space {B
k
) 
kCI 

indexed by I. Define the

structural trajectory ~~~ to be a sequence of element k(t) in I which

select a specific structure 
~ k(t) 

at time t,

X T 
(k(0), k(l),..., k(T—l)) (5.3.9)

The structural trajectory i
~T

iS a random variable with probability of

occurance generated from the Markov equation (5.3.8).

T- 1

k(t) t 
(5.3.10)

t=o

where the control interval is

{0,l,2,...,P—l ,T} (5.3.1])

for the finite time problem with terminal time P. Then for a given

T-l —

state and control trajectory 
~~~ 

~~~~~~~~~ generated by (5.3.1) and

from a sequence of controls (u
~~ ~~~~ 

, the cost index is to be the

standard quadratic cost criterion

1
T ~~T

’
~~~t ~~ ~~~~ ~- t- ~~ -t 

+ 
~~t~~~~t 

+ X T.2X T 
(5.3.12)

The admissible controls are restricted to be of the linear feedback form

~-~-t ~~~~~~~~~~~~~ 

(5.3.13)

* i,e, (1 0 ...0) or (0 1 0.. .0) or .. .  (0 0.. .0 1)

- 
~~~~~~~~~~~~~~~~~ : -~~~~~ - 

~~~ t-~~~~• ~~~~~~~~~~~~~~~~~~~~~~~~~~~
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where the ~~~~ 
matrix G t 

is restricted to be a func tion ~~~~~~~~~~ 0! ~~~

and the initial conditions; i.e., it cannot depend on x~ . The objective

is to minimize over the set of admissible controls the expectation of

(5 .3.12), where the expectation is taken over the set of possible

structural trajectories -

C I (5.3.14)

T

and the set of initial conditions x 0

* *1 Thus, the optimal control law = - should minimize the

cost

E[J
T

I1T
O I

E + 
~~t -~~ -t 

+ 
~-T~~~~T 

I 
~ o] 

(5.3.15)

over the set of admissible controls.

Since the structure of 
~~~~~~

= 

~~~~~~ 
is f ixed , the problem is equiva-

lent to minimizing , in an open-loop sense, the cost function

EEJ~ I1T 0
) E ~~~~ x~~2x~~ + + x~~Qx ~~ I !L0 j

(5.3.16)

with respect to the gain matrix , t~0,1,. . .,T-1. Equation (5.3.16)

is simply obtained by substituting equation (5.3.13) into equation

(5.3.14) .

5.4 The Method of Solution.

The matrix minimum principle (Athans ,4 l1  wi l l  be used to determine

the necessary condi t ions for the ex istence of u~ (or equ iva len t ly,

) .  To solve the problem using the matrix minimum principle , the 

- - ~~~~~~~~~~~~~~~~~~~ — ----- - .— - .
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formulation presented in the last section must be converted into an

equivalent deterministic problem. For this purpose , let the initial

state be a zero mean random variable which is independent of any

structure. Let

= E[x
0x~ ~

1T
0 

= E ( x 0 x
’
~ 1 (5.4.1)

be the convariance matrix of x
0

Defining the covariance of as

E(x~ x~ ~1T c~ 1 
(5.4.2)

then, by direct calculation, we obtain

= 

i
~~~

=0 ~~~~~ 
Pit_iit_2

Pi:_2it:;• 
Pi_li0~io

,0

[ii ~. ) ]~~o [ (
~~~~
!. ~~j )]  (5. 4.3 )

- - j=O j  j =o

Similarly, if we def ine

~.i ,t 
= E(x

t
x ’
~ 
Ik(t—l) i,1t 0 1 (5.4.4)

then , we deduce that

&i,t 
= 

it_i ~~~~~ 
~~~~~~~~~~~~~~~~ 

pi
1
i
0

•1Ti:,:(~+!iEt_ l ) i:~: 
(A+B . G j )] ~ o

• I i:i (A+B . G 4 ) 1 (A+B . 
~~t—l 

)T (5 4 5)
[i=o t

j J .1
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The matrix 
~~j t  

can be defined recursively as

~~j,t+l 
.n
j~ 

~~~~ P~ 1
11
1 ~~~~~~~ 

~~~~ ~~~~~~~~ 
(
~~~!~~ ~~ 

)
T (5.4.6)

for t > 1.

= 
-

~~~~~
j  ~ o ~~o 

~~~~~~~~~~~~ ~ o )
T (5.4.7)

and the relation

Z = n . ) . , t > 0 (5.4.8)
—t ~

...4 1 3.,t
1=u t—l

is obvious from direct calculation.

Remark 1: At this stage, an equivalent deterministic problem (Problem AE)

will be defined with state (~ . )~ for t >0 and state Z at t 0.
— i ,t 1=0 —0

The system dynamics are then defined by equations (5.4.6) and (5.4.7).

Definition (Problem AS): For the system with matrix state (si
t ~~~~~~

for t>0 and for t = 0 with dynamical equations (5.4.6) and (5.4.7)

and matrix control G
t 

minimize the equivalent deterministic cost

T- 1over (G )
—t t=0

= 5
ic~,x 0

+ 
~ T~~~T L~.0

I ’L 0j

= tr[~~ (~ + G~~ R G~~) I  + tr(
~~T~~

J (5.4.9)
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Note that since the expectation in equation (5.3.13) is over all

structural trajectories x and the initial !.~~ 
also ,

4 = ‘
~T 

(5.4.1 0)

• The symbol J,~ will be used exclusively in the future . The one-stage,

or instantaneous, cost at time t is

4 = t r (E t (2. + G ’
~

RG t ) 1 ( 5.4.11)

Problem AE is completely deterministic in the state 
~~~~~ ~~~= ‘

and control

At this point, the minimization will be decomposed into two parts

using the Principle of Optimality (Athans and Falb, 211 . The first

minimization is over the interval (1,2,... ,T-1}, and for this the matrix

minimum principle will be used. The resulting solution will depend

in general on the choice of G 0 
and on the initial conditions and

Let v(G
0
) be the optimal cost resulting from the use of and

the optimal sequence , C 2 
, . . C T 1  

for the interval {1,2,. . . ,T}.

The second minimization is then over C~ of the cost

= tr[r
0 
(~ + G~~RG Ø)1 + V

* (G
0
) (5.4.12)

The Principle of Optimality states that these two minimizations

* T_l
result in the minimizing sequence (Gt)t o  

for Problem AE. 

~ — - - - - —  - -- -~~~~~~ -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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From (Athans ,4l3, the Hamiltonian for the minimization over

( 1 , 2 , . .  .,T—1 ) is

H( 
~~i ,t~~=o ’ ~~ j , t+l~ j—0 ’ 

~~~~~~~~~

= tr n i~_ 12i i ,t (Q + )

+ tr [~~~ ~ ~~~ Pj~
1t
~ 

(
~~
!j~~t~~ .i ,t ~~~~~~~~~~~~~~ I

for t C (1,2,3,.. .,T—l} (5.4.13)

where the costate matrix is (Sj~~11 ~~~~~~

Remark: We have now formulated Problem AE-l, which minimizes the accumu-

lated cost over the interval {l,2,...,T} with respect to the sequence

~~~ ~~~~ 
using the matrix minimum principle and results in the optimum

cost, given C 0 
, V~ ~~~~~~~ Problem AE-2 is then the minimization of

equation (5.4.12) over C 0

- -  --—~~ 
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5.5 The Necessa~~ Conditions.

The matrix minimum principle yields necessary conditions which

an optimum must satisfy. There are two conditions of importance.

(The third condition yields equation (5.4.6)).

From the necessary condition for the costate,

*
S . = ~~~~. 

(5.5.1)
OL.

j— , 
*

the propogation of !i,t 
backward in time is derived.

= 

— 

2: +

+ P u 
~~~~~~~

• 
~~~~~~~~~~~ + 

~.
‘:!

‘
~~ .j,t+l~~.j ~~

+ ~~~~~~~~~~~~~~~~ + 
~~t!j~~~j , t+l~~’} 

(5.5.2)

This equation is well-defined for any sequence {G~ ~~~~~~~~~ 
and t> 0.

The cost V of using this arbitrary sequence over the interval

{l,2,.. . ,T} is given by

V( (G
~~
)
~~~

) = tr [~~~~ S .i ~~~i i ]  
(5.5.3)

The total cost over the interval {o, i , . . .  ,~ } using this sequence is

= tr 
~~~~ ~~i,l~~-i ,l] 

+ tr [(2: + G~~ R G
0
)E
0 1 (5.5.4)

= tr 
~ ~~~~~~~~~~~ ~~~~~~~~~~~~ ~ 

+ &~~ 
+ 

~~~~~~ ~I
(5.5.5)

= tr 
[~~o~ 2: + 

~~~~~~ 
+ 

~~i -~ O ) T5~~ 1 ~~~~~~~ 
)~] (5.5.6)

_________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Define

~~~i -~~0 
)
T
5 

~~~~~~~~~ 
+ 

2. 
+ 

~~~~~~~~~~~~~~~~~ 

(5.5.7)

Then from equations (5.5.6) and (5.5.7)

= tr(E
0
S
0 J (5.5.8)

• T-iThus, the cost of a given sequence ( of length T is

~T 
= trEE

0 
S
0 ~~~ 

‘
~~ 

‘
~~T—l~ ~ 

(5.5.9)

For future reference, define the matrix 
~~~~ 

by

S ~ — i,t 
(5.5.10)

— i ,t it.

I

and note that equation (5.5.2) becomes

~~i,t 
= 2. + + 

~~~ 
p
i 

T S . t+1 A + 
~~~
!
~~!j , t+l!j ~~t

+ A T S .  B .G + G TB ’
~S . A] (5.5.11)— 3,t + l ) t  t~~)—),t+l—

From the Hamiltonian minimization necessary condition

= 0 (5.5.12)
— t 

*

the following relation between E . , S . , and G is obtained.
l,t j,t+1 t

o = RG ~~
“

1T . Z.
— ——t r~ ~~~~~~~~

+ 

~~~~~~~~~ 

[1!~~~i, t+x!i~~t ~~~~~~~~~~~~~~~~~~

( 5 . 5 . 1 3 )  

~~~~
-
~~~ - - — — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Remark: At this point, a two—point boundary value problem has been • 

-

defined with the constraint (5.5.13) relating equations (5.5.2) and

(5.4.6). Equation (5.5.13) is not explicitly solvable for C t

because ~ . cannot be factored out of the sum over j; thus, it cannot
—i ,t

be used as a substitution rule in the other two equations. At this

time, the solution for C
t appears intractable. Thus, although necessary

conditions for the existence of G
t t the minimizing gain , have been

established, they do not readily allow for the solution of , and

certainly do not admit a closed—form expression.
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5.e Problem B: The Non-Switching Solution. - -

Although the methodology presented in Section 4 yields the

necessary conditions for an optimum, these conditions are not analyti-

cally illuminating . In this section, a second optimization problem

is formulated . An equivalent formulation was presented in (Birdwell &

Athans 401 . The solution will admit a closed form expression for

Although this solution is not the optimal solution for the first

~‘roblem , in that this solution does not necessarily satisfy the neces—

sary conditions for problem AS , it will be proved that the two solu-

tions are equivalent in the sense that for the steady—stati’ solutions ,

as defined in Section 7, either both solutions stabilize the system,

or neither one stabilizes the system. Even bettet , it will be proved

that the steady—state solutions to the problems are identical.

For the system (5.3.1), the objective is to minimize at each time

t the weighted sum, with respect to 
~~~~~~~~~~ 

, of the expected costs—to-go,

given the control 
~~ 

(x e
) and u (x ~) for T ’  t , and given

that the structure at time t-l was k(t-1) — i , for each i.

Formally, let C be the expected cost-to-go, given 
~~~~ 

‘ ‘ and

k ( t - 1)  at time t be defined as

C(x~ 
~ 

, k ( t - l ) ,  t )  
~ !~~~~~

2
~~~.t  

+ 
~~~~~~~~~ ~~~~

Ek ( t) (C (x
~~+i 

,k(t) t-~1)I k(t—l )1 (5.6.1)

where * denotes the optimum value , and u ,~ is computed as

— arg mm <
~~t.1 

,C(t)) (5.6.2)

— arg mm ~~_ 1 ç(t )  (5.6.3)

~~

A ~~--- ~~~~~ -———--—- - -~~~~
—

~~~~
-
~~~~ 

- 
——~~-~~~—~~~~~~~~~~~~~ - ~~~~~~~~~~~~
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and

C (x t 
,k(t—l),t) C(X~ ,u~ ,k(t—l),t) (5.6.4)

where

C(X
~ ~~~ :

t
~~~~

0.t)

c(t )  = . (5.6.5)

C(x
~ 

,u
~ 

;k(t l)=L,t)

and

T

c(T) = c* (T) = . (5.6.6)

T

Thus, the problem is

m m  iT . Ix ’
~~~x~ +

) 1= t— 1.

+ E(C*(
~~t+l

,k(t),t+1)(k(t_1) iJJ (5.6.7)

= mm ii .

~ t-l

+ 
~~~~~~~~~~~~~~~~~~~~~~~~ 

+ 
!. 

~~ 
i i ttl)] (5.6.8)

From the formulation, is non-learning in that it depends only on

for its knowledge of the past. Let C~ be of the form

C*(
~~t

,k(t_l),t) 
~~~~~~~~~~ 

(5.6.9)

Then f o r t= T ,

= (5.6.10)
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And equation (5.6.8) becomes

mm 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ P ( ~~~~ 
+ 

~ ~~~~~~~~ ~~~ + ~~ 
)} (5.6.11)

At the minimum , differentiating (5.6.11) with respect to u~ , we

obtain

0 = 
~~~~ 

+ 
~~~~ ~~~~~~~~~~~~~~~~~~~~ 

+ 
~~~~~~ j t+l~~~~~tJ

(5.5.12)
Solving for

~;= - E
~~

+ 
~~~~j j j t + l  3 ]  

— l~~~~~~~~~~ ,

(5.6.13)

and hence the gain matrix is given by

= - [
~

+ ~~~~~
1T
j!j~~~i t+1!

i] 
~~~~~ iT

j !j !) t .f l~~~

(5.6.14)

where 
~~~~

= 
~~~~~~~

From (5.6.11) and (5.6.4),

T ’  T 1  *T *
= 

~~t [2 : +~~~~t~~~~~t

~~~ 1
+ 2.~ ~~~~~~~~ ~~~~~ ~~j t+l ~~~~~~ ~ )J 

~~~~~~ 

(5.6.15)

or, since (5.6.15) holds for all

*

~-k ,t 
2
~~~
2t-~~~t

T ‘ T * * T T
+ 

— 
k~~~ 

!j , t+l~~~~~~~~ ~~ j , t+l !j~~~t ~~~~~~~~~~~~~~~~~

+ 
~~~~~~~~~~~~~~~~~~~~ 

(5.6.16)
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Thus, (5.6.16) proves by induction that equation (5.6.9) is valid.

Note that equations (5.6.16) and (5.5.11) are identical.

Therefore, the unconditional cost of C
t , 

t=0,l,. . .,T-l, is , from

(5.5.9)

= tr[Z
0S0 ~-~ 0 ‘~ -1 ‘ ‘

~~T—l ~ 
(5.6.17)

which in this case is simply

= 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(5.6.18)

The matrices C
t 

are called the non-switching, or non-learning gains,

and will hereafter be denoted G . The label G will be reserved for_ns
t 

—t

the solution to equation (5.5.13). The optimal value of the cost-to-go

at time t 0  for this problem will be called the non—switching cost ind ex,

and is given by

= it . 
T~ x + ~ T 

(2. + G
T 

RG )x (5.6.19)
flS

T 1= 
i0 l

~~
i
~
l_ l —o —n s

0
—-—n s

0 
—0

= ~
T 

~~~ . (A+B . G )TS . (A+B . G )
—0 Li= i0

— — i — n s
0 

—i ,l — — i— n s 0

+ + GT RG x (5.6.20)
—ns0

--—ns
0j 

—0

*
Note that if G = G for all time (i.e., if the solutions to the—ns0 —t

optimal control gain problem and to the non-switching control problem

are the same, then E (3 = 3 .
x nsT T 

~~~~
-
~

— J
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Summary: In this Section , the non—switching , or non—learning , gains

have been derived . These gains are called non—switching or non—learning

because they do not depend on the past trajectory of and , but

only on the initial probability vector over ~ . It was further

shown that if the solutions to Problems AE and B were identical , then

E [J I = J (5.6.21)ns T
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5.7 Stability and the Steady-State Solutions.

In this Section , the concept of stability for this class of

systems will be precisely defined. From this, a natural concept of a

steady-state solution to Problems AS and B will be given and a very

strong result relating the solutions to the two problems will be

proved.

5.7.1 Stability and Cost-Stability .

For this class of systems, two definitions of stability will be

- 
- tendered. The first is the usual definition of mean-square stability ;

the second definition , that of cost—stability , has a strong relation to

the existence of solutions to the in f i nite time versions of Problems AS

and B.

Definition 1: (Stability). C is a constant stabilizing gain if and

only if the resulting system given by equation (5.3.1) and repeated here

~~t+l 
= 
~~ -t 

+ !k(t) ~~~~~~ 

(5.3.1)

is mean—square stable:

E(x
t x

’~ J -
~ 0 as t -* w~ (5.7.1)

Definition 2: (Cost—Stability). The system (5.3.1) is cost—stable

if and only if the scalar random variable

~~0
t t t t  

< ~ ‘ (5.7.2)

with probability one.

_ _ _ _ _
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5.7.2 N’finition of the Infinite—Time Cost.

In this research , the infinite—time problem is defined as a

minimization of

J = lim J (5.7.3)
I -  T

- 

- 

where is the cost function for the corresponding finite—time problem.

The sequences which solve these infinite-time versions of Problems AE

and B are (c
~ ~~~ 

and 
~~
ns
~ ~~~~~ 

respectively , when a solution exists.

A ~;o1ution will exist if there exists a sequence o-f gains for which the

limit in equation (5.7.3) exists. This definition of the infinite—time

problem is chosen rather than the definition requiring a minimization

of the average cost per unit time

J
1 

= lim 
1’ 3T (5.7.4)

because there is a direct correlation between the boundedness of

over all T for a constant sequence of gains C and mean square stability

ot’ the system (5.3.1). It is necessary , however to prove that the

set of prrblems for which is bounded for some sequence of gains is

not vacuous. This fact is demonstrated by any of the convergent non—

switching gain examples in Section 10.

As further demonstration of the validity of using equation (5.7.3),

note that if 0 < < ~~, then the cost per unit time has a non-zero

steady-state value , which implies that the system (5.3.1) is not mean-

square stable since

— tr(E (2: + G
T RG )1 (5.7.5)

where ~ and C are the steady-state values of E and G , when

they ex :t, and , si nce 2 + ~~~SS!~~~SS 
is positive definite , ~ 0.

____________________________ — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— —_
~~~~~~~.
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- • 5.7.3 Bounded Cost and Mean-Square Stability .

In choosing equation (5.7.3) as the basis for the definition of an

infinite—time problem, a major requirement was that the existence of

an infinite-time solution, namely of a sequence of gains which yields a

finite cost in equation (5.7.3), imply mean-square stability. For

the case where the sequence is constant, the following result is

proved.

Theorem 1: A constant sequence of gains 
~-Sa~=o is mean-square stabiliz-

ing if and only if there exists a bound B < ~ such that

< B for all T (5.7.6)

Proof: See Appendix 5.1.

Remark: For a sequence 
~~~~~~~~~~~~ 

3
t
<8<

~~ VT 
implies (G t

)
~~o 

is

mean—square stabilizing , but (G~~) 0
mean_s~uare stabilizing does not

imply J~ is bounded for all T.

Proof: See Appendix 5.2.

5.7 .4 Cost—Stability .

As yet, the definition of cost—stability has not been utilized .

In this Subsection , it will be shown that the system described by

equation (5.3.1) is cost—stabilized by a sequence of gains (G
~
)t o if and

only if 3 is finite-valued for this sequence. One direction of this

result is proved in the following theorem.

Theorem 2: Any sequence (G
~~
)
~~ 0 

for which J < - ~ cost-stabilizes (5.3.1)

with probability 1.

Proof: See Appendix 5.3.

~ 

~~~~~~~~~~~~~~~~~~~~



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - — --------- -~~~~~~~~~~ -‘,~-

122

The other direction of this result is obvious : If a sequence

(C
~~
)

0 
is cost-stabilizing with probability one, then the random cost,

given by equation (5.7.2), is finite except on a set of structural

trajectories of measure zero. (The appropriate measure on this set is

given in the proof to Theorem 2.) Since the expected cost J is the

integral of equation (5.7.2) with respect to the probability measure

on the set of structural trajectories (see Appendix 5.3), then 3 is

finite.

Thus, the cost-stability and the existence of an infinite—time

solution are equivalent.

5.7.5 Equivalence of Problems AS and B.

The first major result of this Chapter ~~1l now be stated. This

result establishes a strong equivalence between the solutions to

Problems AS and B.

Theorem 3: A cost—stabilizing solution 

~~~~~~~~~ 
exists if and only if

there exists a cost-stabilizing solution (G
t
)
~~~o 

assuming n -  0 for

all i and

Proo f : See Appendix 5.4.

Remark 1: This result provides a computationally feasible methodo—

logy for arriving at a sequence of gains (C )
~~ 0

which cost-stabilize

the original system (5.3.1) with probability 1, whenever such a se—

quence exists. The coupled matrix equations of Problem B (5.6.16) can

be iterated backward in time. If the weighted sum with respect to the

ergod ic. d is t r ibut ion it converges , then the result ing sequence of gains

cost—stabilizes the system (5.3.1) with pzobability one.

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-.—- - ——-———————-—- =— - -~~~~

- -- 
~~~ . -
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5.7.6 The Steady-State Solution.

A steady-state solution to optimization Problems AE and B can

exist only it there exists a steady—state probability distribution U

over ~. • act of possible configurations indexed by I such that

fl P 11 (5.7.7)

and

u r n  ii = ii (5.7.8)

t -I-~

From equation ( 5 . 7 . 7 ),  it is apparent that for ii to exist, the matrix

P must have an eigenvalue at 1, and it must be in the subspace spanned

by the eigenvectors of P corresponding to that eigenvalue. The fol-

lowing lemma states precisely when ii exists.

Lemma 1: 11 exists if and only if one of the following three conditions

is satisfied for each diagonal element a. of the Jordan normal form A

of P, where

P = T A T i (5.7.9)

a
0 ~~

Ct j ~,j 0

a2

A = . = 0 or 1 (5.7.10)
0 . 

