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APPEAR

CM

CODEST

COORD

DISP

INCEL

INCID

JCOUNT

NOTATION (INCLUDING INPUT TERMS)

Name of a subroutine used to keep track on the first, last,
and intermediate appearances of a variable

Structure matrix of the load deflection equation,
(Equation 3) C x = B

Stiffness coefficient matrix of an element, or element
contributions to C

Size of core memory, see "CORE-MEMORY REQUIREMENT"

Subroutine to interpret coded destination, or the address
of an element coefficient

Array of all the nodal coordinates in the structure
Array of nodal displacements (U, V, W)
Young's modulus of elasticity

Equation "s" used to eliminate variable X

Long working vector comprising element contributions, loads,
coefficients of assembled equations, etc; the storage
diagram is given in Figure 11

Submatrix (Figure 9) covers the range of active variables;
it is stored as a subvector of ELPA and contains the co-
efficients of assembled equations and the associated right-
hand sides

Matrix array representing element nodal incidence; the
ordered nodal labels for each element are related to a set
of shape functions used to prescribe the element displace-
ment field. Consequently, they define the orientation of
local curvilinear coordinates £, n, and Z with respect to
global axes X, Y, Z.

Options to rearrange the nodal sequence of a thick shell
element (NNPE = 16) to conform with the format used in the
current program

Counts and labels the free nodal variables of a complete
structural system and gives the total number of degrees of
freedom ;
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JDIS

JDISP

JREST
KL

KOUNT

KUREL

LABLE
LAST

LCUREQ
LDES,
LDEST
LNEL

LPB

LPT

LPREQ

LVABL

Set of nodal labels for each individual element; the labels
are regrouped from JDISP in an order conforming to the in-
cidence array to ensure that the computed element coeffi-

cients €% have proper labels and addresses; zero in JDIS
represents constraints on displacement components U, V, and W

Array of all nodal labels in the structure; it accounts for
all free nodal variables (TOTAL DOF = ND * JN -~ JREST) and
follows the order in which the joints were numbered

Number of displacement constraints in a structural problem
KL = 1 to KUREL; covers the variables of the current element

Counts the number of appearances of a variable, in thou-
sands, plus 1000 (see Subroutine APPEAR)

Current element size, i.e., the number of variables in the
current element

Subroutine to list nodal variables of each element
Last appearance of a variable (Subroutine APPEAR)

Number of variables already eliminated when the current
element appears, i.e., the number of stored equations

Element destinations are in LDEST array; LDES is the decoded
version of LDEST (KL) (See Subroutine CODEST)

When NF = 0, or 1, LNEL is the last numbered element where
a surface pressure occurred.

Joint label at which printout begins for PLOAD array (if
NF = 0, or 1)

Joint label at which printout for PLOAD array terminates

Number of stored equations when the previous element was
assembled; used for output by elements

Vector giving labels of element variables in the same order
as set up in incidence array. They normally represent nodal
displacement - components (e.g., Ui Vs Wy, etc.), or

degrees of freedom. LVABL (m), m = 1, KUREL; note that the
list covers the unknown variables of the current element
(zeros, representing constraints, are deleted from the list)
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LVEND

LVMAX

LZ

MAXELT

MAXNIC

MAXPA

MVABL

MVEND

NBAXO +1

NBAXZ,
NELZ,
NPAR,
etc.

NBLA

ND

NDOFPN

NDOFPE =
ND*NNPE

NEL

Dimension of LVABL

Maximum number of variables per element actually encountered,
i.e., the size of the longest LVABL

Size of element segment, e.g., the current element segment
extends from ELPA (1) to ELPA (LZ)

Maximum length of any element segment, i.e., MAXLETT =
NDOFPE (gDOFPE+1) + NDOFPE

Maximum element label (nickname) encountered

Maximum size of front required in terms of the number of
variables

Array of active variables in front, or in the running vari-
ables used in the back-substitution

Dimension of MVABL; it is problem dependent (see Subroutine
STORI1J)

Position in vector ELPA marks the beginning of the buffer
area reserved for equationmns, ey

Positions in ELPA; see Figure 11

Control flag signals for stress printout; see instructions
for Data Input

Number of degrees of freedom per node; the nodal displace-
ment components of a typical solid element are three, i.e.,
ND = 3. In dealing with a two-dimensional problem, each
displacement vector consists of two independent, orthogonal
components, ND = 2, In classical plates and shells theory,
ND = 5

Equal to ND

The element degrees of freedom

Equal to NELEM

Counts the elements from 1 to NELEMZ

viii




NELEMZ

NELPAZ

NELZ

NF

NFUNC

NIC

NIX

NIXEND

NI1zz

NJ

NLOADS

NNPE

NPUNCH

NPZ

NROW

NSTRES

NSVJ

e

Number of elements used in the finite element representation
Effective dimension of ELPA; see Figure 11

End location of the element record in ELPA including the
load column, or the element right-hand side (RHS)

Control flag to input load or to compute nodal loads by the
program; see instruction to data input

Function giving the position in the equivalent vector of
term (I,J) in an upper triangular matrix (see Subroutine
STORI1J)

Label for a variable, a nickname; always a positive integer

Vector using the same storage area as ELPA and is the main
working area for the preliminary bookkeeping; it starts as
a list of LVABL (m) arrays for successive elements

Usable length of NIX

Numerical count of the last label, for instance, let m, =
NELEMZ

KUREL (I) the size of element i, then NIZZ = 2 m
i=1

i

Highest numbered joint in a completely idealized structure
Number of loaded nodes when NF = 2

Number of nodes assigned to an element

Flag to punch a card deck for PLOAD ARRAY

Number of integration points in the Legendre-Gauss
quadrature space

Same as NPT; for integration along Z-axis
Number of rows (see example of core size)

Number of stresses to be averaged, alias number of appear-
ances of a variable

Number of midsurface nodes; those nodes for which coordinates
are to be computed by the program (see Input Definition)

ix
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NTIREX

NVABZ

N2

PLOAD
PRATIO

RHS

STFNS
STIFF
STORIJ

T, TEMP

Yy

u,v,w

Vol

X,¥,2

1 or 0 depending whether all the variables representing U
(U, V, W) are presented together in output, or one element
at a time (e.g., NTIREX=1l, output entire displacement vector
u)

Total number of variables at the end of Subroutine APPEAR;
it is found by counting the variables as they are elimi-
nated, element by element, in the preprogram

Sum of free variables in all the elements being processed
PLOAD are regrouped for each element (NF=2)

Array of nodal loads imposed on the structure

Poisson's ratio

Right-hand side of an equilibrium equation, for instance,
the components of nodal load

Element stiffness array, or matrix ¢*
Subroutine to compute element stiffness matrix, c*
Subroutine to establish storage requirements

Constraints

A A

Vector of nodal displacement at node i, uii + vij + wik

Components of displacement in the direction of x, y, and 2z
axes, respectively; displacements are positive in the
positive direction of coordinate axes

Volume of a given solid domain

Regrouping of COORD by element, for the purpose of computing
element stiffness coefficients STFNS

Global system of rectangular coordinates



ABSTRACT

The present report provides the detailed instructions to
perform a structural analysis using the curved finite elemenc
computer program - PBLADE., It defines input variables and
format. It discusses the idealization of structures, their
geometrical and material properties, the scope of computations
and the core size requirements. It further discusses the
effect of computational algorithm employed in the development
and organization of the program. An example of the data forma-
tion in a well-known frontal solution procedure is described in
detail to allow further exploitation of the efficient algo-
rithm. Sample problems are given to illustrate applications
and capabilities of the program to solve complex s.ructural
problems of a three-dimensional nature. Numerical results are
presented to demonstrate the effectiveness of the programed
computation.

ADMINISTRATIVE INFORMATION

A numerical solution to complex structural problems, including that
of marine propellers, was developed in the Analytic Method Group of the
Surface Ship Division, Structures Department. The work was funded by the
Naval Sea Systems Command Materials and Mechanics Division (03511) under
Task Area SF 43 422 505, Task 17934 (Structures for Hydrodynamic/Aerostatic
Lift Ships). This task has since been incorporated under the Advanced Ship
Structures Block Program, SF 43 422 593, Work Unit 1-1730-312.

INTRODUCTION

SCOPE AND OBJECTIVE

Recent developments in machine computation have made possible a modern
tool for analyzing complex three-dimensional structures. One major objec-
i tive of this report is to increase the awareness of user-engineers that
emergence of finite element technology has provided a practical approach
for calculating loads and predicting structural behaviors. The basic con-
cept of the finite element method is that of a real continuum which can be
treated analytically by subdividing it into a finite number of regions.
In each of these regions, displacement and/or stress is described as an
individual field. These fields are often chosen in a form that ensures

continuity of the selected variables throughout the whole body (continuum).
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The marine propeller in its general form is a good example of a com-
plex, three-dimensional structure. The geometry of the propeller blade
normally determines the choice of a finite element. Elements of planar,
elementary shapes are sometimes used. The application of these elements

can be difficult, for instance, in the case of a skewed blade where blade

surfaces are in a form of complex curvatures. Its face is incongruous with
its back. Figure 1 illustrates the topology of a highly skewed blade. It

is in those practical applications that the present finite element program

has proved to be highly efficient.

A finite element displacement model was utilized to predict the elastic
behavior of a propeller blade having an arbitrary shape and subjected to
prescribed loading. Solid elements in their general form were adapted, and
the reference to a set of natural curvilinear coordinates was introduced.
It will be shown that the use of curvilinear coordinates in element space
provides both a practical means for defining complex design surfaces and
an expedient method for stress calculations. The curved three-dimensional

elements fit readily to a skewed geometry or curved boundary, and their

application to propeller problems is simple and straightforward.
The high degree of accuracy attained when curved elements were em-

ployed in a recent analysis of a full-size propeller blade, strongly sug-

gest that the current development represents a realistic and reliable ap-
proach to the general solution of the propeller stress problem.l*

The report includes an outline of the organization of computer program
PBLADE, an explanation of input definitions and data setup, sample problems
to illustrate the usage of solid finite elements, and the analysis of com-
plex structural problems of a three-dimensional nature to demonstrate the
effectiveness and potential of the curved finite element program.

The present report also discusses the topics that are important for the
numerical solution of large-structure matrices. Current theoretical and
practical considerations essential to the efficient application of digital
computation are delineated and illustrated to ensure that the user obtains

an effective analysis of novel structural problems.

¥
i
g *A complete listing of references is given on page 91.
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BACKGROUND

Marine propeller blades constitute a special class of structural prob-

lems for which no completely satisfactory solution was available. Although
é screw propellers continue to be the principal device used to move a ship,
only recently has there been a realistic approach to the problem of obtain-
: ing an accurate evaluation of propeller stresses. The difficulty lies in
describing a blade design in simple mathematical terms.
, Most existing methods applicable to screw propellers have relied
heavily on practical experience and semiempirical considerations. These
provide a criterion of stress rather than the actual surface stresses.
Both "beam" theory and "shell" theory have been used in earlier attempts

to develop analytical methods for predicting blade stresses.

The use of elementary beam theory was first proposed by Taylor2 who
treated a blade as a cantilever attached to the propeller hub. He recom-
mended that stresses be calculated for cylindrical blade sections with the
neutral axis parallel to the nose-to-tail (pitch) line of the expanded
section, see Reference 3 for propeller terminology. Cantilever beam
theories have yielded reasonable estimates of stresses at certain selected
points of relatively straight and narrow blades. Some modified forms of
beam theory have been proposed for wide-bladed propellers with blade width-
to-length ratios of about one.

The shell theory approach was first proposed by Cohena who treated a
simplified propeller blade model as a helicoidal shell with variable thick-
ness and infinite width. Later studies included those of Connolly5 and

Atkinson.6 Shell-type theories that incorporate broad assumptions do not

appear to offer tangible improvement; moreover, they are complicated for
routine design purposes. Analytical methods that attempt to predict blade
stresses on the basis of conventional mechanics have not been eminently
successful.

Considerable efforts have been devoted to measuring blade strains on

7,8

both model and prototype propeller blades. In certain cases, good agree-
ment was obtained between beam theory and measured data. However, care | ;
; must be taken in drawing general conclusions from limited measuremen“s be

cause of the large number of factors involved.




o

The trend in shipbuilding to full afterbodies for mammoth tankers and
bulk carriers and to higher speeds for modern naval vessels has been accom-
panied by large irregularities and fluctuations in ship wakes. The thrust
derived from blade-lift force is unsteady when the blades rotate in a non-
uniform velocity field behind the ship. The interaction of these unsteady
forces with the hull and appendages causes the excitation of the ship by
the propellers. Blade skew, high blade area ratios (i.e., wider blades),
and a large number of blades per shaft have all been tried in an attempt
to reduce vibration. These innovations of propeller geometry drastically

9,10 and render the standard methods

alter blade displacement patterns
(i.e., beam theory) invalid.
A rational approach to the general solution of the propeller stress

11 It involves the use of a finite element

problem has been established.
displacement model to predict the behavior of an elastic body with an
arbitrary shape under static loads (and the adoption of compatible solid
elements in their general form). The formulation bypasses the constraints
of simplifying assumptions and allows a closer approximation to the true
structural configuration than is possible with most other approaches, for
instance, by using classical plate or shell theories. Solutions for dis-
placements and internal stresses can be obtained subsequently.

