; g
- AD-A056 898 MASSACHUSETTS INST OF TECH CAMBRIDGE ELECTRONIC SYST==ETC F/6 12/1

ON RELIABLE CONTROL SYSTEM DESIGNS.(U)

MAY 78 J D BIRDWELL AFQSR=-77-3281

UNCLASSIFIED ESL=-TH=821 AFOSR=TR=78-1197 NL

| or 3
ARes sos

IEEENEEEENENEE
“leE[FIEEE[E[SE] 1=
EEIT T PEEEEEE

_ —




ADAOS6898

AU NO.
DDC Fie copy

May, 1978 ESL-TH-82) \Y
s

: Research Supported by:
E NASA Ames Grant NGL-22-009-124
, AFOSR Grant 77-3281

ON RELIABLE CONTROL SYSTEM DESIGNS

John Douglas Birdwell

Electronic Sﬁhms Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139

78 07 26 090

Approved for public release;
distribution unlimited,

LT, u e i Lt ccibal




i o e 2 e S P B Al

:' UNCLASSIFIED (:lﬁf)

SECURITY CLASSIFICATION OF YHIS !thn Data Entered)

| 2EAD INSTRUCTIONS
RE ENTAT1d¥ PAGE | BEFORE COMPLETING FORM

AFR ﬂ/ ‘ GOVT ACCESSION NoJ| 2 f.’f.! TENT'S CATALOG NUMBER

‘ | : ; 78—-:\ }"2; ‘. ; }‘\ 'r};j] )y yad < he Si's

e P e .

QN BELIABLE CONTROL §YSTEH DESIGNS. i

§ { ER MING THEPSRT NUMBER
? - - A [ESL-TH-8217
i UTHOR(s) CONTRACT OR GRANT NUMBER(S
; 4. 1 : fj / o0y re e
' ohn Douglas/Birdwell \ ' FOSR=77- 3231 /A,U'
i 9. PERFORMING ORGANIZATION NA:‘E AND ADDRESS 10. PROGRAM F&‘E NT PROJECT TASK
: AREA & W,
| Massachusetts Institute of Technology :r
: Electronic Systems Laboratory’ 611¢2F 3’% Al
Cambridge, Massachusetts 02139 /f~\\
11. CONTROLLING OFFICE NAME AND ADDRESS (2 & REFGRT DATE]
% Air Force Office of Scientific Research/NM . =———— e

Bolling AFB, Washington, DC 20332

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CL

. (of this report)

UNCLASSIFIED

15a. DECL ASSI FICATION/ DOWNGRADING
SCHEDU

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

PP

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block numoer)

\
20. ABST\:YT (Continue on reverse side if necessary and identify by block number)

This report contains a method of approach and theoretical framework
which advances the state of the art in the design of reliable multivariable
control systems, with special emphasis on actuator failures and necessary
actuator redundancy levels.

The mathematical model consists of a linear time invariant discrete
time dynamical system. Confnguratlon changes in the system dynamics, (such /;;7
as actuator failures, repairs, introduction of a back up actuator) are il

i
:
¥
J

DD , " 1473  €oiTION OF 1 NOV 65 IS 0BSOLETE ) &

P UNCLASSIFIED /(
'1 :4 '/’ Z¢¢ SECURITY CLASSIFICATION OF THIS PAGE (When Data Ehtered)

|
1
f
1
|
f




B UNCLASSIFIED
b SECURITY CLASSIFICATION OF THIS PAGE(Whan Data Entered)

20. Abstract

ot o gl

\\\ﬁgoverncd by a Markov chain that includes transition probabilities from
one configuration state to another., Tha norformance index is a standard
3 quadratic cost functional, over an infinite time interva|.<s\

g b o

If the dynamic system contains sither nrocess white noise and/or
noisy measurements of the state, then the stochastic optimal control
problem reduces,in qeneral. to a dual nroblem, and no analytical or
efficient algorithmic solution is nossible. Thus., the results are obtained
under the assumption of tull <rate variable measuremen=s, and in the
: absence of additive process white noise.

Under the above assumptions, the optimal stochastic control solution
can be obtained. The actual system configuration can be deduced with an
one step delay. The calculation of the optimal control law requires the
solution of a set of highly coupled Riccati-like matrix difference equations;
if these converge (as the terminal time goes to infinity) one has a
reliable design with switching feedback gains, and, if they diverge, the
design is unreliable and the system cannot be stabilized unless more
rellable actuators or more redundant actuators are employed. For the
reliable designs, the feedback system requires a switching gain solution,
that is, whenever a system change is detected, the feedback gains must be
reconfigured. On the other hand, the necessary reconfigration gains can
be precomputed, ftrom the oif-line solutions of the Riccati-like matrix
difference equations.

¥ 1

Through the use of the watrix aviscrete minimum principle, a
suboptimal solution can also be obtained. In this approach, one wishes
to avoid the reconfiguration of the feedback system, and one wishes to
know whether or not it is possible to stabilize the system with a constant
feedback gain, which does not change even if the system changes. Once
more this can be deduced from another set of coupled Riccati=like matrix
difference equations. |If they diverge as the terminal time goes to
infinity, then a constant gain implementation is unreliable, because it 3
cannot stabilize the system. |If, on the other hand, there exists an i
asymptotic solution to this set of Riccati-like equations the a reliable
control system without feedback reconfiguration can be obtained. The
implementation requires constant gain state variable feedback, and the
feedback gains can be calculated off=-line.

i it i

__UNCLASSIFIED

SECURITY CLASSIFICATION OF Yu'® PAGE When Data Entered) |
! . |
3




T T -

-

g R T

May, 1978 ESL-TH-821

e

ON RELIABLE CONTROL SYSTEM DESIGNS

by

John Douglas Birdwell

This report is based on the unaltered thesis of John Douglas Birdwell,
submitted in partial fulfillment of the requirements for the degree

of Doctor of Philosophy at the Massachusetts Institute of Technology
in May, 1978. The research was conducted at the M.I.T. Electronic
Systems Laboratory. Stipend and tuition support was from a fellowship
from the Fannie and John Hertz Foundation; additional support was

from NASA Ames grant NGL-22-009-124 and AFOSR grant 77-3281.

kY

e 55 A il

ACCESSION tur
i s White Sectien ,
i 00c Wit Sctie [
| GUARNGUNCED o
: JUSTIFIGATION ..o

B e e

DISTRIBUTION /AVAILABILITY CODES
" gist, AVAIL and/or SPEGIAL

A

T

i

Electronic Systems Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

a8 07 X

i va

090

@)




ON RELIABLE CONTROL SYSTEM DESIGNS
by

JOHN DOUGLAS BIRDWELL

B.S., The University of Tennessee
(1974)

M.S., The University of Tennessee
(1974)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE OF
DOCTOR OF PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
MAY, 1978

© John Douglas Birdwell 1978

Signature of Author...i ¢ M

partment f Electrlcal Engineering, May 18, 1978

Certified bydqg/ﬂ W

Thesis Supervisor

ACCAPLEd DY v vcovvessnssbsvvvssnssssrsstsesidssbevsssosssinbsstssvevuess
Chairman, Departmental Committee on Graduate Students

o

-y x..-._.u‘




——

copyright: John Douglas Birdwell, 1978

%
|

The Massachusetts Institute of Technology and the Electronic Systems
Laboratory are granted the right to reproduce and distribute this
report in its entirety without limitation. All other rights reserved.

T ——

T

T




TS

ON RELIABLE CONTROL SYSTEM DESIGNS
by

JOHN DOUGLAS BIRDWELL

Submitted to the Department of
Electrical Engineering and Computer Science
on May 18, 1978 in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy.

ABSTRACT

This report contains a method of approach and theoretical
framework which advances the state of the art in the design of
reliable multivariable control systems, with special emphasis on
actuator failures and necessary actuator redundancy levels.

The mathematical model consists of a linear time invariant
discrete time dynamical system. Configuration changes in the
system dynamics, (such as actuator failures, repairs, introduction
of a back up actuator) are governed by a Markov chain that incluges
transition probabilities from one configuration state to another.
The performance index is a standard quadratic cost functional,
over an infinite time interval.

If the dynamic system contains either process white noise
and/or noisy measurements of the state, then the stochastic
optimal control problem reduces, in general, to a dual problem,
and no analytical or efficient algorithmic solution is possible.
Thus, the results are obtained under the assumption of full state
variable measurements, and in the absence of additive process
white noise.

Under the above assumptions, the optimal stochastic control
solution can be obtained. The actual system configuration can
be deduced with an one step delay. The calculation of the optimal
control law requires the solution of a set of highly coupled
Riccati-like matrix difference equations; if these converge (as
the terminal time goes to infinity) one has a reliable design with
switching feedback gains, and, if they diverge, the design is
unreliable and the system cannot be stabilized unless more reliable
actuators or more redundant actuators are employed. For the
reliable designs, the feedback system requires a switching gain
solution, that is, whenever a system change is detected, the feed-
back gains must be reconfigured. On the other hand, the necessary
reconfiguration gains can be precomputed, from the off-line solu-
tions of the Riccati-like matrix difference equations.
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Through the use of the matrix discrete minimum principle, a
suboptimal solution can also be obtained. 1In this approach, one
wishes to avoid the reconfiguration of the feedback system, and
one wishes to know whether or not it is possible to stabilize the
system with a constant feedback gain, which does not change even
if the system changes. Once more this can be deduced from another
set of coupled Riccati-like matrix difference equations. If they

diverge as the terminal time goes to infinity, then a consctant

gain implementation is unreliable, because it cannot stabilize the
system. If, on the other hand, there exists an asymptotic solution
to this set of Riccati-like equations then a reliable control
system without feedback reconfiguration can be obtained. The
implementation requires constant gain state variable feedback, and
the feedback gains can be calculated off-line.

In summary, these results can be used for off-line studies
relating the open loop dynamics, required performance, actuator
mean time to failure, and functional or identical actuator
redundancy, with and without feedback gain reconfiguration
strategies.
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Thesis Supervisor: Michael Athans
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CHAPTER 1

INTRODUCTION

1.1 Motivation for the Research.

This report addresses some of the current problems in interfacing
systems theory and reliability, and puts this research in perspective
with the open questions in this field. Reliability is a relative concept;
it is, roughly, the probability that a system will perform according
to specifications for a given amount of time. The motivating guestion
behind this report is: What constitutes a reliable system?

Knowledge of the reliability or a system is crucial. In this
report, a system is reliable if it has a (quantit;tive) reliability of
one, i.e., if the probability that the system will not perform according
to specifications for a given period of time is zero. Therefore, the
question "What constitutes a reliable system?" can be restated as:

What are the specifications which a system must meet in order to be
reliable?

A system is normally designed in two stages: First, the components
are selected in such a way as to meet the reliability specifications;
second, the control problem is formulated and solved for that configura-
tion of components. Although this procedure is over-simplified, it
illustrates a second question: Should the control problem influence the
choice of the configuration, and if so, how can this be achieved? The
first part of the question is answered by history: The control problem

influences configuration design now by iteration between the two stages

of design. This is most likely not the best method! If a theory were
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available which allowed a comparison between alternate designs, based
on both the expected system reliability and the expected system perfor-
mance, it would greatly simplify the current design methodology. It is
unfortunate that at present there is no accepted methodology for a

; determination of expected system performance which accounts for changes

in the performance characteristics due to failure, repair or reconfigura-

oot . e

tion of system functions. This report presents such a methodology for a

specific class of linear systems with quadratic cost criteria. |

SR

1.2 General Nature of the Problem.

This Section presents the general theoretical framework necessary to

approach the problem of reliable control system design. First, a

R e s e

} discussion of some of the concepts in reliability theory will be present-
ed. The control-theoretic framework for the specific topics covered in
this report will then be developed. Finally, the interrelationships
between systems theory and reliability theory will be explored, leading

to a mathematical formulation of the reliable control system design

problem and a discussion of the general nature of the results presented i

in the remainder of this report.

1.2.1 Reliability Theory.
The generally accepted definition of reliability is stated in

Appendix 1. Basically, the reliability of a system is the probability

e

that the system will perform according to specifications for a given

gt

amount of time. In a system-theoretic context, the specification which

i

a system must meet is stability; also, since, at least for most mathemati-

cal models of systems, stability is a long-term attribute of the system,

j
i
|
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the amount of time for which the system must remain stable is taken to
be infinite. Therefore, the following definitions of system reliability

are used in this report:

Definition 1: A system (implying the hardware configuration, or mathe-
matical model of that configuration, and its associated control and
estimation structure) has reliability r where r is the probability that

the system will be stable for all time.
Definition 2: A system is sail to be reliable if r = 1.

Definition 3: A system design, or configuration, is reliable if it

is stabilizable with probability one.

These definitions of teliability depend on the definition of stability,
and for systems which can have more than one mode of operation, stability
is not that easy to determine. 1In this report, stability will mean
either mean-square stability (over some random space which will be left
unspecified for the moment), or cost-stability (again, an expectation
over a certain random space), which is basically the property that the
accumulated cost of system operation is bounded with probability one.
(The definition of cost is also deferred.)

The reliability of a system will depend on the reliabilities of its
various components and on their interconnections. Thus, the systems
engineer must have an understanding of the probabilistic meéchanisms of
component failure, repair, and system reconfiguration. There are a
multitude of models which can be used for component failure and repair,

and reconfiguration. Two good references to the mechanics of reliability




theory are [Shooman, 1] and [Green and Bourne, 2].

Consider a device which begins operation at time 0 and can experi-
ence catastrophic (i.e., instantaneous) failure to a non-operational
state. Let the probability of “ailure of this device occuring in the
interval [0,t] be

F(t) = prob. of failure in [O,t] (1.2.1)

This is the definition of the failure distribution function [Shooman, 1]}.

Define the hazard rate as

dr (t)

2 at
z(t) = 1-F) (1.2.2)

from [Shooman, 1]. The hazard rate is the incremental failure probabil-
ity at time t, given that the device is operational at time t. Now,
suppose the hazard rate of the device is independent of time; i.e., the
probability that the device will fail sometime in a time interval
starting at the present time is independent of how long the device has
been operational. This constant hazard rate

z(t) = c (1.2.3)

results in the exponential failure distribution shown in Figure 1.1.

The constant hazard rate is a close approximation to the actual hazard
rate of many devices. For example, the transistor has a hazard rate
similar to that shown in Figure 1.2. This type of function is quite
common [Shooman, 1]. Early failures in Region I of Figure 1.2 are
failures during the "burning-in" of the device; they are associated with
poor assembly, defective materials and other random fluctuations in the
manufacturing process. Failures in Region III are due to the wearing out

of elements in the part. Region II is relatively constant and closely
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Figure 1.1: Exponential failure distribution.
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Figure 1.2: Typical hazard rate function for a transistor.
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approximates the constant hazard rate function. In a large system, parts

are generally "burned-in" before assembly is completed; therefore, the

system begins operation in Region II. As the system ages, periodic
[ maintenance removes old parts before the hazard rate rises in Region III.
Therefore, the assumption of a constant hazard rate is usually justified.
In this report, the constant hazard rate function is used exclusively.

| This is due not only to its broad applicability, but also to the fact that

any non-constant hazard rate requires a reliable control system to keep
track of the starting times of the system's mode of operation.

In the discrete-time case, to which this report is confined exclu-

e e

sively, the hazard rate becomes the probability of failure (or repair or
reconfiguration) between time t and time t+l. For a system with many
operating modes, the probability of being in a given mode at a given

time, given some past probability vector over the various operating

-

modes, can be modeled by a Markov chain. If W is a vector

t

m CRL+1 (1.2.4)

e
where there are L+1 operating modes, then Et is propogated in time by

Rogy o= _g'flt (1.2.5)
where

+1 X L+1

P s tp, @R (1.2.6)

7 ij
and

pi, = prob. of system being in mode i at time t+), given it

) was in mode j at time t

(1.2.7)

(see [Paz, 3)). The probability pij is the discrete-time equivalent of

the hazard rate, and is time-invariant. In the future, a time-invari-

ant Markov chain will be assumed as a model of the modes of operation
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and the statistics of the random switchings between modes.

It is now necessary to define precisely these modes of operation

and thelir dynamic transitions. The terms system configuration and

system structure will be used.

Definition 4: System Structure: A possible mode of operation for a

given system; the components, their interconnections, and the informa-

tion flow in the system at a given time.

Definition 5: System Configuration: The original design of the system,

accounting for all modeled modes of operation, and the Markov chain

governing the configuration, or structural, dynamics (transitions among

the various structures).

An example of three possible structures for a given system is shown
graphically in Figure 1.3. In this report, structu:. s are referenced by
convention by the set of non-negative integers

2= {0,323 .¢000) (1.2.8)
The configuration for the design illustrated in Figure 1.3 is depicted
graphically in Figure 1.4. The nodes of the graph in Figure 1.4
represent the system structures of Figure 1.3. The edges of the graph
represent probabilities of transfer from one node to another, and are
elements of the matrix P.

prob. structure i at time t+l given structure j at

P
i+1,3+1 tine ¢,

(1.2.9)

The state of the system configuration at time t is the structure in

which the system is operating at that time.
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comp. | comp. |
comp. 2 O comp. 2
comp. 3 comp, 3
comp. 4
structure 0 structure |
comp, |
comp, 2
LEGEND:
comp. = COMPONENT
comp, 4

structure 2

Figure 1.3: Three hypothetical system structures.
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Figure 1.4: Configuration for structures in Figure 1.3.
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k(t) = structural state at time t {02,200

k(t) € I (2503

This structural state evolves in time to form the structural trajectory

(of length T+1)

By = (RUO3RAD, 4« . KA (1.2.12)

In general, this structural trajectory is a random variable with apriori

probability of occurance

Plxg) = T o), 0 Pk (k(@Pk )k (1)~ Pr(T)k (1-1) (R

(Figure 1.5).

1.2.2 Control Theory.
In this report, only linear systems with a quadratic cost index

are considered. At this time, any more general formulation is of dubious

value in that the linear quadratic problems can demonstrate many of the

fundamental concepts of reliable control system design. It is

doubtful that any other formulation could be solved without the knowledge
gained from the linear quadratic solutions presented in the remainder of

this report. As a further restriction, perfect observation of the system

state x is assumed. The general class of linear systems discussed in

t
this report is of the form

Xesd - B X By B et

The set of pairs (édc'gk) describe the possible system structures,
where

ki(t) € & (1.2.15)
The remainder of the configuration is specified by the Markov chain

The objective of this research is to develop control

equation (1.2.5).
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Figure 1.5: Two possible structural trajectories.
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laws which account for the possible structural trajectories (1.2.12)

while minimizing some function of the cost. The cost function for a

given random state and control trajectory ((xt,ut )T:é,x,r) is
= T T T
= X + + el
JT . «RE u, Ru X QX (1.2.16)

The function of the cost which is minimized is gencrally taken to be the
expected value of JT over all possible structural trajectories ;&. It
is shown that this class of optimization problems yields solutions
which are sensitive to both system performance and system reliability,
as modeled in the configuration.

In the remainder of the report, only variations in the B-matrix,
or actuators are considered. An actuator is a device which transfers
the control input to the system dynamics. The actuator in the B-matrix
may model a physical linkage, such as is found on the control surfaces of
aircraft, or, for example, the effectiveness of a tax reduction on the
economy. A single actuator may fail in many different modes. For
example, the B-matrix can be of the form

T B R TR (1.2.17)

By
where the Ei.'s are actuators which may fail to an actuator having zero
gain with a failure probaility per unit time Pet

Ei. Sy (1.2.18)
Then the system structures representing modes of failure would be modeled
as B-matrices having at least one zero column.

This class of linear models can also be used as a model for self-

reorganizing systems; the only restriction is that the reorganization,

or reconfiguration, process muSt be modeled with a constant hazard rate.
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An important aspect of this research is the study of various types
of redundancy. At present, the effect of redundancy on system performance
is poorly understood. There are two basic types of redundancy: component
redundancy and functional redundancy. Component redundancy is the use
of two or more identical components (in this report, actuators) for the
same task. A good example is provided by equation (1.2.17). Suppose
two actuators, Ej. and Ej . are identical. If b, fails (Equation (1.2.18)),
Ej is still operational, and vice-versa. In order to lose the function
of actuators b, and Ej . both actuators must fail; this event will
have a lower probability of occurance than the event of the failure
of 91 ¢ if Ej were not in the configuration the function of actuator
gj. would be lost.

The problem with component redundancy in control theory is how
should the allocation of control resources be allocated to the redun-
dant components, and how should the component reliabilities affect the
choice of an optimal control law? The control methodologies presented
in this report answer the guestion for a specific class system confi-
gurations.

Functional redundancy implies the overlapping of function of two
or more components in a system. If one of the components fails, part
of its function is still performed by the other (redundant) component (s).
Functionally redundant actuators are modeled in this report in the same
way as component redundancy. The functional redundancy is accounted for
in the expectaion of the cost index over the structural trajectories.

The dynamics of repair and reconfiguration are all modeled in this

report as exponential failure distributions (constant hazard rates).

i
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As an example, if two actuators (b = and b

0 1

26

) are in a system configura-

tion and can each fail with probability pf and pf per unit time,
0

1

respectively, to an actuator with zero gain (0), then the configuration

dynamics are, assuming independence of failures:

= 5
B, = b,le,1
B, =1lalp,]
B, = [blo]
B, =(0]0]
By =+ gl_ with probability Pe (l-pf ) per unit time
0 1
B > B with probability p_. (l1-p_ ) pel unit %“ime
~0 =2 f £
1 0
B * B with probability p_ p,. per unit time
) =3 £.°f
r 2
E]. i §3 with probability Pe per unit time
2
52 =0 §3 with probability pg per unit time
1

From this information, the Markov chain transition matrix P can be formed:

r--l-pfo-pfl+pf0pfl 0 0 O—
£ pfo (1 - pfl ) 1-1>f2 0 0
Pfl(l—pfo) 0 l-pf1 0
pfo pfl sz pfl 1

- wd

(1.2.19)

(1.2.20)

(1.2.21)

(1.2.22)

(1.2.23)

(1.2.24)

(1.2.25)

(1.2.26)

(1.2.27)

(1.2.28)

Repair is considered to be component replacement, and is modeled in the

same manner; e€.g.,

0~+B with probability pr. o)

0 r

1 2

(1.2.29)
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Reconfiguration is the restructuring of the (actuator) configuration to
compensate for failure, and is modeled as
_B_1 > §4 with probability P4y (1.2.30)
where B , is a new actuator configuration which will be used on reconfi-
guration after failure.
The methodologies presented allow the study of the effects of

failure, repair and reconfiguration on the optimal control of linear

systems; they yield a quantitative analysis of the effectiveness of a

given system design, where effectiveness is a quantity relating both
the performance and the reliability of a configuration design (see

Appendix 1).

1.2.3 General Nature of Results.

There are three classes of reliable controller methodologies:

I) Passive (Robust) Controller Design

II) Active (Switching) Controller, Passive Configuration Design

III) Active Controller, Active Configuration Design

This report concentrates entirely on classes I) and II). Class III)
methodologies are much more difficult to study. The Markov chain models
of configuration dynamics which work in classes I) and II) do not hold
in class III); as yet, there is no satisfactory way to model the
configuration dynamics of a system in such a way that the control rules
are well-defined.

Class I) methodologies are passive designs. These designs account
for the occurance of failures in the initial selection of the control
law; on-line, this class of designs does not use any current estimate of

the structural state of the configuration. The design is "“conservative"

e R T " o o : Sl o ST
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in that it continues to stabilize the system without regard to the current

structural state. A special sub-class of these designs is the robust

controller designs. A robust controller will stabilize any structure of

the system without regard to the configuration dynamics; i.e., if the

system remains in any structural state forever, it will still be
stabilized. The class I) methodologies are represented by the
non-switching gain methodology of Chapter 5.

Class II) methodologies are active controllers; in some sense,
they are adaptive. From knowledge of the system's past, these controllers
switch their control law on-line in order to compensate for what they
estimate to be the correct structural state. For deterministic systems,
these controllers can be determined analytically. For stochastic
systems, the optimization problems cannot be solved analytically in
general due to the dual control effect [Fel'dbaum, 4- 7). Thus,
suboptimal control strategies must be used. The class 1I) methodologies
are represented by the switching gain methodology in Chapter 3 and

its suboptimal extensions in Chapter 4.
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1.3 Relations with Previous Literature.

This research is based on a background knowledge in both reliability
theory and systems theory. Both mathematics and probability theory are
fundamental in these fields. As general references to the techniques
used in this report, in real analysis, and measure and integration
theory, [Rudin,8], [Segal & Kunze, 9), and [Halmos,10] are good; in
matrix theory, [Gantmacher,ll] is the standard reference. In probabil-
ity theory, [Bauer,12]) and (Doob,13] are definitive; expansions on the
theory of Markov chains are found in (Chung,14] and [Derman,l5]. .
There are several good texts on reliability theory; of these,
[Greene & Bourne, 2] and [Shooman, 1) are possibly the best. [Cox,16])
and [Corcoran,l17] demonstrate the current methods of the scheduling and
use of redundancy in reliability technology. Other good treatments are
found in [Barlow and Proschan,18] and [Gnedenko,19].
In control theory, a good treatment of the deterministic linear
quadratic regulator problem is found in the IEEE Transactions Special
Issue edited by [Athans,20)}, and in (Athans & Falb,21]). The dual \
control problem is described in [Fel'dbaum, 4- 7] and several other
publications.

Previously, several authors have studied the optimal control of

systems with randomly varying structure. Most notable among these is
{Wonham,22], where the solution to the continuous time linear regulator

problem with randomly jumping parameters is developed. This solution is

similar to the discrete time switching gain solution presented in
Chapter 3. The random parameters are restricted to be a continuous

! time Markov chain. The most notable difference is that in [Wonham,22),

l——_"‘—'—-——-“___mMW’* . 4
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the assumption is made that the controller has perfect information about
the present state of the random process on-line. The solution switches
gains in a linear state feedback control law whenever the (Markovian)
random parameter jumps. In the discrete time switching gain solution
presented in Chapter 3, the control law is determined from past observa-
tions which allow the deduction of the exact state of the random para-
meter process, and then the random parameter may switch values according
to the statistics given by the Markov chain. Thus, the control may be
applied to one of a number of possible structures at the next time
instant. In Wonham's development, the optimal control law is matched
specifically to one structure. The analogous continuous time version
to the switching gain solution of Chapter 3 would be to assume on-line
perfect observation of the random parameter with a fixed time delay.
Wonham's result has no such time delay.

Wonham also proves an existence result for the steady-state optimal
solution to the control of systems with randomly varying structure.
This result is based on conditions of stabilizability of each system
structure and observability of each structure with respect to the
cost functional. The conclusion is only sufficient; it is not necessary
for existence of a steady-state solution. Similar results were obtained
in [Beard,23] for the existence of a stabilizing gain, where the
structures were of a highly specific form; these results were necessary
and sufficient algebraic conditions, but cannot be readily generalized
to less specific classes of problems.

The time-varying solution of (Wonham,22] is computed using a set of

coupled Riccati-like matrix equations. The coupling is in the form of
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a linear term in thesolution to the matrix equations added to the normal
linear quadratic Riccati equation. The solution can be precomputed by
solving the coupled Riccati-like equations off-line; the control law is
then switched on-line to a gain which corresponds to the current state
of the Markov process. The optimal solution requires perfect knowledge
of the structure.

In reality, the structure is seldom known perfectly, and a noisy
observation of the random process leads to a dual control problem.
Although much of Chapter 3 is based on the fact that the controller can
obtain the structural state with one-step delay in the deterministic
discrete time problem, this report makes the connection, for the first
time, of the existence of a steady-state switching gain controller with
that system's reliability and effectiveness.

[Sworder, 24] has developed, using a version of the stochastic
maximum principle, an optimal feedback control law for a class of linear
systems with jump parameters which is almost identical to that of
Wanham, 22); the coupled Riccati-like equations are identical except for
notation. The only difference is Sworder's assumption that the random
process is instantaneously observable from a set of sensors which are
unaffected by the choice of the control law. Using this assumption,
Sworder avoids the problems of dual control.

Sworder also comments on the usefulness of linear system models
with jump parameters in modeling possible failures in the system
[Sworder,24]. [Ratner & Luenberger,25] derive a control law for a
continuous time linear system. The system has one failure mode, and a

maximum number of renewals (repairs) can take place. The objective is




32

to determine apriori the optimal time intervals in which the system
should operate in the failure mode, and the optimal control law, given
the mode of operation, over a finite time interval. The failure process
is assumed to have an exponential failure distribution (constant hazard
rate); the renewal process is controlled, and is not random. The
control law is of the switching gain type, and the solution is in the
form of two coupled Riccati-like matrix equations quite similar to those
in [Wonham,22) and [Sworder,24]. The optimal control policy and the
optimal renewal policy can both be calculated off-line. This class of
problems is further investigated by [Sworder,26] to determine over what
region immediate renewal is the optimal policy. Both of these papers
illustrate examples of class III) control methodologies; the structural
state as well as the system state is under the influence of the control-
ler. The simple structure of the class of systems studied by [Ratner &
Luenberger,25] allows a solution. There is need for much more work in
this area.

Still a third approach to the problems associated with multiple-
structure systems is given in [Bar-Shalom & Sivan,27]). Here, the
measurements of the system state are corrupted by additive noise. The
open-loop controller and the open-loop feedback controller are derived
using dynamic programming. Knowledge of the presentstate of the random
process governing the system configuration is not assumed. Therefore,
the (optimal) closed-loop controller would be a dual control law. The
open-loop controller assumes no on-line measurements of the system state;
the open-loop feedback controller assumes future on-line measurements

and thereby improves its performance. There is little correlation
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between this paper and the research on which this report is based.

[Willner,28] developed a suboptimal control scheme, which allowed
for imperfect observation of the random parameter process, known as
multiple-model adaptive control. 1In this method, the parameters could
only take a discrete set of values, a cause of recent disfavor, as MMAC
does not always work well when the parameters vary continuously and are
approximated by the mathematics. Similar work has been done in [Pierce &
Sworder,29]. The MMAC methodology is optimal one step backward from the
final time, as is the switching gain methodology in the example of
Chapter 2 when applied to systems with additive white control noise.

The dual problem of state estimation with a system with random
parameter variations over a finite set was studied in [Chang & Athans,30}. '
It is shown there that the optimal estimator consists of a geometrically
increasing set of Kalman filters, one for each possible structural
trajectory of length t+l at time t, and an averaging process to compute S
the minimum mean-square error estimate from the filter estimates. It !
is also shown that when the parameter process is Markovian, a bank of
N2 estimators is optimal, where there are N possible values of the
parameters. Each estimator is then conditioned on the possible values
of the parameters at the two previous time instants.

Recently, the robustness of the linear quadratic regulator has been |

studied in depth. This work is described in [Wong, et. al.,31] and

in [Safonov & Athans,32]. A long-standing problem with the linear
quadratic design methodology has been the lack of analogs to the various
stability and robustness criteria of classical systems theory. This

research was aimed at characterizations of robust solutions to,
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specifically, the linear quadratic regulator. Supporting research is
reported in ([Safonov & Athans,33], [Wong & Athans,34), [Wong,35), and
[Safonov,36]. The research in this report is related to the robust

controller problem, but the approach is different in that the performance

criterion is modified to account for possible variations in structure,
such as those caused by failures, rather than depending on certain

properties of the linear quadratic regulator solution to guarantee

robustness. In this research, the concept of stability is related to
the existence of a finite cost solution to the non-switching gain
problem. For a specific class of configurations, this approach solves
the robust controller problem (Chapter 5, Section 9).