1

~L-1

For each i ,

- - .~~ ~~ -~~~~~~ —-—~~~~~~~~~~~~~ - -
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i) I~~ I < 1
ii)  a . = 1

iii) 
~~~~~~~ 

1, a . ~‘ 1, (T~~~ !L o)
~ 

= 0

Proof: Obvious.

5.7.6.1 Steady-State Solution to Problem AS.

Note that for Problem AS, initially, the gains 0
0 

G
a
,... 

*
will depend on ~~~, and near the final time, the gains ... ‘ 

~~T-l

will depend on a time-varying 
~ i,t 

Thus, the steady—state solution for

Problem AS is defined as the l imit ing solution to equations (5.4.6)

(5.5.2) and (5.5.13) at time t, first as T4~ and then as t-~~ , if this

limit exist. The steady-state values for B, S 1 , 
and , when

they exist , sat isfy the following equations :

E. = p.. iT . (A+p~ G) ~~~ . (A+~~ G) ’
~ (5.7.11)

=
~~~~~ 

+ G~
’
R G +  

~~~ ~~~~~~~~~~ 
~~~~~~ + G

T
s~s~B~G +

+ G
T
B
’I
S .AI

J] 
(5.7.12)

0 = RG~~~~~~ 1T 
~ 

+ ~ ~~~~~ ~~~ ~~~
(5.7.13)

f - which are the limit of equations (5.4.6),(5.5. ~) ,  and (5.5.13) , given

that the limiting solution 
~~~

. and G
t 

exist , where IT satisfies
—J, —

equations ( 5 .7 . 7 )  and (5 .7. 8 ) .  The cost of th i s  steady—state solution

is

= 3
T 

(5.7.14)

as in equation (5.7.3).

I11k_A _~~ ~~~~
_
~It n- _~~S t~~~~r Mfl ~~~~~~~ Z_ t . .: - _ — — — - -
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5.7.6.2 Steady—State Solution to Problem B.

The solution to Problem B depends on its past only through the

probability distribution mt (t) over the structure index set I.

Therefore , to develop the steady-state solution , let the initial pro-

babili ty distribution 
~~ 

equal the steady—state value IT from equations

(5.7.7) and (5.7.8). Then the steady-state solution can be defined as

the limit , when it exist , of the gain C calculated for the problem

ending at time T , and of the solutions to the coupled Riccati—like

equations (5.6.16), 
~ i O  , as the f inal  time approaches i n f i n i t e. Let

G CT) and S . (T) be the solutions at time zero for Problem B with
—ns

0 — 1 ,0
final time T. Then

G = lim G (T) (5 .7. 15)
—ns p-øQ~ 

—ns0

S - = lim S . CT) , i C I (5.7.16)
—1 

T-~ ° 
— i,0

when the limits exist. The steady—state solution is said to exist

whenever the limits of equation (5 .7 .16) exist. If these limits exist ,

then G and S . must satisfy , from equations (5.6.14) and (5.6.16).

C = + ~~~ 1T
3
B~ s ~]_~ ~~~ 1T . B~” S A ( 5.7. 17)

S ~‘Q + G
T R G— k  —ns—— -ns

+ p. (A
T
S.A + AT

S B  C + G
T 

B~S..A
~~~~ 3k — —j -- — —j — j — n s  — n s —~ --’J —

+ G
T 

B
TS B  C ) (5.7.18)

—ns —~--~j--j—ns

The cost of this steady-state solution , given x , is , when the limit

exists

-- —— —— 
—~~~~~-fl_~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~

--- _ -
~~~~~~~~_~ — --~~~~~~~~~~ -~~~~
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J = lim ~ = 
T 

i t S . x (5.7.19)
T-~~ 

55
T 

— 
1

5 .7 .7  The Possibility of Limit Cycles.

The discussions in the last Section do not rule out the possibi-

lity of limit cycles in an infinite—time solution. In Problem B,

the expected cost is directly computable from a set of coupled Riccati-

like equations (5.6. 16) , as is the non—switching gain (5.6.14). If

these coupled mat r ix  equations converge whenever the solution is

bounded , then the non—switching gain is always directly computable when

it exists. Boundedness implies convergence of the expected cost

( Lemma 2 ) ;  however , the possibility of the existence of a limit cycle

in the solution to equation (5.6.16) is not ruled out. It is con-

jectured , but not proved , that such a limit cycle cannot exist.

Lemma 2: If the expected cost for Problem A is bounded , then it

converges.

Proof: See Appendix 5.5.

Since E
X IJ

~S
I = .~;, 

~~
5
T 
also converges.

--

~ 

-- -——~~~ -~~~~~~-
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5.8 Equality 
~~ ~-ns 

~~~

In this Section it will be shown that when a steady-state C and
—

C exist , with finite cost and 3 , the gains are equal. This

result is extremely important in that it yields a method of calculating

the steady-state solution to a two-point boundary value problem as the

limiting solution to an equivalent (in the steady-state) single boundary

value probles. It is taken as a working hypothesis in this S~ ction that

both problems have a steady-state solution and that the ergodic distribu-

tions of it and ) . , for all i , exist . Then the steady-state cost of the

optimal problem is

= trU 0 (Q + O R G  H + t rU S .  ) (5.8.1)

For any constant gain G for which the limits exist , the value would

be

= trtE 0 (2 + 0
T B C ) )  + 

~~~~~~~~~~~~ 

~~~~~ 
(~~~~~~~ 

(5 .8 .2 )

= trfE 0 (2. + C
T 
BC )) + trUM-B.G)~~0 

(A+B G)
T
S . (

(5 .8 .3)

= tr1
~~o~

Q + 0
T~~0 + (A+B G)~~S (G) (A+B . G)}

1 

(5.8.4)

Similarly , equation (5.8 .1) becomes

* *T * * T *  *
= tr 

&~~~~~~~ 2 
+ + 

~~~ ~~~~~~~~~ ~-i  +
~~i~~-o~~

(5.8.5)

For the non—switching , or non—learning problem , the steady—state cost

for any ~ for which the converge is, given x 0 

~~- - - - - - -  —- -- - - ~~- - -— ~~_ _ _ _~~~_. -~- ---~ ---~-=-.---- ---,~ - -  
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~ns~~~~ 
= x~~ (Q + G~~RG )x 0 

+ E [~ 
ir .x~~S . (G)x

ij 
(5.8.6)

=

+ iT . (A+B . G)~
1’
S . (G) (A+B . G)x

0 
(5.8.7)

Taking expectations with respect to

EtJ fls (G)j = tr[~~0 (2. + 0
T B C ) )

+ tr[Z
0 
(A+B.G)TS. (C) (A+B .G) ) (5.8.8)

or,

E I J (G)1 = j
55

(~~ (5 .8.9)

Thus , the costs are equivalent for any C for which the equations

converge.

By Lemma 3 , if the non-switching expected cost is bounded for a single

C, then the equations converge; i.e., there can be no limit cycle.

Lemina 3: For a given gain C , if the expected cost JT (C) is bounded

then it converges.

Proof: See Appendix 5.6.

Thus , either equation (5.8.9 ) holds, or both costs are infinite. There-

fore , if the cost is finite for any single C , then there exists a 
~~opt

which minimizes both costs. Furthermore, given that C CT) converges,
—

G CT) -‘ G as T ~ ~~~. This result with an extension is stated in— n s
~ 

—o pt

Theorem 4. 

-- — --- - -  —~~~ - - -- - - ~~~~~~~ — --~~-=--~~~~~~ --.,—- - --—- - - -  - 



- -

~~~
—-

~~~~

- --- -- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - - 
_ _ _ _ _ _ _

129

*
Theorem 4: Assume the values C (T), C (T), S - (T) , S - (T) , and

t n
~t 

i,t 1,t

~~i,t 
converge. Then

A) C (T) -
~ C as T ~ , which minimizes equation (5.8.9 .

_nst —opt

*
B) C = G , where C is the steady-state value of G CT),

—ns — —ns —ns
~

and C is the steady-state value of G
~ 

(T) :

* *lim u r n  CT) = C (5.8 .10)
t~~~~ T~~

Proof: See Appendix 5.7.

Discussion: The result of Theorem 4 B) gives a direct computational

*
procedure for calculating the optimal steady-state gain C as the

l imit ing gain . There are , however , still some open questions

concerniog the existence of limit cycles in the calculation of 
~~~~~~~~ 

.

Theorem 3 , however , guarantees cost-stability using 
~~

ns
~ 

)~~~~~~~~~ if a

cost—stabilizing sequence of gains exists.
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5.’) Robustness.

The ori ginal problem (Problem A) can be formula ted in such a wa y

that the sequence 
~~

ns
~ 

~~~~~~~~~~ will cost—stabilize a set of linear systems

with different actuator structures individually whenever such a stabiliz-

ing or robust gain exists.

Definition 3: A gain G is robust if

= + (5.9.1)

is stable for all Ic. This is the same as requiring the matrix (A+B k
G)

to have eigenvalues inside the unit circle for all k.

Corollary 1: For the set of L+l systems

~~t+l ~~~~ 
+ 

~~k~~~t 
(5.9.2)

with

P = I ( 5 . 3 . 3 )

IT . = (5.9.4)

if a robust gain exists, then 
~~

ns
~ ~~~~ 

is a stabil izing sequence for

(5.9.1) for each k, and if the gains C (T) converge , then G is a
—ns~ —ns

robust gain.

Proof: For the expected cost to be finite , for any C , C must be

robust, since each structure is equally likely and no structural changes

can occur. Therefore , if a robust G exists, then certainly  (C
~ ~t 0

will be stabilizing , and by Theorem 3, so wi l l  (C . Also , i f

G CT) converges as T -* ~ , the C will be robust since it will have
-.-ns

t 
—ns

— —- —— -- -—- —- -—-——- --- — - — . -—- -——- —-— -— _~~~___ _ _~~~~~._- ~ _ _ — — — - --- - - - - - -
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f ini te cost 3(0 ) ,  which implies stability,  in thi s case , fo r all

k~~~I.

Q.E.D.

Discussion: With Corollary 1, a specific existence problem for robust

linear gains is solved. Existence of a robust gain is made equivalent

to the existence of a finite cost infinite-time solution to Problem B,

which is readily computable from equations (5.6.14) and (5.6.16).

-~
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5.10 Examples.

In this section , two examples are presented to illustrate the

non-switching gain computational methodology. Example 5.1 is ana-

logous to Example 3.1 of Chapter 3; it demonstrates the effect of

component reliability on system stabilizability with a non-switch-

ing gain control law. The first case of Example 5.1 is not conver-

gent; the second case is convergent. The only di f fe rence  between

the two cases is the reliability of the actuators. Case i) corresponds

to Case ii) of Example 3.1; Case i i ) corresponds to Case iii ) of

Example 3.1. Neither case results in a robust control law , but ro—

bustness is not possible because the system is uncontrollable in

structural state 3. As an aside, it is interesting that the “optimal”

non-switching gain in Case i) ignores state x
2
; the system is decoupled

in tha t there is no interaction between x
1 
and x

2
. Since state x2

has stable dynamics, and the dynamics of state x
1 

are unstable , the

entire control e f f ect is concentrated on state x
1
.

The computer routines which are used in the calculation of the

non-switching gain solution are listed in the Appendix . The primary

subroutine is AIM; it calls WEIGHT. Any other routines which are

used are from the standard ESL subroutine library .

___________ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -=~~~~~

- — 
- - - — -
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Example 5.1:

2.71828 0.0

0 . 0  . 3 6 7 8 8

1.71828 1.71828 0.0 1.71828

=
0 

— .63212 .63212 0.0 .63212

1.71828 0.0 0.0 0.0

B = B =
2 

— .63212 0.0 o.o 0.0

-
~ I 14. 8. 1.0 0.0

8. 6. 0.0 1.0

l-2p
f
+p~ ~

1
~~ f~~ r ~~f~~ r

Pf Pf ~~~~~~~~~~~~ ~r~ f

= 

P~~ Pf ~ r~ f ~~~~~~~~~~~~~ ~~~~~~~~~

~~r~~f 
l_2P

r+P~

The system is

~~t+l 
= 

~~~~~ 
+ 

~~k ( t) ~
1t ~~t 

tx l t  X 2 t 1

~~ t~~~c {o,l,2,3}

The cost to be minimized is

J = E1~~
x ’
~
2.xt +

~~~
at I!L i



- - -.-
~
-.---. -.---_- --

~
----..------------------- -t

Example 5.1, Case i) - 
— —

P1 .1, 1
~r ~ .81 IT

~

4 .09 11
1

=

:1 .09 it
2

.01 11
3

Non-Convergent; but gain converges at

—1.246 0.0
G =
—ns 

-1.039 0.0

Stability :

Configuration Stable

0(B
0

) no

1(B
1
) yes

2 ( B
2

) yes

3 (8
3

) no

Interpretation : The coupled Riccati equations are unbounded. Note

that since state x
2 

has stable dynamics , the convergent non—switching

gain concentrates on stabilizing x
1
, which is open-loop unstable.

From the above stability table, the control law

U = G  x— t  —ns— t

stabilizes only configuration states 1 and 2; since the configuration

has a high probability of being in state 0 (unstable), the cost diverges.

I

________ — —..—- --—--—- — - - - _ — — —  —=
~ ---~~

---- ~-~~~~~
-- - =_ - --- :_ __

_
_ —- - — - - ---—- —— _ — —
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P1 

.01, 
~ r 

.98 .9799 it
0

.009999 it
1

— 

.009999

.0001020 it

Convergent Coupled Riccati Equations.

— .7563 .1266
C =

— .8070 — .1784

Stability :

Configuration Stable

0 (B
0

) yes

1 C~~1 ) no

2 
~~~~~

~~ (!
~~~~~

)

Tnterpretation : With more reliable actuators, the non-switching gain

expends less force on th~e stabilization of configuration states 1 and 2

(unstable); since configuration state 0 is stabilized , and the system

has a (relatively) higher probability of being in configuration state 0

than in Case i), the non-switching coupled Riccati equations converge ,

resulting in a finite cost.

~ 

_________________________
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Example 5.2 uses the same system dynamics as in Example 5.1;

however , only structures 0,1 and 2 (the controllable structures) are

considered. The configuration dynamics are modeled as being in any

structural state with equal probability of occurance initially and

remaining in that state forever ; this model is i l lustrated graph ica l ly

in Figure 5.1.

The state dynamics are

= 
~~~~ 

+ !k ( t )  ~~t 
= Lx 1~~ x

2~~
)
T

k(t) C {o,1,2}

The cost to be minimized is

3 = E ‘!.
~~~~

2.!
~~~ 

+ 
~~~~~it 

1

The non-switching methodology yields a robust control law of the

form

u G x—t —ns—t

- - -

~

-

~

-- -
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76265AW030

~~~~~~~~~~~~~ 
~~~~~~~~~~~~~

Figure 5.1: Markov transition probabilities for Example 5.2.

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~
-
~~~~~~~~ -- - -

~~~~~~~~~~~~ —- - — -_ - ~~~~~~~~~
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Example 5.2:

2.71828 0 .0

0.0 .3679

1.71828 1.71828 0.0 1.7 1828

— .63212 .63212 0.0 .63212

1 6m2 0:0] ~~~~= ~: ::]0. 0. 1.

Convergent:

—1.089 — .008413
G =

—1.028 — .01444

~~~~ 

, [112.8 8.992
h
i

s = I —
~~~~

— ~8.992 6.835

Stability :

Configuration Stable

0 ( B 0 ) yes

1( 8 1 ) yes

2 ( 8
2
) yes

Robust: yes
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Riccati. Solution:

[109.8 9.030

6.821

[114. 3 6.285

~~l 16 .285 6.836

• [114.4 11.66
S = 1—2 [11.66 6.849

r

____________ ______ 
—

~--.—--——
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The non—switching solution converges for the system in Example 5.2, 

. 
- 

-

and the three resulting configurations are stabilized . Therefore

is a robust gain. Had the solution not converged , by Corollary 1 of

Section 9, no robust gain would exist.

The ~priori expected cost (before the configuration state is - -

known) is, given x

TJ = x Cx

II
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5.11 Sununary.

In this Chapter, an optimization problem was defined on linear

systems with variable actuator configurations and quadratic cost criteria.

The objective of this approach was to compute apriori a sequence of

- 

- 

gains to be used in linear feedback control which do not depend on

any on—line information about the process. These gains were to

both stabilize the overall system, accounting for the var ious possible

structures and minimize the expected value of the quadratic cost crite-

rion , where the expectation is taken over the possible sequences of

actuator configurations. This solution depends on both the perfor-

mance , and on the reliability of the various structures , as represented

by the Markov transition probabilities between structures.

The matrix minimum principle [Athans ,41) was used to establish the

necessary conditions for optimality of a solution to an equivalent

deterministic problem to that described above , known as Problem AE in

the Chapter. These conditions unfortunately do not yield an analytic

solution for the gain sequence, but instead yielded an ill-posed two-

point boundary value problem which must be solved numerically (Section 5).

Therefore , a second problem (Problem B) was formulated which was solvable

analytically using dynamic programming (Section 6). This solution has

identical cost—stabilizing properties to the solution of Problem J~E,

but has the advantage of being directly computable.

The steady-state solutions to the infinite-time versions of both

problems were defined , when they exist , and it was proved that, in addi-

tion to the equivalent stabilizing property of the two solutions , the

steady-state values are identical , and this value is the same as the

-

~ 

~~~~~~~ - — - - - ~~~~~~~~~~~~~ - J



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- — -

142

optimal constant gain which minimizes the expected cost over the infinite

time interval.

In addition , the general robustness question of when one gain can

stabilize a set of linear systems with different actuator configurations

was formulated in the context of Problem A and was solved by Problem B.

Thus , a test for when a robust gain exists can be performed by iterating

a set of coupled matrix Riccati—like equations and testing for converg-

ence of a function of the solutions. If, in add ition , the individual

solutions converge , then the robust gain which minimizes the expected

quadratic cost index can be calculated directly. It was noted that the

extension to systems with variable dynamics (variations in A ) ,  as well

as variable actuator structure, is trivial as long as the dimension of

the state is constant.

The major applications of this work are in the calculation of a

robust gain for a set of linear systems and in the calculations of

stabilizing gains for systems with variable structure , such as occurs in

failure, repair, or reconfiguration. A second application will be

covered in the next Chapter and involves using these calculations in a

computer-aided design procedure for the determination of the relative

effectiveness of various redundant component configurations. 

- - 
- -
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CHAPTER 6

COMPUTER-AIDED DESIGN

6.1 Introduction.

In this Chapter , two specific applications of the non-switching

gain methodology to computer-aided design are presented . Example 6.1

illustrates the usefulness of the non-switching gain methodology in

the selection of an actuator design. Five possible designs are

analyzed using the non-switching gain calculations as a basis for ranking

the designs with respect to their expected performance. Example 6.2

compares two actuators , of which one is more reliable , but less

effective (in that it incurs a greater cost for the same action) than

the other. Three cases with various actuator reliabilities are presented

as a study of the trade—off between actuator reliability and effective—

ness.

These two examples are intended to demonstrate the usefulness of

the non-switching gain methodology in design studies. No general method-

ology for computer-aided design using the results presented in this

report is presented . Instead , tools are presented which can be used in

the computer-aided design of system configurations.

6.2 The Design Decision.

A designer often has many means of achieving a desired goal;

however , no unified methodology exists which can be used to choose a

given design that is “better” than any other. At best, a set of tools

can be developed which are applicable to specific situations and classes
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of systems. Of these tools, all that are presently available evaluate

a system either on the basis of performance or on the basis of reliabil-

ity. The methodologies described in this report optimize a performance

index which depends on both system reliability and system performance.

Therefore, it is logical to apply these methodologies to the computer-

aided design of system configurations.

Example 6.1 is an aid in the design of a linear system for which the

state dynamics are fixed , but the actuator confi gura tion is to be at

most two actuators (one level of either component or functional redundancy)

chosen from two types of actuators. The system in Example 6.1 is de-

fined by

!t+l ~~ -t ’ ~-k(t)~~ t 
(6.2.1)

k(t) c I (6.2.2)

where 
~~

= [x
1,~~ 

x2~~~ 
x3 t l

T . In Cases i) and i i ),  I {0 , l}

in Cases iii), iv) , v ) ,  I = {o,1,2,3}. The cost to be minimized is

= E [
~ ~~~~~~~~ 

Rti (6.2.3)

The cost of each actuator (labeled and 
~~~~ 

is to be the quadratic

cost incurred by the control input to that actuator . These costs are

represented by the quadratic weights r
0 and r

1
, respectively, and are

equal in Example 6.1. The actuators act on d i f fe rent  states of the

system; actuator b
0
applies the control force to state x

2
, while

applies the control force to state x
3
. Each actuator can fail to an

actuator with zero gain, 0. Repair constitutes replacement of the

failed component with a new actuator, identical to the original ac—

tuator. The repair action is modeled using a Markov transition pro-

bability p ,  the probability of repair per unit of time. The actuators 

- - -
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have identical probabilities of failure and repair per unit time , Pf 

and

respectively. The five possible actuator configurations are, in the

order in which they are presented in Example 6.1,

= (6 .2 .4 )

82 = 1~ l~ 
(6.2 .5 )

= Ib o ( ‘o
0J 

(6 .2 .6 )

I~ l I ~lI (6 .2 .7 )

= 

~~ 
I 

~-1i (6.2.8)

Configurations 81 and 82 have two-state configuration dynamics directly

defined by the failure and repair probabilities per unit time. Con-

figurations r~~ , r~~ and B~ have four—state configuration dynamics re-

presented graphically by Figure 3.2 of Chapter 3, Section 5. It is

not immediately obvious from the configurations and the state dynamics

which configuration is optimal. When a non-switching gain control is

used , the expected steady-state cost, given by equation (5.7.3), is

a measure of the expected performance of each configuration, and can be

used to rank the five configurations in order of system effectiveness.

System effectiveness is a measure of the expected performance of a

system , taking into account all postulated modes of operation. There-

fore , in Example 6.1, the non-switching gain and expected cost is com-

puted for each of the five design configuraitons. 
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Example 6.1:

2.0000 .5000 .5000

= 

~~~~ 
::: 00

1 . 0  0 . 0  0 . 0

Q = 0.0 1 . 0  0 . 0

0.0 0.0 1.0

0.0

= 0.0 , r0 1.0

1.0

0.0

= 1.0 , r1 = l.O

0.0

0.0

= 0.0

0.0

Pf = Pf 
= P f = .01

0 1

= 

~r1 
= 

~
‘r = .98

P1

L. ______________ _ _ _ _  

_
~~~~
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F.xamp1~’ 6.1 ~~~~~~~~ I )

I 
0 

— lb 01 = tO flt . 0 (conf. eonf I 9u1 .tt I Lfl1 )

— 0 — con 1. 1 — 
I 01  

- . 01

~~~~ ~r 
- 

~~ .90

—

‘if 
1—p 1 

.01 .02

9899 H
0 

~U — 

~~~~~ 1) 10 H i I
(‘oflVc ~ (‘nt ( ‘OU~~I It’d Hi cc.~ t I I~1u:~t i ~ns

— —4. — . 25fl! — I . 7 1
II:;

1f l2 . ’~ 17.06 57 .o l

— 37.06 9.943 11 .3 1

‘~1.9~ 11. L~ 11 . 1 3 1

1138 . ~- ‘ 3 / .  39 (~0 .0’)

37 .  39 ‘~~ . 9h 1 11 .44

10). (0) 1 .‘•. 44 1 1 .

101. o 37. 0 7  ‘~7 -

H , — I -, .O/ - I . 94 3 I l ~ 3

)~ 1). I ) 11. 0.’

3-~X3”~~t I- t i  c t t - ; t  X ( X

- -__ tI__ __ _ ~~~~~~~~~~~~~~~~~~~~ -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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Stability:

Configuration Stable

yes

1(B~~) no

Interpretation : The steady—state non-switching gain exists; it

stabilizes configuration o (B o
) , but does not stabilize configuration

1 
~~~~ 

Since the probability of being in configuration 0 (stable)

(ii ~~~) is much greater than the probability of being in configuration 1

(unstable) (11
1

) ,  the system configuration is stabilized using the

non—switching gain C in the control law

u G x
—t —ns—t

- - — — --~~ - -~ -~~~~~~~~ ‘-~
-----— - -  ~~~~~~~~~~~~~~~~~ ~~~~~~~~ - -~~~~~~~~~~~~~~~~~~~~~~~~ —- - -- - -- --- - — -
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Example 6.1 Case ii)

= I ~~~ conf. 0

= conf. 1 = I r ol = 11.01

[l_P f ~r1 [.99 .98

P =  
~ I = I— 

[P f 
I_n

j [01 .02

F9899 1 [h0
1 1 =  I 1 = 1

1.010101 [‘~l
Convergent Coupled Riccati Equations:

