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ABSTRACT

Nonlinear Langmuir waves in a plasma governed by the dimension-
less equations: 13E/dt = -V?E + nE, 3%n/3t? = V2(n + g(|E|?)) are

studied, where E is the complex amplitude of the high-frequency elec-

tric field; n is the low frequency perturtation in the ion density
from its constant equilibrium value; and g is a given function of IE[Z.
General conditions for the existence or nonexistence of a class of
multidimensional solitary-wave and nonlinear periodic travelling-wave
solutions in the form E(t,x) = h(k.x-vt) and n(t,x) = s(k.x-vt) are
established. The results are applied to the special cases: (i)g([Elz)
=|E|? corresponding to the usual pondermotive force, and (ii) g(|E|?)=
K[1-exp(~|E|?)], K is a positive constant, representing ion density

saturation.
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~J. INTRODUCTION

 The formation,interaction and collapse of nonlinear Langmuir waves in
plasmas have been studied extensively in recent years?QlOQ In most of the
existing works, attention is focused primarily on the formation and inter-
action of solitary waves. Exact expressions for these solitary waves for
various regimes have been obtained only for the one-dimensional case. Re-
cently{/éibbons et al‘oldiscussef'the gossibi}ity of existence of solitary
Langmuir waves for higher dimensiégé.. l};?;éis study,-we obtain;ponditions
for the existence or nonexistence of multidimensional,nonlinear Langmuir
travelling waves, including the periodic and the usual solitary waves. .-

We begin with the following basic equations1 describing the nonlinear
interaction of high-frequency electron oscillations with an ion fluid:
13E/3t = -V?E + nE,

(1)
3%n/3t? = Vi + g(E|?)),

where i =V-1; E = (E ,EN) is the complex amplitude of the high-frequency

100
electric field § given by

E(t,x) = Re{E(t,x) exp(-iwpt)}; (2)

n is a real quantity corresponding to the low-frequency perturbation in the
ion density from its constant equilibrium value ni and g is a specified
real-valued function of |El2. Here, we have used dimensionless quantities.

The units of time &, spatial coordinates x = (xl,...,xN)i electric field E

and density n are, respectively, 3q/(20wp), (3rD/2)(q0) 2. 8(qﬂnoﬂT/3)
and Aqan°/3. where & is the electron-ion mass ratio me/mi; q= T/Te; T =

Te + Ti; Te, T, the electron and ion temperatures respectively: r_ the

i D

electron Debye radius, and wp the plasma frequency. The function g is

i 2




S

introduced here so as to permit the consideration of a wide class of non-

linear effects such as saturation,

2. TRAVELLING WAVE SOLUTIONS
Let IRN and CN denote the N-dimensional real and complex Euclidean
spaces respectively, and Cm(IR;V) the space of all m-times continuously
differentiable functions defined on R and taking their values in the vector
space V. The norms for RN and CN are denoted by “-” and l-| respectively.
The dot notation is used to denote the usual scalar product on Rﬂ or CN.
Let k be a specified unit vector in RF and v a given real number
corresponding to a constant dimensionless velocity. We seek travelling-
wave solutions of (1) in the form:
E(t,x) = h(k'x - vt),
(3)
n(t,x) = s(k*x - vt),
where h and s are undetermined functions in C2( R,CN) and CZ(IR, R) re-
spectively. For physical reasons, we shall restrict h and s to functions
such that |h(E)| and |s(£)| are uniformly bounded on IR, where { = k-x - vt.
In particular, we shall consider multidimensional solitary-wave solutions
which are analogous to those in the one-dimensional case. Here, we require
that |h(§)] and s(£) tend to finite values as |§| + =,

Substituting (3) into (1) leads directly to the following equations

for h = (hl,...,hN) and s:

-iv dh/d§ + d?h/dE2 = g(E)h(E), (4)

(vi- 1)d%s/dE2= d2g(|h|?)/dE2, (5

where we have adopted the rectangular Cartesian coordinate system.

