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NOTATION (INCLUDING INPUT TERMS)

APPEAR Name of a sdbroutine used to keep track on the first , last ,
and intermediate appearances of a variable

C Structure matrix of the load deflection equation,
(Equation 3) C x B

Stiffness coefficient matrix of an element , or element
contributions to C

CM Size of core memory, see “CORE—MEMORY REQUIREMENT”

CODEST Subroutine to interpret coded destination, or the address
of an element coefficient

COOED Array of all the nodal coordinates in the structure

DISP Array of nodal displacements (U, V, W)

E Young’s modulus of elasticity

e5 Equation tI~~~II used to eliminate variable

ELPA Long working vector comprising element contributions, loads,
coefficients of assembled equations, etc; the storage
diagram is given in Figure 11

G Submatrix (Figure 9) covers the range of active variables;
it is stored as a subvector of ELPA and contains the co-
efficients of assembled equations and the associated right—
hand sides

INCEL Matrix array representing element nodal incidence; the
ordered nodal labels for each element are related to a set
of shape functions used to prescribe the element displace-
ment field. Consequently, they define the orientation of
local curvilinear coordinates E , r~, and ~ with respect to
global axes X, Y, Z.

INCID Options to rearrange the nodal sequence of a thick shell
element (NNPE — 16) to conform with the format used in the
current program

JCOUNT Counts and labels the free nodal variables of a complete
structural system and gives the total number of degrees of
freedom
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JDIS Set of nodal labels for each indivIdual element; the labels
are regrouped from JDISP in an order conforming to the in-
cidence array to ensure that the computed element coeff i—

cients ~
e have proper labels and addresses; zero in .JDIS

represents constraints on displacement components U, V, and W

JDISP Array of all nodal labels in the structure; it accounts for
all free nodal variables (TOTAL DOF ND * JN — JREST) and -

follows the order in which the j oints were numbered

JREST Number of displacement constraints in a structural problem -

KL KL — 1 to KUREL; covers the variables of the current element

KOUNT Counts the number of appearances of a variable, in thou-
sands, plus 1000 (see Subroutine APPEAR)

KUREL Current element size, i.e., the number of variables in the
current element

LABLE Subroutine to list nodal variables of each element

LAST Last appearance of a variable (Subroutine APPEAR)

LCUREQ Number of variables already eliminated when the current
element appears , i.e., the number of stored equations

LDES , Element destinations are in LDEST array; LDES is the decoded
LDEST version of LDEST (1(L) (See Subroutine CODEST)

LNEL When NF — 0, or 1, LNEL is the last numbered element where
a surface pressure occurred.

LPB Joint label at which printout begins for PLOAD array (if
NF — 0, or 1)

LPT Joint label at which printout for PLOAD array terminates

LPREQ Number of stored equations when the previous element was
assembled; used for output by elements

LVABL Vector giving labels of element variables in the same order
as set up in incidence array. They normally represent nodal
displacement — components (e.g., u1, v~ . w1, etc.), or
degrees of freedom. LVABL (in), in = 1, KUREL ; note that the
list covers the unknown variables of the current element
(zeros, representing constraints, are deleted from the list)

I
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LVEND Dimension of LVABL

LVMAX Maximum number of variables per element actually encountered,
i.e., the size of the longest LVABL

LZ Size of element segment, e.g., the current element segment
extends from ELPA (1) to ELPA (LZ)

MAXELT Maximum length of any element segment, i.e., MAXLETT =

NDOFPE (NDOFPE+l) + NDOFPE

MAXNIC Maximum element label (nickname) encountered

MAXPA Maximum size of front required in terms of the number of
variables

MVABL Array of active variables in front, or in the running vari-
ables used in the back—substitution

MVEND Dimension of MVABL ; it is problem dependent (see Subroutine
STORIJ)

N BAXO +1 Position in vector ELPA marks the beginning of the buffer
area reserved for equations, e

N BAXZ , Positions in ELPA; see Figure 11
NELZ ,
NPAR,
etc.

NBLA Control flag signals for stress printout; see instructions
fo’ Data Input

ND Number of degrees of freedom per node; the nodal displace-
ment components of a typical solid element are three, i.e.,
ND = 3. In dealing with a two—dimensional problem, each
displacement vector consists of two independent, orthogonal
components, ND — 2. In classical plates and shells theory ,
ND = 5

NDOFPN Equal to ND

NDOFPE The element degrees of freedom
ND*NNPE

NEL Equal to NELEM

NELEM Counts the elements from 1 to NELEMZ

viii
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NELEMZ Number of elements used in the finite element representation

NELPAZ Effective dimension of ELPA; see Figure 11

NELZ End location of the element record in ELPA including the
load column, or the element right—hand side (BBS)

NF Control flag to input load or to compute nodal loads by the
program; see instruction to data input

NFUNC Function giving the position in the equivalent vector of
term (I ,J) in an upper triangular matrix (see Subroutine
STORIJ)

NIC Label for a variable, a nickname; always a positive integer

NI X Vector using the same storage area as ELPA and is the main
working area for the preliminary bookkeep ing ; it starts as
a list of LVABL (m) arrays for successive elements

NIXEND Usable length of NIX

NIZZ Numerical count of the last label , for instance , let m~ =

NELEMZ

KURE L (I) the size of element i, then NIZZ =~~~~~~~~
‘ 

in
1

NJ Highest numbered joint in a completely idealized structure

NLOADS Number of loaded nodes when NP — 2

NNPE Number of nodes assigned to an element

NPUNCH Flag to punch a card deck for PLOAD ARRAY

NPT Number of integration points in the Legendre—Gauss
quadrature space

NPZ Same as NPT; for Integration along c—axis

NROW Number of rows (see example of core size)

NSTRES Number of stresses to be averaged , alias number of appear—
ances of a variable

NSVJ Number of midsurface nodes; those nodes for which coordinates
are to be computed by the program (see Input Definition)

ix
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NTIREX 1 or 0 depending whether all the variables representing U
(U , V , W) are presented together in output , or one element
at a time (e .g. ,  NTIREX=l, output entire displacement vector
U)

NVABZ Total number of variables at the end of Subroutine APPEAR ;
it is found b~’ counting the variables as they are elimi-
nated, element by element, in the preprogram

NZ Sum of free variables in all the elements being processed

P PLOAD are regrouped for each element (NF=2)

PLOAD Array of nodal loads imposed on the structure

PRATLO Poisson’s ratio

BBS Right—hand side of an equilibrium equation , for instance ,
the components of nodal load

STFNS Element st iffness array , or matrix

STIFF Subroutine to compute element stiffness matrix, ~
e

STORIJ Subroutine to establish storage requirements

T,TEMP Constraints

U1 Vector of nodal displacement at node 1, u1
i + ~~~ + w~k

u,v,w Components of displacement in the direction of x, y, and z
axes, respectively ; displacements are positive in the
positive direction of coordinate axes

Vol Volume of a given solid domain

X Regrouping of COOED by element, for the purpose of computing
element stiffness coefficients STFNS

x,y,z Global system of rectangular coordinates

x
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ABSTRACT

The present report provides the detailed instructions to
perform a structural analysis using the curved finite element
computer program — PBLADE. It defines input variables and
format. It discusses the idealization of structures, their
geometrical and material properties, the scope of computations
and the core size requirements. It further discusses the
effect of computational algorithm employed in the development
and organization of the program. An example of the data forina—
tion in a well—known frontal solution procedure is described in
detail to allow further exploitation of the efficient algo-
rithm. Sample problems are given to illustrate applications
and capabilities of the program to solve complex s~ructural
problems of a three—dimensional nature. Numerical results are
presented to demonstrate the effectiveness of the programed
computation.

ADMINI STRATIVE INFORMATI ON

A numerical solution to complex structural problems, including that

of marine propellers, was developed in the Analytic Method Group of the

Surface Ship Division, Structures Department. The work was funded by the

Naval Sea Systems Command Materials and Mechanics Division (03511) under

Task Area SF 43 422 505, Task 17934 (Structures for Hydrodynamic/Aerostatic

Lift Ships). This task has since been incorporated under the Advanced Ship

Structures Block Program, SF 43 422 593, Work Unit 1—1730—312.

INTRODUCTION

SCOPE AND OBJECTIVE
Recent developments in machine computation have made possible a modern

tool for analyzing complex three—dimensional structures. One major objec-

tive of this report is to increase the awareness of user—engineers that

emergence of finite element technology has provided a practical approach

for calculating loads and predicting structural behaviors. The basic con-

cept of the finite element method is that of a real continuum which can be

treated analytically by subdividing it into a finite number of regions.

In each of these regions, displacement andfor stress is described as an

individual field. These fields are often chosen in a form that ensures

continuity of the selected variables throughout the whole body (crrntinuum).

1
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The marine propeller in its general form is a good example of a com-

plex , three—dimensional structure. The geometry of the propeller blade

normally determines the choice of a finite element. Elements of planar,

elementary shapes are sometimes used. The application of these elements

can be difficult, for instance, in the case of a skewed blade where blade

surfaces are in a form of complex curvatures. Its face is incongruous with

its back. Figure 1 illustrates the topology of a highly skewed blade. It

is in those practical applications that the present finite element program

has proved to be highly efficient.

A finite element displacement model was utilized to predict the elastic

behavior of a propeller blade having an arbitrary shape and subjected to

prescribed loading. Solid elements in their general form were adapted, and

the reference to a set of natural curvilinear coordinates was introduced.

It will be shown that the use of curvilinear coordinates in element space

provides both a practical means for defining complex design surfaces and

an expedient method for stress calculations. The curved three—dimensional

elements fit readily to a skewed geometry or curved boundary, and their

application to propeller problems is simple and straightforward.

The high degree of accuracy attained when curved elements were em-

ployed in a recent analysis of a full—size propeller blade, strongly sug-

gest that the current development represents a realistic and reliable ap—
1*proach to the general solution of the propeller stress problem.

The report includes an outline of the organization of computer program

PBLADE, an explanation of input definitions and data setup, sample problems

to illustrate the usage of solid finite elements, and the analysis of com-

plex structural problems of a three—dimensional nature to demonstrate the

effectiveness and potential of the curved finite element program.

The present report also discusses the topics that are important for the

numerical solution of large—structure matrices. Current theoretical and

practical considerations essential to the efficient application of digital
-

‘ 
computation are delineated and illustrated to ensure that the user obtains

an effective analysis of novel structural problems.

*A complete listing of references is given on page 91.
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BACKGROUND

Marine propeller blades constitute a special class of structural prob-

lems for which no completely satisfactory solution was available. Although

screw propellers continue to be the principal device used to move a ship,

only recently has there been a realistic approach to the problem of obtain-

ing an accurate evaluation of propeller stresses. The difficulty lies in

describing a blade design in simple mathematical terms.

Most existing methods applicable to screw propellers have relied

heavily on practical experience and setniempirical considerations. These

provide a criterion of stress rather than the actual surface stresses.

Both “beam” theory and “shell” theory have been used in earlier attempts

to develop analytical methods for predicting blade stresses.

The use of elementary beam theory was first proposed by Taylor
2 
who

treated a blade as a cantilever attached to the propeller hub. He recom-

mended that stresses be calculated for cylindrical blade sections with the

neutral axis parallel to the nose—to—tail (pitch) line of the expanded

section, see Reference 3 for propeller terminology. Cantilever beam

theories have yielded reasonable estimates of stresses at certain selected

points of relatively straight and narrow blades. Some modified forms of

beam theory have been proposed for wide—bladed propellers with blade width—

to—length ratios of about one.

The shell theory approach was first proposed by Cohen4 who treated a

simplified propeller blade model as a helicoidal shell with variable thick-

ness and infinite width. Later studies included those of Connolly5 and

Atkinson.6 Shell—type theories that incorporate broad assumptions do not

appear to offer tangible improvement; moreover, they are complicated for

routine design purposes. Analytical methods that attempt to predict blade

stresses on the basis of conventional mechanics have not been eminently

successful.

Considerable efforts have been devoted to measuring blade strains on

both model and prototype propeller blades.7’8 In certain cases, good agree-

ment was obtained between beam theory and measured data. However, care

must be taken in drawing general conclusions from limited measurements b°

cause of the large nuxnber of factors involved .
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The trend in shipbuilding to full afterbodies for mammoth tankers and

bulk carriers and to higher speeds f or modern naval vessels has been accom-

panied by large irregularities and fluctuations in ship wakes. The thrust

derived from blade—lift force is unsteady when the blades rotate in a non-

uniform velocity field behind the ship. The interaction of these unsteady

forces with the hull and appendages causes the excitation of the ship by

the propellers. Blade skew, high blade area ratios (i.e., wider blades),

and a large number of blades per shaft have all been tried in an attempt

to reduce vibration. These innovations of propeller geometry drastically

alter blade displacement patterns9’10 and render the standard methods

(i.e., beam theory) invalid.

A rational approach to the general solution of the propeller stress

problem has been established.11 It involves the use of a finite element

displacement model to predict the behavior of an elastic body with an

arbitrary shape under static loads (and the adoption of compatible solid

elements in their general form). The formulation bypasses the constraints

of simplifying assumptions and allows a closer approximation to the true

structural configuration than is possible with most other approaches, for

instance, by using classical plate or shell theories. Solutions for dis—

placements and internal stresses can be obtained subsequently.

The numerical procedure developed by Ma11 is completely general in

nature and provides a full three—dimensional stress analysis of a struc—

ture. The solid elements employed in the computer program can represent

the correct behaviors of a beam, a plate, a shell, or any of the varied

aspects of structural components. Furthermore , there is no restriction on

their geometry; the finite element program is just as applicable to the

stress of a supercavitating blade as to the stress of a standard propeller

blade. Detailed stress calculations at the root section of a propeller

blade joining the hub can now be performed in a realistic manner.

