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SPECTRAL DIS~~RTION MEAS UR ES FOR SPEECH COMPRESSION

• 
Y. Matsuyama, A. Buzo, and R.M. Gray*

ABSTRACT

In recent years several measures of distortion between speech

waveforms have been proposed as substitutes for the traditional but

• subjectively inadequate mean-s~iuared error . All of these measures

involve some form of distortion measure between the second order proper-

ties of the speech processes producing the waveforms instead of an average

of the waveform error power. In particular , they depend on the power

spectral densities or linear models of the speech process. In this report

the properties and interrelations of several such measures are developed.

In particular , the relative strengths or equivalences of the various

implications and applications of these measures to prediction , detection ,

and coding are summarized .

*The authors are with the Information Systems Laboratory, Stanford
- ‘ University, Stanford , CA 94305. This research was supported by the

Air Force Office of Scientific Research under Contract F44620—73—C-0065
and by the Joint Services Electronics Program at Stanford under contract
N00014—75—C—0601.
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1. INTRODUCTION

Any communications system for ht an speech h~~ a na t ural fidelity

criterion —— the subjective fidelity for a given custos. r , that ~s , whether

or not the final reconstructed s,eech sounds “good’ or “bad.” For

several reasons, however , it is desirable to have a ma t h em a ti caL f i delity

criterion —- a formula for computing a nl ber from I~~’ .pe.t i wavetorma

that measures the “distortion” or “badness of approii*matt n” between

them. Such a mathematical criterion provtdea an absolute yardstick

independent of individual listeners’ differences of taste and may al low

the theoretical analysis of such systems, e . g . , the application of

communications theory to develop “optimal” performance bounds with which

to compare actual system performance . In addition , a distortion measure

can play a crucial role in the actual operation of the communIcation

systems or, for example , in coding or generalized quantization systems

where one selects a reproduction symbol from an allowed set by choosing

the one having minimum distortion from the given input symbol .

To be useful, any such criterion must possess to some degree the

following attributes: (1) It should be subjectively meaningful , that is,

large (small) distortion should correspond to bad (good) subjective quality.

(2) It should be mathematically tractable so as to allow theoretical

analyses. (3) It should be computable so that the distortions resulting

in an actual system can be determined. Historically the mean-squared

error between waveforms has been greatly used because it met attributes

(2) and (3), but it has a major drawback of not being sufficiently

subjectively meaningful —- especially in systems such as Linear Predic-
tive Coded (LPC) systems. An intuitive explanation for the subjective

2 
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inadequacy of mean—squared error is tha t an ear needs to only recognize

the random process producing the waveform to within some accuracy and

does not need to accurately reproduce the specific waveform itself , e.g.,

a “shh” sound is essentially a white noise process and any waveform

“typical” or “representative” or “generic” of this process (in the sense

of the ergodic theorem) will sound the same , even though such waveforms

may differ drastically in individual appearance and hence in mean—

squared error. Demanding a small mean—squared error in a speech com-

pression system will therefore often require far more bits and much more

accuracy than the human ear requires.

The highly successful LPC systems, however , model speech as a

composite or “ switched” source formed by outputting segments of stationary

and ergodic subsources for intervals of time that are long enough for

an observer to estimate the process (or model of a process) being

observed and then to transmit a description of the process rather than

the actual ’ observed wavefo rm . To measure the distortion of such a system

one is naturally led to a distortion measure that measures the closeness

of the original and reproduced processes or models rather than the actual

waveforms , e.g. , be tween the power spectral densities or related quantities.

To compute the distortion one mus t view the actual waveforms and

estimate such power spectral densities via t ime—average correlation and

Fourier transforms , spectrum analyzers , or appropriately “smoothed”

estimates . For a discussion of estimating spectra from waveforms see ,

e.g. , Brillinger { 1 J . Here it is assumed that the time windows are long

enough for the ergodic theorem to ensure that these sample averages

nearly equal their expectations , the “ true” power spectral densities

3
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involved. Thus, such distortion measures can be viewed as measures of

the distortion between power spectral densities or related second order -

; properties of two processes rather than distortion between waveforms.

A general discussion and motivation along with relevant references for

such dis tortion measures may be foun d in Gray and Markel [2] . and related

discussions may be found in Viswanathan , et. al . 13] and Makhoul 14].
In addition , some of these distortion measures on spectra or

models have proved amenable to analysis, permitting the development of

subjectively meaningful mathematical bounds on optimal performance in LPC

coded speech with single-symbol quantization of the reflection coeffi-

cients [5,6]. These preliminary results suggest that more general

techniques from information and communications theory may be applicable

to obtain useful performance bounds on more general speech communication

systems, for example, LPC sys tems followed by data compression systems

with memory.

Many of these measures appear quite different , possess different

properties, and have proved useful for different applications . In [2],

Gray and Markel develop some properties and interrelations and dis-

cuss the application of some of these measures. In this paper we expand

their work by developing more of the properties and interrelations of

their distortion Measures and some other related distortion measures.

Of particular interest is the question of wh~ ’ a class of distortion

measures is “equivalent” in the sense that good (bad) performance under

one class measure means good (bad) performance under any other. This

implies that if one member of the class is subjectively meaningful ,

• then so are all of the others and hence a designer can select a

distortion measure from the class on the basis of tractability or

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  •
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computational efficiency for a particular problem. A second goal of

this paper is to provide some interpretations and implication of these

distances for coding, prediction , and detection theory that were not

given in [2]. These properties help to provide some mathematical intui—

tion as to why these measures are subjectively useful.

5 / 
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2. PRELIMINARIES ‘ -

L Spaces (see, e.g., Ash [7 ], Ch. 2)

Let 7fl denote the space of all measurable complex—valued functions

f on [ —1r ,1c] . For p � 1 define L as the subspace of Yfl con-

taining all f for which

II fIi~ 
A ((2~)

1 J~ 
tf (e)I~de)” <

-lv

that is, the integral exists and is finite. If we consider f and g

to be equal if

I de 0
e: f(e)~g(e)

(f=g almost everywhere) , then L is a formed linear space with

norm 
~~~~~~~~~~ 

The L norms are successively stronger in the sense that

il~II~ � llf~I q if q � p . (2.1)

Important inequalities are the Minkowski or triangle inequality

If+~II~ IIfII~ +

the implied inequality

f— ga � ~~ II g~j , (2.2)

Holder’s inequality

� 1 f1l p11g 11 q , ( lip )  + (l/q) = 1,

and its special case the Cauchy-Schwartz inequality

~ 
fg~i 1 ~ II ~II 211 gIl 2 

•
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Random Processes (Grenader and Szeg~ 18 i~ 
Ch. 10; Doob [9 1,  Ch. 10 & 12)

Let [X )~ be a real—valued zero mean wide-sense stationary
• . fl n=-co

discrete—time random process. We consider discrete time both for simplicity

j and to be consistent with the speech literature which focuses on sampled

waveforms (assumed sampled at a sufficiently high rate so that negligible

distortion occurs). Define the autocorrelation function r(k) =

• E X X where E denotes expectation and assume that
nn -k’

E Jr(n)~ < (2.3) —

so that the power spectral density

£(e) = � r(n)e~~~~ , 6 € [-ir ,n]
n=—~

is well-defined , continuous, even, and f ~ L1 
(in fact, (2.3) Implies that

f is bounded). Furthermore ,

r(n) = (2lv)~~~J’ e
1
~~f(6)d6 . (2.4)

When we begin with a spectral density and form r as above, we will

often denote it by rf
(n) .

By standard arguments from the theory of random processes we can

go the other way, that is, given a nonnegative real-valued even f €

there exists a random process (X 1.11 having f as spectral density and

r(n) of (2.4) as an autocorrelation function. Thus we can define the

space 4 of all power spectral densities as the collection of all

real-valued , nonnegative, even f ~ L1
.

• A process (K) is said to be white if E = 0 and r(n) = r(O)6~
(6~ = 1 for n = 0 , 0 otherwise) in which case f(6) = r(0),

e € ~-~~ej.

7
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Linear Filters

A (causal and time—invariant) linear filter is described by a

6—response (response to a Kronekker 
~ 

) h~ ; k=0,l,... If the filter

input Is (X), then the output process (Yb) is described by the discrete

convolution

y = EJI Xa

where the sum exists as a limit In the mean if • -

�:~~
hk < O O

k=0

If

~~lhkI <

the filter is said to be stable. A filter is also described by its

transfer function 11(e ie) where

11(z) = ~~ ~~~-k

k=0

We define h0 as the gain of the filter. If h0 = 1, the filter is

called monic . Any filter can be written as the cascade of a monic

filter and a gain. Both H and h will be referred to as filters.

Given two filters b and g, the cascade filter d (or D) is

defined by the convolution

= E

or D(z) = H(z)G(z). Note that since the filters are causal, we have

that •

= h
0
g
0 . (2.5)

8 
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If g is such that d5 = 6

~ 
(or, equivalently, H(z) G(z) = 1) we say

that g is the Inverse filter of h (or vice—versa). Note that

If Ii and g are inverse filters, then (2.5) Implies that

h0g0 = 1 . (2.6)

If a random process (X~) with spectral density f is input to

a filter H, then the output process has power spectral density

f(6)IH(e1O)1
2. In particular , if the input process is white with

f(e) = r(0) = ,
2

, then the output process has power spectral density

o
2

1 H(e
16

)1
2. The spectral factorization theorem states that all non-

deterministic processes have a second order model of this form with

H monic . A process ( X )  with spectral density 1 is nondeterministic

if
It

£n f(O)d6 > —
~~ 

. (2.7)

To be precise, the spectral factorization theorem states that (X~) is

nondeterministic if and only if the spectral density f has the

following form:

f ( O) =

where

• f~ (O) = cl
f
B(e )

B(z) = L bk
Z ~ 0 , IzI > 1

k=0

b0 = l  ,

k
~~~ I b kI