S A s i A Ve S,




' ]
Equation (5) can be integrated to give | 3
» -
i (vi-1)s(E) = g(|h(§)|?) + cg + C, (6)
where 6 and C are integration constants. From the boundedness requirement,
] we set C = 0. Assuming that v?#1l, we can solve for s(f) in (6) and substi~
tute it into (4) to give a complex diiferential equation for h: f
d?h/dE?- 1vdh/dg = (v2-1){g(|h(£) |2 + C)h. (7
'
It is advantageous to rewrite (7) in polar form. Let hj(g) = Aj(g)
exp(iej(i)). j = 1,...,N, Then, we have
el’.xj/cu:2 + 481 (8) (v-01(8)) = (vz—l)"Aj{g(ﬂAlz) + C}s (8)
dzej/dg2 = (v—283(£))d(1n Aj)/dE, 0 TR | 9
where A = (A,...,A)), lAll = [n| and e;-dej/dg.
Equation (9) can be integrated to give
81(E) = (v-n,AT%)/2, (10)

3 33

- 2 - '
3 AJ(O)(V 293(0)).

Substituting (10) into (8) leads to the following differential equa-

where u

tions for A;:

3
dzAJ/dEZ - f(uj,C,A)Aj, j=1,...,N, (11)
where
£1y,CA) d WiAT*- v /4 + (w21 Mg (Al + c). (12)
Evidently, given C,8(0),A (0),A5(0), J = 1,...,N, (11) can be inte-

grated independently. Since f is a function of C and uj (depending on




AJ(O)). (11) must be solved with initial conditions at £=0 which are con-

sistent with the AJ(O) in uj. Also, only those portions of solutioms of

(11) with A(£)20 (i.e. A, ()20, 3j=1,...,N) are meaningful here.

]

We note that (11) can be rewritten in the form:

d2A,/dg? = 3U/BA,  =l....0N,

j’
where
N
A 2 - 2 2
U(A,u,C) Ul("AI ,C) Zluj/(sAj),
ja

1Al
2u, (fall*. 0 éj {kg(n) + y}dn,
0

K = (v¥-1)7!, y = (v¥-1)"'c - v¥/4

and U = (ul,....uN). A first integral of (13) is given by

(13)

(14)

(15)

(16)

N
TA),A"(€) £ a2 2w, da® 12,0 - Z WIATE(E)/4 = €y, (D)

i=1
where ||A' (§)]? 4 ;f; (dAj(C)/dﬁ)2 and
N
€y = [la* o) |I2- zul(nA(o) 1?,c) - E (v - zej'(o)).
e

(18)

Evidently, if u,#0 for some j, then I(A(§),A'(E))——> as IA'(E)" and

3

lag)||=0. Since C, is finite for finite f[arco)f.faco)f,c and ©

]

:€0), 3=

1,...,N, therefore there do not exist solutions of (13) or solitary-wave

solutions of (7) such that |A(E)]| and J|A' (§) |20 as |E|—< when uj#O for

some j.

In what follows, we shall focus attention on the particular case

where u = 0. Here, we have




Bj & = Bj(O) +v&/2, 3=1,...,N (19)

as a solution of (10) or (9). Note that “j = 0 when AJ(O)-O and/or 95(0)-
v/2. This implies that along any trajectory of (8),(9) starting from a
point z(0) = (A(0),A'(0),6(0),6’(0)) in the set Z £{(a,a',0,0") ER™:
Aj(v—263) =0, j=1,...,N}, its corresponding phase 6(£) 4 (el(g),...,eN(g))
has the form (19). In this case, f no longer depends on A(0) and 6'(0),

and (13) reduces to

2 2 = =
d Aj/dg aullaAj, =1, ... ,N. (20)

The equilibrium points of (20) are points (Ae,O) in Egn such that Ae are
the stationary poiants of U1 or the roots of the equation £(0,C,A)A = O,
Obviously, Aés include A = 0 and all those A's satisfying g(JA}?)=v3(v2-1)/4
=C.

To obtain some qualitative information on the solutions of (20), we
first derive a differential equation for u(§) é nA(E)ﬂz. By direct com-~

putation,
d24/dE? = 2A' (E)]| 242A(E) -d?A/dE? = 2JA" ()] + 2uE(C,u),  (21)

where ?(C,"Alz) 2 £(0,C,A) as defined by (12). Along an integral curve

(17) corresponding to a fixed C1 and u=0, (21) can be rewritten as

d%u/dg? = 2{uf(C,u) + €| + 20, (u,0)) 4 P(u,C,C,). (22)