Detailed descriptions of the curved finite elements, the numerical

technique, and the computer program are given in the following sections.

5
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CURVED FINITE ELEMENTS

TWO— DIMENSIONAL CONTINUUM ELEMENT

The nature of curved isoparametric elements in a two—dimensional con-

tinuum will be discussed first f or the convenience of illustration,

Figure 2. Generalization into full three—dimensional elements is immediate.

These two—dimensional continuum elements, (CURVPL) can also be made

available.

The element properties are represented by the element stiffness matrix
e

[C ]* where

[Ce) = f [BI T [D] [B] dvol (1)

depends on the geometry and the material properties of an element. Here

the strain matrix (B] is a function of element geometry and the elasticity

matrix ED] a function of element material.11

The geometric shape and size of an element are prescribed by element

boundaries which connect a set of nodal coordinates normally referenced to

global axes x, y, z; see Figure 3.

Local Coordinates and Node Numbering
Convention

The distinct advantage of a curved element lies in its capability to

take on arbitraLy shapes. An auxiliary coordinate system, known as local

curvilinear coordinates (E ,ri), is utilized to define the element space (for

details, see Reference 11). Its orientation with respect to the global

axes is established in each element by the sequence of the first three

labeled nodal numbers used as input to the incidence table. The incidence

table of nodal labels is read early by the main program to ensure proper

connectivity of individual elements.

The integration of element stiffness coefficients, Equation (1), can

be conveniently carried Out by means of a Gaussian quadrature:

*The element stiffnes~ coefficients were designated as K in
Reference 11. e

6
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IT IS DESIRABLE TO HAVE AN ELEMENT SHAPE
BOUNDED BY THE CRITERIA:

a

a:’~~~Ec

~~<1SO DEG

TRANSFORMATION

~ , 
~~~~~~~~~~~~~ 

~

1L 

~

THE ELEMENT IMAGE ISA SQUARE .
IDEAL FOR GAUSS QUADRATURE

THE GEOMETRY OF THE LOCA L COORDINATE
LINES (.e.” ) IS DETERMINED BY THE
SHAPE OF ELEMENT BOUNDARIES.
TRANSFORMATION AND INTEGRATION (OR
QUADRATURE) ARE DUE PROCESS IN
ELEMENT STIFFNESS FORMATION

Figure 2 — Shapes and Attributes of an Element in
Two—Dimensional 

Space7
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N8 =1 N4N3 ‘l
22 23 

j 24~~~~~~- .~€3:~ ~ /25

I IS ELEMENT

IN5 — —  _____ I NUMBER

e

y (X 1. Y 1) ORI ENTATION OF LOCAL
ISOPARAMETRIC COORDINATES (e,11)

s
~x

ELEMENT GLOBAL NODE GLOBAL LOCAL COORDINATES

NODE NUMBER LABLE COORDIN4ATES

Ni 1 X1 Y 1 .1 .1

N2 3 X3 V3 1 -1

N3 21 X21 y21 -1 1

N4 23 x23 y23 1

N5 ii X11 V11 -1 0

N6 12 X 12 V12 1 0

N7 2 X2 V2 0 .1

N8 22 X~~ ~
‘22 0 1

Figure 3 — Geometry of a Two—Dimensional Element Showing Position
and Order of Input Node Number
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J 

f (~ )d~ - Hi * f(a1) (2)

where n is the number of integration points (NPT). The application of a

Gaussian quadrature requires a set of abscissae (ai) and weight coefficients

(Hi). These can be found in standard textbooks of numerical methods.
12’13 j

The position of the first few quadrature points is illustrated in a sketch

to provide a physical image of integration. See Figure 4a.

Numerical Integration and Stress Computation

The integration of a surface area is

~~~~~~ 

J 

f(~ ,ri)dndF = H~ 

NPT 

H~f(a1~a~)

where the expression f(~ ,~) — (B]T ED] [B] IJ*(~,n)t is evaluated point by
point in an element subregion. A three and two integration rule is indi-

cated for the given element, Figure 4b. There are six integration points,

and they are related solely to the local curvilinear coordinates (F~,ri)

which, in turn, are defined by boundary nodes. An option is available to

rotate the local coordinate axis (~~~) 
to axis (Ti) by setting INCID 2

(see input term, INCID , NROT). The option is executed by realining the

sequence order of nodal labels of the incidence table.

For a quadratic element, such as the 8—node element in Figure 3, the

3—point rule is the norm for integration. Higher orders of integration re—

quire more computational time without offering appreciable improvement. On

*Det f~ is the determinant of a Jacobian Transformation and is a
function of element shape and size (Figure 2). Its numerical value is
computed at each integration point in an element space and consequently
exerts a quantitative influence over the accuracy of element stiffness and
of resulting stress. For details see Section 3.22 of Reference 11.
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Figure 4a — Positions of Integration Points

Figure 4b — Integration Poi nts in an El emen t Space

Figure 4 — Integration Scheme
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the other hand, a reduced integration, e.g. ,  a 2—point rule , may hasten the

convergence in certain kinds of structural shapes or configurations but

users , especially beginners, are advised to be cautious in their

applications.

The calculation of element stiffness matrix [CeI, expressing the nodal

force—displacement relationships of a unit element, also provides a frame—

work for evaluating the various aspects of body stresses. The strain

matrix [B] (which iS computed at each integration point in the process of

forming a stiffness matrix) is readily available for the stress computa—
1tion , i.e.,

c —  [B] ~
a

and

a — ED] c

These stresses located at integration points within the element space are

printed in the same order as the integration taken place; see Figure 5.

These stresses usually represent good quality numerical results.

Boundary stresses can be obtained by additional computations of the strain

matrix at specific points. Some optimiza~.lon procedures, for instance, the

least square interpolation, can be used to predict stresses at boundary

nodes.

THREE— D IMENSIONAL CONT INUUM ELEMENT

Solid Element of Arbitrary Shape
(ASOLID)

A typical curved element of three—dimensional continuum is illustrated

in Figure 6. The solid element is most general in nature and is capable

of modeling bodies of arbitrary geometry. For complex design problems,

(e.g., the blade interface with the hub, the nozzel intersection of a

pressure vessel, etc.) the versatile. three—dimensional element ~ robably-

offers the most realistic solution. The orientation of local isoparametric

coordinates ~~~~~~ and the order of nodal numbers are also given in



E LE MENT NODE NUMBER ING CONVENTION

4 3—POINT INTEGRATION

2—POINT INT EGRATION

Figure 5 — Printing Sequence for Integration Point Stresses
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Figure 6 — Stress Printout Sequence at Interior and Surface Points
for Three—Dimensional Continuum Elements
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Figure 6. The integration points now include those along the a—direction

(k=i,ii,iii) for every point on the ~—r~ surface which has a pattern similar

to Figure 5.

Stresses computed at integration points are available simply by setting

NBLA = 0 (see input terms). Stresses over the surfaces of an element can

also be computed ; they are located over the Gaussian quadrature points of

the corresponding surfaces such as the blade face and blade back (k=iv and

v); see Figure 6. Blade surface stresses in cylindrical coordinates are

computed by setting NBLA = 1; stresses in principal direction will also be

printed.

It is important to observe the ordering of nodal labels; the element

incidence should be set up so that the a—coord inate line is parallel to

the constant radius line, hence, becomes a tangential vector (see

Reference 1), i.e.,

= X iS a surface normal

and

r — it is a radial vector

With the direction consines at a given point properly defined , cylindrical

stresses will be. correctly computed. An option is available to rotate the

local coordinate axis (~~~) 
to the direction of n—axis by setting INCID = 2.

This option is performed by resequencing the nodal numbers for each element.

Three—Dimensional Shell Element
(TDSREL)

In practical applications including many shell—like structures where

the shell thicluiess is nearly uniform and surface curvatures are smooth

(i.e., no rapid change in curvature) the midedge nodes of the curved solid

element can be eliminated and a linear displacement variation assumed

through the element thickness. The 16—node shell (Figure 7) is considered

representative of the three—dimensional shell element group. The

14
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Figure 7 — Node Numbering Convention for Three=Dimensional Shell Elements
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orientation of local curvilinear coordinates ~~~~ and the positions of

the ordered nodal numbers are also shown in Figure 7. A 12—node three—

dimensional shell is obtained by further deleting nodes 13, 14, 15, and 16.
The displacement for this element varies linearly along the Ti—coordinate

line, and boundary lines 1—3, 2—4, etc. will be linear. An option is

available to include nonconforming mode—shape functions. When properly

chosen these modes can provide fast and economic solutions; in other words,

good numerical results can be obtained with fever elements.

Ahinad’s Thin Shell Element (THNSHL)

As the element thickness is decreased to the proportion of a medium

thick plate, or a thin shell, a specialization of the three—dimensional

continuum element can be formed to achieve greater economy and effective-

ness (see Section 3.3.3 of Reference 11). Some well—known shell assump-

tions can be utilized: (1) lines perpendicular to the middle surface

remain straight under loading and (2) strains along these lines can be

ignored in the energy summation. At e.~ h node of the shell (Figure 8),

there are now five degrees of freedom:

U

~‘sh 

{~~~~}

They represent three translational components (Ui, V~, and W~) of displace-

ment at the midsurface node i and two rotations (c&.~,81) of the nodal
normal

The transition element is a further extension of the three—dimensional

continuum element development which combines a curved solid element and an

Ahmad shell element. It is used to connect the Ahmad shell to the three—

dimensional solid. Its stiffness is derived by relating the five degrees

of freedom of each midsurf ace shell node to the displacements of the

16
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Figure 8 — Extended Curved Finite Elements
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corresponding pair of nodes on the top and bottom surfaces of the connecting

three—dimensional shell element (Fi gure 8) . The performaitce of these ele-

ments and guidance for their application will be reported separately .

PROGRAM ORGAN IZATION
INTRODUCTION

The computer program described here utilizes the technique of frontal

solution.14 It takes advantage of the sparsity of structural matrix by

evading unnecessary algebraic operations and redundant linkages of nodal

variables (Figure 9). As a result, arithmetic performance is optimized for

a given problem. The frontal technique is, in essence, a refined version 
-

of partitioning a structure commonly known as substructure which is em-

ployed to extend the applicable range of a standard bandsolver. Indeed,

the front dissects a given body into two element groups having nodal vari-

ables completely processed on one side of Jie front and raw variable on

another.

The accent on elements is apparent in the Program Organization Map

shown in Figure 10. The program reads input through the subprogram PBLADE,*

and sets up a sequence of command. It admits elements, one at a time, in

their numerical order. It calls Subroutines LABLE and APPEAR to label the

free nodal variables and forms an order of their eliminations. It further

calls subroutines STIFF and GLOAD to compute element stiffness coefficients

and, if required , to generate load matrices. After sizeup, the core re-

quirement, it proceeds to assemble the structural stiffness matrix in a

segmented form and then to form triangular matrix by eliminating those

variables which are fully summed at the given stage (see Appendix A).

Finally by back substitution, the vector of nodal displacements is obtain—

ed, and desired stress—components can be computed immediately. The program

is developed around a system utilized to solve the set of equilibrium

equations.

*A11 program and subroutine names are underlined in Figure 10.

