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Fig. 1

Fig. 2

Fig. 3
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FIGURE CAPTIONS

Trajectories in the x-y phase plane. Circle corresponds
to initial values, x = .56, y = 4.2, ¢ =n/3 . Trajectories
are bounded by curve x’y = 1.

Nonlinear evolution of x and vy .
Nonlinear evolution of IPkl and IPZkI in arbitary units.
Trajectories in phase plane of ak2 and a - The curves

labeled (+), (-) denote trajectories for which ¢ = 0
and T respectively.




I. INTRODUCTION
As is well known, there are many important fundamental processes
associated with the interaction of an intense electromagnetic wave with

a fully ionized plasma.'’?’?

These processes have important implications
for astrophysics as well as for laser studies. Extensive investigations
have been made into stimulated Raman scattering, one important process

in which an intense electromagnetic wave impinges on a plasma and scat-
ters off an electron plasma mode.“ If the incident wave is intense enough,
it modifies the linear properties of the medium, thus creating many in-
teresting new phenomena.5 In this case, the Bohm-Gross mode, which nor-
mally has a frequency approximately equal to the plasma frequency, can
exhibit a large amount of dispersion. 1In fact, if the incident field is
large enough, we show that electrostatic modes exist with frequencies
equal to half the plasma frequency, and that they couple strongly to a
free plasma wave; i.e., a wave which satisfies the dispersion relation
describing a system in which there is no incident field. In this case,
although the back-scattered waves associated with the fundamental are
several orders of magnitude larger than the fundamental itself, those
associated with the harmonic are negligible. Since processes which in-
volve coupling of energy into electrostatic waves with little back-scatter
may be important for plasma heating, we study this process in detail.

We find that this coupling results in a strong nonlinear modification of

the usual linear growth rate associated with Raman scattering.
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II. GENERAL FORMALISM
. We assume that the unperturbed state consists of a large amplitude,
plane polarized, coherent electromagnetic wave
] > > >
E =2E % cos(k *x-w t) 1)
o oo o o
<>
propagating in a homogeneous plasma, and that the pair (mo,ko) satisfies
¥
the usual dispersion relation
w2=w?+k 22 )
o P o
.
in the absence of damping. This state is characterized by electrons
oscillating rapidly in the field of the incident wave Eo with nonrela-
%
tivistic quiver velocity |V°| = eﬁolmwo , while the ions form a stationary
*
background .
Next, we perturb the equilibrium and consider the mode coupling
p
pracesses associated with the medium in the presence of the field Eo .
In particular, we consider scattering processes off electron modes and
find that, in the regime (vo/c)2 ~ w/w << 1, modes with frequency of
3
the order of half the plasma frequency exist and couple strongly to the
Bohm-Gross mode.
We examine the effects of a density perturbation associated with
b ]
an electrostatic wave (w,f) and its first harmonic (Zw,ZK) and look
for conditions under which the harmonic can grow significantly. Associated
. * >
In our formalism, V° corresponds to a complex velocity amplitude.
® 2
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with these waves are their satellites (w #* jwo,k t jko) and

(2w jwb,Zk + jko) where j 1is an integer. Waves associated with har-
3 monics of the pump (wo,io) , however, give contributions of order Volc

to the current densities and are therefore neglected. We assume that

w/k is much larger than the electron or ion thermal speeds and therefore

we neglect any strong wave particle interactions. Under these conditions,

we can use an essentially fluid model. All currents are first calculated

from a zero temperature fluid model. Linear contributions to the currents

are then modified to include thermal effects by introducting the approp-

riate linear dielectric constants and susceptibilities. The appropriate

fluid equations are then simply

3 > e e
EV*—(V'V)V—-—

=)
=y
+

0 |-
<y
X
8‘

(3)
P ->
sz-n + div nV =0

where n and V refer to the density and velocity of the electrons. Ion
contributions to the perturbed current densities are neglected since they
are negligible in this frequency regime.

