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ABSTRACT

Nonlinear Langtnuir waves in a plasma governed by the dimension-

less equations: iaE/at = —V 2E + nE, 92n/at 2 V2 (n + g(~E~
2)) are

s tudied , where E is the co mplex amplitude of the high—frequency elec-

tric field ; a is the low frequency perturbation in the ion density

from Its constant equilibrium value; and g is a given function of ~Ef2 .

General conditions for the existence or nonexistence of a class of

multidimensional solitary—wave and nonlinear periodic travelling-wave

solutions in the form E(t,x) = h (k.x—vt) and n(t,x) s(k.x—vt) are

established. The results are applied to the special cases: (i)g(~Ef2 )

~‘IEI2 
corresponding to the usual pondermotive force, and (II) g(JE~

2)

K(l—exp (—1E12 ) ] ,  K is a positive constant , representing ion density

saturation.
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~ 1. INTR ODUCTION

The formation ,lnteraction and collapse of nonlinear Langmuir waves in

piasmas have been studied extensively in recent years~~
1° In mos t of the

existing works , at tention is focused primarily on the formation and inter—

~ 
action of solitary waves. Exact expressions for these solitary waves for

various regimes have been obtained only for the one—dimensional case. Re—

• centIv~ Gibbons et a1~~ dtscusseci~ the possibility of existence of solitary
I
-
~ P Languiu ir waves for higher d imensions. In- this study, --w~ obtain-conditions

for the existence or nonexistence of multidlmensional,nonlinear Langmuir

travelling waves, including the periodic and the usual solitary waves. ~ -

p We begin with the following basic equations’ describing the nonlinear

interaction of high— frequency electron oscillations with an ion fluid :

-: i~E/~ t —V 2 E + nE ,
p (1)

32 n/~~t
2 

— V2 (n +

where I —/-i; E (E11... ,EN) is the comp
lex amplitude of the high—frequency

-
- 

P electric field & given by

~(t ,x) — Re{E(t,x) exp(—iw t)}; (2)

a is a real quantity corresponding to the low—frequency perturbation in the

ion density from its constant equilibrium value n
0
; and g is a specified

real—valued function of ~
E I 2 . Here, we have used dimensionless quantities.

- -  
The units of t ime t , spatial coordinates x — (x,,...,xN

) elec tric f ield E

- ~~
- and density n are , respectively , 3q/(2Qi.i)), (3r~ /2 ) (q~) 

2 8(qc*n0
ITT/3)

:1 and 4qan0/1 , where c~ is the electron—ion mass ratio m5/m 1
; q — T/Te ; T —

+ T
i

; T . the electron and ion temperatures respectively: r0 the

elec tron Debye rad ius , and the plasma frequency. The function g is

1
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introduced here so as to permit the consideration of a wide class of non—

p linear effects such as saturation .

2. TRAVELLING WAVE SOLUTIONS

Let ~ N 
and denote the N—d imensional real and complex Euclidean

p 
spaces respectively, and C( IR;V ) the space of all rn—times continuously

differentiable functions defined oaR and taking their values in the vector

space V. The norms for Rt’1 and are denoted by 11 . 11 and ~
.I respectively .

The dot notation is used to denote the usual scalar produc t on RN or cN .
Let k be a specified unit vector in R

bI 
and v a given real number

corresponding to a constant d imensionless velocity. We seek travelling—

- 
- 

wave solutions of (1) in the form :

E(t,x) h(k•x — V t ) ,
(3)

n(t,x) s(k.x — V t ) ,

where h and 9 are undetermined functions in C
2

( R,CN) and C2( ~~~~, ]R) re-

spectively. For physical reasons, we shall restrict h and s to functions

such that Ih(~ )l and Is(~)I are unifor mly bounded on D~ where ~ — k-x  — y r .

In particular , we shall consider multidimensional solitary—wave solutions

which are analogous to those in the one—dimensional case. Here, we require

that Jh(~)I and s(~) tend to finite values as 
-
~~

Substituting (3) into (1) leads directly to the following equations

f or h — (h 1,. . . ,h~) and s:
N

— iv dh/df~ + d2h/dE 2 s (F)h( E~), (4)
p 

(v— l)d2s/dE~
2 d 2g (Jh~

2)/dE 2 , (5)

where we have adopted the rectangular Cartesian coordinate system.

2
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Equation (5) can be integrated to give

• (v 2—l)s(C) — g(~h(~)~ 2)  + CF~ + C, (6)

where C and C are integration constants. From the boundedneas requirement,

• we set C — 0. Assuming that v2#l, we can solve for s(~) in (6) and substi-

tute it into (4) to give a complex dilferential equation for h:

d 2h/d~
2— ivdhJdt~ (v 2-.1Y’{g(~h(~)~~2) + C}h. (7)

$

It is advantageous to rewrite (7) in polar form. Let h~(~)

exP(iO~(~)). j — 1,... ,N. Then, we have

d 2A~/d~
2 + A~O~~~)(v-8~(4)) (v 2-l) A~ (E(IA l2) + Cl, (8)

d Z8~ /d F 2 — ~~~~~~~~~~~~~~~~~~~~ j l,...,N , (9)

where A — (A1,... ,AN). IIA II — Ihl and 0(d8~ /df . 
. 