2

= exp((2It) ’J’ £n r(e d6 ,

9
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that is, 8(z) is analytic in the open unit circle, B is a monic

filter , and f~ is a causal filter with gain c~~. Intuitively , a

process is nondeterv.,inistic if and only if it can be represented to second

order by a one—sided or causal moving average

x =~~ E bZn f k=o k n_k —

where (Z
n
) is white with E Z2 = 1. The white process (~ fZ) is

called the innovations process of Cx ). In other words, a white

process which drives a causal monic filter to produce (x~) is the

innovations of (X ).
n

• We make for later convenience the assumption that 1/f € L
1.

This implies (2.7) from Jensen’s inequality.

By assumption f € L1 and hence from Jensen’s inequality we

have

� (2,v)~~ S f(6)d6 = r(0) < (2 .8)
— It

with equality if and only if f (s )  = = r(0), 6 € [—lv , lv], i.e .,  the

process is white and equals its own innovations. Since < w ,

f ( e )  can also be expressed in factored form wi th

f” (e) = clf /’c(e 16) ,

C(z) = 

k=O k ~ 0 , IzI > 1 ,

C0 = 1

~ i d

2 

< . 

•

k=0 k

with as before. This yields a one—sided autoregressive seccxid order 
• 
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model of the form

x = E c x  +~~~Zn 
k=l 

k n-k f n

• Comparison with the moving average model shows that B and C are

inverse filters.

Denote by ‘f ~ the class of spectral densities (members of 4 )

for which 1/f € L1. Thus if f € ?~ it is nondeterministic (and

so Is 1/f) and has both moving average and autoregressive models.

Note also that tT1,~f =

A crucial facet of the preceeding models is their causality.

Any power spectral density f € 4 can be modeled to second order as the

output of the noncausal filter ~]~‘2 (positive square root) driven by

(Zn
) yielding a two—sided moving average representation X~ =

E b’Z . Hence we will refer to f+ as a causal model and f”2
k=—~ k n-k

as a noncausal model for f. Note that f112 exists more generally and

that if both exist, f1’2 = ~~~



Linear Prediction (Grenander and Szeg6 [8 ], ch. 10, Doob [ 9], Ch. 12,

Gray and Markel [23])

• For a finite integer m and a process(X~)~ form a one—step linear

predictor 
~~ 

of X~ of the form

m
x = h X

k=l k n-k

with average squared error

m
E(e

2
) = E((Xn

_ ~~)
2
) = E((X~

_ 

k=l~~~~~~ 
-

Define the monic filter a
k 

by a0 
= 1, a

k 
= 

~
‘k’ 

k / 0 (h
k ~ 

0

if Ic < 0 or k> m). We have then

E(e
2) = E(IEak

X
kI
2) = (2It)

~~~S 
f(e)IA(e ie)I 2de , (2.9)

where A(z) = l—H(z)~ 1- 2.. ~~lhkz
k. We wish to find the monic A (and

hence H) that minimizes E(e
2) with the resulting squared error a

2. The

solution is well—known to be given by the A , say A , that solves the

linear system of equations

= (2ff)~~~J~ f(O)~ (e~~)d6 = 

ko
k f

0 = (2it)’J
’ f(6)A(~~~)~~

ied6 = E
~~k

rf
(k_j )p (2.10) 

• 

-

~

j =

Note this is easily proved by observing that for any monic

order filter G (2.10) implies

(2it)
~~~S 

f(6)A(~~
19)G(e~~~)d6 = a~~ E g ~ (21t)~~ !f(e)~(~

4e)e+ikede =

• (2.11)

1 

12
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and hence for any mtI~ order monic filter A we have from (2.9)

that

E(e
2
) = (2It)’’ 5 f(e)IA (e 

ie)1 2d6

= 

(:

_ l

_
~~~ :e~~~~

e i6) + A(e 16) ie)I 2de

= 
~m 

+ (2~t) 5f(e)IA(e ) — A(e )~ dO

+ 

~~e
u2

~~~~~r 
f(O)A(e 8)(A(eiO)_~ (e 

iO))de)

= a2 
+ (2It) ’S f(6)!A(e 

iO) - A(e ie)I 2de � (2 .12 )

with equality if and only if A = A (almost everywhere). This is simply

the orthogonality principa l.

It is well—known that the system of equations (2.10) is equivalent

to the system of “correlation matching” equations [lO , 4j

—l ikO —l 2 10 2 ikerf
(k) = (2~) J’f(e)e dO = (2) f m4A~~ 

)I Je dO , (2.13)

k = 0,l,...,m

That (2.13) implies (2.10) is easy , the converse implication seems more

difficult to prove. Note that (2.13) implies tha t for any m
t
~
I

order filter G(e) = 
~~ ~~~ ~~~~~~ 

we have

(2~~~~_~[ ~~0~~~~0)~
2
d0 = (2~~~~_~ 

dO! 0)I 2o~/ 1~~(e 16) 1 2 (2 .14)

The minimum value of E(e~) is given by

13
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2 det(T
1
(f))

am = det(T (f))

where Tm(f) = f(2lv) 1! ~~~~~~~~~~~~~ k,j=0,1,... ,m—l) =

(r
f
(k_J); k,j=0,1,...,m—j) is the m

tl
~ order Toeplitz matrix of the

spectral density f. It is well—known from the theory of Toeplitz

forms (Grenander and Szegd [8]) that -, as m -. ~ and that

� a~. A similar argument to the preceeding shows that if m =

then a
2 

= a
2 

whence a
2 

� a
2 

for all m. In this case, if f has
~ f m f

autoregressive model c1~/ 1A 1 2 , then A = A is the best p iedictor and

the resulting e i.~ white with E e2 = ct~ , that is, passing (x)

through the filter A yields its innovations process and hence A is

called a whitening filter for f, (1/f
4 

and l/fl’2 also whiten f).

I

: ~

• 
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3. SPECTRAL RATIO DISTORTION MEASURES

In this section we consider basic properties of distortion measures

on ?~. In the next section several specific examples are introduced

and compared.

A distortion measure is a generalization of the notion of a distance

or metric. A distortion measure d( ,.) on ?~ is simply an assign-

ment of a nonnegative extended real number to each pair f, g in fl.