G = —12.59 —1.484 —4.097
— ns

1035. 125.0 271.4

S 0 
= 125.0 18.84 33.04

271.4 33.04 73.80

[1069. 129.0 282.6

= 

1
129 0 19.31 34.34

[282.6 34.34 77 .43

1035. 125.0 271.6

h . S . = 125.0 18.85 33. OS

271.6 33.05 73 .8 )

Expected cost = 
T c x

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  .4
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Stability:

Configuration Stable

0 yes

1 no

Interpretation: The steady-state non-switching gain exists; it

stabilizes configuration 0 
~~~~~ 

but does not stabilize configuration

1 (B
1
). Since the probability of being in configuration 0 (stable)

if
0
) is much greater than the probability of being in configuration 1

(unstable) (Tn), the system configuration is stabilized using the

non-switching gain C in the control law 
j

~~~ 
=
~~ns~~t

L — ~~~~~~~~~
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Example 6.1 Case iii)

= 

~~~ ~~o1 = conf. 0 
~~2 = 

~~~ ~I = conf. 2

I~ 
I ~of  

= conf. 1 8
3 = 

~~~ 
I = conf. 3

r0 0.01 11.0 0.0
— 

0.0 r0 ] lo.o 1.0

PfUPf
) 1

~~ r~~ f~~r~f ~r~f
P =
— 

Pf ( l P f
) 

~r~f 
1
~~r~~f~~r~f

Pf ~~~~~~~ 
PfUI)r

) 1—2P +p
2 

-

.9801 .9702 .9702 .9604

.0099 .0198 .0198 .0196

.0099 .0098 .0098 .0196

.0001 .0002 .0002 .0004

.9799 11
1

009999 71
2it = =

— 

.009999 71

.0001020 71
4



— 

~~~~~~~~~~~~~~ 
—--  . —.--—— ,—---

~~~~~
‘---—----

~

-..-_- ,. 

~
-.——-,---,- — -.-—- -- -—,--.---,-.- -—--—--- -- ,--- --- —--—.————-=,=—,-

~~~~~—- - - - - --

~

152

Convergent Coupled Riccati Equations:

- - 1—2 .469 -.1279 -.8983
G—ns 

1—2 .469 — .1279 — .8983

153.1 32.81 48.01

= 32.81 9.050 10.92

48.01 10.92 19.03

154.4 32.88 48.48

= 32.88 9.054 10.95

48 . 48 10.95 19.20-

154 .4  32.88 48.48

S
2 

= 32.88 9.054 10.95

48.48 10.95 19.20

155.8 32.95 48 . 96

S
3 

= 32.95 9.058 10.97 i_ -

48.96 10.97 19.38

153.2 32.82 48.02

~~~ 
1T~S J~ 

32.82 9.050 10.92 c

48.02 10.92 19.04

T
Expe~.ted cost = x C x

- - - - - - -~~=~~--‘-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Stability :

Configuration Stable

° yes

1( B 1) no

2

3 ( B 3 ) no

Interpretation: The steady—state non—switching gain exists; it

stabilizes configuration 0 (B
0

) ,  but does not stabiliz e configurations

l,2,or 3. Since the probability of being in configuration 0 (stable)

is much greater than the probability of being in any other con—

f iguration (7r ., i=1,2 or 3) (uns table),  the system configuration is

stabilized using the non-swithcing gain G in the control law
n5

~ G ~— t  —ns — t

-- - --~~~~-- —
____ I A
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Example 6.1 Case iv)

= I~1 I = conf. 0 
~~2 

= 
J~~l 

= conf. 2

= 12 I ~lI = conf. 1 8 3 = Io I 21 = conf. 3

R = 
[r 1 0.0] 

= 

1.0 0.0
— 

10.0 r 1 j 0.0 1.0

P and it are the same as for Case iii) -

_ _

~

., - :

~

- - - - - A
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Convergent Coupled Riccati Equations :

[—6.097 — .7347 —2.011
G

[— 6.097 — .7347 —2 .011

[762.2 95.14 195.1

= 

~~ 
15.18 24.64

I..195.1 24.64 52.13 - 

-

[768.7 95.92 197.31
= 15.27 24.89 1

[197.3 24.89 52.83]

[768.7 95.92 197.31

= 195.92 15.27 24.89

[197.3 24.89 52.83

[775.3 96.71 199.5

15.36 25.16

[199.5 25.16 53.55

[762.3 95.15 195.21
~~~ -n~~s • = I 95.15 15.18 24.64 C
= 

1_I I —

L.195 2 24.64 52.14J

Expected cost = 
Tc x 

—~~~~ - .-~~~~~~~~ ---~~~—=—-— - - _  —. ~~~~~~
- - - - -~~~ _ _ -  i~~~

_ 
-~~~
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Stability :

Configuration Stable

O(B o ) yes

no

2(82 ) no

- ,  3 ( 8 ) no

Interpretation: The steady—state non—switching gain exists; it-

stabilizes configuration 0 
~~~~ 

but does not stabilize configurations

1, 2, or 3. Since the probability of being in configuration 0 (stable)

(
~
Ir
o

) is much greater than the probability of being in any other con-

figuration (ii . ,  i=l ,2 or 3) (unstable), the system configuration is

stabilized using the non—switching gain 
~~~ 

in the control law

u = G  x -
—t —ns— t

-- --~~~~~— — — ~~~~~~~~~~—- -- — -  --- 
. - - -~~~~-~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~ - :~~~——~~~~~~~~~ -
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Example 6.1 Case v)

= I 
~~lI  

= conf. 0 
~-2 

= I = conf. 2

= 12 I ~lI 
conf. 1 5

3 
= I 2 1 = conf. 3

[r0 0.01 [1.0 0.0
= 

~ r1 j 
= 

~0.0 1.0

P and it are the same as for Case iii).

_________ - - - - —-
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Convergent Coupled Riccati Equations:

[—3.815 — .1312 —1.106
G

1—2 .956 — .5815 —1.486

[126.5 24.86 32.321
= 124.86 7.066 6.842

[32.32 6.842 10.69

1128.4 24.93 32.88 1
= 7.096 6.863 1
[
32.88 6.863 10.85 ]

127.3 25.01 32.72 1
= 25.01 7.097 6.921

1

32.72 6.921 10.89]

[129.2 25.08 33.28 1
= 25.08 7.100 6.942

33.28 6.942 11.05

[126.5 24.86 32.33 1
lr • S • = 124.86 7.067 6.843 1 ~ C

— 
1—i I —

[32.33 6.843 10.69 ] . -

T
Expected cost = it C x

——~~~~~~~~~~~~~~ ~~-—~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ fl -- - ~~~~~ _ 4
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Stability :

- Configuration Stable

- - 0 (B e ) yes

l ( B i )

2 
~~- 2~ 

yes

3 (p. 3 ) no

Interpretation: The steady—state non—switching gain exists; it stabil-

izes configuration 0 and 2 (B
o 
and !2 

) .  Since the probabilities of

being in configuration 1 and 3 (B
1
and 5

3
) are small (li

i 
and 37

3
)

(unstable), the system configuration is stabilized during the non-switch-

ing gain 
~~ns in the control law

u G x
—t —ns—t

F 

_ -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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From the results in Example 6.1 , the design configurations are

ranked as follows , where > is defined as “is better than ” .

B
5

> 3
3 > 8 1 > B 4 > B

2 
( 6 . 2 . 9 )

One configuration is more desirable than another (B~ > j f

4 

- > 0 (negative definite) (6.2.10)

This criterion is reasonable; if B~ > 5
k
, then the expected cost using

design configuration 5] is always less than that using Bk. If the left

hand side of equation (6.2.10) is not negative definite, but is only

semi-definite , then some other criterion must be used in addition to

(6.2.10) to rank the various designs. For example, if one assumes a

uniform distribution of the initial system state in the unit sphere,

— and if the elements of the diagonal of the left hand side of equation

(6.2.10) are all non—positive , then the trace operator may be used as a

ranking function. If the trace of the left hand side of equation (6.2.10)

is negative , then > ~k If the left hand side of equation (6.2.10) is

not semi—definite , then the designer must choose which of the state

variables are most important in an effort to eliminate the ambiguity of

equation (6.2.10). In Example 6.1, equation (6.2.10) alone is sufficient

to rank the designs.

The results stated in (6.2.9) are somewhat surprising. First,

consider and . A control input at time t using 
~~~ 

enters the

system dynamics in state it
3
, where = Ix 1~~ x2~~ x 3~~~J .  At time t+l ,

the same control is applied to state x
1 
with a gain of .5; also,

= x
3~~

. At time t+2, that control is again applied to state x1

with a gain of .5 . Now, consider

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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the same situation , but with instead of - In this Case , at time

t+l , the control is applied to state x
1
, with a gain of . ,  but

x
1~~~,.1 

—x
2,~~

. Therefore , at time t+2 , the negative value of the oulqin ,tl

control is applied to sta te x
1
, thus partially cancelling the effect of

the orig ina l  input.  The same process occurs using b
0 
, but is delayed

one time step; thus, the control affects state x
1 

positively one addi tional

time step when 
~ 

is used . Because of the added e f fe ct  i veness of Ii

over b 5
1 

~ ~
2 and in fact , B

1 
~
‘ B~ Thu s, even after account i og

for component r el i ab i l i t y, con f igu ra t i on  51, which has no component

redundancy is more desirable than configuration 52 or OVI’Ii though

configuration employs one level of component redundancy.

Using th i s  reasoning , one would expect to he the opt i ma l t1t’;;~~j ii

choice ; however , the example demonstrates that thi:; is not the ca:;e.

From G for Cast’ iv) , note that the control which is applied to b
—ns — 0

depends mostly on the unstable state x
1, while more emphasis is given

to states x
2 
and X

3 
in the calculation of the control for actuator

Thus , actuator acts partlally to stabilize the dynamic;; of ;;tatt ’

whi It ’ actuator b 
1 

acts t’~trt i a l ly  to Counteract the xn’9,lt iv.’ effect of

the subsystem of ;;t ate~; x .~ and x . Th i l ;  type  of cont tel t t t  i on  is an

e’xam[)ie of the (1st’ of funet ~ot~a I redutidattey , and is not pets; i 0 it’ Wi tft

design configura t ions or ~4•

TIit ’ non—swi t cit t x sj  il.t i ll al),ll yS t 0 t tiit’ j c r e~tost ’ti tie;; I 911 cott I i  9111 .1—

t I OIlS yi t ’ his I itformat 1 (III 1101 (111 ly . i hott t  1II~’ t ’ I t t’ ;t  (11 V.11’ OI~lS aCt t t.it 111

Ct ) ll f i~~ur.tt iotis httt .tlso lL ) t ) U t  I I t , ’ effect of c ’om~’Ol1t ’lit t t ~ l 
j cthj I t t  ‘

~ 
O t t

.1 1 3
ti it ’ (‘X I ~~ ‘t . ’~1 } t t ’ t  t t ) ? t l t . 1 1 1 4 L 1  . Thu s, B i :; fltt) I’O I’ f fi ’t’t- ~Vt’ I t t , tt Il , and 0

is more of Feet lye than 13 ; B , i t t d II .11 ~
- V e t  ; jolt; ; t t t  3 lie c o S t  iqut’ .tt i t Il l: ; 
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and B~ , respectively, with one level of component redundancy . Con-

figuration B~ is an example of functional redundancy ; both actuators

provide control input to the same system, but are not identical components.

Thus, the additional reliability of component redundancy contributes

to ranking (6.2.9). The trade-off between system performance and system

reliability will be further demonstrated in Section 3.

I

- 
~~~~~~~~~~~~~~~~ —_

~~~_- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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6.3 A Trade—Off of System Performance Versus Reliability.

The non-switching gain methodology can be used to study the

relative effects of actuator reliability and actuator effectiveness

on expected system performance. If a designer has a choice between

using a high reliability actuator rather than one with relatively low

reliability, but with a higher effectiveness, on what basis can a

decision be made? In Example 6.2, two actuators are considered. Each

actuator may fail to an actuator of gain zero (0) and be repaired

(replaced). The probabilities of failure and repair are Pf 
and p
I i

where 1=0 or 1 and refers to the actuator or 
~~l 

respectively).

One actuator (b
0
) has good reliability, but the actuator gain is unity .

A second actuator (b
1 

) has an actuator gain of ten (higher effective—

ness), and a lower reliability. If the actuators had the same relia-

bility , then actuator would be preferable-—it incurs a smaller cost

for the same effect. In Case i) of Example 6.2, this reasoning is

demonstrated numerically ; the steady-state non-switching gain favors

actuator 
~-l 

(the second column of B
e
). (The two rows of the gain

matrix are compared ; the top row corresponds to actuator b
0
.)

In Cases ii) and iii) of Example 6.2, the rel iabi l i ty of actuator

~~l 
is lower than the reliability of actuator . In Case ii) the

probability of failure per unit time of actuator is five times

greater than the probability of failiure per unit time of actuator

in Case i i i) ,  it is ten times greater. The probabilities of repair per

unit time for actuator are also lower than for actuator .

Therefore , actuator is significantly less reliable than actuator

Note that in Case ii), the optimal non-switching steady-state controller

_ ~ - -
~~~~~~~~~~~~ -~~ - -  - - - - - -_ _ _ _ _ _ _
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favors actuator by a gain factor of 2 .5  - 2.6; in Case i), actuator

is favored by a gain factor of 2 . 3 .  In Case iii), actuator is

— 
favored by a gain factor of 5.1. Tnus , the non-switching gain calcula-

tions can be quite sensitive to changes in component reliability .

Although the configuration states are identical for all three Cases of

Example 6.2, the configuration dynamics are modified by the changes in

actuator reliability. The effect of modifications in actuator reliability

on the non-switching steady-state gain and cost is pronounced . The

steady-state gain is very sensitive to the actuator reliabilities; the

expected steady—state cost increases as the reliability decreases. A

second effect demonstrated by Example 6.2 is interesting . In Case i),

configuration state 2 is not stabilized by the non-switching gain. As

the reliability of actuator decreases , the average steady—state

probability that the configuration is state 2 (actuator failed ,

actuator operational) increases. Therefore, the non—switching gain

solution must concentrate more effort on stabilizing configuration state

2. Note that in Cases ii) and iii), configuration state 2 is stabilized

by the non—switching gain solution. It is interesting to note also that

the non—switching gains in Cases ii) and iii) are robust with respect to

configuration states 0, 1 and 2. (Configuration state 3 is uncontrolla-

ble.)

The system dynamics in Example 6.2 are

~~t+l = 
~~-~~~~t

1 
~~k (t )~~~t 

(6.3.1)

k ( t )  t: I (6 . 3 . 2 )

where I 10,1,2,3} and = [x
1 t  

x
2~~ 

x
3~~

] T The set { 
~~ 

}
~~=~

of configuration states is given in Example 6.2. The cost to be 

~~~~‘ ,~~~~~~~~~~~~~~~~~~~~ _ ‘~~~~-~~~~- 
___________
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minimized is

J
T

E 11~~~~~~
; 

~~~~~~~~~~~~~~ I ( I ~ . 3 . 3 )

- - -

~~~ 

- -~~~~-~~- - --~--—
_ - _ ‘,~~~

;- _
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Example 6.2:

2.0000 .5000 .5000

A = 0.0 0.0 1.0000

0.0 -1.0000 0.0

10.0 0.0 [0.0 o.o~

= 0.0 0.0 = conf. 0 = 0.0 0.0 = eonf. 1

1.0 10.0 0.0 10.0

0.0 0.0 0.0 0.0

= 0.0 0.0 = conf. 2 8
3 = 0.0 0.0 = conf. 3

1.0 0.0 0.0 0.0

R =Fl.O 
0.0 0.0 [5.0 0.0

= 0.0 1.0 0.0 [0.0 5.0

0.0 0.0 1.0

1—p 
~Pf 

4Pf Pf 
(l-P

f ~~r 
(I
~Pf ~~r ~r ~r2 1 2  2 1 1 2 1 2

= 

Pf~~~~’~Pf
) 1

~~~r1~~~f 2~~~r1~~f 2 ~~ l
p~ 2 

(l_ P
r )P r

p (1—p ) Pf P l P f ~~r 
+P f ~r 

U Pr ~~rf
2 2 r 1 1 2 1 2  1 2

Pf Pf ~~r1~~
f2 ~r2~~f1 

1
~~r1~~r2~~

r1~r2

_________ __  -- ~~ _ - -~~~~~~~
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Example 6.2 Case i)

.9799
Pf = .01 0
0 .009999 if

1

Pf = .01 p = .98 = =
1 r1 .009999

.0001020 iT

1 -  . a
4 V

Convergent:

— .2059 — .01076 - .07574

C =
ns — .4829 — .02505 — .1789

[134.5 30.06 41.491

S 0 = 30.06 8.459 9.981

41.49 9.981 16.44

134.5 30.06 41.49

= 30.06 8.459 9.981

41.49 9.981 16.44

1 3 8 . 5  3 0 . 27  42.96

= 30.27 8 .470 10.06

42.96 10.06 16.98

1 3 8 . 5  3 0 . 2 7  4 2 . 97

5 3 = 30.27 8.470 10.06

42.97 10.06 16.98

134.5 30.06 41.5 1

~~~~ 
iT = 3 0 . 0 6  8.4 5 9  9 . 9 8 2  c

41.51 9 .982 16.45

- ~~~~~~~~ — — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Expected cost = x C x

Stability:

Configuration Stable

0 
~~~~ 

yes

i (8 k ) yes

2 
~~~~

3 (8 3 ) no

Interpretations : The system x = [A + B .G x is stable only for
—t+ l  — —i—ns —t

i=0 and 1. The probabilities of the configuration being in states 2 and 3

(i f
2 
and 31

3
) are small; the system configuration is stabilized using the

control gain G in the control law
—ns

u G x
— t —ns —t 

--~~~~ z ~~-~ - - - -~~~~~A ~~
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P f 
= .01 

~r0 
= .98 .9378 rTol

.009212 
~l

Pf = .05 
~r 

= .90 11 = =

1 1 .05206

.0005316 [iT 3

Convergent:

[— 1.04 1 — .05848 — .36391
G I
—ns 

[4 058 — .02163 _ .l464J

[176.6 36.37 55.60

= 1 36.37 9.797 12.06

~~55.60 12.06 21.81

[176.9 36.39 55.71

= 
1

36.39 9.798 12.06

[~55.7l 12.06 21.85

[197.4 37.56 62.83

= 9.868 12.46

L_62 .83 12.46 24.35

166.4 35.79 52.08

5
3 

= 35 .79  9.762  11.86

52.08 11.86 20.58

[177.7 36.43 55.98 1
iT . S -

~ 36.43 9.801 12.08 C
1— 1~ 

—

55.98 12.08 21.94 

~~- -~~~~-‘~~~~ ~~~~~~~~~~~~~~~~~~ _- -~~
- - - _ _ _ _



- ~~~~~~~~~~~~~~~~~~ -

~~~ 
-

Expected cost = ~~~ ,~ 
170

Stability:

Configuration Stable

o yes

1 
~~~~~ 

yes

2 (8 2 ) yes

3 ( B 3 ) no

Interpretation: The system

x ( A + B . G l x
—t+l — — i—ns —t

is stable for i = 0 ,1,2.

Configuration state 2 is stabilized because the probability of the

configuration state being 2 C
~~~~ 2~~~ 

is larger than in Case i) .

LI  
_________________ _____________— - — -  — —  — — - -—~~
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Example 6.2 Case iii) 171

= .01 p = .98 .8909

.009172 71

Pf = .10 p = .90 71 = 
1 I

1 r1 .09891 ‘71
2

.001010 T
3J

Convergent:

[—1.729 — .09453 -.6062
C = I[— . 3400 — .01858 — .1195

[210.6 41.04 67.281

= 141 04 10.76 13.61
1

[67.28 13.61 26.29 ]

213.2 41.14 68.26

~-l  = 41.14 10.75 13.66

68.26 13.66 26.66

212.3 41.09 67.92

= 41.09 10.75 13.64

67.92 13.64 26.53

196.0 40.19 62.11

8
3 

= 40.19 10.70 13.32

62.11 13.32 24.47

210.7 40.99 67.281

~~~~ 4~~ .99 10. 75 13.60
1 ~

6 7 . 2 8  1 I. s~’& ’~ 26.28]

-1
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Stability :

Configuration Stable

0 (B e
) yes

1( 8
1

) yes

2 
~~~~ 

yes

3(!3
) no

Interpretation: The system

x = [ A + B . G  i x—t+l  — — i—ns —t

is stable for i = 0 ,1, 2.

Configuration state 2 is stabilized because the probability of the

configuration state being 2 
~~~~~ 

is larger than in Case i).

3.
p

r

- - _________________________________________________ ~~ncr-c .. _1.~ trst— . -i±-c afl.cS c. —ct - __ -._ .. -
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6.4 Sunmtary.

In this Chapter , two applications of the non-switching gain method-

ology to computer-aided design (CAD) were presented . The purpose of

these examples was to demonstrate the usefulness of the non-switching

gain methodology in the design process. CAD has two uses: First , it is

used by the system designer in the evaluation and design of a system.

Second , it is quite useful to the theorist. In this research , for

example , without CAD techniques , a thorough knowledge of the methodologies

presented in this report could not have been gained. The equations

describing the switching and non-switching gain methodologies can be

derived , but their meaning in a specific context cannot be determined

theoretically. The purpose of this research was to study the inter-

actions between system reliability and optimal control. The method-

ologies presented in this report allow this study to proceed . The two

Examples of this Chapter study two specific areas of interaction

between system reliability and control. The door has now been opened to

the answers to questions on reliable control system designs. Computer-

aided design can provide the signposts to these answers. —

________ J
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CHAPTER 7

CRITIQUE

7.1 Introduction.

In this Chapter , the major results of the report will be summarized .

In Chapters 3 and 4 , the switching gain solution was developed and

extended suboptimally to stochastic systems. In Chapter 5, the non—

switching gain solution was developed. The problems associated with

system stability , including definitions of what constitutes a stable

system , and with the steady—state solutions to Problems A (Sections 3

through 5) and B (Section 6) were studied in detail in Section 7. The

equivalence of the two approaches to the non-switching gain solution is

proved in Section 8. The existence of a robust steady-state linear

feedback control system was studied in Section 9.

In the following ‘~ections, each major result will be discussed ; in

Section 5, some suggestions for future directions in research will

be made.

7.2  The Switching Gain Solution.

The switching gain solution was derived in Chapter 3 as a control

methodology for linear system with quadratic cost criteria and variable

actuator conf igurations. The resulting control law was to account for

the failure, repair and reconfiguration of the actuators by switching

the control gain on detection of a change in configuration . This type

of control law is, from Chapter 1, Section 4 , a class II reliable control

methodology ; an active (switching) controller is used with a passive 

- — ——-— — — r ., - . :- ~- - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,— —— - - - -—-——~~
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7 .1.1 Determini stic Opt i ma ) S o l u t i on .

The ow t t clii nq tja i n  so I ut ion of ch art ct 2 i ;; derived a; titi ’ (JIlt ima 1

sot (I t  toll for t i lt ’  t i  I ~c t e t ( ‘~~ I i~~t’ dot t’flU in i et IC optima l cotit. rot problem .
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in such a case , the optimal control law exhibits a dual effect; i.e.,

the control law influences the measurement of the sy stem s t ruc tu re .  In

a r e a l — l i f e  s i tuat ion, it is un l ike ly  that a system wi th  no i n t e r nal

noise wil l  be found.  Unfor tuna te ly ,  the optimal (dual)  control law is ,

in practice , unsolvable due to the imm ense computer resources whic h are

required.

7. 2.3 Suboptimal Extensions.

Because of the dual control effect, the deterministic optimal

solution is the only closed-form solution available . Thus , it is in

our interest to look for suboptimal methodologies which extend the

switching gain solution to the stochastic case. In Chapter 4, two of

these methodologies were studied : Hypothesis tes t ing  and dual iclenti-

fication While hypothesis testing is a measurement strategy , du al

ident i f ica t ion modif ies  the control in order to guarantee a perfect

observation of the system structure wi th  the next measurement. Both

methodologies are presented in their  simplest form , since the problems

of stochastic control of systems wi th  variable s t ruc tu re  are not w i t h i n

the scope of this research . Two comments are in order , however:

F i rs t , a t  least in the form presented in Chapter 4, a dual i d e nt i f i c a—

tion a lgor i thm is computationally intensive . Since it is an o n - l i ne

algor i thm, a si~j n i f i c a n t  computational capaci ty may be ro~iuir’d in its

implementation . Second , i t  is  observed tha t  the optimal ;;t och ia ; ;t  i ’

con t~rol law , i f  it could ho calculated , would r e ly  on both e s t ima t ion

and dua l control , the two concepts which are represented i n  Chiaptet 4 by

hypothesis testinq and dual i d e n t i f i c a t ion , respec t ive ly .

_
~~~~.-.- ~~~~~~~flc, C.-i!~WtJr - - :. ~ —..‘..t~W-,---- —----------- — — -- - -—
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In a suboptima l implementation using dual iden ti f ication , the ‘

algorithm would most likely be used only at intervals; the implementa-

- - tion would rely on an est imation algorithm for the rema inder of the

time. This scheme would attempt to minimize the degrading effect of

dua l identification on the state trajectory by using it onl y to guarantee

that the cstimation algorithm was track ing the system conf iguration

properly. Thus, the system response would be roughly periodic, wi th

the state being driven away from the origin in order to obtain an —

accurate estimate of the conf i gurat ion, and decay ing back toward zero

between uses of the dual identification algorithm .

