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ABSTRACT

In this thesis , we will investigate the adaptive stochastic
control of linear dynamic Systems with purely random pararne—
ters. Hence there is no posterior learning about the system
parameters . The control law is non—dual ; still it has the
qualitative properties of an adaptive control law . In the

• perfect measurement case , the control law is modulated by the
a priori level of uncertainty of the system parameters. The
Certainty—Equivalence Principle does not hold.

This thesis shows that the optimal stochastic control of
dynamic systems with uncertain parameters has certain limi-
tations . For the linear-quadratic optimal control problem ,
it is shown that the infinite horizon solution does not exist
if the parameter uncertainty exceeds a certain quantifiable
threshold. By considering the discounted cost problem , we
have obtained some results on optimality versus stability
for this class of stochastic control problems .

For the noisy sensor measurement case , we obtained the opti-
mal fixed structure estimator—controller. The control law
requires the solution of a coupled nonlinear two-point
boundary value problem . Computer simulations of the forward
and backward difference equations provided some insight into
the uncertainty threshold for the closed—loop system . Sto-
chastic stability analysis further resulted in a sufficient •

condition for the mean square stability of the fixed structure
dynamic compensator .
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CHAPTER 1
INTRODUCTION

• 1 .1 A Historical Survey of Adaptive Stochastic Control

The theory of optimal closed-loop control of stochastic

linear dynamic systems has progressed since the  o r ig ina l  con-

t r i b u t i o n s  in [ 1 ) ,  [2] . For d isc re te—t ime  l inear  dynamic
- 

systems w i th  known system parameters  and known add i t i ve  gaussian

noise s t a t i s t i c s  w i t h  q u a d r a t i c  cost , the  opt imum solut ion to

the  s tochast ic  control problem is given by the  Separa t ion

Theorem [3 1 , [4]. These stochastic c o n t r o l — t h e o r e t i c  resul ts

• have been reconciled with the statistical decision—theoretic

• results given by the Certainty—Equivalence Principle for multi-

stage decision processes [5], [6].

For linear dynamic systems with uncertain parameters

or unknown noise statistics , there does not exist at present

• a general computationally feasible theory of optimum stochastic

control. Bellman first presented a mathematical theory of

adaptive control processes in [7]. He introduced the concepts

of “information pattern” and a control dev ice that can “learn”.

Feldbaum expanded on the concept and algorithms of adaptive

-~ control in his four—part theory of dual control [8], so-called

because the optimum controller must actively try to identify

the unknown parameters as well as simultaneously control the

system . He showed that in dual control systems , there may

____
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ex ist i nh er e n  t con f I Ic t between apply i ng t he inputs for l e a r n —

I ug and  for  of f ec  I I ye contro l purposes. The dual con I ro 1 1 aw

is  t hen to ref 1cc t the optimum interact i on  of cau t ion  and

prol)  i ug i n t he c losed—lOo l) c o n t r o l  sy~ tom . Fe 1 (IbaUrn I hen

d 1st I ugu i shed bet ween two kinds of  loss • one due to I he dc-

vi a t  ion  o I the s t ate and t h e  o t h e r  due to the flOflO~~ t inia 1

1 t’a rfl i ng con t ro I law [9] .

The concept s of separat ion , certainty— equivalence ,

neu t ral i ty  . and related dual cont rd of fects have  been fur-

ther c l a r i fi e d  and discussed in  [10]— [16] . The p r e sen t  dua l

co n t r o l act ion  may influence fu t u r e  learning , in I he so—

cal led neutral c o n t r o l  sys tems described in  [17] , [18] , learn—

i ng Is  independent of the  control law . The neutral control

l a w  a c c o u n t s  fo r  present uncerta i n t y  , but  neg Icc t the  possi  —

h i l i t y  t h a t  t h e  p resent  c o n t r o l  a c t i o n  may i n f l u e n c e  t u t u r e

u n c e r t a i n t y  r e s u l t i n g  t h u s  in a o n e— w a y  s epa ra t i on .