The numerical procedure developed by Mal1 is completely general in
nature and provides a full three-dimensional stress analysis of a struc-
ture. The solid elements employed in the computer program can represent
the correct behaviors of a beam, a plate, a shell, or any of the varied
aspects of structural components., Furthermore, there is no restriction on
their geometry; the finite element program is just as applicable to the
stress of a supercavitating blade as to the stress of a standard propeller
blade. Detailed stress calculations at the root section of a propeller
blade joining the hub can now be performed in a realistic manner.

Detailed descriptions of the curved finite elements, the numerical

technique, and the computer program are given in the following sections.
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CURVED FINITE ELEMENTS
TWO-DIMENSIONAL CONTINUUM ELEMENT

The nature of curved isoparametric elements in a two-dimensional con-

tinuum will be discussed first for the convenience of illustration,
Figure 2. Generalization into full three-dimensional elements is immediate.
These two-dimensional continuum elements, (CURVPL) can also be made
available.

The element properties are represented by the element stiffness matrix

[Ce]* where
[c®] = f (817 [D] [B] dvol @

depends on the geometry and the material properties of an element. Here
the strain matrix [B] is a function of element geometry and the elasticity
matrix [D] a function of element material.ll
The geometric shape and size of an element are prescribed by element
boundaries which connect a set of nodal coordinates normally referenced to

global axes x, y, z; see Figure 3.

Local Coordinates and Node Numbering
Convention

The distinct advantage of a curved element lies in its capability to
1 take on arbitrairy shapes. An auxiliary coordinate system, known as local

curvilinear coordinates (£,n), is utilized to define the element space (for

details, see Reference 11). 1Its orientation with respect to the global
axes is established in each element by the sequence of the first three
labeled nodal numbers used as input to the incidence table. The incidence

table of nodal labels is read early by the main proéram to ensure proper

connectivity of individual elements.
The integration of element stiffness coefficients, Equation (1), can

be conveniently carried out by means of a Gaussian quadrature:

*The element stiffnesu coefficients were designated as K in
Reference 11. 3

A e e e i e i = i
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IT IS DESIRABLE TO HAVE AN ELEMENT SHAPE
BOUNDED BY THE CRITERIA:

3 max
. <5
a > 15 DEG

B <180 DEG

THE ELEMENT IMAGE IS A SQUARE,
IDEAL FOR GAUSS QUADRATURE

THE GEOMETRY OF THE LOCAL COORDINATE
LINES (£,7) IS DETERMINED BY THE

SHAPE OF ELEMENT BOUNDARIES.

1 TRANSFORMATION AND INTEGRATION (OR

: QUADRATURE) ARE DUE PROCESS IN i
‘ ELEMENT STIFFNESS FORMATION

Figure 2 - Shapes and Attributes of an Element in
Two-Dimensional Space




IS ELEMENT
NUMBER

Y (Xq, Y1) ORIENTATION OF LOCAL
ISOPARAMETRIC COORDINATES (€,7)

X

[ ELEMENT |GLOBAL NODE| GLOBAL i e

NODE NUMBER| LABLE |COORDINATES p S
N1 1 X: | v, 1 1
N2 3 X' | ¥s 1 1
N3 21 Xav ) Yoi a 1
N4 23 Xa23 Y23 1 1
NS 1 X11 | Y1 a 0
N6 12 X12 | Y12 1 0
N7 2 X2 | v, 0 a
N8 22 X22 | Y22 0 )

v
&
&
b3
=

e

Figure 3 -~ Geometry of a Two-Dimensional Element Showing Position
and Order of Input Node Number
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1 n
j £(£)dE = 2 Hy * £(a,) )

-1 i=1

where n is the number of integration points (NPT). The application of a

Gaussian quadrature requires a set of abscissae (ai) and weight coefficients
(Hi)' These can be found in standard textbooks of numerical methods.lz’13
The position of the first few quadrature points is illustrated in a sketch

to provide a physical image of integration. See Figure 4a.

Numerical Integration and Stress Computation

The integration of a surface area is

) s 3 NPT
3 I I f(€,n)dndg = 2 H, Z ij(ai,aj)

-1 ‘-1 i=1 §=1

where the expression f(£,n) = [B]T [D] [B] [J*(§,n)| is evaluated point by
point in an element subregion. A three and two integration rule is indi-

cated for the given element, Figure 4b. There are six integration points,
and they are related solely to the local curvilinear coordinates (&,n)

3 which, in turn, are defined by boundary nodes. An option is available to

rotate the local coordinate axis (£) to axis (n) by setting INCID = 2

(see input term, INCID, NROT). The option is executed by realining the

sequence order of nodal labels of the incidence table.

For a quadratic element, such as the 8-node element in Figure 3, the
3-point rule is the norm for integration. Higher orders of integration re-
quire more computational time without offering appreciable improvement. On

D o L Lol e L AT

& *Det IJ[ is the determinant of a Jacobian Transformation and is a
function of element shape and size (Figure 2). Its numerical value is
computed at each integration point in an element space and consequently
exerts a quantitative influence over the accuracy of element stiffness and
of resulting stress. For details see Section 3.22 of Reference 1l1.
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the other hand, a reduced integration, e.g., a 2-point rule, may hasten the

convergence in certain kinds of structural shapes or configurations but
users, especially beginners, are advised to be cautious in their
applications.

The calculation of element stiffness matrix [Ce], expressing the nodal
force~displacement relationships of a unit element, also provides a frame-
work for evaluating the various aspects of body stresses. The strain
matrix [B] (which is computed at each integration point in the process of
forming a stiffness matrix) is readily available for the stress computa-

tion,l i.e.,

and

These stresses located at integration points within the element space are
printed in the same order as the integration taken place; see Figure 5.
These stresses usually represent good quality numerical results.
Boundary stresses can be obtained by additional computations of the strain
matrix at specific points. Some optimizav.ion procedures, for instance, the
least square interpolation, can be used to predict stresses at boundary

nodes.

THREE-DIMENSIONAL CONTINUUM ELEMENT

Solid Element of Arbitrary Shape
(ASOLID)

A typical curved element of three-dimensional continuum is illustrated
in Figure 6. The solid element is most general in nature and is capable
of modeling bodies of arbitrary geometry. For complex design problems,
(e.g., the blade interface with the hub, the nozzel intersection of a
pressure vessel, etc.) the versatile.three-dimensional element probably-

offers the most realistic solution. The orientation of local isoparametric

coordinates (£,n,Z) and the order of nodal numbers are also given in

it o e o s




ELEMENT NODE NUMBERING CONVENTION

3—POINT INTEGRATION

2-POINT INTEGRATION

Figure 5 - Printing Sequence for Integration Point Stresses
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Figure 6 - Stress Printout Sequence at Interior and Surface Points

for Three-Dimensional Continuum Elements




Figure 6. The integration points now include those along the Z-direction
(k=1,ii,iii) for every point on the £-n surface which has a pattern similar
to Figure 5.

Stresses computed at integration points are available simply by setting
NBLA = 0 (see input terms). Stresses over the surfaces of an element can
also be computed; they are located over the Gaussian quadrature points of
: the corresponding surfaces such as the blade face and blade back (k=iv and
v); see Figure 6. Blade surface stresses in cylindrical coordinates are
computed by setting NBLA = 1; stresses in principal direction will also be
printed.

It is important to observe the ordering of nodal labels; the element
incidence should be set up so that the n-coordinate line is parallel to
the constant radius line, hence, ﬁﬁ becomes a tangential vector (see

Reference 1), i.e.,

3|
[}
= |
X
= |

£ n is a surface normal
and

is a radial vector

" |
n
jwl
X
3|

With the direction consines at a given point properly defined, cylindrical
stresses will be. correctly computed. An option is available to rotate the
! local coordinate axis (£) to the direction of n-axis by setting INCID = 2.

This option is performed by resequencing the nodal numbers for each element.

Three-Dimensional Shell Element
(TDSHEL)

In practical applications including many shell-like structures where
the shell thickness is nearly uniform and surface curvatures are smooth
(i.e., no rapid change in curvature) the midedge nodes of the curved solid
element can be eliminated and a linear displacement variation assumed g
through the element thickness. The l6-node shell (Figure 7) is considered

representative of the three-dimensional shell element group. The

e




-

i

e A RO KT NN TR AT

THERE ARE ALSO 12— AND
8-NODE SHELL ELEMENTS
WITH OPTIONS TO INCLUDE
NONCONFORMING MODES

Figure 7 - Node Numbering Convention for Three-Dimensional Shell Elements

15




orientation of local curvilinear coordinates (£,n,Z) and the positions of
the ordered nodal numbers are also shown in Figure 7. A 12-node three-
dimensional shell is obtained by further deleting nodes 13, 14, 15, and 16.
The displacement for this element varies linearly along the n-coordinate
line, and boundary lines 1-3, 2-4, etc. will be linear. An option is
available to include nonconforming mode-shape functions. When properly
chosen these modes can provide fast and economic solutions; in other words,

good numerical results can be obtained with fewer elements.

Ahmad's Thin Shell Element (THNSHL)

As the element thickness is decreased to the proportion of a medium
thick plate, or a thin shell, a specialization of the three-dimensional
continuum element can be formed to achieve greater economy and effective-
ness (see Section 3.3.3 of Reference 11). Some well-known shell assump-
1 tions can be utilized: (1) lines perpendicular to the middle surface
remain straight under loading and (2) strains along these lines can be
ignored in the energy summation. At each node of the shell (Figure 8),

there are now five degrees of freedom:

sh

<l
]
™R E < E

They represent three translational components (Ui’ V,, and Wi) of displace-

i
ment at the midsurface node i and two rotations (ai,Bi) of the nodal
normal V31'
The transition element is a further extension of the three-dimensional
continuum element development which combines a curved solid element and an
Ahmad shell element. It is used to connect the Ahmad shell to the three-

dimensional solid. Its stiffness is derived by relating the five degrees

of freedom of each midsurface shell node to the displacements of the
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corresponding pair of nodes on the top and bottom surfaces of the connecting
three-dimensional shell element (Figure 8). The performance of these ele-

ments and guidance for their application will be reported separately.

PROGRAM ORGANIZATION
INTRODUCTION

The computer program described here utilizes the technique of frontal
solution.14 It takes advantage of the sparsity of structural matrix by
evading unnecessary algebraic operations and redundant linkages of nodal
variables (Figure 9). As a result, arithmetic performance is optimized for
a given problem. The frontal technique is, in essence, a refined version
of partitioning a structure commonly known as substructure which is em-
ployed to extend the applicable range of a standard bandsolver. Indeed,
the front dissects a given body into two element groups having nodal vari-
ables completely processed on one side of (he front and raw variable on
another.

The accent on elements is apparent in the Program Organization Map
shown in Figure 10. The program reads input through the subprogram PBLADE,*
and sets up a sequence of command. It admits elements, one at a time, in
their numerical order. It calls Subroutines LABLE and APPEAR to label the
free nodal variables and forms an order of their eliminations. It further
calls subroutines STIFF and GLOAD to compute element stiffness coefficients
and, if required, to generate load matrices. After sizeup, the core re-
quirement, it proceeds to assemble the structural stiffness matrix in a
segmented form and then to form triangular matrix by eliminating those
variables which are fully summed at the given stage (see Appendix A).
Finally by back substitution, the vector of nodal displacements is obtain-
ed, and desired stress-components can be computed immediately. The program
is developed around a system utilized to solve the set of equilibrium

equations.

*All program and subroutine names are underlined in Figure 10.
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l10- es
ELIMINATED

6-es

FORWARD 8
ELIMINATION |
110-es 16 'b'l
o
ol
|8-es
MATRIX [G]
AS ELEMENT
HAS BEEN ASSEMBLED
lg-os
LEGEND:
KUFEL 15-es

ELIMINATION OF UNKNOWN VARIABLES IN A SYMMETRIC POSITIVE-
DEFINITE STRUCTURE MATRIX [C] FOR A TWO
DIMENSIONAL PROBLEM HAVING 58 D.O.F.

(FOR DETAILS OF A FINITE ELEMENT REPRESENTATION SEE P. 67)

Figure 9 - Illustration of Front Movement and Variable Front Width
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Figure 10 - Program Organization Map
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Figure 10 (Continued)
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SOLUTION OF LARGE SPARSE MATRIX
In the displacement method of finite element analysis as well as other

numerical procedures for stress analysis, the key problem is to solve a set

of linear simultaneous equations expressing the load-displacement or
equilibrium relation of the structure. The displacement boundary conditions
in terms of known constraints can be readily imposed on a set of nodal
variables or corresponding nodal degrees of freedom. After reduction which,

in effect, removes the rigid-body mode, we have

[C] [X] = [B] 1

nxXn nxm nxXm (3)

where [C] = a nonsingular structure matrix of symmetric stiffness

coefficients

X = a column vector of unknown nodal (displacement) variables

B = a known vector (m=1) of applied load with at least one nonzero
term

n = size of unknown vector X, or the total structural degrees of

freedom

If B, also known as the right-hand side (RHS), consists of a set of
alternate design loads (m>1), X will then correspond to a set of m displace-
ment solution vectors.