With this framework in mind, the fluid eqyations are solved for
the Fourier amplitudes of n and ? and the relevant current denmsities
are computed. Next, time-varying equations for the wave packet amplitudes
are found, assuming that all waves are coherent. In a Fourier representa-

tion, Eqs. (3) reduce to

> 1e§k to IR & .: 1 > > ie »
B e e—— - — -J. . — . -
vk mw mw j wy (vkl sz)dk 55 w I (kcz vkl)(vkz+ nw, Ekz)dA

nk = % .J nk;vkzd)‘ . (5)




where d\ = dkydk;6(k-ki-k;) and dk, = dfcidw (1=1,2). 7  Labeling

» the sideband modes (wtwo,ﬁtfo) and (Zwtwo,zi&ﬁo) by #,2* respec-
tively, and examining Eqs.(5) in a regime in which ponderomotive forces
are important, we find that

®

> >
k'Vk kv
B eraea € (nAnp e
> e
’ V. i o VA4 )E - (kE +i€i§)-v°]
k"E_Ek’:T[ + - R A
o o
KV
] [ ie = ie
m [(v+ e WYL mgg E-)] AEal
>
kt > >
0 -t—J- . [nOV+ n, o]
& X £
->
+ ;ie*;ie [.,E;;-’ +ko§;-€)]
£+ ' m Ey m-a(oEk) w(ko
o o o
1 > > > ie >
+wo kvo k+mek) (6b)
kv kv
2k o
by s T
> >
iyt -afeag W0 - @8 8 2]
2k © 2w 2k 2w Lw, “2-T24 o T2=72-0 THH W
kv
o ie .
e [(Vz+ * o Fa) = (o Ez-)] e
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Bys = ¥ 57 " [Ro¥ps ¥ By Yol

—)
= ie 2> &> fe ko > e ﬁ e
Vor =+ oy Bae + o [E; Vot Bo) * 5 O 2k)] s

2KV
o (> ie
e (v2k ¥ E2k) (6d)

where we have denoted the complex amplitudes 7/ by E;,V; and

E
kO’ kO

neglected the effects of pump depletion. We have also assumed that

vZk may be of the same order as Vk . These equations can be readily
solved up to terms of order w/wb . The results are as follows:
KV
k > ie
ny Hele y M m SRy (7a)
> > -
keV k
o > - i > - R R
n, mo nk y Vi + —'—-mw [Ei + -m—' (Vo' Pk)] (7b)
KV
e - ie 3
Yk~ Mo w v Vox ™ T Sum Pax (7c)
> > >
i i oasiis F +P..)] (74
M "t v Taw T tag Vi oug Vet )
where
B, = E g aty.% 8
k ﬁk b T Ty (8)

with a corresponding expression for §2k . According to Eqs.(7), the
ponderomotive forces modify the low frequency velocity amplitudes by
- > >
changing Ek to Pk and E2k to 32
density contributions. We note that, in this regime, Et[(Vo-ii)/ml is

o which in turn affects all

of the same order as E+ and cannot be neglected. Therefore, there are




also ponderomotive modifications to the velocity amplitudes associated

with the high frequency side bands.

tained from Eqs.(5), are as follows:

where

()
"k

S CRTCRNCA I

>
k

_le Sof3@ *(2)).+ 1 (#(2)_ +(2))+.* )
& O pige i E d U S 0

-‘: > -+
[ 2 o5, )

+

k 2(2) 2 2)\>
w [“ Yox T (“é-) A °§+))Vo] Nk

4
te S0 . (3 ,2) . 2
J wy (V2+ +V2-) Eo

1 (32 _ +(2)) > >
* 2w (Vz- R R Y, ol

s
k., -
L (2) 2)z ]
Wy [nov2t > ok vo +N21
-k> >
S 2 (3@ )+ Te5@ 43,
mWy, W 2k o w, 2k 2+

The second order contributions, ob-

(9a)

(9b)

(9¢)

(9d)
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b, ]
Pok -kt gV T

> 4
-_is [E(} 28 (3, 4, )
o, [m( ~ktk iZk)"mu Vo Fas

k
* ok [(2*'34::1; )ipz . (th'.‘;-k %(ﬁo'izk)