18
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MATRIX (GJ _______

AS EL EMENT®
HAS BEEN ASSEMBLED 

— — —9 5 5  14 
______

LEG END: 
~~~~~~~~

______________ 
KUPEL 15-es

-I

ELIMINATION OF UNKNOW N VARIABLES IN A SYMMETRIC POSITIVE-
DEFINITE STRUCTURE MATRIX [CI FOR A TWO

DIMENSIONAL PROBLE M HAVING 58 D.O.F.
(FOR DETAILS OF A FINITE ELEMENT REPRESENTATION SEE P. 67)

Figure 9 — Illustration of Front Movement and Variable Front Width
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Figure 10 — Program Organization Map
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Figure 10 (Continued)

FORWRD

[~ SSEMBLE & REDUCE READ TAPE 1
STRUCTURAL MATRIX (K) WRITE TAPE 2
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SOLUTION OF LARGE SPARSE MATRIX

In the displacement method of finite element analysis as well as other
numerical procedures for stress analysis, the key problem is to solve a set
of linear simultaneous equations expressing the load—displacement or

equilibrium relation of the structure. The displacement boundary conditions

in terms of known constraints can be readily imposed on a set of nodal

variables or corresponding nodal degrees of freedom. After reduction which,

in effect, removes the rigid—body mode, we have

[C] (X] = [8] (3nXn flxm nXm

where [C] = a nonsingular structure matrix of symmetric stiffness
coefficients

X = a column vector of unknown nodal (displacement) variables

B = a known vector (m—l) of applied load with at least one nonzero
term

n = size of unknown vector X, or the total structural degrees of
f reedom

If B, also known as the right—hand side (RHS), consists of a set of
alternate design loads (m>l), X will then correspond to a set of m displace-

ment solution vectors.

The solutiol? of the load—deflection equations, Equation (3) , is
usually the most time—consuming step in the whole problem—solving process.

A complex structure may be represented by a system of several thousand

degrees of freedom which greatly overstrain computational processes wherein

conventional matrix operations are handled by routine calculations. The

requirements for storage of large quantities of data and the excessive com—

puting effort involved have often compromised the applicability of such

computer programs in the recent past.

Methods whereby a large set of linear simultaneous equations can be

solved have intrigued numerous investigators152 0 from research scientists
to application engineers. The problem becomes one of increasing signifi—

cance and scope as the size of the unknown variables grows and the system
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design of a digital computer becomes involved. The mode in which the

massive amount of data is generated , stored , and , if necessary , rearranged ,

has a strong influence on the speed of the analysis, the number of arith-

metic operations, and the computer core—size requirements, etc. Further,

it dictates the type (or shape characteristics) of a structure and the

format of data input that can be admitted for an efficient numerical solu-

tion . In sum, the (eventual) effectiveness of a program development hinges

on the selection and implementation of an efficient computational algorithm
to solve Equation 3.

ADVANTAGE OF FRONTAL TECHNIQUE

One practical advantage of the program is the ease with which a node

system can be numbered. The nodal label is simply a nickname and places

no constraint on the solution process. Normally, when a branched structure
is treated by a bandsolver, a rather cumbersome numbering scheme has to be

employed to optimize the bandwidth. But to a frontal technique, any set of

nodal numbers which conveniently covers the topology of a structure is

satisfactory and is as good as any alternative. In summary , it is worth

reiterating that the order of elements is an important consideration for the

application of the present program but that the order of node numbering i~
immaterial. (For example, see Case (2) of Examples of Core—Size

Calculation.)

The proper rule for element numbering and an assessment of its in-

fluence on core requirements will be outlined in the subroutine STORLJ.

First, however , the topic of defining a structural problem to be processed
by the program will be discussed.

PROBLEM FORMULATION
INPUT DEFINITION

The function of the MAIN program is to establish a logical sequence
of computation. It reads a set of input data which define the geometrical

and mechanical properties of a structural problem together with loading

and support information. The data also indicate the options selected by

the user for the execution of programed calculations.

23
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Input data consist of a problem title,* properties of material , and a

set of control parameters essential to describe the problem. The control

parameters include 24 input terms read from four data cards . They define

the problem size (NJ , NELEMZ) , nodal connectivity pattern (INC ID), loading
(NF , NLOADS) and support conditions (JREST). Further, they define the size

of principal arrays (NELPAZ , etc.), integration scheme (NPT), printing
options, and generation of intermediate nodal data (GEOORD) where required.

Specifically, the parameter NF prescribes the load input option;

known nodal loads (NLOADS) can be read or, alternatively, equivalent nodal

forces are calculated, element by element, for a design pressure over a

given surface of the body. INCID provides a pattern of connectivity and

the orientation of individual elements by way of element incidence. Nodal

coordinates define the position and boundary surface of the structure in

terms of a set of global coordinates (COORD) . The array size MVEND poses a

measure of front width which depends on the number of sequential elements

that intervene between a pair of adjacent elements anywhere in the dis—

cretized structure. The boundary constraints (JREST) and the number of

free nodal variables (JCOUNT) are counted. Problem specifications including

the geometrical and material descriptioi. will be reiterated as output.

They include the coordinate and incidence table, the loading input, and the

joint constraints.

The numerical solution of nodal displacements (DISP) is obtained

through a group of subroutines up to and including BAKSUB (Figure 10). The

stress components with respect to the global coordinates are immediately

available at integration points. Stresses referenced to an arbitrary sur—

face can be included in the output. Other stresses of interest, such as
principal stresses, can also be computed at surface points.

CORE-MEMORY REQUIREMENT

One major consideration in the application of the computer program is
the core size required to solve a given problem. The core requirement
depends on the complexity of the structural configuration and the number

*See Instruction for data input .
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of degrees of freedom needed to represent it. The matter  of concern is

whether the problem can be solved in sufficient detail, i.e., whether a

certain degree of accuracy , which is frequently the objective of an

analysis, can be realized. In any event , the capacity of the onsite com-

puter is always a first order consideration.

The following sections explain Subroutine STORIJ in which the size of

the major working array has to be defined. Examples are given to illustrate

how to estimate core memory CM required to solve a given problem as well

as certain features which are unique to a front solution. A summary of

case studies based on execution on a CDC 6600 computer is included in tabu-

lated form with core memory requirements indicated in Table 1. Finally, a

list of typical array sizes is given. From these data, the reader can

select appropr iate array specifications and core size when a novel problem

arises.

Subroutine STORIJ

It has been noted that only the stiffness coefficients [G]* associated

with the active variables MVABL need to be readily available in the working

area (see solution method). The core space of the primary working array

ELPA, for instance, should be able to cover, among others, the maximum

range of coefficients that can be included in a front [G] and the element

stiffness contributions corresponding to a maximum element size (LVMAX).

The space allocation of the working array ELPA is segmented as shown

in Figure 11. Key positions are marked as NELZ, NPAR, NPAX, etc. As each

element in succession is being processed, the stiffness coefficients of the

current element are read into the first segment and distributed into proper

location of the third segment which begins from position NELZ + 1. The

address or position index along the chainlike vector array, corresponding

to a coefficient located at (I,J) of an upper triangular matrix, can be

obtained with the aid of a line function NFUNC (I,J):

NF TJNC (I ,J) ~ + 
J(J—l)

— ~~~~~ICOL(L)

*For defini t ion see NOTATION.
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•DECK STORIJ
SUBROUTINE STORIJ

C
C THE SUBROUTINE ESTABLISHES STORAGE REQUIREMENTS AND BOU NDS WITHIN
C THE WORKING ARRAY ELPA
C

COMMON /VAB j/NELPAZ ,LVEND ,MVENO,N !XENO ,LVMAX ,NI iT ,NAXN IC
COMMON IVAB2/NAXPA,NvABZ, LCURE Q ,MAXELT,NTIREX,LOES ,KL ,NSTRES
COMMON /VAB3 /NELEN ,NELEMZ ,KUREL,NIC ,LPRE Q ,NEW ,NPAR ,NBAXO,NBAXZ
COMMON /VAB 6/CONST, NJ,NRUNO ,LHSRHS , L,KOUNT, WELT ,NDEL T

C
- 

NFUNC (I,J)~~I,(J’(J—t)~ 2)
C

NELl a NFUNC IO,LV IIAX+ i) • LVNAX
IF (NELZ .GT.MAXELT) NELl MAXELl
NPA R NFUNC (0,MAX PA4I ) • MELT
NP*Z LV M A X • MAXPA
IF(NTIREX .NE.0) N P AZ a M A XNI C I M AXPA
N a NP AR 4 (NA X PA ~~2)
I F (N . G T . N P A Z )  NPAZ N
NOIXO NPAZ 4 1
N OA X? a NBAX O • 3~ NAX EL T
IF (WBAXZ.GT .NELPAZ ) N8AX Z NELPA Z
NOU F FA N BAX Z = NB AXO
Ni H AXPA • ~
WRITE (6,26) HTIREX

26 FORMI T (1Il0 , ‘NTIREX z ‘,I4)
WRITE (6,23)

23 FORNAT (tH0,i0X ,~ ELEMENT STORAGE REOUIRENENTS ’,Il,9X,6H L .VMAX ,9X,
I 6H MAXPA ,9X ,6HMAXNIC ,9X ,6H NELZ,9X,6H NPAR ,9X,6H NBAXO ,~ X,6H NB
2AXZ ,9X,6HPIELPAZ ,//)

WRI TE 16,22) LVNAX ,M AX PA ,MAXN IC ,NELZ,NPAR,NBAXO, NBAXZ,NE LPAZ
22 FORM*T (jHO ,/// (BIjS))

C
IF (NBUFFA.LT.N1) GO TO 20
NRU N O a NPAZ — I4AXPA
RETURN

20 NB *X ZaNI +NBAXO
WRITE (6,21) N8*XZ

21 FORMAT 1tNj ,//FF ,iOX ,~ TROUBLE IN SUBROUTINE STORIJ. DIMENSION
1. OF ELPA IS TNAOEQ*JATE . INCREASE NELPA Z TO ‘,Ib,/,IHI)

STOP

26
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which can be represented in tabular form as:

ICOL (J)

2 3  4 5 6 ...~

0 1 3  6 1 0  l5 ...~

1 1 2 4 7 11 16 I
2 3 5 8 12 17

3 6 9 1 3 18

10 14 19

• 1 5 2 0 I

21 I
_ _ _J

En this line function:

NFUNC (I ,J ) The index in an equivalent column array of terms (I,J)
in an upper triangular matrix

NF UNC (O ,J) The location index of the diagonal term of the preceding
column

LVMAX Maximum number of variables (KUREL) per element actually
encountered , or the length of the longest LVABL array

NELZ End location of the element record in ELPA including the
load column, or the element right—hand side (RH~)

NAXELT NDOFPE + (NDOFPE+l) 
+ NDOFPE, = maximum length of an

element segment

Subvector of ELPA which contains the coefficients of
assembled equations and the associated right—hand sides

MAXPA Maximum number of active variables ever encountered at the
front; MAXPA < MVEND

NPAR Location preceding the assembled right—hand sides

NPAZ Last available location for the coefficients of the
assembled right—hand sides

NEAXO Location immediately preceding buffer area in ELPA reserved
for equations using (e ), etc.

NELPAZ Effective dimension of ELPA

27
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TABLE 1 — CORE—MEMORY REQUIREMENTS, A
SUMMARY OF CASE STUDIES

(Core Memory (CM8) in Octal)

TWO—DIMENSIONAL CONTINUUM ELEMENT (8 NODE) 
______ __________

*

Item NELEN NJ NROW MVEND NELPAZ

A 10 50 3 24 1000 40 ,000

B 50 180 6 36 1200 42,000

THREE-DIMENSIONAL CONTiNUUM ELEMENT (20 NODE)

A 6 80 Single 60 3905 55,000

B 12 132 2 75 4870 77,000

C 15 148 3 90 6260 120 ,000

D 24 221 4 105 8330 115,000

E 48 409 6 135 11,480 131,000

F 64 531 8 165 16,090 145 ,000

*Add 50008 on CDC 6600 Scope 3.4.
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— LVABL (KL ) ELEMENT
STIFFNESSNZ1 — ~ ELEMENT 1 COEFFICIENTS
(C.’

— LVABL (KU
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FRONT (GI
__________________ 

COEFFICIENTS
— LVABL (KL) NPAR — I

NI ZZ — S EL EMENT N FRONT (R.H.S.)

NPAZ — S
(NBAXO)

GAP SPARE LOCATION

(BUFFER AREA ETC.
NBAXZ FOR EQUATIONS “ ES”
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Figure 11 — Storage Allocations Used in the Working Column, Vector ELPA
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Examples of Core—Size Calculation

Af ter the element mesh for a given problem has been laid and the

order of element numbers prescribed , a finite element block diagram can be

drawn; for example, see Figures 12 and 13. Nodes are labeled (nickname for

numbered) and boundary constraints imposed. Now it is possible to evaluate

‘V

/ 7 J~
7

~~
7

~~~~~~~~~I

/

— X=O. Y-O PLANE OF SYMMETRY
I

0 — - X

Figure 12 — A Simply—Supported Square Plate - -

LVMAX, which is the maximum size of an element, and MAXPA, which is the

size of front required to solve the problem. With these values the size

of the major array ELPA , i.e., NELPAZ , can be computed.

Two case studies are included for purposes of illustration. One is a

simply—supported plate represented by 36 solid elements; the block diagram
in Fi gure 13 shows only nine elements because of the symmetry. The other

case is for a stiffened plate, represented first with 16 elements and then

with 24 elements; the relevent illustrations show only one—half spans

(Figures l4a and 14b). The second example for Case 2, the stiffened plate
shown in Figure 14b , also illustrates a special feature of frontal solution ,
i.e., element numbers are critical whereas nodal numbers are immaterial.
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Figure 13 — Finite Element Representation of a Plate Quadrant
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The calculation is fairly routine. Following each element in succes-

sion, the current element size is obtained: KUREL = NDOFPE — NUMBER OF

CONSTRAINTS ON THE ELEMENT. The size of the front is the sum of KUREL and
the number of active, existing variables. MAXPA is the maximum size of

the front. After a few exercises, the reader will be able to obtain a

quick estimate of these key values LVMAX and MAXPA.

Finally , a summary of case studies is included in Table 1. Most of

the problems were executed either on the CDC 6400 or CDC 6600, Scope

Version 3.3. Execution time ranged from 30 to 100 seconds for smaller -

problems (NROW* 1 to 3) and up to 500 seconds or more for larger problems

(NROW = 6 or more), it is seen that NROW is a prime factor affecting the

front width MVEND and, consequently, the size of working vector ELPA and

core memory CM required to analyze an elastic body.

Case 1: Finite Element Idealization of a Simple Plate. The analysis in-

volves a simply—supported square plate (40x40x1 in., Figure 12) under trans-

verse bending load. The condition of symmetry with respect to the X— and

‘(—axes is assumed. The structural response is obtained b~ considering

only one quadrant of the plate and is represented by nine solid elements;

see Figure fl.

Because of symmetry in loading and support, nodes on the planes of

symmetry will have no movement normal to these planes. Further , there is

no vertical movement over the support which lies at the bottom edge of the

plate. Hence, we have 18 X—constraints “JREST” on Nodes 1, 8, 12, 19, 23,

27. 34, 38, 45, 49, 53, 60, 64, 71, 75 , 79 , 86, and 90; 18 Y—constraints on
Nodes 1 through 18; and 13 Z—constraints on Nodes 7, 22 , 33, 48, 59 , 74 ,

and 79 through 85. We are now in a position to size the working array

(ELPA) and core requirement for problem solving by digital computer . As

the front moves from one element to the next, the range of active variables

is ev:duated in turn . Considering the 20—node solid element NDOFPE = 60,

W I ’ have:

*Suppoge a structure is subdivided into a flow net of discrete ele-
ments , NCOL by NROW . NCOL, the number of columns, is usually the longer
dimension of the network , and NROW , the number of rows, is the cross di—
menslon of the same network.