Intuitively , d(f,g) represents the distortion or cost or “badness of

approximation” of reproducing f as g. Without loss of generality

we can assume that d(f,f) = 0 (see, e.g. , Berger [ii]).

Distortion measures may oz may not have the following properties:

A distortion measure is (a) symmetric if d(f,g) = d(g,f), all

• f,g € ?~; (b) finite—valued if d(f,g) < ~~~, all f,g € ?~; (c) positive

definite if d(f,g) = 0 means f = g (almost everywhere); (d) metric

(actually , pseudo—metric) if d(f,g) � d(f,h) .,- d(h,g), all f,g,h €

A distortion measure is called a distance or a metric if it has all of

these properties. Metrics have additional structure over general dis-

tortion measures, but most basic theoretical results for distortion

measures such as information theoretic optimal performance bounds do not

require (a), (c) or (d). They do require (b) (at least with probability

• one since communication with finite average distortion is otherwise

impossible). In particular , nonsyinmetric distortion measures may not

be as easy to work with , but they have no inherent mathematical draw-

backs to communications theory and may in fact be more appropriate for

certain situations. The metric property , however, is quite useful

since it allows us to conclude that if in a given communications system

1 
_ _ _ _ _ _ _ _ _ _ _  
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the reproduction is produced in two steps and each step results in

small distortion, then the overall distortion will also be small.

Some of the distortion measures here will have similar properties since

they are defined In terms of L norms.p

Given two distortion measures d
1 

and d2 on a common space ?~,

we shall be concerned with which is “stronger” or “weaker.” We say

that d1 
is stronger than d2 or implies d2 and write d1 ~ d2

if small enough distortion under d1 implies that d2 is also small ,

that is, given f € ?~ and ~ > 0 there is a S > 0 such that if

d1
(f,g) � 5, then d2(f,g) � € . If d

1 ~ d2 
and d2 ~ d1, we say

that d1 and d2 
are equivalent and write d

1 ‘~~~ d2. Intuitively,

equivalent distortion measures yield the same notions of “good” and

“bad” performance even though their numerical values may differ . For

example , ~f— gt~2 
(which is a metric) and I~f—gI~ (which is not) are

obviously equivalent distortion measures. Clearly this is actually an

equivalence relation in the sense that d1~~ d2 and d24~ d3 implies

d1~~ d3
. The intuitive Importance of equivalence lies in the fact that

if a distortion measure d is subjectively meaningful , then so

are all other distortion measures equivalent to d since small and

large values yield the same notion of “good” and “bad ,” only the

numerical requirements of small and large change.

In some cases it is useful to define distortion measure in terms

of other distortion measures. For example , given distortion measures

d1
(f ,g) and d2(f,g) on ?~ one can define

d~~~(f,g) = (d
1
(f,g)~ + ~~(f g)~)

l/~ (3.1)

16 
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where q � 1 is a parameter. Sometimes a scaling is also included.

The special cases q = 1 and 2 are the most common, but general q

are sometimes considered as most of the properties remain true and a

• greater variety of distortion measures is thereby included . The

parameter q can be chosen for convenience since, as we now show,

the distortion measures d~~~(f,g) are all equivalent for fixed

and d2
. From Ash [7], pp. 83—88, we have that

� (~÷~ )~ � ~~~~~~~~~~~~~~~~~~~ ~~ , (3.2)

a,b �  0
q �  1

and hence

d~~~(f,g) � d
1
(f,g) + d

2
(f,g) � 2

l_l/
~~(~)(f ,g) (3 3)

and therefore d~~~(f,g)~=~ d~~~(f,g) for all q. Note that

d~~~(f,g) d~(f,g), i = 1,2, but that it may not be true, for example,

that d1
(f,g) ~ d~~~(f,g) .

An example of the previous construction is to symmetrize a non-

• symmetric distortion measure. A nonsymmetric distortion measure can be

syitnuetrized in a number of ways . The most common is to define

d
1

(f ,g) = d(f,g) and d2
(f,g) = d(g,f) and use (3.1), that is, to

define

(q) rl l/qd (f,g) = (d(f,g) + d(g,fY’) (3.4)

Equation (3.3) implies that the d’~~ are equivalent for all q.

A common useful class of distortion measures are difference distor—

tions having the following form: d(f,g) is a difference distortion

measure on ?~C L~ if there is a function cp:(-~ ,w) ... [0,~ ) such that

~

i

~

_ _ _ •  
_ _



cp(O) = 0, vp (x) � 0, and

d(f,g) = ItP(f_~)II~ , (.3.5)

where f—g Is well-defined since X and g are members of a linear

space. It is usually assumed that cp (Ixl) is nondecreasing with lx i

or, more strongly , that cp(x) is convex U (for example, cp(Ixl ) =1~~ 1~~ ,

q � 1). An alternate class of distortion measures sometimes referred

to as difference distortion measures reverses the roles of norm and ~

and sets

d’(f,g) = tP(I lf_ ~~~ll~~~~) , (3.6)

with q having the above properties . We shall call this a norm-difference

distortion measure.

Most distortion measures arising in speech applications, however,

are not difference measures . Instead they are ratio distortion measures

having the following form: Let cp:~ 0,cn) -* ~0,c~) satisfy p(l) = 0,

cp(x) .~ 0, and cp(x) is a convex U function of x (with a minimum

now at 1 instead of 0). A distortion measure of the form

d(f ,g) = lkP(f/~ )ll~~

is called a ratio distortion measure on ~~ The subscript a
~ 

will often

be replaced by a mnemonic. We also consider gain—normalized distortion

measures of the form

/f/a
2
\ -

d~~(f,g) = d (f/a~ , g/o ) = ~~~~~~~ c

where the subscript “n” is an abbrevation for “normalized.” Note that

a ratio distortion measure can also be considered as a difference

18
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distortion measure on the space ‘f
~ of all functions of the form .Ln f,

f ~ ~ , but we work with ?~ as our basic space as it contains the

basic structural properties of spectra. Analagous to (3.6) we can also

have a norm-ratio distortion measure of the form

d’(f,g) = ~P(ll f/~ l~)

Note that for p = 1 we have from Jensen s inequality that

d’( f ,g) = ~. (!l f/~~ 1
) � ItP(f/g)j 11 

= d~(f,g) (3.7)

and therefore for L1 
norms

d ~ d (3.8)

A variation on the ratio distortion measure that occurs in speech

processing is the gain-optimized distortion measure. Here we begin

with a ratio distortion measur d , but the dependence on the reproduction

gain is removed by replacing it with a gain a
2 that minimizes d .

This is usually done for one of two reasons. First, we may ignore the

original gain of a reproduction symbo l and replace it by a gain chosen to

minimize the given distortion measure . Second , by removing dependence of

the distortion measure d on a reproduction parameter such as the gain

it allows us the freedom of using a different distortion measure on the

gains. We thus define a gain-opt imized distortion measure

d° (f ,g) = ir,f d~ (fa
2g/02)

2 ~ g
~

If the ‘nfimum is a minimum , the optimum ~2 is denoted c~ and called

the optimum r.pr~duction gain. Not. tha t we remove the original repro-

duction gain by normalizing g and replace it by the new gain

~~ TTI.I -L
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but since the distortion measure is a ratio measure we can also write

d(f,g) = 

~~~~ 
~ (::)~ 

i~1~

= inf d (f/~
2
, g/a

2)
2 g
a�0

Note that obviously

d(f,g) � d ( f ,g) (3.9)

and therefore

%(f,g) ~ d(f ,g) . (3.10)

Given two spectral ratio distortion measures d
1
(f,g) = ilcP

1
(f/~~)ll~~

d2(f,g) = Ik2(f/~)II~, we can form a now distortion measure d~~~(f,g)

as in (3.1) by

d~
’
~~(f,g) = (lkp 1(f/g)J~ + ~1~p (f/g)11~)l/~ . (3.11)

Alternatively, we might combine the cp functions before taking the norm,

for example forming

cp*(f/g) = ~~~ ~~~~~~~ +

(the 1/2 is for convenience) and then define

d(f ,g) = ~cp*(f/g)~p

= 
~~ ~~~~~~~ ~ cp2(f/g))~

= ~ lcp1(f/g) + 
~ 2~~~”~~~” p 

(3.12)

The measures of (3.11) and (3.12) are related for q = 1 by

20
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~ d
W(f,g) = ~~~~~~~~~~~~~~~ ~ max(ll~1(f/~)ll~, ll~2(f/~)ll~) ~