Its solution starting with initial conditions

u(0) = J|A(0)]|2, u'(0) = 2A(0)-A'(0) (23)




satisfying
At @12 = ¢, + 2u dllac@ii2,c) 30 (24)

describes the evolution of "A(E)u with £ along the integral curve.
A first integral of (22) is given by
u(€)
(' (E)? = (u'(0))? + f 2P(n,C,C,)dn ¢ Q(u,C,Cy,u'(0)),
Bl (25)
where u' = du/df. Equation (25) is valid only when its right-hand-side
is nonnegative. An implicit expression for HA(&)"2 can be obtained by
integrating (25):

jaE))? 3
f Q(H’C,CI’U'(O)) s dn = :tﬁ . (26)

Ol

Note that if an explicit expression for JA(E)||? is obtainable from (26),
then A(f) can be determined by integrating each equation in (11) inde-

pendently with u=0.

In the sequel, we shall establish conditions for the existence or non-
existence of solutions of (20) having the property that [A(E)||—0 as |&|—w,
or solitary-wave solutions of (7) with u=0.

Theorem 1: If

kg(u) +y »0 27)

for all u30, then there do not exist solutions of (20) such that "A(O)ﬂ>0
and [|AE)]|—0 as [§]—=,

Proof: Condition (27) is equivalent to £(C,u)30 for all up0. In view
of (21), we have d?u/d£?>0 implying that [JA(£)]|? along any solution of (20)

is a convex function of £. Hence, it iz impossible to have "A(O)“ >0 and




|
|
Ha©) |—0 as |g|—=. 1
Note that for the subsonic (v?<l) and supersonic (v?>1) cases, (27)
implies that g(u) is uniformly bounded above and below by vZ(v3-1)/4-C
respectively. Also, 1f (27) 1is a strict inequality, then (A,A')=(0,0) is
the only equilibrium point of (20).
Theorem 2: Assume that the following conditions are satisfied:
(1) v3(v¥-1) > 4C and v3<1;
(11) g is a strictly monotone increasing function in Cl(]R,lR) with
g2(0)=0 and there exists a positive number ul<w such that
o
f g(n)dn = {v2(v2-1)/4.c}u1 (28) |
9 ;
and
u
f g(n)dn > {vZ(v?-1)/4=C}lu for all wu, . (29) ;
0 {

Then (20) has a solution A(£)20 for all EER, with JA(0)][>0 and ||A' (0)|=0

such that

. 1
-
T A

JACE) | and JJA' (E)||—0 as |E|—=. (30)

Proof: First, we note from (15) and (17) with u=0 that for a solution to

: have property (30), the initial condition (A(0),A'(0)) must satisfy !

——TTT
-

€ 2 1A @)% 2w, da@],0) = o. (1)

We shall show that under condition (i), E;-O implies property (30). From

e e —

(17), it is evident that when (A(0),A'(0)) satisfies (31),its corresponding

trajectory is a zero-level curve of I(A,A') defined by

1a,a9 & AP 2v (al2,0) = o, (32)

or the points along the trajectory belong to the set




17(0) = {(A,A") € RV:(a")|2= 2u, (Jal2,0)) . (33)

Obviously, the equilibrium point (A,A')=(0,0)0€17'(0). Now the foregoing
implications can be established by verifying that (0,0) is the only equili-

brium point in I~'(0), moreover, it is a saddle point.

Let (Ae,O) be an equilibrium point of (20) with ﬂAeI>0. Then, Ae

must satisfy f(O,C,Ae)-O or
log(uAelz) = v (v3-1) - 4C. (34)

Suppose that (A ,0)€ 17'(0). Then, we must have

lab®
ZUI(NAeIZ C) AJ’ {kg(n) + y}dn = 0. (35)
0
From (34), we have
Ia 12
2u1(|lAeI2,c) -j k{g(n) - s(IIAell“)}dn (36)
0

which is a positive quantity for 'Ae|>0 under condition (i1). This con-
tradicts (35). Hence (A,A')=(0,0) is the only equilibrium point in I(0).
To show that (A,A')=(0,0) is a saddle point, consider the following

linearized equation (20) about (A,A')=(0,0):

2 2 2 2
d’8a,/dE* = @%v,/3AD1,

j 5Aj, j=1,...,N, 37

where
(38)

2 2 =
@%0,/389 | g = ¥

Note that due to the symmetry of U1 about A-O,(lell/BAjaAk)lA_o-O for j¥k.