The existence of an uncertainty threshold for the non-switching
controller of Chapter 5, that limit on parameter uncertainty beyond
which no controller can stabilize the system, is proven for an one-
dimensional example. This work is similar to the work by [Athans,
et. al.,37] on the Uncertainty Threshold Principle and. the related
papers by [Ku & Athans,38] and [Ku, et. al.,39]. This research is
reported in Chapter 2, Section 7.

Lastly, parts of this research have been presented in an unpub-
lished form at the 1977 Joint Automatic Control Conference in San
Francisco, and published for the 1977 IEEE Conference on Decision and

Control Theory in New Orleans [Birdwell & Athans,40].
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1.4 Summary of Main Contributions.

There are two major contributions of this research. First, the

classification of a system desiyn as reliable or unreliable, for the

deterministic variable actuator linear system in Chapter 3, has been
equated with the existence of a steady-state switching gain and cost
for that design. If the steady-state switching gain does not exist,

then the system design cannot be stabilized; hence, it is unreliable.

The only recourse in such a case is to use more reliable components
and/or more redundancy. Reliability of a system design can therefore
be determined by a test for convergence of the set of coupled Riccati-
like equations (3.3.6) as the final time goes to infinity.

A similar result holds for the non-switching gain methodology of
Chapter 5. Here, the system design is classified as reliable or

unreliable with respect to a constant gain linear feedback control law,

depending on the convergence, or divergence, respectively, of equation
(5.6.16) as the final time goes to infinity. If equation (5.6.16)
converges to a limit cycle, then that limit cycle produces a stabilizing
cyclic steady-state gain.

The second major contribution lies in the robustness implications
of the non-switching gain methodology. Precisely, a constant gain for
a linear feedback control law for a set of linear systems is said to
be robust if that gain stabilizes each linear system individually, i.e.,
without regard to the configuration dynamics. The problem of determining
when such a gain exists, and of finding a robust gain, can be formulated
in the context of the non-switching gain methodology. As a result, the

non-switching gain methodology gives an algorithm for determining a
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robust gain for a set of linear systems which is optimal with respect to
a quadratic cost criterion. If the algorithm does not converge, then

no robust gain exists.

The following Section of this Chapter will outline the remainder

of this report.

1.5 Outline of Report.

In Chapter 2, several one-dimensional examples are examined as
a clarification and motivation for the methodologies presented in
Chapters 3 through 5. 1In addition, Chapter 2, Section 7, deals with
the relationship between the Uncertainty Threshold Principle and the
existence of a steady-state solution to the non-switching gain problem.
Chapter 3 develops the optimal solution to the class of problems
described in Section 2 of this Chapter. The splution is labeled the

switching gain solution because the gain of a linear feedback control

law switches in response to the exact observation of the system
structure with one-step delay.

Since Chapter 3 deals entirely with deterministic systems, and the
switching gain solution does not extend optimally to the stochastic
case, Chapter 4 presents some suboptimal methods which can be used to
extend the switching gain solution to stochastic problems. Two
methodologies are presented. One (hypothesis testing) is based entirely
on estimation of the structure. The second (dual identification) uses
the dual effect of the control law to determine more precisely what the
structure is with the next observation. The optimal control law would

have some characteristics of both methodologies, as is shown by example
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in Chapter 2, Section 5.

Chapter 5 derives a control law which ignores any on-line informa-
tion which might be gathered about the structural state, and results
in a non-switching gain solution used in a linear feedback control law.
The stability of this non-switching solution is explored, along with
the existence of a steady-state solution, in Secion 7. 1In Section 9,
the robustness issue is addressed, and the non-switching methodology is
used to define an algorithm which can determine the existence of a
robust gain and calculate an optimal robust gain with respect to a
quadratic cost functional, when one exists.

Chapter 6 focuses on the issues of computer-aided design and the
application of the non-switching gain methodology to design problems.
Two examples are used to demonstrate the effectiveness of the non-
switching methodology in design.

Chapter 7 reviews the results described in the report and suggests

new directions for future research.
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CHAPTER 2
CLARIFICATION AND MOTIVATION OF RESEARCH

2.1 Introduction.

The purpose of this Chapter is to motivate all subsequent more
general Chapters with simple one-dimensional examples. In particular,
in Section 2, a one-dimensional problem is formulated and solved to
illustrate the optimal (switching gain) deterministic control for
linear quadratic systems with variable actuator configurations.

The effects of process noise on this solution are examined in
Section 3. The dual effects which occur in the stochastic systems
motivate the suboptimal approaches described in Chapter 4.

The possibility of steady-state control of variable actuator
configuration systems with a single linear independent control law
is discussed in Section 6, motivating the work on the non-switching
gain solution and robust control laws in Chapter 5. In addition,
the possibility of existence of a steady-state stabilizing linea:
feedback control law with constant gain is compared with the work on
the Uncertainty Threshold Principle [Athans,gﬁ.gl.,37] in Section 7.
Section 7 contains the only case of this report where exact algebraic
conditions for the existence of a steady-state solution have been
derived. Unfortunately, these results do not readily extend in an
analytical manner to higher dimensions.

The question of existence of a steady-state solution to these
problems is of great importance. A system design is defined to be

reliable with respect to a certain class of control laws if there

.
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exists a control law from that class for which the infinite time
cost incurred using that control law is finite. Since the switching
and non-switching gain solutions are the optimal solutions for their
respective classes of control laws, if they incur an infinite cost, so
will any other control law from that class. In addition, since the
switching gain solution is the optimal control law for the determin-

istic problem, a system design is termed deterministically reliable,

or reliable if and only if the incurred infinite time expected cost
is finite.

In the next Section, a one-dimensional example is presented
which will be used to motivate the remainder of this report by
examining the ramifications of the switching and non-switching gain

solutions through their specific application to the example.

2.2 A Simple Example-~The Optimal Solution.

The following one~-dimensional example is used to demonstrate the
switching gain methodology presented in Chapter 3, and to show that
the general stochastic problem is analytically intractable. All proofs

and derivations are given in Appendix 2.

2.2.1 Problem Statement.
Lot the discrete-time system be one-dimensional with one control

variable u, and state variable Xy related by

X = ax, + b

t+l t kYt (2.2.1)

The value of the control multiplier (bk\ is a random variable which

takes on one of two discrete values at each time t.
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- ‘ bif k =0
b, (t) = (222 2)
l 1/b if k = 1

The random process k(t) is governed by the Markov chain represented

by
1t+1 - glt (2..2.3)
where
2
Et € R (2.2.4)
P P
P = 11 "12 (2.2.5)
Po1 Paa

At any given time t, the following sequence of events occurs:

I) x,_ is observed exactly, is computed, and k(t-1l)is

t P (£-1)
set to 0 or 1 depending on bk(t-l

variable representing the Markov chain;

X where k(t-1)is the

I1) may change values to b

By ey k(t)’

I1I) u, is applied.

For any given sample path, the performance index is given by

T
3 2 (qx> + rud) (2.2.6)
&= - t

where {0,1,...,T} is the time set over which the system is to be
controlled. The objective of the control problem is to minimize the
expected cost-to-go at time t, given by

2 2
V(xt,k(t-l),ut,t) = EI;E; (qu + ruT)lk(t-l) (e}

where the expectation is taken over all possible sample paths of

k(t), t<TST.
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2.2.2 Summary of Solution.
From Appendix 2.1, we find that the optimal control is given
by
g
Yo Wl YN e WIS
NN . . X, (2.2.8)
r+"0,t bso,t +"l,t (1/b )Sl,t+1
where
1r = “0' = P1 (2.2.9)
=t ﬂl,t == t=1

Thus, the control law is linear in
two precomputable gains, depending

Given xt, xt_1 and “t—l

the state xt, and switches between

on the value of k(t-1).

15 X, —ax
I LT g L S
0 ut—l
k1! = (2.2.10)
b 0 X, -ax
t t-1
| e rapume ol
t-1
- - 1 - ] 3 = (]
and k(t-1) 0 if Et—l [1 0]' or 1 if Et-l (0 1]°*.
The optimal cost-to-go is
2
* =1 =
\' (xt,k i,t) xtsi,t (2.2.11)

where S and S
1,

o,t t

equations:

are propagated backward in time by the following

™
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. = : = 1]
Assuming k=0 at time t, then Et [pl1 p21] and
rlp..abS_ . +p. (a/b)S 1
e 110, t+17P21 1,t+1
0,t 2 2 2
+
[r4p) 1078y ¢417P2) (1/D7)S) 4 4y)
blp, .abs + (a/b)s ] 4
A P11, 041 P21 2 1,t+l
T h bl 2 2 S0,t+1
’
BPE 8y e Py (WP IS
abs + (a/b)s :
P! F31" 0 ee1 P21 W BTRy e "
21 2 2 Loel {2.2.22)
blr+p, 078y 1 1+P5151,¢417P )
. o : = .
Assuming k=1 at time t, then lt (p12 p22] and
r(p, ,abs +p,,(a/b}s ]2
St 12250, t+1*P22 1,t+1
b 1P 2 2 2
(r4p1,0 Sy, ¢417P22 (1/P7)S) gl
B bl .t A, g k2
N rod P12%%%0,t+1'P22 L4l )
12 2 2 0,t+l
T4Py oD S 43P (1D )8, 0y
abs, . .+p.. (a/b}S g
N SO P128%%0, 41022 1,41 .
22 2 2 1,640 (242,13
blr+p,,b Sy +41%P255),¢417P !

Note from equation (2.2.8) that u_ switches from one linear gain

t

to another, depending on the value of x, -- thus, this solution depends

t

on an exact knowledge of x If knowledge of X is corrupted by measure-

e

ment noise (or, if u, is corrupted by control noise), then it will be

T

shown by example that this becomes a dual control problem.
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% 2.3 The Dual Control Effect. ;
? To demonstrate the difficulties encountered when white process
3 noise is present, the optimal solution for the one dimensional
i
? example is derived over the time interval {0,1,2) with additive white %
é control noise present. The system is now represented by
| Xep1 = A% + bk(t)u + E (2.3.1)
Et is discrete time white noise with zero mean, E[{ E ] = Gt o’
probability distribution p(£), and is uncorrelated with X and k(1)
for T<t.
! Thus, the problem is to find u; and u; such that the expected
cost-to-go is minimized.
From Appendix 2.2, the optimal control one step back in time
(at t=1) is
l: m, (1|1)b, |
E (2.3.2) .

e ’i;" (lll)b

where hi(lll) is the probability that kl = i, given the information

set Z

{EWJ'X "Xy }. As expected, this control is of the same

W 0'"

form as is the deterministic control law, equation (2.2.8), since
there is no benefit in trying to determine k1 more accurately through
the use of a special control value. 1In other words, there is no dual
control effect at t = Tf-l (in this example, t=1).

At t=0, the situation is different. Now, the optimal control will

i force the system to supply more information through the state at t=1 l

than it normally would in the absence of the process white noise Et.

T —————— A
= e e MJ
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*
In order to compute uye a numerical minimization of a numerical

*
integration (in general) must be performed. Thus, u0 is the

solution of

|

¥ 3 2 2 =

vV (x,,0) = min X q+ur+=q
. Tt (L e
0O '0"0
1

+ E > ; x> |q(1+a2)

k.= k.= 1

0 1 R(xl)

2
22
[:i; "i(lll)bi] q‘a
1=
: 2
LZ; ni(lll)bi] q

dp(x, |k, ,k_,2 )p
ULl g B Ko
(2.3.3)

where

p(x ax b u )WJ

A (2.3.4)

nk(lll) o gpkj
p(x -ax, bu)n

and p(xllkl,k ZO) is the probability measure of x, over R(xl),

(o 1

1’ ko, and ZO'

the range of xl, given k
Equation (2.3.3) is very difficult to solve numerically, and

for any realistically-sized problem would be economically infeasible.

For the limited amount of computation that has been done with equation

(2.3.3), the dual control effect is evident from Table 2.1l. Note

that as the process noise variance increases, the trend is for the

*
control uo to increase. This is due to the need for a larger control

to lessen the effect of noise on future estimations of the structure.
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Table 2.1
*
The optimal control u, versus x, and =.

* 1 3 * s 6 * = 0
X uo(—— ) “0("_ ) uo(-—l)
-2.0 2.3170089 2.3188635 2.3201611
-1.6 * 1.8550055 1.8559061
-1.2 1.3898305 1.3907551 1.3912676
-0.8 0.9255912 0.9252997 0.9261950
-0.4 0.4606236 0.4606920 0.4607206

0.0 -0.005 ~0.005 -0.005
0.4 ~0.4706236 ~0.4706920 -0.4707206
0.8 -0.9355912 ~0.9359997 -0.9361950
.2 -1.3998305 ~1.4007551 -1.4012676
1.6 -1.8635511 ~1.8650055 ! -1.8659061

* - calculation did not converge due to numerical errors

The system used in the calculations is described by equation

(2.2.1) where

a = 2.
k(t) is Oor 1
by = 2.
b; = .5
q = 3.
rw= X,

7 R
z= ’.3 .7'
» < |3
-0 =9

Table 2.1 is only intended to demonstrate the difference in the
optimal control laws at time O for a two-stage process; numerical
accuracy is not assured. Specifically, the values of -.005 for

u, (x. = 0) are highly doubtful, as well as the consistent

0 0

asymmetry between positive and negative values in the Table.
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2.3.1 A special Case.

It is interesting that for one specialized probability distribu-
tion p(f), when the optimal control u; is large enough, the optimal
solution is identical with the deterministic solution of Section 2.
From Appendix 2.3, assuming

‘57%§ , for —/3?_5 E < /32
p(E) = l (2.3.5}
0 otherwise
as shown in Figure 2.1, if u; from the deterministic solution (equation

2.2.8) satisfies

*
- > = i
I(bk bi)uol 2/3T for kj # i (2.3.6)

*

then U is also the solution to the stochastic control problem.

Physically, because the noise is amplitude limited, it is easy

to exactly deduce the structure if the control is large enough.
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2.4 Existence of a Steady-State Solution.
Although, as will be stated in Chapter 3, little can be said
about the existence of a steady-state solution to the general n-dim-
ensional switching gain problem, for the one-dimensional example,
exact conditions for the existence of a steady-state solution can
be found. They are in the form of two simultaneous algebraic equations

which can be solved analytically.

piel (a . blp,,ab+p,, (a/b)h] ) 2
11 2 2
py,b +p,, (1/b7)h
P, .ab+p_. (a/b)h 2
+ Py (a i 221 3 ) h (2.4.1)
b(p,,b"+p,,h/b"] 4
b[plzab-!-pzz (a/b)h] 2
BES Gy e - 2 2
plzb +p22(1/b )h
p, ,ab+p_..(a/b)h 2
+ P, (a it 222 3 h (2.4.2)
b[p,,b +p,,h/b]
The equations are derived in Appendix 2.4. In these equations the ﬂ

variables ' and h are defined as

so t
r = 1lim —— (2.4.3)

t - 50,41

and
S
h = 1lim §l¢£- (2.4.4)
tr=x 0,t
whenever both So " and sl & increase without bound as t * =, as defined
’ ’

in equations (2.2.12) and 2.2.13).
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Since I' is the limiting value of the ratio of the next value of

So,t to the present value SO,t+1' it is necessary that
F ey (2.4.5)
for
So,t (2.4.6)
Similarily, if s0 & has a limit, then ' can have a maximum value of
’

1. Therefore, a test can be made on the solution (h,T') to equations

(2.4.1) and (2.4.2) for the existence of a steady-state solution:

If
h # 0 or @ (2.4.7)
then
i > .4.
sO.t' Sl,t* o if I 1 (2.4.8)
So,t' sl,t converge if ' < 1 (2.4.9)

and there is no conclusion if I' = 1.
By way of eliminating all possibilities, as an aside, a limit cycle
to the solution of equations (2.2.12) and (2.2.13) cannot occur by

Lemma 1 of Chapter 3.

2.5 Conclusions on the Switching Gain Methodology.

The purpose of the last three Sections on the one-dimensional
switching gain example was to clarify the approach of this phase of the
research, and to motivate the approach of Chapters 3 and 4. In this
Section, some implications of the one-dimensional example will be

discussed.
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2.5.1 Implications of the Dual Control Effect.

It was shown in Section 2 that the optimal solution to the deter-
ministic class of variable actuator linear quadratic control problems,

i.e., the switching gain solution, 1is conceptually straightforward,

e s (R

although computationally complex off-line. Unfortunately, in Section 3,
it was demonstrated that the optimal solution of the stochastic version

of the same problem is infeasible. (Witness the problems of calculating

the two-step optimal solution.) Therefore, since the switching gain
deterministic solution is essentially the only solution which can be
described analytically, the research involved in developing the
n-dimensional switching gain solution is justified. This is exactly
what is presented in Chapter 3.

It then remains to investigate any extensions (which will of
necessity be suboptimal) which may be made to the switching gain
solution to adapt the solution to the stochastic problem. In Chapter
4, a start is made in that direction. These are two basic routes
to follow: The various hypothesis testing algorithms in combination
with the switching gain solution, and a formulation developed in
Chapter 4 which gives the control vector a dual effect; the control
is changed to increase the accuracy of the estimation algorithm.

The optimal control would use techniques from both categories, as the

dual effect is clearly seén in Table 2.1.

2.5.2 Existence of a Steady-State.
Although for the one-dimensional example, it is possible to

determine the condition for convergence of the Riccati-like equations

%
|
i
!




(2.2.12) and (2.2.13), this method does not extend to the n-dimen-

sional solution.
the Riccati-1like
therefore, there

the remainder of

It is at present unknown under what conditions

equations for the n-dimensional problem converge;

is little comment on conditions for convergence in

this report.
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2.6 A Simple Example--The Non-Switching Solution.

In the previous sections of this Chapter, motivation was given
for the development of the optimal (switching) solution to the linear
quadratic variable actuator configuration control problem.
Several problems with the method were pointed out in Section 5.
Specifically, the methodology does not extend optimally to the stochas-
tic case due to the dual control effect. Secondly, the increase in
on-line complexity over the usual linear quadratic contrcl problem
is significant, especially in the suboptimal stochastic schemes.

In many instances, a stabilizing solution to this class of
control problems is desired which exhibits the same complexity as
does the usual linear quadratic controller. For instance, it may be
desired that a control law stabilize a system without requiring
error detection strategies and switching to a new form upon detection
of failure. A subclass of these problems occur when a robust gain
(one which stabilizes each confiquration without regard for the
dynamics of structural changes) for a set of linear systems is
desired. The first problem within this subclass deals with the
existence of such a gain. The second problem deals with the choice
of an optimum robust gain with respect to some cost index.

In the following Subsections, an example of non=switching gain
methodology is given as an illustration of the concepts; since the
derivations are quite complex, proofts are deferred until Chapter 5,

where the.entire development of the non-switching solution is presented.
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The following formulation is only for the steady-state solution;
| in Section 7, the conditions for existence of the steady-state solu-
| tion will be given and related to the Uncertainty Threshold Principle

i
| [Athans,et. al., |

2.6.1 Problem Statement

In Chapter 5, the non-switching control problem is solved for
linear systems with variable actuator configurations and quadratic
cost. It was stated in the conclusion of the previous Section that
a relationship exists between the existence of a steady-state solution
and the Uncertainty Threshold Principle. In this Subsection, the
existence of a steady-state non-switching solution to the one dimen-
sional example presented in Section 2 will be studied to illustrate
this relationship.

The system to be used is

X = ax_+ b u (2.6.1)

t+l t k't

where x, a, bi and u are scalars, k can be either 0 or 1, and t takes

on integer values.
b if k=0
b = (2.6.2)
1/b if k=1

The index k represents the structural state of the system, and

is a random variable with statistics generated by the Markov chain

|
|
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L PS4 9 (2.6.3)
p 1-p

P = (2.6.4)
1-p p

where li ¢ is the probability that the structural state is i at time t,
'

given some initial condition m (T . .. ).
o init

The infinite-time, or steady-state non-switching control problem
is formulated by specifing that the solution u, is to minimize the

QO
) given by the sum

cost of a trajectory (kt ,
init

00

J = qxi + ru (2.6.5)

=T init
2.6.2 Summary of Solution

The solution is computed, from Chapter §, equations (5.7.17)

and (5.7.18), when it exists, as the solution (so,sl) of

: 2 2.
e (bso+>l/b)bso (bso+s1/b) (r+b so) )
- % = "
b 2 -‘;‘(bzs +S. /b )+r 4(‘2(b28 +S /b:z)+r)'2
0 01
t 2 2
(bSO+sl/b)S1 (bbo+sl/b) (r+sl/b )
R 2 2 i 3 2 3
1 . 1 ~
(Y (b so+sl/b Y+r)b 4 (% (b So+sl/b )4r)
+q (2.6.6)
(bS_+S_/b)bS (bS _+S /b)2( +b25 )
2 il 0 G 1 4 0
B = WUk S 2 2 2 .. .2
1 o
5 (b so+sl/b )+r 4% (b so+sl/b )4r)
2 2
(bso+sl/b)s1 (bso+sl/b) (r+Sl/b )
it 4 A 2 > i 3 3. 2
(s (b So+51/b )+r)b 4(H(b“so+sl/b ) 4r)

+q (2.6.7)
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and the control is given by

(bs _+sS./b)a
u‘ = - . | . x (2.6.8)

2 2 t
(r+% (b so+sl/b ))

Note that the steady-state solution is a linear feedback control
law with a constant gain which is pre-computable using equations
(2.6.6) and (2.6.7). The on-line implementation of this solution has
the same complexity as does the usual linear quadratic steady-state

solution.
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2.7 Existence of a Steady-State Solution and the Uncertainty
Threshold Principle.

In this Section, the existence of a steady-state solution to
equations (2.6.6) and (2.6.7) is related to the Uncertainty Threshold
Principle [Athans et. al.,37]. This Principle states that for a
certain class of systems, there exists a threshold, or bound, on the
degree of uncertainty in the system dynamics beyond which no control
law will stabilize the system. Furthermore, it is noted in
[Athans et. al.,37] that there does exist a "minimizing" control even
though the infinite~time cost in infinite.

For the non-switching gain class of controllers, it will be
shown in this Section that, at least for the one-dimensional example
of Sections 2 and 6, such a threshold does exist; furthermore, it will
be explicitly calculated. In addition, it will be demonstrated that
the non-switching control gain converges even when no finite cost

steady-state solution exists.

2.7.1 Formulation of Existence Problem.
The question is now asked: When does the steady state solution

exist? I.e., when is the cost, given by

2
= i
J 3(80 + Sl)xo (2.7.1)

finite?
This problem is solved by showing when the solution does not
exist.

Allowing

5y * (2.7.2)

and setting

o & s e -




sl t
{ h = 1lim ! (2.7.3)
) t>- O,t
i
i s
i File fih Rk (2.7.4)
t>- 0,t+l
s where S0 t and S1 ¢ are the values of the r.h.s. of equations (2.6.6)
A ’ .

and (2.6.7) iterated backwards t times from an initial value Si 0=Q,
’

i equations (2.6.6) and (2.6.7) become

2 2
- az(P(l _ (bth/b)b . (b+h/b)°b )

3 (b2+h/b°) (b%+h/b?) 2
(b+h/b) (b+h/b) °/b>
+ (-p) (2 - A20RL_, (bih/B) /b (2.7.5)
L(b“+h/b")b (b"+h/b")
2 (b+h/b)b (b+h/b) 2b>
h''= a ((1-p)(1- > 5 * 2lb25
% (b2+h/b2) (b+h/b°)
(b+h/b) (b+h/b) 2/p?
+p{h{l - 2 3 + 2 3 2 (2.7.6)
L(b“+h/b )b (b“+h/b°)

2.7.2 Summary of Solution.

Equations (2.7.5) and (2.7.6) have 5 solutions. The solutions of h

and ' of interest are:

For p # %;

h = =(p(b?(6-2W)-3b%-3) + ((2b7-2) p-b+1)V

+(4b%-2b%42) p24bB-2b%41) / ((2b%42) p2-2pW) (2.7.7)

I = a?(-p(b? (2p2+4p-2)+ (b%+1) (p2-2p+1) 1 % (b%+1) p?)

/((b2+1) % (2p-1) (2.7.8) 1

|
{




i ot i M s
o R ea———

R i

| where
H v = (b (p(a-4 b (2p2+ap-2) +b° (p2-2p+1) +p3-2p+11 )
i +2p2—2) +b8 (592"2P+1)+p2—2p+1 ] E
g and

W= [(b%+2b%+1) p2+ (-2b%+4p%-2) p+pB-2b%+1)

For p = %;
h=1
a22-1)2

Fow  SEESL
2(b¥+1)
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(2.7.9)

(2.7.10)

(2.7.11)

(2.7.12)

ke sbibi it o ShaRuaadde . s 04 m




2.7.3 Graphical Illustration of Solution.

Equations (2.7.7) through (2.7.12) are too complex for much
information to be gleaned from study. Therefore, their significance
is demonstrated graphically in this section.

These equations are used to compute the absolute values of a
versus b and p above which no stabilizing non-switching control exists;

i.e., since I' is the limiting ratio of § t

0,t o sO,t+1' what threshold

value of lal yields I' = 1? Since the system (2.6.1) is a discrete
time one, this threshold quantifies how unstable the open-loop system
must be for there to be no stabilizing solution. This quantity is

called the uncertainty threshold value of |a|. For the case p = %,

la’thteshold is easy to compute from equation (2.7.12)

4 b
lal ¢ hreshora l%ﬁ%:ffll— (2.7.13)
For p # %,
'althreshold (b2+1)[(29'1)
/tp b+ p-16% (207 +ap-2)+ 1341 (p2-2p+1) %))
(2.7.14)

A plot of af 0 14

versus p (long axis) and b is shown in Figure 2.2.
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The 1In(b) axis is used because Ial is symmetric with respect

threshold

to ln(b) around zero (Ial (b) (1/b) ). b varies

threshold - Ialthreshold

-2. -.05
from e €2 to e ; p varies fromp = 1 to p = .01 . Note that

3 > © g > 5 = Q. is 1 > e S > 2
,d,threshold © as b 1 and/or p C This is because as b 1, the

system looks more and more like

= S .7. 5
xt+1 axt but ~ (2 15)

which is controllable for all values of a. As p * 0, the system is
switching more and more rapidly between the two structures; therefore,
each structure has less time to influence the system unfavorably and

the system becomes easier to control, leading to ‘a(threshold =

2.7.4 Best Control with Infinite Cost.
Although the cost may be infinite, a finite gain control exists.

From equation (2.6.8), and allowing S, -+ « and Sl/S0 »> h, the control

0
becomes

0 W e SRR, o (2.7.16)

(b2+h/b2) t
Note that the control gain does not depend on g or r, but only on p,
a and b, as in the work with the Uncertainty Threshold Principle. A
plot of h versus p (long axis) and b is given in Figures 2.3a and 2.3b,
in the same manner as for I'. Note that as p * 0+, h + @ (except at
b = 1). For this boundary, we rely on a symmetric argument, switching

the roles of S _ and S

0 1’ since we only know that S, + ®,

1

An interesting symmetry exists in h with respect to p. If h is

defined as

h = 1limh {3.7.17)
b0
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Figure 2.3b: h versus p, b.
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then
Bow 2R (2.7.18)
P
Letting p = % + x,
= 1 - 2x
h(x) = m; (2.7.19)
and
= 1
h(x) = — (2.7.20)
h(-x)

Thus, ln[E]p)] is symmetric around p = .5 . This solves the boundary
problem, because as p - 1, h > 0 (except at b = 1), and the condition
S0 + o js satisfied (Sl-*O). Since h is symmetric, and h(p,b)-*ﬁkp)
for p»>0, the solution is well-defined at p = 0.

In Figure 2.4, the control gain divided by a, g, is plotted as a
function of p and b.

*

u, = =-gax

. (27200

t
+ -
Note that as p > 0 (and h > ®), g > b, and as p > 1 (and h > 0),
+
g > 1/b, and that b0 = b and b1 = 1/b. Thus, as p > 0 , the optimal gain
tends towards the deadbeat controller for the system in structural

state 1, and as p > 1, the optimal gain tends towards the deadbeat

controller for the system in structural state O.




Figure 2.4:

g versus

P
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2.7.5 Conclusion.

In this Section, the steady-state properties of the non-switching
solution to a specific example of actuator failure were studied, and
were related to the Uncertainty Threshold Principle. 1In particular,

the existence of an uncertainty threshold has been established, and

with the help of the high degree of symmetry in the example, the values

for Ial » given b and p, were calculated. It was also shown

threshold

that the best control with infinite cost is a function only of a, b and

P, a situation analogous to the solution obtained in the papers on the

Uncertainty Threshold Principle [Athans et. al.,37].

An analogous solution to that presented here should exist for the
switching gain problem, and in fact, the rudiments of such a solution
are given in Section 4. As a guide for future research, it would be
interesting to compare the two methodologies on the basis of these
solutions. Unfortunately, it is mathematically intractable to extend

this result to the multivariable case, although another approach may

be found.
2.8 Summary.

The unifying issue in this research is the interrelationship
between the issues of control and reliability. Section 7 brushes on

the question of when a system design is considered a reliable design.

In Chapter 3, a reliable design will be defined as one in which the
steady~state switching gain solution exists. Therefore, questions
concerning the existence of such solutions become quite important.
Unfortunately, little headway has been made in the development of any

simple test for the existence of the steady-state solution. Only in
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Section 7, in the specific case of the non-switching gain solution, j
for a specific (relatively trivial) example, and in Section 4 for the
same example with the optimal solution, have conditions for existence
of a steady-state been resolved. In Section 7, these conditions are |
given explicitly; in Section 4, they are given as the solution to two
simultaneous equations. For the general n-dimensional problems in the

remainder of this report, existence can only be tested by iteration of

the solution equations.
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CHAPTER 3
THE SWITCHING GAIN SOLUTION

3.1 Introduction.

In this Chapter, a control methodology for linear systems with
quadratic cost criteria and variable actuator configurations will be
developed which accounts for the failure, repair and reconfiguration
of the actuators by switching the control gain on detection of a
change in configuration. This problem is viewed as a control problem
rather than as the traditional estimation problem. Therefore, a
deterministic model is assumed, except for the random changes in
configuration, which are modeled by a Markov chain. This methodology
has the advantage that all gain and expected cost calculations are
done off-line. The gains switch on-linewith changes in the configura-
tion, which are observable with one~step delay for almost all values
of u, (i.e., except for a set of measure zero). In addition, the
method is useful in the stochastic case, though not optimal, in
conjunction with identification methods such as hypothesis testing
and dual identification, which will be described in Chapter 4. The
gain and expected cost calculations can be used as an evaluation
technique in computer-aided design of linear systems. An example
would be in trade-off studies of various redundancy configurations
with respect to performance, reliability, and system effectiveness.
The disadvantages of the technique as it is presented here arc that it

requires perfect measurement of the state and that only multiple
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actuator configurations are considered. The multiple sensor configura-

tion problem should be dual to this work. Changes in the A matrix
are a minor extension; however, the general problem allowing variations ‘
in both the actuators and the observers would be a major result.

Previously, several authors have studied the optimal control of
systems with randomly varying structure. Most notable among these is
[(Wonham,22], where he develops a solution to the linear regulator
problem with randomly jumping parameters in continuous time. The
solution assumes apriori that the controller has perfect information
about the present state of the random parameter process. Little work
was done on the steady-state existence problem.

The solution presented in this Chapter is analogous to that of
Wonham's; however, the discrete time formulation of the problem allows
the controller to observe exactly with one step delay the value of the ﬁ
Markov parameter process. Thus, it is shown that for the discrete- :
time process, the optimal controller is not dual. W

In addition to this conclusion, this research makes the connection, !
for the first time, of control and system reliability and effectiveness.
This is the unifying concept in the entire report, and has been discuss-
ed in detail in Chapter 1.