34

--

~

---

~ 

-~~~~~— - -



--- -- - ___ - - - — -~
-- ~~~~~

-_ - — --  - - ---

Number of
Count of “KUREL” Existing Positions

Element No. “JREST” (LVMAX ) Variable in Front

1 0+8 +3 49 0 49y z

2 0+0+3 57 +12 69z

3 5 55 +12+15 82z

4 8 52 +15+14 81
y

5 0 60 +12+14 86*

6 3 57 +12+15 84
z

7 8 +8 44 +15+14 73x y
8 8 52 14 66

x

9 8+3 49 —— 49
x z

*The maximum front width occurs on processing
Element 5, and maximum “LDES ,” i.e., MAXPA 86.
Now

NELZ = 
61 (60) 

+ 60 1890

+ 
87 (86) 

= +)374l

5631 (=NPAR)

2x 8 6 = 172

1 + 86 + 4 =  91

Total 5894 (=NBAXZ)
< NELPAZ 6260

Case 2: Idealization of a Plate Beam (or Stiffened Plate) . Figure 14
illustrates two schemes for nodal labeling. The f i rs t  node number may
begin at any convenient location, for example, at the bottom edge of the
midplane section , and then follow the positive directions of the global

X— , Y— , and i—axes. In Figure 14a , the labeling treads through Elements
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6, 3, 4 , 1, 2 , 7 and ends with the last node 89 on the top side of Element
8. Element labels are also shown on the same figure. Because the optimal
element numbering to obtain a minimum front width is not always obvious,

the type of preliminary estimate of the range of active variables given

here can be helpful in setting up an effective scheme.
First, all constraints, structural supports, and boundary constraints

must be delineated. Vertical end supports (Y ±2./2) are provided along the

bottom edge of the plate, the stem, and also on both side nodes of the stem.
The centerplane (X=b 12) is held against lateral movement and the midplane
(Y=0) is a plane of symmetry. This results in 12 JREST(Z), 6 JREST(X) ,
and 23 JREST(Y). From evaluation of Figure l4a we have:

Element JREST KUREL Existing Front Width
Number (LVMAX ) Active “X” (MAXPA)

1 8 52 0 52
y

2 3 57* 12 69z

3 2+8 50 14 64x y

4 2+3  55 11+7 73x z

5 2 +8 50 13+14+6 83x y
6 2 + 8  50 12+9 71x z

7 8 52 14 66
y

8 3 57 57z

*}jefl~e NELZ = 
57 (58) + ~~ = 1710

+ 
84 (83) 

= +)3486

5196 (=NPAR)

8 3 x 2 ~~ 166

8 3 + 4 + 1=  88

Total 5450 ( NBAXZ)
< NELPAZ = 7660
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The core requirement is 105,000 octal where using CDC 6400 (Scope Version

3.3) .

The stiffened plate is reanalyzed in Figure 14b by adding four more

elements to the existing model . The existing nodal labels and element

incidences (INCEL) referring to these nodes are reusable — a time saver for

complex models. A set of 33 new nodes are augmented, Figure l4b. The

order of new nodal labels is immaterial with respect to the existing scheme

of nodal numbers.* In the current example, elements are renamed so that a
smaller front width can be achieved. In fact, elements 10, 11, and 12 can

be deleted owing to symmetry of the beam with respect to its centerplane

x = w/2.

The maximum front occurs at the processing Element 8 of Figure l4b.

In this case , KU REL = 60 and MAXPA 60 + 12 + 15 + (11+9) = 107. The

summation in the last expression includes terms 12, 15, and 20 representing
the number of nodal variables introduced by Elements 4, 5, and 6, respec-

tively, and which remains active. Hence

NELZ = 
60 (61) 

+ 60 = 1890

+ 
107 + 1 (107) — +)5778

7668 (=NPAR)

107x2 = 214

1 0 7+4 + 1  = 112

Total 7994 (—NBAXZ)
< NELPAZ = 8330

The core requirement is 111,500 octal when using CDC 6600 (Scope Version

3.3) .

*Here the program user is free to choose any convenient nodal label.
This is in contrast to many finite element programs where restrictive node—
numbering rules must be followed in order to conserve the bandwidth of a
problem, resulting in a substantial revision of nodal numbers.
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ARRAY SPECIFICAT ION

The d imensions of the standard array listed in Table 2 are for a cer—

tam number of rows (NROW) : NROW = 6 in the case of two—dimensional con—

tinuum elements and NROW 8 for three—dimensional continuum elements. For

a specific class of problems, the dimensions of the system array, such as

NJ* and NEL* may be adjusted accordingly . The values of MVEND and NELPAZ

can be computed as described in the preceding section or obtained by

inspection. The dimension of the long vector ELPA is a function of NEL,

NJ , and NROW among which NROW is one dominant factor.

INSTRUCTION S FOR DATA INPUT

INPUT ITEMS AND OPTION S

Input items are read by the main program PBLADE and are listed in

Table 3. Input cards consist of a set of 10 items: Cards 1 through 7 are

single—card items, whereas the remainders are multicard items that vary

- with the number of elements or nodes employed to represent a structure.

For input definition and problem specification see the sections entitled,
respectively, NOTATION and PROBLEM FORMULATION.

Cer tain options, such as generation of intermediate nodes and/or
equivalent nodal loads, are available. These options are governed by the

logic parameters:

LNEL Number of the last element which is loaded by a surface pres—
sur~ , applicable when NF = 0 , or 1.

LPB Nodal number at which printout of PLOAD—array begins, for
NF = 0 , or 1.

LPT Nodal number at which printout of PLOAD—array terminates, for
NF — 0, or 1.

NBLA = 0 Stresses with reference to global coordinate axes are com-
puted , element by element, at their integration points (which
were used to calculate element stiffness matrices).

NBLA = 1 Additional stresses 
~°r ’ ~

‘
~~~

‘ 
Tr~

) are computed on (element)

body surfaces in cylindrical coordinates. Principal surface —

stresses are also given.

*See NOTATION for definition.
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TABLE 2 — DIMENSIONS OF STANDARD ARRAY

Two—Dimensional Three—DimensionalElement Array
Element Element

X(ND NNPE) X(2 ,8) X(3 ,20)

P(NDOFPE)* P (16) P(60)

STFNS(NDOFPE ,NDOFPE) C(l6 ,16) C (60 ,60)

EL(MAXELT)** EL(l52) EL(l890)

JDIS(NDOFPE) JDIS(l6) JDIS(60)

LDEST(NDOFPE) LDEST(l6) LDEST (60)

LVABL(NDOFPE) LVABL(16) LVABL(60)

System Array -

COORD(ND,NJ) COORD(2 ,l75) COORD(3 ,531)

PLOAD(ID ,JOINT) PLOAD(2 ,l75) PLOAD(3,531)

D ISP ( ID ,JOINT) DI SP(2 , 175) DISP(3 ,53l)

JDISP(ID ,JOINT ) JDISP (2 , 175) JDISP(3 ,53l)

INCEL (NNPE ,NEL) INCEL (8,50) INCEL(2 0 ,64)

MVABL(MVEND) NVABL(66) HVABL (165)

ELPA(NELPAZ ) ELPA(3000) ELPA(16085)

NIX(N IXEND ) NIX( l600) NIX(6000)

*N DO~~ E - ND X NNP E

**)4J~J~5LT = NFUNC (O,NDOFPE+1) + NDOFPE 
t -

_______ - ~
_____,____ii- 

4
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TABLE 3 — INPUT ITEMS FOR PBLADE COMPUTE R PROGRAM

Card Input Data Data Format*I tern

1 Title: Problem, Scope, Date, etc. 55—col,H—Format

2 Blank

3 E, PRATIO, T, DEN 6FlO.5

4 NNPE , NDOFPN , LVEND , MVEND , NELPAZ, NIXEND 615

5 NELEMZ, NJ , JREST , NSVJ , INCID , NBLA 615

6 NF , NLOADS, LPT , LNEL, NPT , NPZ 615

7 NVABZ , LCUREQ , LVMAX , MAXNIC , MAXPA , NIZZ 615

8 LPB , NPUN CH 615

8a PRES (L) , L = 1, NELENZ, for NP = 0 only 6F10.5

9 NELEM, INCEL (J ,NELEM) , J = 1, NNPE , 2113
NELEM = 1, NELEMZ

10 JOINT (L) , COOED (J ,JOINT (L) ) ,  J = 1, NDOFPN 15,5X,3FlO.3
L 1, NJS

11 JOINT (I),  IDIREC 215
I L, JREST

lla JOINT (L) , PLOAD (ID , JOINT(L)), for NF = 2 I5 ,SX ,3FlO.3
only , ID = 1, NDOFPN; L = 1, NLOADS

*Formet; I is an integer and F is a real decimal number.
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NF 0 A distributed pressure is integrated over the contiguous ele—
ment surface of an arbitrary body . (The value of average
pressure over each individual element may be prescribed as
input. See Card Item 8a, Table 3.) The equivalent nodal
forces which are the algebraic sums of loads from all contri-
buting elements attached to these nodes will be tabulated and
printed . The complete set of equivalent nodal loads will be
used as input in the equilibrium equation, Equation (3).

NF = 1 The pressure load is input by an assigned pressure distribu-
tion for each element prescribed in data set PRES.

NF = 2 Load input is read from a set of NLOADS, one for each loaded
joint (Card Item h a ) . A joint load is designated for each
node where an external force is explicitly in effect (or in-
directly through contributions of connecting elements). The
joint load is defined by its three components along the global
coordinate axes.

NSVJ = 0 Regular nodal coordinates (X ,Y ,Z) are read for every joint
required to define the geometry of the individual elements.

NSVJ > 0 Subroutine GEOORD is called to generate midsurface nodal co—
ora~inates of a shell—like structure. These coordinates in
conjunction with surface coordinates (which were read as INPUT)
form the complete geometric input. NSVJ numerically equals
the number of nodes on the midsurface.

INCID* = 1 See Card Item 9. Standard incidence format (2113) is used to
insert nodal sequence of the 20—node hexahedron.

INCID* = 2 Incidence format (1315) is used. Local coordinate axis —

will be rotated by one quadrant of the surface (C”O).

Other terms defined by the main program include:

INTGER = NELEMZ

NTIREX = 1

NJS = NJ — NSVJ

T, DEN = CONSTANTS

EPSLON = O.5E - 10

*INCID — 0 indicates that options are to be defined. (The existing
option accepts the 16—node three—dimensional shell element input format
which is to be converted to a standard 20—node hexahedron.)
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SAMPLE PROBLEMS

St resses in Plate Beams, Problem 1

A plate beam is an integral structural element essentially consisting

of a plate with a beam stiffener placed underneath it. Plate beams (Figure

15) have the shape of a T—beam and are often treated as such; elementary

beam theory is applicable. When the beam has an extended flange or the

stiffened plating has widely spaced stiffeners, the effective width concept

has been found useful in design considerations. It has been pointed out

earlier* that because the flexural stress distribution is not (as assumed)

uniform across the width of plating, stiffness as calculated on the basis

of the conventional design rule is often overestimated. Where the fatigue

and fracture mechanism becomes a factor in design criteria, it is particu-

larly important to have an accurate evaluation of the state of stress. In

such cases, the plate beam should be treated like a three—dimensional

elastic body , as described below.

Figure 15 indicates a general scheme used to analyze a laterally loaded

plate beam. The plate beam is designated as a simply supported span carry-

ing a center load P. Because ot symmetry , a half—span of the beam is

idealized and twelve 90—node hexahedron elements are used to represent it.

At each end , vertical supports are provided for both flanges and web. Input

data are prepared according to instructions given for data input; these

are listed in Appendix B.

*See Reference 11, page 91.
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i—i
20—in. ~~~

- -
~~~ 20—in. .rI

A SIMPL Y SUPPOR TED PLATE BEAM

II. w

/EU LI~~3 7

I XZ IS THE PLA NE O F
z 

~ 
S SYMMETRY OF

V 

~L.’ PLATE BEAM

x ~~~~
A FINITE ELEMENT REPRESENTATION

PLATE BEAM BEAM PARA METER CENTER DEFLECTION (in.)

MARK w tb $ ; FINITE ELEMENT BEAM THEORY

CX1 0.6 0.6 0.6 0.6 0.0425 0.0412

CX2 6.0 0.6 0.6 0.6 0.0214 0.0191

CX3 
- 

12.0 0.6 0.6 0.6 0.0185 0.0158

CX4 1.8 0.6 3.0 0.6 0.213 0.210
CX5 6.0 0.6 3.0 0.6 0.147 0.142
CX6 12.0 0.6 3 0 0.6 0.129 0.123

PARAMETERS OF BEAM CROSS SECTI ON AND COMPUTED DEFLECTIONS

Figure 15 — Plate Beam Sample Problem

43 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~ —-~~ -~~~ -~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- -~ --—----.---~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - ~~~~~~~~~~~ -~~~~ --- ---. -~~~-- -~~~~~ - --

Five di f ferent  flange versus s t i f fener  aspect ratios are used as

parameters (Plate Beams CX2 through CX6) to assess the effect of flange

width on the structural behavior of these stiffened plates. As the flange

of a beam is progressively widened (e.g., Plate Beam CX3) , the maximum

center deflections calculated by the finite element representation are

found to increase at a greater rate than those obtained by the elementary
beam formula . In other words , because of shear lag , each incremental flange

material is engaged in a lesser capacity than assumed by classical theory.