~~~~~~~~~~~ = d ( f ,g) llc,(f/~)ll~+lkP2(f/~)Il~ = d~~~ (f ,g) , and

(q) (1)hence since d ~~ d we have tha t

* (q)
d <~ d , q = 1,2 , . . .  (3.13)

that is, both forms of syinmetrized measures are equivalent. In

particular, if one wishes to symmetrize a nonsynunetrlc distortion measure

then

(Il cp (f/ g) 1l ~ 1~p(g/f)11~)
l/~ (~ ~ ~cp(f/g) + ~(~/f) ll~ . (3.14)

Obviously other alternatives to (3.12) exist for forming cp~ from

and 
~2’ 

e.g., cp (f/g) = (cp (f/g)cp (f/gfl 112 yields another ratio

distortion measure. The arithmetic mean of (3.12), however, seems the

most useful. -

Another form of implication and equivalence of distortion measures

is the following: We say that d1 is stronger in a coding sense than

d2 and write d
1 D d2 

if for each f,g, g’ c ‘f ~’ we have that

d1
(f,g) � d1

(f,g’) implies that d2(f,g) � d2(f,g
’), i.e., if g’ is

a worse reproduction of f than g is under d1, then it is also

worse under d2. If d
1
D d2 and d1 C d2, we write d

1 CD d2 
and

say that d1 and d2 are coding equivalent . The name and application

of this concept arises in the following coding or quantization problem. - •

Consider f € as a symbol in an alphabet ~ and let ~ be a subset

of ?~ called a reproduction space or codebook (usually ?~ has a finite
number of members) . Given a distortion measure d1, define the

minimum distortion quantizer (or coder) f~ :’/~ 
-

~ ?~ by

21
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= g ~ if d~(f,~) � d1
(f,g’) , all g~ € ‘)~ , . 

• 
-

with some tie-breaking rule. Thus picks the closest or minimum

distortion (under d.) reproduction symbol to f. If d1 D d2, then

d2
(f,~ 2(f)) = d

2(f,f1
(f))

that is, a closest reproduction symbol ~1(f) under d
1 

is also a

closest reproduction under d2. (It may or may not be true that

= ~~(f) depending on the tie breaking rule). If d1 CD d2,

then the tie—breaking rules can be chosen so that f
1(f) = f2(f),

that is, coding equivalent distortion measures result in the same code,

Note , however , that the code may be “good” under one distortion measure

yet “bad” under another in the sense of average performance .

—

-
• 

• 
22
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4. EXAMPLES

In thi s section several examples of spectral ratio distortion

measures introduced in the speech literature along with some other

related measures are defined and motivated. In the next section their

properties and interrelations are developed. We begin by listing the

various measures along with comments on each. In each case we set

d(f,g) = ~ if the given integral does not exist.

1) The Itakura—Saito Distortion Measure

d 15
(f,g) = l f/g — 1 — Ln(f/g)II1 (4.1)

This is a ratio distortion measure with cp(x) = x-l—Ln x. This distance

was introduced by Itakura and Saito [12] and has the property that for

fixed f and a class (all g € ‘I? such that g(e ) = a2/ I E~~~Oake
_i c$

j
2
,

a0 = 1), then the g € 
~~ 

minimizing d 15
(f,g) is g(8) = a /IA (e 10

)1
2

where A is defined by (2.10) and yields the minimum prediction error

over all mth order prediction filters H = 1—A . Itakura and Saito

also showed that if the underlying process was assumed Gaussian , then

minimizing d15
(f ,a

2
/1 A 1

2
) is approximately equivalent to finding a

maximum likelihood guess of A given a sample power spectral density f.

A related less known property of this measure under a Gaussian assumption

is the following : If f and g are power spectral densities of two

zero mean Gaussian processes, then let P~ (X) and pul
(x

hl
), ~

n 
€ (_CD~ O)

n

denote the resulting probability density functions and define the ~th

order relative entropy (or Kullback-Leibler number or directed divergence)

[13 ,14,15]

I~ (f,g) = r dXmP~ (Xm )Lfl(P~ (Xn),Pfl (Xm)) -

-: 23
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This quantity is used both in detection and information theory.

It is well—known [13 ,14 ,15] that for Gaussian processes

1 
T (g) 

1 1 a
I ( f ,g)  = Ln det T~ (f) 

+ tr T ( f) T (g)  — , (4.2)

where “tr” denotes the trace of a matrix and , as previously discussed ,

T (f) is the ~th order autocorrelation matrix of f. From the asymp-

totic eigenvalue theorem for Toeplitz matrices [ 8,16 ,17], the normal-

ized directed divergence has limit

I(f,g) = lim n~~I(f ,g)
n —~ ~~

2

= ~~ L n 4 + ~~~~
(2 1r) ’S !4~4de —~~~~~

af -n

= -~~ d
15

(f ,g)  , (4.3)

that is, the Itakura—Saito distance between f and g is exactly half

the asymptotic per symbol Kullback—Leibler number under a Gaussian

assumption.

We note that

d15(f,g) = (2n)
~~~S (!~4 — 1 — .~n dO

= (2ir )
1

J’ — Ln

= rf/g
(O) - 1 - Ln (4.4)

g

where the integrand in the leftmost integral is nonnegative from the

inequality Ln x � x—l.

24 
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2) The Itakura Distortion Measure

2
~ f(0)/~‘ d

1
(f,g) = La (2,~)~~ 3’ d9

—it g(8)/a

= Ln (a rf/g (0)/a~ ) . (4.5)

This distortion was introduced by Itakura [ 18] as the gain—opt imized

Itakura—Saito distortion , tha t is,

d
1

(f ,g) = d~5
(f,g) (4.6)

The Itakura distort ion is a gain—normalized norm—ratio distortion

measure with rn(x) = Ln x for x � 1 since

/ 2
f f/as• d 1(f,g) 

= Ln ( —~~
. (4.7)

~~ g/cy 1

where the argument is greater than 1 from (2.8) applied to f/g

coupled with the fact that t~~/g =

25
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3) Model Distorticm Measures

Define the causal model (or filter) distortion measure

d ( f ,g) = I1— f~/g~~2 , (4.8)

and the gain—normalized causal model distortion

d (f,g) = d (f/c2, g/c
2)

ncm cm I g

+
I /a~= if ’  — (4.9)

2

The gain—normalized causal model distortion measure is a gain—normalized

spectral ratio distortion measure (also a norm—spectra l measure since

+ 2f (8 ) /c
d (f,g)

2 
= 1—2~ 

‘~ (2it)
1 

3’ dO —ncm e 
~ g~~(O )/a

2

1~ f (e ) /cy2 f ( ~~)/a
2

+ (2ir)
1 $ d~ = (2n) 1 3’ de— 1
— r  g(e) /a — n g(G)/cy

2 2
= cgrf/g

(O)/cf 
— 1

d
1

(f ,g) -

= e — 1 , (4.10)

where we have used the fact that the 1+/a1 and crg/g
+ 

are monic and

causal (from (2.5)) and hence from (2.6) the bracketed term above is 1.

Note that

d
1
(f/a~ , g/a

2
) ~~ d ( f ,g)

The gain—normalized causal model distortion measure was introduced

by Itakura [18] as an approximation to the Itakura distortion measure

for small values since from (4.10) we have that for small d
1
(f,g)

26
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d ( f ,g) = d1
(f,g)

Regardless of approximation , however, (4.10) implies (directly or from

the .Ln x � x—l inequality) that

d ( f ,g)2 � d~~(f ,g)  (4 .11)

The distortion measure d has the property of the Itakura—Saitoncm

distance that for fixed I and the class ‘17 , a minimum distortion
m

g € will have the form g(0) = a
2
/jA(e iO

)1
2 where A is defined

by (2.10), but a2 is arbitrary.

Chaffee [19] also used the gain—normalized causal model distortion

measure in his coding (or rate—distortion) approach to speech compression

where he used the coding or quantization approach p reviously described

to select a monic filter reproduction and an alternate criterion to

— select the gain.

The causa l model distortion measure is a slight generalization of

d and is introduced for comparison and interpretation purposes.

Note that analagous to (4.10)

d ( f ,g)
2 

= 1 + (2~
r) ’S !4~4 dO — 

~~~~~~~ 

f ( s )

= 1 + 11,i~~
(O) — 2af/ag (4.12)

and hence d can be thought of as a gain—biased spectral ratio dis—

tortion measure. We can also consider a gain—opt imized causal model ra tb

measure which is easily shown to be
2 ,2

o 2 cfl’agd (f,g) = 1 —cm f/g

• a0 = c r 11g(0)/01 . (4.13)

Another related measure is the noncausal model distortion measure

27
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(again introduced for comparison)

d~~(f.~ )
2 

= ~l-(f/g)
1
~~ f l~ =

= 1 + rf/~
(0) — 2(2n)’S dO

This is a spectra l ratio measure with p (x) = i—x~
”2.