Under condition (1), (azullaAf)lA_0>0, 4=1,...,N, so (A,A')=(0,0) is a sad-
dle point. Moreover, it is the limit point of some trajectory lying in
171(0) as |g|—. Hence, C,=0 implies property (30).

Next, we must verify that there exist points (A(0),A'(0))=(A(0),0)
with [JA(0)] >0 such that C;=0. From (15) and (31), this corresponds to
finding a A(0)|>0 such that

O E
ZUI(HA(O)IIZ,C) éI {®(n) +yldn=0, (39)
0

which inview of (29), can be rewritten as

ja(o))?

la@ |2 = w(Ja@) | » - 4{v23(v2-1)-4C} f g(ndn. (40)
0

Evidently, under condition (1i), the mapping W has a nonzero fixed point
fla o)) 2<e.

We have established that there exist points (A(0),0) in I~}(0) with
"A(O)H>O. Now, we must show that for such a point, there exists a tra-
jectory curve lying in I-!(0) which joins (A(0),0) and (0,0). This is
assured when I7!(0) is compact. It is straightforward to show that I7'(0)
is closed. To show that I1~!'(0) is bounded, we rewrite (32) as

u

w -[ {xg(n) + yl}dn, (41)
0

where w=||A']? and u=||A]?. Condition (1) implies that y>0 and k<0. From
(11), there exists a finite u1>0 such that the right-hand-side of (41) is
zero at uy and negative for all u > ug. Since (41) is valid only for w30,
hence |A|2su1. Also, from Weierstrass theorem, there exists a finite

W,>0 such that IA'Izswl, since the right-hand-side of (41) is continuous on

1




the compact interval 0(u<u1. Thus, the boundedness of I~} (0) is established.
Finally, since only the nonnegative solutions of (20) are meaningful

.l here, it remains to show that for a point (A(0),0)€ 17 (0) with A(0)30 and

lA0)[|>0, its corresponding solution is nonnegative, that is, A(£)>0

for all {ER. This is immediately apparent from the fact that 17%0)=

1,011 (0) and 171(0)n1 ' (0) = {(0,0)}, where 1;'(0)={(A,A")EL'(0):

3 A% and 171(0) ={(A,A")€17(0):AQ), since U, (0,c)=0.

Remarks: (R-1) Theorems 1 and 2 give respectively sufficient condi-

tions for the nonexistence and existence of multidimensional solitary-wave

> solutions of (1) which are directly analogous to those for the one-dimen-
sional case. From (33), it is evident that I~'(0) is symmetric about A=0

and A'=0. Also, I;“(O) and I:‘(O) are symmetric about A'=0. Thus ,under

*- N

“ the conditions of Theorem 2, the trajectory curves in the (A,A')-space cor-

responding to the solitary-wave solutions of (7) satisfying (30) have si~

3 milar properties, and they have the form:
hy(8) = A, (E)exp (1(91(0)+v5;/2)}. j=1,...,N. (42)

{R-2) Along any solution of (20), its corresponding density s(f) can
' be found directly by solving (26) for "A(E)"2 or |h(£)|2 and substituting the
result into (6) with C=0. Complete knowledge of the solution A(f) is not
necessary here.
¥ We note that if the assumptions in Theorem 2 are satisfied and there

exists a positive number Co such that

r kg(rl) +y = 0 or g(r)) = vi(v’-1)/4 - C, (43)

then (20) has an uncountably infinite number of nonisolated,nonzero equili-

N, -
brium points (Ae,O) such that Ae lies on the sphere {AeEIR : IAel re}.

10
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Now, we show that there exist solutions A({) of (20) in some neigh-
borhood of these equilibrium points such that their norms are periodic func-

tions of £.

First, we rewrite (22) in the form

dZu/d£2 - BV(U.CI)/BU. (‘.l‘)
where
u
0

and the initial conditions u(O)-|A(0)|2 and u'(0)=2A(0)-A'(0) are chosen

such that condition (24) is satisfied. It can be readily verified that if

o
we set Cl Cl given by

rz

e
c] = -f {xg(n) + y}dn, (46)
(4]
then ue-ré is a stationary point of V(-,Ci), or (u,u')-(r;,O) is an equili-
brium point of (44). For cl-c:, condition (24) becomes

| AC0))2
jjat 0|2 = f {xg(n) + y}dn » 0. 47)