The procedure for determining the existence of a steady-state
solution to the switching gain control problem divides system designs
into two classes: If a design allows a steady-state solution, then 1
that solution is stabilizing (see Section 7, Chapter 5); therefore,

that design is classified as a reliable design. On the other hand, if

— - : R — inJ.
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no steady-state solution exists, then that design is classified as
inherently unreliable.

Although no easy test exists for the existence of a steady-~state
solution, the computer can always be used to iterate equation (3.3.6)
backward in time and check for stability. Therefore, this methodology
yields a classification of systems into those which are inherently

reliable and those which are not.

3.2 Mathematical Formulation.

In this Section, the n~dimensional extension to the one-dimension-
al switching gain result presented in Chapter 2 will be developed.
The only non-trivial task is to prove that the system structure is

observable for almost all values of the control. The system model is

Bead " 22¢ * Byie) Ut s
where
P £3:3.2)
m
u, € R (3.2.3)
Aer" (3.2.4)
and, for each k, an element of an indexing set I
ke Xwl0:1,2 « « oL} (3.2.5)
nxm
B, R (3.2.6)
where
B, € {gi}iEI (3.2.7)

The index k(t) is a random variable taking values in I which is

governed by a Markov chain and

L
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n_ erH! (3.2.9)
o -
where Tri & is the probability of k(t) = i, given no on-line information

about k(t), and T , is the initial distribution over I.

It is assumed that the following sequence of events occurs at

each time t:

n o x, is observed exactly

2) then —B—k(t-l) switches to Ek(t)

3) then u, is applied.

The control interval is assumed to be

$0.1:2, « & « ¢ (3.2.10)
and the cost function is selected as
T-1
Jp (B )i X!
N T T T
r t_U.’.‘.tQ{t + Ht_R_.“lt s ‘{TQET (3.2.11)

The objective is to choose a feedback control law, which may

or u, , mapping x  into u,

depend on any past information about E‘-t t

*
b,
*
L LR T T

such that the expected value of the cost function JT from equation

R” —» " (3.2.12)

(3.2.13)

(3.2.11)
(3.2.14)

Tp = Bl ]0,)

*
is minimized over all possible mappings Q_t at Qt .




3.3 The Switching Gain Solution.

Normally, a control law of the form (3.2.13) must provide both
a control and an estimation function in this type of problem; hence
the label dual control is used. Here, the structure of the problem

and u

allows the exact determination of k(t-1) from Xer X4 U,y

for almost all values of u . This result is stated and proved in

t-1

the following theorem.

Theorem 1l: For the set {Ek} X

}

I where the Ek 's are distinct, the

has distinct members for almost all

L
= *
set {x Ax T

Xk, t+1 g * Syl

values of Et "

Proof: See Appendix 3.1.

Ignoring the set of controls of measure zero for which the
members of

%
{(x, ce1tk=0 s M

are not distinct, then for (almost) any control which the optimal

algorithm selects, the resulting state x can be compared with the

t+l

members of the set (3.3.1) for an exact match (of which there is only
one with probability 1), and k(t) is identified as the generator of

that matching member Eg, e41

Since perfect identification is the best any algorithm can achieve,

* *

the optimal control law B~ ) can be calculated with the

¢ ()

assumption that k(t-1) is known, since this is the case with probability

one. Thus, this solution will be labeled the switching gain solution,

since, for each time t, L+l optimal solutions are calculated apriori,

and one solution is chosen on-linefor each time t, based on the past
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measurements Xx X and Et; , which yield perfect knowledge of

t' =t-1
k(t=-1).
Dynamic programming will be used to derive the optimal switching

gain solution. At each time t, the expected cost-to-go using the

control sequence

* * *
L . P . P e (3.3.2)
and given the value of k(t-1) is defined as
V(E‘t ,Et )k(t—l)lt)
T T
5 _’Stgl‘.t + u.Ru,
*
+ E v (x_ . ,k(t),t+]) | kx(t-1)} (3.3.3)

k(t)

where * denotes the optimum value and v* is the optimal value of V.

t+1

Then, by dynamic programming

Xt
e = 8lx,

*
{V Gy, ko) ee) | k(t-l)}) (3.3.4)

V'(x (k(t-1),t) = min ngx + u
TS B

+ Ek(t)

It is proved, from Appendix 3.2, that

* T
vV (x, (k(t-1),t) _itik,tit (3.3.5)
where the Sk ¢ are determined by a set of L+l coupled Riccati-like
’

equations (one for each possible configuration):

s v |
k.t = A '1= Pix £i,t41

[ T -1
= uz; Pix £4,e0184 “5 * Z.; Pop 2424, e018¢

. BTS 'A+g (3.3.6)
g Pik Zi34,t41 ‘— e
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The optimal control, given k(t-1) = k, is

o ==-lR+ Bl s g, It
g T S L Pix 2L 25,6415

T
gpik Byl eatis At A 18

Writing

u =G X (3.3.8)

T =1
T i [5 * Z; Pix Ei—s-i.t+1§i]

T e Pik Rifyen? Gl 20
*
Thus, u t =¢t‘5t) is a switching gain linear control law which
depends on k(t-1). The variable k(t-1l) is determined by
k(t~1) =i iff x _=Ax _+B (3.3.10)

t”- 2X el Silea

Note that the §i t's and the optimal gains G can be computed
’

k,t
off-line and stored. Then, at each time t, the proper gain is selected

on-line from k(t-1), using equation (3.3.10), as in Figure 3.1.

3.4 Discussion of Results.

The solution in section 3 is quite complex relative to the struc-
ture of the usual linear quadratic solution. Each of the Riccati-like
equations (3.3.6) involves the same complexity as the Riccati equation
for the linear quadratic solution. In addition, there is the on-line
complexity arising from the implementation of gain scheduling. 1In

Chapter 5, a non-switching gain solution will be presented which has

an identical on-line structure to that of the linear quadratic
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76265AW028
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a' k(t-1)
2' - ' - = . . A T - !'
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Unit
Delay
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s —0——80- <,
k(t=1) 5 l

0

Figure 3.1: The switching gain control law.
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solution, but has similar off-line computational complexity to that of |8
the switching gain solution. Depending on the system requirements,
either solution could be used; the non-switching gain solution is

suboptimal, but requires less on-line complexity. This trade-off may

favor the non-switching solution in some cases.

A steady-state solution to equation (3.3.6) may exist, but the
conditions for its existence are unknown. The steady-state solution
would have the advantage that a time~invariant set of gains result.
Thus, only one set of gains need be stored on-~line, instead of requir-
ing a set of gains to be stored for each time t. Since the steady-
state solution is simbly the value to which equation (3.3.6) converges
as it is iterated backward in time, at present, the equations can
be iterated numerically until either they converge or meet some test
of non-convergence. Unlike the non-switching solution presented in
Chapter 5, the possibility of limit cycle solutions in the switching

gain computations is excluded by the following lemma:

Lemma 1l: If the optimal expected cost-to-go at time t is bounded
for all t, then equation (3.3.6) converges.

Proof: See Appendix 3.3.

Once again, it is stressed that the existence of a steady-state
solution to the switching gain problem establishes a division of
system designs into those which are inherently reliable and those
which are unreliable. Even though conditions to test for the exis-
tence of the steady-state solution are unavailable,software can be

used with iteration for the test.

|
1
|




In Section 5, some numerical examples are given to illustrate

the switching gain solution.
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3.5 Examples.

In this Section, a two-dimensional example is presented with three
different switching gain solutions to illustrate the switching gain
computational methodology. The computer routines which are used in
the calculation of the switching gain solution are listed in the
Appendix. The primary subroutine is READY; it calls WEIGHT. Any other
routines which are used are from the standard ESL subroutine library.
The main program RDYMAIN is used to call READY.

Example 3.1 is a two-dimensional system with four structural
states corresponding to the failure modes of two actuators. In this
example, failure of an actuator is modeled as an actuator gain of
zero. Thus, the four structures are: I) Both actuators working (go ):
II) One actuator failed (E]_and §2 ), and III) Both actuators failed
(53 ). The system is controllable in all structures except for the
sturcture represented by 53 .

Actuator failures and repairs are assumed to be independent events
with probabilities of failure and repair, per unit time, of Pe and P
respectively, for both actuators.

In Example 3.1, the matrixes Q and R are the quadratic weighting

matrices for the state 51: and the control u respectively. The

-t

matrix P is the Markov transition matrix, which is calculated from knowl-

edge of the system configuration dynamics, represented graphically

in Figure 3.2.
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Figure 3.2: Markov transition probabilities for Example 3.1.
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There are three Cases to Example 3.1. Each Case assumes a different
failure rate and repair rate for the actuators. Case i) has a high
probability of failure and a low probability of repair, relative to
Cases ii) and iii). The switching gain solution is not convergent for
Case 1i); the gains themselves converge, but the expected costs do not.
Only configuration state O is stabilized with its corresponding gain,
G-

Cases ii) and iii) both assume more reliable actuators than does
Case i). Both Cases ii) and iii) have convergent switching gain

solutions. Therefore, both Cases ii) and iii) represent reliable

configuration designs, while Case i) is unreliable. This difference

is due ehtirely to the different component reliabilities. Equivalently,
Cases ii) and iii) are stabilized by the switching gain solution, while

Case i) is not. Note that in this Example, stabilizability is not

equivalent to stability in each configuration state, or robustness.
For this example, no robust gain exists because the system is
uncontrollable from configuration state 3.

Cases ii) and iii) are also presented in Chapter 5, where their
non-switching gain solutions are given. According to the theory, it
should be more difficult to stabilize a given system with the non-switch-
ing gain than it is with the switching gain, because of the optimality
of the switching gain solution. This is demonstrated for this example;
in Chapter 5, the non-switching gain solution to Case ii) is not

convergent.
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Example 3.1:
[2.71828 0.0

A =
k& 0.0 .36788

[1.71323 1.71828 [0.0 1.71828
20 3 El o

| -.63212 .63212 (0.0 .63212

o
I
|m

1.71828 0.0 [0.0 0.0
23 . Sy

=.63212 0.0 | 0.0 0.0

1.0 0.6 ]
0.0 1.0

kO

]
~
[
@® S
(2} @©
[

|

]

i 2 2 T
1-2p +pg (1-pelp, (A-peip, Py
2
L Pf(l-pf) l-pf-pr-l»pfpr P Pe pr(l-pr)
== 2
Pg(1-p,) P Pg 1=pg-P *PeP . P (1-p )
2 2
Pg¢ (1-p )pg (1-p )P 1-2p +p_
= -
The system dynamics are
=Ax_+ B u X = [x x ]T
Zead “8Z2e * B8y Xt 1,t *2,t

k(t) € {0,1,2,3}

The cost, which is to be minimized, is

00

T T

J = E[E X, Qx, +u Ru |m
t=0
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Example 3.1, Case i)
p_= .3

Non-Convergent; but gains converge:

-.9636
o -.9134
-.9234

G =
- -.8699
-.8094

G -
2 -1.020
-.9636

G =
S ~-.9134

Stability:

- 2 _
1 " % 1
r.49 “0 |
.21 "1
_11: =
21 n2
uog_ m, ‘
e
1.094 x 10~°
~5.835 % o >
1.740 x 10~ °
<5.1%6 ¥ 1072
.9186 x 10°°
~4.05 & 10°°
.7353 x 10°°
-3.923 x 10~
Configuration Stable
0 (B,) yes
1 (gl) no
2 (§_2) no

3(B,) no




Example 3.1, Case 1ii)
pf R pr = .9

N s -

r

=

UOIJ

Convergent Coupled Riccati Equations:

.811
.09

.09

-.8890
e -, 7752 -.09914
25.57
S 8.611
Stability:

Configuration

0 (B,)

1 (B))

2 (8,)

3(B,)

e it




Example 3.1, Case iii)

pf = .01, pr = .98

= -

.9799

- 009999

.009999

.0001020
X

ot

Convergent Coupled Riccati Equations:

-.7558
0 1..8073
15.88
S =
v 8.105
-.7060
G =
3 -.8441
16.06
S . =
A 8.074
- .8375
G =
2 |-.7543
[16.31
s =
4 8.199

.1270

-.1786

8.105

6.137

.1186

-1.723

8.074

6.143

.1090 |

-.1669,

8.199 |

6.158 |

84




Stability:

Configuration Stable

0 (_B_o) yes

1 (-B-l) no
2 (22) no

3(,) no
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3.6 Summary.

In this chapter, the optimal solution to the linear control
problem with variable actuator configuration was developed. It was
shown that the optimal solution uses a linear switching feedback gain
which depends on the previous configuration. This configuration is
directly computable from the past measurements; this fact allows the
development of the switching gain solution by eliminating dual con-
trol considerations. The exact measurement of the configuration with
one-step delay holds only for the deterministic case, where there is
no corruption of the state or control observations by noise.

In Chapter 4, the use of the switching gain methods will be
demonstrated for stochastic problems in conjunction with two different
forms of identification: Hypothesis testing and dual identification,
a technique for "pushing” the control variable out of the noisy
region, when the noise is amplitude limited, to obtain an exact

identification of the system structure.
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CHAPTER 4 |
EXTENSIONS TO THE STOCHASTIC CASE |

4.1 Introduction.

In Chapter 3, the optimal solution to the deterministic linear

,‘.4. T T A
e S s veomin 5 i i

quadratic control problem with variable actuator configuration was

developed. It was also demonstrated that the optimal solution of 4

the general stochastic linear quadratic problem is hopelessly complex
in Chapter 2. Therefore, in this Chapter, extensions to the deter-
ministic solution to allow its operation in a stochastic . nvironment
will be studied.

From the derivation of the switching gain solution, whenever‘

the structure of the system is known perfectly with one step delay,

and if it is assumed that it will be measured perfectly at the next

} time instant, the optimal solution is the deterministic switching
gain solution. In designing a suboptimal control system, a method

of identifying the system structure is used, with the assumption that
the identification is perfect, and the appropriate deterministic
gain is selected.

Two conceptually different methods of structure identification
will be presented in this Chapter. The first is classical hypothesis
testing. It is the easiest to implement, although extensions to
n~step hypothesis testing can be made which are very complex. The

second method is labeled dual identification; the expression is used

because it takes advantage of the dual effect of the control law to

guarantee perfect identification. In this method, a perturbation
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(which may or may not be that small) to the deterministic control is
introduced which separates the effect of amplitude limited white
control noise from that of the system structure. As a worst case
control law, this perturbation would be applied at each time instant,
but in practice, it would only be applied once every n time instances
so that its overall effect on system performance would be lessened.
In the next Section, the system modcl will be described, and the

hypothesis testing identification algorithm will be presented.

4.2 Hypothesis Testing Identification.

The system model used here is the same as in Chapter 3, but with
the exception that additive white noise is introduced into the
dynamics:

= ﬂzst + (4.2.1)

X4l BryBe* &y

For the hypothesis testing identification method, ét is assumed to be
zero mean white noise with probability distribution pg). It is

assumed to be uncorrelated with k(t) and X.- Perfect measurement of

the state is retained.
The basic hypothesis testing method is very simple: At each time
t, one of L+l hypotheses is chosen, where each hypothesis Hi is
Hi : k(t-1) = i (4.2.2)
With each hypothesis Hi' there is a probability of Hi being

correct, given the measurement x and the past information:l(t—llt-l),

t
the probability distribution of k(t-1), given the measurements through

Xe1® Then the updated probability (see App.adix 2) ni(t-llt), the
probability of k(t-1) = i, given all measurements through Xoo is
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given by
P(x, -Ax__. -B.u__ )7 (t-1]|t-1)
m (e-1le) = t L e (4.2.3)
Jg plx, - AX, , " _B_jg_t_l)'lrj(t-lh-l)
Hypothesis Hi is assumed to be correct if
T (e-1e) > ﬂj(t—llt) for all j # i (4.2.4)

Ties are resolved arbitrarily. Then, given the correct hypothesis Hi'
the corresponding deterministic optimal switching gain is used to
compute the control at time t

G (4.2.5)

e T 24,eXe
as in equations (3.3.8) and (3.3.9).

The probability distribution is then propagated with the Markov
chain equation

m(t|t) = P7 (t-1]¢) (4.2.6)
and the process repeats.

This algorithm can work well if there are significant differences
in the effect of the control variable between configurations. When
the differences are slight, a mistracking will result until the errors
are large enough to be detected through equation (4.2.3). The method
does not exploit any of the dual effect of the control variable on
the measurement of the configuration. The method presented next does
use the dual effect to identify the correct structure. Analytically,
it cannot be said which method is best, as the optimal control law
will lie somewhere between the two. It is possible to extend the

hypothesis testing procedure to n-step hypothesis testing where a

hypothesis is made about the last n values of k(t) and is then tested.
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Since this investigation is not within the primary scope of this
research, it is left as an open problem for future research. It is

also possible that a combination of hypothesis testing and dual identi- 1

fication may be used to gain some of the advantages of both methods;

dual identification yields fast identification of the correct structure,
while hypothesis testing does not sacrifice control of the system
while there is a high probability that the structure is correctly

identified.

| 4.3 pual Identification.

The underlying concept of dual identification is to periodically
change the control in order to increase the accuracy of identification
of the structure. In the limiting case, the control is changed
enough to guarantee perfect identification of the current structure
with the next observation. For this case only amplitude limited noise
is considered. The system model is

iy * Bnies 2

X001 + y__&_t (4.3.1)

where ét is f-dimensional white noise which takes on values in the
unit sphere with distribution p(§) and is uncorrelated with x, and
k(t). M is an nx £ matrix which defines the ellipsoid in R" which
contains ﬂg‘t'

Normally, if no identification were to be performed, and if k(t-1)

were known, the optimal deterministic switching gain -c-;-k(t—l) & from
’

equation (3.3.9) would be used to compute 9_; .

*
e T Sxe-1),t X st

In dual identification, the goal is to compute a gain offset u

1l,t
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such that when the control

*
Et & P't + El,t (4.3.3)
is applied to the system, identification of the structure k(t) with

the observation x is guaranteed. To accomplish this, note that,

t+l
for a given Ek ' R will be in a bounded convex set determined by
-B-k and M. Thus,
Xeag ~AX, =B u. +ME, (4.3.4)

'}
and _E_t can be any element in the unit sphere S(R ). Therefore,
perfect identification of k(t) is guaranteed if no two of the domains

of x corresponding of the B 's have a non-empty open intersection.

t+l k

That is, the following condition must be satisfied for each pair of

B, 's and every £, and §, of S(Rl):
i

(B ~B,. Ju

g, * M€, ~§.1 ¥ O (4.3.5)
: o ey 1 2

This condition is the same as

#
Il u @, -E yu ll >2

%

if B8, =-B,_ Ju, & N(M)
K, b, e

otherwise,

#£0 (4.3.6)

where y_“ is the generalized inverse of M and N(M) is the nullspace
of M. Note that the inequality of (4.3.6) can be relaxed to equality,

since the intersection of the two domains of x would only be at

ol 5 Y

the point of tangency, a set of measure zero in either domain.

The objective is to choose u, such that (4.3.6) is satisfied
'

for all pairs B

and _B_k in the reachable subset of all actuator
1 2

k

e b s
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configurations. The reachable subset refers to the subset of configu-
rations _B_i which have a non-zero probability of occurance at time t,
E given that the configuration was Ek(t—l) at t-1. This is the same as
the condition that
é B, is in the reachable subset from Ek(t-l)
if pik(t-l) >0 (4.3.7)

§ Suppose that there are J configurations in the reachable subset from

Ek(t-l) . Then there are J(J+1)/2 pairs of configurations for which

condition (4.3.6) must be satisfied. Also, since P—l "y affects the

state x , it is reasonable to minimize its effect. Therefore,

t+l

since the effect of u is modified by B

=1,t By * it is reasonable to
’

minimize the norm of u

Uy e Thus, the minimization problem is formu-
’

lated subject to the constraints (4.3.6).

: 2

min]|| LR I

Y1,t
¢ subject to

Ly 2

. ” P—k [Et+gl,t]” <0 (4.3.8)

§ where
£
- #
Bisgg-1yng = 8 By - By) (4.3.9)

Formulating this as a nonlinear programming problem, the

Hamiltonian is

2 ; * 2
H(‘_l.l,t 'A) i ”E].,t ” * Ak(4- ”_D.k [Et+21,t1”
i (4.3.10)
i >
>‘k >0
A i a-||p, lu] 12 < 4.3
k=0 if 4-{D, [u, + El,t] 0 (4.3.11)
Differentiating H with respect to )\, and solving for -l'-l-l ¢ as a
’

*
function of u, and the parameter ),
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oH *
du ST ~ 2, DyD, (uy tu,.! (4.3.12)
=1.,t K
or,
g -1 T *
Bre T IET ;Akgk_gk] Zk:kkP_kEkgt (4.3.13)

Now, using (4.3.13) in the constraint equation (4.3.11)

T -1 T * 12
4 -~ “9-)([5" [1-;>\kp_kgk] kakgkgklgt I <o
(4.3.14)

Noting that

(I - AL + AQTQ]'I_QTQ] = [T+ x ot (4.3.15)
then (4.3.14) simplifies to
_1 *
“D E Ak || <0 (4.3.16)

and if (4.3.16) is a strict inequality, then Ak = 0. In general,

a numerical algorithm must be used to solve for A in the set of
equations (4.3.16); this can be a major drawback to the application
of this methodology if the on-line computer resources are unavailable.
Although the computational burden of this technique is a disadvantage,
dual identification would most likely be implemented in combination
with a hypothesis testing algorithm. Dual identification would then
form a test to be performed on the system after some interval of time
to ensure that the hypothesis testing algorithm correctly tracked the

configuration.
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4.4 Examples.

In this Section, the one-dimensional example of Chapter 2, Section 2
is implemented with additive white noise applied to the control input.
Three suboptimal control algorithms derived from this Chapter are imple-
mented: Hypothesis testing, dual identification, and hypothesis
testing in combination with dual identification, which is utilized every
fifth time instant. The purpose of this example is to illustrate the
degrading effect of the dual identification algorithm on the system
state.

The principle subroutine used to generate the computer simulations
of Example 4.1 is SWITCH; it is listed in the Appendix. SWITCH calls
FIG and UCALC, also in the Appendix; any other routines which are used
are in the ESL subroutine library.

The system in Example 4.1 has two structures, represented by the
(1/b = .5); the Markov transition probabili-

matrices B_ (b = 2.) and B

0 1

ties are given by the matrix P. The switching gain solution was calcu-
lated using the software described in Chapter 3, Section 5. Case 1)

of the Example corresponds to the hypothesis testing methodology described
in Section 2. The additive white noise was amplitude-limited with zero
mean and variance E = 1. Case ii) of the example demonstrates the perfor-
mance degradation due to the exclusive use of dual identification. Note
that the variation among the values of the state and control are larger
than in Case i). The advantage of dual identification is that, for
amplitude-limited white noise, perfect identification of the system
structure with one-step delay is guaranteed. In Case iii), hypothesis

testing is used four-fifths of the time to partially avoid the degradation
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due to dual identification. The control is more effective in Case iii)

than in Case ii); however, for this example, it is not clear that the
use of dual identification one-fifth of the time is warranted, since a
performance degradation of Case iii) over Case i) is still evident in
this particular simulation. More simulation would have to be carried |
out before the proper ratio of the use of hypothesis testing to the

use of dual identification could be determined.




Example 4.1:

A = 1.414
Bo = 2.000 Bl = .5000
Q = 3.000 R = 1.000
ol S
P =
«3 7

Switching Gain Deterministic Solution:

-.7569

i

6

The system dynamics are

-1.008

= +
T e TS AL

k(t) "t
k(t) € {o,1}

The cost function which was minimized is

[0}
2 2
J—E’Z th+Rut|H-J

T
o= [k
Structural transitions are of the form
.3
By = B
o3

0 1

When dual identification was employed, the control was set to
*
ut = l.25(sign(ut))
This control was the minimum value required to establish perfect

identification.

e el
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4.5 Summary.

In this Chapter, two methods have been proposed to extend the
deterministic optimal switching gain solution of Chapter 3 to the
stochastic case. The two methods represent the two fundamental ) E

concepts of identification: Estimation and dual control. The

optimal stochastic control law, if it could be computed, would rely
on both concepts, using estimation when the control variable is
large (and the state is far from the origin) and dual control to
enhance estimation when the control and state variables are small.

In the dual identification technique presented here, control is
sacrificed to obtain an exact observation of the structure. Thus,
the system response would be roughly periodic, with the state being
driven away from the origin in order to obtain an accurate estimate
of the configuration, and decaying back toward zero between identifi-
cations. In the period when the control is not modified, hypothesis

testing would be used to track the configuration.
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CHAPTER 5
THE NON-SWITCHING GAIN SOLUTION

5.1 Introduction

In the previous two chapters, the switching gain solution was
developed and studied. 1In this chapter, attention will be focused
on obtaining a constant, robust, or non-switching gain which solves
a variable actuator configuration linear quadratic control problem,
with minimum cost for this class of solutions. It must be stressed
that this is a suboptimal solution; for the deterministic case,
Chapter 3 gives the optimal solution. The interest in this chapter
lies in determining a sequence of gains, for a linear control law,
which do not switch in response to the detection of a change in system
structure. For instance, it may be desirable to ensure the stability
of a control system under certain types of failure without creating
the complexity necessary to detect those failures and compensate for
them, as is done in the switching gain solution.

This class of solutions is related to the overall robustness
problem where fault-tolerant control systems are desired. Although
not formulated in this manner, the research described in this Chapter,
as in Chapter 3, is readily extendable to system with variable system
matrices as well; i.e., where the system can be represented as a set
of possible structures (ék' gk) over some suitable index, even though

this class of problems is not as directly related to the underlying
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reliability theme of this report.

Non-switching gain solutions to the variable actuator configura-
tion class of problems can be obtained in different mathematical ways.
Problem A of Section 3 is reformulated as a deterministic control
problem (Problem AE), and is solved using the necessary conditions of
the Matrix Minimum Principle [Athans,41] in Section 5. Unfortunately
this approach, although yielding the necessary conditions for an opti-
mum, does not allow an analytic solution. Therefore, in Section 6,

a second problem (Problem B) is formulated and solved using dynamic
programming.

Section 7 is by far the most detailed and one of the most impor-
tant sections of the report, along with Sections 8 and 9. In Section
7, the concepts of stability and cost-stability are defined and are
used to prove an equivalence between the infinite-time versions of
Problems AE and B. In Subsection 7.6, the steady-state solutions for
both problems are defined. Unfortunately, nothing in the mathematics
appears to rule out the possibility of limit cycles in the infinite-
time solution; this is discussed in Subsection 7.7. When the constant
steady-state solutions to the two problems exist, it is proved in
Section 8 that they are identical. This is a very important result, as
it allows the steaey-state solution of a complex two-point boundary
value problem which is much more tractable.

In Section 9, it is demonstrated that the general robustness problem

for linear systems (where one wishes to determine a single stabilizing
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gain for a set of linear systems) is solved in this framework for the
class of systems with variable actuator configurations. Examples of
both the non-switching solution to Problem B and the robustness

result are given in Section 10, and a chapter summary in Section 11.

5.2 Problem Statement.

The objective of the research described in this Chapter is to
form a methodology which will be used to compute apriori a gain G
(either time-varying or steady-state) which minimizes the expectation
of the quadratic performance index over a set of linear systems with
actuator variation and known transition probabilities of structural
change (Problem A). The necessary conditions for minimization are
given which this optimal gain must satisfy; it is shown that these
conditions result in a complex two-point boundary value problem.

A second optimization problem is formulated which is based on
the restriction to non-learning control laws which are precomputed;
i.e., it is assumed that the control law cannot benefit from knowledge
of its past. Although this formulation appears to be much weaker
than that of Problem A, it is shown in Theorem 2 that if steady-state
solutions to the two problems exist, then the steady-state solution
to Problem A is stabilizing (in the sense that the mean square value
of the trajectory is exponentially bounded) if and only if the steady-
state solution to Problem B yields a system which is exponentially

stable. This result is very significant, in that a Corollary to this
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Theorem solves the problem of finding & robust gain for a set of linear
systems and ylields an explicit procedure for its calculation.

The iast Theorem (Theorem 3) of the Chapter proves that the steady-
state solutions to the two optimization problems are identical. This
implies that not only does the procedure mentioned above determine a
robust gain if and only if such a gain exists, but also that the steady-
state gain is optimal with respect to the specified quadratic cost

criterion.

5.3 Problem A.

Consider the system

Xoop " BEe* Byee) 8y Sl
where
n
X, € R (5.3.2)
m
u, € R (5.3.3)
kit) e T ={0,1;2, >, L} (5.3.4)

I is an indexing set for the possible actuator structures {_g,gkel '
where

F D (5.3.5)
k(t) is a random variable with sufficient statistics given by the
Markov transition probabilities pij' where the matrix
P = (pij) (5.3.6)

is a stochastic matrix, and the initial probability distribution is
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T =0 (5.3.7)

Since k(t) is assumed to be a Markov chain, the probability vector

,.
e b S S s - i i s NS e e R %

m, is propagated in time by |

t

=P (5.3.8)

Tear t

where there is no real-time observation with which to update ﬁt . 3

Consider the structure space {Ek} KET indexed by I. Define the

structural trajectory X _to be a sequence of element k(t) in I which

41
select a specific structure Ek(t) at time t,
iT= (k(0), k(1),..., k(T-1)) (5.3.9)
The structural trajectory 'f,ris a random variable with probability of

occurance generated from the Markov equation (5.3.8).

E=l
p(x,.) = m (5.3.10)

T
o B (1) 9

where the control interval is
£0.1,2, .0 iv=1,9} (5.3.11)

for the finite time problem with terminal time T. Then for a given

state and control trajectory (_)it . Et)'tl:‘—o generated by (5.3.1) and x
from a sequence of controls (g_t )t;(l) , the cost index is to be the

T

standard quadratic cost criterion

T

e % =
JT(xT.(zt.gt) X, Qx +u Ru +x,.0x_. (53.12)

The admissible controls are restricted to be of the linear feedback form

=G, x (5.3.13)

* i,e, To= (L0 ...0) or (O10...0) or ... (0 0...01).
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where the gain matrix gt is restricted to be a function only of time

and the initial conditions; i.e., it cannot depend on —)S-t . 'The objective

is to minimize over the set of admissible controls the expectation of
(5.3.12), where the expectation is taken over the set of possible

structural trajectories

X, € I'} I (5.3.14)

and the set of initial conditions )_:_0 a

* *
Thus, the optimal control law a, = Gtx should minimize the

cost

Vg l"‘[{'rll'-o]

=X T T T
E[Z}_tgit+gtgg_t+§,rg§'rllol (5.3.15)

over the set of admissible controls.

Since the structure of Et = gtgt_t is fixed, the problem is equiva-

lent to minimizing, in an open-loop sense, the cost function

T
7 3 T T, TLT T
BUplRg) = Bl ) 2, 0x, +x, 8,86, X, i ST

(5.3.16)

with respect to the gain matrix G_, t=0,1,...,T-1. Equation (5.3.16)

t
is simply obtained by substituting equation (5.3.13) into equation

(5.3.14).