This type of control strategy deserves some attention in future

research activities. It is similar to the class of self-testing

systems which perf orm diagnostic testing of their configurations

at intervals. It is also, at present , the only methodology which takes

advantage of the dual property of the control law in systems with

variable, imperfectly observed , structure.

- - - -

~ 
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7.3 The Non-Switching Gain Solution.

The non-switching gain solution of Chapter 5 was derived as an

alternative to the switching gain solution of Chapter 3. Although

the non-switching solution is, in general , suboptimal, the on-line

complexity of the solution is less demanding than that of the switching

gain solution . On—line , the non—switching gain solution has the same

complexity as does the standard linear quadratic solution . Off-line ,

the computational requirements are equivalent to those of the switching

gain solution.

7.3.1 The Necessary Conditions--tJnsolvability .

When the non-switching control problem is formulated as an

equivalent deterministic control problem (Chapter 5, Section 4 ), tue

necessary cond itions from the matrix minimum principle [Athans ,4 1]

yield a two-point boundary value problem which is not explicitly

solvable ; at the present time , the solution to this problem appears

intractable. The necessary conditions are used, however , in conjunction

wi th an equ ivalent problem (Chapter 5, Section 6 ) ,  to prove some strong

properties of the solution to the equivalent problem.

7 . 3 . 2  The Equivalent Problem .

The equivalen t problem formula ted in Section 6 of Chapter 5 has

the advantage over the orig inal formula tion tha t a closed-form expression

for the solution can be readily obtained. From the necessary conditions

of Section 5 in Chapter 5 for the original  f ormula tion , it is shown tha t

the accumulafod costs over the control interval for a specified gain

sequence are iden tical for the two formula t i o n s .  From t h i s , in S e c t i o n  8
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- - I of Chapter 5, it is shown that if the steady-state solutions to both

problems exist, then they are identical . This is a major result , since

the steady-state solution to the second formulation is calculable ,

while the solution to the first formulation is not.

7.3.3 Existence of a Stabilizing Gain.

Only one major result remains; one would hope that the steady-state

solution to the second formulation exists if and only is the steady-state

solution to the first formulation exists. In Section 7 of Chapter 5, the

meaning of “steady—state” is precisely defined for both problems. In

order for the concept of a steady—state solution to be well—defined , an

exact definition of stability must be given. Two definitions are present-

ed. Stability is defined as the usual concept of mean-square stability.

A definition of cost-stability is presented as the condition when the

expected cost for the infinite horizon problem (unnormalized by time)

is bounded. It is proved that the solutions to the two formulations

are equivalent in that one solution is cost—stabilizing if and only if

the other is also. Cost stability is shown to imply mean-square

stability; the reverse is not necessarily true.

7.3.4 Problems with Convergence.

There are two criticisms of the results of Chapter 5. First ,

although cost-stability is not implied by mean—square stability, it is

possible that , for the specific form of the non-switching gain solution ,

the two definitions are equivalent. This is a minor point , in that the

equivalence result is already very strong; it yields a procedure for

the calculation of the steady—state solution to the two point boundary

_ _ _  — ‘~~~~~~~~~--~~~~~ -- —- — ~- - —- ---- -- 
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value problem which converges if and only if that solution exists.

Second , there is still a minor problem concerning the conver gence

of the non-switching gain solution. The equivalence theorems of

Chapter 5 only require the solution to have a steady-state , which may

be a limit cycle. A limit cycle is still copacetic, but it is harder

to implement than one gain would be. Therefore , it is desired that

conditions be found for which the possibility of a limit cycle is

ruled out.

Thus , two possible topics for future research are the examination

of the exact relationship between cost-stability and mean-square stability

for the non-switching solution and the determination of conditions for

which the possibility of limi t cycles as solutions is eliminated .

7.3.5 Existence of a Robust Gain.

A spin-off of the non—switching gain solution of Chapter 5 is

the development of an algorithm which determines when a robust ~jain

for a set of linear systems exists (Section 9). A robust gain 1;; a

gain which stabilizes each mode of the system configuration regard-

less of the configuration dynamics. This algorithm is deve l oped b y

noting that the robustness problem can be reformulated as a non-switch-

ing gain problem. Since the non-switching gain is , in the steady-stat”

case, the solution to the f i r s t  formula ti on (Sect ion 4 , Chapter 5), and

since it is stabilizing if and only if a stabilizing gain e x i st s , t h o u

by the special s t ructure  of the robust formulation (Section “I), the

steady—state non—switching gain is robust when it exists. In addition ,

if the non—switching solution is not cos t—s tab i l i z ing, then no robust 

~~~-~~~~~~~~ -—---. -~~~~.-‘ -- ~~-
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gain exists. This is a very important result;  it is unfortunate that

determination of existence of the robust gain requires the solution

of the non-switching gain problem. At present , however , no test on a

system exists which determines when the non-switching gain solution

is cost—stabilizing. It is hoped that such a test will be developed in

the future.
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7.4 Computer-Aided Design.

Chapter 6 dem’-nstrates the usefulness of the non—switching

gain calculations in computer-aided design (CAD). These calculations

provide the backbone for comparison studies on the relative system

effectiveness of various designs. In the first example, it is demon—

s.rated that the non-switching control methodology yields a numerical

- value based on the expected performance of a design configuration

over the e f fec t  of the structural dynamics. This example demonstrates

that relatively subtle qualities of an actuator can be used to rank

various actuator configurations; in this case , the ranking depends

on the manner in which the control affected the system state and is

not obvious on a casual inspection of the conf iguration .

The second example demonstrates the ability of the non-switching

gain methodology to observe the trade-off between high reliability and

high effectiveness in an actuator.  Both qualities are desirable , but

in this  example , one actuator is highly reliable , w h i l e the second

actuator is not as reliable , but is highly effective in that it incurs

a much smaller cost in applying the same control effect to the system.

The non—switching gain problem is solved for a range of actuator reli-

abilities for the highly effective sensor . It is demonstrated that

the trend exists to depend more heavily on the h igh reliability sensor

as the r e l i ab i l i ty  of the highly effective sensor decreases, even

though the operation of the h ighly reliable sensor incurs more cost .

Chapter 6 only touches upon the f ie ld  of computer-aided des ign .

There is much work to be done in this f ie ld , and th e purpose of Chapter u~

is only to establ ish the usefulness of the n o n - s w i t c h i n g  g a i n  methodology

- 
- -
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in the design process. In the future , the applicability of the non—

switching gain methodology to CAD should be studied in great detail;

in particular , a comprehensive methodology for the application of the

techniques of Chapter 5 to CAD should be developed. This methodology

should include a strong argument for the validity of using the non-switch-

ing methodology in CAD. Specifically, research needs to be carried out

on the relationship of the costs incurred by various design conf igurations ;

this is similar to justifying the use of the quadratic cost criterion

in the linear quadra t~~ regulator. In order to compare two designs, a

valid basis of comparison , or cost index, must exist. The non-switching

methodology is proposed as being a valid cost index for the class of

systems for which it is applicable; this conjecture should be verif ied.

In addition to the usefulness of the non—switching methodoiogy, it

has been mentioned previously that a valid def ini t ion for a reliable

design is that the design is cost—stabilizab]e. Since, for the deter-

mini stic control problem presented in Chapter 3, the switching gain

solution is the optimal solution , the existence of the steady-state

switching gain solution is equivalent to the stabil izabili ty of that

design. Hence, the existence of the steady-state switching gain solution

is necessary and sufficient to classify a design reliable.

In theory, the computation of the steady—state switching gain

solution can be used as a method in CAD for determining if a proposed

design meets the minimum requirement of stabilizability. In practice ,

however , the proposed design will operate in a stochastic environment ;

therefore, the switching gain solution is not an absolute measure of the

stabilizability of the design. In the future , research should be

L - -- —
~~~~~~ ~~~~~~~. - ____
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concentrated on the development of the concept of stabilizability to

more general stochastic systems than has been done previously . An

example of work in this direction has been given with the Uncertainty

Threshold Pr inciple [Athans , et. al.,37J , which is basically the deter-

mination of conditions of stabilizability for a specif ic system with a

specific type of control law. The work on the existence of the non-

switching gain solution for a simple system (Chapter 2, Section 7)

is another example. It has been demonstrated in this  research that the

concepts of systems reliability and stabilizability are crucially

interconnected . It is left to future research to determine more general

conditions of reliability and stabilizability and to implement these

conditions in computer algor ithms which can be used by the designer .
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7.5 Suggestions for Future Research.

Several suggestions for fu ture  research have been presented in

Sections 2 , 3 and 4 of this Chapter. In this Section, a summary of these

suggestions will be given .

In Chapter 1, three classes of reliable control methodologies

were given. These are

I) Passive (Robust) Controller Design

II) Active (Switching) Controller, Passive Conf igura tion
Design

III)  Active Controller , Active Configuration Desi gn

Of the methodologies presented in this report, the non—switching

gain design is a class I methodology, and the switching gain design is

a class II methodology . Class III methodologies are not represented

in this report. This class is currently largely in the realm of

“blue sky ” theory. Unfortunately , there is as yet no adequate model

of configuration dynamics which exhibits a state and control structure .

Over the next ten years, one should see much research activity in the

area of class III methodologies and their control structures.

In class II methodologies, much e f f o r t  should be concentrated on

extensions, either optimal or suboptimal , of the switching class of

control laws to stochastic systems. At present , most work has been done

in estimation theory , since the difficulties associated with dual

control are widely recognized . The ability of a control law to perform

diagnostic testing for changes in configuration has yet to be exploited

theoretically , although many heuristic algorithms have been used , both

in control systems and in the more established f ie ld  of fault detection
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and identification in digital systems. Dual control is a form of self—

testing, and can be utilized as such, even if an optimal control is

not known . The dual identification methodology of Chapter 4 is an

- 
- -
‘
~ example. This field requires a large effort, and should be rich in

research opportunities.

The class I methodologies are represented in this research by the

non—switching gain solution. The work done in Chapter 5 on mean—square

stability and cost-stability of solutions is not unique to this class of

problems . Much remains to be done in the classification of what consti-

tutes a stabilizable system, whether with respect to a non-switching

control law or something more general. ;
Since reliability can be defined as stabilizability with respect

to some class of control laws , research into the stabilizability of

dynamic configuration systems is the key issue in reliable control

system designs. Much work , including this research, has been done on

the assumption that the system is stabilizable; however , l i t t le  progress

has been made in determining ~ a given design is stabilizable .

Although iterative tests were developed in this report for determining

stabilizability, a thorough understanding of the reason these tests

either converge or fail to converge is lacking. Much work still must be

done. With this should come a resolution of the problems with limit

cycle steady—state solutions to the non-switching gain methodology .

In Chapter 6 , the usefulness of the non—switching gain solution in

computer-aided design was demonstrated . CAD is a field unto itself; many

opportunities exist for research in this area. Unfortunately, most

research is application-specific. CAD is useful not only to the designer,
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but also to the researcher. It is a powerful tool in the building of

the concepts of reliable control systems design, and it should be

developed in parallel with any future research.

7 .6 Summary.

In summary , the main purpose of this research was to establish a

t~-’undat ion in reliable control system design methodology which would

revide the basic concept of a reliable control system. In achieving

this goal, the linear quadratic variable actuator control problem was

studied in some detail. Optimization problems were formulated which

represented both system performance (in the quadratic performance index)

and system reliability (in the expectation of the performance index over

all possible structural trajectories). The optimal control law was

solved analytically for the deterministic system; this was the switching

gain solution. It was clearly illustrated by example in Chapter 2 that

the switching gain control law could not be extended analytically to

the control of stochastic systems . This example demonstrated the dual

effect of the control law; in general , the control law will inf luence

the measurement accuracy optimally (in the sense of minimizing expected

cost) when the control can influence the accuracy .

Stochastic extensions to the switching gain methodology were proposed

in Chapter 4. In particular , the dual identification algorithm is an

illustration of the self—testing capacity of dual control laws. The

study of the uses of the dual control effect in the design of reliable

control systems is a promising research area of the future . 

-~_ J
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In Chapter 5, the non-switching gain solution was developed . This

solution led to an algorithm for the determination of robust linear

constant gain control laws for a set of linear systems with d i f f e r e n t

actuator configurations. In addition , the resulting gains are optima l

• with respect to a given quadratic performance index and exist if and

only if any robust gain exists.

In conclusion, the unifying concept of this report IS: What

constitutes a reliable control system , or a reliable desi gn? A major

connection was established in this research between the concepts of

reliability and stabilizability . Iterative procedures were developed

for the determination of whether or not a given linear system of the

type considered in this report is reliable , with respect to both class

I and class II controllers; i.e., non-switching and switching gain

controllers , respectively.

_______________________________________ - ~
_ 
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DEFINITIONS FROM MIL-STD-721B
25 August 1966

RELIABILITY
The probability that an item will perform its intended function

for a specified interval under stated conditions.

AVAILABILITY
A measure of the degree to which an item is in the operable and

committable state at the start of the mission, when the mission is
called for at an unknown (random) point in time.

DEPENDABILITY
A measure of the item operating condition at one or more points

during the mission, including the effects of Reliability , Maintain
ability and Survivability, given the item condition(s) at the start
of the mission. It may be stated as the probability that an item will
(a) enter or occupy any one of its required operational modes during a
specific mission, (b) perform the functions associated with those
operational modes.

CAPABILI’VY
A measure of the ability of an item to achieve mission objec-

tives given the conditions during the mission.

OPERABLE
The state of being able to perform the intended function.

MAINTAINABILITY
A characteristic of design and installation which is expressed

as the probability that an item will be retained in or restored to a
specific condition within a given pe’ od of time, when the main-
tenance is performed in accordance with prescribed procedures and
resources.

SURVIVABILITY
The measure of the degree to which an item will withstand hostile

man-made environment and not suffer abortive impairment of its
ability to accomplish its designated mission. 
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A2.1 Exact Optimal Solution for Deterministic Case, Chapter 2,
Section 2.

From (2.2.7) and using dynamic prograssning, we wish to minimize

V(x
~~ 

k(t—1), u~ , t) = E(qx~ + ru~

- + V (ax~+b~~~~ u , k(t), t+i t  x~) (A2.l.1)

*where V (•,k(t), t+l) represents the minimum cost-to-go, given

-•1 k(t) at time t+l.

This minimization can be carried out because x~ is known exactly

at time t, and therefore IT
~~ 1

isknownexactlY by equation (2.2.10).

The control u~ is computed from

0 = .~~?— 
(~~

x~ + ru
~~

+1T
0

V (ax
~
+bu t? k 0 st+l)

+7T 1
V (ax

~
+ 
~
u
~
.k l .t+1)) (A2.l.2)

- and the assumption that

* 2
V (x

e
, k=i , t) = x~~S i t  

(A2.l.3)

resulting in equation (2.2.8). Equations (2.2.12) and (2.2.13) are

then obtained by substitution of (2.2.8) into (A2.1.1); these

equations validate assumption (A2.l.3) by induction.

- 
~~~~~~~~~~~~~ -
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P2.2 Exact Optimal Solution for Stochastic Case, T 0. l~ 2 T ~
(1-d example).

The formulation is the same as in A2.l, except the system is

now represented by

x~~1 
= ax~~+ bk(t) u~ + (A2.2.l)

is white noise with zero mean , variance E, and probability dis-

tribution p(~ ), which is uncorrelated with any other variable. To

illustrate the complexity of the solution, the time set is chosen as

* *{o,1,2}. The problem is to find u and u such that

V (x
0
,0) = E(J) E [ ~~~ (x~ q+ u~~r) +x~~~Ixoirr

oJ 
(P2.2,2)

is inxn~mized. Let V denote the minimum value of V. Assume

(P2.2.3)

where is a mapping from the information at time t (Zr
) into the

control space.

z~ ‘{n 0
, x
0
, u
0
,..., u~~~1

, x
~
} (P2.2.4)

then

* ~~2 2 *
V (x

e
, 0) = 

~ 

E~x0q+u0r + V (x1,1)~ Z0~ 
(P2.2.5)

0 0 0

by dynamic progralasing. Also

* t 2 2 *V (x
1
,l) — mm E x

1
q + u

1
r + V (x

2
,2)) Z1 

(P2.2.6)
I l = ~~~~( Z )  ‘

“1
* 2

But V (x21 2) = x2 q, so (P2.2.6) becomes

* ~~2 2 2
V (x

1
,l) — mm E ~x1

q+ u1 r+ x2
q~Z1 

(P2.2 .7)
u — , (Z )

1 1

— nUn E ~x~ q+ u~~r+ (ax1
+ b

k U
1 

+~~ 1~ 
q~z~~

u1= •1
(Z

1
) 1

(P2.2.8)
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‘ 
- 

now, = {n
0 
,x0,u09x1

}, so

(P2.2.8) = nUn ~ x~q + u~r
u1 $1

(Z
1
) 

~,

+ E 1r .(lll) (ax1
+ b m U

1
+ E; )

2
q] } (P2.2.9)

where iT . (l~1) is the 
probability that k1 

= i, given z1. Bringing the

expectation inside the sum,

(P2.2.9) nUn x~q + u~r
u141

(Z
1
) 

~.

+ ~~~~ i T .  (iji) ~a
2
x~ + b~u~ + + 2ab.xiui

)~~
} 

(P2.2.10)

Differentiating (A2.2.l0) w.r.t. u1 
and setting the result equal to

zero:

or 

0 — 2ru1 
+ iT~ (l~l) (2b~u1 

+ 2ab.x1
)q (P2.2.11)

* [
~ 

it . (1
~
l)b

ji 
qa

u1 
= — x1 

(P2.2.12)

r + 

~~ 
n i ( 1I l ) b

~1 
(~

Substituting (A2.2.12) back into (P2.2.10), define S1 
and T1 

as

T
1 

= Eq (P2.2.13)

S
1 

(a2 + l)q

Ei?;~ 
1tj ( u t l ) b j j q

2
2 — ________ 

(P2 .2 . 1 4 )
- a 

r +
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and

V ( x 1, l )  = x~ S1 + T
1 (P2 . 2 . 1 5)

A few remarks must be made about the probability distribution over k
t~

given Z~ or Z~~1.

Notation:

TT . ( t l t )  = probability that k
~ 

= i, given the available information Z~.

it .(t~t+l) = probability that k
~ 

= i , given the available information
z
t+ 1. 

S

From the Markov property,

iT (t~~t)  = Pit (t—l(t) (P2.2.16)

Equation (P2.2.16) is the propagation equation for the distribution IT.

The form of the update equation is given and proved in the following

lemma :

Lemma P2 . 1:

w~ (tIt+1) = 
t l t i t i  

(P2.2.17)

P(xt+j
_ax

t
_b
jut

)it
j(tlt)

proof:

Note that

P(x
~+1

_ax
~
_b
~
ut
) = p (x

~+1
IZt,ut,k(t)=i)

where u~ is not a random variable. Also,

1T1(t l t )  = p(k(t)=iIZt
)

p (k(t)=i,n o~~
x0

,u0,...~
x)
~~— p( iT

o ,xo ,uo , . . . ,x~)
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then (P2.2.17) becomes:

p(xt+1IZt
,u
t
,k(t)=i)p (k(t) iIZt

)
p ( k ( t )~~i I Z ~ ÷1

) = 
P(x

~~+1
( Z~ , u~)

which is Bayes rule. Q.E.D.

Returning to equation (A2.2.5), and substituting (P2.2.15),

V (x0
,0) = mm E {x~q + u~r + x~S + T11Z0) 

(P2.2.18)

Q

= mm E x~q + u ~r + E q
u

0 4 0
(Z

0
)

F ~ 1Tj ( 1 I l ) b j
~~~~2a2 1

+ x~~~q(l+a
2) - _I

~
zo (P2 .2 .19)

r + 

~~~~~ 

iT
i
(111)b~~~j

2 2
= mm x0

q + u0
r + ~q

u0’~~0
(Z

0
)

+ 
i~~o [

~~~o
,J

(:~)[
~

1
~~

2 - 

~~~~~~ 
q]

.dP(xl lkl.kolzo)PklkoIiTko,o ~

where

p(x -ax -b .u )1T

Ir
k
(ltl) = 

~kj 
~ 0 3 0 j,0 (A2.2.21)

~~x1—ax0-b~u0
1T~~0

—~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Equation (P2.2.21) is a combination of equations (P2.2.16) and (P2.2.17).