All the model distortion measures have the following interpretation:

Say (Xn
) ha, spectral density f(s) = F(e)1

2
, where F(s) is the

transfer function of a causal model f+ or noncausal model 1+!.

Similarly define g(e ) = G ( e ) f  and c~nsider the system of Fig. la ,

where (Z3 is a unit variance zero mean white process. We have that

= E(Z — Y )
2 , (4.14)

that is, )1—F/G~~ measures how nearly inverse filters F and h G

are by measuring the average sq-dared error between a white input process

and the cascade of F and 1/G. The closer  F and G are , the more

“white” the outpu t of the cascade F/G looks since it is close in a

squared—error sense to the white input .

Alternatively, consider the system of Fig. lb. Here 1/F is a

true whitening filter for (X ) and h G  is a “mismatched” whitening

filter. Here again

E(Z —Y )
2 

= ll— F/ G~~

and hence Ill—F/GII~ is a measure of the “mismatch” of l/G to F in

that it measures the error power between the true whitened process and

the mismatch whitened process. This interpretation of dncm 
is used

by Gray and Markel [2] (wherein d
2 

= —

28
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X
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f(B) = ______)j hG ] ~~~~

Figure lb
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4) The L
1 

Spectral Ratio Distortion Measure

d
1

(f ,g ) = i l l  — f/gjI 1 (4.15)

This is a spectral ratio measure with ;(x) = l— ~~~. This measure

will provide some interesting comparisons with the model distortion

measures. We have that

d
1

(f ,g)  = (2n) ’S l— f( e) / g( e )~ de

= ( 2n)
~~~~S ( l+ f ( e ) /g(e ) - 2min(f(e)/g(e),h))de

= 1 + r
1~~

(O) - ~ mi n ( f ( e )/ g ( e ) , l)de (4.16)

The L
1 

ratio distortion provides an alternative measure of

“mismatch” to the model distortion measures . Recall in Fig. 1 that the

model distortion measure computed E(Z
n
_Y
n
)2
~ 

Alternatively , we can

measure mismatch by

IE Z
2 

— E Y2 1 = Ir (0) —• n n f/ g

� •~l — f/gff 1 
, (4.17)

so that d1 is an upperbound on the difference of the output powers

as opposed to the power of the difference.

All of the preceed ing measures are nonsymmetric. We next consider

several symmetric distortion measures.

30
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5) Log Spectral Deviation

d10g
(f,g) = liLa f/~il~

= liLn f — Lngii (4.18)

The most common choices for p are 2,1, or ~ . This is a spectral

ratio measure with p(x) = La x f and is one of the most commonly

proposed distortion measures for speech [ 5, 2, 6]. For p = 2 there

exist fast techniques for computation of d
1~~ using cepatral approx-

imations , but there do not seem to be fast algorithms for finding the

t~.t fit (say in ?~ ) to a given f. Note that d1 is metric

since

d10g(f,g) 
� d

10g
(f ,g ’ )  + d10g(g’ ,g) .

The remaining measures are all symmetrized versions of measures

1—4. As was shown in Section 3, there are several equivalent means of

symmetrizing measures and hence we can choose the simplest or most

useful.

6) The Cosh distortion measure: Symmetrizing the Itakura—Saito

distortion as in (3.8) we obtain

d
5
(f,g) = ~~. (2n)~~ + ~~~~~~~~~~ — 

2} 
dO

— 
1 (2 )~~~ 

r ( f (e) 1’~
2 g(O )1’2 

dO— 
2 ~ 

~~~~ ~g(e)
1/2 

— 

f(e )~
’2

= ~~ i~(f/g ) 1”2 — (g/f)1”2lI~ (4.19)

We also can write

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - .  - ..1~. • . •  - • - .
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d~5
(f,g) = ~~~ iI r 1,,~(0) + r

g/f(O) - 211 1

= ~~~ (d 15(f,g) + d15(g,f))

1 (1)
= ~ d15 

(f ,g)

where ~~~~ is defined by (3.11), that is , both types of symmetrization

yield effectively the same measure. This distortion measure was intro-

duced by Gray and Markel [2 ] and is called the Cosh distortion

measure since

d~~~~(f~~) = d
5
(f,g) = icosh(Ln f/g) —

This measure has some interesting interpretations. First recall the

directed divergence discussion of Gaussian processes and the Itakura—

Saito distortion. In statistics , detection theory, and information

theory [13 , 14 , 151 one of ten  uses the symmetrized directed diverEence

J = I ( 1,2) - s - I (2 , l) ,  where J is called simply the divergence. Defining

J = I (l ,2)+I (2,1) we have from ( 4 . 2 ) — ( 4 .3) t h a t
n n n

lim n~~ J = ~~~ d 15
(f,g) + ~~~ d15

(g,f)
f l - 4~~~

=

that is, the cosh measure is exactly the asymptotic normalized divergence

between processes having spectral density f and g under a Gausian

assumption.

A second interpretation comes from the theory of random processes.

Say we have two stationary Gaussian processes (un ) and (v) with

spectral densities and f2 respectively. The squared—error

c—distance [20] (or Ornstein distance) between these processes is defined

by

= m l  E((U
0—V0
)2)

32
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where the infimum is over a l  consistent joint probabilistic descrip-

tions of (U) and (v ), that is , over all pair processes (u ,V )

having the original procea& 5 as coordinates. Intuitively , given (U)

and (va), ~ measures how well we can “fit” the two processes together

in a squared—error sense. For Gaussian process [20]

— 1/2 1/2 2
= 1lf ~ — f

2 
i~

and hence

= ! ~(f/g,g/f) , ~
•

the cosh measure is one—hal’ the ,—distance between the “mismatch”

whitened process f/g and g/l. Intuitively, instead of comparing

f/g to one to see how nearly inverses f and h g  are, we compare

f/g to its own inverse g/l. We note that even if the processes are

- • not Gaussian, then ~(f11 f2
) � iI f~

”2 — f
~
”2ii~ [20].

7) Gain—Optimized Cosh Measure

As the Itakura distortion was obtained from the Itakura—Saito

distance by choosing a reproduction gain , the coah measure can also be

modified in a similar fashion (as suggested by Gray and Markel [2 ]).

Form

d

~

05

~

(f,a2g/a2) = ~1(a /a
2)r

11g
(O) + (a

2
/c~ )rg/f(0) — 2)

and use calculus to minimize this over a
2 

resulting in

= (rf,g o/rg,f
(o))hI’2 (4.20)

d 0$~ (f ,g) = d~ 05~ (f ,a~g/ c12)

= 2(r
f/g
(0)”2rg,,f

(0)”2 — 1) (4.21)
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8) Symmetrized Itakura Distortion

d(f ,g) = ~~~ (d~ (f,g) + d
1
(g,f))

= La rf/g(0)rg/f(0) . (4.22)

Note that 
*d
1
(f,g)

d 0~~(f,g) = 2(e — 1) (4.23)

9) Symmetrized Model Distortion

+ + l/q
d~~~~(f ,g)  = i l l  — !._ 

~ + i l  — !_ , (4.24) • -

d~~~~(f ,g)  = d~~~(f/a~ , g/a~
) , (4.25)

q V2 q~~1/q
d~~

’
~(f ,g) = Il l — —— + Il l — ii . (4.26)nm g4 2 f 2  

2j

10) Syntmetrized L1 Rat io  Di stortion

d~~~~(f ,g) = Il l — f/g j~1 + ~l — g/f~i 1 (4.27)

This has another form. Using the fact that

i l—a l + 1 1—1/al = Ia  — 1/a l , a � 0 , (4.28)

we have

d~~~(f,g) = ~f/g — g/f~1 , (4.29) 
—

which is an L
1 analog to the cosh measure.