-

Equation (9) can be integrated to give

• ~~(~) — (v_ ~i~A
2)/2 . (10)

where — A~(O)(v—28~ (O)).

SubstItuting (10) into (8) leads to the following differential equa —

•
tions for A~:

d 2A~/d~
2 — ~~~~~~~~~~~ j — 1,.. .,N , (11)

where

f (~i3,C,A) ~ (~~Ar_ 
v2)/4 + (v2—lY’{g(~A~

2) + Cl .  (12)

Evidently, given ~~~~~~~~~~~~~~~~~~ j • 1,...,N, (11) can be inte-

grated independently. Since f is a function of C and (depending on

3
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A~ (O)). (11) must be solved with Initial conditions at 
E~—O which are con-

sistent with the A~ (O) in 
~~~

. Also , only those portions of solutions of

(11) with AU )~ O (i.e. A~(~))O~ j—1,...,
N) ar e meaningful here.

We note that (11) can be rewritten in the form :

d2 A~ /d~
2 — aU/3A~ . j—l,... ,N , (13)

where

U (A ,p,C) 
~ 

U
1(1tA12

,C) _
~~~~~~~~~~ p~ / (8A~ ) ,  (14)

i—i

2U,(ffA11
2,C) {~~g(r~) + y}dn , (15)

0

K = (v 2—l)~~ , 
y — (v 2—l) ’C — v2/4 (16)

and -~ — (U 1,... , UN ) . A first integral of (13) is given by

~ ~A
’(~~~

2- 2U1
(
~

A(
~~~

I2 ,C) - ~~~~~~ A 2(~ ) / 4  - C1, (17)

j i

where IIA ’(~)II2 (d~~ (~ )/ d~) 2 and

N

C1 
— II A ’ (O)~~— 2U1(~A(O)~

2 ,C) — (v — 20~(O)) . (18)
$ j—i

.-
.

~~~~~

Evidently, If i.t~#0 for some j, then I(A (~ ) , A ’(~ ))—~—~ as flA’ (f)tI and

IlA(~)II~ 0. Since C1 
is finite for finite IIA ’(O)IJA (O)I ,C and 0~ (O), j—

1,... ,N, therefore there do not exist solutions of (13) or solitary—wave

solutions of (7) such that IIA (~)II and IIA’ (~)II—~O as RI—’~ when ~~#O for

some j.

in what follows, we shall focus attention on the particular case

where ii — 0. Here, we have

4



(~ = O~(O) + v~ /2 , jal,. ..,N (19)

as a solution of (10) or (9). Note that • 0 when A~ (O)_O and/or

v/2. This implies that along any trajectory of (8),(9) starting from a

‘ point z(O ) = (A (0), A ’( O) , O( O) , O’(O)) la the set Zi~{(A ,At ,O ,9 $)GIR4N
:

A1
(v— 2O~) = 0 , j =l ,...,N ) , its corresponding phase O(E) 

~ 
(O
l
(E),...,8

N
(f
~
))

has the form (19). In this case, t no longer depends on A(0) and G’(O),

and (13) reduces to

d 2A~/d~
2 = ~U 1f~A ., j —1 ,. . .,N. (20)

. The equilibrium points of (20) are points (Ae~
O) in such that A

e 
are

the stationary points of U1 or the roots of the equation f(O,C,A)A 0.

- 

- - 
Obviously, A’ s include A = 0 and all those A’s satisfying g(~JA~ 2) v Z(v 2

~ l ) /4

-C.

To obtain some qualitative Information on the solutions of (20), we

f irst der ive a differen tial equation for u (~) ~ ~A(~)$~~. By direct corn—

C putation,

d2u/d~
2 = 2IIA’(~ )I!2+2A(~

).d2A/ d~
2 = 2IA’(~

)
~
2 + 2u~

’(C ,u) ,  (21)

where ?(C,1JA12) ~ f(O ,C,A) as defined by (12). Along an integral curve

(17) corresponding to a f ixed C
1 

and ~~~ (21) can be rewr itten as

• d2u/d~
2 2{uf(C,u) + C

1 + 2U1(u,C)} ~ P(u,C,C1). (22)

Its solution starting with initial conditions

• u(O) — JIA(O) 11 2 , u ’ ( O )  — 2A(O) .A’(O) (23)

5~~~~ j



-
~

satisfying

IlA’ (0)~
2 

— C
1 + 2U 1(IIA(O) 11 2 ,C) ~~0 (24)

describes the evolution of ~A(F~) ~ with ~ along the integral curve.