Equation (P2.2.20) can only be solved numerically (in general); this

requires a numerical minimization of a function the computation of which

requires four numerical integrations —- a difficult task.
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P2 . 3  Exact Solution of Stochastic Case Over T 0, 1~ 2 = T ,

~ Specific Form ~~ ~~~~~~~~~~ , Chapter L~ 
Section 2.1,.~~

Assume , for  the problem in P2 . 2 , that

for -~‘T~~~ .~~ñ!• ~~~ ( P2 .3 . 1)
0 , otherwise

Suppose 1u 0 1 0 is large enough such that

+ = 0 , i ~~ and 
~~~Y

Then

= 

~~~~~~~~~~~~~~~~~~~~~~ 
b . (A2.3.~~)

P ( x
l

_ ax
O

_b
k

u
O

)il
k , O

~ ~~k~~(27I)~~~ 
hT
k
0
(O,l) 

~
-

~~ -----b . (i~2.3.3)

~ 
(O~~1)

P ik b i 
(A 2. 3 . 4 )

Similarly,

~~~~ IT ( l l 1)  ~~~ (P2.3.5)

Then, from equation (A2.2.14)

S
1
(k
0
) — (a2~ l)q 

- a~~
1
~~~ 

ik O
b

iJ ~~ 
(A2.3.b)

i=t 0 

J
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From equation (A2.2.20),

* 2 2
V (x~~, 0) = nUn x0 q + u0 r+ ~ q

u
0=4 0(Z0)

+ 

k~~ O [k~~0 1~~
O + b k uo +~~o

) 2

1~. 
J R U ~~)

• 

{

(a
2
+1)~~ - a

2 ~ ~~~~ ::~~ 
:~ q ~ 

dPU
~
o)P IIIk o }

(P2.3.7)

2 2 —= nun x
0
q + u

0
r+~~ q

+ iT~~~~~ 0 )~~~0 
~k1

k
0 

((a
2x~ + b~~u~ + 2ab

k
x
O
u
O

0 1 
1 2 2

+E ) (a2+l) q— a
2 ~~~~~ ~ik0 

b
ij 

q 

(A2.3.8)

r + “ik
0 

b2 j q

Differentiating with respect to u0
, and noting that S1 

does not depend

a *
0 = -i-- V (x

0
, 0)

= 2u
0
r + tlTk ~ 

~~~~ 

p
k
1
k
0

(2
~~ 0

u
o 

+ 2 a b
k xO

) S 1 
( A2 . 3 . 9 )

Then ,
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* 

Tt

~( c ~ ~~~~ 
Pk
0
k
1
b
k
0
5
1
3

U
0 

= — 

2 
~0 

(P2.3.10)

r + 
k0
=O 

Tr
k O  

k
1
0 
Pk k b

k 
Si

This solution is valid only when J u 0 J  > 0  is large enough such that

P((bk -b
.)u

0 
+ ~o~~0 t i~’k0 and (- /5!, /5!J . Thus,

0
- :  ~(b —b.) u

0 + 
~ID~ 

>“
~~~~‘ ~~~ HV9! /5!I (P2.3.11)

k0
1

must be satisfied.

i) Assume (b
k 

_b
~
)
~ 

> 0. Then (P2.3.11) is satisfied if
0 0

(b —b.) — 15! > /5! (A2.3.l2)k
0 

m u
0

or

(b —b .)  > 215! (A2.3. 13)
k
0 

m u 0

ii) Assume (b
k 

—b .) < 0, Then (A2.3.11) is satisfied if
0 0

(b —b .) + /5! < -15! (P2.3.14)

or 

k
0 

m u ~

(b
k 

—b.) < —2/5! (A2.3.l5)
0 

m u 0

Therefore, u
0 
must satisfy

l (b _b .)u*~ > 2/i! (A2.3.16)
1 0

for (A2.3.lO) to hold.

Notice also that when (A2.3.10) is the optima l solution , u0 is

• identical to the deterministic solution.

--

~ 
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P2.4 Existence ~~ Steady~State Solution for 1-d Example.

From Chapter 2, Section 2.2, the coupled Riccati equations for

S
0 

and S
1 

are f
r(p

11
ab S

0~~~1 
+ P21(a/b)S

1~~~+1
) 2

0,t 
= q + 

Er + Pll
b2So ~~~ 

+

/ 
b (p

11
abS

0~~+1 
+ P2i~~

/’b)81,~+11 \2
+ P11 

a — 
~~~~ 

p
11
b
2
S0 ~~~ 

4 P21 (1/b2)S
i

;
t+i 

) S
01~~~1

+ ‘a — 
P1j

a b S
0~~+1 + p

21 
(a/b)S

1 t+1 2 
SP2l~~ bir + Pllb

2
S
o t+l 

+ P2i
(l/b2)S

1~~+i
J / 1~t+1

(P2.4.1)

= + 

rIp
i2
abS

01~ +1 
+ P22 (a/b)S 1 t+ 1’

2 r
Er + p

i2
b2S 

~~~ 
+ P22 (1/b2)S

1~~ +1J
2

/ bIp
12 abS0 1  + P22 (a/b)S

i~~~+1] \2
+ p

12 a - 
r + 

~12 
b
2
S0 t+l 

+ p
22 (l/b 2 )S

l t l ) 
O t+l

+ I 
p12a l S

0,~ +1 + P22 (a/b)S
1~~ +1 2

P
22 ~

a - 
blr + P12b

2
S
O,t÷l + P22

(1/b2 )S1~~ +11 /
(P2.4 .2)

Define

h = 
~~11~~ (P2.4.3)

t S
0,t

- -~~-~~~ -——~-- -_
~~— . -—. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
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S

1’ ( P 2 . 4 . 4)

- 

t S
o t+1

Dividing both sides of equations (P2.4.1) and (P2.4.2) by

manipulating terms, and using equations (A2.4.3) and (P2.4.4) yields:

r = + _____ 

r(p
11
ab + p21

(a/b) h
~~+i J

t SQ~~•~f1 
S
01t+1 E (r/S0,~ +1) + p11b

2 
+ p21 

(l/b
2
)h
t+1 ]

2

/ b (p
11
ab+ p

21
(a/b)h

~+1
] \2

2 2\ (r/S
0~~+1) + p

11
b + p

21 
(1/b )h

~+1 I

/ 
p
11
ab+ p21 (a/b)h

~+1 \2
P21 1 — 

2 2 t+1\ b (r/ S
0~~÷i

) + p
11
b + p

21 
(1/b )h

~÷i
/

(P2.4.5)

h r = + ~ 
r(p1~ab + p22(a/b)h~+1~

2

t t 
~~~~~ 

S0 t ~.f1 [r/S0~~+1 
+ p12b

2 
+ p22 (1/b2)h

~+1J
2

/ b(p12ab + p22 (a/b)h
~+1] \2

+ p
12 1a — 

2 2
(r/S

0~~+1
) + p12b + p22 (1/b )h~+1

+ p22(a/b)ht+1 \2
+ ~22 (a — 

bI(r/S
0~~÷1) + p12b

2 + p22h~+1/b
2

J ) ht+i
(P2.4.6)
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Assume 
~~~~~~~~~ 

~~~~~~~ as t -
~~ -~ and h~ 

+ h, + r. Then

/ b (p
11
ab + p

21
(a/b)h] \ 2r =  p11(a — 

2 2 
—

p11b + p
21
(l/b )h

I p
11
ab + p

21W~~h \2
+ p21 (a — 2 2 1 h (A2.4.7)

b[p
11
b + p21h/b /

and

/ b E p 12ab + p22~~~,’ )1 \ 2
= p

1~~(a 
— 2 2+ p22 (1/b ) h

/ ~ l2~~ 
+ p22 (a/b)h \2 (A2.4.8)

+ p22 (a  — 
2 2b(p~2b + p22h/b 1/

Let

[p11 P121 [p1 l—p 21P = I I = I I (A2.4.9)

~P2i ~2~J ~1—p1 ~2J
Then

/ 
b [p

1ab + (l-p1) (a/b)hJ \2 
-

r =  p
1 1a — 

2 2p
1b + (l—p

1
) (a/b )h

/ p
1~~ 

+ (l—p 1
) (a/b)h \2

+ (1—p 1
) ( a — 2 2 ~ 

h (A2.4.10)
b(p

1
b + (l—p 1)h/b :i/

and

/ b~~l-p2)ab + p
2

a~’~~~~~ \2
hr = (1—p

2)(a 
— 

2 2(1—p 2 b + p2(l/b )h]

/ (l-p
2
)ab + p2~~~’~~h \ 2

+ 
~‘2 (a — 

2 2 1 h (A2.4.ll)
b [(l—p

2
)b + p

2
(1/b )h] / 

~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _  4
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Solving for h and r from equations (P2.4.10) and (P2.4.11), if r > 1,

then there exists no steady-state solution.

..

I 
- -  -~~~~ - - ~~—-
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A3. 1 Proof of Theorem 1.

Assume 
~ k t+1 

= 

~~~~~~~~~ 1 
for k~~. Then (!k~ !R)~~

_
~ 

= 0,

which implies is in the null space of B
k

_ B &, N(B k
_ 

!g )

Now, dimension (N(!k
_ B R)) <m because the are distinct.

Therefore,

dimension (U N(Bk
_B

t
)) < m (P3.1.1)

k,& 
in

Therefore the set U N(
~.k

_
~~~

) has measure zero in R . Q.E.D.
k,~.

I

I
I ,
I
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Ai.2 ~~ t lma l Solution for Dt?term .inistic Problem.

For the system

~~t+l  ~~~ t
’ 
~~k (t ) u~ (P3.2.1)

!k ( t )  ~ ~~k ~k~0 
(P3.2.2)

!t+1 ~~~ !Lt & R
L+l 

(P3.2.3)

where !i,t~ 
probability of 8 . at time t.

Assume that

~
) is observed exactly

2) then 8
k(t—1) 

changes to 
~~k ( t )

is applied

From dynamic programming, the optima l cost-to-go at time t is given

by 

V*(x t 
,k(t-l),t) mis 8k(t) ~~t

2
~~t

4 
~~t~~~~t

f V~~(x~~~,1 ,k(t),t+l) J 3C4 
(A3.2.4)

Assume

V*(!.t
,k(t_l),t )  a x ’

~
S k t x

t 
(P3.2.5)

Then

T T T
- mis

+ 
~ ik~~~~ t 

+ 
~~~~~~ 

)T~~~,~ ÷l ~~~~~ + 
~~i~~ t 

(P3.2.6) 
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and

(P3.2.6) = nUn 
~ 

+

+ 
~ ik x

~~
A
T
S . t+i A x

t 
+

+ x ~~A
TS.~~ +l

B . u~ ~~~~~~~~~~~~~ (P3.2.7)

Differentiating the r.h.s. of (A3.2.7) w.r.t. and setting equal

to zero:

0 = + 
~~~ 

Pik i  ~~~~~~~~~~~~~~~~~~~ 
+ 2

~~~~
j t+1~~~ tI

(A3.2.8)

or

U k(t_l),t = - + 
~ik8i 8i,t+18i 1~

~~~ ~m~~~~~~~t+i~~~~t 
(P3.2.9)

is the optimal u
~ 

, given k(t-1).

Since no noise is present in the system , k(t—l) is obtained from

and , along with 
~~~~~ 

as

k(t—1) = i. i~~~ = 
~~~~~~ 

+ 
~~~~~~~~ 

(P3.2.10)

Substituting (P3.2.9) into (P3.2.7), and eliminating because the

equation must be true for all and the matrix equation is symmetric ,

—~~~~~ — -~~~~~~~ ~~~~~~ -— — ——  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 
-
~~~~

—
~~~-
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on simplification we obtain

~ k,t 
= A

T ±~ ~ik ~~i,t+l
- 

~ik ~~i,t+l~~i j 
[
~ 

+ 
~ik 
!i~~.i ,t+1
!i J —l

~ik ~~i
!i,t+l ~ 

+ (A3.2.ll)

which verifies assumption (P3.2.5) by induction, along with the initial

condition

~~k,T 
= 2 (P3.2.12)

. I
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A3 . 3 Proof of Lemma 1.

Consider the optimization of the cost-to-go given k(t-l) at time

t with final time T. This optimal cost-to-go is simply

V
T ~~~~ ,k(t—1),t) (P3.3.1)

where T denotes the final time. For the process with final time T+1,

the optimal cost-to-go is

V T 
(x
~ 

,k(t—1),t)

= E ~ ~~ x~~Qx 1 + u~~ R u  + x~~÷1 2x~~ ÷1 I k(t~1)~
(A3.3.2)

Since this optimal sequence is not necessarily optimal for the problem

with final time T, it must not incur less cost over {t,...

~~~~~~~ 
(x .~ 

,k(t—l),t)

> V
;
(
~~t

,k(t_1),t)

+ E
~~

u
~~

R u
T

+ x
~~+l Qx T+l ( k(t_l)} (A3.3.3)

Since the expectation term of equation (A3.3.3) is non-negative,

V~~~ ~~~ ,k(t—1),t) > V ,~ (x .~ ,k(t—l),t) (A3.3.4)

Now, note that

V T
(
~~t

,k(t_l)
~
t) = _t

~~~
i
~~

tT
_t  A3.3 .5

and that equation (3 .3 .6 )  depends only on the number of iterations

(T-t) for the calculation of S , and therefore,

V T ~~~~~ 
,k(t—l),t—1) = V~~~1 

(x
~~ 

,k(t—1),t) (P3.3.6)
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Therefore, 
i,t~~~ T 

is an increasing sequence in that

S — S > 0 (A3.3.7)
— i , t — i  — m , t —

- 

Since, by hypothesis, V
T 

is bounded over t, the !i,t 
converge.

Q . E . D .

El

I~h. ~~~~~~~~~~~~ .._ .  ~~~~- — — . ~~~— _ . 
~~~~~

-— - .
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A5.l Proof of Theorem 1, Chapter 5. F

= tr(E~ (Q+G
T RG)) + tr [E T2I 

(J~5.i.1)

and JT
<B. Since ~ + G

T RG > 0 and is constant for all t, this implies

lim t r [ E
~~J 0 (A5.1 .2 )

t-*’~

which is exactly Definition 1.

(.+)
From equation (5.4.6), note that

~~~i ,t+1~~i=0 
= F ( (

~~~~~~
)
~~~o

) 
(A5. l .3)

L
where F ( S )  is linear in

Since

his tr[Z
~ 

3 = 0 (A5 .l . 4 )

t -~~

for any choice of , F 
~f is bounded and h F  < 1. (Otherwise ,

}i~ 3~
IF~~~~ )U~~

o.)

Then

fl ~T ~ t r [~~~ ~~ + G
T 

~~ s.) ]  + ~ tr (~~~~~] (A5 . l . 5)

~~
- tr[Z~~] ~ tr(Q + G

TR G I  + 
~~

- tr [~~~) ~-tr [Q) (A 5 .l . 6 )

h F  lI
t II ~~~ II ~ 

+ GTR GIl + F h I
T II .~~II H 2 11 (A5.1 .7)

11 F 
~ ~il ~ + G

TR G  I I )  (A5.1.8)

= ~:ft I1~~~
1 

l I E  II 11 2 + G
T R~~II (A5. 1.9)



.
~~~~~~

- _ . _- ~~~
- _ _ .-.--——S, ,---—--—--- _ . . . _ . —-.  .—- -- -..——.,-

~

--—---.- .---- 

~
-
~
-----

~
‘-——— •‘-—- .‘“

~~~~ ~1

IL~0 II I I Q ~ GTR G II 215
for all T. (A5.l.1O) .

1 — I I F II

I 
Q.E.D

p.

I

— _ - — _ - ——— , .~z_.. __ _ __ __~~ ____ _ -•__—- -. — — 
~~~~~~~~~~~~~~~~~~~~~~~~~ —.—-~~~—.-— -_ , .. — . — — --— _

~— --— -.—-..~—.-‘~~~ —..•
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A 5.2 Proof of Remark on Theorem 1, Chapter 5.

(=
~

) _
tr(E

~ 
(~~ + 

~~
RG t)3+ 

tr(Z
T2) 

(P5.2.1)

and

1~~T 
(A5 .2.2)

Since ~~>0

tr[E
1 I is bounded. (P5.2.3)

Therefore

tr(E
~~

1+0 as t-~~~ (A5.2.4)

The reverse implication is shown to be false by example *

Example 1: Consider

= u~ 
(A 5 . 2 .5)

u~ x~ 
(P5 .2 .6)

Then

E(x~ 1 th 
0 (A5.2.7)

but

~~~E(x~ J = (A 5 . 2 . 8 )

* Example 1 is provided by Dr. D. Castanon of ESL. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _  ——. —-----

_ ...~~—
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P5.3 Proof of Theorem 2, Chapter 5.

Let I = {o, 1, 2, . .., L} (P5.3.1)

and

L~ (i) = {(k(o), k(l), ...)I k(i)c i} (A5.3.2)

Define the function Ii on the cylinder sets of

K = {(k(0), k(1), •..)l k(i) fixed for i<T} (A5.3.3)

for arbitrary T by

p (k) = 

~k(O)0 ~
k(l)k(0) ~k(2)k(1) ~k(T)k(T-l) 

(A5.3.4)

where is the initial probability distribution over I and ~ = (P~~j
)

is the stochastic matrix of transition probabilities for the Markov

chain. By a theorem of Andersen and Jessen (Loeve , p.91,42], this

function defines a measure , p , on the a-algebra of P.00
(I )  generated by

the cylinder sets , cU. ( I ) ) .  Since p (R.  ( I ) )  = 1, from the definition

of p on the cylinder sets of R. (I),

p : a (.Q~~(I ) )  + [0,11 A5.3.5)

is a probability measure, and since p extends uniquely from the cylinder

sets, it is the probability of occurance of elements of a(~ (I)).

Let

R
5
+[0,00J (P5.3.6)

= !t2!t + 
~~~~~~~~

+ 
~~T Q!T ffi5. 3.7)

where

x — A x + B u (P5.3.8)
—t+i — — t  —k (t) ~~t 

- -. . _- - - fl t2trr r ~~~~~~~~~~~ - —-- -



218

- . (A5.3.9)

x = (k (0 ) , k ( 1) ,  k(2),...) (A5.3.lO)

and let

.1 = lim J (P5.3.11)
T

Since is constant on the cylinder sets with fixed sequences of

• length T+l, is measurable. (There are a finite number of such

sets.) By Theorem A of [Halmos, p.84 101 ,J is measurable with respect

to p.

J() (x) : R. (I )~~ [0 ,~~J (A5 .3. l2)

Let

X1 = { cL~ (I) l J(x)(x) <~~~ for xc R
5 } (P5.3.13)

and

X2 = 9 ’° (’) — X 1 (A5.3.l4)

Then X1 and are measurable subsets of ~~~( I ) ,  and therefore

EEl ]  < * p(X2
) = 0 (P5.3.15)

because J(x) is a non—negative function on R’.

But

E [E [J1 J = trU
0~~~1 

(P5.3.16)

from equation (5.7.14), and by hypothesis, r.h.s (P5.3.16 ) is finite.

Therefore, any trajectory x is an element of X1 with probability 1,

and has finite cost.

Therefore , cost—stabilizes (5.3.1) with probability 1. Q.E.D.
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P5.4. Proof of Theorem 3, Chapter 5.

Notation: Ir the proof, the sequences 
~~~~~~ 

and (G ) ~°0 will

be referred to by G and 
~ ns 

respectively.

Proof:

I) (~=>) Suppose C is cost—stabilizing. Then J(G
5
) < ~~.

But C minimizes .3. Therefore, J(G )< j (~~~
fl

~~~)~~~~~~j (~~* )< ~~

Thus, C is cost-stabilizing.

* *II) (<==) Suppose C is cost—stabilizing. Then J(G )< ~ where
* *J(G ) = u r n  .3 (C ) (A5 .4 . l )T

Since E (J (G)] = .3 (G) ,
- x 55

T T—

* * *J(G ) = lini B (.3 ) )  = E ~~ )1 (P 5 .4 .2 )
~ 5

~T ~ n

which implies

*
J (G ) < 

~~ (AS.4.3)n 8 —

Since G minimizes .3 , then—ns ns
*

J (G ) < .3 (G ) < 
~~ (A5 .4 .4 )na —ns — ns —

and , eince B (J J = J for all T, for fixed G,x ns T —

.J(G ) < 
~~~
. (A5 .4 .5 )

which implies that C is stabilizing. Q.E.D . 

~~~~~~~~~~~~~~~~~~~~~ - - - -~ --- _ 4 3
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A5.5 Proof of Lemma 2, Chapter 5.

For the control interval starting at time 0 and ending at time T,

the expected cost for the optimal control Gt 
is

= tr[E
0S0 1 (P5.5.1)

from equation (5.5.8), where the subscript T refers to the endpoint

of the control interval. Similarly, for the same process ending at

T+l, the optimal expected cost is

= tr(E
0
S
0 
(T+1)] (P5.5.2)

= E [
~ 

~~ + G t
(T+l)T R G~~( T+l)

+ x
~ +l2x T+lh E o

, 11

0] 
(P5 .5.3)

= B [
~ 

x~ (Q + C t (T+l)
T R G

~~
(T+1) 

~ t

T * T 

- -

+ E (x T
(G (T+1) 

~~2T
(T
~
1) 

~ T~~~~T+l
2
~~T+l

I ~0 ’1L0 I

(A5.5.4)

The first expectation of equation (P5.5.4) is the cost corresponding

to the interval (0,T), and must be greater than or equal to J~ ; the

second term is positive. Therefore,

~
T:1 

.
~~ 

‘
~r 

(P5.5.5)

Since is bounded by hypothesis for all T, there exists a J such

that

* *
u r n  = J (P5.5.6)

Q.E.D.
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.

P5.6 Proof of Lemma 3, Chapter 5. 
4

By direct computation,

= 

~T
(
~~ 

+ E[xT GTR G X  + ~
T

1 ~~~ X 
T i 1 (P5.6.1) I

and since the expectation is positive, 
.

> ‘~T~~~ (P5.6.2) 
j -

Since 
~~~~ 

is bounded, it converges. Q.E.D.

F’

t 
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P5.7 Proof of Theorem 4, Chapter 5.

A) G —~-G because G converges to the steady-state value—ns
~ 

—opt —nst
which minimizes the infinite—time horizon cost J , and therefore,

nsss
by the argument given above, also minimizes equation (5.8.9).

- 

— 
B) Given c >O , a T>O can be chosen which guarantees 

~( G .e
- G Il <C ,

11
~~i t ~ ~.~~

Il<c and II lT t
_ rr I I < c  , for all t >T .