Figure 16 depicts the distribution of longitudinal stresses Gy on a

transverse section of Plate Beam CX3. Stresses are generally higher in

the parts of the flange near the stiffener, especially in the vicinity

of the concentrated load. Similar patterns of stress distribution with

varying degree of stress gradient are found in each beam that has projected

flanges. Stress distribution across the web plate differs somewhat from

the linear variation assumed in the elementary theory of bending. The

neutral axis at these cross sections of the beam does not pass through the

geometric centroid (Figure 16). Such behavior was more pronounced for a

plate beam stich as CX3 with its deeper web plate (S — 6 in.) than for the

others, for example, CX4.

Figure 16 also shows the distribution of typical transverse stresses

0x along the flange plate . Note that there is some local bending of the

flange in the transverse direction near the concentrated force. Additional

stress data of interest are given in Table 4. These stresses are obtained

at the Gaussian integration points (used to form the stiffness matrix of

the isoparametric element). Stresses computed at such points have been

shown to be generally of high accuracy.

A Supercavitating Blade, Problem 2

Figure 17 illustrates another application of the general three—

dimensional element. An 18—in , diameter , stainless steel model of super—

cavitating Propeller DTNSRDC P—3604 with wedge—shaped blade sections was

selected. The propeller is not raked or skewed and is composed of wide
blades with an aspect ratio (based on mean chord length) of about 1. The

J
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Figure 16 — Distribution of Normal Stresses in a Plate Beam
for Sample Problem 1
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TABLE 4 — LONGITUDINAL STRESSES ( a )  IN A PLATE BEAN

(Stress Table for Plate Beam CX2)

a (psi)
Y - y

(in.) Al A2 A3 Bl B2 B3 Cl C2 C3

0.676 —6252 —5103 —3479 — 6795 —5417 —3525 —7768 —6215 —4127

3.000 —5989 —4945 —3529 — 5845 —4817 —3450 —5959 —5000 —3755
5. 324 —5557 —4471 —3074 — 5267 —4442 —3411 —5063 —4555 —3961
9.500 —3683 —3180 —2547 — 3725 —3201 —2537 —3748 —3199 —2498
16.500 —1158 — 979 — 752 — 1214 —1039 — 814 —1255 —1082 — 863

Dl D2 D3 El. E2 E3 Fl F2 F3

0.676 —9161 —6841 —4624 —10247 —7926 —5705 —2533 5995 18193
3.000 —6093 —5051 —4045 — 6575 —5528 —4519 —2225 5486 16420
5.324 —4773 —4496 —4048 — 4646 —4367 —3916 —2135 4687 14265
9.500 —3757 —3232 —2466 — 3639 —3113 —2317 —1126 3541 9634
16.500 —1200 —1050 — 854 — 1230 —1079 — 882 — 387 1203 3182

Position of Integration Points Used in the Stress Tabulation:

a/2 0.3 ~0.3 Q/2 a/2 
)‘ 0.3873

)‘Q )‘a “[~i~ C - S-0.6 in

1 -4- + -~~• 4-—
24. + +‘4 4~— 

_ _ _ _ _ _

3 f  + +~~~4-SYMMETRIC 1 — _____

ABOUT EF IU) —~~~~

_ _ _ _  

24_~
.

>4 

__ _ _  
3f~~~~ 

_  -

W/2 
‘
~~

_ W/2
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Figure 17 — Curved Finite Element Representation of a
Supercavitating Propeller DTNSRDC P—3604
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maximum chord length occurs at the hub and ramains about the same to 60

percent of the tip radius . The blade is very highly pitched . Its maximum

section thickness occurs at or near the trailing edge. Other details of

the propeller and related experiments have been reported by McCarthy and
8Brock.

The procedure of finite element analysis follows the general pattern

described earlier in the study . The blade of this supercavitating propeller

is represented by 15 curved three—dimensional elements arranged in five

rows with three elements per row. The outlines of blade geometry, the

reference axes , and the numbering scheme for discrete elements are shown in

Figure 17. Note that the blade is very thin along the leading edge and

again near the blade tip. A finer mesh pattern will normally be employed

at these regions to optimize stress prediction for these thin segments of

blade . For our present purpose, attention is focused on the major design

parameter , namely, the determination of maximum blade stresses. The limit-

ed influence due to thin segments of blade is ignored (these blade segments

are indicated in the figure by dotted lines). A listing of input data is

given in the appendix.

Blade stresses are computed for a uniformly distributed pressure of

1 psi applied over the entire blade face. Figures 18a and l8b, respective-

ly, show numerical results for the radial (spanvise) and tangential (chord—

wise) stresses at the 30—percent radius. Experimentally derived stresses,
Equation (8), are added for purposes of comparison. The agreement is con-

sidered good in view of both the magnitude and direction of stress data.

Unlike the stress prediction based on beam theories , the maximum radial

stress near the blade root (hub) is found close to the blade centerline

rather than near the location of maximum thickness at the blade trailing

edge ; for large radii , the locations of maximum spanwise stresses tend to

shift toward the blade trailing edge. Also note that apanwise stresses

are predominant near the blade root and that chordwise stress components

become more prominent near the blade tip.
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Figure 18 — Supercavitating Blade Stresses for a Uniformly

Distributed 1—Pound per Square Inch Pressure Over
the Entire Blade Face
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Figure 18 (Continued)
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The Solid Foil of TAP—l , Problem 3

The next sample problem concerns validation of the feasibility of a
prel{~itnary foil design2’ for a desirable hydrodynamic cross section of a

high—speed hydrofoil test craft.  It is important to have a reliable esti-

mate of stresses in the critical areas of the foil—strut system to ensure

adequate strength. The areas of concern are the stresses at the thin

leading edge of the foil and near the foil root interface with the strut

(support) .

Figure 19 is a pictorial view of a supercavitating foil i~~del made of

HY—130 steel (or 17—4 PH stainless steel) . This solid supercavitating foil
- was analyzed by using curved three—dimensional finite elements . The TAP—l

foil has a typical wedge—shaped chord section with maximum thickness at

the wetted trailing edge. A varying chord length tapers linearly toward
the tip as shown in the foil planform (Figure 20) . At its centerline, the
foil receives support from a generously proportioned strut . The foil and
its support are represented by 43 curved solid elements. In an alternative

design which includes the foil annex , 49 solid elements are employed . A
fine element mesh is adopted at the leading edge and also along the fillet
area near the foil—strut interface to provide a clear picture of stress
distribution at those structurally critical regions .

The nodal coordinates for the top and bottom faces of the foil are
derived from the design layout for the TAP—i hydrofoil,* supplied by the
DTNSRDC Design Engineering Division , Code 294 . The XY—plane of the global

coordinate system corresponds to the reference foil chord plane** with

center of the coordinate system located at the 0.7 chord point on the foil
centerline (see Figure 20) . A total of 42l—XYZ coordinate points is used
in the finite element mesh to describe the foil including annex.

Load Condition 1, which corresponds to the maximum lift at a speed of
80 knots , has been used because it results in maximum foil bending moments

*Twist of the foil was removed to simplify computing structural load
and stress.

**A plane which passes through both the leid ing edge and the trailing
edge .

51



— _________ -

~

Figure 19 — Pictorial View of a Supercavitating Foil Model
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as well as maximum loading on the foil leading edge . The- pressure distri-

bution of Figure 21 is inserted into the program in a linear piecewise

fashion over each element surface. An equivalent set of nodal load vectors

(with 178 loading points) is generated. A condition of support is realized

by imposing a set of displacement constraints placed over Elements 39

through 43 for the basic foil configuration. This results in a system of

equilibrium equations involving 1185 degrees of freedom (Equations
1263 — 78 — 1185); the system is then solved for displacements. Stresses

referenced to the global coordinate direction (XYZ) and the local surface
coordinate (i.e., parallel and normal to constant percentage of chordlines)

as well as principal stresses are subsequently calculated at 45 distinct

positions in each element space.

A maximum vertical deflection of 0.57 in. takes place at the leading

edge of the foil tip (Figure 22). As expected, maximum deflections in the

X— and Y—directions are smaller and on the order of 0.03 and 0.02 in.,

respectively. Figure 23 shows some typical foil stress distributions at

25 percent of semispan (measured along the Y—axis). A pictorial view of

principal stresses on the bottom surface of the foil is given in Figure 24.

Chordwise bending plays a major role for locations at 50 percent of

semispan and beyond . The chordwise bending stress begins to flatten out

and actually decreases slightly at sections toward the center of the foil

whereas the spanwise bending rises sharply . The peak spanwise stress

occurs at about 0.7 chord length instead of the trailing edge where the

chord section has its maximum thickness. Some locally high stresses occur
in the neighborhood of 0.3 chord length of the foil area close to the

fillet interfacing with the strut (for instance, at Element 28, Figure 20).
The inclusion of the foil annex generally lowers the foil stress, particu—

larly the stress in the spanwise direction. Reduction in foil deflection
(about 10 percent) can also be observed (see Figure 22).

Note : Computation time on the CDC 6600 for the basic foil configura-
tion is a little over 5 minutes (CPA—320 Sec) .
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APPENDIX A

SOLUTION PROCEDURE

DISCUSSION OF ALGORITHM

The solution algorithm warrants attention, particularly by those con-

cerned with making data more manageable. The logic of data organization

has not been given the recognition it deserves, and standard texts on

numerical methods seldom include techniques for relating the identity and

— 
position of matrix elements. Yet it is such techniques that enable the

advantage of matrix—sparsity to be exploited and that have enabled notable

progress to be made during the last decade in the scope and efficiency with

which large matrix problems can be solved on a digital computer. An in-

troductory description of a carefully planned and developed bookkeeping

process of a frontal algorithm (a modified version of Irons
14) is included

to illustrate the type of data organization that is essential to effect a

numerical solution.

Now consider a direct solution* of the system of equations; from

Equation (3)

B = [ C J X
nxl ~~~~~~~~ nXl

Typically , a Gaussian elimination procedure consists of two operations:

1. Factorization

[CI — [L][UJ

2. Forward elimination and back substitution

(LI V B

[UI X — V

Let [C] be represented as

*A direct solution is the process in which a solution results directly
fro m a fixed number of arithmetic ope.~ations.
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Cli Cl2 C13 . . C1~

C21 C22 C23 . . C2~

[C] C31 C32 C33 C3~
flXn

C C C . . Cnl n2 n3 nn

and let [U] ,  the upper triangular matrix resulting from the forward opera—
tion of a Gaussian elimination, be expressed as

C11 C12 C13 C14 . C1

(1) (1) (1) (1)C22 C23 C24 . C
2~

c ~~~~ 
(2) c33 34 3

[U] -

44 4

The superscripts of element where in — 1, 2, . .. ,  n — 1, give the
exact state of elements during the forward eliminations .

It is known that elimination proceeds in steps ; at each step, an un-
known X~ is eliminated by performing a set of row operations. This opera—

tion can be expressed in terms of an elementary triangular matrix 1L~~I

• 

- — -. 
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1
1

1 all blank spaces are
i+l,i 1 zeros

[L]= . 1
:

nxn 
— 

R~n,i

thi —column

C
with corresponding elements — — 

C U’)
i,i

C 
(j 1)
i+2 , i

~i+2,i 
— — 

c 
(i—l)

i,i

(1~~)n i
L~~1

1 
i,i

for i — 1, 2, . . . ,  n — 1. Now , write the Gaussian elimination process in

terms of the notation

[U] — [L~~][CJ

— [L~~1] ... (Li) ... [L
2
)[L

1
] [C]

and each step elimination is represented as

[C
1
] — [L

1]* [CI

[C2) — [1.21* [C1
] etc .
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and [U] — [C~~1] — [L~ .1] [C~ .2 ]. For instance ,

C11 C12 C13 . . . C
m 

-

C ~~~ ~~ - c 
(1)

22 23 2n

(1) (1) (1)
[C

1
] — c32 C33 . . . C

3

C ~
1
~ C (1) 

C 
(1.)

n2 n3 nn

Note that EL) — [L1~~J [L2
1
] . . . [L i] — ~~~~ is a lower triangular

matrix with one’s on the diagonal.

The forward substitution is carried out following the process of
factorization [U] [L~~][C]. In this case, the intermediate vector
V — [L 1

]B wilj. result; explicitly:

*Physically, the operations L1, L2, etc. are analogous to a succession
of relaxations of the constraints held on nodal degrees of freedom, such
as joint release in a structural system.
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And finally,  a backward substitution , [U] X = V solves for unknown dis-

placements X .

THE FRONT APPROACH

It has been known that the stiffness matrix [C] is positive definite

for a kinematically stable structure under static loads. The Gaussian

elimination is guaranteed to be numerically stable irrespective of the

order in which the equations are eliminated. No pivot search is necessary,

and full advantage of symmetry is realized.

C * _ C  _ C
ii ~1 is ( C

\ sS

*— C ii

For ~~ — C~~ , C~~ — C5~ etc.

In practice, (C] is large and sparse. The important task is to de-

termine the proper order in which the columns of (C] are eliminated to

result in minimum growth
17 of nonzeros in [U]. For a banded matrix, the

problem is simple; no growth of nonzero terms outside the band can be

achieved by choosing diagonal elements as pivots. This provides us with

the motivation for permuting [C] in such a way that the permuted matrix
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[P](C ] [P t
] is a minimum bandwidth form, where [P] is a permutation matrix.