• A first integral of (22) is given by

u ( ~
)

(u’(~))
2 — (u’(O))2 + f 2P(~,C,C1)d~~ Q(u,C,C1,u’(O)),

u(O) (25)

where u’ = du/d~ . Equation (25) is valid only when its right—hand—side

is nonnegative. An implicit expression for l(A(~ )II 2 can be obtained by

— integrating (25):

~A(E)~
2

J Q(fl,C,C1,u’(O)) 
2 dn • . (26)

IIA(0)h2

Note that if an explicit expression for IJA(~ ))l 2 is obtainable from (26),

then A(E) can be determined by integrating each equation in (11) inde-

pendently with p—0 .

In the sequel, we shall establish conditions for the existence or non—

existence of solutions of (20) having the property that ~A(~ )fl— .0 as ~~~~~

or solitary—wave solutions of (7) with ~—O.

Theorem 1: if

Kg(u) + y ~ 0 (27)
p

for all u)0 , then there do not exist solutions of (20) such that

and H A (~)F-~O as

Proof: Condition (27) is equivalent to T(C,u)~0 for all u~.0. In view

of (21), we have d2u/d~
2)0 implying that flA(~)II2 along any solution of (20)

is a convex function of E. Hence, it i~’ impossible to have IIA(0) II > 0 and

_  

6
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Note that for the subsonic (v2<l) and supersonic (v2>].) cases, (27)

implies that g(u) is unif ormly bounded above and below by v 2 (v2—l)/4—C

respectively. Also, if (27) is a stric t inequality, then (A ,A ’ ) (O ,O) is

the only equilibrium point of (20).

Theorem 2: Assume tha t the following conditions are satisfied :

(I) v2 (v 2—l) ~ 4C and v2<l;

(ii) g is a strictly monotone increasing function in C (]R ,IR) with

~~ g(0)aO and there exists a positive number u
1
<oo such that

f 1g(ri)dr~ = {v 2 (v 2—l)/4—C}u
1 (28)

and f g(r~)d~ > (v 2 (v 2-l)/4-C)u for all u>u1. (29)

Then (20) has a solution AU)~0 for all ~EIR , with IA(0)II>O and IIA’ (O)I.bO

such that

IA(~)II and IIA ’(~)II—’O as ~~~ (30)

?~9of: First, we note fr om (15) and (17) with U~O that for a solution to

have property (30), the initial condition (A(O),A ’(O)) must satisfy

C
1 

— flA ’(O)~
2— 2U1

(
~
A(0)I21C) — 0. (31)

We shall show that under condition (i), ~
‘
~.‘O Implies property (30). From

(17) , it is evident that when (A (0) ,A’(O)) satisfies (31),its correspondIng

trajectory is a zero—level curve of I(A,A’) defined by

I(A ,A ’)  ~ HA ’12 — 2U
1(JA ~

2,C) = 0, (32)

or the points along the trajectory belong to the set

~~~~



-.__. __ --~~~~~ - -

1 1 (0) = {(A ,A~) G R 2
~ :IA t~l 2 _ 2U1(1A1 2 ,C)) . (33)

Obviouely, the equilibrium point (A ,A’)”(0,O)E I 1(0). Nov the foregoing

implications can be established by verifying that (0,0) is the only equili—

brium point in I
_1
(O), moreover , it is a saddle point .

Let (A ,0) be an equilibrium point of (20) with I~
AeI>0• 

Then, Ae

must satisfy f(O,C,A
~
)aO or

4g (1A12 ) a v 2 (v2—l) — 4C. (34)

Suppose that (A ,O)EI ’(O). Then, we must have

~I A I 2
2UldIAeI2~C) A J {Kg(n) + y}dn —0. (35)

o

From (34), we have

~I A I 2
21J1(0A5

12 ,C) —J K{g(fl) — g~~A5II2)}dn (36 )

0

which is a positive quantity for lA el
>0 under condition (ii). This con-

tradicts (35). Hence (A,A ’)=(O,O) is the only equilibrium point in j4(Q~ •

To show that (A ,A’) (O ,O) is a saddle point, consider the following

linearized equation (20) about (A,A ’) (O,O):

N 

d2.SA~/d~
2 

= (a2u1/M~)I,..,0
6A~1 j—1,...,N, (37)

where

(a2Ul
/ 9A

~
)l A_O = (38)

Note that due to the symme try of U1 about A.0P(~
2U
t/~

A
j~

Ak)L~.,o
10 for ~~k.

•
8



Under condition (i) (32Ul
/
~
A
~
2)tA.,O O, j=l,...,N, so (A ,A’)— (O,O) is a sad—

dle point. Moreover, it is the limit point of some trajectory lying in

1 1 (0) as ~~~~~~~ Hence, C1 0 implies property (30).

Next, we must verify that there exist points (A(0),A’(O) ) (A(O) ,O)

with IJA(0)~ >0 such tha t C1 0. From (15) and (31), this corresponds to

finding a ~A(0)~ >0 such that

2U
1(IIA(0)j{

2,C) 

~J 
{,Ig(r ~ +y} dr1 — 0, (39)

which inview of (29), can be rewritten as

(0) 112
RA (o)112 — w(rA (o)112) ~ 4{v 2(v2—l)—4C} J g(r~)dr~. (40)

0

Evidently, under condition (ii), the mapping V has a nonzero fixed point
I

2 <~

We have established that there exist points (A(0),0) in 1 ’(O) with

IIA(0) II >0. Now, we must show that for such a point, there exists a tra—

jectory curve lying in [—‘(0) which joins (A(0),0) and (0,0). This is

assured when 1 1(0) is compact. It 18 straightforward to show tha t I_1 (0)

is closed. To show that I 1 (O) is bounded, we rewrite (32) as

w — {K g(fl ) + y}dn, (41)
Jo

• where w— IIA ’~
2 and u—h Al 2. Condition (I) implies that y>0 and c<0. From

(ii), there exists a finite u
1
>0 such that the right—hand—side of (41) is

zero at u1 and negative for all u > u1. Since (41) is valid only for w~O,

hence lAl
2
’~u1. Also, from Weieratrass theorem, there exists a finite

W1>0 such tha t ~A’~
2.~W1, since the right—hand—side of (41) Is continuous on

•
-