5 ->.-> -+ > .-b *> (> : ie
(k Vas )“Pz x (k; vzk)“:(vo Ek) o

(10a)

(10b)




N K, Y 5av sal
. 2% "0 "NV taV_ ta¥,
A k_
* L ie = . =
e 2w[ W, Ek)+w+(v E) + = @, E_)]
1 _l_[-»:»-; e D S i g e S ie _
+ 55 (ETOR - G_TPE_E B - &, VR, rk)] a0 1
->
: N -535 ¥ % V]
BN, kAT Tk
Ve, = 1e 11-; E)+ 5@ &
gu- 7" [—(VE) B(V+F‘k)
% e
1 > > > > > > > ie
+ w2+ [-(kt Vk)kt(vo 31() + (k'Vi)kP] ;u;; (104)
5 P=(B+E )V = @, 8, )T
L 2+ 2~ i
.
We now apply the theory to a Stokes mode, D_<<D+ , where®
D, = ktzc:2 - stwiz (11)
A} with
2/ 2
] Et'l-w /“’: 12)
This implies that
i S

v
E+~Ek..—c‘-’-s (13a)




as we show below. With this ordering, the second order perturbations

reduce to

The current density perturbations, due to the response of the electrons

to the electric and magnetic fields, are then as follows:




Thermal corrections to the first order current density perturbations can

2
be obtained by letting w;/wz + =x(k,w) , w:/w+ +> -x(k+,m+), etc. The

second term on the right side of Eqns (15b) and (15d) will be shown below
to give a negligible contribution to Eqns (17a) and (17b), respectively.
" If we add thermal corrections to all other terms of first order, we obtain
the following expressions for the first order current density perturbations:
+(1) _i , -+
’ Jk ~ wy (k,w) Pk (16a)
1 v B
w .
»(1).-_!._ > .}_ > p-b(o k)
J: 4m wtxtEi ¥ 4m x(k,m)voypk $ 4nw+ kt w (16b)
5 +
3« oL gux(ak,20)F (16¢c)
2k 4 5 2k
; A
7O L : i - 4 "(o Zk) .
21 R I T e el P oy
3 Since the second order current density perturbations 3&2) and 35:) are
both proportional to k , the fields Ek and EZk remain electrostatic
in second order.
p § -> >
The Fourier-transformed wave equations for Et and E2+ are as
follows:
2 2 >
w w w v -3
e S > > > 4 + - > o k
b} [(kt—wtlc i - ktk*].zi 5 c_z xiEi : ?"_ )(VokPk 3 Eg- kt( w )
2 3
w, w_V
$dn-d 4 2K
1 i B g e A (17a)
i 8
v
E 10
:
F -
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¥ )
4 v .
: 2 , 2 o & 2+ >’ 4 >
[(kyy - m&:/c 3L = k2¢k211°E21 oty e o s x(2k,2w)v°2kP2k

satisfy the equations

2 2w
2
w, w "I' 2
3 2t p ok .2
1] * 2 1e'c—5— - Pk (17b)
where 1 is the unit operator. These equations reduce to
'
2, 2> = >
[th —ktkic ]-Ei=ViPk+ Jt (18)
and
' Brct b oyl =¥ y, |
(05,1 = Ky kyse 1By, = VouPop + 5, e |
where e ?
> e k'Vo
vt=v+mp k, 1o (20a)
v with
= >
V = wo)(vok (20b)
-+
L4 and with a similar expression for V2 $ The normalized current densities,
Jt , and JZt’ are given by
2
W V 2
) i R B o k
= - pie, b oor Puly (ein)
: and
, o
g w v I8
PR R T |
L 32: sxien, of & o By (21b) |
where terms of order w/w o are neglected. Similarly, E.k and EZk 1]
¢ i ]
i
: f




szk = - wzx(k,m)Pk + £ (22a)
2w? Ey = - (2w)2x(2k,2w)P2k + IZk (22b)
where
2
> B
A =t yile Z)% o T3kt (23a)
and 3
-> w l-() 2
Sp=-egy 2¥ . (23b)