t.2
e

Under condition (i) and (ii) of Theorem 2, we have xg(n)+y>0 for 0‘n<r:,and
kg(n)+y<0 for all n>r:. Fvidently, (47) is satisfied if and only if lA(O)u
=T, Hence, the only solution to (44) with initial condition (u(0),u’(0))
satisfying (47) is the equilibrium solution (u(f),u'(£))=(xr2,0) for all .
Now, we consider the solutions of (44) with Cl-C‘{*-GC1 and initial con-
dition (u(O),u'(O))-(|A(0)H’,2A(0)-A'(0)) satisfying (24), where 501 is a

small perturbation of C1 about Ci. Let ue(cl) denote a stationary point

11

9 -

T e



of V(-,Cl) or a root of the equation

u{kg(u) + Y+ c, + ZUl(u,C) = 0. (48)
For Cl-cﬁ+6C1. we can write

ue(Cl) - r: + Su. (49)

Clearly, under the assumptions of Theorem 2, Gue depends continuously on 601

and |Su_|—0 as |6C, |—0.  Also, since

32V(u,C1)/8u2 = 4{xg(u) + y}+ 2xug'(u), (50)

we have (32V(u,Cl)/3u2)|u_re- ZKreg'(re)<0, or ue-r: is a relative maximum

point of V(-,Ci). In fact, since 2xug'(u)<0 for all u>0 and Kg(r:)+7-0
there exists a positive number € such that for each 6C1,ldcll<c, its cor-
responding ue(Cl)-r:-HSue is a relative maximum point of V(-,Ci+6C1). Con-
sequently, for any fixed 601,|601|<e, (44) has periodic solutions in some
neighborhood of the corresponding equilibrium point (u,u')-(r:+6ue,0).11

They are given by the solution of
' 2 = b o 1y2
(u'(€))7/2 = V(u(E),C +8C)) = V(u ,C +8C)) + (ul)?/2 (51)

with u(O)-uo, where the initial point (u(O),u'(O))-(uo,u;) is sufficiently

close to (u,u')-(r:+6ue,0). In particular we can choose uo-ﬂA(0)||2>0 and

u;-ZA(O)-A'(O) such that condition (24) given by

lla* ¢0)|| 2= c‘; + 8¢, + 2u, (Ja(@ll30)

Haco)||?
= &, +f {kg(n) + yldn 2 0 (52)
2

r
e

is satisfied. This is possible for any positive 601. The existence of

12
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solutions of (20) in some neighborhood of the equilibrium points (Ae,O)
with ﬂAeuﬂre, whose norms are periodic functions of £ follows from the
fact that Iduel-*o as |601|—*0. The foregoing result can be summarized
as a theorem,

Theorem 3: Assume that the conditions of Theorem 2 are satisfied, and

there exists a real number re>0 satisfying (43). Then there exist solu~
tions A(E) of (20) in some neighborhood of the equilibrium set {(A,A')EE]RZN:

I HAI-re, A'=0} such that their norms HA(E)I are periodic functions of £.

Note that in the multidimensional case, the periodicity of u(E)=||A(£)]?2
3 generally does not imply the periodicity of A(). Since the energy density
of the electric field is proportional to Ih(ﬁ)lz, solutions with periodic
kﬂ- ; Ih(E)I represent oscillatory energy densities. Evidently, from (6) (with
» €=0), the periodicity of s(£) is implied by that of |n(§)|. Now, we give
a simple sufficient condition for the nonexistence of periodic travelling
waves in the sense that |h(£)| and s(£) are periodic in E.

5 Theorem 4: Suppose that the following conditions are satisfied:

(1) g is a real-valued continuous monotone increasing function defined

oun IR such that g(0)=0;

~

(111) the initial conditions A(0) and A'(0) satisfy [|A(0)||>0 and ¢

E ' » (11) v?(v%-1) < 4C and v2>l;
; 20,

”~
where C1 is defined in (31).
¥ Then, the norm of the corresponding solution A(£) of (20) is nonperiodic

in €.