.Then, by the Principle of Optimality, the sequence{G~~}~~~

minimizes the infinite—horizon cost—to—go at time P. Consider the

problem mm J (G) for initial condition E . , it , which has a solution 
- -

G 
i

C independent of E . . In the limit as c+O, the sequence { 
~~~~~

approaches he constant sequence of gains G .  Suppose } 6>0 3- VT ( c )~

the optimal cost-to-go, satisfies

V () ~~ 
— 

* 

(A5.7.1)

Then the sequence of constant gains C would yield a strictly lower

*
cost J (G)

ss—
* *.3 (G ) < J (A5.7.2)

ss— ss

since VT (E )  approaches the optimal cost-to-go, given the constant

sequence of gains C , in the limit, which is the solution to the

equiv~lent problem mm 35
(G) for initial conditions , it.

G

Therefore

*
G = G ( P 5 .7 . 3 )
— —ns

Q . E . D .
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COMPUTER ROUTINES -
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AIM FQ~TRPN

SIBRJ(JPINE AIM (NM,~~I,~8, NQ,bR, ~~~~~~~~~ N,M, ICON,A,B, R,Q,P,
1 SBT,E,S,~~ , U,V,w,X, Y, W, PZ, c~ORM , WID,I~ DINV,B~~,WQ~K, 1WI’, lEND,
2 IPRT)

C *****PA~Th~M~~~RS:
INTEGER MA ,t~A, ~B, NQ, NR, rJ3,rS, M~A , N,M, ICON, IWF (N ) , IEND, IR~T
DJUI3LE f-REX ]SION BSB(NS, A,IC 4),X C~A,N),MD (NRA ,N ) , MDINVCIRA,N)
DO(ELE FREX IS ION E (KC ON) , SBT (NS, N) , A(NA , ~~A) ,B (NB , M~A, ICON)
DOLBIE PREC ISION Q (NQ, N ) , R N R ,M ) , P(NA,I C O N ) ,S(NS,~&A,ICCN)
DOtB LE PRB JSION SB (NS,~~A,ICcN),U(NA ,N ) , V (NA,N ) , W(N A ,N ) , Y(NA ,N)
DO(.BIE PRECISION PR ,WCRK (N ) , Z(N),ONORM(NG,t~A’iA,ICCt4)

C *****WCA L VARIABLES:
EDUBLE RECISION COND
INTE(ER KIN, tour , I, K, KEM 1, KK ,J, END,L, KP , t~4l , IC’IM 1, IMI
INTEGER ICOWT

C
C *****SLBI~)UFINES CALLED;
C M~~ ,MAW, MLINE Q, TRMkTH, MM EL, MB ALE ,MATIO, EIGVAL, WEI (~IT, TRM~Th
C
C ::: :: : : : : : : : :: :: : : :::: : : : :: : •.: :::::: :: : : : : :: : : : : : : :: : : :: : :: : : :
C
C *****PURØJ5E:
C THIS WUBIE PRECISION STLBROUPINE CQIRJFES THE STEADY-STATE OPFIMAL.
C SOUJT1ON AM) THE CC1~RESIONDING OPTIMA L GA INS FQ~ THE FRC!3LEM
C LESCRIBED IN THE PUBLICATION : ‘ ON THE RELATIONSHIP B ETWEEN
C RE LIAB ILIT Y AN) LINEAR ~ JA~~ATIC OPFIMA L CONTROL ’
C BY J. LOWLAS B]RI~~EIL AM) M. ATHANS.C (E~~1ATIONS (29 ) AND 130)).
C
C ~~~~~~~~~~~~~~ IESCRIPFION :
C (N INRTF:
C t~1~A ThE SECOND DIMENS ION OF THE ARRMS S,~~ ,CNDRM ,
C BSB,B AS IEC IARED IN THE CALLING PROGRAM
C DIMEZ’JS ION STATEMENT;
C
C L’7~., ?8, NQ, NR, THE F IRST DIMENSION OF THE ARRA~~
C ~~~~~~~~ A ( D P ,X,U,V,W,Y),B(AN)B~~) ,Q, R,ON0}~4,
C S (AM) SB, ~3T) ,WtD (AND RADINV) RES~~CTIS~ LY
C AS IECIARED IN THE CALLING PROGRAM DIMENSION
C STATEMENF ;
C
C N THE NUMBER OF STATES ; -

C
C M THE NUMBER OF C8SERV~TIONS ;
C
C ICON THE NUMBER OF C(NF IGURATIONS;
C
C A N BY N S~STEM MATRIX;

. 

-~~~ — .——~~~~
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AIM F(R~RAN

C
C B N BY M BY KCON SET OF INRYI’ MATR ICES ;
C
C M BY M CCNI1RQL VJEIGITING MATRIX;
C
C Q N BY N STATE WEIGITING MATRIX;
C
C P KCON BY ICON PROBAB ILITY MATRIX;
C
C E ~.ECIOR OF LENGfl4 ICON CONTA INING THE NORMALIZ ED
C EIGEN’~ECIOR Of’ P CONRESIONDING TO THE EIGEN~AWE
C ONE;
C
C ON O(JI’RYF:
C ffi, PZ ~~RA1CH \~ECIORS OF IENG1’H N;
C
C U,V,W,~~T, NBYNSCRA’ICH ARRA~~ ;C X,Y
C
C S NBY N BY ICON SET OF SOLLYI~IONS ;
C
C SB, B.~~ N BY N BY ICON SCRA’IC H ARRA ‘

~~~~;

C
C Q~DI*I N BY M BY ICON ARRAY WHICH WILL CONTAIN THE
C (~ IN MATRICES FQ~ THE NORMAL LINEAR ~ 1kIRATIC
C (~ WS IAN PROBLEM;
C
C RAD, MDINV N B Y N SCRATEB AERA~~ ;
C
C WIRK SCRA’ICH \~EC1OR Of’ IENGFH N;
4.-
C iwr SCRA ICH \IECIOR Of’ LENOPH N;
C
C lEND NUMBER CF iTERATIONS WED IN SOLVING BOFH THE
C LINEAR QJAERATIC (A LES IAN PROBLEM AN) THE
C WG8IEM LISCRIBED ABO’iE;
C
C IPR’r F IRST FFERATION AT WHICH THE SOLUTIONS WILL BE
C WIt~IFED;
C

CQ41ON/lNOU/~(IN, tour
ICOW’F ø
DO 215 KK ”l,ICCN

DO 4 J4 , N
DO 3 1*l,N

3 Y (I , J)— ~~~~~4 Y (J,J)— ~~~~~
DO 210 K—l,IEM)

CALL M~~ (NA ,~~ ,~~ ,N,M,Y,B(l ,l,IQ~~,U,WcRK)

~~~~~~~~~~~~~
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AIM FCRFRAN

CALL MAW C4A,M~,~~ ,M,M,U,R,U)
DO 14 J=l,M
DO 13 I=l,M

13 V( I ,J)= 0.W0
14 V GJ ,J) l.a)0

CALL MLI NEQ (NA , I~V~,M ,M , U, V,COND, IWF,W (RK)
CALL TRNAIB(NA,~B,N,M,B(l ,1,KK),X)
CALL MM(L (NA, ~~, ~~ N, 14, N, X, Y, U)
CALL MM UL (NA, ~~, t~~, N,M, N, IJ,A, X)
CALL M(Y (NA ,~~~, M~A ,M ,N, V,X, RAD,WQ~K)
CALL MSCAIE (NRA,N,N,—l .~D0,RAD)
CALL M~~ (NA , M~, l~ , N, N, Y,A, IJ,WCRK)
CALL MAW A,Mk, ~~, N, N, U, Q, tJ)
CALL MAED(NA ,NRA,I~A ,N,N,U,RAD,Y)

210 C~~I~INUE
Kk~4l = KK — 1
WRITE (Kor.Yr, 44441)
WRITE (KOUT, 44442) 1(1<141
CALL MATIO (NA , N, N, Y, 3)
CALL MMUL (NG,M,t~ , N,M,M,V, X,ONORM( 1, 1, KK ) ) - -

CALL MSCALE(NG,M,N,-l.0)0,ONORM( 1,1,KK))
CALL MMEL(NB,NG,I1~., N,N,M,B(1, 1, KE ) ,GIORM(l, 1,1) ,V)
WRITE (K)Ur, 6000 )
CALL I4ATIO (NG,M,N, (NOPM (l, 1 KE ) , 3)
CALL MAW (NA , 1~~, !~A, N, N, V,A, V)
WRITE (KO(J.I’, 44443)
CALL MAT IO (NA , N, N, V, 3)
CALL EIGVAL (NA,N,V,V,W,PZ,WCRK,IPVI’)

215 C~N~INUE
JEN) 1
WR iTE (KOUT, 8000 )
CALL MATIO (NA, ICON, ICON, 1~ 3)
DO 35 K4 ,1CC14

00 30 Jzl,N
DO 40 I= 1,N

S(I , J, K) 0.~D0
40 C~WFINUE
30 S(J ,J,K)= i .U ~0
35 C~~JPINUE

C START ITERATION TO CALCEIATE S (1) ,S (2),. . . S (K) ,(DPF
C
C CA LC ELATE SB

1 C(RFINUE
00 50 K4,ICON
CALL MMII (NS, t’B,NS,M, N,N,S (1,1, K) ,B( 1, 1, K) ,~~ (1, 1, K))

50 CCNFINUE
CA LL WEIGI T (NS,~~~ A , ICON, IE , N,M , E,~~~~,~~~ T)

C
C CA IC~~~TE RA DICA L

_ _ _ _ _ _  _
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AIM F(RFRAN

IX) 55 K=1,ICCN
CA LL M(}’ (N S , NS, tB , N,M , S (1, 1, K) ,B ( 1, 1, K) ,B~~~(1, 1, K) ,WCRK)

55 CCNFINUE
• - CA LL WEIGHT NB , A,ICON,NRA ,M,M,E,BSB,RAD)

CALL MAW (NRA ,M~,lI~.,M,M,W~D,R,U )
DO 54 J 1 ,M
13) 53 1 1 ,M

53 R A DI N V(I , J )=  0 .U ~~~0

54 RA DINV (J,J)= 1.~Dø
CALL M LINEQ(NA , NRA ,M ,M , U, RAD INV,COND, JWF,WONK)

C

C CA LC 1L~TE NEW Si , 1=1, 2 , ICON
DO 1000 K=l,IC(N

CALL MM S,N A , I~A,M, N,M, ~~~~~T , RADI NV, U)
CALL I’JEIQfl ’ (NS,N A , ICON, IL N,M, P( 1, K),SB, V)
CALL TRNATh(NA,t~ ,N,M,V,W)
CALL MMCI A ,~~ ,tA ,N,N,M,U,W,X)
CALL TRtWLB (NA,t1~, N,M, U,W)
CALL MMEL(NA ,M~I ,1~ ,N,N,M,V,W,Y)
CALL MAW (NA ,1~ ,N~I,N,N,X,Y,X)
CALL MS ALE (NA ,N,N, -l .W0 , X)
CALL TRN~I7~(NA, N, X)
CALL WEIGHT (NA, t~ A , ICON, N~, N, N, P(1, K) ,S, V)
CALL MAW (NA ,I~ ,~~ ,N,N,X,V,X)
CALL WEIGHT (NB,t~A, ICOI,l1 ,M,M , P (l, K) ,BSB, Y)
CALL MAW (NA ,t’IA,~~ ,M,M,Y,R,Y)
CALL MMEL(NA ,1~~,1~ ,M,N,M,U,Y,V)
CALL MM EL (NA ,t~~, ts7~, N,N,M ,V,W , Y)
CALL MAW (NA ,M ,N~,N,N, X, Y,X)
CALL M~~~(NA ,M~I , tA, N,N, X,A,U,W(R K)
CALL MAW (NQ,NA,NS,N,N,Q,U,S(i ,1,K))

lOk)0  Cct~’V INUE
IF (ICcu~ T—IEN ) ) 11 , 12, 12

11 ICO(RF= iccwr + 1
IF (ICOIWT. I~F. IPRI’) GO TO 1
ICITIl = ICcWF -1
WRiTE (KotJr , 5000) ICIM I
00 1005 K4 ,ICCN

1q4 1= K - l
WRiTE (KOUF, 400~ ) KM 1
CALL MATIO (NS,N,N,S(i,I,K),3)

1005 CcwrINuE
W !1O 1

12 C~WFINUE
C
C CON RIlE OPlIMAL COBT F LNCTION

CALL WEIGHT (NA , t~ A, ICON, t$~, N, N, E, S, U)
WRITE (t~XW, 7000 )
CALL MATIO(NA,N,N,U, 3)

— — ~~~~~~~~~~~~~ —
• ~~~~~~~~~~~~~~~~~~~~~~~ — - - - —— — - - —  —~ ----—
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AIM FU~lRAN

GO 10 (23 , 22) , END - 
-

C
C CU414)FE G o~r

23 CALL MMEL(NA ,t1~,~~~,N,M,N,W,A,U)
CA LL MS ALE ~ A , N , N, -i.~D0, U)
wRrrE (xour ,6000)
cALL MATIO (NA ,M , N, U, 3)
0..) 217 KP=1,ICCN
CALL MMEL(NA ,~~ ,t~A,N,N,M,B(1,1,tQ’),U,W)
CALL MAW (NA,NA,1~1~,N,N,A,W,W)
CALL EIGVAL(NA,N,W ,W , PR , PZ ,W(~~K, IPVF)

217 C~NPINUE
C
C CALCILATE CON RARISON W ITtI (NORM

00 130 K=1,IC(N
DO 120 J=1,N

00 110 14 ,N
S(I,J,K) =

110 C~~FINLJE
120 S~~~J , J , K) = 1.~D0
130 CGHFINUE

JEND 2
40~ C~~~INUE

El) 98 K=1,ICON
CA LL WEIGHT (NS, t1~A, ICON, PI~, N, N, P(1, K) ,S, U)
CALL M~ ’(NA,~~ ,11~,N,N,U,A,X,WCRK)
DO 96 L=i,ICON
CALL M~~’(NS,I”8,tB,N,M, S(1, I, L) ,B(1, 1, L) ,~~ (1, 1, L) ,WCRK)

96 CCUl1NUE
CALL WEIGHT (NS,N\A, ICCN,t~ ,M,M, P( 1, K) ,SB, Y)
CALL M(1’(NA ,1IV~, 1F~,M , N, Y,(N(R4 (i , 1, K ) , U,WCR K)
CALL MAW (NA , 1~w;, tA, N, N, U, x, X)
DO 95 L=i,ICCN

CA LL MMUL (NS, t~B, t’S,M , N, N,S( 1 , l, L ) , B(1 , 1, L) ,~~~(1, 1, L ) )
95 CCNlINUE

CALL WEIGHT (NS,bAA, ICQ,4,tA, N,M, P(1, K) ,S13, Y)
CALL TRt~18 (NA, t~ , N,M, Y,W)
CALL TRt~ TA(NA , N, A)
CALL MM EL (NA , tA,~~~,M , N, N ,A, Y,V)
CALL MMUL (NA ,t’G,~~ ,N,N,M,V,CNORM(1, 1,K),Y)
CALL MAW(NA,t1~,tA,N,N,Y,X,X)
CALL lRNATB(NG,tA,M,N,(NORM(1 ,1,K),V)
CALL MMEL(NA,~~ ,tA,N,N,M,V,W , U)
CALL TRN~TA(NA, N, A)
CALL MMII (NA , tI~, ~~, N, N, N, U, A,W)CALL MAW (NA , tI~~,~~~A , N, N , W , X, X)
CALL MAW (NA , IA , IA , N,N , X,Q, X)
CALL M(~’(NR,NG,1I~ ,M,N,R,CNORM(1, 1, K) ,U,WCRK)

— -—~~~~•~~~~~~~~~~--- -~~-~~~~— ~~~~~~~~~--— ~~- - -  --_ ~~~~• ~~~ - --
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AIM FCRFRAN

CALL MAW (NA , ~~ tA, N,N, X, U, X)
CALL SME(NA,t’S,N,N,X,S(1, 1,K))

98 C~~LINUE
IF(ICcXNr—IEM)) 4010,4011,4011

4010 ICOUNT= IC~~WF + 1
W ’IO 400

4d11 WRITE (KOIJr, 9000)
CALL M(7(NA,1~~,t~~,N,N,X,A,U,W(RK)
DO 1006 £4, ICON

LZ41 = L— 1
WRITE (KO(JF , 4000) U41
CALL MATIO (NS,N,N,S(1, LL),3)

1006 CONlINUE
W ’1U 12

4000 Fc*~4ATv,44 S,15,/)
5000 F(~ 4AT(//,i1H ITERATION , 13)
6000 F~~~4AT V/ ,1~~ G OPlIMAL
7000 FcB4AT (1/ , 39H OPI’IMAL COBT FUCTION X’C X, WIERE C IS,/)
8o0ô FORIAT(//,31 P,/)
9 ô00 FCR4AT VI, 38H CCST CON FARISON WITH NORMAL SOLUTION ) • -

9500 Fc~4AF (2D25. 15)9600 F~~B4AT (/ , 3J A )
9700 F~~4AT(/,31 Q
9800 FORIATV,31 R )
9900 F~~4AT (/,31 B, IS,!)
44442 FORIAT(/,31 S ,15,/)
44443 FCI~1AT (/ ,13H A + B*GZERO)
44441 r’Q~1AT (/ ,4511 SOLUTION TO STANOARD OFFIMAL CONTROL PROBLEM)

2 310?
22 RE’flRN

END

F 
-

L

_______________________________ • - ~~~~~~~~~~~~~~~~~~~~~~~ - -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~-——•
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~~ IFCII F~~1’RAN

SWRJUFINE SWfl~H (NA ,18, ?C, ~~~~~~~ N, ~~~AA ,1CON,M,A,B, P,C,G,
— lxi), B, EFEMP, EM, VJCRK, ‘I , U, V,W, ~W, IPVF, ARRAY, DF, NIOINT, t-GUDH,M~-N )

4-

C
LNI’E~ER NA, IB, C, FAR, IAC, N, IR , 1M, ICCN,M , NRMRF,M3
1WFE~~R MCON (NmJNr) ,IPVF fN)
DOU

~~~
IE PREX ISION A (NA,N),B(NB,WiA,ICON),C(NC,N),X0(N )

DOIBLE FRD ISIJN G (NG, tAA, tCCN) ,Y ( N ), WQ~~K C ’f l, E ? 4( NA, N)
DO1A3Lk~ PRECISION IJ (M) ,SM (NA,ICCZ4),W(NA,N),V(NA ,N)
DOWLE fREC IS ION ARRAY (NAR , t’AC) , P (NA, ICON) , B (KLON) , ET~4 P (KC ON )

C
C *****LCICAL VARIABIES:

U.lPELIR IN (27) ,NS~ 4 ( 1) , I’r (10, 1)
DO(~~LE PRECISION WT(10),SUM,IWOPI,YIW ,Y4AX,~~F(10),ZERO,X4AX,T,DT
DOUBLE RECISION DO
DIMENSION R (30)

C
• C *****SLBRO(JFINES CA LLED:
• C MML,M ALE,ME)G~,SA~IE,FIG,Th1LT

C
C
C cX JB,U ALC
C
C :: :: .:::::: ::.:::::::::.~::::::::::::::::~.::: : ::::: :
C
C *****PLJRR)SE:
C THIS W0131E IREC IS ION SIBIU7FINC I~ERFONMS THE CQI R7FATIONS
C AM) PRI1~1FS THE LATh F(]~ SIM (IATION OF THE SW l1tHING GAIN
C A~C*3IEM RELATING 1\) THE RJBLLCATION: ‘ON THE RELATIONSHIP
C BETWEEN RELIABILITY AM) LINEAR ~~~ JM]~~ATIC OPlIMAL C(NrROL ’
C BY J. DOUGLAS B IRD.’JEI.L AM ) M. AThAt~ .
C
C *****PAPAM~ r~~ LISCRIPrION:
C t~A , Ia, t~C, NG, ‘tHE F IRST DIMENS ION OF THE ARRA~~ A (AND EN,
C t.AR ‘M ,W,V),B,C,G,AM) ARRAY RESIECTI’ELY AS
C LICLARED LN THE CALLING PROGRAM DIMENSION
C STATEMENV;
C
C ~.AC CCUtIN DIMENSION OF THE ARRAY CONTAINING ARRAY
C AS LICIARED IN THE CALLING PROGRAM DIMENSION
C STATENENF;
C
C N NUMBER OF STATES;
C
C IR NUMBER OF OIYPRYI’S;
C

- - 
C t’I~A THE SECOND DIMENS ION OF THE ARRMS B AM) G AS
C E~J.2IARED IN THE CALLING PROGRAM DIMENSION
C SFATE14ENF;

_ _-
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S~ ZIC H F~RFRAN

C
C ICON THIRD DIMENSION OF THE ARRMS B All) G AS
C IECLARED IN TIlE CALLING PROGRAM DIMENSION
C SFATEMFNF ;
C
C M MI4BER OF C~~~ROLS;
C
C A N BY N S~S’FEM MATRIX;
C
C B N BY M BY KCON SET OF O(J~RYF MATRICES ;
C
C C IR 13? N OUF RYE’ MATRIX;

• C
C C M BY N BY ICON SET OF FEEIBAC K MATH ICES;
4.-

C X0 INITIAL CONDITION %~C10R OF LENG1’H N ;
C
C MC(N VECTOR OF LENGTh NIOINT C(NVA INING THE E)~CT
C CONF IGLJRATION INDICES ;
C
C B SCRA’tCH VECTOR OF LENGL’H ICON;
C
C ETEMP SCRA’ICH VECTOR OF LENGTH ICON;
¼..

C WORK SCRAICU VECTOR OF LENGTh N ;
¼..

C Y VECTOR (P LENGTH N;
C
C U VEC’IUR OF LENGTh 14;
C
C V,W , IM, EM N BYN SCRA’ICH ARRMS ;

C iWF SCRAWU ‘.EC1OR OF LENGTH N;
C
C ARRAY NAR BY NAC WORKING ARRAY;

• C NAR MIST BE GREATER NAN OR EWAL ‘10 NSTER + 1

C 1I~C MIST BE GREATER ThAN OR E~~JAL ‘10 IR + M ;
C
C Dr STEP SIZE;
C
C NR)LNT NUMBER OF S~EFS + 1;
C
C M3RIDH N~4BER OF MA 3)R ORDINATE DI VISIONS WED
C IN 1~CF~ INC
C IGRIDH MIST BE LESS THAN OR E~~JAL TO 12;
C
C
C
C BOVH THE OUFRYE’ AM ) THE C(WTROL U (I) -G (I )*X CE’) ARE CON PilED.

— •- — - — — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



..
~

—.--—-- - - -  .—- -- - 
~~~~~~~~~~

- -
~~~~~~

.-
~~

•

232

~~~ r J 1 L~~~~H F~~ RTRA N

C
C 1W3 IS A RAI’U.)M MIIBER (ENERMOR
C
C WAIC IS A WER -SLP?1.dE D, AR ~LICATLON SR~CWIC FWCTIOI’I 10
C CA IC ElATE THE CONTROL U.
C
C
C WR.FL’TEN BY J.A. K. CARRIG (ELEC. S’s. LAB., M. I.T. , R4. 35—307 ,
C CAMBRIDGE, MA 02139, 91.: (617) — 253—2165), 1)\ Mffi~RY 1978.
C M(ST RECENI’ VERSION: MAI~~H 22, 1978.
C
C : :: : : : : :: : : : : : : : : :: : ::: : : : : : : ::: : : ::: : : : : :: :: : ::::: : : :: : : :: : : : :
C

C~)V’1ON/INOU/K1N , JOUr
[CON 1
DATA ~SF/10*1.(D0/,IBI.ANK/4H /
DATA ‘LWOPI/3. 1459/
DATA MS ,MA)~ S, I)C~, IEGY, ZERO,*1, ~&C, IZ ERO/1, 0, 0, 1, 1. U)0, 1, 0, 0/
DATA IN ( 1), IN ( 2 ) , I~1 ( 3 ) , IN (4)/4H 1 .412 , 413 ,414 /
DATA IN ( 5) , IN (6 ) , IN ( 7 ) , 1J(8 ) /4115 .416 , 417 , 418 /
DA’M IN ( 9 ) , IN t lO ) , IN ( 11) , IN (12)/4 119 , 4410 , 4111 , 4112 /
DATA IN ( 13), 1N( 14) , IN ( 15), IN (16)/4 1113 , 4114 , 4415 , 4116 /
DATA IN (17) , IN (18) , IN( 19) , IN (20 ) /4H 17 , 4118 , 4119 , 41120 /
DATA 1N (21),IN (22),IN (23),I?~(24)/4H21 ,4122 ,4123 ,4124 /

- 
DATA IN (25),IN (26),IN (27)/4t125 ,41 Y,41 U,
DATA I-r (3,1),IT(4,1),IT(5,1)/4dVERS,4iLE T,4IIME /
DATA IT (6,1) , rr (7 , 1), rr (8 , 1)/4 H , 41 , 41 /
DATA IT(9,1),LT(1O,1)/411 ,44 /
I Xz3 5
DO 61 I Z L ,NRMN1’

61 MCU4(IZ)= MCON (IZ) + 1
Pv~OPI 2 .U ~O *fWOPI

N}OINT —1
Ta 0. LDO

3061 FU~4AT (2411 EW~CT CONFIGURATION , 13)
CALL MMIL (NC , N, N, MM , 19, N, C, X0, Y)
CALL MMIL (NA ,N,M,MM ,M , N,G( 1, 1,MC CN ( 1) )  ,X0, U)
WRITE (1qDur, 1500 )
WRITE (Kour, 1200 )
WR1I~E (KO(JF, 1300)
WR1FE lKOUF, 100~ ) T

1001 FCRIAT (/,121 GAIN MATRIX)
WRF~B (KOUF , 1100 ) (Y (I) ,l=1,IR)
wRrre (xoUr, 1102) (uU),I—1,M)

C W RiTE (K) I J r , 1001)
• 3~ ARRAY(1,J)— YW)DO 40 J.’l,M

40 ARRAY ( 1 , 1R4J)z U ( J )
50 DO 100 K4,IaItR

~~~~~~~~
_ - -- -~~~~~~~
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IF ’(N ~~~~~ ~~~C4r ‘ v.J i  ‘ ) f (
‘4~ ( i ~~. 