The solutior of the load-deflection equations, Equation (3), is
usually the most time-consuming step in the whole problem-solving process.

A complex structure may be represented by a system of several thousand
degrees of freedom which greatly overstrain computational processes wherein
conventional matrix operations are handled by routine calculations. The
requirements for storage of large quantities of data and the excessive com-

E puting effort involved have often compromised the applicability of such

computer programs in the recent past.

Methods whereby a large set of linear simultaneous equations can be

solved have intrigued numerous investigatorsls-zo from research scientists

- o

to application engineers. The problem becomes one of increasing signifi-

cance and scope as the size of the unknown variables grows and the system




design of a digital computer becomes involved. The mode in which the
massive amount of data is generated, stored, and, if necessary, rearranged,
has a strong influence on the speed of the analysis, the number of arith-
metic operations, and the computer core-size requirements, etc. Further,
it dictates the type (or shape characteristics) of a structure and the
format of data input that can be admitted for an efficient numerical solu-
tion. In sum, the (eventual) effectiveness of a program development hinges
on the selection and implementation of an efficient computational algorithm

to solve Equation 3.

ADVANTAGE OF FRONTAL TECHNIQUE

One practical advantage of the program is the ease with which a node
system can be numbered. The nodal label is simply a nickname and places
no constraint on the solution process. Normally, when a branched structure
is treated by a bandsolver, a rather cumbersome numbering scheme has to be
employed to optimize the bandwidth. But to a frontal technique, any set of
nodal numbers which conveniently covers the topology of a structure is
satisfactory and is as good as any alternative. In summary, it is worth
reiterating that the order of elements is an important consideration for the
application of the present program but that the order of node numbering is
immaterial. (For example, see Case (2) of Examples of Core-Size
Calculation.)

The proper rule for element numbering and an assessment of its in-
fluence on core requirements will be outlined in the subroutine STORIJ.
First, however, the topic of defining a structural problem to be processed

by the program will be discussed.

PROBLEM FORMULATION
INPUT DEFINITION
The function of the MAIN program is to establish a logical sequence
of computation. It reads a set of input data which define the geometrical
and mechanical properties of a structural problem together with loading

and support information. The data also indicate the options selected by

the user for the execution of programed calculations.

AU A tlhen




Input data consist of a problem title,* properties of material, and a
set of control parameters essential to describe the problem. The control
parameters include 24 input terms read from four data cards. They define
the problem size (NJ, NELEMZ), nodal connectivity pattern (INCID), loading
(NF, NLOADS) and support conditions (JREST). Further, they define the size
of principal arrays (NELPAZ, etc.), integration scheme (NPT), printing
options, and generation of intermediate nodal data (GEOORD) where required.

Specifically, the parameter NF prescribes the load input option;
known nodal loads (NLOADS) can be read or, alternatively, equivalent nodal
forces are calculated, element by element, for a design pressure over a
given surface of the body. INCID provides a pattern of connectivity and
the orientation of individual elements by way of element incidence. Nodal
coordinates define the position and boundary surface of the structure in
terms of a set of global coordinates (COORD). The array size MVEND poses a
measure of front width which depends on the number of sequential elements
that intervene between a pair of adjacent elements anywhere in the dis-
cretized structure. The boundary constraints (JREST) and the number of
free nodal variables (JCOUNT) are counted. Problem specifications including
the geometrical and material descriptioi. will be reiterated as output.

They include the coordinate and incidence table, the loading input, and the
joint constraints.

The numerical solution of nodal displacements (DISP) is obtained
through a group of subroutines up to and including BAKSUB (Figure 10). The
stress components with respect to the global coordinates are immediately
available at integration points. Stresses referenced to an arbitrary sur-
face can be included in the output. Other stresses of interest, such as

principal stresses, can also be computed at surface points.

CORE-MEMORY REQUIREMENT
One major consideration in the application of the computer program is
the core size required to solve a given problem. The core requirement

depends on the complexity of the structural configuration and the number

*See Instruction for data input.
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of degrees of freedom needed to represent it. The matter of concern is

whether the problem can be solved in sufficient detail, i.e., whether a
certain degree of accuracy, which is frequently the objective of an
analysis, can be realized. In any event, the capacity of the onsite com-
puter is always a first order consideration.

The following sections explain Subroutine STORIJ in which the size of
the major working array has to be defined. Examples are given to illustrate
how to estimate core memory CM required to solve a given problem as well
as certain features which are unique to a front solution. A summary of
case studies based on execution on a CDC 6600 computer is included in tabu-
lated form with core'memory requirements indicated in Table 1. Finally, a
list of typical array sizes is given. From these data, the reader can
select appropriate array specifications and core size when a novel problem

arises.

Subroutine STORIJ

It has been noted that only the stiffness coefficients [G]* associated
with the active variables MVABL need to be readily available in the working
area (see solution method). The core space of the primary working array
ELPA, for instance, should be able to cover, among others, the maximum
range of coefficients that can be included in a front [G] and the element 1
stiffness contributions corresponding to a maximum element size '(LVMAX).

The space allocation of the working array ELPA is segmented as shown
in Figure 11. Key positions are marked as NELZ, NPAR, NPAX, etc. As each
element in succession is being processed, the stiffness coefficients of the
current element are read into the first segment and distributed into proper
location of the third segment which begins from position NELZ + 1. The
address or position index along the chainlike vector array, corresponding
to a coefficient located at (I,J) of an upper triangular matrix, can be
obtained with the aid of a line function NFUNC (I,J):

NFUNC(L,J) = I + J(;—l)

J

= Z ICOL(L)

L=1

*For definition see NOTATION.




®DECK STORIJV
SUBROUTINE STORIJ

THE SUBROUTINE ESTABLISHES STORAGE REQUIREMENTS AND BOUNDS WITHIN
THE WORKING ARRAY ELPA

OOO0

[ COMMON /VAB1/NELPAZ 4LVENDsMVENDoNIXENDoLVMAXNIZZ ¢MAXNIC
COMMON /VAB2/MAXPAoNVABZLCUREQyMAXELToNTIREXoLDES,KL ¢NSTRES
COMMON /VAB3/NELEM,NELEMZ yKURELyNICLPREQ,NEN,NPARy NBAXOyNBAXZ
COMMON /VABG6/CONST o NJoNRUNO,LHSRHS o Lo KOUNToNELZ,NDELT

NFUNC(I,J)=I¢(J"(J-1)/2)

NELZ = NFUNC(O,LVMAX®1) ¢ LVMAX
IF(NELZ.GT MAXELT) NELZ = MAXELT

NPAR = NFUNC(O,MAXPA+1) ¢ NELZ

NPAZ = LVMAX ¢ MAXPA

IF(NTIREX.NE.O) NPAZ = MAXNIC ¢ MAXPA
N = NPAR ¢ (MAXPA®2)

IF(N.GT.NPAZ) NPAZ = N

NBAXC = NPAZ + 1

NBAXZ = NBAXO ¢ 3®MAXELT
IF(NBAXZ.GT.NELPAZ) NBAXZ = NELPAZ
NBUFFA = NBAXZ - NBAXO ’

Ni = MAXPA ¢ &
WRITE (6426) NTIREX
26 FORMAT(1HO, *NTIREX = *,I4)
HRITE (6,23)
23 FORMAT(LHO,10Xos* ELEMENT STORAGE REQUIREMENTS®,//,9X,6H LVMAX,9X, 4
1 6H MAXPA,9X,6HMAXNICs9X96H NELZ»9Xe6H NPAR ,9X,6H NBAXO,9X¢6H NB
2AXZs IX96HNELPAZ 4//)
¢ HRITE 16,22) LVMAX,MAXPA ,MAXNIC,NELZ,NPARyNBAXO,NBAXZ, NELPA2
| 22 FORMAT(1H0,///(8115))
‘ c
IF(NBUFFA.LT.N1) GO TO 20
NRUNO = NPAZ - MAXPA
RETURN
20 NBAXZ=Ni+NBAXO
WRITE(6,21) NBAXZ
21 FORMAT(1MH14///7/7910Xs* == TROUBLE IN SUBROUTINE STORIJe. DIMENSION
1 O;OELPA IS INADEQUATE. INCREASE NELPAZ TO *,1I64/,1H1)
S
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which can be represented in tabular form as:

In this line function:

NFUNC (I,J)

NFUNC (0,J)

LVMAX

NELZ

MAXELT

"G"

MAXPA

NPAR

NPAZ

NBAXO

NELPAZ

1COL (J) J' ?

J I !
: GRS T
0 113] 61015 ...J
12 11 | 16 [
3 8 b1z {1g e o
- l
3 6 alas
3 101419
2 i5{z20 |
; 21 |
AR ] 0 SO TN i RO | W Lk

The index in an equivalent column array of terms (I,J)
in an upper triangular matrix

The location index of the diagonal term of the preceding
column

Maximum number of variables (KUREL) per element actually
encountered, or the length of the longest LVABL array

End location of the element record in ELPA including the
load column, or the element right-hand side (RHS)

NDOFPE + (NDOFPE+1)
2
element segment

+ NDOFPE, = maximum length of an

Subvector of ELPA which contains the coefficients of
assembled equations and the associated right-hand sides

Maximum number of active variables ever encountered at the
front; MAXPA < MVEND

Location preceding the assembled right-hand sides

Last available location for the coefficients of the
assembled right-hand sides

Location immediately preceding buffer area in ELPA reserved
for equations using (es), etc.

Effective dimension of ELPA

27

e et e 2~ ca o e e




TABLE 1 - CORE-MEMORY REQUIREMENTS, A
SUMMARY OF CASE STUDIES

(Core Memory (CMS) in Octal)

TWO-DIMENSIONAL CONTINUUM ELEMENT (8 NODE)

Item NELEM NJ NROW MVEND NELPAZ 8
A 10 50 3 24 1000 40,000
B 50 180 6 36 1200 42,000

THREE-DIMENSIONAL CONTINUUM ELEMENT (20 NODE)

A 6 80 | single 60 3905 55,000
B 12 132 2 75 4870 77,000
c 15 148 3 90 6260 |120,000
D 24 221 4 105 8330  |115,000
E 48 409 6 135 11,480 |131,000
F 64 531 8 165 16,090 | 145,000
*Add 5000, on CDC 6600 Scope 3.4.

8
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~ LVABL (KL) Syl
NZ STIFFNESS
1 ELEMENT 1 COEFFICIENTS
(cel
~ LVABL (KL)
NZ;—1@ ELEMENT2 N
: NELZ (RHS)
°® FRONT [G]
COEFFICIENTS
— LVABL (KL) NPAR
NIZZ —LQ ELEMENT N FRONT (R.H.S.)
NPAZ
(NBAXO)
GAP SPARE LOCATION
(BUFFER AREA ETC.
NBAXZ FOR EQUATIONS “ES”
TC.
NIZZ ETC.)
°
°
°
NZZ
NIXEND NZ4
NELPAZ ~@
SPARE WORKING
STORAGE AVAIL- SPARE CAPACITY
ABLE CAN BE ARRANG'D

NiIX (ALIAS ELPA)

ELPA (L2)
ELIMINATION PHASE

VARIABLES IDENTIFICATION
PREPROGRAM PHASE IN
SUBROUTINE LABEL

SUBROUTINE STORW

Figure 11 - Storage Allocations Used in the Working Column, Vector ELPA
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Examples of Core-Size Calculation

After the element mesh for a given problem has been laid and the
order of element numbers prescribed, a finite element block diagram can be
drawn; for example, see Figures 12 and 13. Nodes are labeled (nickname for

numbered) and boundary constraints imposed. Now it is possible to evaluate

1/Y

Y&/
W/.0l0lOYR
/(D)

’

X=0, Y=0 PLANE OF SYMMETRY

0 X

<0

L 1

Figure 12 - A Simply-Supported Square Plate

LVMAX, which is the maximum size of an element, and MAXPA, which is the
size of front required to solve the problem. With these values the size
of the major array ELPA, i.e., NELPAZ, can be computed.

Two case studies are included for purposes of illustration. One is a
simply-supported plate represented by 36 solid elements; the block diagram
in Figure 13 shows only nine elements because of the symmetry. The other
case is for a stiffened plate, represented first with 16 elements and then
with 24 elements; the relevent illustrations show only one-half spans
(Figures 1l4a and 14b). The second example for Case 2, the stiffened plate
shown in Figure 14b, also illustrates a special feature of frontal solution,

i.e., element numbers are critical whereas nodal numbers are immaterial.
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WHEN ELEMENT 5 IS BEING PROCESSED

Figure 13 - Finite Element Representation of a Plate Quadrant
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The calculation is fairly routine. Following each element in succes-
sion, the current element size is obtained: KUREL = NDOFPE ~ NUMBER OF
CONSTRAINTS ON THE ELEMENT. The size of the front is the sum of KUREL and
the number of active, existing variables, MAXPA is the maximum size of
the front. After a few exercises, the reader will be able to obtain a
quick estimate of these key values LVMAX and MAXPA,

Finally, a summary of case studies is included in Table 1. Most of
the problems were executed either on the CDC 6400 or CDC 6600, Scope
Version 3.3. Execution time ranged from 30 to 100 seconds for smaller
problems (NROW* = 1 to 3) and up to 500 seconds or more for larger problems
(NROW = 6 or more). It is seen that NROW is a prime factor affecting the
front width MVEND and, consequently, the size of working vector ELPA and

core memory CM required to analyze an elastic body.