Proof: Consider (22) given explicitly by:

» u
d?u/dE? = 4yu + 2'6'1 + 2 3ug(u) +I g(n) dn‘ ’ (53)
0




where Y and K are as in (16). Under condition (i),the {...} term in (53) is
nonnegative for u30. From conditions (1i) and (1ii), we have Yy>0 so that
d?u/dg?>0 for all u20. Since u(0)=A(0)]|?>0, u 18 a nonzero convex function
of £ which cannot be periodic. l

Theorem 4 gives a sufficient condition for the nonexistence of super-
sonic periodic travelling waves. In the subsonic case (v3<1l), the condition
vZ (v3-1)<4cC implies that y<O. Thus, under condition (1) of Theorem 4, we
have d’u/d£?<0 for all u>0 when Elso, which implies the nonexistence of sub-

sonic periodic travelling waves. However, El‘O corresponds to

INOTE |
far @)% < vja(o))? «f g(ndn, (54)
0

whose right-hand-side is nonpositive. Thus, this condition can be satisfied

only in the trivial case when A(0)=0 and A'(0)=0.

3. SPECIAL CASES
Now, we apply the results in Section 2 to equation (1) with particular

forms of g arising in physical situations.

3.1 g(|E|®) = |E|%: This corresponds to the case with the usual pondermo~-

tive force, Here, U1 as given by (15) has the explicit form:
2u, (Jaj,0) = vlal? + «jalt/2, (55)

where Yy and k are as in (16). A first integral of (13) is given by

N
(] 2, - L} - 2,=2 -
1A' ©17- YIA®I2- dA®F*/2 - Y WA @)/4 = ¢, (36)
J=1
When A(0) and 6(0) are chosen such that u=0, the equation for AJ(E)

given by (20) reduces to

14
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d’AJ/daz - (Y + KlAI’)AJ, o N, (57)

and the equation for u(E)-IA(E)I’ given by (22) becomes

d%u/dE? = 3ku? + 4yu + 2C, . (58)
A first integral of (53) 1is given by
(' (E))?/2 = xu’(E) + 2vu®(E) + 2¢ u(E) + C,, (59)

where C2 is an integration constant. By restricting the right-hand-side of
(59) to be nonnegative, we have the following implicit expression for u(f):
u(g) 1
f {kn® + 2yn? + 2¢;n + Cz}-?dn = /26, EER. (60)
u(0)

Now, we apply Theorem 1 to this special case. Clearly, for v3<l,
condition (27) cannot be satisfied. But for v?>1, (27) is satisfied when
v2(v?-1)/4=C. Under this condition, there do not exist solutions of (20)
or solitary-wave solutions of (7) such that |h(0)|>0 and |h(E)|+0 as |{|+.
To apply Theorem 2 to this special case, we see that under condition (i),
g(u)=u satisfies condition (ii). Thus, under condition (1), (57) has so-
litary-wave solutions satisfying (30). For such solutions, we see from
(56) with u=0 that C1 must be zero. Also, from (59), C2 must be zero,

since u(O)-MA(O)"2>0 and u'(0)=0,]A(0) ] must satisfy
a@f? = ~2v/x, (6D

where Y>0 and k<0 under condition (1). Thus, (60) becomes

la@l? s
{kn® +2yn?} %dn = V2, EER. (62)
2y/ ||

15
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It follows that

Ry
flacey | = 2v/|x)? sech(AE), (EIR, (63)
and in view of (6), we have
s(&) = (v¥-1)7'{(2y/|k|) sech?(¥E) + C}. (64)

Substituting (64) into (11) with uj-O leads to a set of uncoupled

equations for Ais given by

<12Aj/d:‘,2 = (y + KnAaz)AJ = y{l - 2 sech?(/y£) M
o DRSS, (65)

which can be integrated independently to obtain A, (). The foregoing

h]

results are consistent with those for the one-dimensional solitary waves%
Turning now to the periodic travelling-waves, we observe that under

condition (i) of Theorem 2, (57) has an uncountably infinite number of

nonisolated equilibrium points (Ae,O) such that "Aenz-ré=—y/x>0. Also,

(58) can be written in the form of (44) with

V(u,C,) = u(ku? + 2yu + 2¢)). (66)

If we set Cl-Ciéyzl(ZK), then u=~y/k is a relative maximum point
of V('.Ci). Now, we consider the solutions of (58) with initial condi-
tions u(0)=]]A(0)]* and u'(0)=2A(0).A'(0) satisfying condition (24) given

explicitly by
“A'(O)“z- C1 + yu(0) + ku?2(0)/2 3 0. (67)