Many other distortion measures can be defined by combining the . ~• 
-

previous m~~sures as in Section 3, but the preceeding are the basic

measures considered here.
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• 5. PROPERTIES AND INTERRELATIONS OF DISTORTION MEA SURES

The Innovations Property

Many of the distortion measures considered have the interesting

property that the distortion between f and g is bound below by the

distortion between two white processes having the same gains, that is,

the innovations processes of 1 and g. We say that  a distort ion

measure has the innovations property if d( f ,g) � d(a~~,c
2 ) . Clearly

this is a trivial property for gain—normalized distortion measures since

then d(a~ ,cr
2
)= d(l , l) = 0 � d( f ,g) .  We have that  since

r11g
(O) �

d15
(f,g) � d15(a~~,a

2 ) . (5.1)

Thus

d~~~~(f~~) = •~~
. (d

1~
(f,g) + d

15
(g, f ) )

1 2 2  2 2
� -

~~ 
(dj~ (l~1~ tYg) + d18(ag~ ci1

))

= d 0~~(a~ ,c~~) = ~ 
— 

2 
(5.2)

Equation (5.2) shows that if d~~~~~~~(f I~~~~) -+ 0 as n -, ~~~, then

necessarily a
2 

-
~ a

2
. From (4.12)

g~ 
f

= 1 + r1,g
(O) — 2af/ag ~ 1 + c~/a — 2af/cg

2
= I~ 

— cf/ag l

2 2 2
= dcm(af ,  ag)

whence

dcm (f ,g) � d m (a
~
,c1:) , (5.3)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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and

d~~~(f,g) � dU)(a~ ,c1
2) . (5.4)

We have

d10g
(f,g) = liLn f /~ii~ li .$n f/gil 1

it It

= (2it ) 1
J~ Ln f(e )/g (e )~ de � ~(2i r) 1 J ’ Zn f(e)/g(e)de J

2 2  2 2
= Zn a1/ag i = li Ln af /ag lip

and therefore

d10g
(f,g) � d,0g(ci~~a ) . (5.5)

It is not known if the L
1 

ratio or noncausal mOdel distortions possess

this property.

Nonsymmetric Distort ion Imp l icat ions

We have that

(2it)
~~~S 

de � c
f /ag (5.6)

and hence from (4. l2)—(4. 13)

d ( f ,g) � d ( f ,g) (5.7)

so that d ~ d - We have from (4.4) and (4.12) thatcm nm
2 2 2

2 a1 Ia f a
d15

(f,g) = d~~(f,g) — 1 — — + ~~~~~~~~ 
— 1 — Zn —~~~

-

• = d~~ (f~~)
2_ d (c ,a2)2 

- 

( 5 . 8 )

and hence
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d
15
(f,g) — d

15
(c~ ,a2) d~~(f~~)

2_ d ( c ~ ,c2)2

so that additively removing the innovations distort ion makes the

Itakura—Sa ito and causal model distortions the same. Expanding and

cancelling in (5.8) yields

d
18
(f,g) = d~~(f~~)

2
+ 2 — 1 — Zn -1 � d~~(f.g)

2 
(5.9)

and hence d15
(f,g) ~ d ( f ,g) ~ d ( f ,g). Next observe that if x -~ 1,

then x—l-Ln x -+ 0. Thus if d (f,g ) -* 0 as a -~ ~~~, from thecm a
innovations property i l~ af/ag i — * 0 whence (af/ag~~l~Zn(c1f/cIg ) )  -4 0

and therefore d~~(f~g )  - 0 impl ies 415
(f ,g) -~ 0. We have thus

shown tha t

d
15
(f,g)é~ d ( f ,g) ~ d ( f ,g) (5.10)

We have from (4.11) tha t d ( f ,g) ~ d
1

(f ,g) and from (4.10) and

(4.12) that

= fd (f,g)
2
— d (~~~,a

2
)
2
) �

and therefore using the innovations property of d

a d (f,g)
d~~~(f t~ ) � 

._& d ( f ,g)  � 

~~~~~~~~ 
(5.11)

which implies

d 
~ 

dncm (5.12)

Recall from (4.10) that

2 d 1
(f,g)

- 

d~~~ (f ,g) = e — 1
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~~~~

which implies that

d ~ d (5.13)ncm I

since

d
1
(f,g) Ln(d~~~(f,g)

2
+ 1) � d ( f ,g)

2

(5.14)

and if d 1
(f,g) -* 0 as n ~ ~~~, then

~ d (f,g )
k

d ( f , g )  = E 
k~ 

-÷ 0 (5.15)

From the inequal i ty

� min(l,x) , x � 0 (5.18)

we have from (4.13 ) and (4. 16) that

d~~~(f ,g)
2 

= j~~1-f
2
/g

2~~~~ � i~1-~/gIi 1 (5. 19)

and therefore

d 1(f,g) ~ d ( f ,g) , (5.20)

Note that (5.19) also follows from the definitions and the inequality

l l_ x ! � l—x4i
2 

(5.21)

(which follows from (5.18)).

The implications for nonsyntmetric distortion measures are summarized

below.

d ~~~ d
I ncm

d (
~~~dIS cm

d d
1 (5.22)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_
~~~~
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Note that d m 
can be written in a manner strongly resembling d1

as follows:
2 -

~~~~~~~~ = c r 11g
(0)/a~~l = 

~~~

___

~~ 

—

that is, d ( f ,g) is a gain—normalized version of d1
(f,g), i.e.,

= d1(f/ci~ ,g/a )

= d (f/a~,g/c7
2) (5.23)

This does not imply directly that d ~ d since we l~~ve been

unable to show that d1 0 implies that :~/a
2 
~ 1. It can be easily

shown , however , that

• il—f/gii 1+ l—a~/a
2
~ = d1

(f ,g)  + d
1

(a~ ,c i )  
~ 

dncm - (5. 24)

Finally, if we consider coding equivalence , since d 1 and d

are related monotonically by (4 .10) , clearly dncm 
C Dd

1 
and from

the stated properties d
is 

Dd
1
. Thus

U
d CD d (5.25)
ncm I
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Symmetric Distortion Implications

We first focus on the cosh distortion and log spectral deviation

as these are the most commonly proposed measures in the speech literature.

We then develop their relations to the other measures. Gray and Markel

[2] proved graphically that

iILn f/gJJ~ � 2d~~~~~~~(f , g)

and hence that d ~ d . Implicit in their proof is the followingcosh log

Taylor series expansion argument: For reel x � 0 set x = e~ and

we have

4 -/2 a/2 — (a/2)
i x — x  i = i e  —e

= ~~~~ (a/2)~ - 
~~ (~a/2 )k 

= 2 E (a/2)’~
k=O k=O k=l ,3,5,...

= a + 2 
(~~/2)

k 

= i a l  + 2J 
(~~/2)

k

k=3 , 5 , . . .  
. 

k=3 , 5 , . . .