O p t i m a l  s o l u t i o n s  to the  a d a p t i v e  s t o c h a s t ic  con t ro l

of  a clze ;s  of l i n e a r  d y n a m i c  s y s t e m s  w i t h  cons t an t  or t i m e —

varying unknown pa rame te r s  can be o b t ai n e d , i n  p r i n c i p l e ,

using the stochastic dynamic programming method . The opt i—

m ization algorithm is constructive and the solution is  ob-

tained by solving a recursive functional equation Invo lving

alternating minimizations and expectations , [8]. However ,

due to the “curse ol dimensionality ” the solution in general

cannot be obtained analytically it~ closed form . The dynamic
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p rogramming algorithm encounters the problem of infinite

d i m e ns i o n a l i t y  of the probability distribution function in

the genera l case .

Since we cannot solve analytically the adaptive con-

trol problem except for very special cases [19] , [201 , in

practice we resort to approximation methods . The degradation

in performance of the suboptimal adaptive control law can be

• measured by comparing the average performance of the proposed

suboptimal control algorithm obtained from Monte Carlo simula-

tions with the optimal but unattainable performance for the

same control system in which the parameters are known with

certainty.

There are two approaches to the approximation of the

optimal adaptive control law . First , we may approximate the

optimal solution to the adaptive stochastic control problem .

This approach is taken in [7], [8], [111 , [21—23] . The

second approach is to approximate the linear system as one with

random parameters and derive the optimal adaptive stochastic

control for the approximate control system . This can be done

by relaxing certain mathematical assumptions and information I I
structure of the optimal adaptive control law . In doing so ,

we may be able to obtain the suboptimal control law analyti- 
•

cally. One such method is the enforced separation as in [24].

Another is the open—loop feedback technique [251-130] .
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L i t e r a t u r e  surveys and reviews of the state—of-the-

art of adaptive control concepts and methods are found in

[31]-[33]. An extensive bibliography on the theory and

application of the various suboptimal adaptive estimation

and control  techniques is given in [341

In this thesis , we will investigate a class of

s tochas t ic’  o p t i m a l  cont ro l  problems w i t h  p u r e l y  random ( w h i t e )

parameters whose mathematical solutions reflect some of the

aspects of adaptive stochastic control laws , Fig. 1.1.

The use of multip licative white noise parameters explicitly

- 
• tells the mathematics that the system dynamics are not known

exactly and can vary in an unpredictable way . This is an

impor ta nt  class of problems because i t  represents a worst

case design and analysis. The results provide some insights

and help to evaluate whether the use of very sophisticated

identification and control algorithms may represent an

“overkill” .

Optimum control of linear systems with statistically

independent random parameters is considered in [351 . For a

constant linear system with multiplicative input noise , the

effect of the random parameters was found to show the con-

vergence of the feedback coefficients [2]. Necessary and

sufficient conditions for a class of stationary linear system

with random parameter to be controllable in mean-square sense

was examined in [36]. Solution to the optimal stochastic ‘

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—— - --
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(‘on t r() 1 p rob 1 em with independent random P arameter  ha s been

d e r i v e d  in [37) , [38) , and [39] -

The m a t h e m a t i c a l  f o r m u l a t i o n  of the stochastic con—

tro l problem with uncertain parameters forces the solution to

be without any learning . In particular , we consider the

l i near d y n a m i c a l  system

x ( t + 1)  = A ( t ) x ( t )  + B ( t ) u ( t )  + ~(t) (1. 1.1)

t = 0,1 ,2,...,N—i

For simplicity we shall assume that the measurement is exact.

The structure of the matrices A(t) and B(t) are known but the

elements contain uncertain parameters. ~(t) Is the plant white

noise (disturbance). The Cost functional to be minimized is

given by the scalar

N-i
J = E \x ’(N)Fx(N) + ~ x ’(t)~ (t)x(t) + u ’(t)R(t)u(t)

t=o
(1 .1 ,2 )

where F. ~(). and R(•) are at least positive semi—definite.