5.4 The Method of Solution.

The matrix minimum principle [Athans,41] will be used to determine
L]

the necessary conditions for the existence of u,

(or equivalently,

*
(_3_'_ ). To solve the problem using the matrix minimum principle, the
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formulation presented in the last section must be converted into an
equivalent deterministic problem. For this purpose, let the initial

state x be a zero mean random variable which is independent of any

structure. Let
= T i T :
B, = Blp . In 1 = Bix 2.1 (5.4.1)

=0 0 0

be the convariance matrix of x 0"
Defining the covariance of x, as
A T
By ® mix, x l1,)

(5.4.2)

then, by direct calculation, we obtain

T
;_ = 2 e o o P. P OISR R ¢
. i, St 1 S2o ii:oo- o e T R B

t~1 t
t~1 t-1 5
. [on (ygijgj)]go [jgo (yg_ijgj)] (5.4.3)
Similarly, if we define
£ Blx, x, |k(t-1)=i,m ] (5.4.4)
then, we deduce that
L L
2i,t"’ﬂl ZZ VT N R DR W
it-l lt_z-O 1.3 0 iy= t-2 "t-2"t-3 170
t-2
iy 0B Gy hon (—+-B-ij§j)] L,
t:I-Iz 1T .
. [jao (;_\_+g_ij _qj ) J (a+B , G, ;) (5.4.5)




0 RIS i aps v 1 0T

108

The matrix gi ¢ can be defined recursively as
’

1 T
25,00 T i; Poify, AR 8 0 i BB 48! i
s W t-1
for t > 1.
> P e T e (5.4.7)
4.3 "R gl&g R84

I, = :n. ;e S A (5.4.8)
t &g i, Tt

is obvious from direct calculation.

Remark 1: At this stage, an equivalent deterministic problem (Problem AE)

will be defined with state (I, . )1;=0 for t >0 and state §-0 at t = 0.
’

The system dynamics are then defined by equations (5.4.6) and (5.4.7).

Definition (Problem AE): For the system with matrix state (E-i & )Ii‘_0
. =

for t >0 and EO for t = 0 with dynamical equations (5.4.6) and (5.4.7)

and matrix control Et , minimize the equivalent deterministic cost

T=1

over (_(_2.t )t=0=

E T T T
Jp = E'£,50 Ly Xp QX P X G RE X,
T
v .’STQ.KTIEO 'Ir_o
5 T
= z t-.r[_!l_t Q +Et59_t_:”~_+ tr[_X_TQ] (5.4.9)

Shiias,
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Note that since the expectation in equation (5.3.13) is over all
structural trajectories x and the initial X5 also,
o= 3 (5.4.10)
The symbol JT will be used exclusively in the future. The one-stage,
or instantaneous, cost at time t is
& = ez (Q_+GTRG )] (5.4.11)
T - -t ——=t }
Problem AE is completely deterministic in the state (gi & )i‘_o - go
; =

and control Et -

At this point, the minimization will be decomposed into two parts
using the Principle of Optimality (Athans and Falb, 2l]. The first
minimization is over the interval {1,2,...,T-1}, and for this the matrix
minimum principle will be used. The resulting solution will depend

in general on the choice of G, and on the initial conditions §0 and

0

T.!.o’

*
Let V (_G_o) be the optimal cost resulting from the use of EO and

*
" .

*
9 e for the interval {1,2,...,T}.

*
the optimal sequence 9_1 ¢ G Spa1

The second minimization is then over 9—0 of the cost

T

*
ORGP+ V(E,) (5.4.12)

Jp = trlZ @+

The Principle of Optimality states that these two minimizations

* P=1

t)t=0 for Problem AE.

result in the minimizing sequence (G

St o o




110

From (Athans,41], the Hamiltonian for the minimization over

{1,2,...,7-11} is

(s L

L
MO im0’ 5,600 gm0

i,t)

. T
gl g "1t_1£i,t @+G,R6,)

+ tr[; (T_z;pji"i (5+Ej9c )Ei.t (ﬁ+_3_j§t) )gj.t+l ]
= jt = t‘l

for t € {1,2,3,...,7-1} (5.4.13)

1 S
where the costate matrix is (gj,t-rl )j-o .

Remark: We have now formulated Problem AE-1, which minimizes the accumu-

lated cost over the interval {1,2,...,T} with respect to the sequence

(g_t ):‘:: using the matrix minimum principle and results in the optimum
*
+ V (G,). Problem AE-2 is then the minimization of

cost, given 90

equation (5.4.12) over QO .

s o




5.5 The Necessary Conditions.

The matrix minimum principle yields necessary conditions which
an optimum must satisfy. There are two conditions of importance.
(The third condition yields equation (5.4.6)).

From the necessary condition for the costate,

* oH
21,6 T 3L, (5.5.1)
-i,t =
the propogation of S S, ¢ backward in time is derived.
’
RG
—1i,t 1{ S L
S T T T
* +
Py, B E5,end T EeBs8y 2y 8
b Jt
T T_T
ta =Y ttl =3 =% +§t§j§'j,t+1£] (5.5.2)

This equation is well-defined for any sequence {§11}2:0 and t > 0.
The cost V of using this arbitrary sequence over the interval

{1,2,...,T} is given by

™1
VG, Vo = tr[IZ; -S—i.1§1,1] (5.5.3)

The total cost over the interval {0,1,...,T} using this sequence is

[2—11 11] = tr“Q*E RG )L ] (5.5.4)

: $ T
ex Z; (B, 6018, B, 6", | v @

—
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Define
s 4 At 6 IS,  OaB. 6. ) + O + € BE.  (5.5.7)
! =0 & = =i—<=0° =i,1 =——i—-0 ~0i==0
Then from equations (5.5.6) and (5.5.7)
JT = [z §0] (5.5.8)
T-1 ;
Thus, the cost of a given sequence ( G S, )t=0 of length T is
| =
: JT tr[§_0_8_0 (go,gl,...,g ) ] (5.5.9)
L]
For future reference, define the matrix S i.¢ PY
’
S .
g A =i,t
§i,t = T (5.5.10)
t-1
and note that equation (5.5.2) becomes
T 4 L o
= +
=i,t RS20, 1=3 J [A —],t+lA+ 2 JS] t+lgjgt
T T
+ A —J,t+13j§-t+ GtBJ ,t+1§l (5.5.11)
¢
From the Hamiltonian minimization necessary condition
= - 0 (5.5.12)
9G
_t *

the following relation between I is obtained.

0 = RG S;n Z,
t1= lt-l it
1 T T
1 ;;- 1rj lgjgj,tﬂajgt 4'Ejﬁj,tﬂﬁl ﬁpj i §1,t:

t

i,6' 25,001 A8y
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Remark: At this point, a two-point boundary value problem has been

defined with the constraint (5.5.13) relating equations (5.5.2) and
(5.4.6). Equation (5.5.13) is not explicitly solvable for _c_;_t

because Ei,t cannot be factored out of the sum over j; thus, it cannot
be used as a substitution rule in the other two equations. At this
time, the solution for G ¢ appears intractable. Thus, although necessary
conditions for the existence of G : , the minimizing gain, have been

*
established, they do not readily allow for the solution of G ¢’ and

certainly do not admit a closed~form expression.

gl
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5.6 Problem B: The Non-Switching Solution.

Although the methodology presented in Section 4 yields the
necessary conditions for an optimum, these conditions are not analyti-
cally illuminating. In this section, a second optimization problem
is formulated. An equivalent formulation was presented in [Birdwell &
Athans,40]. The solution will admit a closed form expression for u, -
Although this solution is not the optimal solution for the first
problem, in that this solution does not necessarily satisfy the neces-
sary conditions for problem AE, it will be proved that the two solu-
tions are equivalent in the sense that for the steady-state solutions,
as defined in Section 7, either both solutions stabilize the system,
or neither one stabilizes the system. Even better, it will be proved
that the steady-state solutions to the problems are identical.

For the system (5.3.1), the objective is to minimize at each time
t the weighted sum, with respect to lt-l , of the expected costs-to-go,

.
given the control ., = Qt (it) and u = ir (-’51) for > t, and given

i

that the structure at time t-1 was k(t-1) = i, for each i.

Formally, let C be the expected cost-to-go, given Xy gt , and

k(t-1) at time t be defined as

C(x,»u_, k(t-1), t) 95':

T
t t Q!‘.t*l“.tgg*

t

*
Beqe) 1€ (g (), t+1) | k(t=1)] (5.6.1)

*
where * denotes the optimum value, and u, is computed as

u_ = arg min <1t-l () (5.6.2)
u, =¢_ (x.)
o - T =%
T
= arg min Teal C(t) (5.6.3)
u g, ey
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and
* *
C (x, /k(t-1),t) = Clx, ,u, k(t-1),t) (5.6.4)
where
C(x, u, ,k(t-1)=0,t)
c(t) = . (5.6.5)
Clx, »u, k(t-1)=L,t)
and
T
C(T) = c*(T) = : (5.6.6)
T
XpQXp
Thus, the problem is
3n telex, e ulme,
., ", x ) 1= t-1
+ E[C*(x ., ok(t),t+])] k(t-1)=i]] (5.6.7)

T T
7. x,) gﬂit-l[itgrtipgtggt
Up=h, x

+ 32; pjic'(;_\_it + Ejgt .J.ttl)] (5.6.8)

From the formulation, Et is non-learning in that it depends only on

lt-l for its knowledge of the past. Let C* be of the form
T o
C*x, /k(t-1),t) = XeSk,e X (5.6.9)
Then for t = T,
s, =9 (5.6.10)




|-

And equation (5.6.8) becomes ! !

-
Tg' 5.6.11
+ -0,
£ BogRE, + B B V8. o By ¥B 0 ) ( )
At the minimum, differentiating (5.6.11) with respect to u, ., we
obtain
T [} T )
0 = 2471 FRU. Y L3558 30 * B8, o dX,
1= t-1 3=
(5.5.12)

Solving for u p

-1
. ]
", B.S. B . En_a.s. Ax
—_'+_ — — ——
[ J; Mo S 1A s J] =8 I jot+l ==t

(5.6.13)
and hence the gain matrix is given by
* ' -1
= =-JR + B S B . B.S A
2t B a3 225,00 05 X5 —J—J.t+1—
(5.6.14)
* *
where u . =G, x,
From (5.6.11) and (5.6.4),
' T *T *
EeBp,ele " X [R*E .28,
+ G* Ts ' : 5.6.15
— pjk(ﬁ+§j—t) §'j,t+1 (ﬂ"..?']gt) it (5.6. )
or, since (5.6.15) holds for all it .
L]
8y¢ " R*G, RG
T S * 3 L
L4 z; P @ 8, esaB*2 54 443858, *E¢258,,end
* ' o
+ 5.6.
Etaj j'tﬂ_jgt) (5.6.16)
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Thus, (5.6.16) proves by induction that equation (5.6.9) is valid.

Note that equations (5.6.16) and (5.5.11) are identical.
Therefore, the unconditional cost of _g: , t=0,1,...,T-1, is, from
(5.5.9)

Jp = trll S (G /G seniGy ) (5.6.17)
which in this case is simply

J, = xTS (G . eGC - rB )x (5.6.18)

T == (=), =P} =)
The matrices __G_: are called the non-switching, or non-learning gains,
and will hereafter be denoted Ens . The label 9_: will be reserved for

t
the solution to equation (5.5.13). The optimal value of the cost-to-go

at time t=0 for this problem will be called the non-switching cost index,

and is given by

T T T
J i W, X2:5;:%; tx,Q+6 . RG )x (5.6.19)
nsT ; 10 I=3,;1<=1 0 ns0 nso 0
5 ig by (M'El-—ns )T§-i 1 (A+§1—ns )
i= 0 0 4§ 0
T
+Q+G RG X (5.6.20)
=ns,——ns =0
0 0
*
Note that if (—;ns = -(-;-t for all time (i.e., if the solutions to the

0

optimal control gain problem and to the non-switching control problem

are the same, then E [J ) S R
x ns,.,

T




Summary: In this Section, the non-switching, or non-learning, gains
SumAXY

have been derived. These gains are called non-switching or non-learning

because they do not depend on the past trajectory of x, and u, , but

t t

only on the initial probability vector over I, T . It was further

0

shown that if the solutions to Problems AE and B were identical, then

E [J y =3 (5.6.21)
50 nsT T
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5.7 Stability and the Steady-State Solutions.

In this Section, the concept of stability for this class of
systems will be precisely defined. From this, a natural concept of a
steady-state solution to Problems AE and B will be given, and a very
strong result relating the solutions to the two problems will be

proved.

5.7.1 Stability and Cost-Stability.

For this class of systems, two definitions of stability will be
tendered. The first is the usual definition of mean-square stability;
the second definition, that of cost-stability, has a strong relation to
the existence of solutions to the infinite time versions of Problems AE

and B.

Definition 1l: (Stability). G is a constant stabilizing gain if and

only if the resulting system given by equation (5.3.1) and repeated here

= + sk
Bepp " 2Ee * By U o
is mean-square stable:
T
Elitit] + 0 as t %, (5.7.1)

Definition 2: (Cost-Stability). The system (5.3.1) is cost-stable
if and only if the scalar random variable

%

onétg.’st“zzﬂgt N (5.7.2)

with probability one.
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5.7.2 nefinition of the Infinite-Time Cost.
In this research, the infinite-time problem is defined as a
minimization of

J = lim JT (5.7.3)
T o
where JT is the cost function for the corresponding finite-time problem.

The sequences which solve these infinite-time versions of Problems AE

*
and B are (G )T  and (g" ) , respectively, when a solution exists.

—— gO
;s - st

A solution will exist if there exists a sequence of gains for which the

@
t=0

limit in equation (5.7.3) exists. This definition of the infinite-time
problem is chosen rather than the definition requiring a minimization

of the average cost per unit time

J (5.7.4)

J = lim T

1 pfons

3 |-

because there is a direct correlation between the boundedness of JT
over all T for a constant sequence of gains G and mean square stability
of the system (5.3.1). It is necessary, however, to prove that the

set of problems for which J, is bounded for some sequence of gains is

T
not vacuous. This fact is demonstrated by any of the convergent non-
switching gain examples in Section 10.

As further demonstration of the validity of using equation (5.7.3),

note that if 0 < J, < ®, then the cost per unit time has a non-zero

1

steady-state value, which implies that the system (5.3.1) is not mean-

square stable since

T
J1 = tr[_)_:_ss (Q + gssggss)] (5.7.5)
where I and G are the steady-state values of L, and G, , when
~ 88 =88 -t =t
T i i
they exist, and, since Q + Essﬁgss is positive definite, Ess ¥ 0.

ki i L S e i A e k)
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5.7.3 Bounded Cost and Mean-Square Stability.

In choosing equation (5.7.3) as the basis for the definition of an
infinite-time problem, a major requirement was that the existence of
an infinite-time solution, namely of a sequence of gains which yields a
finite cost in equation (5.7.3), imply mean-square stability. For

the case where the sequence is constant, the following result is

proved.
o0
Theorem 1: A constant sequence of gains (E)t-o is mean-square stabiliz-

ing if and only if there exists a bound B < @ such that
JT <B for all T (5.7.6)

Proof: See Appendix 5.1.

00
<B< i i is
Jt B YT implies (gt)t=

00
R : ence
emark: For a sequence (G ), _ 0

0 ’

o
mean-square stabilizing, but (gt)t= mean-square stabilizing does not

0
imply JT is bounded for all T.

Proof: See Appendix 5.2.

5.7.4 Cost-Stability.

As yet, the definition of cost-stability has not been utilized.
In this Subsection, it will be shown that the system described by
equation (5.3.1) is cost-stabilized by a sequence of gains (gt):=oif and
only if J is finite-valued for this sequence. One direction of this

result is proved in the following theorem.

00
Theorem 2: Any sequence (gt)t=0for which J <® cost-stabilizes (5.3.1)

with probability 1.

Proof: See Appendix 5.3.
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The other direction of this result is obvious: If a sequence

(G,)

is cost-stabilizing with probability one, then the random cost,

(‘ (o)
=t' t=0

given by equation (5.7.2), is finite except on a set of structural
trajectories of measure zero. (The appropriate measure on this set is
given in the proof to Theorem 2.) Since the expected cost J is the
integral of equation (5.7.2) with respect to the probability measure
on the set of structural trajectories (see Appendix 5.3), then J is
finite.

Thus, the cost-stability and the existence of an infinite-time

solution are equivalent.

5.7.5 Equivalence of Problems AE and B.
The first major result of this Chapter will now be stated. This
result establishes a strong equivalence between the solutions to

Problems AE and B.

(o]
Theorem 3: A cost-stabilizing solution (Ens )t-O exists if and only if
t
* “oo

there exists a cost-stabilizing solution (gt)t—o' assuming ni> 0 for
all i and §0>0.

Proof : See Appendix 5.4.

Remark 1: This result provides a computationally feasible methodo-

which cost-stabilize

00
logy for arriving at a sequence of gains (g,l )t=0

s

t
the original system (5.3.1) with probability 1, whenever such a se-
quence exists. The coupled matrix equations of Problem B (5.6.16) can
be iterated backward in time. If the weighted sum with respect to the

ergodic distribution T converges, then the resulting sequence of gains

cost-stabilizes the system (5.3.1) with probability one.
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5.7.6 The Steady-State Solution.

A steady-state solution to optimization Problems AE and B can
exist only if there exists a steady-state probability distribution m

over v set of possible configurations indexed by I such that

T=Pw (5:7.7)
and

limw =1 (5.7.8)

twm | F

From equation (5.7.7), it is apparent that for T to exist, the matrix
P must have an eigenvalue at 1, and T must be in the subspace spanned
by the eigenvectors of P corresponding to that eigenvalue. The fol-

lowing lemma states precisely when T exists.

Lemma l: 7 exists if and only if one of the following three conditions
is satisfied for each diagonal element ai of the Jordan normal form A

of P, where

p=TAT " (5.7.9)
B 3
% 6o
oy B [\)
Q2
A = = B, =0or 1l (5.7.10)
= i
0 :
BL-I
7

For each i,
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i) |ai|<l St 08 1
il) a, =1 :
1
i) oy f= 1, a, # 1, (x? Tk =0

i ! Proof: Obvious.

5.7.6.1 Steady-State Solution to Problem AE.

* *
Note that for Problem AE, initially, the gains EO » 91 iainie
* * i
-2 ' Sy

will depend on 20, and near the final time, the gains ... G

will depend on a time-varying §i,t' Thus, the steady-state solution for
Problem AE is defined as the limiting solution to equations (5.4.6)
(5.5.2) and (5.5.13) at time t, first as T™*® and then as t+*», if this
limit exist. The steady-state values for B, §j., and gj , when

they exist, satisfy the following equations:

1 T
.= = .. T, (A+ . (A+ s
§j m 12' Py; T; (A*B,G) g(_gjg) (5.7.11)
T 1 T LT T
S, =T, + G RG+ P A'S.A + GB,S,B.G+ A S,B.G
5 7T 2t SRE JZ; Py, B * SR000 T 2 3y
+ G'B'S Al (5.7.12)
2 232542
1 by T
O* &% 21. LT ;, n [[§j§j§-j9 + ByS,Al 12;- Py ™y &y
(5.7.13)
which are the limit of equations (5.4.6),(5.5.2), and (5.5.13), given
*
that the limiting solution Zj ¢ and G exist, where T satisfies
25, -

equations (5.7.7) and (5.7.8). The cost of this steady-state solution
is

J = lim JT (5.7.14)
T0

as in equation (5.7.3).
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5.7.6.2 Steady-State Solution to Problem B.

The solution to Problem B depends on its past only through the
probability distribution m(t) over the structure index set I.
Therefore, to develop the steady-state solution, let the initial pro-~

bability distribution m equal the steady-state value 1 from equations

0
(5.7.7) and (5.7.8). Then the steady-state solution can be defined as
the limit, when it exist, of the gain gns,calculated for the problem

ending at time T, and of the solutions to the coupled Riccati-like

equations (5.6.16), §i.0 , as the final time approaches infinite. Let
’

L}
G, (T) and §.  (T) be the solutions at time zero for Problem B with
o L

final time T. Then
Ens = lim Ens (T) (5.7.15)
T+ (4]
. L]
S.= 1lim S,
24 =

T) , i€l 5.7.16
i,0 (T) ( )

when the limits exist. The steady-state solution is said to exist

whenever the limits of equation (5.7.16) exist. If these limits exist,

L}
then Ens and _S_i must satisfy, from equations (5.6.14) and (5.6.16).

S -1 T
G _ =-|rR+ n. 8 & 8 x B 8 & (5.7.17)
~ns R ol B - 7 S e e B

»8° BEBE ) (5.7.18)
~ns =

The cost of this steady-state solution, given x, is, when the limit

exists

P R T TS e Ty TR e e

o
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J = lim J = X g m.S, X (5.7.19)
ns ns = & i—-i=—

5.7.7 The Possibility of Limit Cycles.

The discussions in the last Section do not rule out the possibi-
lity of limit cycles in an infinite-time solution. In Problem B,
the expected cost is directly computable from a set of coupled Riccati-
like equations (5.6.16), as is the non-switching gain (5.6.14). If
these coupled matrix equations converge whenever the solution is
bounded, then the non-switching gain is always directly computable when
it exists. Boundedness implies convergence of the expected cost
(Lemma 2); however, the possibility of the existence of a limit cycle
in the solution to eqguation (5.6.16) is not ruled out. It is con-

jectured, but not proved, that such a limit cycle cannot exist.

*
Lemma 2: If the expected cost JT for Problem A is bounded, then it
converges.

Proof: See Appendix 5.5.

*
1=4J.,J
S S
T A

Since Ex[Jn also converges.
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*
5.8 Equality ﬁgns and G .

In this Section it will be shown that when a steady-state Erx and

S

* * *
G exist, with finite cost Jns and J , the gains are equal. This

result is extremely important in that it yields a method of calculating
the steady-state solution to a two-point boundary value problem as the
limiting solution to an equivalent (in the steady-state) single boundary
value problem. It is taken as a working hypothesis in this Sa2ction that
both problems have a steady-state solution and that the ergodic distribu-

tions of T and gi , for all i, exist. Then the steady-state cost of the

optimal problem is

* }: * * * *
do. = tr(l Q@+ G RG )] + P2 tr(Z . S.) (5.8.1)

For any constant gain G for which the limits exist, the value would

be

" T
I8 = tril, (Q+ G RG) + gtrlgi (Q)S, (G (5.8.2)

T ek
er(l (@ + G RG)I + 12 tr((A+B ; G)E  (A+B  G) 'S, (9))
(5.8.3)

& ‘ T T |
= tr[20l9+§ RG + z; ‘ﬁ+519)§1‘9”5+919;] (5.8.4)

Similarly, equation (5.8.1) becomes

* S ‘ P % * TS* * l
J SR §0'9+§0590 * £~ (5_+Eig_0) =i (‘I_H'.B_i.G_O)

ss
(9.8:8)

For the non-switching, or non-learning problem, the steady-state cost

.
for any G for which the §i ¢ converge is, given Xy
’
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& T 18 T N
. e G) = 3‘-0(9+9059)50 +E[ wiil_s_i(_q)ggl] (5.8.6)
SSs 1=
T T
= xo(gi-G RG)x0
: T
T :
+ «O.
Xy Zs T, (A+B G)'S . (G) (A+B G)x (5.8.7)
Taking expectations with respect to Xq
E[J (c;)l = tr(Z_.(Q + GTRG)]
ns - =0 e
ss
T
.8.8
+ i; tr(l , (A+B, G)'S . (G) (A+B, G)] (5.8.8)
or,
E[Jns (9_)] = Jss(g) (5.8.9)
ss

Thus, the costs are equivalent for any G for which the equations

converge.

By Lemma 3, if the non-switching expected cost is bounded for a single

G, then the equations converge; i.e., there can be no limit cycle.

Lemma 3: For a given gain G, if the expected cost J. (G) is bounded
then it converges.

Proof: See Appendix 5.6.

Thus, either equation (5.8.9) holds, or both costs are infinite. There-

fore, if the cost is finite for any single G, then there exists a gopt

which minimizes both costs. Furthermore, given that Gns (T) converges,
T -

G (T) > G as T * ®», This result with an extension is stated in
—ns, —opt

Theorem 4.
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* . |

Theorem 4: Assume the values G_(T), G (ty, 8, . (T), S8, . (), and
e menite -t —nst =3,%t =N e
z i, converge. Then :

A) gnSt(T) =+ gopt as T * «®, which minimizes equation (5.8.9). 1

*
B) G =G , where G is the steady-state value of G (T),
—ns - —ns —ns,

* *
and G is the steady-state value of 9—!: (T) :

* * E
lim limg () = G (5.8.10)
t oo T

Proof: See Appendix 5.7.

Discussion: The result of Theorem 4 B) gives a direct computational
*

procedure for calculating the optimal steady-state gain G as the

limiting gain -c—;ns . There are, however, still some open questions

concerning the existence of limit cycles in the calculation of Ens .

K
Theorem 3, however, guarantees cost-stability using (Ens )t-O if a
t

cost-stabilizing sequence of gains exists.
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5.9 Robustness.
The original problem (Problem A) can be formulated in such a way

that the sequence (G ) will cost-stabilize a set of linear systems

(L&)
nst t=0
with different actuator structures individually whenever such a stabiliz-

ing or robust gain exists.

Definition 3: A gain G is robust if

= + 7.

X4 (A+B,G)x (5.9.1)
is stable for all k. This is the same as requiring the matrix (éfgq(g)
to have eigenvalues inside the unit circle for all k.
Corollary 1: For the set of L+l systems

Risa ﬁit +Ek2t (5.9.2)
with

P = 3 (5.3.3)

1
nj L+1 (5.9.4)

0
if a robust gain exists, then (Ens )t-O is a stabilizing sequence for
t

(5.9.1) for each k, and if the gains Ens (T) converge, then Qns is a
t

robust gain.
Proof: For the expected cost to be finite, for any G, G must be
robust, since each structure is equally likely and no structural changes

*
can occur. Therefore, if a robust G exists, then certainly (G )

t ' t=0

will be stabilizing, and by Theorem 3, so will (G )‘;0 . Also, if
t

- (T) converges as T > ®, the G will be robust since it will have

t




finite cost J(Qns), which implies stability, in this case, for all

k € I.

Q.E.D.

Discussion: With Corollary 1, a specific existence problem for robust
linear gains is solved. Existence of a robust gain is made equivalent
to the existence of a finite cost infinite-time solution to Problem B,

which is readily computable from equations (5.6.14) and (5.6.16).

e e T S S ——
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5.10 Examples.

In this section, two examples are presented to illustrate the :

non-switching gain computational methodology. Example 5.1 is ana-
logous to Example 3.1 of Chapter 3; it demonstrates the effect of

component reliability on system stabilizability with a non-switch-

ing gain control law. The first case of Example 5.1 is not conver-
gent; the second case is convergent. The only difference between

the two cases is the reliabiliéy of the actuators. Case i) corresponds
to Case ii) of Example 3.1; Case ii) corresponds to Case iii) of
Example 3.1. Neither case results in a robust contrel law, but ro-
bustness is not possible because the system is uncontrollable in
structural state 3. As an aside, it is interesting that the "optimal"

non-switching gain in Case i) ignores state x the system is decoupled

27

in that there is no interaction between x1 and x2. Since state x2

has stable dynamics, and the dynamics of state x, are unstable, the

1

entire control effect is concentrated on state Xy-
The computer routines which are used in the calculation of the
non-switching gain solution are listed in the Appendix. The primary

subroutine is AIM; it calls WEIGHT. Any other routines which are

used are from the standard ESL subroutine library.
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Example 8.1

2.71828 0.0

A=
1 0.0 .36788
1.71828 1.71828 0.0 1.71828
Ba S
-.63212 .63212 [ 0.0 .63212
[1.71828 0.0 [0.0 0.0
5“ E2 g .23 =
i 3 -.63212 0.0 0.0 0.0
% 1 5
i}
'3 14 8. 1.0 0.0
:;;"> 2= Bz
iq 8. 6. 0.0 1.0
i1
i . -
i# 2
i 1-2p +p. (1-pglp (1-pglp, P,
it . 1 + (L=p_)
i 1 pf pf pf pt pfpr prpf pr pr
i _P_:
Pg~Pg PP 1-pg~p +PeP, P (1-P.)
2
Pe (1-p )pf (1-pr)pf 1-29r+pr
L £
[4 The system is
X =Ax, +B u X = [x X ]T
edl ==t 7 =k(t) —t =t L A

ki) € {0,1,2,3}

The cost to be minimized is

QO
J = E ngx + u_Ru Iw
£ o o S S S
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Example 5.1, Case i) - = T el
Pg = i P ™ .9 .81 'ﬂ'o
.09 m
l[: = l
.09 m,
IOI- w3
o =
Non-Convergent; but gain converges at
-1.246 0.0
Sns ™
-1.039 0.0
Stability:
Configuration Stable
0(B,) no
1(51) yes
2(_@_2) yes
3(_8_3) no

Interpretation: The coupled Riccati equations are unbounded. Note

that since state x., has stable dynamics, the convergent non-switching

2

gain §1u; concentrates on stabilizing x,, which is open-loop unstable.

1

From the above stability table, the control law
Be " 8,,%,

stabilizes only configuration states 1 and 2; since the configuration

has a high probability of being in state O (unstable), the cost diverges.
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= .01, = .98 .97 m
pf pr 9799 o
. 009999 "1
;[1: =
. 009999 ﬂ2
. 0001020 n
& Q it 3
o
Convergent Coupled Riccati Equations.
-.7563 .1266
Qns .
-.8070 -.1784
Stability:
Configuration Stable .
0 (B,) yes |
E
1 (gl) no "
2(8,) no
3 (_@_3) no

Interpretation: With more reliable actuators, the non-switching gain
expends less force on the stabilization of configuration states 1 and 2
(unstable); since configuration state 0 is stabilized, and the system
has a (relatively) higher probability of being in configuration state 0
than in Case i), the non-switching coupled Riccati equations converge,

resulting in a finite cost.
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Example 5.2 uses the same system dynamics as in Example 5.1;

however, only structures 0,1 and 2 (the controllable structures) are
considered. The configuration dynamics are modeled as being in any

structural state with equal probability of occurance initially and

remaining in that state forever; this model is illustrated graphically
in Figure S5.1.
The state dynamics are

= +
Boeg " B2 * By B¢ A 1.t ee

k(t) € {0,1,2}

The cost to be minimized is

Q0
T T
J EL}_; x,9x, +u Ru, | 1]

The non-switching methodology yields a robust control law of the }

—— - e ——

form
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76265AW030

D“=1

Figure 5.1: Markov transition probabilities for Example 5.2.
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Example 5.2:

2.71828 0.0
ﬁ =
0.0 .3679
[1.71828 1.71828
B _ = B
~0 - .63212 =4
[1.71828 0.0
B,*
-.63212 0.0 P =
Convergent:
-1.089 -.008413
G =
iy -1.028 -.01444
g 112.8 8.992] ,
"i Si - = S_‘_
= 8.992 6.835
Stability:
Configuration Stable
0 (EO ) yes
1 (El ) yes
2(B,) yes

Robust: yes

0.0

0.0
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1.71828

.63212

pow e

ke X e el v




Riccati Solution:

' 109.8
S .=

o 9.030

¢ 114.3
S -

3 6.285

' 114.4
S,"

11.66

9.030

6.821

6.285

6.836

11.66

6.849

139




140
The non-switching solution converges for the system in Example $.2;

and the three resulting configurations are stabilized. Therefore .

is a robust gain. Had the solution not converged, by Corollary 1 of

Section 9, no robust gain would exist.

The apriori expected cost (before the configuration state is

known) is, given x
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5.11 Summary.

In this Chapter, an optimization problem was defined on linear

systems with variable actuator configurations and quadratic cost criteria.

The objective of this approach was to compute apriori a sequence of
gains to be used in linear feedback control which do not depend on

any on-line information about the process. These gains were to

both stabilize the overall system, accounting for the various possible
structures and minimize the expected value of the quadratic cost crite-
rion, where the expectation is taken over the possible sequences of
actuator configurations. This solution depends on both the perfor-
mance, and on the reliability of the various structures, as represented
by the Markov transition probabilities between structures.