In the front methcd , the bandwidth is optimized (or minimized) by virtue of

the discretization in the finite element representation. Nodal variables

are naturally grouped by element; as a matter of fact, the process involves

performing the same function as those claimed by matrix partitioning, or
substructuring, used to improve the solution of the banded structure matrix.

An important guideline in dealing with sparse matrices is to store

and process only nonzero matrix coefficients to save both space and com-

puter time. The structure stiffness matrix of many practical problems can

have from 200—2000 unknowns and thus the conventional full storage of all

matrix coefficients has to be abandoned. Instead, a condensed columnwise

storage form* retains only nonzero coefficients and some additional in-

formation necessary to retrieve them. The following section of this report

includes an example to illustrate the data organization. The data are

chain—listed to an element sequel. At the individual element level, the

data contain, in an orderly manner, the element size (KUREL)** and orienta-
tion together with a set of element stiffness coefficients and their ad-

dresses (or destination) in front of the active variables.*** The unknown

nodal variable (I, J = 1, 2, . .. ,  NDOFPF) which is associated with the

coefficient C1~ is labeled individually, is coded with identifiers that

mark its first, intermediate, and last occurrence during the whole sequel

of element—processing (see LVABL, LDEST); and its position in the order of

elimination is defined. The number of equations (or variables) being

eliminated at each element stage is also recorded for later use in back

substitution.

The choice of a computation algorithm for efficient solution of the

governing linear equation, Equation (3), is a crucial question, especially

for analyzing large structures.19’2° There does not appear to be a simple

*Alternatively, a row—by—row store can be arranged.

**See NOTATION.

***A variable becomes active on its first appearance, namely, the
first nonzero term in the corresponding column matrix of (C]. These van —
ables are the constituents of the front.
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universal approach to the problem . The method and programing techniques

used are often computer and/or problem dependent. to some extent, and this

results in constraints on the range of applicability of many computer pro-

grams. The front algorithm described here, however, is practically inde—
pendent of the peculiar sparsity pattern of the matrices processed. The

procedure is equally effective whether the global structure matrix is dense

or sparse .

It is generally admitted that bookkeeping in the frontal algorithm14

is extensive compared with ordinary band solvers. The implementation of

the frontal technique is within the capability of most computers currently

in use. The extra effort is well compensated for by the increased effi—

ciency and capability (see Reference 1) of the program development.

Some basic characteristics of the front bookkeeping system are now

described and key organization traits are illustrated so that experienced

users will be able to modify the procedure if so desired or incorporate

their own elements into the program system.

DESCRIPTION OF PROCEDURE

A clear understanding of the solution process is essential to an in-

telligent application of a numerical procedure such as computer program,

PBLADE. As stated earlier, the load—displacement equations, Equation (3),
are symmetric, positive, definite, and numerically well—conditioned. Re-

tention of the pivotal terms along the diagonal of the structure matrix

enables the full advantage of symmetry to be realized . I. ood results are

obtained by the direct method of elimination and , further , it is immaterial

to the order in which the nodal variables are to be eliminated.

In a standard method for solving simultaneous equations, the variables

are customarily arranged in the order of elimination. But for a digital

computation, it is important to minimize the amount of core storage for
intermediate calculations and to avoid physically interchanging rows and

columns since this operation can be quite time—consuming, particularly

-• 
when it involves many recurrences as additional variables are admitted to
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the front of active variables. (The intent of the front algorithm described

here is to illustrate a procedure which minimizes manipulation of the co-

efficients of the matrix of the working array, which is the front.)

A nodal variable becomes active when it appears for the first time as

an element is assembled. This is identified by entering a nonzero stiff—

ness coefficient to the column matrix corresponding to that variable. It

remains active until its last appearance. At each intermediate appearance

(if any) , as the front proceeds from one element to the next , new con-
tributions to that row and column coefficient matrix are collected for the
given variable . On the last appearance of an active variable, the coeff 1—
cients of its row matrix are fully summed and immediately eliminated . The
elimination of a variable (accomplished by a set of operations on the row

matrix) affects only the coefficients immediately below them (Figure 9) .
Now, the space which was occupied by the ex—variable (the one being elimi—

nated) is made available (MVABL(LDES)=O*) for active variables introduced

by the next element.

The process of the front solution can be viewed literally as the pro—

gress of a wavefront propagating through a network of finite elements in
the order of increasing element number. Each element introduces new,

active variables to the front. The size of the front which, at any one

moment, extends over the whole range of active variables, is kept small by

filling the void spaces left by variables just eliminated, e.g., Figure 25

and Table 5. (This is done without a bodily shift  of variables.) The

• front width, which in a way is analogous to the bandwidth of a banded

matrix is , in most cases , smaller than a bandwidth.
The frontal process employed here has a distinct trait of composite

action consisting of the accumulation of stiffness coefficients on the one

hand and their elimination on the other. The alternation between assembly

and elimination of nodal variables (or labeled unknowns) is repeated as

each element is processed in turn. The elements are naturally taken as

the unit of implementation. The size of the working vector (also known as

*See bookkeeping algorithm, page 72.
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the range of active variables, or front width, which is closely associated

with element size) in many cases compares favorably with core requirement

for a band—solver for the solution of a given structural problem.

A Simple Example 
-

To illustrate the details of data structure, consider a simple example .

Figure 25 shows a two—dimensional continuum under a set of loads and P2

and being supported at three nodal joints. The structure is discretized

and represented by six 8—node elements with a grid system of 31 nodes. The

system has 58 degrees of freedom; the order of nodal labels and nodal vari-
ables (or unknowns) is given; and the elements are labeled.*

After the element stiffness coefficients [C1 ] have been calculated
individually for each element with respect to its boundary nodes (I,J,...

etc.), those values representing element contributions must be properly

labeled with reference to a system of nodal numbers. In assembly then,

these element contributions will be distributed correctly to connecting

nodes so that the resulting system of equations, Equation (3), will pro—

perly represent the load—displacement relation of the structure.

An extensive system of bookkeeping is required to track the labeled

nodal variables and their positions in the front as well as to identify

variables which are readied for elimination. The program records these

data on tape together with the reduced stiffness coetficient and the

number of equations eliminated during each element processing cycle. An

outline of the on—going process is listed in Table 5.

Start with element number one — NELEM one. The first line gives

LVABL (KL) ,** which is an ordered list of nodal variables which were used
in formation of element matrix [Ce]. Line 2 is an address matrix, LDES,***
which specifies the positions where these nodal variables are assigned in

*The order and position of a humbered element affect the front width
and, hence, the effectiveness of a sblution . Careful attention is required
in numbering these elements, especially when a complex structure is
analyzed.

— 1, . .. , KUREL

***See NOTATION for definitions of these terms.
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the front of active variables. It is at these locations that stiffness

contributions of the current element will be allocated, or accumulated.

The third line, MVABL(LDES), gives the ordered list of active variables
which constitute the front. The maximum value of LDES sets the front

width , a dominating factor in deciding the core size for a computer run.
The fourth line; LDEST,* is a coded version of LDES. It indicates the

number of repeated occurrences of a given nodal variable and whether it is

the first, intermediate, or the last appearance of the variable.

For the f irst  element , Nodes 6 , 7, 11, 17, and 18 (with corresponding
global nodal variables 9, 10, 11, 12, 19, 20, 30, 31, 32, and 33) are fr ee
standing. These are boundary nodes which are not linked to other elements

and hence receive no further contributions of stiffness coefficients from

others. For these 10—nodal variables, it is their first as well as their

last appearance in the front of active variables; these ten equations are

fully summed and are readied for elimination , NVABZ = 10. The elimination

phase completes the process for Element 1, and the front moves to the next

elcment.

Now, the second element is assembled. Its st iffness cont ributions

are distributed to positions of active variables of the front according to

the sequence prescribed by LDES which sets the addresses for global nodal
variables. Those positions in the front which were vacated by the elimi-

nation phase of the preceding element are replaced by new active variab1.~~
(those appeared for the f irst  time) during the assembly of the current

element. Those unknown active variables which received final contributions

and for which coefficients are fully summed make their last appearance

and their six equations are eliminated immediately, NVABZ = 6.

The spaces in the front of active variables is not always fully

packed , as can be seen in the assembly of element five; in this case, there
are five new active variables and eight open spaces were available. Con-

sequently, three spaces remain vacant.

*See NOTATION for definitions of these terms.
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The movement of the front, also known as the wavefront , proceeding
from element to element is graphically represented in Figure 26 together

with a summary of operational counts (for symbol definitions see the

NOTATION).

The solution proceeds from Element 1 to Element 6. At each stage, the

front width (or LDES) can be evaluated (see STORIJ) or more directly from

an idealized element block diagram (Figure 26). Each circle represents an

element variable. Solid circles are those fully summed nodal variables

(i.e., no further contribution from other elements) which are eliminated

immediately. The circles with attached bar links are variables that remain

active through the addition of a follow—on element. The front width can be

approximated with adequate accuracy by counting the number of circled vari-

ables plus crossing links, if any, over the column directly above the ele-

ment in question. The actual front width is also given in the figure. The

number is, at times, slightly higher than the minimum number counted because

of the time delay in filling the free spaces, or vacancies, left by the

eliminated variables of the preceding element.

Half bandwidth (HBW=27) is also indicated in the same figure. The

bandwidth can be reduced either by exercising care in ordering the nodal

number or by utilizing band—reduction algorithms. The density of nonzero

terms, or the sparsity of a structure matrix, is dependent on the geometry

or topology of a structure. In most cases, front widths are smaller than

bandwidths and consequently a front solution is more efficient in terms of

computational time and storage requirements.

Bookkeeping Algorithm

The salient features and computational sophistication of the frontal

technique can be better assessed through a close inspection of the book-

keeping process which is used to keep track of nodal displacement variables

described in Equation (3). In the coded format, the procedure was carried

out by Subroutines LABLE and APPEAR.

72



51

41

00 
_ _ _ _  _ _ _ _ILl
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4
> 31

ILl 
_________
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— ________

21

11

r 1. J 
_ _ _ _ _ _ _  _ _ _ _ _ _ _  _ _ _ _ _ _ _

ELEMENT ® ® ® ®
KUREL 16 16 16 13 14 15
LDES — 16 16 20 17 17 15
NVABZ — 10 6 10 8 9 16
LCUREO — 0 10 16 26 34 43

HBW - 27 27 25 25 24 19

NOTE:
HBW IS THE HALF BANDWIDTH OF MATRIX (CI .

Figure 26 — Occ urrence of Nodal Variables in a —

Two—Dimensional Continuum Problem
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Subroutine LABLE
This subroutine forms the initial step to keep track of the variables

representing the nodal degrees of freedom. These variables are normally

independent displacement components (ui, v~ , w1
). Starting with the first

element, the subroutine counts, one element at a time, the number of free

variables in the current element, for example, KUREL . KUREL equals the

element degrees of freedom minus the number of constraints imposed on that

element; hence, KUREL is the current element size. LVMAX is used to denote

the size of the largest element array, i.e., KIJREL < LVMAX .

The subroutine marks each free nodal variable of an element by a label,

or nickname, in a vector array , named LVABL(KUREL) see Table 5. They are

logged in a predefined order set up by the incidence table. All, labels for

a given element are grouped together, then store4 one element after another

with their signs reversed in a long vector array called (NIX(NEW)). A

certain label, for example one representing a degree of freedom of a

specific node, may repeat many times as the given node is connected to many

discrete elements. LVEND is the dimension of the LVABL array ; hence

LVEND > LVMAX > K1JREL. NIZZ, the final value of NZ, becomes the sum of

free variables in all the elements being processed . That is

NELEN

NZ = KUREL(L)

Subroutine Ak4PEAR

This subroutine records the first, last, and intermediate appearances

of all element variables. At successive stages, as each element is pro—

cessed in turn , it examines the front (=MVABL(MVEND*)) for space location -

as well as the location of free space, i.e., the space vacated by each

*MVEND is the size of the working vector of active variables,
MVABL(LDES) and sets the upper limit of front width.
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variable previously eliminated . At the DO loop 60, each nodal variable

which had formerly been given an individual label in LVABL(1,KUREL) will
be assigned a space within the working vector MVA3L and its position desig-

nated by LDES. This is done at statement 30.

Further, it inspects the variable list for recurrence of a variable in
the long vector NIX(N IZZ) and counts the number of repetitions of a given
label (or nickname). Let KOUNT equal 1000 for each appearance plus 1000.

For instance, KOUNT — 2000 indicates a single appearance and KOUNT — 300s.)

indicates a dual appearance. (This means that the given nodal variable is

connected to exactly two elements , etc.) KOUNT — 1000 is reserved, how-
ever, for the last appearance of a variable. For each intermediate ap-

pearance , KOUNT is suppressed in the coded format of the destination vector

LDEST(KUREL), see Table 5.

LDEST(L) — LDES(L) + KOUNT(L) L — 1, KUREL

This leaves LDEST(L) , NIX(LAS) = LDES, a positive quantity; see listing of
the subroutine .

The pair LVABL(KL) and LDEST(KL) provides each variable (KL) with a

label and an address for the element stiffness coefficient, i.e., its for-

warding position at the front of the global stiffness matrix. With the

provision of knowledge as to when a given variable is ready for elimina-

tion, the information is now complete for assembling the basic element

data into a finished system of simultaneous equations, Equation (3).
For instance, LDEST(7) = 1025 implies that a variable (KL 7) is on

the twenty—fifth location (LDES=25) of the working vector MVABL(LDES).

t’s label is given by LVABL(7) or HVABLE(25), and the variable is ready

for elimination. In othe r words , the seventh row and column of the current

element matrix [Ce] must accumulate onto the twenty—fifth row and column

of the front matrix [G], Figure 9. MVEND is the dimension of front MVABL,
or matr ix  [GJ .