We now invert Eq.(18) and obtain

= >
E’t g SO b (24a)
where
M, = [I- titta/w;et]/nt (24b)

Using Eqs.(22) and (24) to eliminate Ek s E+ and E_ from Eq.(8), we

obtain the following equation for P

k :
kﬁo 2 -k’.vo > e
Pk[l * x(kw) + R ((‘!+ R “’p( k ) M Ky - k-))]
k¥
= {;}- - .5. " (258)
with
MeFoM o7 +M - T (25b)

12




We note that

= wolw (26)

2
) wpkw o Bg'hp T Bk,

and therefore, that Eq.(25) reduces in lowest order to

>
AR
RAwE) = T -2 s 27)
where
Mw,k) = 1 + x(k,w) + kzx(k,m)ﬁo-og+ +M4) -O’o (28)

is the modified dielectric constant of the medium in the presence of

*
E;. Referring to Eqs.(21) and (23), we see that

% kVo wo
Keiifiss & (29)

which allows j@ to be eliminated from Eq.(27) to give

P AW,K) = é} [1 4 k2$°-(g+ +¥) -Vo]

%

b~ X(ka) (-1 + A(w,k)) (30)

*
EqQ.(28) can be readily shown to reduce to the result of Drake et al.,

- > _e'Eo
if one remembers that Vo - - 1e§°/mm° , while in Ref.5, Vo = ;zz; :

13




where Eq.(28) has been used to further simplify the result. In a similar

manner, we find that the equations for P2k and A(2w,2k) are the same

as Eqs.(30) and (28) respectively if (w,k) 1is replaced by (2w,2k).

Using Eq. (30) to eliminate Pk

wA(w,k)E, = £

w2A(w,k)E, = - wk £ g*-\'fo

Similarly, we find

2
(2w) A(2m,2k)E2k = jZk

2 > +
(20)28(20,2K)E,, = - 20 k S, M, V

For a Stokes mode, D~ ww

o

2
- D+ ~ wo

and D

from Eqs.(22) and (24, gives

(31)

(32)

(33)

(34)

2

94 ~ wo for

k = Zkocose i Estimating the relative magnitudes of E, and E,_ from

Egqs. (31-32), assuming that (Volc)2 ~ w/w_ , ylelds

EE 1 D+

+

S
AT A

Similarly, we find

£2£ e .“.'9_“_"3 i Xo_
Ex Dy s

= v ey 2 w..;
E wok|u+- °| w kv kv V /c

-~

o

')
-
c

14

k

(35a)

(35b)

(36)




We now show that, for w =-% wl

> ->
A(2w,2k) = €(2w,2k) + (2k)2x(2k,2w)vo M,, + ¥, )V, (37)

since € = 1 + X . The last term on the right side of Eq.(37) is of
order (Volc)2 , while e(wz,Zk) ~ 0 . Therefore, A(2w,2k) = 0 for
some W close to w2/2 %

1f A(wzlz,k) = 0 for some Eo , there may be significant coupling
of energy between the waves Ek’Et and E2k’E2t . The dispersion rela-

tion A(w,k) = 0 for a Stokes mode in the regime w>>kVe reduces to°
(w-Aw)(wz—w2?+1w21mx) = - Zwowpzwz(lvolzlcz) (38)

where the geometry of the scattering is described by the following para-

meters:
Y = |sind|cos® \
e vV |2/12 2 2 1% o8 |2 2
sin®p = |k_x V_| /k_|V°| |E-E_|*/|EE_|
> >
kek 2,2
ok - R
Mo = ¢ - e } (39)
o o
D_(k_,w_ ) = 2wo(w-Aw)
k = 2k cosb }
o

We neglect Imy(k,w) compared to Imw/Rew and look for unstable modes

with Re w = w2/2 . Let
F(w) = (w-Aw) (wz-wgz) (40)