Case 1: Finite Element Idealization of a Simple Plate. The analysis in-

volves a simply-supported square plate (40%x40x1 in., Figure 12) under trans-
verse bending load. The condition of symmetry with respect to the X- and
Y-axes is assumed. The structural response is obtained by considering

only one quadrant of the plate and is represented by nine solid elements;
see Figure 13.

Because of symmetry in loading and support, nodes on the planes of
symmetry will have no movement normal to these planes. Further, there is
no vertical movement over the support which lies at the bottom edge of the
plate. Hence, we have 18 X-~constraints "JREST" on Nodes 1, 8, 12, 19, 23,
27, 34, 38, 45, 49, 53, 60, 64, 71, 75, 79, 86, and 90; 18 Y-constraints on
Nodes 1 through 18; and 13 Z-constraints on Nodes 7, 22, 33, 48, 59, 74,
and 79 through 85. We are now in a position to size the working array
(ELPA) and core requirement for problem solving by digital computer. As
the front moves from one element to the next, the range of active variables
is evaluated in turn. Considering the 20-node solid element NDOFPE = 60,

we have:

*Suppose a structure is subdivided into a flow net of discrete ele-
ments, NCOL by NROW. NCOL, the number of columns, is usually the longer
dimension of the network, and NROW, the number of rows, is the cross di-
mension of the same network.
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Fxd gt Number of
5 Xo. | Count of | "KUREL" : :1 N8 | positions
ement No. | wyppsT | (LVMAX) vacr s | o Prons
. (LDES)
1 0+8 +3 49 0 49
y Z
2 0+0+43 57 +12 69
3 3 55 +12+15 82
4 8, 52 +15+14 81
0 60 +12+14 86%
6 3, 57 +12415 84
7 8 +8 44 +15414 73
» S
8 8 52 14 66
X
9 8 +3 49 it 49
X V4

o s PN TR I T

Now

+ 60 =

NELZ = 91_%991

% 87 %86)

2 x 86
1+ 86+ 4

Total

1890

+)3741

*The maximum front width occurs on processing
Element 5, and maximum "LDES," i.e., MAXPA = 86.

5631 (=NPAR)

172
91

5894 (=NBAXZ)

< NELPAZ = 6260

Case 2: 1Idealization of a Plate Beam (or Stiffened Plate).

illustrates two schemes for nodal labeling.

The first node number may

Figure 14

begin at any convenient location, for example, at the bottom edge of the

midplane section, and then follow the positive directions of the global

X-, Y-, and Z-axes.
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In Figure l4a, the labeling treads through Elements




6, 3, 4, 1, 2, 7 and ends with the last node 89 on the top side of Element
8. Element labels are also shown on the same figure. Because the optimal
element numbering to obtain a minimum front width is not always obvious,
the type of preliminary estimate of the range of active variables given
here can be helpful in setting up an effective scheme.

First, all constraints, structural supports, and boundary constraints
must be delineated. Vertical end supports (Y=%%/2) are provided along the
bottom edge of the plate, the stem, and also on both side nodes of the stem.
The centerplane (X=b/2) is held against lateral movement and the midplane
(Y=0) is a plane of symmetry., This results in 12 JREST(Z), 6 JREST(X),
and 23 JREST(Y). From evaluation of Figure l4a we have:

Element JREST KUREL Existing | Front Width
Number (LVMAX) | Active "X" (MAXPA)
1 8 52 0 52
y
2 3z 57% 12 69
3 2 48 50 14 64
X Yy
4 2 +3 55 11+7 73
X 2z
5 2 +8 50 13+14+6 83
X Yy
6 2 +8 50 1249 71
X iz
7 8 52 14 66
y
8 3 57 57
z
#Hence NELZ = 2108 4 57 = 1710
+ 8083 )6
5196 (=NPAR)
83 x 2 = 166

83+4+1-= 88

Total 5450 (=NBAXZ)
< NELPAZ = 7660
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The core requirement is 105,000 octal where using CDC 6400 (Scope Version
3.3).

The stiffened plate is reanalyzed in Figure 14b by adding four more
elements to the existing model. The existing nodal labels and element
incidences (INCEL) referring to these nodes are reusable - a time saver for
complex models. A set of 33 new nodes are augmented, Figure 14b. The
order of new nodal labels is immaterial with respect to the existing scheme
of nodal numbers.* 1In the current example, elements are renamed so that a
smaller front width can be achieved. In fact, elements 10, 11, and 12 can
be deleted owing to symmetry of the beam with respect to its centerplane
x = w/2.

The maximum front occurs at the processing Element 8 of Figure 14b.

In this case, KUREL = 60 and MAXPA = 60 + 12 + 15 + (11+9) = 107. The
summation in the last expression includes terms 12, 15, and 20 representing
the number of nodal variables introduced by Elements 4, 5, and 6, respec-—

tively, and which remains active. Hence

NELZ = ﬂ;"—l)- +60 = 1890
- &7-2‘“—1- (107) = +)5778
7668 (=NPAR)
107 x 2 T
07 + 4 4.1 - 112
Total 7994 (=NBAXZ)

< NELPAZ = 8330

The core requirement is 111,500 octal when using CDC 6600 (Scope Version
3.3)0

*Here the program user is free to choose any convenient nodal label.
This is in contrast to many finite element programs where restrictive node-
numbering rules must be followed in order to conserve the bandwidth of a
problem, resulting in a substantial revision of nodal numbers.
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ARRAY SPECIFICATION

The dimensions of the standard array listed in Table 2 are for a cer-

tain number of rows (NROW): NROW = 6 in the case of two-dimensional con-
tinuum elements and NROW = 8 for three-dimensional continuum elements. For
a specific class of problems, the dimensions of the system array, such as
NJ* and NEL* may be adjusted accordingly. The values of MVEND and NELPAZ
can be computed as described in the preceding section or obtained by
inspection. The dimension of the long vector ELPA is a function of NEL,
NJ, and NROW among which NROW is one dominant factor.

INSTRUCTIONS FOR DATA INPUT

INPUT ITEMS AND OPTIONS

Input items are read by the main program PBLADE and are listed in
Table 3. Input cards consist of a set of 10 items: Cards 1 through 7 are
single~card items, whereas the remainders are multicard items that vary
with the number of elements or nodes employed to represent a structure.
For input definition and problem specification see the sections entitled,
respectively, NOTATION and PROBLEM FORMULATION.

Certain options, such as generation of intermediate nodes and/or
equivalent nodal loads, are available. These options are governed by the

logic parameters:

LNEL Number of the last element which is loaded by a surface pres-
sur2, applicable when NF = 0, or 1.

LPB Nodal number at which printout of PLOAD-array begins, for
NF = 0, or 1.

LPT Nodal number at which printout of PLOAD-array terminates, for
NF = 0, or 1.

NBLA = 0 Stresses with reference to global coordinate axes are com-

puted, element by element, at their integration points (which
were used to calculate element stiffness matrices).

NBLA = 1 Additional stresses (or, 09, Tre) are computed on (element)

body surfaces in cylindrical coordinates. Principal surface
stresses are also given.

*See NOTATION for definition.




TABLE 2 - DIMENSIONS OF STANDARD ARRAY

Element Array

Two-Dimensional

Three~Dimensional

Element Element
X (ND,NNPE) X(2,8) X(3,20)
P (NDOFPE) * P(16) P(60)
STFNS (NDOFPE ,NDOFPE) C(16,16) C(60,60)
EL (MAXELT) ** EL(152) EL(1890)
JDIS (NDOFPE) JDIS(16) JDIS(60)
LDEST (NDOFPE) LDEST (16) LDEST (60)
LVABL (NDOFPE) LVABL(16) LVABL (60)
System Array

£ COORD (ND,NJ) COORD(2,175) COORD(3,531)
PLOAD(ID,JOINT) PLOAD(2,175) PLOAD(3,531)
DISP(ID,JOINT) DISP(2,175) DISP(3,531)
JDISP(ID,JOINT) JDISP(2,175) JDISP(3,531)
INCEL (NNPE,NEL) INCEL(8, 50) INCEL (20,64)
MVABL (MVEND) NVABL (66) MVABL (165)
ELPA (NELPAZ) ELPA(3000) ELPA(16085)
NIX(NIXEND) NIX(1600) NIX(6000)

N e LT

*NDOFPE = ND X NNPE
i **MAXELT = NFUNC(O,NDOFPE+1) + NDOFPE

AR gt <

o




TABLE 3 ~ INPUT ITEMS FOR PBLADE COMPUTER PROGRAM

Ghrd Input Data Data Format*
Item
1 Title: Problem, Scope, Date, etc. 55-col,H-Format
2 Blank
3 E, PRATIO, T, DEN 6F10.5
4 NNPE, NDOFPN, LVEND, MVEND, NELPAZ, NIXEND 615
5 NELEMZ, NJ, JREST, NSVJ, INCID, NBLA 615
6 NF, NLOADS, LPT, LNEL, NPT, NPZ 615
7 NVABZ, LCUREQ, LVMAX, MAXNIC, MAXPA, NIZZ 615
8 LPB, NPUNCH 615
8a PRES (L), L = 1, NELEMZ, for NF = 0 only 6F10.5
9 NELEM, INCEL (J,NELEM), J = 1, NNPE, 2113
NELEM = 1, NELEMZ
10 JOINT (L), COORD (J,JOINT(L)), J = 1, NDOFPN 15,5X,3F10.3
L=1, NJS
11 JOINT (I), IDIREC 215
I = L, JREST
11a JOINT (L), PLOAD (ID, JOINT(L)), for NF = 2 15,5X,3F10.3

only, ID = 1, NDOFPN; L = 1, NLOADS

*Format: I is an integer and F is a real decimal number.




NF = 0 A distributed pressure is integrated over the contiguous ele-
ment surface of an arbitrary body. (The value of average
pressure over each individual element may be prescribed as
input. See Card Item 8a, Table 3.) The equivalent nodal
forces which are the algebraic sums of loads from all contri-
buting elements attached to these nodes will be tabulated and
printed. The complete set of equivalent nodal loads will be
used as input in the equilibrium equation, Equation (3).

NF =1 The pressure load is input by an assigned pressure distribu-
tion for each element prescribed in data set PRES.

NF = 2 Load input is read from a set of NLOADS, one for each loaded
joint (Card Item lla). A joint load is designated for each
node where an external force is explicitly in effect (or in-
directly through contributions of connecting elements). The
joint lcad is defined by its three components along the global
coordinate axes.

NSVJ

]
o

Regular nodal coordinates (X,Y,Z) are read for every joint
required to define the geometry of the individual elements.

NSVJ > 0 Subroutine GEOORD is called to generate midsurface nodal co-
ordinates of a shell-like structure. These coordinates in
conjunction with surface coordinates (which were read as INPUT)
form the complete geometric input. NSVJ numerically equals
the number of nodes on the midsurface.

INCID* = 1 See Card Item 9. Standard incidence format (2113) is used to
insert nodal sequence of the 20-node hexahedron.

INCID* = 2 Incidence format (13I5) is used. Local coordinate axis - £
will be rotated by one quadrant of the surface (I=0).

Other terms defined by the main program include:
INTGER = NELEMZ

NTIREX = 1

NJS = NJ - NSVJ
T, DEN = CONSTANTS
EPSLON = 0.5E - 10

*INCID = 0 indicates that options are to be defined. (The existing
option accepts the l6-node three-dimensional shell element input format
which is to be converted to a standard 20-node hexahedron.)
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DK =
SAMPLE PROBLEMS
Stresses in Plate Beams, Problem 1

A plate beam is an integral structural element essentially consisting
of a plate with a beam stiffener placed underneath it. Plate beams (Figure
15) have the shape of a T-beam and are often treated as such; elementary

beam theory is applicable. When the beam has an extended flange or the

stiffened plating has widely spaced stiffeners, the effective width concept
has been found useful in design considerations. It has been pointed out
earlier* that because the flexural stress distribution is not (as assumed)
uniform across the width of plating, stiffness as calculated on the basis
of the conventional design rule is often overestimated. Where the fatigue
and fracture mechanism becomes a factor in design criteria, it is particu-
larly important to have an accurate evaluation of the state of stress. In

such cases, the plate beam should be treated like a three-dimensional

elastic body, as described below.

Figure 15 indicates a general scheme used to analyze a laterally loaded
plate beam. The plate beam is designated as a simply supported span carry-
ing a center load P. Because ot symmetry, a half-span of the beam is
idealized and twelve 90-node hexahedron elements are used to represent it.
At each end, vertical supports are provided for both flanges and web. Input
data are prepared according to instructions given for data input; these

are listed in Appendix B.