At DO loop 70, Subroutine CODEST interprets the coded destination

vector LDEST (KL). It recovers the element nickname, LVARL(KL) , for later
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use in Subroutine ELDATA and erases nicknames representing variables elimi-

nated in the front. NVABZ counts the variables eliminated so far , and at

the end of LOOP, it gives the total number of equations (or variables)
eliminated.

At DO loop 90 , input data are re~ rouped for the current element to be
used by Subroutines STIFF and ELDATA. From geometric input (nodal coordi-

nates X(NNPE), Y (NNPE)) and material properties (E , GNU) , Subroutine STIFF
computes element stiffness coefficients STPNS — [Ce ] or

— f [BI T ED] [Bid vol

n~n nxm mXm mXn

In the case of an 8—node element of two—dimensional continuum where n = 16
and in — 3, the displacement vector = (u1, u2, u3, . . .u8, ...v8) T .

The matrix [K] is later resequenced to a displacement convention of

(u1, v1, . . .u8, ~
8)T compatible with output convention. The coefficients

of the stiffness matrix (the upper triangular matrix of [K ], with columns

and rows corresponding to fixed nodes being deleted) as well as the load

vector [P1 are then grouped together to form a column matrix [EL] by

Subroutine ELDATA. These data units are recorded in TAPE 1 for later use

in Subroutine FORWRD (Figure 10).
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‘DECK LISLE
SUBROUTINE LIBLE (tNCa,JOIsp ,LVABL ,NIx,wooppN, ,4$pE ,

C
C

CONPION ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CONPI ON /VAB3/NELEN ,NELENZ ,IWREL, NIC ,LpffQ,PIEW,NpAR,NBAXC ,NBIXZ
CONPIO N ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~DIM ENSION NIX (j),IWCft (NNpE ,1),J0I5pI$OOFPN,j),LVASL (1)

C
00- 600 NELEN a1,NELENZ
KUREL a 0
00 600 J 1,NNPE
K a INCEL(J,NELEN)
00 300 Lz1,NUOFPN
IFIJDISPIL,K) .(Q.S$ GO TO 300
KUREL KUREL • I
LV*BL (KUREL) JOISP (L,K)

300 CONTINUE
600 CONTINUE

IFIKUR EL.LE .LVNIX) GO TO 601
LVMAX KUREL

IF (LVNAX .GT .LV (NO) GO TO 700
601 00 SOS Nz1,KUREL

NIC a LVABL (H)
$122 * NIZZ • I
NIX INIZZ~ * — NIC

500 CONTINUE
L * NIXEND 4 1 = NELEN
NIX IL) ~ $122

600 CONTINUE
RETURN

700 WRIT ((6,7O1I NELEM
701 FORM*TCjHj,F~/,j5X,e TROUBLE IN SUBROUTINE LISLE OCCURED WHIL

It PROCESSING ELEMENT NO. •,16,/,10X,’ THE DIMENSION OF LVAB L II) IS
2INAOE QUATE . INCREASE LVEND . ‘,/,IHI)

STOP
(NO
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‘DECK APPEAR
SUBROUTI NE APP€AR (NVASL , NZX,LOEST,LVABL,IIICEL,JOISP ,COORD,

I PL0AO,X,P,JOIS, STFNS ,EL,NUOFPN,NOOFpE,NNP~ ,Np p
C
C THIS SUBROUTINE RECORDS FIRST, LAST, AND INTEMEDIATE
C *PPE*RNC(S OF A VARIA BLE
C

COMMON /VAS1/NEL PAZ,LVEND,$VE$D,NIXEND ,LVH$X,NIfl,MAXNIC
COMMON ~VA82flIAXPA,NVASl,LCUREO,NAXft T,NT!REX,LOES,KL,N$TRft
COMMON #V183/NELEM , NELEMZ,KUREL ,NtC,LPREQ ,WEW ,NP*R,$BAXp,NBAx7
COMMON IVABLS/401RtC,jOINT,LEAO,Ifl,PR*TIO,f,T,DET,A,,,C1. C2
COMMON /VABG/CONST, NJ,NRUNO, LNSRHS ,L,KOUNT , NELZ ,WDELT
COMMON ~VAB7 / INTGER,NO ,NPT ,NPTS,NPZCOMMON ~VCON/PRESIS4),LPT,LNE L

COMMON FBLAV~G$I3,S) ,PXI3) ,PY I3) ,Q,FFI3,5,Z)
DIMENSION COORD (NOCFPN,j),PLO*D (NDOFPN,j), XINNPE,NDOFPN)
DIMENS ION PINOOFPE),JOISINDOFPE),STFNS (NDOFPE, NUoFPE)
DIMENSION NIXI1),INCEL($NPE ,j),JDISPINDOFPN ,j)
DIMENSION LVABL (1) ,ELIL) ,LDEST*j),MVABLII),ISWT (6)

DATA ISWT ,5 ,6.7,e,1s,i6,Iq,201
IF (Nc .EQ.et GO TO 19

C
C NF EOUALS T O I O R O

LLa 3’LPT
CALL ZEROZIPL OAO,LL )

19 Nj *1
CALL ?EROZ IMVABL ,H~ENO)
00 100 NELEMaI .NELENZ
LPREO v LCUREQ
LCUREQ a NVARZ
L a NIXEND 4 I = NELEM

Ni a NUlL )
KUREL a Ni = NI 4 1
00 60 NE WaNt, Ni
LOE S • NUUdEW)
NIC a LOES
IFINIC.GT.S) GO TO 50 -

ISUM a MA$NIC 4 NIC -

IF(ISUN .LC.0I MAXNZC Z — NIC
L0E S~~~ i

20 IF (MVABL ILOES) •E Q.0I GO TO 30
LOE S * LOtS 4 1
60 TO 20

30 MVAS L ILDESP a NIC
IF(LOES.GI.NAXPA ) NAXPAaLOE S
IF (NAXPA .GT.NVEN I~ GO TO 110

C
C MAXPA RECORDS MAXZIUI SIZE OF FRONT FOR DYNAMIC STORAGE
C F IND OUT THE MII8ER OF REPETITIONS OF LABELS.OR NICKNAMES,I.E. NIC
C KOUNT EQUALS 1000 FOR EACH APPEARANCE PLUS 1000, KOUNT EQUALS 1000
C AS GIVEN IN LOEST. IS RESERVED FOR THE LAST APPEARANCE OF A VARIABLEC .

‘

4

78

~

-— -

~ 

—~~~ -~~~~~~~-— ---.—— .~~~ ~~~~~ ~~.-.- ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 



_ _ _ _ _ _ _ _

KOUN T a 10,0
00 60 LASaNEW,NIZZ
IF (NIXILAS).NE.NIC) GO TO 65

LOE S
K0IJNT a KOUN T • 1000
LAST a LAS

60 CONTINUE
NIX (LAST) a LOtS 4

NIX (NEW) a LOtS 4 KOIBIT
LOtS a NIX (NEW )

50 L a NEW — $ 1 4 1
LOESTIL) a LDES

60 CONTINUE
Nj a N Z 4 j

C WRITE 16,91) NELEM, (PIVABL II) ,IaI,NVEND)
91 F O RN AT IIHI ,  ‘ELEMENT NO~,I15,’NV~RI S’ Fl(t3X.$IIZ))00 70 KLaI,KUREL

CALL CODESTILDEST)
LVAS LIKL ) a HVABLILD€S)
NIC a LVABL (KL )
IF(NSTRES .NE .O.ANO.NSTRES .NE.1) GO TO 70
MVARL (LDES) a 5
NV *BZ a NVABZ + 1

70 CONTINUE
K OU N T a 5
00 90 IaI,NNPE
IJaINCEL (!,NE1.EM )
00 SO J 1,NOOFPN
KOU N T~KO UN Ti I
X(I ,J)aCOOROIJ ,IJ)
JO IS(KOUNT)aJO ISP(J ,IJ )
IF(NF.NE.2) GO TO SO
P (KOUNT) aPLOAD(J ,IJ)
PLOA OIJ,IJ)*0.5

10 CONTINUE
90 CONTINUE

CALL STIFFS (X ,E,PRATIO ,STFNS ,NF )
IF(NF .EQ.21 GO TO 17

!F(NELEN. GT.LNEL) GO TO 1?
DO IS Lal,0
IT a ISWT (L)
JT a INCELIIT,NELEM)
DO 1$ Naj,3
L Ka N#3’(IT—l)
Pft.K)a PRESINELEM)’FF(N,L ,j)
PLOA O1N ,JT)~ PLOADIN,JT) 4PILK)

C WRITE (61,96) N, JT,PLOAOUI,JT)
C 96 FORMAT (IX, ‘PLOADIN,JI) (~1,3 ‘~ 12I1I, P15.6))II CONTINUE
17 CALL ELO ATA (P,JDIS,LOUT,LVASL.STFNS,EL,NOOFPE)

IF(NELEN.GT.3) GO TO 150
WRiTE (6,7031 NELEM

103 PORM*T (tX ,F~,’ ELEMENT DATA VIA APPEAR’,16)
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WRITE (6,26) ((X(NN ,L),Lal,NO) ,NNaI,NNPE)
26 FORPAT (IHO ,29NCOORDINA TES ARE XYZ (NNPE,$O)Fl(3F13.5,I0x,3Fj3.5))

WRITE (6,92) .1015
92 FORNAT( IHO ,’ JOIS VARIABLES’l (31j3,3X ,31I3))

WRITE (6,25 ) P
100 CONTINUE

REWIND 1
REWIND 6

29 FORMAT (INS , ‘ELEMENTAL FORCE CONPTS FX F? U ‘/13F12.5,10X,
1 3F1.2.3))

RETURN
110 WRITE (6,I1j) NELEN
111 FORMAT l1H1,~ l//,~~0X ,’ ~~ TROUBEL IN SUBROUTINE APPEAR OCCURED

I WHILE PROCESSING ELENENT NO. ‘,16,/,10*,’DIMENSION OF NVABL IS IN
2AOE QUATE . INCREASE PIVENO. •,/,IHI)

STO P
END

‘DECK CODEST
SUBROUTINE CODEST (LOEST)

C
C

COMMON /V182/MAXPA .NVABZ ,LCURE Q,NAXELT,NTIREX,LDES,KL,NSTRES
DIMENSION LOEST( 1)

C
LOES • LOEST (KL)
NSTRES a(LD(S/I500) — I
tOE S a — (NSTRES+1 1 • 1000
RET URN
(NO 

-
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APPENDIX B
INPUT LISTINGS OF SA~~LE PROBLEMS*

~~ BEGIN SAMPLE PROBLEM NO 1 II ,

PROB PLATE BEAM—CX2 L/M 40/6 NELEM IZ JUL72 MOD 76

30000000. 0.30
20 3 60 110 8330 5890
12 122 41 0 1 0
2 1 0 0 3 3
0 0 0 0 0 0
0 0

1 52 20 55 25 63 39 bb 44 60 33 61 35 54 23 65 42 53 56 64 67
2 55 25 58 30 66 44 b9 49 61 35 62 37 57 28 68 47 56 59 67 70
3 58 30111113 69 49100102 62 37107108 94 95 90 91 59112 79101
4 20 22 25 27 39 41 4’ 46 33 34 35 3ô 23 24 42 43 21 26 40 45
5 25 27 30 32 44 46 49 SI 35 36 37 38 28 29 47 48 26 31 45 50
6 30 32113115 49 51102104 37 38108109 95 96 91 92 31114 50103
7 1 3 6 820 22 25 27 14 15 16 17 4 523 24 2 721 26
8 6 8 11 13 25 27 30 32 16 17 18 19 9 1 0 28 29 7 122 6 31
9 11 13120122 30 32113115 18 19118119 98 99 95 96 12121 31114
10 22 72 27 75 41 83 46 8b 34 79 36 80 24 73 43 84 71 74 82 85
11 27 75 32 78 46 86 51 8’~ 36 80 38 81 29 76 48 87 74 77 85 88 •
12 32 78115117 51 89104106 38 81109110 96 97 92 93 77116 88105

— 1 5.7 0.0 0.6
2 6.0 0.0 0.6
3 6.3 0.0 0.6
4 5.7 3.0 0.6
5 6.3 3.0 0.6
6 5.7 6.0 0.6
7 6.0 6.0 0.6 ~~~.