~~~~~ _ 9 ~~~~~

-- -



I

p

the compac t interval O4u~u1. Thus, the boundednees of I~~(0) is established.p
Finally, since only the nonnegative solutions of (20) are meaningful

here, it remains to show that for a point (A(0) ,O)EI ’(O) with A(0)~O and

II A ( 0 )hI ’o , its corresponding solution is nonnegative , tha t is , A(E,)~r.0

for all  ~~~~ This is immediately apparent from the fact that 1 ¼0)

I~~ (0)uI (0) and I’(OThI ’(O) = {(0 ,0)}, where

A~~ and I~~ (0) —{(&,A ’)6 I~~ (0):A4~}, since U1
(0,C) 0. I

3

Remarks: (R—1) Theorems 1 and 2 gIve respectively sufficient condi-

tions for the nonexistence and existence of multidimensional solitary—wave

solutions of (1) which are directly analogous to those for the one—dimen-

sional case. From (33), it is evident that 1 1(0) is symmetric about A—0

and A ’—O . Also , I ’(O) and 1 ’(0) are symmetric about A’ —O . Thus,under

the conditions of Theorem 2, the trajectory curves in the (A,A ’)—space cor—

responding to the solitary—wave solutions of (7) satisfying (30) have si-

milar properties , and they have the form:

h
1
(~) - ~~~~~~~~~~~~~~~~~~~~~~ j-l,...,N. (42) -

(R—2) Along any solution of (20), its corresponding density s(~ ) can

p be found directly by solving (26) for IIA(01 1 2 or I h ( ~) I 2  and substituting the

result into (6) with C—0. Complete knowledge of the solution A(~) is not

necessary here.

p We note that if the assumptions in Theorem 2 are satisfied and there

exists a positive number r such thate

Kg(r2) + -y • 0 or g(r ) — v2 (v2—l)/4 — C, (43)

then (20) has an uncountably infinite number of nonisolated ,nonzero equili-

brium points (A ,O) such that A
~ 

lies on the sphere {A5E ~~
N: lA el~ r e }.

p

10
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Now, we show that there exist solutions A(~) of (20) in some neigh— -
borhood of these equilibrium points such that their norms are periodic func-

tions of E~.

First , we rewrite (22) in the form

d2u/dF,2 — ~V(u,C1
)/3u , (46)

where

U

V(u,C1
) = 2 f {f l (Kg(fl ) + y ) + C

1 
+ 2U1(~ ,C)}d~ , (45)

and the Initial conditions u(0)lA (O)12 and u’(0) 2A(0).A’(0) are chosen

such tha t condition (24) is satisfied. It can be readily verified that if

we set C
1—C~ 

given by

— — J {i<g(n) + -y}d~ , (46)

0
- t

then ue r
~ 
is a stationary point of V(.,C?), or (u,u’)—(r~ ,0) is an equili-

brium point of (44). For C1
.C~ , condition (24) becomes

~A(o)p2

• ~
A’(0)hI 2 = f {,g(~ ) + y}d~ ~. 0. (47)

r 2

Under condition (i) and (ii) of Theorem 2 , we have Kg(n)~-y>O for O~~<r~ ,and

Kg (n )+y~0 for all ~~~~ Evidently , (47) is satisfied if and only if

— r .  Hence, the only solution to (44) with initial condition (u(0)-,u’(O))

satisfying (47) ii the equilibrium solution (u(F~),u’(f))’(r~,0) for all ~~ .