The uncertain parameters in A (•) and B(•) change

randomly with time . At each instant of time , “n a t u re” selects

the value of the system parameters from some a priori given

distribution . The way “nature ” selects the particular numeri—

cal value of system parameters at each instant of time repre-

sent a chance event in t ine . That is , the time—varying ‘

parameters represent a white process. Hence , the mathematics 

~~~~~ --~~~~~~~~ ---~~~~~~--- ~~~~~~~~~~~ - - ~~~-- -~~~~ -~~~~~~~~~- - -
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tells the compensator that it cannot use the measurement data

to improve the a prior mean or reduce the level of uncertainty

of parameters anymore than the a prior variance. The optimal

solution cannot involve any learning about the system parameters.

Although the mathematical formulation of the problem

precludes identification , the solution of the optimal stochastic

control problem in the sense of minimizing a cost functional

shows the effects of parameter uncertainty in the performance

of the control system . The control gain of an optimal stochas-

tic system with randomly varying parameters will depend upon

the unconditional means and covariances of the uncertain
-

-

parameters . The Separation Theorem does not hold. Random-

ness in the system parameters has strong influence on the gain

of the control system , even in the absence of any learning .

The minimum value of the expected quadratic cost

depends not only upon the means but also upon the var iance of

the randomly varying parameters. In the worst case sense , one

has then an upper bound upon the performance deterioration of

the control system due to uncertain parameters . The difference

between this worst case cost and the Separat ion Theorem cost

is the so-called value of model information for stochastic

- . -
~ adaptive control problems .

• This class of stochastic control problems is closely

related to the state—dependent and control-dependent noise

problem considered In continuous-time for perfect measurement 

- -- - - 
- •~~~~~—~~~~~~~~~~~~~~~~~~~~~~~~ --
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[101 t o  [45 1 and In  discrete—time for noisy measurement ,

[-16) to [49). The specific (‘lass of stochastic models given

in Eq. 1 .1.1 are also known as the multiplicative noise or

random coefficient (multiplier) models. In [20] it is shown

that if the only uncertainty parameter in Eq. 1.1.1 is i n  the

m a t r i x  B then the  non l inea r  s tochas t ic  cont ro l  system is

e s s e n t i a l l y  a b i l i n e a r  system . Hence the  resu l t s  for the

class of adaptive control problems are readily applicable to

the class of stochastic bilinear systems .

1.2 Structure of the Thesis

In this thesis , we will obtain the results almost

entirely for the scalar systems . In the very simple first-

order dynamical systems , we have no problem with system con- -
•

trollab ility or observability . The optimized stochastic

control problem is well-posed and well-defined to give

existence and uniqueness results. The analytical results in

the subsequent chapters for the scalar linear—quadratic-

Gaussian systems must be true for multivariable -nonhinear--

non-Gaussian systems since the LQG problem is a special

case of the more general formulation . The extension of

these results to the multivariable case is conceptually

straightforward , althou gh notational ly cumbersome .

The optimal stochastic control problem with perfect

state measurement is considered in Chapter 2. The mathematical
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formulation of the problem is given in Section 2.2. The

solution to the “white noise parameters” optimization is ob-

tained using the stochastic dynamic programming algorithm in

Section 2.3. The important features of the control solution

are discussed . In Section 2.4, we examine the steady-state

solution of the optimal stochastic control problem . In parti—

cu lar , we derive the inequality condition for the existence of

a finite solution to the Riccati-like equation for infinite

horizon problem . In Section 2.5, the stochastic optimization
p

problem is t rea ted  as a stochastic s t ab i l i t y  problem . We

give the necessary and sufficient conditions for the almost

sure and mean square stability of the stochastic system under

h inea~ feedback . The concepts of optimality versus stability

is further brought out in Section 2.6 when we consider the

discounted cost problem . We extend the results in Section 2.3

to the case where the multiplicative noises are correlated

with the additive noise in Section 2.7.

In Chapter 3, we treat the problem of optimum linear

minimum variance estimation for the random parameter system .

The estimation problem is stated in Section 3.1. The linear