The matrix minimum principle [Athans,41) was used to establish the
necessary conditions for optiﬁality of a solution to an equivalent
deterministic problem to that described above, known as Problem AE in
the Chapter. These conditions unfortunately do not yield an analytic

solution for the gain sequence, but instead yielded an ill-posed two-

point boundary value problem which must be solved numerically (Section 5).

Therefore, a second problem (Problem B) was formulated which was solvable

analytically using dynamic programming (Section 6). This solution has
identical cost-stabilizing properties to the solution of Problem AE,
but has the advantage of being directly computable.

The steady-state solutions to the infinite-time versions of both
problems were defined, when they exist, and it was proved that, in addi-
tion to the eéuivalent stabilizing property of the two solutions, the

steady-state values are identical, and this value is the same as the
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optimal constant gain which minimizes the expected cost over the infinite
time interval.

In addition, the general robustness question of when one gain can
stabilize a set of linear systems with different actuator configurations
was formulated in the context of Problem A and was solved by Problem B.
Thus, a test.for when a robust gain exists can be performed by iterating

a set of coupled matrix Riccati-like equations and testing for converg-

ence of a function of the solutions. If, in addition, the individual
solutions converge, then the robust gain which minimizes the expected
quadratic cost index can be calculated directly. It was noted that the
extension to systems with variable dynamics (variations in A), as well
as variable actuator structure, is trivial as long as the dimension of
the state is constant.

The major applications of this work are in the calculation of a
robust gain for a set of linear systems and in the calculations of
stabilizing gains for systems with variable structure, such as occurs in
failure, repair, or reconfiguration. A second application will be
covered in the next Chapter and involves using these calculations in a
computer-aided design procedure for the determination of the relative

effectiveness of various redundant component configurations.
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CHAPTER 6

COMPUTER-AIDED DESIGN

6.1 Introduction.

In this Chapter, two specific applications of the non-switching
gain methodology to computer-aided design are presented. Example 6.1
illustrates the usefulness of the non-switching gain methodology in
the selection of an actuator design. Five possible designs are
analyzed using the non-switching gain calculations as a basis for ranking
the designs with respect to their expected performance. Example 6.2
compares two actuators, of which one is more reliable, but less
effective (in that it incurs a greater cost for the same action) than
the other. Three cases with various actuator reliabilities are presented
as a study of the trade-off between actuator reliability and effective-
ness.

These two examples are intended to demonstrate the usefulness of
the non-switching gain methodology in design studies. No general method-
ology for computer-aided design using the results presented in this
report is presented. Instead, tools are presented which can be used in

the computer-aided design of system configurations.

6.2 The Design Decision.

A designer often has many means of achieving a desired goal;
however, no unified methodology exists which can be used to choose a
given design that is "better"” than any other. At best, a set of tools

can be developed which are applicable to specific situations and classes

b i e b e
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of systems. Of these tools, all that are presently available evaluate

a system either on the basis of performance or on the basis of reliabil-
ity. The methodologies described in this report optimize a performance
index which depends on both system reliability and system performance.
Therefore, it is logical to apply these methodologies to the computer-
aided design of system configurations.

Example 6.1 is an aid in the design of a linear system for which the
state dynamics are fixed, but the actuator configuration is to be at
most two actuators (one level of either component or functional redundancy)

chosen from two types of actuators. The system in Example 6.1 is de-

fined by
Eear " BXF By By fSedad
k(t) eI (6.2.2)
where x,= [xl.t' Xy 00 X ]T. In Cases i) and ii), I ={0,1} ;

3,t

in Cases iii), iv), v), I = {0,1,2,3}. The cost to be minimized is
ol
T T
JT—Eléitgiti‘Etggt | = (6.2.3)

The cost of each actuator (labeled 91) and Rl.) is to be the quadratic
cost incurred by the control input to that actuator. These costs are

represented by the quadratic weights ro and rl, respectively, and are

equal in Example 6.1. The actuators act on different states of the

system; actuator E{)applies the control force to state x_, whiie b

2 1

applies the control force to state x Each actuator can fail to an

3
actuator with zero gain, 0. Repair constitutes replacement of the
failed component with a new actuator, identical to the original ac-

tuator. The repair action is modeled using a Markov transition pro-

bability pr, the probability of repair per unit of time. The actuators
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have identical probabilities of failure and repair per unit time, Pg and

pr, respectively. The five possible actuator configurations are, in the
order in which they are presented in Example 6.1,

1

B = |b (6.2.4)
8°= |b| (6.2.5)
N N (6.2.6)
8'= |p,1p) (6.2.7)
8= byl (6.2.8)

: 2 1 2 : . : A
Configurations B° and B have two-state configuration dynamics directly

defined by the failure and repair probabilities per unit time. Con-
figurations g?, g& and g? have four-state configuration dynamics re-
presented graphically by Figure 3.2 of Chapter 3, Section 5. It is

not immediately obvious from the configurations and the state dynamics
which configuration is optimal. When a non-switching gain control is
used, the expected steady-state cost, given by equation (5.7.3), is

a measure of the expected performance of each configuration, and can be

used to rank the five configurations in order of system effectiveness.

System effectiveness is a measure of the expected performance of a
system, taking into account all postulated modes of operation. There-
fore, in Example 6.1, the non-switching gain and expected cost is com-

puted for each of the five design configuraitons.
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Example 6.1:

-
2.0000 .5000 .5000

a = Jo.o 0.0 1.000
0.0 -1.000 0.0 4

|©
]
(=]
(=]

!'0 rl r
P
d
=3 '3; P
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i Example 6.1 Case i)
j
§ A _
i EO - l_)o = conf. 0O (conf. = configuration)
» £l " n S | (
1 B, ) conf. 1 R |10| |1 . )|
4
- (8
1 Py P, .99 .98
5 l‘ " e
; i pE 1-pr .01 .02
. 9899 -nnl
&3 D1
¥
Convergent Coupled Riccati Equations: :
G - l-a.am -.2582 ~1.733
“ns
182.5 37.006 57.93 &
.
:j_o - 37.06 9.943 12,32
L57'93 12.32 22.81
188.06 37.39 60.09
.
g8, = 37.39  9.961  12.44
60.09 12444 23.58
- a

182.06 37.07 $7.95

g A
n l?’j i - 37.07 9,943 13,43 -~

57.95 12.33 22.82

T
Bxpoected cost =« x € X
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Stability:
: Configuration Stable
1 0(B,) yes
1(51) no

Interpretation: The steady-state non-switching gain exists; it

Rt by et A f o

stabilizes configuration O (go) ,» but does not stabilize configuration
1 (gl) . Since the probability of being in configuration 0 (stable)
(no) is much greater than the probability of being in configuration 1

(unstable) (ﬂl), the system configuration is stabilized using the ]

non-switching gain Ens in the control law

X
P—t gns—t

o R 28 Vo
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Example 6.1 Case 1ii)

By ™ I_lzll = conf. 0
By =D = gont, o R T |1.0|
I-p, &P, 99 .98
p - =
Pe l-pr .01 .02
. 9899 m
.01010 T

Convergent Coupled Riccati Equations:

G = |-12.59 -1.484 -4.097 1
=ns i
[1035.  125.0 271.4]
L} E
s, = Ji25.0 18.84 33.04
271.4 33.08 73.80] ;
[1069. 129.0 282.6
1]
s, = [120.0 19.3:1 34.34
282.6 34.3¢ 1743
. —

1035. 125.0 271.6

L}
g "i§-i = 125.0 18.85 33.05 “=\ c

271.6 33.05 73.83

Expected cost = 5T C x
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Stability:
Configuration Stable
0 yes
1 no

Interpretation: The steady-state non-switching gain exists; it
stabilizes configuration O (B ), but does not stabilize configuration
1 (El ). Since the probability of being in configuration 0 (stablé)

( ‘no) is much greater than the probability of being in configuration 1
(unstable) (111), the system configuration is stabilized using the

non-switching gain G el in the control law

= X
Et: G-ns—t

—

A A

L e v ——

s
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Example 6.1 Case iii)

T lp_0|§0|=conf.0 _8_2 = It_>_0|0|=conf.2
B, = lgl 90|=cmw.1 B = |g| o|=cmw.3
'ro 0.0 1.0 0.0 :
R = |
0.0 rg 0.0 1.0
e it
1-2pf+pf pr(l-pf) prll-pf) P,
pf(l-pf) l-pr-pfwrpf p P pr(l-pr)
B =
pf (l-pf) prpf l—pr_pf+prpf pr (l-pr)
: L) (1-p_) 1-25. 4p°
Pg Pgil-Py L P ¥P,
# J
e =
.9801 .9702 .9702 .9604
.0099 .0198 .0198 .0196
.0099 .0098 .0098 .0196
.0001 .0002 .0002 .0004
q
.97 =i
99 ‘lTl
.009999 m,
-11 = =
.009999 T,
.0001020 "
L _j b
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Convergent Coupled Riccati Equations:

[-2.469 -.1279 -.8983]
G =
T [ -2.469 -.1279 -.8983
153.1 32.81 48.01
L]
8, = 32.81 9.050 10.92
48.01 10.92 19.03
154.4 32.88 48.481
L]
gy " 32.88 9.054 10.95

48.48 10.95 19.20
- -

r154.4 32.88 48.48

s = 32.88 9.054 10.95

22
48.48  10.95 19.20
- S
155.8 32.95 48.96
.
s, = |[32.95 9.058 10.97 :

48.96 10.97 19.38

e

153.2 32.82 48.02

L]
g ‘ni_s_i = 32.82 9.050 10.92

48.02 10.92 19.04

ne
10

Expected cost = 1‘1‘2 x




Stability:

Configuration

0 (B,)
1 (B;)
2 (B,)

3(B,)

153

Stable

yes

no

no

no

Interpretation: The steady-~state non-switching gain exists; it

stabilizes configuration 0 (51)), but does not stabilize configurations

1,2,or 3. Since the probability of being in configuration 0 (stable)

(no) is much greater than the probability of being in any other con~

figuration ("i' i=1,2 or 3) (unstable), the system configuration is

stabilized using the non-swithcing gain G . in the control law
-n

R T Ty a—
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Example 6.1 Case iv)

N

L D lgll b,| = conf. 0 B |91| 9_, = conf. 2
B, = |g | b,| = cont. 1 B, = Ig | _ql = conf. 3
r, 0.0 $.0 0.0
5 = =
, B0 x, ] 0.0 1.0

P and T are the same as for Case iii).




Convergent Coupled Riccati Equations:

[-6.097

(—;-ns
| -6.097

762.2
S = 95.14

195.1

768.7
S = 95.92

197.3

[768.7
s. = Jo95.92

197.3
..

-
715.3
S 96.71

199.5
L

™
b |
[
17]
e =
[}

Expected cost = z?g X

-.7347

-.7347

95.14

15.18

24.64

95.92

15.27

24.89

95.92

L5.2%

24.89

96.71

15.36

25.16

762.3

95.15

195.2

95.15 195.2

15.18 24.64

24.64 52.14

155

?.%
|

-2.011

-2.011

195.11

24.64

52.13
-

197.31

24.89

52'83J

=
197.3
24.89

52.83
-

=
199.5
25.16

53.55

>
10
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Stability:
% Configuration Stable
0 (go) yes
1(,) no
§ 2(B,) no
3 (§3 ) no

Interpretation: The steady-state non-switching gain exists; it.
stabilizes configuration 0 (_B_O), but does not stabilize configurations
1, 2, or 3. Since the probability of being in configuration 0 (stable)
(Tro) is much greater than the probability of being in any other con-

figuration (ni, i=1,2 or 3) (unstable), the system configuration is

stabilized using the non-switching gain gns in the control law




Example 6.1 Case V)

conf. 2

conf. 3

and T are the same as for Case iii).
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Convergent Coupled Riccati Equations:

[-3.815 -.1312 -1.106]
G =
P [-2.956 -.5815 -1.486
126.5 24.86  32.32
’ ) 3
Sy = J24.86 7.066 6.842 _
32.32 6.842  10.69
[128.4 24.93  32.88
.
s, = []24.93 7.09% 6.863
32.88 6.863 10.85_J
1a7.3 2801 32.72
L]
s, = J25.00 7.097 e.921
32.72 6.921  10.89
129.2 25.08 33.28
L]
s; = |]25.08 7.100 6.942
[33.28 6.942 11.05

126.5 24.86  32.33

24.86 7.067 6.843

™~

3

”-

jn

e e
"
ne>

10

32.33 6.843 10.69

Expected cost = _agT Cx
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Stability:
Configuration Stable
0(B,) yes
1 (By) no
2 (B,) yes
3 (53 ) no

Interpretation: The steady-state non-switching gain exists; it stabil-

and B_ ). Since the probabilities of

izes configuration 0 and 2 (B 2

0

being in configuration 1 and 3 (gland _13_3) are small (1r1 and n3)

(unstable), the system configuration is stabilized during the non-switch-

ing gain c_;ns in the control law

. - -
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From the results in Example 6.1, the design configurations are

ranked as follows, where > is defined as "is better than".

8°>p’>p'>p> 8’ (6.2.9)

One configuration is more desirable than another (g? > g*) if

j k
o L ig 'k : i
"iéi. = L R (negative definite) (6.2.10)
1= 1=

This criterion is reasonable; if g? > §#, then the expected cost using
design configuration §j is always less than that using g#. If the left
hand side of equation (6.2.10) is not negative definite, but is only
semi~definite, then some other criterion must be used in addition to
(6.2.10) to rank the various designs. For example, if one assumes a

uniform distribution of the initial system state x = in the unit sphere,

0

and if the elements of the diagonal of the left hand side of equation
(6.2.10) are all non-positive, then the trace operator may be used as a
ranking function. If the trace of the left hand side of equation (6.2.10)
is negative, then gj = EF. If the left hand side of equation (6.2.10) is
not semi-definite, then the designer must choose which of the state
variables are most important in an effort to eliminate the ambiguity of
equation (6.2.10). In Example 6.1, equation (6.2.10) alone is sufficient
to rank the designs.

The results stated in (6.2.9) are somewhat surprising. First,

consider EO and b, . A control input at time t using b, enters the
o .
[ ]7. At time t+l,

system dynamics in state x,, where x

3 t e B X e ¥

the same control is applied to state Xy with a gain of .5; also,

= * 1 + h t s 5 :
x2,t+1 x3't At time t+2, that control is again applied to state X, ‘

with a gain of .5 . Now, consider
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the same situation, but with b instead of 9‘). In this case, at time

1
t+l, the control is applied to state xl. with a gain of .5, but

x3,t+l = —xz't. Therefore, at time t+2, the negative value of the original

control is applied to state xl, thus partially cancelling the effect of

the original input. The same process occurs using b but is delayed

0 v
one time step; thus, the control affects state X, positively one additional

time step when EO is used. Because of the added effectiveness of b,

1

2 1
over b B > B, and in fact, B® > B. Thus, even after accounting

1!
for component reliability, configuration gl, which has no component
redundancy is more desirable than configuration g? or g’ even though
configuration B  employs one level of component redundancy.

Using this reasoning, one would expect §3 to be the optimal design
choice; however, the example demonstrates that this is not the case.
From Elna for Case iv), note that the control which is applied to Et)

depends mostly on the unstable state x while more emphasis is given

1'

to states x, and Xy in the calculation of the control for actuator El.'

Thus, actuator 91) acts partially to stabilize the dynamics of state xl,

while actuator b acts partially to counteract the negative effects of

1
the subsystem of states x2 and x3. This type of control action is an
example of the use of functional redundancy, and is not possible with
4 i : 3 4
design configurations B or B .
The non=-switching gain analysis of the proposed design configura-
tions yields information not only about the effect of various actuator
configurations but also about the effect of component reliability on

4 2 3
the expected performance. Thus, B is more effective than B, and B

. 1 4 3 : : :
is more effective than B ; B and B are versions of the configurations
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2 i
B and g}, respectively, with one level of component redundancy. Con- 4

figuration g? is an example of functional redundancy; both actuators f
provide control input to the same system, but are not identical components.

Thus, the additional reliability of component redundancy contributes

Smbaabde o b b iy

! to ranking (6.2.9). The trade-off between system performance and system

reliability will be further demonstrated in Section 3.
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6.3 A Trade-Off of System Performance Versus Reliability.

The non-switching gain methodology can be used to study the
relative effects of actuator reliability and actuator effectiveness
on expected system performance. If a designer has a choice between
using a high reliability actuator rather than one with relatively low
reliability, but with a higher effectiveness, on what basis can a
decision be made? In Example 6.2, two actuators are considered. Each
actuator may fail to an actuator of gain zero (0) and be repaired

(replaced). The probabilities of failure and repair are pf and P, v
i i

where i=0 or 1 and refers to the actuator (b _ or g]_, respectively).

0

One actuator (Q%)) has good reliability, but the actuator gain is unity.
A second actuator (gl ) has an actuator gain of ten (higher effective-
ness), and a lower reliability. If the actuators had the same relia-

bility, then actuator b . would be preferable--it incurs a smaller cost

1

for the same effect. 1In Case i) of Example 6.2, this reasoning is
demonstrated numerically; the steady-state non-switching gain favors

actuator b (the second column of EO). (The two rows of the gain

1

matrix are compared; the top row corresponds to actuator g(r)
In Cases ii) and iii) of Example 6.2, the reliability of actuator
9]_ is lower than the reliability of actuator 9{). In Case ii) the

probability of failure per unit time of actuator El is five times

greater than the probability of failiure per unit time of actuator EO H
in Case iii), it is ten times greater. The probabilities of repair per

unit time for actuator b are also lower than for actuator EC)'

|

Therefore, actuator b is significantly less reliable than actuator b

1

Note that in Case ii), the optimal non-switching steady-state controller

P — .

0"

HIRor J S

L
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favors actuator 2() by a gain factor of 2.5 - 2.6; in Case i), actuator

2]_ is favored by a gain factor of 2.3. 1In Case iii), actuator g() is
favored by a gain factor of 5.1. Tnus, the non-switching gain calcula-
tions can be quite sensitive to changes in component reliability.

Although the configuration states are identical for all three Cases of
Example 6.2, the configuration dynamics are modified by the changes in
actuator reliability. The effect of modifications in actuator reliability

on the non-switching steady-state gain and cost is pronounced. The

steady-state gain is very sensitive to the actuator reliabilities; the

expected steady-state cost increases as the reliability decreases. A

second effect demonstrated by Example 6.2 is interesting. In Case i),
configuration state 2 is not stabilized by the non-switching gain. As
the reliability of actuator EJ. decreases, the average steady-state

probability that the configuration is state 2 (actuator b failed,

1

actuator b = operational) increases. Therefore, the non-switching gain

0]
solution must concentrate more effort on stabilizing configuration state
2. Note that in Cases ii) and iii), configuration state 2 is stabilized
by the non-switching gain solution. It is interesting to note also that
the non-switching gains in Cases ii) and iii) are robust with respect to
configuration states 0, 1 and 2. (Configuration state 3 is uncontrolla-

ble.)

The system dynamics in Example 6.2 are

= + «3.
Beadg "B X 7?7 By Yt B
k(t) €I (6.3.2)
where I = {0,1,2,3} and x, = [x X x, .1 T. The set {8 }3
- Lyt 2, 3,t =i 'i=0

of configuration states is given in Example 6.2. The cost to be

i
1
:
;
i
1
4
3
‘
:
]
k
s
:
1
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minimized is

(6.3.3)

PO
1%
“t
e
"3
o
e
3

=]
]




Example 6.2:

2.0000 . 5000 .5000

A = fo.0 0.0 1.0000

0.0 -1.0000 0.0

= 0.0 0.0 [ = conf. O

|

B = 0.0 0.0 = conf. 2

|

|
]

0.0 § = conf.

166

1

0.0 = conf. 3
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Example 6.2 Case i) .%
=3 p— g
: = |
pf AR 9799 T 1r0 .
= 009999 m
‘ pe = -0 P, = .98 T o= =
; 1 1 .009999 T,
t0001ozo Lﬁ |
et 3_. 4
! ' _z
Convergent:
| 4 ~.2059 =.01076 -.07574
G =
o -.4829 -.02505 -.1789

134.5 30.06 41.49
S = 30.06 8.459 9.981

41.49 9.981 16.44

134.5 30.06 41.46}

§1 = 30.06 8.459 9.981
1\

i
} L41.49 9.981 16.44 i
| &

{ ¥ .
138.5 30.27 42.96 !
. {
g8 = 30.27 8.470 10.06 '

L§2.96 10.06 16.98

138.5 30.27  42.97]

S = 30.27 8.470 10.06

L§2.97 10.06 16.98

-

_ 134.5 30.06  41.51
A ' A
1! w,S, = 30.06 8.459 9.982) =

41.51 9.982 16.45

{o]
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Expected cost = :_c_Tg x

A i #eithi

Stability: ] Ik

i Configuration Stable . 1
0 (B,) yes
1 (El ) yes

2 (22 ) no ‘

3 (B3) no

Interpretations: The system x = [A + Ei G ns] X 1is stable only for ’

t+l t

i=0 and 1. The probabilities of the configuration being in states 2 and 3
(Tr2 and 1r3) are small; the system configuration is stabilized using the

control gain G - in the control law

T




Example 6.2 Case 1ii)

pfo = ,01 pz_0 = .98
Pe = .05 P = 90 w
1 1
Convergent:
-1.041 -.05848 ~-.3639
s -.4058 -.02163 -.1464
[176.6  36.37  55.60 |
so = |36.37 9.797 12.06
Lss.eo 12.06  21.81 |
[176.9  36.39 55.71 |
§;_ = 36.39  9.798  12.06
55.71  12.06  21.85 _
[197.4  37.56 62.83 |
§; = 37.56 9.868 12.46
L§2.83 12.46  24.35 |
(166.4 35.79  52.08 |
§; - 35.79 9.762 11.86
L§2.os 11.86  20.58 |
177.7 36.43 55.98
:"15;’ 36.43 9.801 12.08
e 55.98 12.08 21.94

~.9378 |
.009212

.05206

ne

L. 00053 16.“

9]
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Expected cost = Tg X

Stability:
Configuration Stable

0 (Bj,) yes
1 (gl ) yes
2 (B,) yes
3(B3) no

Interpretation: The system

= +
Xen a —B-igns] Xe
is stable for i = 0,1,2.

Configuration state 2 is stabilized because the probability of the

configuration state being 2 (B 2) is larger than in Case 1i).
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Py * 00 P w98 8909 | &
0 0 - 0
.009172 m
pf e 10 pr = 90 1]‘_ = =
1 1 .09891 m
| . 001010 m
~ B S |
|
Convergent: ;

-1.729 -.09453 -.6062

i -.3400 -.01858 -.1195

210.6 41.04 67.28
S, = 41.04 10.76 13.61

7.28 .61 .
L§ 13 26 29J

213.2 41.14 68.261

S, = 41.14 QTS 13.66

=
68.26 13.66 26.66J
L
P =
212.3 41.09 67.92
L}
§2 = 41.09 10.75 13.64

67.92 13.64 26.534

196.0 40.19 62.11

S, = 40.19 10.70 13.32

L§2.11 15.32 24.47

210.7 40.99 67.28

.
g "151 = 40.99 10.75 13.60 Q c
=

67.28 13.60 26.28




Expected cost
Stability:
Configuration

0 (Bg)

1 ()

2 (22 )
3 (531
Interpretation: The system
Xen
is stable for i
Configuration state 2 is stabilized because the probability of the

configuration state being 2 (52 ) is larger than in Case i).
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6.4 Summary.

In this Chapter, two applications of the non-switching gain method-
ology to computer-aided design (CAD) were presented. The purpose of
these examples was to demonstrate the usefulness of the non-switching
gain methodology in the design process. CAD has two uses: First, it is
used by the system designer in the evaluation and design of a system.
Second, it is quite useful to the theorist. In this research, for
example, without CAD techniques, a thorough knowledge of the methodologies
presented in this report could not have been gained. The equations
describing the switching and non-switching gain methodologies can be
derived, but their meaning in a specific context cannot be determined
theoretically. The purpose of this research was to study the inter-
actions between system reliability and optimal control. The method-
ologies presented in this report allow this study to proceed. The two
Examples of this Chapter study two specific areas of interaction
between system reliability and control. The door has now been opened to
the answers to questions on reliable control system designs. Computer-

aided design can provide the signposts to these answers.
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CHAPTER 7

CRITIQUE

7.1 Introduction.

In this Chapter, the major results of the report will be summarized.
In Chapters 3 and 4, the switching gain solution was developed and
extended suboptimally to stochastic systems. In Chapter 5, the non-
switching gain solution was developed. The problems associated with
system stability, including definitions of what constitutes a stable
system, and with the steady~state solutions to Problems A (Sections 3
through 5) and B (Section 6) were studied in detail in Section 7. The
equivalence of the two approaches to the non-switching gain solution is
proved in Section 8. The existence of a robust steady-state linear
feedback control system was studied in Section 9.

In the following sections, each major result will be discussed; in

Section 5, some suggestions for future directions in research will

be made.

7.2 The Switching Gain Solution.

The switching gain solution was derived in Chapter 3 as a control
methodology for linear system with qguadratic cost criteria and variable
actuator configurations. The resulting control law was to account for
the failure, repair and reconfiguration of the actuators by switching

the control gain on detection of a change in configuration. This type

of control law is, from Chapter 1, Section 4, a class II reliable control

methodology; an active (switching) controller is used with a passive

i
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conftiguration design.
7.2.1 Deterministic Optimal Solution.
The switching gain solution of Chapter 2 is derived as the optimal
solution for the discrete-time deterministic optimal control problem. 3
It is the optimal control simply because the structure of the discrete-
time system allows perfect observations of the system structure with
one=-step delay. Therefore, there is no need for the control law to
have a dual effect; in fact, there can be no dual effect, since the 3
control law does not affect the observation process, for almost all
values of the control.
A minor drawback to the switching gain solution is the computa-
i tional burden of iterating the Riccati-like equations (3.3.6), and solving
for the optimal control using equation (3.3.7), backward in time for
cach time instant of the control interval, or until the steady-state
solution is achieved, when one exists. Fortunately this computation is
done off-line, and the various optimal gains are then stored for on-line A
use. On-line, the controller simply determines which structure the
system was in at the previous time instant and chooses the corresponding
(stored) gain. The control law is then a inear feedback control using

that particular gain.

.22 Non-Extendability to Stochastic Systems.
tnfortunately, the switching-gain solution does not extend optimally
tome where nolse s present. When noise is present, it is no

le i o aeneral) to determine exactly the previous value

@ et are It war shown in Section 3 of Chapter 2 that
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in such a case, the optimal control law exhibits a dual effect; i.e.,
the control law influences the measurement of the system structure. In

a real-life situation, it is unlikely that a system with no internal

noise will be found. Unfortunately, the optimal (dual) control law is,
in practice, unsolvable due to the immense computer resources which are

required.

7.2.3 Suboptimal Extensions.

Because of the dual control effect, the deterministic optimal
solution is the only closed-form solution available. Thus, it is in
our interest to look for suboptimal methodologies which extend the
switching gain solution to the stochastic case. In Chapter 4, two of
these methodologies were studied: Hypothesis testing and dual identi-
fication. While hypothesis testing is a measurement strategy, dual
identification modifies the control in order to guarantee a perfect
observation of the system structure with the next measurement. Both
methodologies are presented in their simplest form, since the problems
of stochastic control of systems with variable structure are not within
the scope of this research. Two comments are in order, however:

First, at least in the form presented in Chapter 4, a dual identifica-
tion algorithm is computationally intensive. Since it is an on-=line
algorithm, a significant computational capacity may be required in its
implementation. Second, it is observed that the optimal stochastic
cpnt}ol law, if it could be calculated, would rely on both estimation
and dual control, the two concepts which are represented in Chapter 4 by

hypothesis testing and dual identification, respectively.
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In a suboptimal implementation using dual identification, the
algorithm would most likely be used only at intervals; the implementa-
tion would rely on an estimation algorithm for the remainder of the
time. This scheme would attempt to minimize the degrading effect of
dual identification on the state trajectory by using it only to guarantee
that the estimation algorithm was tracking the system configuration
properly. Thus, the system response would be roughly periodic, with
the state being driven away from the origin in order to obtain an
accurate estimate of the configuration, and decaying back toward zero
between uses of the dual identification algorithm.

This type of control strategy deserves some attention in future
research activities. It is similar to the class of self-testing
systems which perform diagnostic testing of their configurations
at intervals. It is also, at present, the only methodology which takes
advantage of the dual property of the control law in systems with

variable, imperfectly observed, structure.
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7.3 The Non-Switching Gain Solution.

The non-switching gain solution of Chapter 5 was derived as an
alternative to the switching gain solution of Chapter 3. Although
the non-switching solution is, in general, suboptimal, the on-line
complexity of the solution is less demanding than that of the switching
gain solution. On-line, the non-switching gain solution has the same
complexity as does the standard linear quadratic solution. Off-line,
the computational requirements are equivalent to those of the switching

gain solution.

7.3.1 The Necessary Conditions--Unsolvability.

When the non-switching control problem is formulated as an
equivalent deterministic control problem (Chapter 5, Section 4), the
necessary conditions from the matrix minimum principle [Athans,41]
yield a two-point boundary value problem which is not explicitly
solvable; at the present time, the solution to this problem appears
intractable. The necessary conditions are used, however, in conjunction
with an equivalent problem (Chapter 5, Section 6), to prove some strong

properties of the solution to the equivalent problem.

7.3.2 The Equivalent Problemn.

The equivalent problem formulated in Section 6 of Chapter 5 has
the advantage over the original formulation that a closed-form expression
for the solution can be readily obtained. From the necessary conditions
of Section 5 in Chapter 5 for the original formulation, it is shown that
the accumulated costs over the control interval for a specified gain

sequence are identical for the two formulations. From this, in Section 8

s A

Ty
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of Chapter 5, it is shown that if the steady-state solutions to both
problems exist, then they are identical. This is a major result, since
the steady-state solution to the second formulation is calculable,

while the solution to the first formulation is not.

7.3.3 Existence of a Stabilizing Gain.

Only one major result remains; one would hope that the steady-state
solution to the second formulation exists if and only is the steady-state
solution to the first formulation exists. In Section 7 of Chapter 5, the
meaning of "steady-state" is precisely defined for both problems. 1In
order for the concept of a steady-state solution to be well-defined, an
exact definition of stability must be given. Two definitions are present-

ed. Stability is defined as the usual concept of mean-square stability.

A definition of cost-stgbiligxris presented as the condition when the
expected cost for the infinite horizon problem (unnormalized by time)
is bounded. It is proved that the solutions to the two formulations
are equivalent in that one solution is cost-stabilizing if and only if
the other is also. Cost stability is shown to imply mean-square

stability; the reverse is not necessarily true.

7.3.4 Problems with Convergence.

There are two criticisms of the results of Chapter 5. First,

although cost-stability is not implied by mean-square stability, it is

possible that, for the specific form of the non-switching gain solution,
the two definitions are equivalent. This is a minor point, in that the
equivalenée result is already very strong; it yields a procedure for

the calculation of the steady-state solution to the two point boundary




180

value problem which converges if and only if that solution exists.
Second, there is still a minor problem concerning the convergence
of the non-switching gain solution. The equivalence theorems of
Chapter 5 only require the solution to have a steady-state, which may
be a limit cycle. A limit cycle is still copacetic, but it is harder
to implement than one gain would be. Therefore, it is desired that
conditions be found for which the possibility of a limit cycle is
ruled out.
Thus, two possible topics for future research are the examination
of the exact relationship between cost-stability and mean-square stability
for the non-switching solution and the determination of conditions for :

which the possibility of limit cycles as solutions is eliminated.