• Now, we consider the solutions of (44) with C1
1.C~+5C1 

and initial con—

dition (u(0),u’(0))”~~A(O)~
2 ,2A(O).A’(0)) satisfying (24), where ~C1 is a

small perturbation of C1 about C~. Let u
5

(C
1
) denote a stationary point

11 
- - -
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p

of V(.- ,C1) or a root of the equation
p

u(Kg(u) + y)+ C1 + 2U
1
(u,C) — 0. (48)

For C
1—C~+t5C1, 

we can write

u(C ).u’ r2 +âu . (49)e 1 e e

Clearly, under the assumptions of Theorem 2 , 6u
~ 

depends continuously on
I

• and 
~~e H0 as I~ C1I—~0. Also , since

a2V(u ,C1)/~u
2 — 4~Kg(u) + y}+ 2Kug’(u), (50)

we have (32V(u,Ci
)/3u2)(

~ 
— 2Kr~g~ ( r ) <O, or ue~r~ is a relative maximum

point of V(.,C~). In fact , since 2Kug’(u)<O for all u>0 and Kg(r~ )+~—0 
- 

-

P there exists a positive number c such that for each 6C1,j6C1~
<c, its cor—

responding u
e

(C
l)=r:+Isue 

is a relative maximum point of V(.,C~+6C
1
). Con-

sequently, for any fixed 6C 1,I iS C1f <c , (44) has periodic solutions in some

- : neighborhood of the corresponding equilibrium point (u,u’)1 (r
~
+óu

e,
0).

11

They are given by the solution of

(ue (~ )) 2I2 V(uU).C1
+15C

1
) - V(u

0,C~
+ISC

1
) + (ui)2/2 (51)

with u(0)=u , where the Initial point (u(0) ,u’(O))—(u ,u’) is sufficiently

close to (u,u’) (r
~
+&ue,0). In particular,ve can choose u0

.’
~A(0)hj

2>0 and

u”2A(0).A’(0) such tha t condition (24) given by
•

NA ’ (0)12_ C~ + 6C~ + 2U1(PA(0)II~C)

1 1 2

• — ~~~ +J {K g(fl ) + y}d~ ~ 0 (52) -

e

is satisfied . This is possible for any positive 6C1. The existence of -
I - ,

12 U
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solutions of (20) in some neighborhood of the equilibrium points (A ,0)

with NA eN=re, whose norms are periodic functions of ~ follows from the

- 

- fact that I ISue l~
_#0 as I6C1l— ~0. The foregoing result can be stumuarized

as a theorem.
p

Theorem 3: Assume that the conditions of Theorem 2 are satisfied , and

there exists a real number re>O satisfying (43). Then there exist solu-

tions A(~ ) of (20) in some neighborhood of the equilibrium set {(A,A t)EIR2N
:

NAI—r , A’—O } such that their norms IA(F~)l are periodic functions of ~ .

Note that in the multidimensional case, the periodicity of u(~).IA(~)N2

generally does not imply the periodicity of A(F). Since the energy density

of the electric field is proportional to Ih(~)I2 , solutions with periodic

h(
~) represent oscillatory energy densities. Evidently, from (6) (with

é—0), the periodicity of s(~) is implied by that of Ih(~)l. Now, we give

a simple sufficient condition for the nonexistence of periodic travelling

waves in the sense that lh(~) l and s(~ ) are periodIc in ~~~.

Theorem 4: Suppose that the following conditions are satisfied:

(I) g is a real—valued continuous monotone increasing function defined

on D~ such that g(0) 0;

• p (ii) v2(v2—l) < 4C and v2)l;

(iii) the initial conditions A(0) and A’(O) satisfy NA (0)lJ >0 and C~~0,

where 
~~~~~ 

is defined in (31).

p Then, the norm of the corresponding solution A (~) of (20) is nonperiodic

in 
~~~.

Proof: Consider (22) given explicitly by:

p ~. U

d2u/dF 2 — 4yu + 2
~
’
i + 2K ug(u) + 

~ 
gth) ~~~ , (53)

~0

P 13I .
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where y and K are as in (16). Under condition (I),the { . . . }  term in (53) is

p 
nonnegative for u~.O. From conditions (ii) and (iii), we have y>0 so that

d2u/dF 2)O for all u~0. Since u(0)=OA(0)112>0, u is a nonzero convex function

of ~ which cannot be periodic. •
Theorem 4 gives a sufficient condition for the nonexistence of super-

sonic periodic travelling waves. In the subsonic case (v2<l), the condition

v2 (v2—l)<4C implies that y<0. Thus, under condition (I) of Theorem 4, we

have d2u/d~
2
~0 for all u~0 when a1 o, which implies the nonexistence of sub-

sonic periodic travelling waves. However, 3’l~
0 corresponds to

~lA(o)lI 2 
-

ifA’ (0)11 2 
~ YNA(0)12 

4ic
J 

g(n)d~ , (54)

0

whose right—hand—side is nonpositive. Thus, this condition can be satisfied

only in the trivial case when A(0)—0 and A’(O)—O .