*See Reference 11, page 91.
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A
»
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A FINITE ELEMENT REPRESENTATION
PLATE BEAM | BEAM PARAMETER CENTER DEFLECTION (in.)
MARK w |t | s |t | FINITEELEMENT | BEAM THEORY
cX1 06 [06]06]06 0.0425 0.0412
cX2 60 [0.6(06 (06 0.0214 0.0191
CX3 120 |0.6|0.6]0.6 0.0185 0.0158
cX4 18 |06 3.0 |06 0.213 0.210
CX5 6.0 |0.6]30]06 0.147 0.142
CX6 120 |06 [3.0 |06 0.129 0.123

PARAMETERS OF BEAM CROSS SECTION AND COMPUTED DEFLECTIONS

Figure 15 - Plate Beam Sample Problem
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Five different flange versus stiffener aspect ratios are used as
parameters (Plate Beams CX2 through CX6) to assess the effect of flange
width on the structural behavior of these stiffened plates. As the flange
of a beam is progressively widened (e.g., Plate Beam CX3), the maximum
center deflections calculated by the finite element representation are
found to increase at a greater rate than those obtained by the elementary
beam formula. In other words, because of shear lag, each incremental flange
material is engaged in a lesser capacity than assumed by classical theory.

Figure 16 depicts the distribution of longitudinal stresses Gy on a
transverse section of Plate Beam CX3, Stresses are generally higher in
the parts of the flange near the stiffener, especially in the vicinity
of the concentrated load. Similar patterns of stress distribution with

varying degree of stress gradient are found in each beam that has projected

flanges. Stress distribution across the web plate differs somewhat from
the linear variation assumed in the elementary theory of bending. The
neutral axis at these cross sections of the beam does not pass through the
geometric centroid (Figure 16). Such behavior was more pronounced for a
plate beam such as CX3 with its deeper web plate (S = 6 in.) than for the
others, for example, CX4.

Figure 16 also shows the distribution of typical transverse stresses
Oy along the flange plate. Note that there is some local bending of the
flange in the transverse direction near the concentrated force. Additional
stress data of interest are given in Table 4. These stresses are obtained
at the Gaussian integration points (used to form the stiffness matrix of
the isoparametric element). Stresses computed at such points have been

shown to be generally of high accuracy.

A Supercavitating Blade, Problem 2

Figure 17 illustrates another application of the general three-
dimensional element. An 18-in, diameter, stainless steel model of super-~
cavitating Propeller DTNSRDC P-3604 with wedge-shaped blade sections was
selected. The propeller is not raked or skewed and is composed of wide

blades with an aspect ratio (based on mean chord length) of about 1. The

44

T R




TR P R

fe———— W/2 . W/2———=
3 1\ — BEAM SOLUTION
(74 «=== FINITE ELEMENT
8-s.0]- -~ SOLUTION
= 1 = ——
L ’ .-1 - Oy -.‘
-1.0| Ox +
o_OE.—_.._—L'_______ |
NEUTRAL ;/:
- AXIS T /
|4~ CENTERLINE o/
BEAM SECTION AT OF BEAM ¢ /
Y = 0.676 in. Ly
|
& | 1 1 !
A-50 100 50 00 -50
- e ksi)
% '
—1.0 ax -
0.or_~—q~
: el NEUTRAL ; ¢
AXIS 4
/]
L CENTERLINE 7
BEAM SECTION AT OF BEAM ¢ 7
Y - 3.00 iﬂ. I / oy
2 i 1
-
2-50 -
" P .
-1.0 Ox 4 gl
o_ol:-—b Ber - J
NEUTRAL __
AXIS
!  }- CENTERLINE
BEAM SECTION AT OF BEAM §
Y =950 in.
|
sl !
STRESSES ON FLANGE PLATE STRESSES ON WEB PLATE CL

Figure 16 - Distribution of Normal Stresses in a Plate Beam
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TABLE 4 - LONGITUDINAL STRESSES (Gy) IN A PLATE BEAM

(Stress Table for Plate Beam CX2)

o, (psi)
Y y

(in.) Al A2 A3 Bl B2 B3 Cl Cc2 C3

0.676 | -6252 -5103 -3479 6795 -5417 -3525|-7768 =-6215 -4127
3.000 | -5989 -4945 -3529 5845 -4817 -3450| -5959 -5000 -3755
5.324 | -5557 -4471 -3074 | - 5267 -4442 -3411| -5063 -4555 -3961
9.500 | -3683 -3180 -2547 3725 -3201 -2537 | -3748 -3199 -2498
16.500 | -1158 - 979 - 752 | - 1214 -1039 - 814 | -1255 -1082 - 863

D1 D2 D3 El E2 E3 F1 F2 F3

0.676 | -9161 -6841 -4624 [ -10247 -7926 -5705 | -2533 5995 18193
3.000 | -6093 -5051 =-4045 | - 6575 -5528 =4519 | -2225 5486 16420
5.324 | 4773 -4496 -4048 | - 4646 -4367 =-3916 | -2135 4687 14265
9.500 [ -3757 -3232 -2466 | - 3639 -3113 -2317 | -1126 3541 9634
16.500 | -1200 -1050 - 854 ( - 1230 -1079 - 882 | - 387 1203 3182

Position of Integration Points Used in the Stress Tabulation:

aj2 a/2 03,03 a/2 a2 y =0.3873
. ya ya |, Egl C=S8-06in
L B I E
IRl
24 4+ 4 i
R D R S b
SYMMETRIC 1 )
ABOUT EF
» 3]
>
2 (3
3
| ij N
3
3 —
w/2 W/2
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YZ PROJECTION OF
PROPELLER BLADE

VIEW A-A

BLADE SECTION AT 40 PERCENT RADIUS
PROJECTION ON XY-PLANE

Figure 17 - Curved Finite Element Representation of a
Supercavitating Propeller DTNSRDC P-3604




maximum chord length occurs at the hub and ramains about the same to 60
percent of the tip radius. The blade is very highly pitched. Its maximum
section thickness occurs at or near the trailing edge. Other details of
the propeller and related experiments have been reported by McCarthy and
Brock.8

The procedure of finite element analysis follows the general pattern
described earlier in the study. The blade of this supercavitating propeller
is represented by 15 curved three-dimensional elements arranged in five
rows with three elements per row. The outlines of blade geometry, the
reference axes, and the numbering scheme for discrete elements are shown in
Figure 17. Note that the blade is very thin along the leading edge and
again near the blade tip. A finer mesh pattern will normally be employed
at these regions to optimize stress prediction for these thin segments of
blade. For our present purpose, attention is focused on the major design
parameter, namely, the determination of maximum blade stresses. The limit-
ed influence due to thin segments of blade is ignored (these blade segments
are indicated in the figure by dotted lines). A listing of input data is
given in the appendix.

Blade stresses are computed for a uniformly distributed pressure of
1 psi applied over the entire blade face. Figures 18a and 18b, respective-
ly, show numerical results for the radial (spanwise) and tangential (chord-
wise) stresses at the 30-percent radius. Experimentally derived stresses,
Equation (8), are added for purposes of comparison. The agreement is con-

sidered good in view of both the magnitude and direction of stress data.

Unlike the stress prediction based on beam theories, the maximum radial

stress near the blade root (hub) is found close to the blade centerline

rather than near the location of maximum thickness at the blade trailing
edge; for large radii, the locations of maximum spanwise stresses tend to
shift toward the blade trailing edge. Also note that spanwise stresses
are predominant near the blade root and that chordwise stress components

become more prominent near the blade tip.
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Figure 18 - Supercavitating Blade Stresses for a Uniformly
Distributed 1-Pound per Square Inch Pressure Over
the Entire Blade Face
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Figure 18a - Tangential (Chordwise) Stresses
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The Solid Foil of TAP-1, Problem 3

The next sample problem concerns validation of the feasibility of a

t preliminary foil design21 for a desirable hydrodynamic cross section of a

high-speed hydrofoil test craft. It is important to have a reliable esti-
mate of stresses in the critical areas of the foil-strut system to ensure
adequate strength. The areas of concern are the stresses at the thin
leading edge of the foil and near the foil root interface with the strut
(support).

Figure 19 is a pictorial view of a supercavitating foil model made of
HY-130 steel (or 17-4 PH stainless steel). This solid supercavitating foil

- was analyzed by using curved three-dimensional finite elements. The TAP-1

foil has a typical wedge-shaped chord section with maximum thickness at
the wetted trailing edge. A varying chord length tapers linearly toward
the tip as shown in the foil planform (Figure 20). At its centerline, the
foil receives support from a generously proportioned strut. The foil and
its support are represented by 43 curved solid elements. In an alternative
design which includes the foil annex, 49 solid elements are employed. A
fine element mesh is adopted at the leading edge and also along the fillet
area near the foil-strut interface to provide a clear picture of stress
distribution at those structurally critical regions.

The nodal coordinates for the top and bottom faces of the foil are
derived from the design layout for the TAP-1 hydrofoil,* supplied by the
DTNSRDC Design Engineering Division, Code 294. The XY-plane of the global

coordinate system corresponds to the reference foil chord plane** with

center of the coordinate system located at the 0.7 chord point on the foil
centerline (see Figure 20). A total of 421-XYZ coordinate points is used
in the finite element mesh to describe the foil including annex.

Load Condition 1, which corresponds to the maximum 1lift at a speed of
80 knots, has been used because it results in maximum foil bending moments

*Twist of the foil was removed to simplify computing structural load
and stress.

**A plane which passes through both the leading edge and the trailing
edge.
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Figure 19 - Pictorial View of a Supercavitating Foil Model
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as well as maximum loading on the foil leading edge. The pressure distri-
bution of Figure 21 is inserted into the program in a linear piecewise
fashion over each element surface. An equivalent set of nodal load vectors
(with 178 loading points) is generated. A condition of support is realized
by imposing a set of displacement constraints placed over Elements 39
through 43 for the basic foil configuration. This results in a system of
equilibrium equations involving 1185 degrees of freedom (Equations

1263 - 78 = 1185); the system is then solved for displacements. Stresses
referenced to the global coordinate direction (XYZ) and the local surface
coordinate (i.e., parallel and normal to constant percentage of chordlines)
as well as principal stresses are subsequently calculated at 45 distinct
positions in each element space.

A maximum vertical deflection of 0.57 in. takes place at the leading
edge of the foil tip (Figure 22). As expected, maximum deflections in the
X- and Y-directions are smaller and on the order of 0.03 and 0.02 in.,
respectively. Figure 23 shows some typical foil stress distributions at
25 percent of semispan (measured along the Y-axis). A pictorial view of
principal stresses on the bottom surface of the foil is given in Figure 24.

Chordwise bending plays a major role for locations at 50 percent of
semispan and beyond. The chordwise bending stress begins to flatten out
and actually decreases slightly at sections toward the center of the foil
whereas the spanwise bending rises sharply. The peak spanwise stress
occurs at about 0.7 chord length instead of the trailing edge where the
chord section has its maximum thickness. Some locally high stresses occur
in the neighborhood of 0.3 chord length of the foil area close to the
fillet interfacing with the strut (for instance, at Element 28, Figure 20).
The inclusion of the foil annex generally lowers the foil stress, particu-
larly the stress in the spanwise direction. Reduction in foil deflection
(about 10 percent) can also be observed (see Figure 22).

Note: Computation time on the CDC 6600 for the basic foil configura-
tion is a little over 5 minutes (CPA-320 Sec).
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Figure 22 -~ Vertical Deflection of Foil Spans
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APPENDIX A
SOLUTION PROCEDURE

DISCUSSION OF ALGORITHM

The solution algorithm warrants attention, particularly by those con-
cerned with making data more manageable. The logic of data organization
has not been given the recognition it deserves, and standard texts on
numerical methods seldom include techniques for relating the identity and
position of matrix elements. Yet it is such techniques that enable the
advantage of matrix-sparsity to be exploited and that have enabled notable
progress to be made during the last decade in the scope and efficiency with
which large matrix problems can be solved on a digital computer. An in-
troductory description of a carefully planned and developed bookkeeping
process of a frontal algorithm (a modified version of Ironsla) is included
to illustrate the type of data organization that is essential to effect a
numerical solution.

Now consider a direct solution* of the system of equations; from

Equation (3)

B = [C] X
nxXxl nXn, nx1

Typically, a Gaussian elimination procedure consists of two operations:

1. Factorization
[c] = [L][U]
2. Forward elimination and back substitution
[LlV=28
[U] X=V

Let [C] be represented as

*A direct solution is the process in which a solution results directly
from a fixed number of arithmetic ope::ations.
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€1y C1p €3 =+ Gyl

€1 C2 C3 « -« Gy

(c] =| %1 C2°C3 + -« Cy
nxXn

_Cnl Cn2 Cn3 St Cnn_

and let (U], the upper triangular matrix resulting from the forward opera-

tion of a Gaussian elimination, be expressed as

s B Y R
)., (1. v (69}
T L R
). (2) (2)
o - Bk MR
g 3) (3)
o7 SR G "
(n-1)
L Can |

(m)

The superscripts of element Cij s where m =1, 2, ..., n -1, give the
exact state of elements during the forward eliminations.