minimum variance filter is derived in Section 3.2. It is

found that the parameter means and variances have to satisfy

a necessary and sufficient condition for the asympotic van-

ance of the uncontrolled linear system to be finite (and this

turns out to be sufficient to ensure stochastic stability as
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w e l l ) .  i n  Section 3.4 , we discuss the case where t h e  un-

c er t a i n  parameters  are u n c o r r ela t e d . I n  S e c t i o n  3 .5 , the

analysis is given to include mutually correlated randomly

varying palameters .

• In Chapter 4, we consider the closed-loop (feedback)

control of randomly varying parameters system with noisy

measurements . The mathemati ca1 problem Is formulated in

Section 4.2. Tn Section 4 .3 we examine the optimal solution

to the contro l problem using stochastic dynamic programming.

In Section 4.4 , we fix the structure of the class of dynamic

compensates to he considered . We obtain the optimal param —

eters (filter gains and contro l gains) first using the Matrix

M in imum Principle and then dynamic programming algorithm . The

important point is that we transformed the original stochastic

control problem in Section 4.2 into a deterministic parameter

optimization problem in Section 4.4. Section 4.5 shows that

we have t o  solve a complex coupled nonlinear two—point boundary

value problem in order t o  compute the o p t i m a l  g a i n s .  We discuss

the various aspects of the fixed structure estimate-controller

in Section 4.6. We consider the asymptotic behavior of the

stochastic contro l law derived in Section 4.7. Numer ica l

simulations of the stochastic equations provide the needed

insights into the existence of steady—state control laws .

Stochastic ability analysis analogous to that in Section 2.5

based on output feedback is given in Section 4.8. A sufficient 

—~-~~~~~~~~~~ -~~~~~~~~~~~ - - - --
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condition for the stochastic system to be mean-square stabi-

lizable under feedback is presented .

In Chapter 5, we extend the results in Chapter 2 to

a special class of linear multivariable systems . We give the

mathematical formulation of the optimal stochastic control

problem in Section 5.2. The solution via dynamic programming

algorithm is given. In Section 5.3, we consider the optimal

stochastic control of a multivariable linear system with a

specific structure with respect to a quadratic performance

index . The system dynamics are described by a linear vector

difference equation with white , possibly mutually correlated ,

scalar random parameters. In Section 5.4 we summarize the

results on the adaptive stochastic control of linear multi-

variable systems with imperfect measurements.

We summarize the results on the optimum stochastic
- 

~ control of linear dynamic systems with purely random param—

eters in Section 6.1. We make conclusions about optimality

and stochastic stability in Section 6.2. We discuss the

existence , f initeness , and convergence of the derived opti-

mal control l aw. In Sect ion 6.3, we recommend t he direc-

tions for future research in this area.

1.3 Contributions of the Thesis

The optimal stochastic control results for the exact

state measurements problem have been known for some time in
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[37 1.  However , their potential importance and their im-

p l i c a t i o n s  in  adaptive control has not yet  been fully

r ea l i z ed . Th i s  t hes i s  repor ts  on the  research of t h e  o p t i m a l

s t o c h a s t i c  con t ro l  of w h it e  noise  parameter  sys tems . The

o bj ect i v e  is  to g a i n  deeper i n s i g h t s  and clearer understand-

ing of the issues and p h i l o s o p h y  of the adaptive control.

Even in the  absence of 1earning , the degree of dynamic un-

c e r t a i n t y  (as  q u a n t i f i e d  by the  va r i ances  of the  m u l t i -

plicative white noise parameters) i n f l u e n c e s  both the  op t ima l

c o n t r o l  g a i n s  and the  op t ima l  va lue  of the  pe r fo rmance  i ndex .

In  t h i s  thesis research we shall analyze stochastic

systems with white parameters as a worst case to provide a

sy s t e m a t i c  ana l ys is  and design approach to adaptive stochas—

tic control. Ife derive the upper bound on the average cost

for the exact measurement and the noise—corrupted measure-

ment eases. We analyze the dual n a t u r e  of s tochas t i c  control

for systems with uncertain parameters in a most transparent

mathematical framework. The mathematical formulation pre—

cludes any learning about the parameters , however.

We derive the necessary and sufficient condition

for the optimal control law for the perfect measurement case .

We then derive the necessary and sufficient condition for the