7.3.5 Existence of a Robust Gain.

A spin-off of the non-switching gain solution of Chapter 5 is
the development of an algorithm which determines when a robust gain
for a set of linear systems exists (Section 9). A robust gain is a
gain which stabilizes each mode of the system configuration regard-
less of the configuration dynamics. This algorithm is developed by
noting that the robustness problem can be reformulated as a non-switch-
ing gain problem. Since the non-switching gain is, in the steady-state
case, the solution to the first formulation (Section 4, Chapter 5), and
since it is stabilizing if and only if a stabilizing gain exists, then
by the special structure of the robust formulation (Section 9), the
steady-state non-switching gain is robust when it exists. In addition,

if the non-switching solution is not cost-stabilizing, then no robust
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gain exists. This is a very important result; it is unfortunate that

; determination of existence of the robust gain requires the solution
of the non-switching gain problem. At present, however, no test on a
system exists which determines when the non-switching gain solution
is cost-stabilizing. It is hoped that such a test will be developed in

the future.
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7.4 Computer-Aided Design.

Chapter 6 demonstrates the usefulness of the non-switching
gain calculations in computer-aided design (CAD). These calculations
provide the backbone for comparison studies on the relative system

effectiveness of various designs. In the first example, it is demon-

Ry W S b o g Mk e 53 iag o s Pl

strated that the non-switching control methodology yields a numerical
value based on the expected performance of a design configuration
over the effect of the structural dynamics. This example demonstrates
that relatively subtle qualities of an actuator can be used to rank
various actuator configurations; in this case, the ranking depends

on the manner in which the control affected the system state and is ;

not obvious on a casual inspection of the configuration.

The second example demonstrates the ability of the non-switching

gain methodology to observe the trade-off between high reliability and

high effectiveness in an actuator. Both qualities are desirable, but
in this example, one actuator is highly reliable, while the second
actuator is not as reliable, but is highly effective in that it incurs

a much smaller cost in applying the same control effect to the system.

The non-switching gain problem is solved for a range of actuator reli-

abilities for the highly effective sensor. It is demonstrated that

the trend exists to depend more heavily on the high reliability sensor

as the reliability of the highly effective sensor decreases, even

though the operation of the highly reliable sensor incurs more cost.
Chapter 6 only touches upon the field of computer-aided design.

There is much work to be done in this field, and the purpose of Chapter ¢

is only to establish the usefulness of the non-switching gain methodology
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in the design process. In the future, the applicability of the non-

| switching gain methodology to CAD should be studied in great detail;
in particular, a comprehensive methodology for the application of the

techniques of Chapter 5 to CAD should be developed. This methodology

P S erp———

should include a strong argument for the validity of using the non-switch-

i ing methodology in CAD. Specifically, research needs to be carried out

on the relationship of the costs incurred by various design configurations;

this is similar to justifying the use of the quadratic cost criterion

in the linear quadratic regulator. In order to compare two designs, a .
valid basis of comparison, or cost index, must exist. The non-switching

methodology is proposed as being a valid cost index for the class of

systems for which it is applicable; this conjecture should be verified.

In addition to the usefulness of the non-switching methodoiogy, it

has been mentioned previously that a valid definition for a reliable

design is that the design is cost-stabilizable. Since, for the deter-

ministic control problem presented in Chapter 3, the switching gain

solution is the optimal solution, the existence of the steady-state

switching gain solution is equivalent to the stabilizability of that

design. Hence, the existence of the steady-state switching gain solution
is necessary and sufficient to classify a design reliable.

In theory, the computation of the steady-state switching gain
solution can be used as a method in CAD for determining if a proposed
design meets the minimum requirement of stabilizability. In practice,
however, the proposed design will operate in a stochastic environment;

therefore, the switching gain solution is not an absolute measure of the

stabilizability of the design. In the future, research should be
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concentrated on the development of the concept of stabilizability to
more general stochastic systems than has been done previously. An
example of work in this direction has been given with the Uncertainty
Threshold Principle [Athans, et. al.,37], which is basically the deter-
mination of conditions of stabilizability for a specific system with a
specific type of control law. The work on the existence of the non-
switching gain solution for a simple system (Chapter 2, Section 7)

is another example. It has been demonstrated in this research that the
concepts of systems reliability and stabilizability are crucially
interconnected. It is left to future research to determine more general
conditions of reliability and stabilizability and to implement these

conditions in computer algorithms which can be used by the designer.
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7.5 Suggestions for Future Research.

Several suggestions for future research have been presented in
Sections 2,3 and 4 of this Chapter. 1In this Section, a summary of these
suggestions will be given.

In Chapter 1, three classes of reliable control methodologies
were given. These are

I) Passive (Robust) Controller Design

II) Active (Switching) Controller, Passive Configuration
Design

III) Active Controller, Active Configuration Design

of the methodologies presented in this report, the non-switching
gain design is a class I methodology, and the switching gain design is
a class II methodology. Class III methodologies are not represented
in this report. This class is currently largely in the realm of
"blue sky" theory. Unfortunately, there is as yet no adequate model
of configuration dynamics which exhibits a state and control structure.
Over the next ten years, one should see much research activity in the
area of class III methodologies and their control structures.

In class II methodologies, much effort should be concentrated on
extensions, either optimal or suboptimal, of the switching class of
control laws to stochastic systems. At present, most work has been done
in estimation theory, since the difficulties associated with dual
control are widely recognized. The ability of a control law to perform
diagnostic testing for changes in configuration has yet to be exploited
theoretically, although many heuristic algorithms have been used, both

in control systems and in the more established field of fault detection
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and identification in digital systems. Dual control is a form of self-
testing, and can be utilized as such, even if an optimal control is
not known. The dual identification methodology of Chapter 4 is an
example. This field requires a large effort, and should be rich in
research opportunities.

The class I methodologies are represented in this research by the
non-switching gain solution. The work done in Chapter 5 on mean-square
stability and cost-stability of solutions is not unique to this class of
problems. Much remains to be done in the classification of what consti-
tutes a stabilizable system, whether with respect to a non-switching
control law or something more general.

Since reliability can be defined as stabilizability with respect
to some class of control laws, research into the stabilizability of
dynamic configuration systems is the key issue in reliable control
system designs. Much work, including this research, has been done on
the assumption that the system is stabilizable; however, little progress
has been made in determining why a given design is stabilizable.
Although iterative tests were developed in this report for determining
stabilizability, a thorough understanding of the reason these tests
either converge or fail to converge is lacking. Much work still must be
done. With this should come a resolution of the problems with limit
cycle steady-state solutions to the non-switching gain methodology.

In Chapter 6, the usefulness of the non-switching gain solution in
computer-aided design was demonstrated. CAD is a field unto itself; many
opportunities exist for research in this area. Unfortunately, most

research is application-specific. CAD is useful not only to the designer,
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but also to the researcher. It is a powerful tool in the building of
the concepts of reliable control systems design, and it should be

developed in parallel with any future research.

7.6 Summary.

In summary, the main purpose of this research was to establish a
foundation in reliable control system design methodology which would
provide the basic concept of a reliable control system. In achieving
this goal, the linear gquadratic variable actuator control problem was
studied in some detail. Optimization problems were formulated which
represented both system performance (in the quadratic performance index)
and system reliability (in the expectation of the performance index over
all possible structural trajectories). The optimal control law was
solved analytically for the deterministic system; this was the switching
gain solution. It was clearly illustrated by example in Chapter 2 that
the switching gain control law could not be extended analytically to
the control of stochastic systems. This example demonstrated the dual
effect of the control law; in general, the control law will influence
the measurement accuracy optimally (in the sense of minimizing expected
cost) when the control can influence the accuracy.

Stochastic extensions to the switching gain methodology were proposed
in Chapter 4. 1In particular, the dual identification algorithm is an
illustration of the self-testing capacity of dual control laws. The
study of the uses of the dual control effect in the design of reliable

control systems is a promising research area of the future.

{
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In Chapter 5, the non-switching gain solution was developed. This
solution led to an algorithm for the determination of robust linear
constant gain control laws for a set of linear systems with different
actuator configurations. 1In addition, the resulting gains are optimal
with respect to a given quadratic performance index and exist if and
only if any robust gain exists.

In conclusion, the unifying concept of this report is: What
constitutes a reliable control system, or a reliable design? A major
connection was established in this research between the concepts of
reliability and stabilizability. Iterative procedures were developed
for the determination of whether or not a given linear system of the
type considered in this report is reliable, with respect to both class
I and class II controllers; i.e., non-switching and switching gain

controllers, respectively.
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DEFINITIONS FROM MIL-STD-721B
25 August 1966

RELIABILITY
The probability that an item will perform its intended function

for a specified interval under stated conditions.

AVAILABILITY

A measure of the degree to which an item is in the operable and
committable state at the start of the mission, when the mission is
called for at an unknown (random) point in time.

DEPENDABILITY

A measure of the item operating condition at one or more points
during the mission, including the effects of Reliability, Maintain
ability and Survivability, given the item condition(s) at the start
of the mission. It may be stated as the probability that an item will
(a) enter or occupy any one of its required operational modes during a
specific mission, (b) perform the functions associated with those
operational modes.

CAPABILITY
A measure of the ability of an item to achieve mission objec-

tives given the conditions during the mission.

OPERABLE
The state of being able to perform the intended function.

MAINTAINABILITY
A characteristic of design and installation which is expressed

as the probability that an item will be retained in or restored to a
specific condition within a given period of time, when the main-
tenance is performed in accordance with prescribed procedures and
resources.

SURVIVABILITY
The measure of the degree to which an item will withstand hostile

man-made environment and not suffer abortive impairment of its
ability to accomplish its designated mission.
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A2.1 Exact Optimal Solution for Deterministic Case, Chapter 2,
Section 2.

From (2.2.7) and using dynamic programming, we wish to minimize
Vix, . k(t-1) €) = E(ax’ + ru’
X, o ¢ Uy qx, + rug

*
+V (ax +b , k(t), t+1] x,)  (A2.1.1)

k(t) 't
where V'('.k(t), t+l) represents the minimum cost-to-go, given
k(t) at time t+l.

This minimization can be carried out because X, is known exactly
at time t, and therefore:Et_lisknownexactly by equation (2.2.10).

The control u, is computed from

t
0 = 3 qx2+ru2+1t v*(ax +bu, , k=0,t+l)
EY t £ t t’ g
* 1
+n1 \' (axt+ Eut'k=1't+l)) (A2.1.2)

t

and the assumption that

2

tS i,t (A2.1.3)

*
v (xt,k=i,t) = x

resulting in equation (2.2.8). Equations (2.2.12) and (2.2.13) are
then obtained by substitution of (2.2.8) into (A2.1.1); these

equations validate assumption (A2.1.3) by induction.

I
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A2.2 Exact Optimal Solution for Stochastic Case, T=0, 1, 2=

(1-d examglel.

The formulation is the same as in A2.1, except the system is
now represented by

Xep1 ™ ax + bk(t) u, + &t (A2.2.1)

Et is white noise with zero mean, variance £, and probability dis-
tribution p (§), which is uncorrelated with any other variable. To

illustrate the complexity of the solution, the time set is chosen as

{0,1,2}. The problem is to find u and u such that

v(x ,0) = E(J) = [; (x q+ u r) +x ql Xor L ] (A2.2.2)

*
is minimized. Let V denote the minimum value of V. Assume
Y T @A) (A2.2.3)
where ¢t is a mapping from the information at time t (zt) into the

control space.

. m AR . .
z, { o' %0’ Y% PRy xt} (A2.2.4)
then
* 1.2 2 *
V(x,,0)= min E)x g+u r +V (x,,1)| 2 (A2.2.5)
0 s kg A0 o 1 0
0O '00
by dynamic programming. Also
Vi, = min B! x’q + ulr +Vvx,,2)z | (A2.2.6)
1’ { 1 2 1y

u1'¢1(21)

*
But V (x2,2) = xgq, so (A2.2.6) becomes

*
vV (x,,1) = min E ‘x q+ u2r+ X qlz (A2.2.7)
A u.=¢.(2,.) M 3 1
n S s |
= min E‘x2q+ u2r+ (ax, + b, u, +f )2 q|z'
| "1 1 1 k, 1 1 1y
U= 9, (%)) .

(A2.2.8)
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now, zl = {10 ,xo,uo,xl}, so

(A2.2.8) = min xzq + uzr
u=p zyl !
1 S L &

2
E [g 'Hi(lll) (ax1+ biu1+ 51) q] } (A2.2.9)

where "i(lll) is the probability that kl

i, given zl' Bringing the

expectation inside the sum,

(A2.2.9) = min x2q + ur
v il ? L
1~%1%

: 252 2.2
t
+ pa Tri(lll) fa x, + biul +

pifferentiating (A2.2.10) w.r.t. u, and setting the result equal to

(11

+ 2ab x,u )q} (A2.2.10)

zZero:

2 :
0 = 2ru + gﬂi(lll)(2biul+ 2ab, x,)q (A2.2.11)

[2; m, (1]1)b, ]
x1 (A2.2.12)
[z; m, (lll)b ]

Substituting (A2.2.12) back into (A2.2.10), define sl and 'I‘l as

or

= 2q (A2.2.13)

8. - (a2 + 1)q

1
2
[Z; T, (|1, q°
(A2.2.14)
[t& ", (lll)b ]
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and

* 2
v (xl,l) = xls1 + T1 (A2.2.15)

A few remarks must be made about the probability distribution over kt'

given Z_ or 2

€ t+l°
Notation:
ni(tlt) = probability that kt = i, given the available information zt.
ﬂi(t|t+1) = probability that kt = i, given the available information
V4 s
t+l

From the Markov property,

m(tlt) = Pm (t-1]t) (A2.2.16)
Equation (A2.2.16) is the propagation equation for the distribution 7.
The form of the update equation is given and proved in the following

lemma :

Lemma A2.1:

p(xt+1-axt-biut)ni(t|t)

Jz; p(xt+1'“t'bjut)"j(tlt)

"1“"*” = (A2.2.17)

Proof :
Note that

P(x -axt-bi“t) Izt,ut,k(t)=i)

t+l PX4y

where ut is not a random variable. Also,
ni(tlt) = p(k(t)=i|z,)

p(k(t)"lylo oxoluov-o- 'xt)

p(lo ixo:uoo- 'xt)

- -

e e - pp———

— e c— T —
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then (A2.2.17) becomes:

|z, ru .k(t)=i)p(k(t)=i|zt)

p(x
t+l
p(k(t)= 1|Z =
e+
P(xu_ll Zyou)

which is Bayes rule. Q.E.D.

Returning to equation (A2.2.5), and substituting (A2.2.15),

*
V (x.,0) = min {xzq + u2r + xzs + T |2 } (A2.2.18)
0 u.=6 (2.) 0 0 1 1'°0
0o 0,0
: 2 2 =
= min E xoq + uor + =q
—¢O(Z )

2
[2; ni(lll)bi] e
2 2 1=

+ x, fgq(l+a”) - -1z (A2.2.19)
1 5 0
[2 ni(lfl)bi]q
1=
= min x2q + u2r + Hqg
o =4, (2.) 0 0
000

2
[:ﬂi(lll)bi] qa%a’
+ 2 2 Xi q(1+a2) - =
Ko 0 | K70 B r + [2“.(“1)13?](1
1 &l i

'dp(x1|kl,ko,z m (A2.2.20)

'p
0 klko ko,O

where

p(x -ax, b u )nj 0
ﬂk(lll) Z; Py 5 (A2.2.21)

;i; (x ax -b, u )n
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Equation (A2.2.21) is a combination of equations (A2.2.16) and (A2.2.17). '?
Equation (A2.2.20) can only be solved numerically (in general); this
requires a numerical minimizatior of a function the computation of which

requires four numerical integrations -- a difficult task.




A2.3 Exact Solution of Stochastic Case Over T = 0,

1,

Assume, for the problem in A2.2, that

‘ 3}?5 , for V3% < &S /3%

pig) =
0 , otherwise

Suppose Iuol > 0 is large enough such that

0

Then

i}

méw&mﬁw Chapter 2, Section 2.3.1.

Pb, -bu  + £ =0, i ¥k, and £o€ (-V3%,V3%]

: Hi(1|l)bi
18

?71'5'-')"k (| 1
=/ %o

1
: ‘piko(:z?si)"ko(oh)
& l(

Similarly,

=
S; ni(lll)oi
= 1=(

Then, from equation (A2.2.14),

L
™
o
-
7
o
o3
-

)

2
Sl(ko) (a"+1)q

T

1 paal
i (x ax =b u )n
oy * k%o’ "k, 0

|
|

(A2.

(A2,

(A2.

(A2.

(A2.

(A2.
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3:1) 3

3v)

3.3)

3.4)

3.5)

3.6)
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From equation (A2.2.20),

* ; 2 -
X = in -
Vv (x,,0) m X, 4 *uyr+ =q

0
uo—¢0(zo)

u["}‘

2
: (‘“o’bkouo’go)

[2 ]2 =

2
+ —
] (a +1) g a A kO,O
10
(A2.3.7)
2
= min x0q+u r+ =q
-¢0(Z)
+ P (a x +b2u2+2ab X u
y k'okoklko 0 koo kooo

3
0=0 0 1_
2. 2
2 2 []; pj'kO bi] i
+Z) (a”+l) g- a - (A2.3.8)
]
= [2 Pix bi]q
1= 0

, and noting that S  does not depend

Differentiating with respect to uy 1
on u.,
9
0= 3 vV (x.,0)
2 :
=2u. r+ 11 p. (2b, u, +2ab x) S (A2.3.9)
0 kt-o korO ety Tk KoK TO ko, 00 1

Then,




3: By g B
TR

u_ = X (a2

0 E s 2 0
P b S
= klko ko 1

0

This solution is valid only when I“ol >0 is large enough such that

D((bko-bi)uo + £)=0, i#k, and £ € (- V3%, V3Z]. rThus,

0
must be satisfied.

i) Assume (bk -b.) > 0. Then (A2.3.11) is satisfied if

ii) Assume (b, -bi)u < 0, Then (A2.3.11) is satisfied if

for (A2.3.10) to hold.

*
Notice also that when (A2.3.10) is the optimal solution, U is

identical to the deterministic solution.

I(bk “B, ¥ * Eql >/3E, £y € [-/3E , /3T (A2.

0 ;:j)
(b, =b.) = V3E > V3% (A2.
ko i “0
or
5. ib ) > 25 (a2.
ko iu,

k0 0
(b, <b.) + V3 < -/3E (A2.
k i'u
0 0
or
- <€ = / = .
(bk bi)u 2/3E (A2
(0] (0]
*
Therefore, u, must satisfy
*
| (b, =b.u_| > 2/3E (a2.
k0 i 0
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.3.10)

3.11)

3.12)

3.13)

3.14)

3.15)

3.16)
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A2.4 Existence of Steady-State Solution for 1-d Example.
From Chapter 2, Section 2.2, the coupled Riccati equations for

S0 and Sl are

2

tlp);3b Sy pa1 ¥ Py ladIs, )

P 2
[x + PP Sy par ¥ Py (1/B7)S) 1112

blp,,abS; ¢4y * Ppyla/d)S, | 41 |2
L8 TR Bl Bae S0 bkl

2
r + pllb S

0,t+1 ' P2y 1, t+1

P112D8; 41 * Py (008, ) o
MR e 2 2 S1,t41
r
BIE + P, b Sy e * Py (1S (1]
(A2.4.1)
rl abs + (a/b)s ]2
1,t 2 2 2
(£ + PP S pa1 ¥ P2 (/DS )

2

blp,,abs, 14y * Pyla/b)s, 11 \2
2 e & 3 PP S0, t+1
P12 ©® S0,t41 T P22

1,t+l

‘e, (a . pl2abso,t;1 % p22(a/b)sl,t;1 ) . ol
PIr + )b Sy, g4y * Py (1/DS) ] £
(A2.4.2)
Define
s
h, = L.t (A2.4.3)
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)
r, = 50_:_5_ (A2.4.4)
O‘t*l
Dividing both sides of equations (A2.4.1) and (A2.4.2) by S0 e+l
’

manipulating terms, and using equations (A2.4.3) and (A2.4.4) yvyields:

2
o A rlp),ab + p,, (a/b)h ;)

S

S 2 2
0,t+l 0,t+l [(”/So,t+1) + pllb + Py (1/b")h

2
t+1 )

blp),ab+ p, (a/b)h, ] .
Mt E 2 2
/By ana! By YRy, (NI, L,
ol (a By eb o, R )2 b
21 2 2 t+l
b (x/ So't+1) + pllb + p21(1/b )ht+1
(A2.4.5)
r( b + (a/b)h 12
L s 1 o ¥ i t+l
tt S s 2 2 2
0,t+l 0,t+; [r/so't‘+1 + plzb + pzz(l/b )ht+1]
b[plzab + pzz(a/b)ht+1] 2
T ggRn 7 2 2
(x/Sy e41) * PigP *+ Py (/BN .,
e (a L s b 5 )2h
22 p) 3 t+1
bI(x/S) 4q) + PP" + Pyyhyy,/b7)
(A2.4.6)

Lo




R T R B N S DR IR Vo Fony o

204

Assume sO,t' Sl't+°° as t * -o» and ht -+ h, I't -+ I'. Then
b[pllab + le(a/b)h] 2
F= k.- 2 2
pllb + p2l(l/b )h
P,.,ab + p__(a/b)h \2
+ Py, (a M 2 3 21 2 )h (A2.4.7)
b[pllb + pzlh/b ]
and
_ blp,,ab + p,,(a/b)h] \2
WE = P2 - 2 2
P, b+ 922(1/b )h
7 Py,3b + py,(a/b)h 2 (A2.4.8)
Pag k2 ~ 2 54"
b[pnb + pzzh/b ]
Let
P P p, 1-p
P = [ il N [ : 2] (a2.4.9)
Py1 Py L5, By
Then
b[plab + (1-91)(a/b)hl 2
RS R S 2 2
Plb + (l-pl)(a/b )h
plab + (l—pl)(a/b)h 2
+ Q-p))fa - 3 5 | b (a2.4.10)
b[plb + (l-pl)h/b ]
and
b[(l-pz)ab + pz(a/b)h] 2
W' = (l-pz) a - > 5
(1-p,)b" + p,(1/b%)h]
(A2.4.11)

(l-pz)ab + pz(a/b)h 2
+ pyla - )h

b[(1~p,)b” + p,(1/b°)h]




Solving for h and ' from equations (A2.4.10) and (A2.4.11), if | T B

then there exists no steady-state solution.
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f A3.1 Proof of Theorem 1.
1
£ = - =
4 Assume X, ..\ X0 e41 for k#%. Then (B - Bglu, 0,
| which implies U,y is in the null space of Ek = EE ’ N(_B_k - By ).
; Now, dimension (N(B, - B, )) <m because the gk's are distinct.
Therefore,
> dimension (U N(B -Bﬂ,)) <m (A3.1.1)
- e
Therefore the set U N(Ek'-B-!L) has measure zero in R. Q.E.D.
k,L

T




A3.2 Optimal Solution for Deterministic Problem.

For the system

(A3.2.1)
(A3.2.2)

(A3.2.3)

where _1_!_1 = probability of Ei at time t.

ot

Assume that
1) x, is observed exactly

2) then changes to B

B (-1
3) then u, is applied

k(t)

From dynamic programming, the optimal cost-to-go at time t is given
by
v'(x, ,k(t=1),t) = min
r u, . =p (x. )
-t -
L]
VIR k() ) | x (A3.2.4)

Assume

vi(x k(1) ,t) (A3.2.5)

Then

)l (A3.2.6)

©
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and ‘8

(A3.2.6) = min ‘xTQx +ulRu
R )' St&Se  —t-=t ;
t ft=t |
R T.7
+ A + g " §
TP o '
+
Ee2 8 e 23%c " RdRi10; 0008,  (a3.2.7)
Differentiating the r.h.s. of (A3.2.7) w.r.t. u, and setting equal
to zero:
0 = 2Ru + P. ZBT u, + 28
e 2y Pik [ 22333 enn B8, BiSi,en X
(A3.2.8)
or
* g -1
Yk(e-1),t i & plkBl 1,t+1B
s BTS AX (A3.2.9)
g Pikmi2i, 00125 e

*
is the optimal -‘lt , given k(t-1).

Since no noise is present in the system, k(t-1) is obtained from

X, and x » along with u

t Eea) e

t-1
k(t-1) = i 4iff x_ = Ax +B.u (A3.2.10)

Substituting (A3.2.9) into (A3.2.7), and eliminating X, because the

equation must be true for all -’St and the matrix equation is symmetric,
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on simplification we obtain

r |
Sk.t 2 l z; Pix £4,e02
[ T -1
& li_; Pix By e B4 ] [5 ki ; Pix Eiii,cugi]

_ ; '
;_; Pix Eiii,tﬂ] | A+ 9 (A3.2.11)

which verifies assumption (A3.2.5) by induction, along with the initial

condition

Sy *8 (A3.2.12)

|
| 3
L
|
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A3.3 Proof of Lemma 1.

Consider the optimization of the cost-to-go given k(t-1) at time
t with final time T. This optimal cost~to-go is simply
*
Ve (x,  kit-1),t) (A3.3.1)

where T denotes the final time. For the process with final time T+1,

the optimal cost-to-go is

Vo (x, k(t-1),t)

s
" E{ﬁ“z?g&r+

Since this optimal sequence is not necessarily optimal for the problem

e

)
Ry FEpn 2%y I k(t_l)}

(A3.3.2)

with final time T, it must not incur less cost over {8, .00k
*
Ve (X, ok(t=1),8)

*
_>_ VT ("St vk(t-l)rt)

T
+ +
E{uTRu

-
et Xpp1 2¥ 04 ( k(t-l)} (A3.3.3)

Since the expectation term of equation (A3.3.3) is non-negative,

*

*
vT+1 (it k(t-1),t) > VT (ét Jk(t-1),t) (A3.3.4)
Now, note that
* T 3
Vo (x, ok(t-1),t) = 3‘-t§-i,tT5t (A3.3.5)

and that equation (3.3.6) depends only on the number of iterations

(T-t) for the calculation of §i i and therefore,
’

T

* *
Vo (x, ok(t=1),e-1) = v, (x o, k(t-1),t) (A3.3.6)
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is an increasing sequence in that

-0
Therefore, (§i t} i
.t t=

- > A3.3.7
e e

*
Since, by hypothesis, VT is bounded over t, the -S-i & converge.
’

Q.E.D.
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APPENDIX

CHAPTER 5

Y 5 TSR A e e T A




A5.1 Proof of Theorem 1, Chapter 5.
(&)

& T
Tp = t:r[_§t (Q+G RG)] + tr[gTQ]

214

(AS5.1.1)

: T A T :
and JT<B. Since Q + G RG > 0 and is constant for all t, this implies

lim tr[_):_t] =0

t-»c0

which is exactly Definition 1.

(=)

From equation (5.4.6), note that

| YA L
Z; a1 di=o = FUZ, ¢ )50
wlare Fi-) A8 Tindas o B, -
: ar in 12i,t’i=0
Since
lim tr[Z. ] =0
=t
t>o
for any choice of_g0 . || F || is bounded and lIF ]| < 1.
n
32, Sl Ml 00
Then
Yo o S Lhgs v e B GY 4 =tlE. 0
n'T & e Rt E 2
< 1 1 T 1 i
= -y tr[_f._t] Strig + G A tr(l ] ~triQl

T
<Y Hel® izl g+ crall)

T+1
l—llF'l T
- 1=llF ”_20” ”9_"’9 REH

<SLUFE Nzl g+ aall +lleIT Izl Nel

(AS5.1.2)

(A5.1.3)
(A5.1.4)

(Otherwise,

(A5.1.5)
(A5.1.6)
(A5.1.7)
(A5.1.8)
(A5.1.9)




2,0l I+ c"ra | 215
<

1= el

for all T. (A5.1.10)

Q.E.D
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A 5.2 Proof of Remark on Theorem 1, Chapter 5.

TR [ ORI T

(=) .
T :
Ip = g tr@t (Q + G RG )1+ trlg,rg) (A5.2.1) :
and
:
: a’
z;tr[gtgl =¥, (a5.2.2) 1
Since Q>0
g tt[§t1 is bounded. (A5.2.3)
Therefore E
trlgt]*o as t+o (A5.2.4)

The reverse implication is shown to be false by example*

Example 1: Consider

Xe4p = Y (A5.2.5)
o O (A5.2.6)
Y “¥ee1 %t i
Then
2 1 .
- — P .
E[xtl T "o (0] (A5.2.7) ’
but
& 1
galxtl -L, SE > ® (A5.2.8)

* Example 1 is provided by Dr. D. Castanon of ESL.
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A5.3 Proof of Theorem 2, Chapter 5.
Tt T =40, 1, 2, «.., L} (A5.3.1)
and

0

L (1) = {(k(@, k(1), ...)| k(i)e 1} (R5.3.2)
Define the function U on the cylinder sets of zm(x)

K = {(k(0), k(1), ...)| k(i) fixed for i <T} (A5.3.3)
for arbitrary T by

ulk) = (A5.3.4)

k(0 Pk Prakm” T Prmk(r-)
where ™, is the initial probability distribution over I and P = (pij)
is the stochastic matrix of transition probabilities for the Markov
chain. By a theorem of Andersen and Jessen [Loeve, p.91,42], this
function defines a measure, u , on the 0-algebra of 2% (1) generated by
the cylinder sets, o(lm(I)). Since u(%w(I)) = 1, from the definition
of U on the cylinder sets of lw(l),

p: 0(27(1)) > [0,1) (A5.3.5)

is a probability measure, and since U extends uniquely from the cylinder

sets, it is the probability of occurance of elements of O(lm(I)).

Let
J %) R" > [0,] (A5.3.6)
Jp (0 () = g X Qx, + u Ru,
+ 1‘-'1‘2 i'l' {(A5.3.7)
where
£t+1 =A lt + Ek(t) u & (AS5.3.8)

i et
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u, = Gyx, (A5.3.9)
x = (k(0), k(1), k(2),...) (A5.3.10)
and let
J = lim J'r (A5.3.11)
T—m

Since J,r is constant on the cylinder sets with fixed sequences of

length T+1, J'l‘ is measurable. (There are a finite number of such

sets.) By Theorem A of [Halmos, p.84,10],J is measurable with respect

to u.

J()(x) : 2 (D) [0, (A5.3.12)
Let

X, = {x e2”(M] 3 (@) < for xeR") (A5.3.13)
and

X2 = 2 (1) —X1 (A5.3.14)

Then xl and X2 are measurable subsets of 9,°°(I) , and therefore

E[(J] < = ¥ “(xz) =0 (A5.3.15)

because J(x) is a non-negative function on R .
But

E (E(JI] = tr(L  S,] (A5.3.16)
from equation (5.7.14), and by hypothesis, r.h.s (A5.3.16) is finite.
Therefore, any trajectory X is an element of Xl with probability 1,

and has finite cost.

Therefore, {Gt}:;o cost-stabilizes (5.3.1) with probability 1. Q.E.D.

o v % v i s

e s e
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A5.4. Proof of Theorem 3, Chapter 5. ; i

oo

*
tation: *
Notation Ir *he proof, the sequences (_c_;t) )

(e ] .
and (Enst)t=0 will

*
be referred to by G and G ¢ Fespectively. |

Proof: - ]
I) (=>) Suppose Ens is cost-stabilizing. Then J(g_ns) < o,
* o * *

But G minimizes J. Therefore, J(G )< J(gns ) =>J(G )< o,

*
Thus, G is cost-stabilizing.