It is known that elimination proceeds in steps; at each step, an un-
known x1 is eliminated by performing a set of row operations. This opera-

tion can be expressed in terms of an elementary triangular matrix [Li]
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i =
1
1 1 all blank spaces are
i+l,1i 1 zeros
[Li] = ¢ 1 3
Wiy - fn,1i 1]

ith-column

(i-1)
with corresponding elements £ = - Eitl&l—
4 g i+1,1 . @D

i,1

é a (i-1)

2 SR

i+2,1 (i-1)
Sy 1

c (i-1)
L ) _Eil_—_
n,1i (i-1)

€31

for i =1, 2, ..., n = 1. Now, write the Gaussian elimination process in

terms of the notation

(o] = (L10el

= [Ln—ll 5 e% [Lil cee [L2][L1][c]

and each step elimination is represented as
= *
[c;] = [L 1* [€]

[c,) = [L)* [c;)  ete.

| 4
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and [U] = [Cn_ll = [Ln_ll [cn-2]' For instance,

r &
1 G S 0 s G
1), (1 (1)
Goa gt e
. (1)
[c,] = Cap ‘Sgg v o B
(1. (L (1)
% Cn2 Cn3 cnn

Note that [L] = [L1—1][L2-1] PRI ) :i] = [RiJ] is a lower triangular

matrix with one's on the diagonal. 3

The forward substitution is carried out following the process of
factorization [U] = [L-1][C]. In this case, the intermediate vector
V= [L-I]B wili result; explicitly:

*Physically, the operations Ll’ L2’ etc. are analogous to a succession

of relaxations of the constraints held on nodal degrees of freedom, such
as joint release in a structural system.
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And finally, a backward substitution, [U] X = V solves for unknown dis~

placements X.

THE FRONT APPROACH

It has been known that the stiffness matrix [C] is positive definite
for a kinematically stable structure under static loads. The Gaussian
elimination is guaranteed to be numerically stable irrespective of the
order in which the equations are eliminated. No pivot search is necessary,

and full advantage of symmetry is realized.

c
s =81
Bl W (css)

= Cji

13 = cji' Cis = Csi etc.

In practice, [C] is large and sparse. The important task is to de-
termine the proper order in which the columns of [C] are eliminated to

For C

result in minimum growthl7 of nonzeros in [U]. For a banded matrix, the

problem is simple; no growth of nonzero terms outside the band can be

achieved by choosing diagonal elements as pivots. This provides us with
the motivation for permuting [C] in such a way that the permuted matrix

-

e S hltea o sut Su o,
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[P][C][Pt] is a minimum bandwidth form, where [P] is a permutation matrix.
In the front methcd, the bandwidth is optimized (or minimized) by virtue of
the discretization in the finite element representation. Nodal variables
are naturally grouped by element; as a matter of fact, the process involves
performing the same function as those claimed by matrix partitioning, or
substructuring, used to improve the solution of the banded structure matrix.
An important guideline in dealing with sparse matrices is to store
and process only nonzero matrix coefficients to save both space and com-
puter time. The structure stiffness matrix of many practical problems can
have from 200-2000 unknowns and thus the conventional full storage of all
matrix coefficients has to be abandoned. Instead, a condensed columnwise
storage form* retains only nonzero coefficients and some additional in-
formation necessary to retrieve them. The following section of this report
includes an example to illustrate the data organization. The data are
chain-listed to an element sequel. At the individual element level, the
data contain, in an orderly manner, the element size (KUREL)** and orienta-
tion together with a set of element stiffness coefficients and their ad-
dresses (or destination) in front of the active variables.*** The unknown
nodal variable (I, J = 1, 2, ..., NDOFPF) which is associated with the

coefficient C1 is labeled individually, is coded with identifiers that

mark its firstf intermediate, and last occurrence during the whole sequel
of element-processing (see LVABL, LDEST); and its position in the order of
elimination is defined. The number of equations (or variables) being
eliminated at each element stage is also recorded for later use in back
substitution.

The choice of a computation algorithm for efficient solution of the
governing linear equation, Equation (3), is a crucial question, especially

19,20

for analyzing large structures. There does not appear to be a simple

*Alternatively, a row-by-row store can be arranged.
**See NOTATION.

*%*%A variable becomes active on its first appearance, namely, the
first nonzero term in the corresponding column matrix of [C]. These vari-
ables are the constituents of the front.
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universal approach to the problem, The methcd and programing techniques
used are often computer and/or problem dependent. to some extent, and this
results in constraints on the range of applicability of many computer pro-
grams. The front algorithm described here, however, is practically inde-
pendent of the peculiar sparsity pattern of the matrices processed. The
procedure is equally effective whether the global structure matrix is dense
or sparse.

It is generally admitted that bookkeeping in the frontal algorithm14
is extensive compared with ordinary band solvers. The implementation of
the frontal technique is within the capability of most computers currently
in use. The extra effort is well compensated for by the increased effi-

ciency and capability (see Reference 1) of the program development.

Some basic characteristics of the front bookkeeping system are now
described and key organization traits are illustrated so that experienced
users will be able to modify the procedure if so desired or incorporate

their own elements into the program system.

DESCRIPTION OF PROCEDURE

A clear understanding of the solution process is essential to an in-
telligent application of a numerical procedure such as computer program,
PBLADE. As stated earlier, the load-displacement equations, Equation (3),
are symmetric, positive, definite, and numerically well-conditioned. Re- |
tention of the pivotal terms along the diagonal of the structure matrix
enables the full advantage of symmetry to be realized. Good results are
obtained by the direct method of elimination and, further, it is immaterial
to the order in which the nodal variables are to be eliminated.

In a standard method for solving simultaneous equations, the variables
are customarily arranged in the order of elimination. But for a digital
computation, it is important to minimize the amount of core storage for
intermediate calculations and to avoid physically interchanging rows and
columns since this operation can be quite time-consuming, particularly

when it involves many recurrences as additional variables are admitted to
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the front of active variables. (The intent of the front algorithm described

here is to illustrate a procedure which minimizes manipulation of the co-
efficients of the matrix of the working array, which is the front.)

A nodal variable becomes active when it appears for the first time as
an element is assembled. This is identified by entering a nonzero stiff-
ness coefficient to the column matrix corresponding to that variable. It
remains active until its last appearance. At each intermediate appearance
(if any), as the front proceeds from one element to the next, new con-
tributions to that row and column coefficient matrix are collected for the
given variable. On the last appearance of an active variable, the coeffi-
cients of its row matrix are fully summed and immediztely eliminated. The
elimination of a variable (accomplished by a set of operations on the row
matrix) affects only the coefficients immediately below them (Figure 9).
Now, the space which was occupied by the ex-variable (the one being elimi-
nated) is made available (MVABL(LDES)=0%*) for active variables introduced
by the next element.

The process of the front solution can be viewed literally as the pro-
gress of a wavefront propagating through a network of finite elements in
the order of increasing element number. Each element introduces new,
active variables to the front. The size of the front which, at any one
moment, extends over the whole range of active variables, is kept small by
filling the void spaces left by variables just eliminated, e.g., Figure 25
and Table 5. (This is done without a bodily shift of variables.) The
front width, which in a way is analogous to the bandwidth of a banded
matrix is, in most cases, smaller than a bandwidth.

The frontal process employed here has a distinct trait of composite
action consisting of the accumulation of stiffness coefficients on the one
hand and their elimination on the other. The alternation between assembly
and elimination of nodal variables (or labeled unknowns) is repeated as
each element is processed in turn. The elements are naturally taken as

the unit of implementation. The size of the working vector (also known as

*See bookkeeping algorithm, page 72.
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Figure 25 - A finite Element Representation of
a Two-Dimensional Problem
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the range of active variables, or front width, which is closely associated
with element size) in many cases compares favorably with core requirement

for a band-solver for the solution of a given structural problem. !

A Simple Example !

' To illuétrate the details of data structure, consider a simple example.
. Figure 25 shows a two-dimensional continuum under a set of loads and P2

and being supported at three nodal joints., 'The structure is discretized
and represented by six 8-node elements with a grid system of 31 nodes. The

system has 58 degrees of freedom; the order of nodal labels and nodal vari-

ables (or unknowns) is given; and the elements are labeled.*

After the element stiffness coefficients [Ci§] have been calculated
individually for each element with respect to its boundary nodes (I,J,...
etc.), those values representing element contributions must be properly
labeled with reference to a system of nodal numbers. In assembly then,
these element contributions will be distributed correctly to connecting

nodes so that the resulting system of equations, Equation (3), will pro-

perly represent the load-displacement relation of the structure.

An extensive system of bookkeeping is required to track the labeled
nodal variables and their positions in the front as well as to identify
variables which are readied for elimination. The program records these
data on tape together with the reduced stiffness coefficient and the
number of equatidns eliminated during each element processing cycle. An
outline of the on-going process is listed in Table 5.

Start with element number one - NELEM one. The first line gives
LVABL(KL) ,** which is an ordered list of nodal variables which were used
in formation of element matrix [Ce]. Line 2 is an address matrix, LDES,*%%

which specifies the positions where these nodal variables are assigned in

*The order and position of a humbered element affect the front width
and, hence, the effectiveness of a s6lution. Careful attention is required
in numbering these elements, especially when a complex structure is
analyzed.

*%KL = 1, ..., KUREL
***See NOTATION for definitions of these terms.
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the front of active variables. It is at these locations that stiffness

contributions of the current element will be allocated, or accumulated.
The third line, MVABL(LDES), gives the ordered list of active variables

which constitute the front. The maximum value of LDES sets the front
width, a dominating factor in deciding the core size for a computer run.
The fourth line; LDEST,* is a coded version of LDES. It indicates the
number of repeated occurrences of a given nodal variable and whether it is
the first, intermediate, or the last appearance of the variable.

For the first element, Nodes 6, 7, 11, 17, and 18 (with corresponding
global nodal variables 9, 10, 11, 12, 19, 20, 30, 31, 32, and 33) are free
standing. These are boundary nodes which are not linked to other elements
and hence receive no further contributions of stiffness coefficients from
others. For these 10-nodal variables, it is their first as well as their
last appearance in the front of active variables; these ten equations are
fully summed and are readied for elimination, NVABZ = 10. The elimination
phase completes the process for Element 1, and the front moves to the next
element.

Now, the second element is assembled. Its stiffness contributions
are distributed to positions of active variables of the front according to
the sequence prescribed by LDES which sets the addresses for global nodal
variables. Those positions in the front which were vacated by the elimi-
nation phase of the preceding element are replaced by new active variables
(those appeared for the first time) during the assembly of the current
element. Those unknown active variables which received final contributions
and for which coefficients are fully summed make their last appearance
and their six equations are eliminated immediately, NVABZ = 6.

The spaces in the front of active variables is not always fully
packed, as can be seen in the assembly of element five; in this case, there
are five new active variables and eight open spaces were available. Con-

sequently, three spaces remain vacant.

*See NOTATION for definitions of these terms.
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The movement of the front, also known as the wavefront, proceeding

from element to element is graphically represented in Figure 26 together ]
with a summary of operational counts (for symbol definitions see the
NOTATION).

The solution proceeds from Element 1 to Element 6. At each stage, the
front width (or LDES) can be evaluated (see STORIJ) or more directly from
an idealized element block diagram (Figure 26). Each circle represents an
element variable. Solid circles are those fully summed nodal variables
(i.e., no further contribution from other elements) which are eliminated
immediately. The circles with attached bar links are variables that remain
active through the addition of a follow-on element. The front width can be
approximated with adequate accuracy by counting the number of circled vari-
ables plus crossing links, if any, over the column directly above the ele-
ment in question. The actual front width is also given in the figure. The
number is, at times, slightly higher than the minimum number counted because
of the time delay in filling the free spaces, or vacancies, left by the
eliminated variables of the preceding element.

Half bandwidth (HBW=27) is also indicated in the same figure. The
bandwidth can be reduced either by exercising care in ordering the nodal
number or by utilizing band-reduction algorithms. The density of nonzero
terms, or the sparsity of a structure matrix, is dependent on the geometry
or topology of a structure. In most cases, front widths are smaller than
bandwidths and consequently a front solution is more efficient in terms of

computational time and storage requirements.

Bookkeeping Algorithm
The salient features and computational sophistication of the frontal
technique can be better assessed through a close inspection of the book-

keeping process which is used to keep track cf nodal displacement variables

described in Equation (3). In the coded format, the procedure was carried
out by Subroutines LABLE and APPEAR.
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HBW IS THE HALF BANDWIDTH OF MATRIX [C].

Figure 26 - Occurrence of Nodal Variables in a \
Two-Dimensional Continuum Problem
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Subroutine LABLE
This subroutine forms the initial step to keep track of the variables

representing the nodal degrees of freedom. These variables are normally
independent displacement components (ui, Vis wi). Starting with the first
element, the subroutine counts, one element at a time, the number of free
variables in the current element, for example, KUREL. KUREL equals the
element degrees of freedom minus the number of constraints imposed on that
element; hence, KUREL is the current element size. LVMAX is used to denote
the size of the largest element array, i.e., KUREL < LVMAX.