stochastic stability in the almost sure and mean—square sense

for the class of stochastic systems under consideration . The

Uncertainty Threshold Principle then says there exists a

-.~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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threshold of dynamic uncertainty, if exceeded then optimal

strategies cannot exist. We have derived the optimality

condit ion for the discounted cost problem . The problem

provides an interesting and important case study of opti—

mality versus stability problem in stochastic control theory .

We were also able to extend the analysis  on contro l to the

case where the mul t ip l i ca t ive  noises are correlated with

additive noises.

- 

- 

In deterministic linear quadratic control problem

the duality principle holds , that is , the linear stochastic

estimation problem is related through duality to the optimal

determinis t ic  control problem . The dual of the control prob-

lem wi th  the pair (C , B )  is the estimation problem pair  (B , C ) .

For linear discrete-time systems , duality principle says that

the various matrices that occur in the optimal regulator

problem and the optimal state reconstruction problem are

related and have symmetry property, [50]. We show that

this  duality property does not hold for the optimal regula—

tor and optimum linear minimum variance estimation problems

for  the class of adaptive stochastic control problems . In

particu lar , the stability condition for the asymptotic be—

havior of the optimum linear minimum variance filter problem

cannot be obtained by “dualizing” the stability condition

for the optimum regulator problem given in Section 2.4.
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We have obtained the linear minimum variance un-

biased filter with deterministic control input. Results are

generalized to the case where all the random parameters may

be correlated . The necessary and sufficient condition for

the asymptotic stability of the state second moment turns out

to be only a sufficient condition for the stochastic stability

of the fixed structure overall closed—loop system .

For the noisy sensor measurement case, we derived

the fixed structure dynamic compensator using dynamic pro—

gramming algorithm . We determined the average cost expression

( i n  a worst case sense). The use of direct output feedback

is shown to give only a sufficient condition for the mean—

square stability for the overall control system . 

-~~~=-=- -~-- -~--~~~~~ -.-- --— •~-—— -~~ —• --- - --•---- - 
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CHAPTER 2
OPTIMAL STOCHASTIC CONTROL FOR THE

• PERFECT MEASUREMENT SYSTEM

2.1 Introduction

In this chapter , the optimal control problem for

purely random parameters will be formulated and sol ved for

the  perfect observation case . We present the mathematical

model of a class of s tochas t ic  l i nea r  systems in Section 2.2

a nd g ive  the technical  assumptions about the s t a t i s t i c a l  l aws

for the random processes . The optima l stochastic control

problem is then formulated assuming perfect measurements.

In  Section 2.3 , we give the solution to the o p t i m a l  control

problem via dynamic programming . In Section 2 . 4 , we examine

the stability properties of a stationary system . The Un-

certainty Threshold Principle is given in Theorem 2.1. We

examine the stochastic stability of a l inear  system under

l inear  feedback in Sect ion 2.5. In Section 2.6 , we discuss

the discounted cost problem and give a modified threshold

— for the particular cost functional chosen. We discuss some

important  new issues in s tochast ic  c o n t r o l l a b i l i ty  and s t a—

bility. In Section 2.7, we extend the results of Sections

2.2 and 2.4 to l i nea r  systems where the random parameters

and the additive noise are correlated .

~

- —
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2 . 2  Prob lem S t a t e m e n t

In  t h i s  sec t ion , we w i l l  s t a t e  t h e  p r o b le m . (‘on—

sidt’r a first—order stochastic linear dynamical system with

s t a t e x tt) and contro l u(t) described by the difference

e q u a t i o n

x(t+1) = a(t)x(t) + b(t)u(t) + ~~t) (2.2.1)

t = 0,1 ,2,... ,N— 1

x(O) given.

We assume that the additive noise ~(t) driving the

sy s t e m  dynamics is a zero-mean Gaussian white ;oise with

known variance

E{~~~t)~ (t)} = E(t)ó(t ,-r) (2.2.2) 
- -

We assume that the purely random parameters a(t) and b(t)

are Gaussian and white (uncorrelated in time ) with known means

a(t) and b(t), and covariances E a(t) and Ebh(t), respectively

and cross—covariance given by Z b(t). More precisely, we

assume that

EIa(t)} = a(t) , E{b(t)} = ~(t) Vt (2.2.3)-

and

E~ (a(t) - i~(t)) (a(i) - ~~( T )) ~ E~~ (t)~~(t .T) (2.2.4)

E~ (h(t) - i(t)) (ht - b(t))} ~bb
( t )