We plot F(w) vs. w for real values of w and determine Aw such

15

» A(2w,2k) = 0. According to Eq.(28),




X
that F'(w2/2) = 0 . This requires Aw = - %-wl . For this value of
Aw F(w£/2) - - f%-wz . Eq.(38) has three real roots for
A= 200 ’ W’(lv [*/e?) < Ig wz . For larger values of A , two real
roots disappear, and the system becomes unstable, there being now one
real root and two roots which are complex conjugates of each other.
For back-scattering , ¥2 ~ 1 , which implies that
(IVol)z 9 ¥
<) 2% o (41)
o
is necessary for instability at this frequency. Setting
w = wl/2 + 1y
e SRR
Ao i [ B (42)
Moo= =20, + 08
4 L
and assuming that Imy = 0 , the real and imaginary parts of Eq.(38) take
the form
L, - 8ay2 -2 w208 = (43a)
5 Y% LR B i
Mmznﬂ- 0 (43b)
where AA = A - Ao and the relevant solution for A ,
awia [ g -] ]
=3 t-V1+m/ 8o (44)

can be expanded to give the following results for AL and Y?




RTINS = T g e
3
2
:

0 2 AA
A - 5 m—z!- (453)
Y2 - & _AA (45b)
5 wl

In terms of the pump, we have

2 = —_— e
v/ wz) 20 E,

where Eo is the threshold value corresponding to Y = 0 and AEo is

a small increment.

Applying standard techniques to Eqs.(31-34) enables us to obtain
the following results for the equations describing the wave packet
amplitudes, assuming that they are spatially independent:’
E K/k
9 i -1AQ. t
ey NGRS TSI > X (47a)
(~3t ) = 3 (w?4) k - -
By ow o =t vo
m-mzlz
1
9 k/k
N g R % S
EZi .B_G(m 8) -wozmtt.vo
W=,
where
ARy = w(2k) + w(-k) - w(k) (48a)
A, = 2w(k) - w(2k) (48b)
AE ;
2 (2 A iV, % 8 - !
-371).(“) 8 3 “"9.) s 15 Eo s () ! 4
m-wz/Z
%
|
i
17 l ‘




aiw'(sz) = Zmz (484d)

m*mz

Since A(2w,2k) = €(2w,2k) , Y, is just the usual linear Landau damp-
ing rate of a Bohm-Gross mode and, in this case, its sidebands.
If we neglect the slight frequency mismatches, AR, and AQ, ,

the equations for the wave amplitudes reduce to

']
(-a-g - Y)Ek(t) = clPZkP-k (49a)
(-—3 )* KMV PP (49b)
% T B (e) = = CIE U Ve Tk -k
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III. ANALYSIS

We now discuss the properties of Eqs.(49). We assume that at
t=0, E2k ~ Ek . Then, according to Eqs.(35-36), E+ 5 (Vo/c)Ek g
E_ ~ Ek/(Vo/c) , and Eyy ~ (Vo/c)Ek . Since u)>>kVe » VY
We show below that E2k and EZi vary on a time scale . 1l/y .
We therefore neglect Yo in Eqs.(49). Also, a knowledge of Ek(t) 5
E2k(t) and the initial conditions of all the waves is sufficient to

determine the nonlinear evaluation of E,Z and E One merely ex-

2+ °

presses Egs. (49) in integral form as follows:

t
E (t) = E (0)e'" + Io at " Veip, (0p_ (1) (51a)
- > > t -
E,(t) = E,(0)e"" ~ kM, V) Io ar '€ T)c,1>2k(r)1>_k(r) (51b)

with similar expressions for E2k and E2+ « Solving for the integral

in Eq.(51la) allows Ei(t) to take the form
E,(t) = E,(0)e"" - wok(ut-?l’o )(Ek(t) = rk(O)eY‘) (52)

The equation for Ez:(t) is obviously the same with y=0 and (w,k)
replaced by (2w,2k), Instead of analyzing Ek(t) and its harmonic, it
is more advantageous to examine Pk(t) and P2k(t). These are the
Fourier amplitudes of the total first order field that govern the motion

of the electrons. In terms of Pk and PZk’ we find that

)
(a_t_ -'Y)Pk - CIPZkP”k(l + kzvo°(§+ !_) -vo)

= e1PyP (-1 + 8w,k |
w=wy /2
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and, similarly,

9 & 2
e P2k csz (54)

where we have taken appropriate linear combinations of Eqs.(49) and used
Eqs. (28) and (37), remembering that A(mzlz,k) & A(mz,Zk) ~ 0 . We have
therefore reduced the analysis of a six-wave system to an analogous one
involving only two waves.