8 6.3 6,0 0.6
9 5.7 9.5 0.6

10 6.3 9,5 0.6
11 5.7 13.0 0.6
12 6.0 13.0 0.6
13 6.3 13,0 0.6
14 5.7 0.0 3.3
15 6.3 0.0 3.3
16 5.7 6.0 3.3
17 6.3 6.0 3.3
18 5.7 13.0 3.3
19 6.3 13.0 3.3
20 5.7 0.0 6.0
21 6.0 0.0 6.0
22 6.3 0.0 6.0
23 5.7 3.0 6.0
24 6.3 3.0 6.0
25 5.7 6.0 6.0
26 6.0 6.0 6.0
27 6.3 6.0 6.0
28 5.7 9.5 6.0
29 6.3 9.5 6.0
30 5.7 13.0 6.0
31 6.0 13.0 6.0
32 6.3 13.0 6.0 —

33 5.7 0.0 6.3

*Listin g of Sample Problem No. 3 is voluminous and may be furnished
by addressing a need to the author . 
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34 6.3 0.0 6.3
35 5.7 6.0 6.3
36 6.3 6.0 6.3
37 5.7 13.0 6.3
38 6.3 13.0 6.3
39 5.7 0.0 6.6
40 6.0 0.0 6.6
41 6.3 0.0 6.6
42 5.7 4.0 6.6
43 6.3 3.0 6.6
44 5.7 6,0 6.6
45 6.0 6.0 6.6
46 6.3 6.0 6.6
47 5.7 9.5 6.6
48 6,3 9.5 6.6
49 5.7 13.0 6.6
50 6.0 13.0 6.6
51 6,3 13.0 6.6
52 3.0 0.0 6.0
53 4.35 0.0 6.0
54 3,0 3.0 6.0
55 3.0 6.0 6.0
56 4 .35 6.0 6.0
57 3.0 9 .5 6.0
58 3.0 13.0 6.0
59 4 .35 13.0 6.0
60 3.00 0.0 6.3
61 3.00 6.0 6.3
62 3.00 13.0 6.3
63 3.0 0.0 6.6
64 4.35 0.0 6.6
65 3.0 3.0 6.6
66 3.0 0.0 6.6
67 4.35 6.0 6.6
68 3.0 9.5 6.6
69 3.0 13.0 6.6
70 4.35 13,0 6.6
71 7.65 0.0 6.0
72 9.0 0.0 6.0
73 9.0 3.0 6.0
74 7.65 6 .0 6.0
75 9.0 6.0 6.0
76 9.0 9.5 6.0
77 7.65 13 ,0 6.0
78 9.0 13.0 6.0
79 9.0 0.0 6.3
80 9.0 6.0 6.3
81 9.0 13.0 6.3
82 7.65 0.0 6.6
83 9.0 0.0 6.6
84 9.0 3.0 6.6
85 7.65 6.0 6.6
86 9.0 6.0 6.6
87 9.0 9.5 6.6
88 7 .65 13.0 6.6
89 9.0 13 .0 6,6
90 3.0 16.5 6.6
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91 5.7 16.s 6.6
92 6.3 16.5 6.6
94 3.0 16.5 6.0
95 5.7 16 ,5 6.0
96 6.3 16.5 6.0

— 93 9.0 16,5 6.6
97 9.0 16.5 6.0
105 7,65 20,0 6.6
106 9.0 20.0 6.6
110 9.0 20.0 6.3
116 7.65 20.0 6.0
117 9.0 20.0 6.0
98 5.7 16.5 0.6
99 6.3 16.5 0.6
100 3.0 20.0 6.6
101 4.35 20.0 6.6
102 5.7 20.0 6.6
103 6.0 20,0 6.6
104 6.3 20.0 6.6
107 3.0 20.0 6.3
108 5.7 20,0 6.3
109 6.3 20.0 6.3
111 3.0 20.0 6.0
112 4.35 20,0 6.0
113 5.7 20.0 6.0
114 6.0 20.0 6.0
115 6.3 20.0 6.0
118 5.7 20.0 3.3
119 6.3 20.0 3.3
120 5.7 20.0 0.6
121 6.0 20.0 0.6
122 6.3 20.0 0.6

2 1 —

21 1
40 1

103 1
114 1
121 1
111 3
112 3
113 3
114 3
115 3
116 3
117 3
118 3
119 3
120 3
121 3
122 3

1 2
2 2
3 2 —

14 2
15 2
20 2
21 2

1~
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22 2
33 2
34 2
39 2
40 2
41 2
52 2
53 2
60 2
63 2
64 2
71 2
72 2
79 2
82 2
83 2
40 0.0 0.0 —5000.
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// BEGIN SAMPLE PROBLEM NO 2 1/,
p

PROB SUPER—CAY PROPELLER BLADE (P—3604) NEL15 MAR73MOD6

30000000. 0.30
20 3 60 90 6260 5800
1 5 1 48 24 0 1 1
2 62 0 0 3 3
0 0 0 0 0 0
0 0

1 1 2 14 3840 1 327 29 8 934 35 23 24 19 20 13 39 228
214 1640 42 3 529 31 910 35 36 24 25 20 21 15 41 430
316 18 42 44 5 7 3i 33 10 11 36 37 25 26 21 22 17 43 632
438 40 64 66 27 29 53 55 34 35 60 61 49 50 45 46 39 65 28 54
5 40 42 66 68 29 31 55 57 35 36 61 62 50 51 46 47 41 67 30 56
6 42 44 68 70 31 33 57 59 36 37 62 63 51 52 47 48 43 69 32 58
764 66 90 92 53 55 79 81 60 61 86 87 75 76 71 72 65 91 54 80
866 68 92 94 55 57 8L 83 01 62 87 88 76 77 72 73 67 93 56 82
968 70 94 96 57 59 83 85 62 63 88 89 77 78 73 74 69 95 58 84
10 90 92116118 79 81105107 86 87112113101102 97 98 91117 80106 .~~~~

11 92 94118120 81 83107109 d7 88113114102103 98 99 93119 82108
12 94 96120122 83 8510911& 88 89114115103104 99100 95121 84110
13116118142144105107131133112113138139127128123124117143106132
141181201441461071091331351131141391401281291241251191451O8134
15120122146148109111135137114)15140141129130125126121147110136

1 —2.748 1.300 1.837
3 —1.863 0.843 2.086
4 —0.670 0.192 2.242
5 0.544 —0.435 2.208
6 1.781 —0.988 2.021
7 3.044 —1.438 1.731
12 —2.776 1.256 1.867
14 —1.928 0.725 2.130
15 —0.783 —0.0275 2.250
16 0.377 —0.7505 2.121
17 1.563 —1.351 1.799
18 2.778 —1.796 1.356
8 —2.762 1.278 1.852
9 —1.8955 O.78~ 2.108

10 0.4605 —0.5925 2.1645
11 2.911 —1.617 1.5435
27 —2.367 1.81b 3.108
29 —1.648 1.163 3.407
30 —0.659 0.261 3.591
31 0.376 —0.602 3.549
3~ 1.46’. —1.3fl 3.328
33 2.607 2.019 2.981
38 —2.400 1.781 3.128
40 —1.729 1.069 3.438
41 —0.803 .0856 3.599
42 0.172 —0.846 3.499
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43 1.196 —1.668 3.191
44 2.272 —2.343 2.733
34 —2.384 1.799 3.118
35 — 1.688 1.116 3,423
36 0.274 —0.724 3.524
37 2.440 —2.iei 2.857
53 —1.965 2.095 4.485
55 —1.408 1.339 4.766
56 —0.624 0.315 4.940
57 0.225 —0.666 4.905
58 1.149 —1.558 4,699
59 2.151 —2 .336 4.364
64 2.001 2.066 4,498
66 — 1.490 1.269 44785
67 —0.768 .187 4.947
68 0.0167 —0.848 4,877
69 0.878 — L.783 4.618
70 1.819 —2.590 4.218
60 1.983 2.081 4.492
61 1.4’.9 1.3o” 4.776
62 0.121 —0.757 4,891
63 1.985 —2.463
79 — 1.547 2.Ili 5.936
81 —1.134 1.353 6.153
82 —0.541 0.341 6.291
83 0.122 —0.632 6.266
84 0.862 —1.537 6.110
85 1.68’. —2.357 5.843
90 — 1.585 2.08b 5.945
92 —1.210 1.301 6.164
93 — 0.666 0.254 6.295
94 —0.053 —0.753 6.255
95 0.637 —1.689 6.069
96 1.410 —2.53. 5,768
86 —1.566 2.099 5.941
87 — 1.172 1.32? 6.159
88 0.035 —0.693 6.262
89 1.547 —2.’.4o 5,806
13% —0.3409 0.665 8.795
133 —0.2364 0.439 8.809
134 0.0932 0.139 8.819
135 0.056 —0.158 8.816
136 0.2122 —0.451 8.808’.
137 0.3757 —0.7404 8.789
142 —0.358 0.6564 8.7955
144 —0.2843 0.41.8 8.8102
145 —0.20’. 0.083 8,8196
146 0.0881 —0.231 8,817
147 0.0769 —0.5197 8,8047
148 0.306 —0.7756 8.786
138 —0.3495 0.661 8.7952
139 —0.2604 0.427 8.8096
140 —0.0161 —0.195 8.818
141 0.341 —6.758 8.7875
105 —1.034 1.713 7.456

k 101 —0.771 1.1004 7.5704
100 —0.3864 0.293 7,6444
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109 0.053 —0.486 7.635
110 0.5545 —1.22’. 7.551
111 1.121 ~1.911.6 7.4065
116 —1.0624 1.697 7.460
118 —0.826 1.069 7.575
119 —0.4665 0.2466 7,646
120 0.0578 0.550 7.630
121 0.405 —1.310 7.537
122 0.946 —2.0j25 7.381
112 —1.048 1.705 7,458
113 —0.799 1.085 7,573
114 —0.0024 —0.518 7.6325
115 1.034 —1.9636 7.3938
2 —2.3063 1.0755 1.971
13 —2.3533 0.9943 2.012
28 —2.009 1.494 3.269
39 —2.065 1.430 3,296

—1.688 1.720 4.636
65 —1.747 1.670 4~653
80 —1.341 1.733 6.053
91 —1.399 1.696 6.063
106 —0.903 1.407 7.518
117 —0.9425 1.385 7.522
132 —0.2887 0.552 8,8025
143 —0.3296 0.5314 8.8037
19 —2.571 1.s~i 2.454
20 —1.764 1.025 2.740
21 0.463 —0,533 2.876
22 2.840 —1.765 2.333
23 —2.6014 1.552 2.479
24 —1.839 0.918 2.777
25 0.272 —0.812 2.810
26 2.529 —2.112 2.023
45 —2.168 1.986 3.786
46 —1.531 1.269 4.082
47 0.2955 —0.6’.? 4.226
48 2.380 —2.211 3.659
49 —2.202 1.955 3.802
50 —1.615 1.187 4.107
51 0.0857 —0.8585 4.188
52 2.038 —2.503 3.466
71 —1.760 2.139 5.202
72 —1.277 1.369 5.456
73 0.1675 —0.6603 5.586
74 1.921 —2.387 5.0934
75 —1.797 2.ii2 5.213
76 —1.355 1.309 5.471
77 —0.030 —0.813 5.566
78 1.614 —2,601 4.987
97 —1.305 1.97’. 6.690
98 —0.964 1.260 6.859
99 0.088 —0.572 6.952
100 1.419 —2.205 6,617
101 —1.341 1.952 6.696
102 —1,036 1.223 6,867
103 —0.0564 —0.6628 6,943
104 1.192 —2.341 6.5704
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123 —0.700 1.269 8.228
127 —0.721 1.257 8.230
124 —0.514 0.822 8.284
128 —0.560 0.798 8.287
125 0.0522 —0.3382 8.318
129 —0.0637 —0.400 8.315
126 0.762 —1.417 8.204
130 0.6457 —1.478 8.193
8 1
9 1
10 1
11 1
2 2
4 2
6 2
13 2
15 2
17 2
1 3
2 3
3 3
4 3
5 3
6 3
7 3

12 3
13 3
14 3
15 3
16 3
17 3
18 3
12 0.097 0.091 —0.052
13 —0.30 —0.306 0.185
14 0.270 0.283 —0.028
15 —0.746 —0.96? 0.074
16 0.380 0.45’. 0.071
17 —0.654 —0.959 —0.420
18 0.183 0.240 0.073
23 —0.247 —0.223 0.146
24 —1.182 —1.288 0.362
25 —1.480 —1.909 —0.34
26 —0.672 —0.932 —0.463
38 0.209 0.16’. —0.091
39 —0.694 —0.527 0.309
40 0.543 0.537 —0 .069
41 —1.722 —1.70 0.152
42 0.791 0.868 0.112
43 —1.511 —1.799 —0.644
44 0.380 0.450 0.133
‘.9 —0.290 —V.175 0.108
50 —1.397 —1.022 0.296
51 —1.742 —1.618 —0.179
52 —0.792 —0.861 —0.292
64 0.229 0.128 —0.069
65 —0.757 —0.406 0.231
66 0.601 0.430 —0.071
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67 1.897 1.347 0.185
68 0.873 0.735 0.031
69 —1.668 —1.603 —0.338
70 0.422 0.387 0,068
75 —0.296 —0.13’. 0.081
76 —1.435 —0.78. 0.255
77 —1.808 —1.338 0.005
78 —0.828 —0.771 —0.122
90 0.218 0.09’. —0.054
91 —0.725 —0.301 0.178
92 0.574 0.325 —0.083
93 —1.826 —1.028 0.231
94 0.841 0.585 —0.036
95 —1.638 —1.340 —0.055
96 0.407 0.316 0.006
101 —0.262 —0.O~’. 0.064
102 —1.267 —0.56i 0.237
103 —1.612 —1.010 0.146
104 —0.755 —0.611 0.020
116 0.156 0.05’. —0.039
117 —0.552 —0.189 0.136
118 0.394 0.194 —0.062
119 —1.401 —0.661 0.218
120 0.589 0.Z6’. —0.078
121 —1.278 —0.917 0.113
122 0.287 0.193 —0.021
127 —0.146 —0.043 0.042
128 —0.701 —0.257 0.154
129 —0.909 —0.483 0.131
130 —0.417 —0.318 0.091
142 0.059 0.020 —0.014
143 —0.142 —0.044 0.041
144 0.198 0.080 —0.036
145 —0.368 —0.14’ 0.067
146 0.277 0.15’. —0.050
147 —0.330 —0.228 0.071
148 0.134 0.087 0.012
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