Let U(Cl) denote the set of all u(0)30 satisfying (67) for a fixed C

1
It can be readily verified that under condition (i) of Theorem 2, we have




1 &
U(Cl)ﬂ{u(O):[Y-(Y2+2|K!C1)z]/|K|su(0)([Y+(Y2*2|K|C1)2]/|K|}

for 03C, »v?/(2x) (68)
1

Ucc={u(0):0su(@)sly+(v*+2|x|c)*1/[c|}  for c,30, (69)
and U(Cl) is empty for C1<\z/(2K). Note that for Cl-yz/(ZK), U(Cl) con-
tains only the point u(0)=-y/k. Thus, from Theorem 3, if condition (i)
of Theorem 2 are satisfied, then there exist solutions A(§) of (20) in
some neighborhood of the equilibrium set {(A,A')E ]RZN:IAn2=—'Y/K,A'-0}
such that their norms [|A({)|| are periodic in £. These solution curves cor-

respond to (56) with u=0 and C, satisfying 0>C,>y?/(2k). When C, is set
1

1 i
to zero, we have solitary-wave solutions such that JA(Z) | and [A' (&) |0

£ |— as given by (63). In this case, (u,u')=(0,0) is a saddle point

as
of (58) with Cl-O.
Fig.l shows the trajectories of (58) with y=1 and k=-2 in the (u,u')-

plane for various values of C, and u(0) satisfying (67). Note that for

1
C1>0, (u,u')=(0,0) is not an equilibrium point of (58). In fact, these
solutions pass through the origin and they are periodic functions of §.
Fig.2 shows the behavior of the trajectories in the £-domain.

Finally, for the supersonic case v2>1, we have from Theorem 4 that

if v?(v?-1)<4C and A(0),A'(0) satisfy [|A(0)]>0 and E&)O or
At )2 > yJA(®)] 2+ <ja@]*/2 > o, (70)

then the norm of the corresponding solution A({) of (57) is nonperiodic

in £.

3.2 g(|E|?)=K(1~exp(-|E|’)): This form of g, with K being a positive con-
stant, has been proposed by Wilcox and w11cox12 to represent ion density

saturation. For this g, U, is given by

16
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20, (lAl?,0) = ( +m)IAfP- kKL - exp(=[lA D)}, (711) '

and a first integral of (13) is given by

N
At (&) )12 (k4v) JACE) )| 45K (1-exp (~JACE) | D) } - ulA, 2(8)/4 = c,. (72)
Y3

j=1

1.

The equations for the A, ({)'s with =0 corresponding to (20) have the form:

J

dzAj/diz = {y + «K[1 - exp\—“A(C)uz)])AJ. s o TR B (73)

The evolution of u(£) = ||A(£)]|? with & along an integral curve of (73)

specified by C1 is governed by

d?u/dE? = 2{2(y+K)u + C, - xK[1-(1-w)exp(-u)]}, (74)
which has a first integral of the form: ‘

(u'(€))23/2 = 2(y+<K)u?(E) + 2u(€)[C1 + kK(exp(-u(£))-1)] + C (75)

2|

where 02 is an integration constant. By restricting the right-hand-side
of (75) to be nonnegative, we can integrate (75) to give an implicit expres-
sion for u(f).

To apply Theorem 1 to this case, consider inequality (27) given expli-

citly by
kK(l-exp(-u))+ y >0 for all u » 0. (76)

This condition is satisfied when

vi>1 andy >0 a7
or

v’<'1 and kK + Yy > 0, (78)

Thus, under (77) or (78), there do not exist solitary-wave solutions such




that |[h(0)| >0 and |h(g)|~~0 as |g|—= . Moreover, from Theorem 4, when

v2>1,Y >0 and (A(0),A'(0)) satisfies
la' ()ll2 > (xk+V) JAOF - kK{1-exp(-JA(0)]| %)}, (79)

then the norm of the corresponding solution A(f) of (73) is nonperiodic in

in E&.

Now, consider condition (29) in Theorem 2 which requires the existence

of a u1>0 such that

K(ul + exp(—ul)—ll = (—Y/K)u1 (80)
and for all u > s,
Klu + exp(-u)-1] > (-y/K)u (81)
This condition is satisfied 1if
Y/x < 0. (82)

Thus, if v®< 1 and Y > 0, then the hypotheses of Theorem 2 are satisfied.
Hence (73) has solitary-wave solutions satisfying (30). For such a solu-

tion with IA'(O)I-O, we have from (72) with Cl-O and =0 that ||A(0) || must

satisfy
Ja(0)]? = kK(kk+y) " {1-exp(-JA(0)]| D)}, (83)

which always has a solution [|A(0)[|2>0 1f v?<1 and y>0.