~~~t
, T )  ( 2 . 2 . 5 )

E {( a ( t )  - a(t)) (b T) - b(T))} ~ab
(t)

~~
(t
~
T) (2.2.6)

____
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where 6(t,T) is the Kronecker delta and
- 

. ~aa(t~~ bb(t~ 
— 

~a~~
t) �.O (2.2.7)

since the correlation coefficient l~~~~ I ~~~

It is assumed that the additive white noise E (t) is

statistically independent of the random parameters a(t) and

b(t). The case where a(t), b(t), and E (t) are correlated is

discussed later in Section 2.7.

For the stochastic control problem it is very

important to specify the information available for control.

j~_ this chapter, we assume that the state x (t) can be mea-

sured exactl y. Hence we assume that x(O) is given .

We assume that the admissible controls are real-

valued and of state feedback type u(t) = y(x(t),t). The

control can only depend on the given a priori information

and measurements up to time t. The control u(t) at time t

can only influence the state x(r) at i � t+i and not before .

This is the important notion of causal Inputs - past and

present output values do not depend on future input values .

The optimal contro l problem is to determine the

control law u (t) y(x (t),t)(t 0,1 , ..., N—1 ) such that the

expected value of a quadratic cost functional is min imized .

The quadratic cost functional is the standard regulator type .

N-i
J(O) = E ‘~F x 2(N) + 

~
‘ x2(t)Q(t) + u2(t)R(t)

a( ),b(~~),( t=0
- 

~~
.) 

F , Q~~O , R > O  (2.2.8) 

--~~~---~~
- --- - - - -



-v - ~~~~ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—27—

The exp et ’ tat I on is taken with respec t  to the proba l)  i i i  t y

di st r i but ion o f t he under 1 y i ng random var I a hi es a ( t ) , 1) ( t )

and ~.(t).

Based upon the  ap p l ic at ion of the Bellman ‘ s Principle

of Opt imal i ty and funet tonal equat ions , dynamic programming

is used to solve the optimal control problem formulated in

Eqs. (2.2.l) and (2.2.8).

2.3  Problem So1ut~~on

The solut ion to the optimal control problem given

in Eqs. (2.2.1) and (2.2.8) can be obtained by applying the

standard dynamic programming method . The cost-to—go at the

final time is given by

V(x(N),N) Fx 2(N) (2.3.1)

By the Principle of Optimality

V(x(N-i),N—l) = mm E Q(N—1)x2(N-1) + R (N-l)u2(N-i)
u (N—1) a(N—1),

b(N—1),

~(N — 1)

+ V ( x ( N ) , N ) I X ~~
’
~ .