= lLn xI

whence

ilLn f/gjj~ � iJ f 4/g~— g
2
/f

4
j J

~~~ = 2d~~~~(f~~) (5.26)

The converse implication is not in general true as can easily be seen

• by counterexample.

From (4.12), (4.19), and (5.7) we have that

S

• _  
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• 2d~05~(f~~)
2 

= r
f/g

(O) + r~,~1
(O) — 2

= d (f,g)2÷ d (g,f)2+ 2a1
/a + 2ag/cIf~ 4

= d
(2)(f ,g)2+2(4 /a~ — a~ / )

2

� d~
2
~ (f ,g)2 � d~~~(f,g)

2 
(5.27)

and therefore d ~ d~
2
~ ~ ~~~~ From (5.7)cosh cm cm

d~~~(f,g) � d~~~~~ (f ,g)  . (5 . 2 8 )

We also have that from (3.3)

(2d 05~(f,g))
2 

= J f
/2
/g

/2 
- g

/2
/f Y2p~ 

~~ jIl-f4/g’~Ii 2+ j~l_g
2/f4~J 2

= d~~~(f,g) 
� 24d~

2
~ (f,g)

so that

d~~~~(f~~) � d~~
2

~~(f ,g)
2 

. (5.29)

To summarize we have that

~ d~~~(f,g)~ ~ ~ d~
2
~~(f ,g)~ � d~~~~(f,g) � d~

2
~ (f,g)

2 
�

(5.30)

which proves that

d ~ ~~~ ~ ~~~ , q=l ,2 ,... (5.31)cosh cm nm

Analagous to (4.10) and (5.l3)— (5.l5) we have from (4.23) that

d°~~~(f~~) ~ d(f ,g)

d°~~~ (f~~) CDd (f,g) (5.32)

d;cf ,g) ~ d°0~~ (f ,g) -

41
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We also have the following : d ~ d and thereforeI ncm ‘I

~ ~~~ , ( 5 .33 )

d ~ d , and thereforecm nm

~~~ d~~~ , (5.34)

d d , and therefore1 nm

~~~ ~ ~~~ . (5. 35)1 nm

For example ,

d~~~(f,g) = !)f/g — g/fjj
1 

� 2d~~~~(f~g)
2 

(5.30)

To summarize for the symmetric case

d log

d ~~~ ~ ~(~ ) ~ (~ )
cosh cm nm 1

o * (q)
d ~~~ d ~ dcosh I ncm (5.37)

and

d o h  
CD d1 

CD d~
2
~ (5.38)

since al l  are minimized by min imiz ing

Coupled with the fact that all symmetrized distortions imply

their unsymmetrized versions , this completes the catalogue of equiva-

lence and implication relations.
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6 %ME TI~~ DO~~ IN EXPREZONS 

-

The emphasis here has been on spectral representations. For

- 

- completeness and to ease comparison of the distortion measures defined

here with alternate forms appearing in the literature we observe some

• time—domain expressions.

Most of the distortion measures involve the term rf/g
(O).

Transforming this equation yields

r
f/g

0 = (2it)~~~~ ~~~~

• = E r (k)r , (k)

and hence if g = ~ / i A l 2 
we have

rf/g
(O) = 

~~ k=0 1 2

Alternatively, if we think of this as the power in the output of a

filter l/g~ = A/a
g 
with an ir~put process (x~) with sper~ val density

I , then

rf/g
(0) = E 

~~~~ 
a
k
xfl_k I }

= �~ E a a r 1(k—j )

~ k=0 j=0g

where the sum will be finite if A has finite order. This can also

be expressed in matrix notation

1
• rf/g

(O) = ~~~~~ !‘.~ .~
g

- where ~~~
‘ = (l,a 1

,a2,...) is a semi—infinite vector and R the doubly

~~~~ - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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semi—infinite correlation matrix. If A has finite order a this

reduces to

r
11g

(O) = !~ (a
m),T (f)am

where (am), = (1,a1,... ,
am_ 1). In addition , the theory of Toephitz

forms [8 ,16,17] can be used to write

agrf/g
(o) = 

n
1

~
?’co 

n ’trT
n

( f) T
n(iA I

2
)

Lastly we observe that if f = a~/l8I
2, then

2 f4/a1 1 2
d (f,g) = 1 — _____

ncm 
~~/‘ag 2

= iil—A /~ i i~ = !~~. (2n )
~~~S I 

k=O
k k

E (b
k
_d
k)rf

(k_j)(b —a )
k=0 j=0

- 

= 

~~~~ 

b
k
r
f
(k_J )b

J

= ~~~~~~~~~~~~~~~~~~~~~~~~~~~

the form used by Itakura [18] and Chaffee [19].

I

- _j_
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7. IMPLICATIONS FOR SPEECH COMPRESSION

In this section some implicati ons and applications of the preceed—

• 
• ing results to speech compression are discussed and some research

directions proposed. The mathematical model adopted herein is the

following. We are given a sequence of “symbols” (f )~~~~ where

each symbol f~ € ~ is itself the power spectral density of a station-

ary and ergodic nondeteiministic random process as in Section 2, that

is, the alphabet ~ consists of all nonnegative even real valued

functions f(O), e € ~~~~~~ for which f,f~~ € L1 (and hence

La I € L
1
). In actual practice each I is obtained via a transforma—

tion on a windowed speech waveform (x(t);t € [nT ,(n+l)T)) by, for

• example , forming the magni tude square of the discrete Fourier transform.

We are also given a finite reproduction alphabet ‘1~ ~~~~~ A data com—

pression system maps each f~ € ~ into a reproduction ~~ € ‘/~ and

then a binary index (fixed or variable length) is transmitted to a

receiver who then reconstructs I. The goal is to minimize the average

dis tor t ion d ( f , f )  for a fixed code rate .  We note that the theory

of source coding is va l id  for such a general alphabet and dis tor t ion

measure provided that the source (f~) and reproduction set ~ are

such that d(f ,f )  = cannot occur with nonzero probability. This

is a physical assumption without which finite average distortion

communication is not possible.

A general data compression system maps several input symbols into

several output symbols: 
~
1
N ’•••’

~U(N+1) 1~ ~~nN’”’~n(N+l)—l~ ’

n=0, +1, +2,..,. a technique called block coding ; or several input
A

symbols into a single output symbol: 
~~~~~~~~~~~~~~~~~~~~ 

‘
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- .  a technique called sliding—block coding (21,22]. We here

consider the special case N=1 of “single—symbol quantization” of ~7,

a mapping of the form 
~n 

~ 
~n 

L~~ compression systems using the

autocorrelation method have this form where a “two—step” compressor is

used. The first step is to transform f into another spectrum I

that is the best mt’s order autoregressive model of f in the

sense that f = f ( f )  € = (all spectral densities of the form

a
2
/iA (e ~~)i

2
€ ?~, where A(z) = 1+ 

~ ~~l
a
k
z 
k
) and “best” means 1(1)

minimizes d
15
(f,f). This is a “system identification” step and results

in distortion [23]

d
1s
(f,f(f)) = Ln (c2/c~ ) (7.1)

In the next step -, f € 7~ 
C~ C’/~, where ? is a finite collection

of m
th 

order autoregressive models. There are several ways to

construct ~~~, the most common being to transform the model I into a

vector of reflection coefficients and gain and separately quantize each

according to some criterion [5 , 6]. Several criterion are possible

for this real number quantization , but theory and practice have shown

that most sensible approaches yield nearly equivalent results [6].

The rate of such a system is log2~~ i bits per “symbol ,” where here

symbol means a windowed speech waveform of typically 2Om s.