In order to analyze Eqs.(53-54), we first transform them to a dim-
ensionless form and then express them in a polar representation. In
terms of the nondimensional quantities T = yt , Ak = (/E:E;?Y)Pk ~

Ajy = (c1/Y)P2k » Egs.(53-54) take the form

(Sa‘f ' 1)‘1 = - A e

)

5o A Akz (55b)

where, denoting the complex conjugate by * , Ak*- A_k ,» since Pk*- P_k
is8 a reality condition on the total electric field. Setting

Ak = akei¢k and A2k = azkeid’zk » Eqs.(55) reduce to

d

T 3% T 8 =~ 8y o8 ¢ (56a)
L = s 2cos ¢ (56b)

dt "2k k

£ tad - 222
pr- (ak a,, sin ¢) 2a, a,, 8in ¢ (56c)




where ¢ = ¢2k - 2¢k . Eq.(56c) is obtained from a linear combination

of the imaginary parts of Eqs.(55a) and (55b). 1Its solution
2
ala,, sin ¢ = a?(0)a,, (0) sin ¢(0)e"" (57)

allows Eqs.(56a) and (56b) to be further reduced to the form

1
%% = ¥ 2/x2y-1 a’s (58a)
1
%¥-- - 2/x%y-1 eZT a s (58b)
where
2 2T =%
x(1) = a, (e a (59a)
() =l () o P (59b
y(t ay (1) a )
a= akz (0)a,, (0)sin ¢(0) (59¢)
by allowing cos ¢ to be eliminated. We note that
dx =27
> Aol (60)
a relation which enables Eqs.(58) to be readily analyzed in the phase
plane. An upper bound may be obtained for x(T) by integrating Eq.(60).
We find that
{ x(1) T 9! 97!
; j g = I (-4 2 y(r') - 2672 y(atyar'] (61)
t x(0) T'=0 (




which reduces to
x(1) s y(0) + x(0) (62)

where the inequality is a result of neglecting negative definite terms
from the right side of Eq.(6l1). We show below, in fact, that x(t) goes
asymptotically to zero.

It is useful to examine the motion of x and y 1in the phase plane.
According to Eqs.(58), the motion is bounded by the curve x?y-1 = 0,
and from Eq. (60), I(dx/dy)l is equal to one at T=0, and decreases mono~-
tonically to zero. The motion can be analyzed further by examining an
equation which describes the evolution of ¢ . We take an appropriate

linear combination of the imaginary parts of Eqs.(55) and get

1
5 %‘TE - ke e i Rt (63)

Turning points in Fig. I occur when ¢ = /2 or 3n/2 . Since

|[dx| < [dy| , between turning points, the trajectory to the right will
always lie above the last trajectory to the left, and also above the
trajectory to the left that immediately follows. The motion is relatively

1
rapid, depending on the magnitude of a/3

(nominally in the range 1-10),
except near the boundaries. As a first approximation, we assume straight-
line motion between turning points except near the boundaries (see Fig. I).

L

We define two sets {xjx} and {xjr} such that x labels the

3
value of x at a left turning point and xjr » one that occurs to the
right, where it is understood that j increases with time. It is clear
from the analysis above that both sets are monotonically decreasing with

lower bound equal to zero. Therefore, x(T) goes to zero asymptotically.
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Nonlinear growth rates may be determined from an analysis of Eq.(63).