. 
p

mm ~[Q(N_1) + F(~
2(N_ 1)+Eaa(N_l))]x

2(N_l)
u(N—1X

+ [R(N_1 i + F(~
2(N_ 1)+Ebb(N_l))] u

2(N-1)

+ 2F(~~(N-1)~ (N-1) + Zab
_l X( l)U(N_l)

}

+ F E (N—i) (2.3.2)

_ _
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since ~(N—l ) is independent of u(N—l) and x(N—1 ) and the

random parameters a(N-i) and b(N—l).

We minimize the algebraic expression in Eq. (2.3.2)

by taking the derivative with respect to u(N-i) and setting

it to zero, we obtain as a result

* 
F (N—l)b(N—i) + 

~ ~~~~~~~u (N—i) = - 

—2 
a x (N-l) (2.3.3)

(b (N—i) + Ebb —~~~~~~~ (N 1)

Substituting this optimal control at N—i into cost

Eq. (2.3.2) the optimum cost-to-go becomes

V(x(N—l),N—i) x2(N—l )K(N—l) + FE(N— 1) (2.3.4)

where

K(N—1) = F ( E aa
(N _ l )  + a2(N—i)) +Q(N—1)

- G2(N_ i ) [ R(N_ i )  + F(b2(N_i)+E bb(N_1))] 
(2.3.5)

F [~~N_l~~~N-1 + (N_i)]
G(N-l) = _ _ _ _ _ _ _  

ab (2.3.6)
R(N—1) + F(b2(N_1)+E bb

(N_1))

We note that the optimum cost-to-go at time N-i is

of the same form as Eq. (2.3.1). The second term is due to

the additive noise driving the system . The first term in-

eludes the cost of control and implicitly the added cost

due to the randomness of the parameters a(N.-l) and b(N-i).
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~t time N—2 , the cost — to—go is given by the  e qu a—

t ion
9

V(x(N-2),N—2) = mm F Q(N—2)x (N—2) + R ( N — 2 ) u ~~(N-2)
U ( N -2)

+ V (x(N_l),N_ l )Ix~~
2
~

2 2= mm E Q(N—2)x (N—2) + R (N—2)u (N—2)
u(N-2)

+ K(N_i)x2(N_ l )l\~~
2
~ + F~~~(N-l)

(2.3. 7)