‘ G~j
~~~~~~~~~~~~~~~~~~~~~~~~ 

“ 72
CAL(,

’ 

~~~~~~~~~~
~~~~~~~~~~~ “a )

~~i2 —

72 (2 ,i

73 h?’I (1) _!‘~a”x,1C LJ,M,~ ~~~~~~~~C4411L 1l4f
~~~I f1V.4 ~~~~~

~~~ Cv~ ~
!V,N ~~1

) ’1.e,o
CArE ~~~~~~ 

, P N ,A1~~1•-~“ ~~~~ .‘ N Ai , N M ~W~’ c.,CALL ‘I4(%1~4 
‘ #N,i~1 ‘ ‘~‘8~~ “~~X)

~ ) 52~~~~~~~~~~~~~~~~~~~~~ fp CQ~~~

~~~~~ ‘~~~~~~~~~~ 0,WQ~~~~~ P) 
PU s~~~~~P)

su.l~.. ~‘lSt ~~~ u’~,IV,~11,
55 5 

0.a~ ~~~N N M ~
lV

~aIf ,8(l
- ~ I zj ~ “F ~2~~~ ‘1, RIo 

~P 1’,1r)

56 

~
881 C4LL~~, ~~~ø)iC ~~~~ (ICK) -

WJ~~~~~4
8(f p~~~~~P•F:I~~ 

i.e)0
CALL ~r, 8~~ ‘~1,’~r_j ~

• 
~~~~~~~~~~~~ s

0~~~~~~f 5. 25)

f l ( r .  ~CcN -~ ~~/~?) 0) , ~~~~ 
Qv, p ~~~

~I( ’a~, ~~~ ~~~ 

.~ P lC~~ 
L
~~ 7p

‘~~ ‘~~‘02 )  ‘~~ 2 /

~~~~ 
P ( .~~ 

Q~~(1
lCQ~l ~~~ ~:cQ~1~11 ~.25)

• 02 
~~~~~~~~~~ (2°’ 

300J ) 2
C~~~~

T/~~ 
CA CC~~

C
~ 11

70 I 3) 1~J R4Dj~~ 
-CJ (4W~ 1~N ‘~~~ ‘1,~ ‘~~C,Xø 113)

2~~ ~ ‘4Zc ~~~ 1’ I’)
Dr (U,~~11 

~~~ 
‘ ‘~~ Q~h!R 1

~k’r ~ 
‘~ s 2 ,j

~ 4~~~8ø~~~7I ’Pi i~~~ (U (~/ ‘Ii ~1 
?8( 1

~~~~~ 
£k~~~~~~~~~ iJ)~~

~~~~c ~4RR4 }~0
1p 1~1 1’~1)

Q
~rzjv~ ~~~~~~~~~
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SiJ ITC~4 F~1~TRAN

I~4AX = DF LOAT (N STE 1~ ) *~~~~

IW= KOUF
NS’~t4 ( 1) 25
£T (1, 1) IN (26 )
DO 110 J= 1, IR

IF (J.LE. 25) IT (2 , 1)z IN (J )
IF (J .Gr . 25) IT (2 , 1)z IBIANK

110 CALL Th1 4T (1W , IEGY, NIOIRF ,ZERO, )~4AX,NGRIDH , Y4IN, Y4AX, ‘~SF, IT,
1 ARRAY( 1,J ) , P~ R,IW,MSC,MA~~S, IXY ,Ia~ 4) • -

IT (1, 1)a tN (27 )
NS”~M ( 1)  = 21
DO 120 Jal ,t4
IF (J.LE. 25) IT (2 , 1) IN (J )
IF (J. CL’. 25) IT (2, 1) = IBLANI(

120 CALL TH aIT (1W , IEGY, NFOINT, ZERO, *IAX, NGRIDH, YIIN , Y4AX, ~~F, Fr ,
1 ABRAY( 1, J+IR) ,l~ R,NLG,MSC,MAI€S, I)~~, IaY1)

1100 F~~~IAT (411 Y = , 5 (2X , IPD19. 8))
1000 FcRIAT (511 T = ,F5. 2)
1102 F R4AT 4H U = , 5(2X, 1P019.8) )
1200 FcR4AT (1111 OUF RYT Y)
1300 FCØ4AT (1211 CONTROL U )
1400 F(R4AT(/ ,28H SIM EJATION OF LINEAR S~~TEt4,/)
1500 FCRIAT V. 3111 SIM ILATION OF LINEAR REGJLA’LOR,/)

RE~ RN
END

—~~~ -~~ —- 
~~ ;_~~~~~~~
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REALM FcRI’RAN

SWR)J[’INE ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
IWR,W I ,S,S3, U, V,W , X, Y,GIORi , W~D,PADINV,B~B,W cRK, iPVr , IEND,NSTER )

C
C *****PA~~~~~~~~~ J ~~~~9S:

J(FE(ER NAA , M~, 18, NQ, M~, NC, 16, M(A , N,M , ICON, IWL’ (N)
DOLU LE R~EX2 IS ION A (NA,N ) , X @~4A,N),Q(NQ,N ) , R (N R,M)
WISLL H*~~ISIuN S (Ns , l~#~A, ICON) , P (NA , ICON) ,~~~ (Ns ,NAA,ICQ4)
DOISLE PREC ISION ONORM (NC, NAA, ICON) ,BSB (NB , PI~A , ICON) ,WR (N )  ,W I ( N )  . -

DOU3LE IREX IS ION B(N 3 , ~~A, iCON) ,RAD ERA , N) , RADINV (NRA , N)
E~~LULE 1-R~X~ISiJN U (NA,N) , V (NA ,N) , W(NA,N),Y~NA,N),wcRK~~)

¼..

C *****U)CAL VARIABLES:
WUBI.E 1~REC ISION COND
INTE(ER KIN , J O F, 1(~, I~41,J, I, K, IEND , NEND, L,U41

C
C *****SWROLYFINES CA LLED:
C M~1,MAW,MLINEQ, ’LRNATB,MM 1L,MSCALE,EIGVA L,SAS,E,WEIQ1T
C
C : ::: : ::: : ::: :: :: ::: :: :: :: : :: .:::::::::::; :: : :: :::: :::
C
C ******PiJR~~~ E:
C This WVBIE ~~ECiSION swi~ uri~~ SOLVES THE sw rIcIIING-GAIN r~ ceini
C RE LATING LU THE RJBLICATION: ‘ON THE RELATIONSHIP BEIMEEN
C RELIAB LILITY AM) LINEAR ~UAL]~ATIC OPrIMA L C(~~FROL ’
C BY J. WU LAS B IRD~JELL All) M. ATHA16.

• C
C ~~~~~~~~~~~~~ IESCRIPFION :

• 
- C ON INRIT:

C NAA THE SECOND DIMENS ION OF THE ARRA~~ S,~~3,ONORM ,
C 1358,B AS [ECLARED IN NE CALLING PROGRAM
C DIM ENS ION 3TATE~4ENF ;
C
C P1~, I~8, NQ, MA, THE F IRST DIMENSION OF THE ARRA’ZS
C NC, 16, M~A A ( AND P, X, U, V,W , Y) ,B(AM) BSB) ,Q, R, (NORM ,
C S (AND SB) ,RAD (All) RADINV) RESPEX TIVELY
C AS IEC [ARED IN NE CALLING PROGRAM DIM ENS ION
C STATEMENT;
C
C N THE NU4BER OF STATES ;
C
C 14 ThE NUI3ER OF (BSER~~TIONS ;
C
C ICON TUE NUMBER OF CONFIGURATIONS ;
C
C A N BY N S~STEM MATR I X;
C
C B N BY M BY KCQ4 SET OF INRJF MATH ICES ;
C
C M BY M C(.NFROL WEIGHTING MATRIX;

-~~~~~~~~~~ _ - - - - - - - -~~~~~~~~~~~~ ~~~
-
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• 236
READY FCRTRAN

C
C Q N BY N STATE WEIGHTING MATRIX;
C
C P KCQ4 BY 1~ ON PRCEABILITY MATRIX;
C

-
~ 

- C ON OurPJr:
C WR ,WI SCRA 1~ H VECTORS OF LENGtH N;

C S N 3? N BY KCON SET OF SOLUrIONS;
C
C SB, B, BSB N BY N BY KCON SCRA’IC H P.RRA ~~;C
C U,V,W ,X, Y N BY N SCRNICH ARRA~~ ;
C
C (NORM N BY M BY ICON ARRAY USED 10 STORE THE
C GAIN MATRICES F(B NE 1~OBMA L LINEAR QJ~I[RATIC
C GAWS IAN PRCE [EM. ON RETURN, (NORM C(XFA INS THE
C GA INS ASSOCIATED WF1iI THE SW FICHING GA IN PR(ELE)1;
C
C RiD, RADIN J N BY N SCRA’IC H ARM ~~;

C W(R K SCRMC H VECTOR OF IENGFH N ;
C
C IWF SCRNIC H VECTOR OF ENGTH N;
C
C lEND NUMBER OF ITERATIONS WED IN SOLVING THE MDRMAL
C LINEAR ~ JAI~~ATIC GAUSS IAN PRCBEEM;

C NSTEI~ NUMBER OF TIME SFE V3 WED IN CQ4RYFING S
C
C
C THE SOL(JFIONS TO THE t~)RMA L LINEAR QJAI~Wi’IC R~C~3I~4,
C THE EIGENVALJJES OF ThE MATRICES (A + B (I ) *(NQ ~14 (ERO) )

• C AS WELL AS THE EIGENVAIIJES OF THE MATRICES (A + B(I)*G (I))
C ARE PRINTED.
C
C *****HIS~IORy:
C W RITTEN BY J.A.K. CARRIG (ELEC. S~~ . LAB., M.I.T., R4. 35—307,
C CAMBRIDGE, MA 02139, 91.: (617) — 253—2165), J~MJARY 1978.
C M CBT RECENt VERSION: MAI~~H 22, 1978.
C
C :::: : : :: : : : : :: : : :: :::::: : : ::: ::::: : ::: :: : :: :: : ::: ::: :: : : :: ::: :: :::
C
C
C

CQ,TIONIINOU/ 1(IN, loch ’
WRITE (XOU’F, 9600 )
CALL MATIO (NA , N, N,A, 3)
WRITE (KOUF, 9700 )

- - -
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READY F(RFRAN . • 
-

CA LL I4ATIO(NA ,N,N,Q, 3)
WRITE 1xOchr , 9800)
CALL MATIO (NR , N, N, R, 3)
DO 222 KL =1,ICON

1q 41=KL -1
WRITE O(OLI~, 9900 ) KM 1
CALL MATIO (NB ,N,M ,B(1,1,K.~),3)

DO 4 J’l,N
DO 3 I”l ,N

3 Y (I,J) 0.~D0
4 Y ( J , J) 1.U)0

00 210 K= 1, 1EM)
CALL M(y (NA ,16,1~~, N,M, Y,B( 1, 1, l(4 ,U,WCR K )
CALL M A A ,MA,W~,M ,M ,U,R,U)

DO 14 J4,M
W 13 14,M

13 V ( I , J) 0. QDO
14 V(J ,J)~ 1.aM~

CALL MLINEQ(NA,1~~,M,M, U, V,COND, IPVF,W(RK)
CAIL TRNATH (NB ,M~i , N,M,B( 1, 1, K4 ,X) • -

CALL MMUL (NA, ~~, ~~, N,M, N, X, Y, U)
CALL MM LJL C~JA ,ll~, M~i , N,M, N, U,A, X) -j
CM.L M~~’ (NA , ~~, ~~,M , N, V, X,W ,WCRK)
CALL MS ALE (NA,N,N, -1. a)o,W)
CALL M(~’(NA ,M~,ll~, N,N, Y,A, U,WCRK)
CALL MAW ~4A , 1&, t~~, N, N, U, Q, U)
CAlL MAW (NA , M~~, bA , N, N, U,W, Y)

210 C~~ FINUE
WRITE (l~)UF, 44441)
WRITE (i~X7~, 44442)
CALL MATIO (NA,N,N,Y, 3)
CALL MMUL (NA ,M~,1G,N,M ,M ,V, X,(NOR’4(1, 1, It))
CALL M~XA LE (NA,M,N,-1.Q)0,(NORM(1, 1,KL))
WRiTE (KOUF, 6000 )
CALL MATIO (NG,M,N, ONORM( 1, 1, KL ) , 3)
CALL MM LL (NB ,NG,M~, N,N,M,B( 1, 1, I(s) ,G9ORM(1, 1, 1) ,V)
CALL MAW (NA , l~~, M~, N, N, V,A, V) -

WRITE c~cour, 7008)
CALL EIGVAL (NA , N, V,V,WR,WI ,WCR K, IWL’)

222 C~NFINUE
£NDa 1

26 C~~ FINtE
WE1FE (XOtJF, 8000)
CALL MATIO (NA , ICON, iCON, P, 3)
DO 5 K.’l , ICON

CA LL SAVE (NQ,16,N,N,Q,S(1,1,K))
S C()IFINUE

Di 9]. NEND~ 1,NS’FEI~
WRITE (W)(1F, 4530) MEND
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READY FCRFRAN

200 CC~~I’1NUC
Di 90 L=1,ICON

Di 80 K=1,ICCN
CA lL M ’(NS , tB , tB , N,M , S (1 , 1, K ) , B( 1,1, K ) , BSB(1, 1, K ) , W(]~~K)
CALL IIMUL (NS ,N3, 16,M , N,N, S( 1, 1,K) ,B(1, 1,K),~~ (1, 1,K))

80 C(WFINUE
CALL WEIGHT (NS , N~A, ICON, t’1~, N,M, P(1,L),&3,V)
CALL WEIGHT (NS ,M~A, )CCI4,11i,M,M, P(1, L) ,BSB, PAD)
CALL MAW (NR ,*A, M~,M ,M , R, PAD, U)

-
• D0 98 J*1,M

0 0 9 7 14,14
97 RADINV (I ,J)  0.~D0
98 RADINV(J , J)= 1.a) D

CALL MLINEQ (NA , MAA, M ,M , U, RAD INV, CCND, IPvr,Wa~K)
DO 70 K4 ,ICON

Di 60 34 , N
DO 60 14,M

60 BSB(I,J,K) = SB(J , I , K )
70 CONtINUE

CALL WEIGHT (NS, M½A, ICON, ~~,M ,N, PU, L) ,BSB, U)
CALL MM UL (NRA ,M~,M~,N,M ,M ,PADINV,U,W)
CALL MM LL (NA ,Ni, M~, N,N ,M,V,W , Y)
CALL MMUL (NA ,1~~, NC,N,M, N,W ,A, (N ORM( i, I, L))
CALL MSAIE (NG,M,N, -1. ~D0,CNORM(1, i,L))
Liii = b-i

wRItE (IU) L7F, 2005) Liii
CALL. MATIO (NG,M , N, (NORM( 1 , 1, L) , 3)
IF(NEND. NE . NEThR ) GO TO 73
CALL MM LII (NB, NC, M~, N, N,M,B (1, 1, L) ,(NORM (1, 1, L) ,W)
CALL MAW A ,1Q4,~~~,N,N,A,W ,W)
WRITE (K)LW, 7009) LM1,1M1
CALL EI G VAL (N A, N,W ,W ,WR ,WI ,WCRK , I PVI’)

73 CALL MS ALE (NA,N,N,-1.U)0,Y)
CALL WEIGHT (NA ,M~.A, iCON,M~, N,N, P(1, L) ,S,W)
CALL MAW (NA , M~, b1~, N, N,W, Y, Y)
CALL ~~~~~~~~~~~~~~~~~~~~~~~~~~
CALL MAW C,IA,tA , 16,N,N,W ,Q,S(1, 1,L))
WRItE (Kour, 400~ ) Lii i
CALL MATIO (NS,N,N,S(1, 1,L), 3)

90 CONFINUE
91 CONFINUE

20~0 FcRIAT(3D25. i5)
4005 FcUIAT(3H S)
2005 FcR4AT(411 G,13)
4030 FQ~4AT (4H S. 13)
4500 FcRIAT (11H TIMEZ T2 —,13)
50k30 FcU4AT (11H ITERATION , I3)
6000 F~RiAT( 1~~1 G OPtIMA L
7000 FcRIAT(40H OPtIMAL C(ET F~NCTION X C  X, WIERE C IS)

— 
=— tzx~~~~r snnn- —
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READY F(RI’RAN

7008 FaIAT (21H A + B(I)*GSTAR ( Z E R O) )  
- -

7009 FU~1AT OH A 4 3,13, 91 * G, 13)
8000 F~H4AT~~1 P)
9500 FGR.IAT(3D25. 15)
9700 FcThAT(3H Q)
9600 Fc*~4AT (3a A)
9300 FcRIAT(3H R)
990~) FCK4ATCII 9,13)

44441 F(RIAT (/,4511 SOWFION TO STANDARD OPFIMAL CONTROL P~~~lfli )2 SIOP - 
• -44442 FQ~iAT (3H S )

REF~~N
END

- l

• !

ttflflst_ j t .~-~~ZLt ~~‘ — —~~~~ - -
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WEJGiT FCRTRAN

SWi~iUFINE WEI GIr (NA , ~&i, iCON, NX, N,M, E, A , X)
C
C ******PARA~~j’ERS:

INrEG~R W~, 1M , ICON, NX, N,M
WU3IE PRECISION B (KCON) ,A(NA , ~~k , ICON) , X (N X, M)

C
C *****W CA L VARIABLES:

INVE~ER I,J,K
DOU3LE PREC ISION SUM

C
C *****SW~J(JF1NES CALLED:
C NJNE
C
C
C THIS SIEROUFINE COI RJFES TUE WEIGHTED SUM
C
C SUMMATION E (I)*A(I ,J,K); 14,N; J=I,M; K4 , )CON.
C
C *****PA 4~~ER EESCRIPFION:
C ThE F IRST DIMENSION OF THE ARRAY A AS EEC LARED IN
C THE CALLING PROGRAM DIMENS ION STATEM~~r;

C ~~A NE SECOND DIMENS ION OF THE ARRA Y AS EEC LARED IN
C THE CA LLING PROGRAM DIMENSION STAT~,IENr;

C ICON ThE THIRD DIMENS ION OF THE ARRAY A AS EEC I.ARED IN
C THE CALLING PROGRAM DIMENSION STATE~4ENr;

C NX THE F IRST DIMENSION OF THE ARRAY X AS EEC LARED IN
C CALLING PROGRAM DIMENSION STATEME~YF;
C
C N THE 1~).’J SIZE OF A;

C 14 THE CCLAIIN SIZE OF A;
C
C B ~vECR~R OF LENGtH K O N ;
C
C A N B Y ; M A R R A Y
C
C
C WRITTEN BY J.A.K. CARRIG (ELEC. S~S. LAB., M.I.T., RI. 35-307,
C CAMBRIDGt , MA 02139, R1. : (617) — 253—2165), JiMJAR Y 1978.
C M~~F RECENt VERSION MARCH 22, 1978.
C
C :: :::::: ::::::::::::::: :::: : :::::: :: ::: :::: : ::: : : :: :: ::
C

00 10 34,14
00 10 14,N

X(I,J) —0.9M)

I

L  ~~~~~~~~~~~~~~~
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WEIGHT FCRTRAN

Di 10 K ’l , ICON • -

10 X (I,J) = X (I,J) + E (K)*A (I,J,K)
RErl.RN
END

I

L - --~~~~ - - - -  —
~~~~~~~~ _ _ _ _  --- - - —-

~~~~~~
- - — --
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-
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• WALC FORFRAN

FWCTIUI4 UCALC(U,EZI,B,C)
DOUSIE PREC IS ION U(10,2),EM(10,2),B(l0,2),C(1QI,2)
RE~F1RN
END

-
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FIG FORVRAN

SWROUI’INE F1G (KCQ4, E, E11’EMP,W(RK , LCON )
C
C

WLI3LE PRB~ISIJN WcRK (KC(N ) ,E ( I C O N ) ,ETE~IP (ICON )
C

C *****LOCAL VARiABLES:
1NTEG~R MM, I FEM P, IFIA G, KK, IP , IU
DiL~~U~ PREC ISION SUM

C
C *****SWHOIJrINBS CALLED:
C ~L)NE

-~~~ C

C ::::::::::: :. -:::::::::::::::::::::::: :::::: :::::::::::::::: ::::: :
C
C
C THIS DOUSLE PRECISION SWROU~INE IS WED IN HYR.YI’HESIS TESTING.
c AT EAC H TIME T, ONE OF ICON HYIOFUESES IS CIkASEN.
C
C ~io (X (F )  — A* X (F —1) — B (I ) *U (F —1))  *PI cr—i /l’—l )
C I
C P1 (F—l /T) ___________________________________________________
C I
C SCii(RWJ (X (F ) — A*X (F_l ) _B (J )*U fr_ l fl *Pl fr—i/F—i)
C J
C
C HYIOIHESIS H (I) IS ASSUMED TO BE CU~REC’F IF
C
C P1 (F/T—i ) > Pt Cr -l/T) F(R ALL 3 NCYI’ EQJAL i
C I J
C
C TIES ARE RESOLVED ARB IrRARILY.