3. SPECIAL CASES

Now, we apply the results in Section 2 to equation (1) with par ticular

forms of g arising in physical situations.

3.1 g(IE~
2) lE t 2 : This corresponds to the case with the usual pondermo—

tive force, Here, U1 as given by (15) has the explicit form:

2U
1(11A12,C) — YUAN 2 + KIA I ”/2 , (55)

where y and K are as in (16). A first integral of (13) is given by

IA ’ (012 _ y lA (~) U2 — KIA(~) U” /2 _ EI~ A~
2 (F)/4 — C1. (56)

When A(0) and 8 (0) are chosen such that ~.a’.0, the equation for A~(~)

given by (20) reduces to

— 

14
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d 2A~/dF~
2 

= (y + KIA I2 )A
~~ j—l ,...,N, (57)

and the equation for u(E)—IA(E) ~~2 given by (22) become s

d2u/d~
2 — 3Ku2 + 4yu + 2C

1
. (58)

~ 
p

A first integral of (53) is given by

(u’(~ )) 2/2 - Ku
3 (~~) + 2yu2(~ ) + 2C1u(~ ) +  C2, (59)

where C2 is an integration constant. By restricting the right—hand—side of

(59) to be nonnegative, we have the following implicit expression for u(~):

u (E)

J (KTi~ + 2yr~
2 + 2C

1fl + C
2
) 2d~ - /2~ , ~E1R. (60) -

u(0)

Now , we apply Theorem 1 to this special case. Clearly , for v2<l,

condition (27) cannot be satisfied. But for v2>l , (27) is satisfied when

v2 (v 2—1)/4 C. Under this condition, there do not exist solutions of (20)

or solitary—wave solutions of (7) such that lh(Q)l >0 and lh (~)l40 as

g To apply Theorem 2 to this special case , we see that under condition (i),

g(u).’u satisfies condition (Ii). Thus, under condition (i), (57) has so—

litary—wave solutions satisfying (30). For such solutions, we see from
p

(56) with i=0 that C1 must be zero. Also, from (59) , C2 must be zero ,

since u(O)’.1JA(0)j12>O and u’(O)—O ,IA(O)I must satisfy

f lA (o)I’ = —2y/K, (6].)

where y>0 and K<0 under condition (I). Thus, (60) becomes

~
lIA
~

)I2 —

- 

• J {Kr~ +2y~
2} Td~ = v’2~, ~~~~~~~~~ 

( 62)

I 

2y/tic I

15 

— -~~~~~~~~~~~~ - - ~~~~~~~~-~~~~~~~~ - -



F- — 
~“ ~~~~~~~~~~~~~~~ 

-..- --
~
--

~  
——--—----

~~~~~~ 
-

~~~~~ 
— — - -

~~~~~~~ - —-~~~~ 

1
•
~~~

I -
-

It follows that

— (2y/H)2 sech(/yE), ~~€IR , (63)

and In view of (6), we have

tp
s(~) (v

~—l)~~
{(2y/IK I ) sech2(/~~) + C) .  (64)

Substituting (64) into (11) with 1Jj
=O leads to a set of uncoupled

equations for A ’s given by

d 2A~/d-~
2 

= (y 4 KlA N 2 )A~ = y{l — 2 sech 2(/Yf~))A~~

j—i ,... ,N, (65)

which can be integrated independently to obtain A~(~). The foregoing

results are consistent with those for the one—dimensional solitary wavas~
°

Turning now to the periodic travelling—waves, we observe that under

condition (i) of Theorem 2, (57) has an uncountably infinite number of

nonisolated equilibrium points (Ae~
O) such that lIAell 2 r

~~
_Y/K>0. Also,

(58) can be wri t ten  in the form of (44) with
r

V(u,C1
) = u(Ku2 + 2yu + 2C1). (66)

• 
If we set C

1
_C~~y

2/(2K), then U~~—y /K is a relative maximum point

of V(.- ,C~ ). Now , we consider the solutions of (58) with initial condi-

tions u(0)..IJA(0)112 and u’(0) 2A(0).A’(O) satisfying condition (24) given

explicitly by

IIA ’ (0)12 C1 + yu(0) + Ku2 (0)/2 ~ 0. (67)

Let U(C1) denote the set of all u(0)~0 satisfying (67) for a fixed C1.
p

It can be readily verified that under condition (i) of Theorem 2, we have

p 
16
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LA (C1)={u(O):[y-(y
2+2tK IC 1