* *
II) (<=) Suppose G is cost-stabilizing. Then J(G )< « where

3 = lim 3_(c") (35.4.1)
T—c0
Since Ex[JnsT(g)] = 3,8,
JEG) = UmE 3 (G)] =E [0 (6] (A5.4.2)
— reo X NSp = X ns — E '

which implies

3 (6 <= (A5.4.3)

Since G minimizes J_ _, then
—ns ns

*
Jns(gns )iJns(E i (AS5.4.4)

and, since E [J ] =3 for all T, for fixed G,
X' ns, T -

G, ) < (AS. 4.5) i

which implies that g-ns is stabilizing. Q.E.D.
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A5.5 Proof of Lemma 2, Chapter 5.

For the control interval starting at time 0 and ending at time T,

*
the expected cost for the optimal control Gt is

*

J., = tr(Z

T s

0l (A5.5.1)

o

from equation (5.5.8), where the subscript T refers to the endpoint
of the control interval. Similarly, for the same process ending at

T+1l, the optimal expected cost is

*

JT+1

er(L s  (T+1)] (A5.5.2)

0

2 T * . A
E[g 5t(Q_+§t(’r+1) ggt('ml) X,

T
L2 TN (IR T 10] (A5.5.3)

e T * T *
= E L -’St(2+9t(T+l) gg_t('r-fl)gt

T
£ §T2£T|EO' 10

T, T i T
+E(§T(§T(T+1) ggT(T+1)§_ + x

p* Xq1 @ Xl I

i

0 1

0
(A5.5.4)

The first expectation of equation (A5.5.4) is the cost corresponding

*
s
’

to the interval [0,T], and must be greater than or equal to JT the
second term is positive. Therefore,
% > » 5.5.5
Toe1 2 I (AS.5.5)

* *
Since JT is bounded by hypothesis for all T, there exists a J such

that

* *
lim JT =J (A5.5.6)
T-so0

Q.E.D.

}
:
b
L




A5.6 Proof of Lemma 3, Chapter 5.

By direct computation,

T

T T
J G) =J_(G) + E[x GRG + x X
B e R EREx . kx . RE sl

T+1
and since the expectation is positive,

301 (© > 3,0

Since JT(E) is bounded, it converges.
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(A5.6.1)

(A5.6.2)

Q.E.D.

* i —
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A5.7 Proof of Theorem 4, Chapter 5. '
! |
| A) G —G because G converges to the steady-state value e
—nst —opt --nst
which minimizes the infinite-time horizon cost Jns , and therefore,

ss
by the argument given above, also minimizes equation (5.8.9).

B) Given €>0, a T> 0 can be chosen which guarantees || g*t = _G_*||< €,
3 N *
| ”2 it _Z_i |

*
.Then, by the Principle of Optimality, the sequence { g—t}

|< € and ||1r_t- n|l<e , for all t>T.

@
t=T

o3

! minimizes the infinite-horizon cost-to-go at time T. Consider the

problem min Jes (G) for initial condition Ei + T , which has a solution
G

0

*- *
Ens independent of -Fii . In the limit as €*0, the sequence { Et }t=T(E)

.

* *
approaches he constant sequence of gains G . Suppose } §>0 3VT(€) '

it et

| the optimal cost-to-go, satisfies

Vater = Jan - $ (A5.7.1)

{ *
! Then the sequence of constant gains G would yield a strictly lower
*
cost J__ (G )
ss —
* » * 7.2
Jss(_g_) % (A5.7.2)

*
since VT (€) approaches the optimal cost-to-go, given the constant

*
sequence of gains G , in the limit, which is the solution to the

equivalent problem min Jss(g) for initial conditions Ei p Mo
G

Therefore

*
G =G (A5.7.3)
- =ns

Q.E.D.
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COMPUTER ROUTINES
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AIM FORTRAN

an

OO0 0000000co0o00n00n0000000000000

SUBROUTINE AIM(NAA, N, NB, NQ, NR, NG, NS, NRA, N, M, KKON, A, B, R, Q, P,
1 38T,E, S, $B,U, V,W, X, Y, R, PZ, QYORM, FAD, RADINV, BSB, WCRK, IPVT, TEND,
2 IPRT)

*%%%*PARAM ETERS :

INTEGER NAA, NA, NB, NQ, NR, NG, NS, NRA, N, M, KCON, IPVT (N) , IEND, IPRT
DOUBLE PRECISION BSB (NS, NAA, KCON), X (NA,N) ,RAD NRA, N) , RADINV (NRA, N)
DOUBLE PRECISION E (KCQN),SBT (NS,N) ,A(NA,NAA) ,B(NB, NAA, KCON)
DOUBLE PRECISION Q(NQ,N),R(NR,M) ,P(MNA, KCQN),S NS, NAA, KCON)

DOUBLE PREC ISION SB (NS, NAA, KCON),U®MA,N),VNA,N) ,W(NA,N) ,Y (NA,N)
DOUBLE PRECISION PR (N),WORK(N),PZ (N) ,QNORM (NG, NAA, KCON)

*****[OCAL VARIABIES:

DOUBLE PRECISION COND

INTEGER KIN, KOUT, I, K, KKM1, KK, J, END, L, KP, ®M1, ICTM1, IM1
INTEGER ICOUNT

***x**SUBROUTINES CALLED;
MCF,MAID, MLINEQ, TRNATB,MMUL, MSCAIE ,MATIO, EIGVAL, WEIGHT, TRNATA

------------------------------------------------------------------

****x*PURFOSE :

THIS DOUBLE PRECISION SUBROUTINE COMRUTES THE STEADY-STATE OPTIMAL
SOLUTION AND THE CORRESFONDING OPTIMAL GAINS FCR THE PROBLEM
[CESCRIBED IN THE PUBLICATION: ' ON THE RELATIONSHIP BETWEEN
RELIABILITY AND LINEAR QUALRATIC OPTIMAL CONTROL'

BY J. DOUGLAS BIRDWELL AND M. ATHANS.

(EQUATIONS (29) AND (30)).

*%%x**PARAMETER DESCRIPTION:
ON INPUT:
NAA THE SECQND DIMENSION OF THE ARRAYS S,SB, QNORM,
BSB,B AS DECIARED IN THE CALLING PROGRAM
DIMENS ION STATEMENT ;

NA, NB, NQ, NR, THE FIRST DIMENSION OF THE ARRAYS

NG, NS, NRA A (AND P,X,U,V,W,Y),B(AND BSB) ,Q, R, QNORM,
S (AND SB,S3T),RAD (AND RADINV) RESPECTIVELY
AS DECIARED IN THE CALLING PROGRAM DIMENSION

STATEMENT ;
N THE NUMBER OF STATES;
M THE NUMBER OF OBSERVATIONS ;
KCON THE NUMBER OF CONF IGURATIONS ;
A N BY N SYSTEM MATRIX;




OO0 O000CO000000000CO0O0O0O00O0CO00nNn

B N BYM BY KCON SET OF INPUT MATRICES;
R M BY M CONTROL WEIGHTING MATRIX;
Q N BY N STATE WEIGHTING MATRIX;
P KCON BY KCON PROBABILITY MATRIX;
E VECTOR OF LENGTH KCON CONTA INING THE NORMALIZED
EIGENVECTOR OF P CCRRESFONDING TO THE EIGENVALUE
ONE ;
QN OUTRUT:
R, P2 SCRATCH VECTORS OF LENGTH N;
U, V,W,SBT, N BY N SCRATCH ARRAYS ;
X, Y
S N BY N BY KCON SET OF SOLUTIONS ;
SB,BSB N BY N BY KCON SCRATCH ARRAYS ;
QNORM NBYM BY KCON ARRAY WHICH WILL CONTAIN THE
QA IN MATRICES FOR THE NORMAL LINEAR QUAIRATIC
GAUSIAN PROBIEM;
RAD, RAOINV N BY N SCRATCH ARRAYS ;
WORK SCRATCH VECTOR OF LENGTH N;
IWT SCRATCH VECTOR OF LENGIH N;
IEND NUMBER OF ITERATIONS USED IN SOLVING BOTH THE
LINEAR QUAIRATIC AUSSIAN PROBIEM AND THE
FROBIEM [CESCRIBED ABOWE ;
IPRT FIRST ITERATION AT WHICH THE SOLUTIONS WILL BE
RINTED;
COMMON/INOU/KIN, KOUT
ICOUNT = 9
DO 215 KK=l, IC(N
DO 4 J=1,N
DO 3 1I=],N
3 Y(I,Jd)= 0.@DY

4 YJ,J)=1.00

DO 210 K=1, IEND
CALL M(F (NA,NB, A, N, M, Y,B(1, 1, KK) ,U,WCRK)




SO pi e

AIM FORTRAN
CALL MALD (NA, MR, NA,M,M, U, R, U)
DO 14 J=1,M
DO 13 1=1,M
13 V(i,J)= 0.@D0
14 VJ,Jd)= 1.@0

CALL MLINEQ(NA,NA,M,M, U, V,COND, IPVT, WORK)
CALL TRNATB (NA, N8, N,M,B(1, 1, KK) , X)
CALL MMUL (NA, NA, N3, N,M, N, X, Y, U)
CALL MMUL NA, NA, Na, N,M, N, U, A, X)
CALL MCF (NA, NA, NRA,M, N, V, X, RAD, WORK)
CALL MSCALE (NRA, N, N, 1. @9, RAD)
CALL MCF (NA,NA, NA, N, N, Y, A, U, WGRK)
CALL MAID NA,NA, NA, N, N, U, Q, U)
CALL MALD NA, NRA, NA, N, N, U, RAD, Y)
210 CONTINUE
KKM1 = KK - 1
WRITE (KOUT, 44441)
WRITE (KOUT, 44442) KKM1
CALL MATIO (NA, N, N, Y, 3)
CALL MMUL (NG, NA, Na, N,M,M, V, X, QNORM (1, 1, KK))
CALL MSCALE (NG,M, N, -1. D8, QIORM(1, 1, KK))
CALL MMUL (NB, NG, My, N,N,M,B(1, 1, KK) ,QNORM(1, 1, 1) ,V)
WRITE (KOUT, 6000 )
CALL MATIO (NG,M, N, QORM (1, 1, KK) , 3)
CALL MALD (NA,Na, N, N, N, V, A, V)
WRITE (KOUT, 44443)
CALL MATIO MNA,N, N, V, 3)
CALL EIGVAL MNA,N, V, V, R, PZ,WORK, IPVT)
215 CONTINUE
JEND= 1
WPRITE (KOUT, 8009)
CALL MATIO NA, KCQON, KCQ, P, 3)
DO 35 K=1, ICQN
DO 30 J=1,N
DO 49 I=1,N
S(1,J,K= 0.0
40  CONTINUE
¥ S,J,K=1.00
35 CONTINUE
START ITERATION TO CAICULATE S(1),S(2),. . .S(K),GPT

o000

CAICULATE SB
1 CONTINUE
DO 5@ K=1, CON
CALL MMUL NS, N8, NS,M,N,N,S (1, 1,K),B(1, 1,K) ,SB(1, 1,K))
50 CONTINUE
CALL WEIGHT (NS, NAA, KCON, NS, N,M, E, SB, SBT)

C CAICULATE RADICAL
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AIM FORTRAN

C
C

C
C

DO 55 K=1, KON
CALL M(F (NS,NB, N8, N,M,S(1,1,K),B(1,1,K),BSB(1, 1, K) ,AORK)
55 CONTINUE

CALL WEIGHT (NB, NAA, KCON, NRA,M,M, E,BS3, RAD)

CALL MADD (NRA,NR, NA,M,M, RAD, R, U)

DO 54 J=1,M

D 53 I1=l,M
RADINV(I, J)= 0. D9
RADINV(J, J)= 1. D0

CALL MLINEQ(NA, NRA,M,M, U, RADINV, COND, IPVT, WCRK)

CAICUWATE NEW SI,I=l,2,..... ) KCON
190 DO 1840 K=1, N

CALL MMUL (NS, NRA, NA,M, N,M, SBT, RADINV, U)
CALL WEIGHT NS, NaA, KKQN, NA, N,M, P(1,K) ,SB, V)
CALL TRNATB (NA,NA, N,M, V,W)

CALL MMUL (NA, NA, Na, N, N, M, U, W, X)

CALL TRNATB (NA, NA, N,M, U, W)

CALL MMUL NA,NA, N, N, N,M, V,W, Y)

CALL MADD NA,NA, N, N, N, X, Y, X)

CALL MSCALE NA, N, N, -1, @0, X)

CALL TRNATA (NA, N, X)

CALL WEIGHT (NA, NAA, KCON, NA, N, N, P(1, K) ,S, V)
CALL MADD (NA, NA, N, N, N, X, V, X)

CALL WEIGHT (NB, NaA, KCON, NA,M,M, P (1, K) ,BSB, Y)
CALL MALDD (NA,NA, Na,M,M, Y, R, Y)

CALL MMUL (NA, NA, NA,M, N,M, U, Y, V)

CALL MMUL NA, NA, NA, N, N, M, V,W, Y)

CALL MALD (NA, Na, N, N, N, X, Y, X)

CALL M(F (NA,NA, N, N, N, X, A, U, WORK)

CALL MAID NQ,NA,NS,N,N, Q,U,S(1, 1,K))

1099 CONTINUE
IF (ICOUNT-IEND) 11,12,12
11 ICOUNT= ICONT + 1
IF (ICOUNT. IT. IPRT) GO TO 1
IC™M1 = ICOUNT -1
WRITE (KOUT, 5000) ICTM1
DO 10805 K=, KON

M1 = K-1
WRITE (KOUT, 4029) KM1
CALL MATIO (NS,N,N,S(1,1,K),3)

1005 CONI'INUE
@ T0 1
12 CONTINUE

COMAUTE OPTIMAL COST FINCTION
CALL WEIGHT (NA, NAA, KON, M\, N, N, E, S, U)
WRITE (KOUT', 7009)
CALL MATIO NA,N,N, U, 2)

227
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Q 10 (23, 22),END
C
C CWMHIE G OPr
23 CALL MMUL (NA, NA, NA, N,M, N,W,A, U)
CALL MSCALE (NA,N,N, -1. @0, U)
WRITE (KOUT', 6002 )
CALL MATIO NA,M, N, U, 3)
DO 217 KP=1, KON
CALL MMUL NA,NB, N, N,N,M,B(1, 1, KP) ,U,W)
CALL MADD (NA, NA, NA, N, N, A, W, W)
CALL EIGVAL (NA,N,W,W, R, P2 ,WQRK, IPVT)
217 CONTINUE
C
C CAICUWATE COMMRISON WITH NORM
ICOUNT= 9
DO 13#8 K=l, KON
DO 120 J=1,N
DO 110 I=l,N
S (I,J, K) = 0. DB
119 CONTINUE
120 SWJ,J,K) = 1.D8
130 CONTINUE
JEND= 2
4v9 CONTINUE
DO 98 K=1, KKON
CALL WEIGHT (NS, NAA, KKON,MNA, N, N, P(1,K),S,U)
CALL MCF (NA,NA, A, N, N, U, A, X,WORK)
DO 9% L=l,KMN
CALL M (NS,NB,NS,N,M,S(1,1,L),B(1,1,L),S8(1, 1, L) ,WORK)
96 CONTINUE
CALL WEIGHT (NS, NAA, KKON, NA,M,M, P(1,K),SB, Y)
CALL M(F (NA,NA, NA,M, N, Y, NORM (1, 1, K) , U, WORK)
CALL MADD NA,NA, M\, N, N, U, X, X)
DO 95 L=l, KON
CALL MMUL (NS, NB, N5,M,N,N,S(1,1,L),B(1,1,L),S8(1,1,L))
95 CONTINUE
CALL WEIGHT (NS, NAA, KON, NA, N,M, P (1, K) ,SB, Y)
CALL TRNATB (NA, NA, N, M, Y, W)
CALL TRNATA (NA, N, A)
CALL MMUL NA, NA, NA,M, N,N,A, Y, V)
CALL MMUL (NA,NG,NA, N,N,M, V, NORM (1, 1,K) ,Y)
CALL MADD NA, NA, A, N, N, Y, X, X)
CALL TRNATB (NG, NA,M, N, QNORM (1, 1,K),V)
CALL MMUL NA, NA, M, N,N,M, V,W, U)
CALL TRNATA (NA,N,A)
CALL MMUL (NA, NA, N, N, N, N, U, A, W)
CALL MAID NA, NA, NA, N, N, W, X, X)
CALL MADD (NA,NA, A, N, N, X, Q, X)
CALL M(F (NR, NG, NA,M, N, R, QNORM (1, 1, K) , U, WCRK)

alesl e e el o b Sl
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98
4910

4411

1006

4040
5000
6900
7000
8049
9409
9520
9609
9709
93809
9920
44442
44443
44441
2
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CALL MADD NA,NA, Ny, N, N, X, U, X)
CALL SAME (NA,NS, N, N, X,S(1, 1,K))
CONT INUE
IF (ICOUNT-IEND) 4010, 4911, 4011
ICOUNT= ICOUNT + 1
GO TO 400
WRITE (KOUT, 9900 )
CALL M(F (NA,NA, NA, N, N, X, A, U,W(RK)
DO 1306 L=l, KN
M1 = L-1
WRITE (KOUT, 4000) LM1
CALL MATIO (NS,N,N,S(1,1,L),3)
CONT'INUE
@ T 12
FORMAT (/, 41 S, 15,/)
FORMAT (//,11H ITERATION ,13)
FORMAT (//,108 G OPTIMAL )

FORMAT (//, 39%H OPTIMAL COST FINCTION X'CX, WHERE C IS,/)

FORMAT (//,H P,/)

FORMAT (//,38d COST COMFARISON WITH NORMAL SOLUTION

FORMAT (2D 25. 15)

FORMAT (/,H A )

FORMAT (/,H Q )

FORMAT (/,H R )

FORMAT (/,H B, 15,/)
FORMAT (/,H S , I5,/)
FORMAT (/,13H A + B*GZERO)

FORMAT (/,454 SOLUTION TO STANDARD OPT'IMAL CONTROL PROBLEM)

STOP
RETURN
END
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SWIICH FORTRAN

o0

0OO0O0OOCOOCCOOO0On0O00O0O0COoOO0o00000000

SUBROUTINE SWITCH (NA, N8, NC, NG, NAR, MAC, N, IR, NAA, KCON, M, A,B, P,C, G,
1X0, E, ETEMP, M, WCRK, Y, U, V,W, W, IPVT, ARRAY, DTI', NFOINT , NGRIDH ,MU(N)

** &k *PARAM ETERS :

INTEGER NA, N8, NC, NAR, \NAC, N, IR, NAA, KCON, M, NFOINT, NG

INTEGER MCQV (NPOINT) ,IPVT (N)

DOUBLE PRECISION A (NA,N),B(NB,NAA, KCON) ,C(NC,N) , X0 N)

DOUBLE PRECISION G (NG, NAA, KCON) ,Y (N) ,WORK N) ,EM(NA, N)

DOUBLE PRECISION U (M) ,W(NA, KCON) ,W(NA,N),VNA,N)

DOUBLE FRECISION ARRAY (NAR, NAC) ,P(NA, KCON) ,E (KCON) ,ETEMP (KCON)

*k*x*k*[OCAL VARIABIES:

INTEGER IN (27) ,NSW(1),IT (10,1)

DOUBLE PRECISION WT (14) ,SWM, TAOPI, WMIN, YAX, YSF(10) ,ZERO, XMAX, T, DT
DOUBLE PRECISION DD

DIMENSION R (30)

** %k SBROUTINES CALLED:
MMUL,MSCALE ,MEXP, SAVE, FIG, THALT

*kkkk PUNCTIONS :
GGUB, WCAIC

*#****PURFOSE :

THIS DOUBLE FRECISION SUBROUTINE FERFQRMS THE CQMFUTATIONS ¢
AND PRINTS THE DATA FCR SIMUATION OF THE SWITCHING GAIN

FROBIEM RELATING TO THE PUBLICATION: 'ON THE RSLATIONSHIP
BEIWEEN RELIABILITY AND LINEAR QUADRATIC OPTIMAL CONTROL'

BY J. DDUGLAS BIRDWELL AND M. ATHANS.

** Xk *DARAMETER CESCRIPT'ION:
NA, NB, NC, NG, THE FIRST DIMENSION OF THE ARRAYS A (AND EM,

NAR W,w,V),B,C,G,AND ARRAY RESFECTIVELY AS
CECIARED IN THE CALLING PROGRAM DIMENSION
STATEMENT ;

NAC COLUMN DIMENSION OF THE ARRAY CONTAINING ARRAY
AS DECIARED IN THE CALLING PROGRAM DIMENS ION
STATEMENT ;

N NUMBER OF STATES;

IR NUMBER OF OUTRUTS ;

NAA THE SECOND DIMENSION OF THE ARRAYS B AND G AS
DECIARED IN THE CALLING PROGRAM DIMENS ION
STATEMENT ;

1y
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KCON

>

gonm

ETEMP
WQRK

Y

U

V,W, W, EM
IPVT

ARRAY

NPOINT

NGRIDH

*## XA ENOTES :
BOTH 'THE OUTFUT AND THE CONTROL  U(T) = ~G(I)*X () ARE CQMFUTED.
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THIRD DIMENSION OF THE ARRAYS B AND G AS
CECIARED IN THE CALLING PROGRAM DIMENSION
STATEMENT ;

NUMBER OF CONTROLS ;

N BY N SYSTEM MATRIX;

NBY M BY KCON SET OF OUTrRUT MATRICES;

IR BY N OUTRUT MATRIX;

M BY N BY KCON SET OF FEEDBACK MATRICES;
INITIAL CONDITION VECTOR OF LENGTH N;

VECTOR OF LENGTH NPFOINT CONTA INING THE EXACT
CONF IGURATION INDICES;

SCRATCH VECTOR OF LENGTH KCON;

SCRATCH VECTOR OF LENGTH KCON ;

SCRATCH VECTOR OF LENGIH N;

VECTOR OF LENGIH N;

VECIOR OF LENGMH M;

N BY N SCRATCH ARRAYS ;

SCRATCH VECTOR OF LENGTH N;

NAR BY NAC WORKING ARRAY;

MAR MUST BE GREATER THAN OR EQUAL TO NSTERS + 1
NAC MUST BE GREATER THAN OR EQUAL TO IR +M;
STEP SIZE;

NUMBER OF STEPS + 1;

NUMBER OFf MAJOR ORDINATE DIVISIONS USED

IN PLOTTING
NGRIDH MUBT BE LESS THAN OR EQUAL TO 12;
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SWITCH FORTRAN

C
C G3UB IS A RANDOM NUMBER GENERATOR
C
C ICAIC IS A WBER-SUPPLIED, APPLICATION SFECIFIC FUNCTION TO
C CAICUWATE '™ME CONTROL U.
C
C *ERAXHISTORY:
C WRII'TEN BY J.A.K. CARRIG (ELEC. SYS. IAB., M.I.T., M. 35-397,
C CAMBRIDGE, MA 02139, HRi.: (617) - 253-2165), JANUARY 1978.
€ MOST RECENT VERSION: MARCH 22, 1978.
C
C frdsTvasisstssntrnnnt st dsa s e Rt T s TSN TN e ss s s sl
C
COMMON/INOU/KIN, KOUT
ILCON =1

DATA YSF/10*1. @9/, IBIANK/4H /
DATA TWGCPI /3. 1459/
DATA MSC,MAXES, IXY, IEGY, ZERO,MM, NLG, IZERO/1, 0, 0, 1, 1. @9, 1, 0, 8/
DATA IN(1),IN(2),IN(3),IN(4)/4H1 ,42 ,43 ,44 /
DATA IN(5),IN(6),IN(7),IN(B)/4H5 ,4&46 ,&47 ,48 /
DATA IN(9),IN(10),IN(11),IN(12)/4H9 , 410 ,411 412 /
DATA IN(13),IN(14),IN(15),IN(16)/4H13 , 414 , 415 , 416 /
DATA IN(17),IN(18),IN(19),IN(29)/4H17 , 418 ,4&19 ,420 /
DATA IN(21),IN(22),IN(23),IN(24)/4821 , 4122 ,4i23 ,&24 /
DATA IN (25),IN(26),IN(27)/4825 4 Y, &H U/
DATA II'(3,1),Ir(4,1),IT(5,1)/4dVERS, 4iUS T, I IME /
DATA IT (5,1),IT(7,1),IT@8,1)/4H A H /
DATA IT (9,1),I1T(10,1)/4d x| 7
IX=35
DO 61 IZ=1,NPOINT

61 MCQN (IZ)= MCON (1Z) + 1
‘IWOPL = 2. DOY*WOPI
NSTERS = NFOINT -1
T=¢. DY 3

3041 FURMAT (241 EXACT CONF IGURATION = ,13)
CALL MMUL (NC, N, N,MM, IR, N, C, X8, Y)
CALL MMUL (NA, N,M,MM,M, N, G(1, 1,MCON (1)) , X8, D)
WRITE (KOUT, 1500)
WRITE (KOUT, 1200)
WRITE (KOUT, 1309)
WRITE (KOUT, 1090) T
1091 FORMAT (/,12H GAIN MATRIX)
WRITE (KOUT, 1100) (Y (I),1=l,IR)
WRITE (KOUT, 1102) (U(I),I=1,M)
C WRITE (KOUT, 1001)

3@ ARRAY (1,J)= Y W)
DO 40 J=1,M

40 ARRAY(1,1R4J)= U WJ)

50 DO 100 K=1,NSTERS
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i | SWITCH FORTRAN

XMAX = DFLOAT NSTEFS ) *DT
IW= KOUT
NSW(1)= 25
IT(1,1)= IN(26)
; DO 110 J=1, IR
] IF(J.1E. 25) IT(2,1)= IN(J)
IF(J.Gr. 25) IT(2,1)= IBIANK
110 CALL THFLT (IW, IEGY, NROINT, ZERO, ¥MAX, NGRIDH, WM IN, WAX, YSF, IT,
1 ARRAY(1,J),NAR,NLG,MSC,MAXES, IXY, NSYM)
IT(1,1)= IN(27)
NSW(1) = 21
DO 120 J=1,M
IF(J.LE. 25) IT(2,1)= INWJ)
IF(J.Gr. 25) IT(2,1)= IBIANK
126 CALL THFLT (IW, IEGY, NFOINT, ZERO, XMAX, NGRIDH, WM IN, WAX, YSF, IT,
1 ARRAY (1, J+IR),MNAR, NLG,MSC,MAXES, IXY, NSYM)
1100 FORMAT (44 Y = , 5(2X, 1PD19. 8))
A 1000 FORMAT(SH T = ,F5.2)
- 1102 FORMAT (4H U = , 5(2X, 1PD19.8))
1209 FORMAT (11H OUTHUT Y)
1300 FORMAT (12 CONTROL U)
1400 FORMAT (/,284 SIMULATION OF LINEAR SYSTEM,/)
1500 FORMAT (/,31H SIMULATION OF LINEAR REGULATOR,/)
RETURN
END
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READY FORI'RAN

SUBROUTINE READY (NAA, NA, NB, NQ, NR, NG, NS, NRA, N,M, KON, A,B, R, Q, P,
WR,WIL, S, 3,0, V,W, X, Y, QNORM, RAD, RADINV, BSB,WCRK, IPVT, IEND, NSTERS)

C

C * &% & *PARAMETERS :
NTEGER NAA, NA, N8, NQ, NR, NG, NS, NRA, N,M, KCON, IPVT (N)
DOUBLE PRECISION A (NA,N),XMNA,N),QMNQ,N) ,RNR,M)
DOUBIE PRECISION S (NS, NAA, KCON) ,P(NA, KCON) ,SB(NS, NAA, KCON)
DOUBLE PRECISION GNORM (NG, NAA, KCON) ,BSB(NB, NAA, KCON) ,ARMN) ,WIMN)
DOUBLE PRECISION B(N3,NAA, KKON) ,RAD NRA, N) , RADINV (NRA, N)
DOUBLE PRECISION U (NA,N),V(NA,N) ,W(NA,N),YNA, N) ,WORK (N)

C

C **xAx[ OCAL VARIABIES:

DOUBLE PRECISION COND
INTE@R KIN, OUT, KL, RM1, J, I, K, JEND, NEND, L, IM1

***x**SIBROUTINES CALLED:
MCF ,MADD,MLINEQ, TRNATB,MMUL, MSCALE , EIGVAL, SAVE , WEIGHT

*®&***PURFOSE:

IHIS LOUBLE PRECISION SUBROUTINE SOLVES THE SWITCHING-GAIN PROBLEM
RELATING 10 THE PUBLICATION: 'ON THE RELATIONSHIP BETWEEN
RELIABLILITY AND LINEAR QUALRATIC OPIIMAL CONTROL '

BY J. DOUGLAS BIRDWELL AND M. ATHANS,

*&***PARAMEI'ER DESCRIPTION:
ON INPUT:
NAA THE SECOND DIMENSION OF THE ARRAYS S, SB, QNORM,
BSB,B AS DECIARED IN THE CALLING PROGRAM
DIMENSION STATEMENT;

NA, N8B, NQ, NR, THE FIRST DIMENSION OF THE ARRAYS
NG, NS, NRA A (AND P, X, U, V,W,Y),B(AND BSB) ,Q, R, GNORM,
S (AND SB) ,RAD (AND RADINV) RESPECTIVELY
AS DECIARED IN THE CALLING PROGRAM DIMENSION

ooooocoonoonon00n00O00000000O0O000000Cco000n0n

STATEMENT ;
N THE NUMBER OF STATES;
by THE NUM3ER OF OBSERVATIONS ;
KCON THE NUMBER OF CONF IGURATIONS ;
A N BY N SYSTEM MATRIX;
B N BY M BY KCON SET OF INPUT MATRICES;
R M BY M CONTROL WEIGHTING MATRIX;
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Q N BY N STATE WEIGHTING MATRIX;
P KCON BY KCON PROBABILITY MATRIX;

N OUTHAUT:
WR,WI SCRATCH VECTORS OF LENGIH N; 1
S N 3Y N BY KCON SET OF SOLUTIONS ; :
s8,B,BS8 N BY N BY KCON SCRATCH ARRAYS ; |

U, VW, X, Y N BY N SCRATCH ARRAYS ;

QNORM N BY M BY KCON ARRAY USED TO STORE THE
Q\IN MATRICES FOR THE NORMAL LINEAR QUADRATIC
GAWBSIAN PROBIEM. (N RETURN, QNORM CONTAINS THE
QA INS ASSOCIATED WITH THE SWITCHING GAIN PROBLEM;

RAD, RADINV N BY N SCRATCH ARRAYS ;

WORK SCRATCH VECTOR OF LENGTH N;
IPVT SCRATCH VECTOR OF LENGTH N;
IEND NUMBER OF ITERATIONS USED IN SOLVING THE NORMAL
LINEAR QUADRATIC AUSSIAN PROBIEM;
NSTEPS NUMBER OF TIME STEPS USED IN COMPAUTING S
*xk®kXNOTES :

THE SOLUTIONS TO THE NORMAL LINEAR QUALRATIC FROBIEM,

‘HE EIGENVALUES OF THE MATRICES (A + B(I)*GNORM(ERO))
AS WELL AS THE EIGENVALUES OF THE MATRICES (A + B(I)*G(I))
ARE PRINTED.