Such a system is ad hoc and nonoptimal since, for example, “optimal”

A

usually means minimizing distortion for a fixed 7~, yet here one

• distortion measure (d
15) is used in the first step and another (often

• a magnitude error on reflection coefficients which is approximately

equal to d
10 on the spectra) in the second. An optimal compressor

L 
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according to d15, 
for example , would take f and directly find the

f € ~ minimizing d15(f,
f) to form f~(f) (no other algorithm can

yield a lower Itakura—Saito distortion overall). An alternative

conceptually optimum system would be to use a two—step compressor as

before, with the second step forming an optimal quantizer of the
A ,. ., A

I € , that is , form f(f ) as before and then set f(f) € ‘i~ as

the model minimizing d
15
(f,f). With this system , however, an immediate

problem arises. Since d is 
is not metric , how do we know that a good

job in each step (d15
(f ,f(f )) and d

15
(f(f ), f(f(f~))) small)

will yield a good job overall (dj5(fn~
f(f(fn

))) small)? This leads

us to one of the interesting properties of the Itakura—Saito distortion

—— it does have a tr iangle inequality (with equality, ac tua l ly )  in two—

step systems with the first step as above and the two L~~ systems

- described yield the same encoding. To see this let f(m) € ?Zm

minimize d18(f,f) over f € ‘fl~ (and hence as previousl y f (m) (e) =

a /IA(e ~~)f
2 

where A satisfies (2.10)), let f ~~~~ ~ 7~~, and

use (2.14) and (7.1) to write

A —l ~ f’e) 2 2
d 15

(f , f )  = (2it ) j ’ ~~
-

~ ——- de_ l~Lnaf/a~.—it f(e) f

— 
It f(m) 2 2

= (2n ) 1 j . 
A 

(8) 
de—1—Zn

—it 1(8 ) f

it (m)
= (2it )~~~ ,ç ~ A 

(8) de—l—Ln C~~/t !~ + Ln (a
2
/a~)

—
~~ f(e) I

= d15(f,f
(m)
) + d15

(f
(m)

,f) (7.2)

Thus for this typ e of two step system , regardless of the quantization
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rule, the overall Itakura-Saito distortion is exactly the sum of the

incurred distortion in the separate system—identif ication and compression

steps. In particular , if the compression of 1
(m) 

is done optimally

for a fixed set ~~~, then it is equivalent to an optimum quantizer

operating directly on f It would be of interest to compute d
15 

for

real overall systems since this would yield a distortion measure consist-

ent with the implicit definition of optimum in the first step. It

would also be of interest to see which of the various reflection coeffi-

cient quantization rules yield the smallest quantization (and hence

overall) d 15. 
We conjecture that  as in [6 ], the results would be

very nearly the same since little improvement is possible when one is

constrained to separately quantize each real parameter. It would also

be interest to see if computat ionally e f f i c i en t  approx imately optimal

(in d 1s
) mappings -+ ?~ could be developed.

Next suppose that subjective testing might indicate that some other

distortion measure is better than d15
. This alternative distortion

could be used in either of the two kinds of systems -— the two—step

or direct quantization. In a two—step system the use of an a l ternat ive

and symmetric measure such as the cosh or log spectral deviation would

result in finding a model that matched zeroes as well as poles and hence

might be replaced by a collection of mixed moving—average and

autoregressive (ARMA) models. Unfortunately , however , find ing a best

finite—order model matching poles and zeroes (or even zeroes alone)

seems a very d i f f i c u l t  problem . This points out that one of the nice

facets of d
15 

is the simplicity and speed with which the minimum

distortion f
(m) 

€ can be found. This suggests compromises: If an

~-•
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alternative distortion measure is suggested by subjective testing , but

scatter plots such as those of Marke]. and Gray E 2 ) or Matsuyama £24 I

• suggest that for small distortion the alternative measure is highly

correlated with d
15

, then use d 15 as an approx imation in Step 1

to fac i l i t a t e  computation and then use the other measure in Step 2.

2
Performance can be slightly improved by replacing 

~m 
in Step 1 by

the gain-optimized value for A according to the other distortion

measure , e.g., for the cosh measure.

If a two step system is constructed using the causal filter measure ,

then the behavior is similar to that of the Itakura-Saito system and one

again obtains a triangle inequality. For g = a
2
/IA~

2 
€ we have that

d ( f , a2
/

~
A

~

2)2 
l+a

2
r 2(0)— 2a1/c

which is minimized by minimizing r 2(0) by choosing A to sa t i s fy

~V~t
(2.10) and by choosing the optimum gain (see (4.13)) a = a~/c1 ~

Thus, the monic filter is the same as that of the Itakura—Saito distance,

but the gain is larger. Denote the resulting spectrum 1(9) =

where

= o2/am f

dcm
(f
~
1)2 = mm d~~ (f ,~)

2

~ 
A2 2 

1 - (a1/am
)2

Let I = a /~A, denote the quantized version of I resulting from the

second step and we have from (2.14) that
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~~~~

d (f
.~)2 = 1 + (2t) 1 

~ 
.i~2. d$ - 2a1tacm f( s)

2
A i~ 2 a

= 1 + (2,~)~~ s A(e ) I  
le 2 d8 

- 20
1t0

—it a A(e ) I
2

= 1 + 
_

~~~ (2itY~ ~ L~2. d8 - 2af/27a —it f(e)
2 2 2

= 
~~~~~ 

d(I ,~)
2 

- + 2 - 2 - 2a/a

2 2 2

= ~~~~~ d (I ,’~)
2 

— = ~~~~~ 

~~~~~~~~ + dcmU~~
)2

A 2

~ d (f,f) + d (1,1)cm cm

a sort of t r iangle inequali ty.

Another observation on these systems is tha t  implici t  (and

relevant) subjective testing can be accomplished for the various

distortion measures by simulating either type of compression system

for a given distortion (likely using d in Step 1 of the two-step

for simplicity) and then listening to the reconstructed output. A

reproduction set could be taken as the LPC system reproduction set or,

say, the direct quantization reproduction set of Chaf . e [19’, who uses

d to select the monic filter part of I and alternative criteriancm

to select the gain and pitch. The point is , a good subjective test

of a distortion measure is to listen to the output of s minimum dis—

tortion compressor using that measure . We are currently attempting to H

study various rules for selecting the finite reproduction let ~ f rom

observed data and for efficiently computing the various d(f ,f) and

finding the best 1. If  such systems are successful (in par t icular,

if they are comparable to LPC systems as Chaffee’s (19 ’ work suggests),

our feeling is they will provide an alternative to LPC requiring less



computation but more memory. Success in this approach would also open

two other avenues of future research: (1) Compression systems using

block or sliding—block coding on the [I) could be attempted. This

may sound prohibitively complex , but if the single symbol systenm were

well—understood , then the “Fake Process” approach to data compression

(25 ,26] would provide a straightforward ad hoc technique for improving

performance using the memory in the (f~ ). (2) If a large (high rate)

finite class fl could be shown to be “rich” enough to well—model

most f f 3 ,  then the long run probabilistic behavior could be approxi—

mated by compiling first—order histograms of occurrences of f in

real speech. The probabilistic model could be coupled with the dis-

tortion measure and the Blahut algorithm [27 3 to compute a meaningful

distortion rate function for speech and thereby obtain an absolute

unbeatable bound on performance of single—symbol direct quantizers (such

as the LPC and Chaffee systems). It would be interesting to know how

nearly “optimal” the ad hoc but highly successful LPC systems are and

whether or not one must resort to block or sl iding—block coding in

order to obtain real improvement over LPC systems. If e f f i c ien t  means

of finding conditional histograms could be found , higher order distor—

tion rate functions cw ld be obtained yield ing performance bounds on

more general system.

Another problem has to be addressed in simulating such systems,

that of decoding. How does one convert a spectral density I back

into a sound? Mathematically, there exists a random process having such

a density. In fact there exist many (Oaussian , for example), and it is

important to know which to use. Again mathematically, it makes no

difference insofar as the distortion measures herein considered are
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concerned since these all place zero distortion on two identical spectra.

Practically , however, these distortion measures simply approximate the

biological dis tor t ion measure of the huma n bra in  and the actual process

used in reconstruction will very likely make a difference in subjective

q u a l i t y .  Here we can only propose to try ad hoc techniques when this

stage is reached . A first try would be to rise simply Gaussian noise

dr iv ing the factored spectrum to produce a Gaussian process with the

correct (optimal) spectral density. Thu does not mean that speec h

“looks” Gaussian , only that Gaussian pseudo—speech may sound like speech.

Alternativel y, some work 128,29] indicates a double—sided exponentially

• distributed white process may perform more satisfactorily. This is a

problem which must be treated experimentally with human listeners as

the distortion measures cannot tell the difference of underlying

statistics except through the spectra.

This report was motivated by the research described in this section.

It was found useful to have a catalogue of the various distorti on

measures , properties , and interrelations. As the experim~~its proposed

here will likely involve considerable time to reach any solid conclusions , 
•

the preliminary work on the distortion measures has been collected now

in the hopes of being useful to others conducting similar research.
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