)2]/lKku(0)~ [y+(y
2+2 IKlC 1)

2 ]/IKl }

for 0)C
11r

2/(2K) (68)

U(C
1
)={u(0):0$u(0)~~[y+(y 2+2lKIC 1)

2 ]/lKI } for C
1~
0, (69)

and (1(C1
) is empty for C1<~~/(2K). Note that for C1’.’y

2/(2K), U(C1) con-

tains only the point u(0)=-y/K. Thus , from Theorem 3 , if condition (I)

of Theorem 2 are satisfied , then there exist solutions A (E) of (20) in

some neighborhood of the equilibrium set {(A ,A’)E R
2N

:IAU
2
=_y/K ,A I _0}

such that their norms flA (~)Il are periodic in ~~. These solution curves cor-

respond to (56) with ~—0 and C1 
satisfying 0>C

1
>y 2/(2K). When C

1 
is set

• 
to zero , we have solitary—wave solutions such that lA (~) ~$ and h A ’  (~) ~J—*O

as as given by (63). In this case , (u,u’)— (0,0) is a saddle point

of (58) with C
1
0.

Fig.1 shows the trajectories of (58) with y l  and K=—2 in the (u,u’)—

plane for various values of C
1 
and u(0) satisfying (67). Note that for

Cr0, (u,u’)=(O O) is not an equilibrium point of (58). In fact , these -
solutions pass through the origin and they are periodic functions of ~~.

Fig. 2 shows the behavior of the trajectories in the c—domain.

Finally, for the supersonic case v2”l, we have from Theorem 4 that

• if v2 (v 2—1)<4C and A(0),A’(O) satisfy NA(0)I>0 and CJ~ 0 or

N A ’ (0)12 ~vIA(0)ll 2+ KIA(0)~~ /2 > 0, (70)

• then the norm of the corresponding solution A (~ ) of (57) is nonperiodic
p —

th~~.

3.2 g(JE)2)_K(l..exp(_~E J ) )): This form of g, with K being a positive con—
p 

12stant , has been proposed by Wilcox and Wilcox to represent ion density

saturation. For this g, U1 is g
iven by

P 17
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Pig.1: Trajectori ’s of (5~) with y=1 and K~—2 in the (u,u’)- plane for u(0)
satisfying (76) and fixed values of C1 (curves 1—5 

correspond to
C ~1.l,O.4,0.0,—l/8,—3/16 respectively); curve 3 

is the solitary—
w e solution.
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2U
1dfA112,

C) - (~~ +y)~fA~
2- KK (1 - exp(-(1A 11 2) } ,  (71)

and a first integral of (13) is given by

Ik’(t) II2-(~ +Y) IIA (~~112+KK (1-exp (4Wj I2 1 - ~~~~~~ p A~
2 (~ )/4 - C1. (72)

The equations for the A~ (E~)’s with j—0 corresponding to (20) have the form :

d 2A~/d~
2 { y  + KK [l — exP~— hIA (E~)II

2 ) 1}A ~~ j=1 ,...,N. (73)

The evolution of u (F~) - hIA”~)hI
2 with ~ along an integral curve of (73)

specified by C
1 

is governed by

d 2u/d~
2 

= 212 (~~KK)u + C
1 - KK(1-(1-u)exp(-u))}, (74)

which has a first integral of the form :

(u’(~ )) 2/2 - 2(y+KK)u2(~ ) + 2u(~ ) [C
1 
+ KK (exp(-u(~))-l)J + C2, (75)

where C, is an integration constant. By restricting the right—hand—side

of (75) to be nonnegative , we can integrate (75) to give an implicit expres-

sion for u(E~).

To apply Theorem 1 to this case, consider inequality (27) given expli—

• citly by

KK(1—exp(—u))+ y >0 for all u ~ 0. (76)

This condition is satisf ied when

v2~’ 1 and Y > 0 (77)

or

v2~ 1 and (K + y ~
‘ 0. (78) 

—

Thus , under (77) or (78), there do not exist solitary—wave solutions such

I - 20
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P 

that jh(0)~ > 0 and Ih(~ )I~~
0 as ~~~~~~~~ Moreover , from Theorem 4, when

v
2>1,Y >0 and (A(0),A ’(O)) satisfies

IIA’ (o)H 2 ) (KK+ y)IA(0)r — KK (l—eXp (—NA(0)112)}, (79)

- p then the norm of the corresponding solution A (~) of (73) is nonperiodic in

in C.

Now, consider condition (29) in Theorem 2 which requires the existence

of a u1>0 such that

K[u1 + exp (—u
1)—l.~ — (—y/K)u

1 
(80)

and for all u > u1,

K(u + exp(—u)—l] > (—y/,c)u (81)

This condition is satisfied if

y /K< 0 . (82)

Thus, if V 2 < 1 and y > 0, then the hypotheses of Theorem 2 are satisfied .