**x**HISTORY:

WRITTEN BY J.A.K. CARRIG (ELEC. SYS. IAB., M.I.T., RM. 35-307,
CAMBRIDGE, MA 02139, M.: (617) - 253-2165), JANUARY 1978.
MGBT RECENT VERSION: MARCH 22, 1978.

o000 O0O0ON0000000000000O

COMN/INOU/KIN, KOUr
WRITE (KOUT, 9600 )

CALL MATIO (NA,N,N,A, 3)
WRITE (KOUT, 9700)
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! READY FORTRAN
CALL MATIO (NA,N, N, Q, 3)
WRITE (KOUT, 9809)
CALL MATIO NR, N, N, R, 2)
DO 222 KL=1, KON
KM1 = KL-1
WRITE (KOUT, 9920) KM1
CALL MATIO (NB,N,M,B(1,1,KL),3)
DO 4 J=1,N
DO 3 1I=1,N
3 Y(I,J)= 9. D0
4 Y@,Jd)=1.00
DO 218 K=1, IEND
CALL M(F (NA,N8, A, N,M, Y,B(1, 1, KL),U,WORK)
CALL MADD (NA, NR, No,M,M, U, R, U)

DO 14 J=1,M
O 13 1=l,M
13 V(I,J)= 0. DO
14 VJ,d)= 1.@0

CALL MLINEQA, NA,M,M, U, V,COND, IPVT, WCRK)
CALL TRNATSB (NB, NA, N,M,B(1, 1, KL) , X)
CALL MMUL (NA, NA, N, N, M, N, X, Y, U)
CALL MMUL (NA, N, N, N,M, N, U, A, X)
CALL MCF (NA, NA, A, M, N, V, X,W,WORK)
CALL MSCALE ™A, N, N, -1. D8,W)
CALL M(F (NA,NA, My, N, N, Y, A, U, WCRK)
CALL MALD (NA,NA, My, N, N, U, Q, U)
CALL MAID (A, NA, NA, N, N, U,W, Y)
210 CONTINUE
WRITE (KOUT, 44441)
WRITE (KOUT, 44442)
CALL MATIO (NA, N, N, Y, 3)
CALL MMUL (NA, N, NG, N,M,M, V, X, QNORM (1, 1, KL))
CALL MSCAIE (NA,M, N, -1. @8, GYORM(1, 1, KL))
WRITE &OUT, 6000)
CALL MATIO (NG,M,N, QIORM(1, 1, KL) , 2)
CALL MMUL (N8, NG, NA, N, N,M,B (1, 1, KL) ,QNORM(1, 1, 1) ,V)
CALL MADD (NA, NA, N, N, N, V, A, V)
WRITE (KOUT, 7988) -5
CALL EIGVAL (NA, N, V, V,WR,WI,WCRK, IPVT) j
.
4

222 CONTINUE
JEND= 1
26 CONTINUE |
WRITE (KOUT, 8099)
CALL MATIO MNA, ICON, ICQN, P, 2)
DO 5 K=l, KCON
CALL SAVE NQ,Ns,N, N, Q,S (1, 1,K))
5 CONTINUE
DO 91 NEND= 1,NSTEFS
WRITE (KOUT, 4530) NEND
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READY FORTRAN

209

89

£3

73

99

91 CONTINUE
2099 FORMAT (3D 25. 15)
4005 FORMAT (34  S) 3
2905 FORMAT (41 G, 13) ‘
4000 FORMAT (4H 5, 13)
4500 FORMAT (11H TIME= T2 -, 13)
5020 FORMAT (11H ITERATION , I3)
6000 FORMAT (184 G OPTIMAL )
7000 FORMAT (40d OPTIMAL COST FINCTION X C X, WHERE C IS)

CONT INUE
DO 99 L=l, ICON

DO 84 K=1, KCON

CALL MQF(NS,N8,N8,N,M,S(1,],K),B(], 1,K),BSB(], 1, K) ,ACRK)

CALL MMUL (NS, N8, NS,M, N,N,S (1, 1, K) ,B(1, 1,K),SB(1, 1,K))
CONTINUE
CALL WEIGHT (NS, NAA, KCON, NA, N,M, P(1,L),S8, V)
CALL WEIGHT (NS, NAA, KCON, NA,M,M, P (1, L) ,BSB, RAD)
CALL MADD (NR, NRA, NA,M,M, R, RAD, U)
DO 98 J=1,M

D 97 I=1,M

RADINV (I, J) = 0. @0

RADINV(J, J)= 1. @0
CALL MLINEQMA, NRA,M,M, U, RADINV, COND, IPVT, WCRK) |
DO 70 K=, KCON

DO 60 J=1,N

DO 68 I=l,M
8SB(I,J,K) = SB(J, I, K) '

CONTINUE :
CALL WEIGHT NS, NAA, KCON, NA,M, N, P(1, L) ,BSB, U) ‘
CALL MMUL (NRA, NA, NA, N,M,M, RADINV, U, W)
CALL MMUL NA, NA, N, N, N,M, V,W, Y)
CALL MMUL (NA, NA, NG, N, M, N,W, A, QNORM (1, 1, L))
CALL MSCALE NG,M, N, -1. D9, QNORM(1, 1, L))
IM] = L-1
WRILE (KOUT, 2005) LM1
CALL MATIO (NG,M, N, Q¥ORM (1, 1,L), 3)
IF (NEND. NE. NSTERS) GO TO 73
CALL MMUL (NB, NG, NA, N, N,M,B(1, 1,L) ,QNORM(1, 1, L) ,W)
CALL MADD NA, NA, NA, N, N, A,W,W)
WRITE (KOUT, 7909) IM1,IM1
CALL EIGVAL (NA,N,W,W,WR,WI,WCRK, IPVT)
CALL MSCALE (NA,N, N, =1. @8, Y)
CALL WEIGHT NA, NAA, KCON, NA, N, N, P(1, L) ,S, W)
CALL MADD (NA, NA, My, N, N,W, Y, Y)
CALL M(F (NA, NA, NA, N, N, Y, A,W,WCRK)
CALL MADD (NA, NA, NS, N, N,W, Q,S (1, 1, L))
WRITE (KOUT, 4009) IM1
CALL MATIO NS, N,N,S(1,1,L),3)
CONTINUE ]

R U U —— : j
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7903
79099
8000
9509
9744
9609
9309
994v
44441
2
44442
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FORMAT (214 A + B(I)*GSTAR (ZERO))
FORMAT (7TH A +3,13,81 *G,1I13)
FORMAT (34 P)

FORMAT (3D 25. 15)

FORMAT (3d Q)

FORMAT (3H A)

FORMAT (3H R)

FORMAT (34 B, I3)

FORMAT (/,45H SOLUTION TO STANDARD OPTIMAL CONTROL PROBLEM)
STOP

FORMAT (34 S )

RETURN

END

gy e




WEIGHT FORTRAN

SUBRUUI'INE WEIGHT NA, NAA, KCON, NX, N, M, E, A, X)

C
C k& kkk* PARAMETERS :
INTEGER NA, NAA, KCON, NX, N,M
DOUBLE PRECISION E (KCON) ,A(NA, NAA, KCON) , X N X, M)
C
C *kek* [ OCAL VARIABILES:

INFTEGR I,J,K
DOUBLE PRECISION SIM

*****SBROUTINES CALLED:
NONE

* % ***PURFOSE :
IHIS SUBROUTINE COMFUTES THE WEIGHTED SIM

SIMMATION E (I)*A(I,J,K); 1=1,N; J=1,M; K=l,CON.
*****PARAMEIER DESCRIPTION:

NA THE FIRST DIMENSION OF THE ARRAY A AS DECIARED IN
‘HE CALLING PROGRAM DIMENSION STATEMENT ;

NAA THE SECOND DIMENSION OF THE ARRAY AS DECIARED IN
THE CALLING PROGRAM DIMENSION STATEMENT ;

KCON THE THIRD DIMENSION OF THE ARRAY A AS DECIARED IN
‘HE CALLING PROGRAM DIMENSION STATEMENT;

NX THE FIRST DIMENSION OF THE ARRAY X AS DECIARED IN
CALLING PROGRAM DIMENSION STATEMENT ;

N THE ROW SIZE OF A;

M THE COLUMN SIZE OF A;

E VECTOR OF LENGMH KCON;

A N BY; M ARRAY

kkkr*HISTORY:

WRITTEN BY J.A.K. CARRIG (ELEC. SYS. [AB., M.I.T., RM. 35-397,
CAMBRIDGE, MA 02139, Hi.: (617) - 253-2165), JANUARY 1978.
MOST RECENT VERSION MARCH 22, 1978.

o000 ao00000a00000o00000c0a0
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WEIGHT FORTRAN

DO 10 K=1, KON
19 X(I,J) = X(I,J) + E(K)*A(I,J,K)
RETURN
END
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UCALC FORTRAN
; FINCTION  UCAIC (U, EM,B,C)
3 DOUBLE PRECISION U (19, 2),EM(19, 2),B(18, 2),C(18@, 2)
RETURN
END
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FIG FORTRAN
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SUWBROUI'INE FIG (KCQN, E, ETEMP,WCRK, LICON)

k*x**PARAM ETERS :
DOUBLE PRECISION WORK (KCON) ,E (KCON) ,ETEMP (KCON)

**kkR[OCAL VARIABLIES:
INTEQR MM, LTEMP, IFIAG, KK, IP, IU
DOUBLE PRECISION SUM

*kkkxSIBROUTINES CALLED:
NONE

------------------------------------------------------------------

A% # ¥ *PURFOSE:
THIS [OUBLE PRECISION SUBROUTINE IS USED IN HYPOTHESIS TESTING.
AT EACH TIME T, ONE OF KCON HYPOTHESES IS CHUSEN.

RHO (X (') - A*X(I'-1) - B(I)*0('-1))*PI (I'-1/T-1)

I
PI (I-1/T) =
1
SWM(RHO (X (1) = A*X (P=1) =B(J)*U (0-1))*PI (-1/T-1)
J
HYPOTHESIS H(I) IS ASSIMED TO BE CORRECT IF
PI (T/T-1) > PI (I-1/T) FOR ALL J NOT EQUAL I
I J
TIES ARE RESOLVED ARBITRARILY.
RHO (X) DENOTES THE PROBABILITY DISTRIBUTION OF X.
A##**PARAMETER DESCRIPTION:
ON INHUT:
KON THE NUMBER OF HYPOTHESES ;
E ECIOR OF LENGMH KCON CONTAINING PI (T-1/T-1);
WORK VECTOR OF LENGTH KCON CONTA INING
RHO (X (I) = A*X(T-1) - B(I)*U(r-1));
ON OUTRUT:
ETEMP VECTOR OF LENGTH KCON TO STORE PI (1/1-1);
LCON INDICATES WHICH HYPOTHESIS HAS BEEN CHOSEN;
#*ANHISTOR Y:
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FIG FORTRAN

WRII'TEN BY J.A.K. CARRIG (ELEC. SYS. IAB., M.I.T., M. 35-307,

#
C CAMBRIDGE, MA ©2139, Ri.: (617) - 253-2165), JANUARY 1978.
C MGST RECENT VERSION MARCH 22, 1978.
[
C gEstaTEIIIass IR IR NIt IR S g ettt
C
COMMON/INOU/KIN, KOUT
MM =1
LTEMP = LCON
SIM = 0.DdY

DO 10 IP =1, KON
1» SWM =35 + WORK(IP)*E (IP)
DO 20 IP=l, K(N
20 ETEMP(IP) = WORK (IP)*E (IP)/SWM
DO 60 KK = 1, ICON
IFIAG = 0
DO 89 IU=1,KC(N
IF(KK.EQ.IU) GO TO 79
IF (ETEMP (KK) .G, E(IU)) IFIAG = IFIAG +1
79 CONT'INUE
89 CONTINUE
IFIAG = IFIAG + 1
IF (IFLAG. EQ. KKON) LCON= KK
60 CONI'INUE
IF(LCON.EQ. ) LCON = LTEMP
RETURN
END

w
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RDYMAIN FORTRAN

C IATEST VERSION 3/9/77

22
9509

11

DOUBLE PRECISION COND,BEE,WR(10),WI(10)
DOUBLE PRECISION A(19, 3),X(10, 3)

INTEGER MDOMYR (2) ,HRMNSC (2) ,VI'IME (2) , RTIME (2)
DOUBLE PRECISION GNORM(19, 3, 4)

DOUBLE PRECISION 3SB(14, 3, 4)

DOUBLE PRECISION S (19, 3,4),P(19,4),S8(19, 3,4)
DOUBLE FRECISION SBT(19,3 ),Q(19, 3),R(10, 3),B(19,3,4)
DOUBLE PRECISION PR(4),P1,P2,PZ(4),P (10,4),FS (4)
INTEGER IPVT (19)

DOUBLE PRECISION AZERO,AQNE, ATWO

DUUBLE PRECISION RAD(10, 3) ,RADINV(10, 3),U(10, 2)
DOWBIE PRECISION V(19, 3),w(10 ,3),Y(10, 3),SWM,WORK(10)
Ca4MQN /INOU/KIN, OUr

NAA= 3

ATWO= -3. DV

AZERO = -4, DY

AONE = 6. D0

Pl= . 05D¢

P2 = ,75D9

KIN= 5

Kour'= 6

N=3

M= 3

N2 =6

KCQi =3

NS= 14

IPRI= 17

IEND= 25

ICOUNT =0

NSTERS = 25

NA= 10

NM =NA

NRA= 10

NR= 10

NB= 19

NQ= 10

NG=10

IF (ICOUNT. NE. 8) READ (KIN, 9590, END=2) (PR(I),PZ2(I),I=]l,N)
FORMAT (3D 25. 15)

DO 11 JK=1,N

DO 11 JL =1,N

QWL,JK) = 9. DY

RWK,JL) = 8. DO

A(JL,JK) = 0. DO

BEE = -10. @D#

P(1,1) = 1.D0-P1

P(2,2) = 1.@M0~- P2

P(3,3) = 1.@0
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RDYMAIN FORTRAN

P(1,2)
p(1,3)
P(2,1)
P(2,3)
P3,1)
P(3,2)

0. MY
d. Db
Pl
d. M
9. DO
P2

A(l,1)= 0.DY

A(3,3) =
A(l,2) =
A(2,3)
A(3,1)
A(3,2)

=AZERO
1.0
1. Do
-ATWO
-AONE

Q(l,1)= 3.0

Q2,2) =
Q(3,3) =

3.0
3.0

R(,1)= 1.D¥

R(2,2) =
R@3,3) =

1.8
1.®0

B(1,1,1)= 02.0

B(2,2,1)

= 0.do

B(2,1,1)= 0.@0
B(1,2,1)= 0.@DO
B(1,3,1)= u. D

B(2,3,1) =0.®Du
B(3,3,1) = 1.0V
B(3,1,1) = 1.@0
B(3,2,1) = 1.DY
B(1,1,2) = 0. DY
B(2,2,2) = 0. Do
B(2,1,2) =0.d0O
B(1,2,2) = 0.0
B(1,3,2) = 9. @0
B(2,3,2) = 8. @0
B(3,2,2) = BEE
B(3,1,2) = 1.0
8(3,2,2) = 1.0
B(1,1,3) = 0. DV
B(2,2,3) = 0. DV
B(2,1,3) = 0.0
B(1,2,3) = 0.0
B(1,3,3) = 4.0
B(2,3,3) = 0. DO
B(3,3,3) = 0. @V
B(3,1,3) = 1.0
B(3,2,3) = 1. DV
PR(1) = .05D0

PR(2) = . 75DV

P(l,1) = 1.6 - PR(1)
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P(2,1)
P@3,1)
P(,2)
; P(,3)
it { P(2,2)
P@3,2) PR (2)
P(2,3) = 0.0
| P(3,3) = 1.@0
§ - CALL TIME (MDOMYR, HRMN, SC, VI IME, RTIME)
CALL READY (NAA, NA, NB, NQ, NR, NG, NS, NRA, N, M, ICON, A,B, R, O, P,
1 WRWI, S, S8, U, V,W, X, Y, QNORM, RAD, RADINV, BSB, WCRK, IPVT, IEND, i
2 NSTEFS)
2 STOP
END

PR (1)
0.0
0. Do
J. Do
1.8 - PR(2)

E |
2
f
i
i
g |
i
E |
E
i
§
]
f
P
&
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SWMAT FURTRAN

C IATEST VERSION 2/17/78
DOUBLE PRECISION E (4),ETEMP(4),SWM, SIGMA, SIGM 1, ESINV, ESIGMA, STNWM 1
DOUBLE PREC ISION COND, LUDOLF, LUDINV, DOLFM1, EM(10, 2), X2 (18) ,DCINW]
DOUBLE PRECISION ARRAY (100, 50) ,Y¢ (19),U0 (10)
DOUBLE PRECISION A(19, 3),C(10, 2),R1, R2, X(1@, ?)
E(l) = 1.0
EM(1,1) = 1.0
EM(2,2) = 1. @8
E(2) = 9. D0
ETEMP(2) = E (2)
E(3) = 0. @0
ETEMP(3) = E(3)
ETEMP(1) = E(1)
E@4) = 0.0
DOUBLE PRECISION GNORM (14, 2, 4)
DOUBLE PRECISION BSB(10, 4, 3)
DOUBLE PRECISINN S (10, 3,4),DT, P(10, 4),SB(18, 2, 4)
DOUBLE PRECISION WR(4),WI(4),HH 4, 4),XX4,4),ACL10, 3)
DOUBLE PRECISION SBT(10, 3 ),Q@, 3),R(10, 2),B(19,2,4)
DOUBLE PRECISION PR (4),PZ(4),FD (10, 4),P5 (4)
INTEGR IPVT (10) ,MCON (180) ,NSTEPS, NGRIDH, ICON (108)
DOUBLE PRECISION RAD(19, 3), RADINV (10, 3) ,SNEW (1@, 3, 4) ,U(10, 2)
DOUBLE PRECISION V(1®, 3),W(10,3),w(10 ,2),Y(10, 3),SWM,WORK(10)
LOGICAL NOISE
CAMMQN/INOU/KIN, KOUT
KO=0
IA =1
READ(S, 11111) NPOINT
33333 READ(5, 11111, END=22222) ITIME, K
11111 FORMAT (214)
DO 44444 1XYZ = IA, ITIME
44444 MCON (IXYZ) = KO
MCON (ITIME)= K
IA = ITIME
Ké= K
GO 10 33333
22222 DO 55555 IXYZ = ITIME, NFOINT
55555 MC(N (IXYZ) = K@
LUDOLF= 2. 718281828459345D0
LUDINV= 1. @®/LUDOLF
DOLFM1 = LUDOLF - 1.0
DINWM] = LUDINV -~ 1. @8
NAA = 2
NC = 10
KIN= 5
Kour= 6
N= 2
M= 2
N2 =4




SWMAT FORTRAN

15
22

KN =4

NH= 4

NS= 10

IPRI= 17

IEND= 59

IPRT = 49

ICOUNT =

NA= 10

N3= 10

NM=NA

NRA= 10

NR= 10

NQ= 10

NG=10

PZ(1) = .1D6

PR(1)= .1DO

DO 15 I=,N

PR(I)= PR(1)

PZ(I)= PZ(1)

IF (ICOUNT. NE. £) READ (KIN, 9520, END=2) (PR(I),PZ(I),I=1,N)
SIQ1A= 1. DY
ESIGMA= LUDOLF**SIGMA
ESINV= LUDINV**SIGMA
C(1,1) = 1.0
C(2,2) = 1.®0
C(1,2) = 0. DO
C(2,1) = 9. DY

DI = 1.6

NSTERS = 50

A(1l, 1)= ESIGMA

NAR= 100

NAC = 50

A(2,2)= ESINV
A(2,1) = 0. DY
Q(,1)= 14. DO
Q(2,1)= 8.@H
Q(,2) = 8.M0
Q(2,2) = 6. MO
R(1l,1)= 1. D0
R(2,1) = 8. @9
R(1,2) = 8. D0
R(2,2) = 1.0
B(1,1,1)= ESIGMA -1.®D0
B(2,1,1)= ESINV- 1.@0
B(2,2,1) = -B(2,1,1)
B(1,2,1)= B(1,1,1)
B(l1,1,2) = 0. DV
B(2,2,2) = -DINWM1
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46
47

222
44

14
667

FORTRAN

8(2, 1' 2)' 9.0

B(1,2,2) = DOLM1
B8(1,1,3) = DOLFM1
3(1'2' 3) -~ o. mﬂ
B(2,1,3) = DINWMI
B(2,2,3) = 0. DO

PR1 = .1D0O

PR2= . 1DO

P(1,1) = .81D0
P(2,2) = .0900
P(3,2) = @,0%0
P(3,3) = . 0900
P(,2) = .81D0
P(3,1) = .0%D0
P(zl l) - .ma
P(2,3) = 8.0%v
P4,1) = .01D0
P(,4) = .81DP
P4,2) = .01DP
P(4,3) = .01D@
P@4,4) = .01D8
P(2,4) = .0%¢€

P(3,4) = .09D0

WRITE (KOUT, 9903)

CALL MATIO NA, KON, ICON, P, 3)
WRITE (KOUT, 46)

FORMAT (/, 41 PI,/)
FORMAT (30 25. 15)

WRITE (KOUT, 9600)

CALL MATIO NA,N, N, A, 3)
WRITE (KOUT, 9700)

CALL MATIO (NA,N, N, Q, 3)
WRITE (KOUT, 9800)

CALL MATIO NR,N, N, R, 3)
DO 222 K=], ICON

M1 = K-1

WRITE (KOUT, 9999) K1

WRITE (KOUT, 9500) ((B(I,J,K),J=1,M) ,I=1,N)

CONTINUE
00 14 IN=l,50

LCON (IN) = LCON (1)

CONTINUE

FORMAT (515)

X0 (1) = . 0200

GNORM (1, 1, 1)= -1.©6336184D0
GNORM (2, 1, 1)= ~7. 9915188D-1
GNORM (1, 2, 1)= -1.88787889D-92
GNORM (2, 2, 1)= =5, 83582496D-02
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QNORM(1, 1, 2)=
GNORM (2, 1, 2)=
GNORM(1, 2, 2)=
GNORM(2, 2, 2)=
GNORM(1, 1, 3)=
GNORM (2, 1, 3)=
GNORM (1, 2, 3)=
GNORM (2, 2, 3)=
IR =2

NPRPL =1

-3.69012096D-¥1
-1. 1401653400
1. 04948339001
-1. 3639876 7D-91
-1. 42566767D0@
-2. 87451308D-91
1. 51884285092
-7.271912438D-92

DO 57 IK =1, KCON

IMl =1IK-1

WRITE (KOUT, 9992) 1M1

57 WRITE (KOUT, 9599) ((GNORM(IJ, IL, IK),IL=1,N),1J=1,N)

NGRIDH = 5

va,l) =8(1,1,1)

V(2,2)

B(2,2,1)

V(2,1) = B(2,1,1)
v(l,2) =B(1,21)

IONE =1

o000 (@} nnoon

DT = 1.0

X0(1) = .62D0
C CALL MSCAIE (NG, N, M, -1. D@, GNORM)
X0 (2) = 9.9
CALL SWITCH (NA, N8, NC, NG, NAR, NAC, N, IR, N\AA, KON, M, A,B, P,

CALL MMUL (NA, NA, NA, N, N,M, V, GQNORM, U)
CALL MADD NA,NA, N, N, N, U, A, ACL)
CALL MSCALE NG, N, M, -1. {D8, QNORM)

CALL MMUL INC, N, N, IONE, IR, N, C, X9, Y0)
65 FORMAT (1X, 1 25. 15)
CALL DRGSIM(NA,NC, NG, NAR, MAC, N, IR,M,ACL,C, QNORM, X4, WORK,
1Y, U, IPVT, ARRAY, DT, NSTEPS, NPRFL)
CALL READY2 (NAA, NA, NB, NQ, NR, NG, NS, NRA, N,M, ICON, A, B, R, Q, P,
1 WR,WIL,S,SB,U, V,W, X, Y, NORM, RAD, RADINV, BS3,WCQRK, IPVT, IEND)

251

1 C,QNORM, X8, E, ETEMP, EM,WCRK, Y0, U@, V,W, W, IPVT, ARRAY, OT, NSTEFS,

2 NGRIDH,MCQN)

9540 FORMAT (2D25. 15)

2009 FORMAT (/, D 25. 15)
9600 FORMAT (/,H A )
970d FORMAT (/,H Q )
9849 FORMAT (/,H R )
9990 FORMAT (/,H B , I5,/)
93933 FORMAT (/, ¥ P )
9942 FORMAT (/,H G ,15,/)

2 STOP
END
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SWMATZ2 FORTRAN

C IATEST VERSION 2/17/78

33333
11111

44444

22222
55555

DOUBLE PRECISION E (4) ,ETEMP(4) ,SIM, SIGMA, SIGM1, ESINV, ESIGMA, SINWM 1
DOUBLE PRECISION COND, LUDOLF, LUDINV, DOLFM1,EM(19, 2),Xd (10) ,DINWM1
DUUBLE PRECISION ARRAY (109, 50),YP (12),00 (10)

DOUBLE PRECISION A(10, 3),C(19, 3) ,R1, R2,X(10, 3)

E(1) = 1.@0

EM(1,1) = 1.@0

EM(2,2) = 1.0

E(2) = 0. DY

ETEMP(2) = E (2)

E(3) = 8. @0

ETEMP(3) = E(3)

ETEMP(1) = E(1)

E4) = 9. DD

DOUBLE PRECISION QNORM(10, 2, 4)
DOUBLE PRECISION BSB(14, 4, 3)

DOUBLE PRECISION S (19, 3,4),Dr,P(10, 4) ,SB(10, 3, 4)

DOUBIE PRECISION WR(4),WI(4),HH (4, 4),XX (4, 4) ,ACL(10, 3)

DOUBIE PRECISION SBT(18,3 ),Q(8, 3),R(18, 3),B(14,24)

DOUBLIE PRECISION PR (4),Pz(4),FD(18,4),Fs (4)

INTEGER IPVT (19) ,MCON (103) ,NPOINT, NGRIDH, ICON (100)

DOUBLE PRECISION RAD(1@, 3) ,RADINV (10, 3),SNEW(10, 3,4),U(180, 2)
DOUBLE PRECISION V(18, 3),W(19,32),w(10 ,3),Y¥(10, 3),SM,WORK(10)

LOGICAL NOISE
COMMON/LNOU/KIN, KOur

Ko=9

IA =1

READ (5, 11111 )NPOINT

READ(5, 11111, END=22222)ITIME, K
FORMAT (21 4)

DO 44444 1XYZ = IA, ITIME
MCON (IXYZ) =K@

MCON (ITIME)=K

IA = ITIME

Ké=K

Q TO 33333

DO 55555 IXYZ = ITIME, NFOINT
MCON (IXYZ) = KO

LUDOLF= 2, 718281828459445D0
LUDINV= 1. @06 /LUDOLF

DOLFM1 = LUDOLF - 1.@D#
DINWI1 = LUDINV - 1. @0
NAA =2

NC = 10

KIN= 5

KOUT= 6

N=1

M=1

N2 =2
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15
22
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KN =2 f
NH= 4
NS= 10

IPRT= 17 g
IEND= 50

IPRT = 49

ICOWNT = 2

NA= 10

N3= 19

NM =NA

NRA= 10

NR= 19

NQ= 10

NG=1y

PZ(l) = .1D6

PR(1)= . 1D®

DO 15 I=2,N

PR(I)= PR(1)

PZ(I)= PZ(1)

IF (ICOUNT.NE. @) READ (KIN, 9509, END=2) (PR (I),PZ(I),I=1,N)
SIGMA= 1. DA

ESIQYA= LUDOLF**SIGMA

ESINV= LUDINV**SIGMA

c(1,1) = 1. @

C(2,2) = 1.@0

C(1,2) = 0. DO

C(2,1) = 0. @D

DT = 1.0

A(1,1)= 1.414006

NAR= 100

NAC = 50

Q(,1) = 3.MP

R(1,1)= 1.®0

R(2,1) = 0. D0

B(1,1,1)= 2.@6

B(1,1,2)= .0

P,1) = .0

P(2,2) = . D0

P(3,2) = 9. 0900

P(3,3) = .0900
P(1,2) = .20

P@3,1) = .090
P@2,1) = .DO

P(1,3) = .81D0
P(2,3) = 0.0900
P4,1) = .01DY
P(l,4) = .81D¢

P4,2) = .01DO
P(4,3) = .01D0
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P4,4) = .vlDV
P(2,4) = . 090
P(3,4) = .0%0 ’
WRITE (KOUT, 9943) 'f
CALL MATIO (NA, ICQN, ICQN, P, 3)
€ WRITE (KOUT, 46)

46 FCRMAT (/, 4 P1,/)

47 FORMAT (3D 25. 15)
WRITE (KOUT, 9609)
CALL MATIO NA, N, N, A, 3)
WRITE (KOUT, 9700)
CALL MAT1O NA, N, N, Q, 3)
WRITE (KOUT, 9809)
CALL MATIO NR,N, N, R, 3)
DO 222 K=1, KCON
M1 = K~1
WRITE (KOUT, 9904) KM1

222 WRITE (KOUT, 9500) ((B(I,J,K),J=1,M),1=1,N)

GNORM(2, 2, 1) = ~5.8358246D-02
GNORM (1, 1, 2) = ~3. 69912096D-91
GNORM (1, 2, 2)=1. #4948339D-91
GNORM (2,1, 2) = ~1. 14016354DW
GNORM (2, 2, 2) = ~1. 36328767D-01
GNORM (1,1, 3)= -1. 42566767D0
GNORM (2, 1, 3)= -2, 87451348D-01

44 CONTINUE
NORM(1,1,1) = -1.06336184D0
GNORM(1, 2,1) = ~1.88787889D-92
GNORM(2,1,1) = 7.90151884D-0]

o

GNORM (2, 2, 3) = -7, 27012438-02
GNORM(1, 2, 3) = 1.51884285D-22
GNORM(1,1,4) = 0. DV
GNORM (2, 2,4) = 0. DV
GNORM(1, 2,4) = 0.0
GNORM(1,2,4) = 0. D0
DO 14 IN=l,5d
LCON (IN) = LCON (1)

14 CONTINUE

667 FORMAT (515)
X0 (1) = . 0200
IR =1
NPRPL =1
DO 57 IK = 1, KON
IMl1 =1K -1

WRITE (KOUT, 99282) 1M1
57 WRITE (KOUT, 9500) ((GNORM(IJ, IL, IK),IL=1,N),1J=1,N)
NGRIDH = 5
va,l) =8(1,1,1)
V(@2,2) =8(2,21)
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V,1) =8(2,1,1)
va,2) =8(1,21)
CALL MMUL (NA, NA, NA, N, N,M, V, QNORM, U)
CALL MADD NA,NA, M, N, N, U, A, ACL)
CALL MSCALE NG, N,M, -1, @D, QNORM)
IONE =1
CALL MMUL (NC, N, N, IONE, IR, N, C, X9, Y0)
66 FORMAT (1X, D 25. 15)
CALL DRGSIM(NA,NC, NG, MAR, NAC, N, IR,M, ACL,C, QNORM, X8, WORK,
1Y, U, IPVT, ARRAY, DI', NFOINT, NPRPL)
CALL READY2 (NAA, NA, NB, NQ, NR, NG, NS, NRA, N,M, KON, A,B, R, Q, P,
1 WR,WI,S,B,0, V,W, X, Y, NORM, MAD, RADINV, BS3,WORK, IPVT, IEND)
DT = 1.0
X0 (1) = .02D0
C CALL MSCALE (NG, N,M, -1. @D 0, NORM)
X0 (2) = 9. DO
CALL SWITCH (NA, N8, NC, NG, MAR, NAC, N, IR, \AA, KK(N, M, A, B, P,
1 C, QNORM, X3, E, ETEMP, EM,WCRK, Y0, U8, V,W, W, IPVT, ARRAY, DT, NFOINT,
< NGRIDH,MCON)
95J8 FORMAT (2D 25. 15)
2320 FORMAT (/, D 25. 15)
9693 FORMAT(/, X A )
9742 FORMAT (/,H Q )
9308 FORMAT (/,H R )
9949 FORMAT (/,H B , 15,/)
9993 FORMAT (/,H P )
9942 FORMAT (/,H G ,15,/)
END

o000 (@} o0
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