The subroutine marks each free nodal variable of an element by a label,
or nickname, in a vector array, named LVABL(KUREL) see Table 5. They are
logged in a predefined order set up by the incidence table. All labels for
a given element are grouped together, then stored one element after another
with their signs reversed in a long vector array called (NIX(NEW)). A
certain label, for example one representing a degree of freedom of a
specific node, may repeat many times as the given node is connected to many

discrete elements, LVEND is the dimension of the LVABL array; hence

LVEND > LVMAX > KUREL. NIZZ, the final value of NZ, becomes the sum of

free variables in all the elements being processed. That is

NELEM

NZ = 2 KUREL (L)

L=1

Subroutine APPEAR
This subroutine records the first, last, and intermediate appearances

of all element variables. At successive stages, as each element is pro-
cessed in turn, it examines the front (=MVABL(MVEND*)) for space location

as well as the location of free space, i.e., the space vacated by each

*MVEND is the size of the working vector of active variables, i
MVABL(LDES) and sets the upper limit of front width.




variable previously eliminated. At the DO loop 60, each nodal variable
which had formerly been given an individual label in LVABL(1,KUREL) will

be assigned a space within the working vector MVABL and its position desig-
nated by LDES. This is done at statement 30.

Further, it inspects the variable list for recurrence of a variable in
the long vector NIX(NIZZ) and counts the number of repetitions of a given
label (or nickname). Let KOUNT equal 1000 for each appearance plus 1000.
For instance, KOUNT = 2000 indicates a single appearance and KOUNT = 300U
indicates a dual appearance. (This means that the given nodal variable is
connected to exactly two elements, etc.) KOUNT = 1000 is reserved, how-
ever, for the last appearance of a variable. For each intermediate ap-
pearance, KOUNT is suppressed in the coded format of the destination vector
LDEST (KUREL), see Table 5.

LDEST(L) = LDES(L) + KOUNT(L) L = 1, KUREL

This leaves LDEST(L), NIX(LAS) = LDES, a positive quantity; see listing of
the subroutine.

The pair LVABL(KL) and LDEST(KL) provides each variable (KL) with a
label and an address for the element stiffness coefficient, i.e., its for-
warding position at the front of the global stiffness matrix. With the
provision of knowledge as to when a given variable is ready for elimina-
tion, the information is now complete for assembling the basic element
data into a finished system of simultaneous equations, Equation (3).

For instance, LDEST(7) = 1025 implies that a variable (KL=7) is on
the twenty~fifth location (LDES=25) of the working vector MVABL(LDES).

Its label is given by LVABL(7) or MVABLE(25), and the variable is ready

for elimination. In other words, the seventh row and column of the current
element matrix [C°] must accumulate onto the twenty-fifth row and column
of the front matrix [G], Figure 9. MVEND is the dimension of front MVABL,
or matrix [G].

At DO loop 70, Subroutine CODEST interprets the coded destination
vector LDEST(KL). It recovers the element nickname, LVABL(KL), for later
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use in Subroutine ELDATA and erases nicknames representing variables elimi-

nated in the front. NVABZ counts the variables eliminated so far, and at
the end of LOOP, it gives the total number of equations (or variables)
eliminated.

At DO loop 90, input data are resrouped for the current element to be
used by Subroutines STIFF and ELDATA. From geometric input (nodal coordi-
nates X(NNPE), Y(NNPE)) and material properties (E, GNU), Subroutine STIFF
computes element stiffness coefficients STFNS = [Ce] or

(K, 'f[B]T (D] [B]d vol

nxn nXm mXm mXn

In the case of an 8-node element of two-dimensional continuum where n = 16
a T
and m = 3, the displacement vector U~ = (ul, Uys Uz, «eelg, ...vs) 3

The matrix [Ké] is later resequenced to a displacement convention of

(ul, Vis «.eUg, V8)T compatible with output convention. The coefficients
of the stiffness matrix (the upper triangular matrix of [Ke], with columns

and rows corresponding to fixed nodes being deleted) as well as the load

vector [P] are then grouped together to form a column matrix [EL] by
Subroutine ELDATA. These data units are recorded in TAPE 1 for later use
in Subroutine FORWRD (Figure 10).




SDECK LABLE
SUBROUTINE LABLE (INCEL+JOISPoLVABL ¢NIXoNDOFPNy NNPE)

c
c

COMMON /VABL/NELPAZ +LVEND o MVEND,NIXENDoL VMAX NI ZZ ,MAXNIC

COMMON /VAB3I/NELEM, NELEMZ ¢ KURELoNICoLPREQ,NEWN,NPAR,NBAXC,NBAXZ

COMMON /VABG6/CONST yNJyNRUNOoLHSRHS oLy KOUNTo NELZ o NDEL T
OINENSION NIX(1)y INCELINNPE,1)¢JOISPINDOFPN,1) oLVABL (1)

D0 600 NELEM =1,NELENZ
KUREL = 0
00 400 J=1,NNPE
K = INCEL (J,NELENM)
00 306 (L=1,NDOFPN
IFC(JDISP (LK) .EQ.00 GO TO 300
KUREL = KUREL ¢ 1
LVABL(KUREL) = JDISPW,K)
300 CONTINUE
400 CONTINUE
IF (KUREL.LE.LVMAX) GO TO 401
LVMAX = KUREL
IF(LVMAX.GT.LVEND) GO TO 700
401 DO 500 M=1,KUREL
NIC = LVABL(M)
NIZZ = NIZ2Z + 1
NIX(NIZZ) = - NIC
500 CONTINUE
L = NIXEND ¢ 4 - NELEM
NIX(L) = NIZ22
600 CONTINUE
RETURN
700 WRIVE(6,701) NELEM
701 FORMAT(1H14///+410X,® ~~= TROUBLE IN SUBROUTINE LABLE OCCURED WHIL
1E PROCESSING ELEMENT NO« *,Tko/910X,® THE DIMENSION OF LVABL(I) IS
ZINADEQUATE. INCREASE LVEND, ®,/,1H1)
SToP
END
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SDECK APPEAR

OO0

c
c

OoOOOOOO

SUBROUTINE APPEAR(CMVABLe NIKoLOEST,LVABL INCEL »JOISP,COORD,
1 PLOAD¢ Xy Py JOIS, STFNS,EL s NOOF PN, NDOFPE , NNPE , NF )

THIS SUBROUTINE RECORDS FIRST, LAST, AND INTEMEDIATVE
APPEARNCES OF A VARIABLE

COMNGN  /VABL/NELPAZ o LVEND o NVENDo NIXEND L VMAX NIZZ o MAXNIC
COMMON /VAB2/MAXPA,NVABZ, LCUREQ,MAXEL T, NTIREX,LDES,KL ,NSTRES
COMMON /VAB3I/NELEM, NELEMZ KUREL o NIC,LPREQ.NEWN, NPARs NBAX Do NBAXZ
COMNON /VABLS/JDIRECsJOINT,LEADLID,PRATIOE T DET,A¢B,C1,C2
COMNON /VAB6/CONSTo NJ NRUNOy LHSRHS ¢ L o XKOUNT,NELZ oNDEL Y
COMNMON /VAB7/ INTGER ND,NPT,NPTS,NPZ
COMMON /VCON/PRES(64) ,LPT L NEL
COMMON /7BLAV/GM(3:5):PXI3I)oPY(3)9QeFF(3,8,2)
DIMENSION COORD(NDCFPNo1)o PLOADINDOFPNs21)s XENNPE,NDOFPN)
DIMENSION P{NDOFPE),JDIS (NDOFPE) » STFNS(NDOFPE, NODOFPE)
DIMENSION NIX(1) o INCEL (NNPE,1),JDISP(NDOFPN,1)
OIMENSION LVABL (1) oELC(L) JLDEST(1)oMVABL (1) ,ISHT(S)
DATA ISWT/S5,6¢7+85,15016519,20/
IF(NF.EQ.2) 60 TO 19

NF EQUALS TO 1 OR O

20

LL= 3%LPY
CALL ZEROZ(PLOAD,LL)

19 N1 =%

CALL ZEROZ (MVABLMVEND)

00 100 NELEM=1,NELEMNZ

LPREQ = LCUREQ

LCUREQ = NVABZ

L = NIXEND ¢ 4 - NELEM

NZ = NIX(L)

KUREL = NZ - NL ¢+ 1

00 60 WNEW=Ni,NZ

LOES = NIXINEW)

NIC = LDES

IF(NIC.67.0) GO YO SO :
ISUM = MAXNIC ¢ NIC :
IF(ISUMLT.0) MAXNIC= - NIC A
LDES = 4

IF(MVABL (LDES) .€EQ.0) GO TO 30
LOES = LODES ¢ 1

G0 70 20

MVABL(LDES) = NIC
IF(LOES.GT.MAXPA) NAXPA=LDES
IF(MAXPA.GT.MVEND) GO TO 118

MAXPA RECORDS MAXIMUM SIZE OF FRONT FOR DYNAMIC STORAGE
FIND OUT THE NUMBER OF REPETITIONS OF LABELS.OR NICKNAMES,I.E. NIC
KOUNT EQUALS 1000 FOR EACH APPEARANCE PLUS 1000, KOUNT EQUALS 1000

_AS GIVEN IN LDEST. IS RESERVED FOR THE LAST APPEARANCE OF A VARIABLE
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60

91

70

703

KOUNT = 1000
D0 &0 LAS=NEN,NIZ2
IFINIXCILAS) <NEJNIC) GO TO &0
NIX(LAS) = LOES
KOUNT = KOUNT ¢ 1000
LAST = LAS
CONTINUE
NIX(LAST) = LDES ¢ 1000
NIX(NEW) = LOES ¢ KOUNT
LDES = NIX(NEW)
L = NEW - NL ¢}
LOEST(L) = LDES
CONTINUE
Ni = NZ ¢ 1
WRITE(6591) NELEM, (MVABL(I) ,I=1,MVEND)
FORMATC(i1HL, “ELEMENT NO®,L10,°NVIBLSY //7(13X,08112))
00 70 KL=1,KUREL
CALL CODEST(LDEST)
LVABLIKL) = =~ MVABL(LDES)
NIC = LVABL(IKL)
IF(NSTRES<NE.0.AND.NSTRES.NE.1) GO TO 70
MVABL(LDES) = 0
NVABZ = NVABZ ¢ 1
CONTINUE
KOUNT=0
00 90 I=1,NNPE
TIJ=INCEL (I,NELEN)
DO 80 J=1,NDOFPN
KOUNT=KOUNT ¢4
X(I,J)=CO0RD(J,1IJ)
JOIS(KOUNT)I=JDISP (Jo IJ)
IFI(NF.NE.2) GO TO 80
P(XOUNT) =PLOAD(J,IU)
PLOAD(J,TJ)=0,.0
CONTINUE
CONTINUE
CALL STIFFB (X,E,PRATIO, STFNS,NF)
IFI(NF.EQ.2) GO TO 17
IFINELEM.GT.LNEL) GO TO 17
00 18 L=4,0
IT = ISHT(L)
JT = INCEL(IV,NELEN)
00 18 M=1,3
LK= Me3®(IT-1)
PILK)= PRESINELEMI®FF(NoLo1)
PLCAD (N, JT)= PLOAD (MG JIT) ¢P (LK)
NRITE (61,96) My, JTPLOAD(N,JT)
FORMAT (1Xy ®*PLOADINGUN) Ma1,3 ®/(2110, F15.4))
CONT INVE
CALL ELOATA(P,JOIS,LOEST,LVABL,STFNS,EL ,NDOFPE)
IFU(NELEM.GT.3) GO TO 100
NRITE (64703) NELEM
FORMAT(1X /7% ELEMENT DATA VIA APPEAR®,I6)
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26
92
100
25

1

110
111

WRITE (6926) ((X(NNoL),L=1,ND) NN=1,NNPE)
FORFAT (1H0429HCOORDINATES ARE XYZ (NNPEoND)//(3F13:.5,10%Xs3F13.5))
WRITE (6,92) JOIS
FORMAT(1HO0,* JDIS VARIABLES®/(3I13,3X,3I13))
HRITE (6425) P
CONTINUE
RENIND 2
REWIND &
FORMAT (1HO, ®ELEMENTAL FORCE COMPTS FX FY F2 */(3F12.5+10X,
3F12.30)
RETURN
NRITE(69111) NELEM
FORMAT(1H19///7410X® “=* TROUBEL IN SUBROUTINE “APPEAR™ OCCURED
WHILE PROCESSING ELEMENT NO. ®9Iby/¢10X,*DIMENSION OF MVABL IS IN

1
2ADEQUATE. INCREASE MVEND. *,/,1H1)

®DECK

STOP
END

CODESTY
SUBROUTINE COOEST(LODEST)

COMMON /VAB2/MAXPAyNVABZ s LCUREQyMAXELTyNTIREXLDESsKL ,NSTRES
OIMENSION LDEST(1)

LDES = LDEST(KL)

NSTRES =(LDES/1000) - 1

LOES = LDES - (NSTRES+1) * 1000
RETURN

END
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*Listing of Sample Problem No.

by addressing a need to the author.