Hence (73) has solitary—wave solutions satisfying (30). For such a solu—

tion with IA’(0)1 0, we have from (72) with C1 0 and ps0 that lIMO) II must

satisfy

— KK(KK+yY’1l—exp (—~JA (0)~
2)}, (83) -

which always has a solution IIA (0)12>O if v2<l and y>0.

• Next , we observe that if

- 
- KK/(y+s(K) >1 , (84)

then (73) has an uncountably infinite number of nonisolated equilibrium

‘
1 points (A

~
A ’)=(Ae~

O) such that — 



u 
~ ~IA 

12 = ln[KK/(y4sK)) > 0. (85)

Note that if v2~1, then (84) implies (82) and

( y + K K )  < 0. (86)

I 

We shall verify that under the conditions of Theorem 2, (74) has per iodic

solutions in some neighborhood of the point (u
~
u’)=(ue~

0)•

First , we rewrite (74) in the form of (44) with V given by

— 
V(C 11 u) = 2(y4~K)u

2 + 2 (C
1
—KK)u + 2~d(u exp(—u). (87)

If we set C
1—C1 

given by

C~ - 2(y+~()ln((’y+~~)/(K1~fl + KK - 
~~~~~~[l-ln(KK/ (~y~4iK))], (~8)

then U
e 
given by (85) is a stationary point of V(.,C~ ), or (u

~
u’)=(ue~

O)

is an equilibrium point of (74). At this point , (~~
2V(u ,C~~)/ ~~u 2) 

‘u—u 
=

2Ue(’Y+
KK)

~ 
Thus , under condition (86), U

e 
is a relative maximum point

of V(.,C?). Now, we consider the solutions of (74) for various values of

C1 in some neighbothood of C~ , with initial conditions u(O)~’hIA(0)II
2 and

u’(0) 2A(O)-A ’(O) satisfying condition (24) given by

IA ’ (0) 12 - C
1 + (~~KK)u(O) - KK[l-exp(-u(0))~ ~~O. (89)

As in Section 3.1, let U(C1) denote the set of all u(0)~O satisfying (89)

for a f ixed C
1 or

U(C1) — {u(O))0: C
1
+(y+KK)u(0) ~ KK (l—exp(—u(0))]}. (90)

It can be readily verified that if v2<l and condition (84 ) is satisfied ,

then U(C1) is empty for all C1 < C~, and

-~~~~~~ 22
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U(C*) tu*(0)}, (91)
- 1

where

u*(0) = ln (KK/(y+KK)], (92)

C~ (y+KK )ln[KK/(y+KK)J, (93)

where u* 0 corresponds to the point of tangency between the line y
1
(u)=

p C~ (KK) ’+ [l+y(KK) ]u and the curve y
2
(u) 1. — exp(—u). Also,

U(c
1
) = (u(0): ~ 4 u(0) 4 ~} for C~4C1~O, (94)

p U(C
1) — {u(O): 0 4 u(0) ~ GI for C

1
>0, (95)

where ~ and G with ~<i~ are the two distinct positive roots of the equation

C
1 + (y4szK)u — KK(l—exp(—u)] 0. (96)

Thus , from Theorem 3 , if v2<l and (84) is satisfied, then there exist solu-

tions A(C) of (73) in some neighborhood of the equilibrium set

N AN 2— ln[KK/ (y+I K)], A ’=OlI such that their norms hI A (C ) Il are periodic in C.

These solution curves correspond to (72) with ~—O and C1 
satisfying 0>C

1
>C~ .

The trajectories of (74) with y—l,I ——2 and K—i for various values of C1 and

u(O) satisf ying (89) are shown in flg.3. Their corresponding trajectories

in the C—domain are shown in Fig.4.

• 4. CONCLUSION

We have shown that under mild conditions on the nonlinearity g, (1)

has multidimensional solitary—wave and periodic travelling—wave solutions

• 
(E(C),n(C)) in the sense that IE(C)l and n(C) tend to finite values as I C !
~~~~~~~, and they are periodic functions of C respectively. Along these solu—

tions, the phase of E(~) is an affine function of C. Moreover, u(C) 1E(C)12

I.
~A 23 
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p Fig.3: Trajectories of (74) with y—1 and K——2 in the (u,u’)—plane for u(O)
satisfying (89) and fixed values of C (curves 1—5 correspond to
C1—O.2707, O.0,—O.1522 --0.2642,—0.306~ respectively); 

curve 2 is
the solitary—wave solution.
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p

p satisfies a scalar second—order ordinary differential equation whose solu-

tions have properties similar to those in the one—dimensional case. Al-

though in this study , we have treated only the case with electrostatic waves

p (i.e. VXE — 0), the same approach may be used to obtain results for

electromagnetic waves.

- 
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