First, we note that the signed square root in Eqs.(58) is proportional

to cot ¢ . According to Eq.(57), if ¢(0) # 0 or m , then ¢(T)
never goes to 0 or 7 in finite time, unless perhaps x or vy
becomes infinite at that time. The motion is therefore restricted to
values in the half circle, 0 < ¢ <m or m< ¢ < 2m. We assume for
definiteness that 0 < ¢(0) < m , and note that ¢'(T) is equal to
zero somewhere an every trajectory between turning points. Let

{xj- x(Tj)} be the set of values of x such that ¢'(Tj) =0 .
According to Eq.(63), at this value of T = T

3
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2 3 i
x(rj)e + 2y(1j) 0 : (64)

Not only does x(T,) go to zero as j =+ ® , but also dx/dT goes to

3
zero with increasing j as exhibited in Fig. I. This implies that

2 - -+
x(rj)y(rj) 1+0 (65)

asymptotically, as we see from Eqs.(58). The envelopes of the curves
describing x(T) and y(T) are now readily determined by examining
their values at the turning points. After several trajectories between
turning points, the motion will be nearly horizontal, so that slight

2

changes in the slope of the line -xe T+2y = 0 will intersect the curve

x’y=1 at neighboring turning points. Therefore,

xy=l , x=2Q48)y, 0<8<«<1

(at a left twurming point)

X = 2e-21(1-6')y , 0< '

(at a right turning point)




i 8
from which we find
§. N Yy -2,
Max x = x, = 2"%(1+8) e A (67a)
2T i
]
4. T
AT
Max y = yjr - _E_._j-—Tl: (67],)
tSTj" [4(1-8")]
or in terms of ‘Pkl and |P2k| i
1 1 27 =%
Max B | = —— alfr2a+6)17% " (68a)
st 2 cjC,y
b
Vs Ytk
Max [Py | = EY‘ g e d y (68b)
TsTjr 1 [4(1-6")2%)7°
Max [Py, | 1 1yt ij) ek
o TP e SERU TR
L o T 2%
T
i ’,
|
l
Since T = yt, this implies that Pk and P2k evolve nonlinearly with -
2
a growth rate YNL 3 s i
The case where ¢(0) = 0 or T must be considered separately. !
: According to Eq.(57), this implies that ¢(T) = ¢(0) for all T . In
; s that case, Eqs.(56a) and (56b) reduce to
: d 2 o 2 -
! T % 2a,°(1 ¥ a,,) (69a)
' s L o =2al (69b)
at % "
0
(1) = (69¢)
w
X
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from which another constant of the motion may be deduced, namely,

8 20 + aye (D) + 23, (0 = A, (70)
A typical trajectory (ak2 VS. aZk) is shown in Fig. 4. The orbit
labeled (+) denotes ¢(T) = 0 , while the orbit denoted by (=)
refers to ¢(t) = m . The small circle corresponds to the initial
point , T = 0 . According to the figure, both orbits touch the
a5 axis and stop at a time which can be shown to correspond to a
few units of T . In this case, therefore, Pk + 0, and P2k
saturates after a few linear e-folding times (Yt 2 1) . (Negative
values of ay, on the orbit 1labeled (-) are due to the fact that
the trajectory of Ak in the complex plane is along a ray, gtarting

at a point in Quadrant I , passing through the origin, and ending in

the third quadrant.)

IV. CONCLUDING REMARKS

We have examined the nonlinear properties associated with stimu-
lated Raman wave-wave scattering off a natural plasma mode and a
strongly modified plasma mode, and found that this complicated process,
involving the mode-coupling of seven waves, can be reduced to an analy-
sis of a two-wave system. An interesting feature of this system is that
the waves have no asymptotic dependence on initial conditions, other
than an assumption that Ek and its harmonic are initially of the same
order. We can then determine analytically the asymptotic prop-
erties of the waves, and find that there is a strong nonlinear modi-
fication of the usual linear growth rate associated with stimulated Raman

scattering and also that, although the harmonic has a rather small linear




damping rate Yy, o it grows nonlinearly at the same rate as its funda-

’ mental in the asymptotic limit.
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