Next, we observe that 1if
KK/ (y+K) >1, (84)
then (73) has an uncountably infinite number of nonisolated equilibrium

points (A,A’)-(Ae,O) such that

21
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Note that if v’<l, then (84) implies (82) and
(Y +KK) <0. (86)

We shall verify that under the conditions of Theorem 2, (74) has periodic
solutions in some neighborhood of the point (u,u')-(ue,O).

First, we rewrite (74) in the form of (44) with V given by
v(C,,u) = 2(Y+K)u? + 2(Cy-kK)u + 2kKu exp(-u). (87)

If we set Cl-Ci given by

€] = 20K In[ (¥K)/ (K)] + KK = (yhaK) [1-1n(kK/ (yHK))],  (38)

then ug given by (85) is a stationary point of V(~,Ci), or (u,u')-(ue,O)
is an equilibrium point of (74). At this point, (Bzv(u,Ci)/3u2)|u_u =
2ue(y+KK). Thus, under condition (86), ug is a relative maximum point
of V(-,Ci). Now, we consider the solutions of (74) for various values of
C, in some neighborhood of C:, with initial conditions u(0)=||A(0)|? and

u' (0)=2A(0)+A' (0) satisfying condition (24) given by
1A' @ I = ¢, + (¥K)u(0) - kK[1-exp(-u(0))] > 0. (89)

As in Section 3.1, let U(CI) denote the set of all u(0)30 satisfying (89)

for a fixed C1 or

u(Cl) = {u(0)>0: C +(y+<K)u(0) > kK[1-exp(-u(0))]}. (90)

It can be readily verified that if v2<l and condition (84) is satisfied,

*

then U(Cl) is empty for all C, < Cl’ and

1
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e = fux}, (91)
where
u*(0) = In[kK/(Y+K)], (92)
€] = (y+K)In(KK/ (v+KkK)], (93) j

where u*(0) corresponds to the point of tangency between the line yl(u)-=

C;(KK)—1+ [1+Y(KK)-1]Q and the curve yz(u)=1 - exp(-u). Also,

U(Cl) = {u@0): ¥ < u(0) < &} for c;<c1<o, (94)
U(Cl) = {u(0): 0 < u(0) < 4} for Cl>0, (95) 3

where U and i with U< are the two distinct positive roots of the equation

c, + (y+<K)u - kK[l-exp(-u)] = 0. (96)

Thus, from Theorem 3, if v2<l and (84) is satisfied, then there exist solu- }

tions A(E) of (73) in some neighborhood of the equilibrium set {(A,A')Ekzn:
IAH2= In[kK/(Y+kK)], A'=0} such that their norms ﬂA(E)“ are periodic in £.

These solution curves correspond to (72) with u=0 and C, satisfying 0>Cl>C;.

1

The trajectories of (74) with y=1,k=-2 and K=1 for various values of C, and

1
u(0) satisfying (89) are shown in Fig.3. Their corresponding trajectories

e ey e e ———

in the £-domain are shown in Fig.4.

4. CONCLUSION

We have shown that under mild conditions on the nonlinearity g, (1)
has multidimensional solitary-wave and periodic travelling-wave solutions
(E(§),n(E)) in the sense that |E(§)| and n(f) tend to finite values as |E|

=, and they are periodic functions of & respectively. Along these solu-

tions, the phase of E(f) is an affine function of £. Moreover, u(E)-IE(E)l2

23
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Fig.3: Trajectories of (74) with y=1 and K=-2 in the (u,u')-plane for u(0)
satisfying (89) and fixed values of C. (curves 1-5 correspond to
C.=0.2707, 0.0.-0.1522,-0.2662,-0.306; respectively); curve 2 is
the solitary-wave solution.
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satisfies a scalar second-order ordinary differential equation whose solu-
tions have properties similar to those in the one-dimensional case. Al-
though in this study, we have treated only the case with electrostatic waves
(i.e. VXE = 0), the same approach may be used to obtain results for

electromagnetic waves. |

proeero
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