APPENDIX B ‘
INPUT LISTINGS OF SAMPLE PROBLEMS* %
// BEGIN SAMPLE PROBLEM NO 1 /// '
PROB PLATE BEAM=CX2 L/H=40/6 NELEM12 JUL72 MOD 76
30000000 0.30
20 3 60 110 8330 5890
12 122 41 0 1 0
2 1 0 0 3 3
0 0 0 0 0 0
: 0 0
‘ 1 S2 20 SS 25 63 39 66 4% 60 33 61 35S S& 23 65 42 S3 S6 64 67
2 SS 25 S8 30 66 44 69 49 6] 35 62 37 S7 28 68 47 S6 59 67 70
3 S8 30111113 69 49100102 62 37107108 94 95 90 91 S9112 70101
4 20 22 25 27 39 4) 4% 46 33 36 35 36 23 26 42 43 21 26 40 45
S 25 27 30 32 44 46 49 S1 35 36 37 38 28 29 47 48 26 31 45 SO
6 30 32113115 49 5110210« 37 38108109 95 96 91 92 31114 50103
7 1 3 6 820222527 14 1516 17 4 S5 23 24 2 7 21 26 E
8 6 811 132527 30 32 16 17 18 19 9 10 28 29 7 12 26 31
9 11 13120122 30 32113115 18 19118119 98 99 95 96 12121 31114 g
10 22 72 27 75 41 83 46 86 34 79 36 80 24 73 43 84 71 74 82 85 ﬁ
11 27 75 32 78 46 86 51 8Y 36 80 38 81 29 76 48 87 74 77 85 88 7}
12 32 78115117 S1 89104106 38 81109110 96 97 92 93 77116 88105 5
1 Se7 0.0 0.6
2 6.0 0.0 0.6 »
3 643 0.0 0.6 =
“ 5.7 3.0 06 5
S 6e3 3.0 0.6 ="
6 Se7 6.0 0.6 =
7 6.0 6.0 0.6 Lk
8 6.3 6.0 de6
9 Se?7 9.5 0.6 E
10 6.3 9.5 0.6 a
11 Se7 13.0 0.6 8
12 6.0 13.0 0¢6 o
13 6.3 13.0 0.6 < |
14 Se7 0.0 3.3
15 6.3 0.0 3.3 g
16 Se7 6.0 3.3 *
17 6e3 6.0 3.3
18 Se7 13.0 3.3
19 6.3 13.0 33
20 Se7 0.0 60
2l 6.0 0.0 60
22 63 0.0 60
23 Se? 3.0 640
{ 26 643 3.0 640
3 25 Se7 6.0 6.0
26 6.0 6.0 6e0
27 6.3 6,0 60
28 Se7 9.5 6.0
29 63 9.5 6.0
30 Se7 13.0 6.0
31 6.0 13,0 640
32 6.3 13,0 6.0
33 Se7 0.0 63

3 is voluminous and may be furnished
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63
63
63
63
666
606
6eb
6.6
66
6.6
6.6
6.6
6.6
6e6
6.6
6.6
6e6
6.0
6.0
6.0
60
6.0
6.0
6.0
6.0
63
6e3
603
606
606
6.6
66
6.6
6e6
6e6
6.6
6.0
60
6.0
6.0
60
6.0
600
6.0
63
63
63
66
6.6
66
66
646
646
6.6
6¢6
6.6
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91
92
9%
95

93

97
105
106
110
116
117

98

99
100
101
lo02
103
104
107
108
109
111
112
113
114
115
118
119
120
121
122

21

103
114
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111
112
113
114
115
116
117
118
119
120
121
122

14
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21
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16.5
16.5
16.5
16,5
16,5
16.5
16,5
20,0
20.0
20.0
20,0
20,0
16.5
16.5
20.0
20,0
20.0
20,0
20,0
20.0
20.0
20.0
20.0
20,0
20.0
20.0
20.0
20.0
20.0
20.0
20,0
20.0

6e6
6.6
640
6.0
6.0
6.6
6.0
6.6
666
6.3
6.0
60
0.6
0.6
6.6
6.6
66
6.6
6.6
6.3
63
6.3
6.0
60
6.0
60
640
3.3
3.3
0.6
0.6
0.6




22
33
34
39
40
41
52
53
60
63
64
71
72
79
82
83
40 0.0 0.0

000000000000000000000000
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// BEGIN SAMPLE PROBLEM NO 2 /77
v

PROB SUPER-CAV PROPELLER BLADE (P=-3604) NEL1S MAR73M0OD6

30000000, 0.30

% 20 3 60 90 6260 5800
15 148 2¢ o0 1

s dE e e

; R S T e

1
K}
0
27 29 8 9 34 35 23 24 19 20 13 39
9
10

0 0

12 14 38 40 1 3 2 28
14 16 40 42 3 S 29 31 10 35 36 24 25 20 21 15 41 4 30
16 18 42 44 S 7 31 33 11 36 37 25 26 21 22 17 43 6 32

38 40 64 66 27 29 53 S5 34 35 60 61 49 S0 45 46 39 65 28 S4
40 42 66 68 29 31 SS 57 35 36 61 62 S50 S1 46 47 41 67 30 S6
42 44 68 70 31 33 57 S% 36 37 62 63 51 52 47 48 43 69 32 S8
64 66 90 92 53 55 79 81 60 61 86 87 75 76 71 72 65 91 S4 80
66 68 92 94 S5 S7 81 83 o] 62 87 88 76 77 72 73 67 93 56 82
68 70 94 96 S7 S9 83 85 62 63 83 89 77 78 73 74 69 95 58 84
10 90 92116118 79 81105107 86 87112113101102 97 98 91117 80106
11 92 94118120 81 8310710Y 67 88113114102103 98 99 93119 82108
12 9¢ 96120122 83 85109111 88 89114115103104 99100 95121 84110
13116118142146105107131[33112113138139127128123124117163106132
14118120144146107109133135113114139140128129124125119145108134
151201221661681091111351371161151“0141129130125126121147110136

VO~NONE WN -

SAMPLE PROBLEM (2) A SUPERCAVITATING PROPELLER

1 -2.,748 1.300 1.837
3 -1.863 0.843 2,086
4 -0.670 6.192 2,242
S 0.5644 -0.435 2.208
6 1.781 =0.,988 2.021
7 J.0644 -1.438 1,731
12 =2.776 1.256 1.867
14 -1.928 0.725 2.130
15 =-0,783 -000275 2.250
16 0,377 =0,7505 2.121
17 1.563 -1.351 1.799
[ 18 2.778 -1.796 1.356
8 =2.762 1.278 1.852
9 =] ,895S 0.784 2.‘08
10 0,4605 =0.5925 2.1645
11 2.911 =1.617 1.5435
27 =2.367 l1.810 3.108
29 '106“8 lol63 3.“07
30 ‘00659 00261 3.591
31 0,376 -0,602 3.549
3z 1,464 -1.372 3,328 ‘
33 2.607 -2.0‘9 2.981 }
38 =2.400 1.781 3.128 |
} 40 =1,729 1.069 3,438
- 41 -0.803 «0856 3.599
42 0.172 =0+.846 3,499
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43 1.196

44 2.272

34 =-2.384

35 -10688

36 0.274

37 2440

S3 =1,965

55 -1.408

S6 -0.624

S7 0.225

S8 1.149

59 2.151

64 -2.001

66 =1.490

67 -0.768

68 0.0167
69 0.878

70 1.819

60 -1.983

61 =1+449

62 0.121

63 1.985

79 =1.547

81 =1l.134

82 =0.561

83 0.122

84 0.862

8% 1.684

90 -1.585

92 =1,210

93 =0.666

94 -0.,053

95 0,637

96 le410

86 =1.566

a7 =l.172

88 0,035 °
89 1e5647
131 =0+.3409
133 =0.2364
134 =0.0932
135 0.056

136 0.2122
137 0.3757
142 -0.358
144 =0.2843
145 =0.204

146 -0.0881
147 0.0769
148 0.306

138 =0+3495
139 =0.2604
140 =-0.0161
141 00341
105 =1.034

107 =0.771

108 «0.3864

w .

-1.668
-2¢343
1799
l.116
-0.72%
-2.181
24095
1.339
90315
=0.666
=1.558
=2¢336
20066
1269
«187
-00848
-10783
=2¢590
2081
1e30«
=0e757
-Znﬁ63
2111
1353
0341
=0.632
=1.537
‘2.357
20806
1301
0.254
=0.753
=1.689
=2¢53%
24099
le327
=-0+4693
=2e440
0665
0e.039Y
0.139
=0.158
=0e451
=0e7404
046564
0es]1u48
0.083
=0.231
=05197
‘007756
0.661
0427
=0.195
-00758
1.713
141004
04293

3.191
2733
3.118
3,423
3.524
2.857
4,485
4,766 !
4,940 |
4,905
4,699
4,364
4,498
4,785
4,947
4.877
4,618
4,218
40,492
4,776
4.891
4,291
S.936
6.153
6.291
6266
6.110
5843
5¢94S
6.164
60295
6.255
6.069
5.768
5941
6.159
6262
5.806
B 195
8.809
8.819
8.816
8.8084
8789
8.7955
8.8102
8.8196
8.817
8.8047
8.786
8.7952
8.8096
8.818
8.7875
T.456
T.5704
T 6444
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109

118
119

0.053
0.5545
le121
=1.0624
-0.826
‘006665
=0.0578
0405
0946
=1.048
‘0.799
=0.0024
1.034
-2¢3063
=2.3533
=2.009
‘2.065
-1.688
-107“7
=1.341
-1.399
-0.903
=0,9425
-0.2887
=0.,3296
-20571
=1.,764
0,463
2,840
-2.601‘
-1.,839
0.272
2.529
-2.168
-1.531
0.2955
2.380
-2.202
-1.,615
0.0857
20038
=1.,760
-1.277
0.1675
1.921
‘10791
«1,355
=0.,030
1.614
“.305
-0,964
0,088
1.6419
-1.361
‘10036
=0.,0564
1.192

=0.486
=1.22¢
=1.9146
1.697
1.069
0.2466
=0550
=1.310
=2.0125
1.705
1.085
-0.,518
-1.9636
1.0755
0.9943
le49a
1430
1.720
1,670
1.733
1.696
1.407
1.385
0.552
0.5314
1.591
1.025
-0.,533
«14765
1.552
0.918
-0.812
-2.112
1.986
1.269
=0.647
-2.211
1.955
1.187
-0.,8585
=-2.503
24139
1.369
-0.6603
24387
2el1l2
1.309
=0.813
24,601
1,97«
1.260
-0.572
-2.205
1.952
1.223
-0.6628
2361

T7.635
7551
T+4065
T.460
T7.57S
T.646
T7.630
7.537
T7.381
T <458
7.573
7.6325
7.3938
1.971
2.012
3.269
3.296
4,636
4,653
6,053
6,063
7.518
7.522
8,8025
8,8037
2454
2.740
2.876
2333
2,479
2.777
2.810
2.023
3.786
4,082
4,226
3.659
3.802
4,107
4,188
3. 466
S5.202
5.456
5.586
5,093«
5.213
S.471
5.566
4,987
6,690
6.859
6,952
6,617
6,696
6,867
6,943
6.5704

87




123
127
124
128
125
129
126
130
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=0.700
=0.721
=0.514
=0.560
0.0522
=0.0637
0.762
0.6457

0.097
'0030
0.270
0746
0.380
=0.654
0.183
=0e267
-1l.182
=1.480
'00672
0.209
=0.694
0.5643
=1.722
0.791
=1.511
0.380
=0.290
=1.397
=1e742
=0.792
0.229
=06757
0.601

1.269
1.257
0.822
0.798

e

-0.3382

=0.400
=le417
=1e¢478

0.091
=0.306
0.283
-00967
0.454
=0.959
0240
-0.223
'10283
'10909
‘0.932
Oelbn
=0.527
0.537
=170
0.866
«1.799
0.450
-0.17S
=1.022
-1.618
=0.861
0.128
=0.408
0¢430

8,228
8.230
8.284
8,287
8.318
8.315
8.204
8.193

-0.052
0.185
'0.028
0.074
0,071
=0,420
0,073
0.146
0.362
'0.3“
=0.463
‘00091
0.309
-00069
0.152
0.112
‘006““
0.133
0.108
0.296
-0.179
'00292
=0.069
0.231
'00071




67
68
69
70
75
76
77
78
90
91
92
93
94
9S
96
101
102
103
104
116
117
118
119
120
121
122
127
128
129
130
142
143
146
165
146
147
148

=1.897
0.873
-1.668
0.422
=0.296
-l .“35
-10808
‘0.828
0.218
-00725
0.57¢
-10826
0.841
'10638
0,407
-0.262
'1.267
-1.612
=0.755
0.156
-0.552
0.39
‘lo“Ol
0.589
-10273
0.287
=0.146
-00701
«0.909
-0.617
0.059
=0.142
0.198
'0.368
0.277
-00330
0.134

=1e347
0.735
«1.603
0.387
=0.13%
«0,784
-1,338
=0.771
0.094
=-0.301
0.325
-1.028
0.585
=1¢340
0,316
«0.09%
=0,561
=1.010
=0.611
0,05«
-0.,189
0.19¢
=0.661
0,264
-0,917
0.193
=0,043
=0.257
«0,483
-0.,318
0.020
=0.066
0.080
=0,l40
0.154
-0.228
0.087

000000000000000000000000

0.185
0.031
'00338
0,068
0,081
0,255
0.00S
=-0.,122
-00056
0,178
'0.083
0.231
-00036
-00055
0.006
0,064
0,237
0.146
0.020
-00039
0.136
-00062
0.218
'0.078
0.113
‘00021
0,042
0.154
0.131
0.091
'00015
0,041
‘00036
0.067
-0.050
0,071
0,012
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