• C
C RHO (X) DENYFES TUE PROBAB ILITY DISTRIBUFION OF X.
C
C *****pAp,AM~~~ R EESCR1PFION:
C ON INIUF :
C ICON TUE NUMBER OF HYI~YfliESES ;
C
C B VECTOR OF LENGtH ICON CONTA INING P1 (F -l /T-i);
C
C WCMK VECTOR OF LENGtH ICON CONI’A INING
C RHO (XW) — A*X (r_ l ) — B ( I ) * U (T _ 1) ) ;
C
C ON (XIFRJF :
C ETEM ? VECTOR OF LENGTh ICON ‘10 5Ij\)f~~ PT (F/i-i);
C
C ICON INDICATES WHICH H YIOFUESIS HAS BEEN CI3iSEN ;
C
C

____________________ ~~~~~~~~~~~~~~~~
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• FIG FC1~FRAN

C WRItTEN BY J.A.K. CARRIG (ELEC. S~~. LAB., M.I.T., RI. 35—307,
C CAMBRIDGE , MA 02139, RI.: (617) — 253—2165) • J~NUARY 1978.
C M(S’F RECENT VERSION MATCH 22, 1978.
C
C

C
C(ThON/INOU/K IN ,  1001’

H * 1 — 1
LTEM P = LC ON
SUM = 0. (1)0
DO 10 I? 1,ICON

10 SIll SIM + W (RK(IP)*E (IP)
DO 20 1P4 , ICQ4

20 ETEMP (IP) = W ORKUP ) *E (IP)/ SU4
00 60 KK i , ICON

LFIAG @
DO 89 LU— 1, ICON

IF (KK. EQ. 10) GO ‘10 79
IF (ETEI4P(KK).GF.E(IU)) IFLA G IFLAG + 1

79 CONFINUE
89 CONFINUE

IFLAG = IFIA G + 1
IF (IF LAG. EQ. ICON) t.CON KK

60 C(I4VINUE
IF (ICON. EQ. 0) ICON LTENP
RE’FIPN
END

-- - — - - ~~~~~~~~~~~~~~ - — 
~~~~~~~ t r~~~r——
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RD~IA IN F(RFRAN

C LATEST VERSION 3/9/77
DOUBLE PREC ISION COND,BEE ,WR ( 10) ,WI (l0)
DOUBLE PREC ISION A ( l0 , 3) , X (l 0 ,3)
IN’FEG~R MWM~R(2),HRI*SC(2),VFIME(2) , R’FDlE(2)
DOUBLE PRECISION GIORM (10, 3, 4)
DOUBLE PRECISION 3S8 (10, 3, 4)
DOUBLE PREC ISION S (10,3,4) ,PUO, 4) ,~~ (l0 , 3,4)
DOUBLE I4~ECJSION SBT (10, 3 ) ,Q (iO, 3) ,R (10, 3) ,B(10, 3,4)
DOUBLE PRECISION PR(4),P1,P2,Pz(4),m (10,4),Is 4)
INFE~~~~ R IPVF (10)
DOUBLE PRECISION AZ ERO,1~~E, A’IWO
DOUBLE PRECISION R A D( 1O , 3) ,R A DI N V (l O, 3) ,U(10, 3)
DOUBLE PRECISION V (l0,3),W( 10 ,3), Y (10, 3),SLM,WCRK(10)
CQIMON/INOU/XIN, IOUF
NAA= 3
MWO -3. ~D0
AZERO = —4.  ~Dk)
AONE 6.U~0
P1= .05D0
P2 = .75D0
KIN S
KOtJr= 6
N 3
4- 3
N 2 = 6

KCON 3
tqS— 10
IPRF — 17
IEND 25
ICO U 1 r = 0
NSFE RS — 25
NA— lO

P1~A 10
NR 10
N8 10

• NQ 1O
NG4 0

22 IF (ICclWr.rE.0) READ (KIN ,9500,END=2) (PR (I),PZ (I),I—1 ,N)
9500 FC~lAT (3D25. i5)

DO 11 3K 1,N
DO ii JL 1,N
Q $JL,JK) - 0.~D0
R~JK ,JL)

11 A(JL ,JK) —
BEE —10. (1~0
P(1, i) 1.~~~0—P 1
P(2 , 2) — l.(1MJ— P2
P(3 , 3) 1.~~ 0 

— •_ ~~~~~~~~~~~~~~~~~~~~
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RDYMA IN F(.PTRA N

2(1,2) = 0 .( 1~0
P(1,3) — 0.~D0
P(2,1) — P1
P (2,3) =
P(3,1) —
P ( 3 , 2) = 22
A( l ,1)— 0.~D0
A (2,2) 0.030
A(3,3) = —AZERO
A( 1,2) = 1.~D0
A ( 2 , 3) —
A (3,i) — —AThO
A(3 ,2) = —A~~~
Q (l , 1) 3.~~~D0
Q(2,2) — 3.030
Q ( 3 , 3) = 3.~D0
R(1,1) 1.030
R (2,2) = 1.030
R (3,3) = 1.030
B( l ,1,1) 00.030
B(2 ,2,1) — 0. 030

• B(2,1,l) 0.030
B(1,2,1) 0.030
B( 1,3,i)z kI.030
B(2 , 3, 1) 0. QDO
B(3,3,]) — 1.03k)
B(3,i,i) = 1.030
13(3 , 2, 1) = 1.030
B(1,1,2) =
8(2,2,2) = 0. 030
B(2,i,2) 0 . k D Q J
B(1,2,2) = 0. 030
B(1,3,2) = 0. a)0
B(2,3,2) = 0.030
B(3,3,2) = BEE
B(3,i,2) = 1.030

• 8(3,2,2) = 1.030
B(1,i,3) = 0.03~)
B ( 2 ,2,3) = 0.030
B(2 ,l,3) = 0.030
8( 1 , 2, 3) — 0. 030
8 ( 1 , 3, 3) = 0.030
8(2,3,3) = 0. 030
B(3,3,3) — 0. 030
8 ( 3 ,1, 3) 1.030
B ( 3, 2,3)  - - 1.0 3 0

PR O, ) .0500
PR (2 ) — .75D0

• P ( l , l) — 1. 030 — P R O , )
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RD~8A1N F~R1’RAN

P(2, i) — PR (1)
P(3,1) = 0.030
20,2) = 0.030
2(1,3) = 0. 030
P -(2 ,2) = 1.030 — PR -(2 )
P(3,2) PR (2)
2(2,3) = 0.030
P (3,3) a 1.030

C CA LL TIME(MD1MM~,1i~MN,~~ ,VrIME,RrIME)CALL REA E?X’ ~4AA, M\, ~~, NQ, M~, NG, ~~, 11~A, N,M , ICON,A,B, R, 0, ?,
1 W E,WI, S, ~~, U, V,W , X, Y, GIORI, W~ D, RADINV, B~~~~~,WCRK, IPVF, lEND,
2 NSTET6 )

2 STOP
E113

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ — — - ~~~~~~~~~ ——~— - - --~-~~~~~~ -~~~~~~~~~- t~~
_ - -~~~~~
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S~MAT F~.RFRAN

C LATEST VERS ION 2/17/78
- 

- 
- DOUB LE W±X IS ION E (4) , E1FE~lP(4 ) ,SUl , SIQ4A, SIGI I , ES IN V, ESIQI)’, SIN\14 1

DOUBLE PRECISION COND, WW LF, LIJDINV, EOLFM 1, I~?4(10, 2) , Xø (10) ,L1N’R4 I
DOUBLE PRECISION ARRAY(100,50),Y0 (l0),U0 (10)
DOUBLE PRECISION A(10,3), C(10,3), m1,m2,X (10,3)
E ( l )  = 1.0)0

EM( 1 , 1) 1.030
E.’4(2,2) = 1.030
E (2) =

- - ETE2IP(2) = E (2)
8(3) = 0.030
ET~lP(3) = 8 ( 3 )
ET~4P (1) = 8( 1)
8(4) — 0.030
OOUB LE R~EC IS ION GIOR’I (10 , 2, 4)
DOUBLE PRECISION B~~ (10, 4, 3)
DOUBLE PREC ISION S (10,3,4) ,DP , P00 ,4) ,SB(10 , 2 , 4)
DOUBLE 11*X ISION WR (4),WI (4),HH (4,4),XX (4 ,4),&L(l0,3)
DOUBLE PREC ISION SBT (10, 3 ) ,Q(lO , 3) ,R(i0, 3) ,B(10, 2,4)
DOUBLE PRl.LISION P R ( 4 ) , I~~(4),FD (10 ,4),IS(4)
INT8G.~R IPYF (10) ,MCON (100) ,MSTER , ~E~~IDH, ICON (100)

• DOUBLE PRECISION RADUD , 3),I~ DINV (10, 3),SNI~~(10, 3,4) ,U(10, 3)
EX)U3IL PREC ISION V(l0, 3),WJ(10,3),W( 10 ,3), Y(10, 3), SUI,W (RK(10)
LOGICAL NOISE
CU4ION/INOU/ 1<IN, 1001 ’

K0~~IA = 1
RE6 D (5 , 11111) NRJINT

33333 READ (5,iliil ,END=22222) ITIME,K
11111 FCRIAT (214)

DO 44444 I)C~Z = IA , ITIME
44444 ~4CON (IXYZ ) — 1(0

MC ON (I F U 4E )  K

IA ITIME

GO 10 33333
22222 00 55555 I)~ Z ITIME,N$OINT
55555 MC(N (LXYZ ) = 1(0

LIDJLF 2. 718281828459045Dk)
LIJDINV l.030/LUIX)IE
WLFM 1 = LUIX)LF - 1.030
DINVI1 - LUDINV - 1. 030
NAA 2

KINa S
L~)UF 6
N 2
M 2
N2 — 4

uA —~~~~~~~~~~ - - • - • - - — -~~~ --- —- -
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S’JMAT FQ~FRAN

ICON — 4
NH 4
NS 10
IR~1’ 17
IE~ 3= 5k~
IPRT 49
iccuir — 0
NA— lO
NBa 10
bL’14~A

~~A 10
NRa 10
NQ- 10
NG—10
PZ( 1) = .101)
PR ( 1) .]D0
DO 15 14,N
PR(I) PR(l)

15 PZ(I ) a  PZ( 1) •

22 IF (I C~~}?P.?E. 0) REA D (KIN, 9500, END—2 ) (PR ( I ) , P Z ( I ) ,I—1 ,N)
SIGIA= 1.frDO
£SIG4A LUDOLF* ~S IGIA
ESINV= LUDINV**SIGIA
C(1 , 1) 1.0) 0
C(2 , 2) 1.030
C( 1 , 2) a 0. 030
C(2 , 1) — 0. 031)

=

NSTE1~ — 50
A( 1 , 1)a ESIGiA
t~ R 100
NAC 5O
A (2 , 2) ESINV
A(2 , 1) 0. 030
A( 1 , 2) — 0. 030
Q( 1 , 1)a 14. 030
Q(2 , 1) 8.039
Q (1 , 2) — 8. 030
Q(2 , 2) a 6. 0)0
R ( 1, 1) 1.030
R ( 2 , 1) — 0. 030
R ( 1 , 2) — 0. 030
R ( 2 ,2) — 1.0)8
B( 1, 1, 1)— ESIQ4A —1 .0)0
B(2 , 1, 1) ESINV— 1. 030
8(2 , 2, 1) a —8(2 , 1, 1)
B( 1, 2, l) B(1,1, 1)
B(l, 1,2) a 0.0)0
B(2 , 2, 2) — —DIN~i41 

-~ --- -- -- -- —- --- ~~ --•
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• S~iMAT F(RFRAN

B ( 2, 1, 2) 0. 0)0

B( 1, 2, 2) a DOLFM 1
3(1,1,3) * DOLEM 1
8( 1, 2, 3) — 0. 030
B(2,1,3) — DIN JII
B(2 , 2, 3) — 0. 030
PRI .11) 0
PR 2— .100

• 2 ( 1, 1) * .8100
P (2 , 2) .0900
2 ( 3 , 2) — 0. 0900
P 13 , 3) a .0900
P ( 1 , 2) . 81D1)
P ( 3 , 1) — .0900
2(2 , 1) = .0900
2(1 , 3) = .81D1)
P(2 , 3) — 0. 090o
2(4, 1) — .O1DO
P U , 4) — .81D0
2(4 , 2) — .0100
2(4 ,3) = .01D0
P (4 , 4) . 011)0
P (2 , 4) a • Ø91)~2 (3 , 4) a .0900
WR ~~ FE (ICOUF , 9903)

CALL MA~IO C~IA , ICON, ICON, P, 3)
C WR It E (KOUF , 46)

46 FQ~4AT (/ ,44 PI ,/)
41 F R4AT(3025. 15)

WRIFE (KoIJr , 9600 )
CALL MATIO CIA , N, N, A, ))
WRrFE (l~~Ur, 9700)

• CALL MATIO C4A,N,N,Q, 3)
WRIFE (wMJr,9800)
CALL MATIO C,IR,N,N,R,3)
DO 222 K”l , ICON
iq i i—x—i
w RrIE (1(0131’, 9900 ) Kt41

222 w RrFE~~~ L7r, 9500) ( ( B ( I , J , K ) , J—1 ,M) , I—1 , N)
44 C~~~~1FZNUE

U) 14 1 N 1 , 50
ICON (IN) a ICON (1)

14 CONFINUE
667 FCRIAT (51 5)

X0 (1) — .02D0
Q~J RM ( 1, 1, 1)— —1. 0633618400
G~~~I (2 , 1, 1) — —7. 90151881)—i
GIORI(1, 2, 1)— — 1. 88787889D—0 2
QIORI(2, 2, 1)— —5 .83582496D-02

- - ~~-—--—- - ----— - -- —---
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St~MAT FcRFRAN
— 

ONOI~ 4 (1 , i, 2)= —3.6901209604)1
(3I0W4(2, 1, 2)= —1. 14016534D0
G1ORM( 1,2,2)a 1.0494833904)1

G4OI~M ( 2 ,2,2)= —1.36308767D-01
G~c*~M( 1 , 1, 3)— —1. 42566767D0
GNORM(2, 1, 3)= —2.87451308D—0 1
GIORM(1, 2, 3)= 1.518842850—02
GIORM(2,2,3)a —7.27012438 0-02
I R 2
N P R F L = 1
00 57 1 K = 1 , ICON
I*11 1 K — 1
WRITE (KOIJF,99ô2) 1*11

57 WRITE (KOrJF, 950t)) ( (GNORM(IJ, IL, IK) ,1L=1,N) , 1J=1,N)
NGR IDti 5
V (1,1) = B( 1, i , 1)
V(2,2) = B(2 , 2, 1)
V ( 2 , i) = B(2 , 1, 1)
V ( 1 , 2) = B( 1,2,1)

C CALL MMIII (NA, I~~, ~~, N, N,M , V, (NORM , U)
C CA LL MALL ) (NA ,~~ , ~~ N, N, U, A, PCL)
C CALL M3 ALE (JG, N, M, -1.031), (NORM)

lONE = 1
C CALL MM LL CC, N, N, lONE , IR, N, C, X0, YO)

65 F(R4AT (1X ,3)25.15)
C CALL DR~~ IM(NA , C,t~G,~~R,1AC, N, IR,M ,ICL,C, Q1ORM , X0,W (RK, r - :

C 1Y,U,IWr,ARRA Y,Dr,~BrEJ6,NWIL)
C CALL ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~C 1 WR, WI ,S,S3,U, V,W , X, Y,G~1ORl, I1~D,RA DINV,Ba3,WG~K, IPYF, lEND )

DT — 1.0)0
X 0 ( 1) = . Q)2D0 • 

—

C CA LL MECAIE IWG,N,M,_1.030,(NORI)
X0 (2) = 0 .03 0
CALL SW 11~~ H NA ,~~~, ~~~~~~~~~~~~~~~~~~~~~~~ N, m,tM,IcON,M,A,B, F,

1 C ,(NOHM , 1(0, E, gF~ 4P,E?4,WQU(, Y0, (JO , V,W , 41, IPYF, ARRA Y, OF, I5STEEE,
2 N( (IDU ,PCCN ) 

•
‘

• 95ô0 F(.R4AT (Z~25. 15)
2000 FcR4AT (/ ,~~~25. i5)
9600 FcR4AT(/,3~ A )
9700 Fa~4AT(/,:3I Q )
980,1 FCRIAT(/, 31 R )
9900 F~R4AT (/ ,~ 1 B ,I5,/)
9~03 FQ~4ATV, 3I P ) —

9902 F BIAT(/,31 G , I5 ,/) • -

2 SlOP
END

A — — -~~~~ -~~~~ -,

~

--
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S’JMAT2 FCI~TRAN

C lATEST VERS ION 2/17/78
DOUBLE PREC ISION E (4) ,E1E4P(4) ,SUI, SIGIA,SIG41,ESINV, ESIGIP , SINV4 1
DOUBLE PRECISION CCt4D,LIJDOLF,UJDINV,LDLEt41,EM( 10,2),Xø (10),I)INVI1
DOUBLE PRECISION ARRAY(100,50),Y0 (10), t)0(10)
DOUBLE PRECISION A( 10, 3),C(10, 3),PR1,W2,X (10, 3)
E(1) = 1. 03k)

• EM(1 , 1) = 1.030
EM (2 , 2) = 1.030
E ( 2 )  = 0. 030

• ETEMP(2) = 8(2 )
E (3) = 0.0)0
ETEMP(3) = 8(3)
ET~ 4P( 1 ) = E (1)
E ( 4) = (3. 030
DOUBLE PRECISION (NORM (10 , 2, 4)
DOUBLE PRECISION B~~~~ (1O , 4, 3)
DOUBLE PRECISION S (10 , 3,4) ,DF, P (10, 4) ,~~ (10, 3,4)
DOUBLE PREC ISION WR (4) ,WI (4 ) , HH (4,4 ) , 101(4,4),ACL(10, 3)
DOUBLE PRECISION SBT (1O ,3 ),Q(1O , 3),R (10, 3) , B( 10,2,4)
DOUBLE PRECISION PR (4),pz(4),m (1o,4),Is(4)
INTE~~R IPYT (10) ,MCON (100) ,NPOItiF, I~~~IDH, ICON (100)

• DOUBLE PREC ISION RAD( 10, 3) ,W~DINV (10, 3) ,~~&~(1O, 3,4) ,U (10,3)
DOUBLE PREC ISION V( 10 , 3) ,~.W(10, 3) ,W( 10 , 3) ,Y( 10, 3) ,S1i4,WCRK (10)

LOGICAL NOISE
• C~~?4ONf1NOO/ 1UN, 10131

K0~~IA = 1
READ(S , 11111)NR~INT

33333 READ(5 , 11111,~~JD=22222)ITIME,K
11111 F~R4AT (2 14)

DO 44444 I XYZ a IA,rrIME
44444 MC~ 4 (IX YZ) K 0

MCCN (ITIM E) K
IA - ITIM E

GO 10 33333
• 22222 DO 55555 IXYZ — ITIM E, Ng)Izi1’

55555 MCQ~1(IXYZ) = 1(0
LWO LF= 2. 71828182 8459045D0
LUDINV— 1.030/LUDOL!
IOLEM1 = L.UDOLF — 1. 030
DIN JI 1 = LUDINV - 1. 030
NM — 2
I C 1 0
K1N 5 —

4YJI~~ 6
N— 1
M 1

• N 2 * 2

- -~~~- __ I
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S~iMAT2 F~EFRAN • 

- -

LCU4 2
N l i 4
NS 1U
I PRT 17
IEND= 5k)
I i~~r = 4 9
ICOUIT — 0
NA 1O

M(A 10
NRa 10
NQ 1O
NGaIO
22( 1) *

PR ( 1)— .100
D0 15 1.2, N

PR (I)a PR (1 )
15 P 2 ( I ) —  P2( 1)
22 IF ( ICCUIF .tE . 0) READ (KIN , 9500 , FND.2) (PR ( I ) , P h ( I ) ,I=1 ,N)

SIQIA 1.030
ESIQIA LUWLF* *SIGIA
ESIN V IJ UDINV* *SIGIA
C( 1 , 1) — 1.030
C(2 , 2) = 1.0)0 —

C( 1 , 2) = 0. 1.01)
C (2 , I )  — 0. 030
DF 1.030
A( 1 , 1) 1.4140Dk)
NAR — 100
NAC SO
Q(1 , 1) a 3. (DO
R ( 1 , 1) 1.030
R (2 , 1) — 0. 0)0
B( 1 , 1, 1) 2.030
B(1 , 1, 2) .~~~0• P 11 , 1) — .100
2 (2 , 2) — .100
2 ( 3 , 2) — 0. 1)900
P 13 , 3) — .0900
P ( 1 , 2) — .100
2 (3 , 1) — . 0900
P(2 , 1) — .100
P 11 , 3) . 81D0
P 12 , 3) — 0. 0900
P 14 , 1) a .O1D()
P11, 4) — .81D0
2(4 , 2) — .01D0
2(4,3) — . 0100

ILk - -  - - - . —---
~~~~~~~~~~~~~~~ . 

~~~~~~~~~~ ~~~~~
- - -~~~~ ~~~-
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• SIJMAT2 F~~ IRAN

2(4 , 4) — . O1Dki
P 12 , 4) — . 13900
P 1 3 , 4) — . 1)900
~RFFE ooor , 9903)
CA LL MATIL) (NA , ICON, ICON, 2, 3)

C WRIFE U(OLY1’,46)
46 FcRMkrV, 41 P1,/)
47 FCRIAT(3D25. 15)

WRITE (1(001, 9600)
CALL MATIO (NA, N, N, A, 3)
WRIIt (1(0111 ’, 9700 )
CALL MATIO C4A,N,N,Q, 3)
WRITE (KOUF, 9800)
CALL. MATIO (NR ,N, N, R, 3)
DO 222 K 1 ,ICON
t~4i = K—i
WRITE (1(0(11’, 9900 ) Kf11

222 ~RITE(l(O(JF,9500) ((B(1,J,K),Jal,M) ,1=1,N)44 C~~ FINUE
(NORM( 1, 1, 1) = — 1. 06336184D0
GNOR4(1, 2, 1) = —1. 88787889D—0 2
Q~ORM( 2, 1, 1) = 7. 90151884D-01
G~~ORM(2, 2, 1) = —5.8358246D—02
~~ORM(1, 1,2) = —3. 69012096D-431
GNORM( 1, 2, 2)=1. 049483390-01
GNORM(2 , 1, 2) = —1.14016354D0
GNOB M(2 , 2, 2)  = — 1. 36308767D -0].
G~4OR4( 1, 1, 3)= —1. 4256676700
GNOR M(2, 1, 3)= —2. 87451308D—01
c~~ORM(2, 2, 3) = —7 .27012438—02

2, 3) = 1.518842850-02
(�~IORi4(1, 1, 4) = 0. 1.01)
GNJRM(2, 2, 4) = 0.0)0
GNORII(1, 2, 4) = 0 . 031 . )
GNORM(1, 2, 4) = (3 .0) 0
DO 14 IN=1 , 50
ICON (IN) = LCON (1)

14 C(NF1~4UE
667 F(RIAT (515)

X0 (1) = . 0200
L R = 1
NPR~L = i
DO 57 1 K = i , ICON
1141 = 1 K — i
WRIFE (KOUT , 9902) tt ~i1

57 jRrrE (1~~13F,9500) ((GNORM (IJ,IL,IK), IL=i ,N),IJ=i ,N)
NQUDt4 = 5
VIL , 1) = B( 1, 1, 1)
V ( 2 , 2) = 8(2 , 2, 1)
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SvJMAT2 F~RFPAN

V (2,1) = 8(2 , 1, 1)
V(1,2) = 3(1,2,1)

C CALL MM IL (NA, tI~, N\, N, N, M , V, (NORM , U)
~ . CALL MALl)(NA ,1~~,N~,N,N,U,A,1~CL)
C CA LL MS ALE (NG , N, M , -1.031), cNORM )

lONE 1
C CA LL MMIL (NC,N,N,IONE,IR,N,C, XA3, Y0)

66 FCR4AT(iX, 3)25. 15)
C CALL DR(B IM (LIA , r~C, IC,~~ R , 1’AC, N, IR ,M, ACL,C, (NORM , X0,WCRK,
C 1Y , U, IWV , ARRA Y, OF , NR)INI’, NPRIL )
C CA LL REA Ui2 (NAA , 1~A , ~B , NQ, NR , ~G, ~6, !1~A , N, M , ICON , A,B , R, Q, F,
C 1 WR, W I ,S,&~, U, V,W ,X, Y,(NORI , WA D, W~DIN V, B~ 3 ,WQ~K , IPVI’, lEND )

OF = 1.1.00
X0 (1) = .02D1~

C CALL M & AL E (NG, N, M , -1.W 0 , (NORM )

X13 (2 ) = 0 .030
CALL SW IItH (NA ,N ~~~~~~~~~~~~~ N, IR ,N~A , ICCN,M,A,B,P,

1 C , (NORM , 1(0, E, f~rEMP, FM, WQ~K, Y0, (30 , V,W , ~M , IWF, ARRA Y, OF, NPOThIF,
2 Nauou ,MCaI )

95J 0 FBIAT(2D25.15)
2000 FcR4AT(/,3325.15)
96vhJ F~B’tAT (/ ,3I A I
9700 FCRIAT(/,31 Q )

• 93130 F(RIAT(/,31 R
9900 FcRIAT (/ ,31 B , I5 ,/)
9903 F~~4AT(/,3J P )
9962 F cR4AT (/ , 31 C , 15 ,/)

2 SlOP
END

r

1

~~

_______________________ L
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