T h i s  expression for the cost—to—go is identical to

t h a t  i n  Eq. (2.3.2) except f o r  th e  t ime i ndexes .  Therefore ,

*the optima l control L i (N—2) is given by

* 
K(N —l)(a(N —2)b(N —2 ) + E ab ( t

~
_ 2

~~~~
Li (N—2) = — 

—2 
- x(N—2)

(b (N—2) +~~ (N—2))K(N.-i) +R(N—2)bb (2.3.8)

and the optimal cost—to—go is given by 
. 

- .

V~ (N—2 , x(N—2)) = K(N-2)x2(N—2) + K (N-1) E (N—2)

- + F E (N—i) (2.3.9)

where

K(N—2) = K (N—l)(a2(N—i) + Eaa
(N_i)) + Q(N—2)

K2(N—l)(a(N—2)b(N—2) + E b
(N_2))

— 
a (2.3.10)

R(N—2) + K(N—1)(b~ (N—2) + E (N—2))r bb

By induc t ion on t , we obtain the solution to the

stochastic state regulator problem . Given the linear stochastic
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system Eq. (2.2.1) and the cost functional Eq. (2.2.8),

where u (t) is not constrained , the optimal feedback control

at each instant of time is given by a linear transformation

of the state ,

u (t) = -G(t)x(t) (2.3.11)

where

K(t+i)(E 
b(t) + a(t)b (t))

G ( t )  a 
2 (2.3.12)

R(t) + (Zbb(t)+b (t))K(t+1)

and K(t) is the solution of the Riccati—like equation

K(t) = (a2(t) + E (t))K(t+i) + Q(t)

- 02(t) [R(t) +K (t+l)(Ebb(t) ÷~~
2
(t))] (2.3.13)

satisfying the boundary condition

K(N) = F (2.3.14)

The state of the optimal system is then the solution

of the linear difference equation

K(t+1)(E b
(t) + a(t)~ (t)) 1

x(t+l) = a(t) — b(t) a 
—2 x(t) -. 

-

R(t) +K (t+l)(Zbb(t) +b (t))j
x(0) = x0 (2.3.15)

The optima l control given by Eq. (2.3.11) is a

random variable since x(t) is a random variabie. It is

linear in the completely measurable state. The uncertainty

~

- - -  

_  

H 
---.- -~~ ~~~~~~ .~~~~~~~~~~ - - -- — - — . - - -
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in the parameters a(t) and b(t) introduces equivaient state

and control weightings , Eaa(t 
(t+i) and E

bb(t) t ),

respectively in a very natural way into the control problem .

In order for the extrema l control to be the unique

optimal control , we need to show that the second part ial

derivative of T with respect to u ,

R(t) + (Zbb(t) + b2(t))K(t+1) > 0 (2.3.16)

The so lu t ion  to the R i c c at i — l i k e  Eq.  ( 2 . 3 . 13) is non—ne gative

definite. This can be seen from the fact that for any x.

x2K(t) = m m E [x
2Q ( t )  + u 2R ( t )

+ (a(t)x+b(t)u) 2K(t+i)]

K ( N )  = F ~ 0 (2 .3.17)

Since F,Q(t) ?O and R(t) >0 , the expression within the bracket

is non-negative . Since the minimization over u preserves non-

negativity, it fol lows tha t  x 2K ( t )  �O for  al l  x .  Hence , K ( t )

is non—negative definite. Since R(t) is positive definite ,

we conclude that [R(t) + (E bb(t) +b
2(tflK (t+1)] >0.

The Riccati—like Eq. (2.3.13) is a first—order non-

linear time-varying ordinary difference equation , the solution

K(t) exists and is unique . The external control given by

Eq. (2.3.11) is , therefore , the unique optimal control.

The optimal cost-to-go is obtained by substituting

the expression for the optimal control Eqs . (2.3.11) and

(2.3.12) into Eq. (2.2.8) to get 

-~~~~~~~~~--- --- -— —~~~~—~- - - - - -—-- - ----_
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N-i
J*(x(t),t) = K(t)x2(t) + ~ K (t + 1 )  E (i) (2.3.18)

t=t

If the optimal control u(t)~~ 0 for all states then K(t) >0

for all 0~~ t < N .  This follows from the fact if u(t)~~ 0, then

the cost T must be positive . We shall say that an optimal

control exists , when J~ is defined for all x(~~) and t.

Figure 2.1 shows the structure of the optimal feed-

back system . Since the optimal control is u(t) = —G(t)x(t),

the state x(t) is multiplied by the linear gain G(t) to gen—

erate the control . The optimal feedback system is , thus ,

linear and time—varying in the finite horizon problem . This

will be the case even if the system is stationary and the cost

functional is time—invariant . Note that the optimal control

given by Eqs. (2,3.11) to (2.3.13) is modulated by the co—

variances of the purely random (white) parameters . The optima l
J~

.
controller is cautious when the parameter b(t) is uncertain.

P

The gain G(t) is smaller in magnitude , ceteris paribus , than

the linear-quadratic gain. The controller is more vigorous

when the parameter a(t) is uncertain , since the controller

must be more active to regulate the system . The gain G(t)

are larger in magnitude , ceteris paribus , with larger van-

~~ — ance E (t).

Since the gain G(t) is a function of K(t), the

solution K(t) to the Riccati-like Eq. (2.3.13) governs the

behavior of the optimal feedback system . The Eq. (2.3.13) 

~~~~~~ - ~~~,- - -
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is nonlinear and , in general , we cannot obtain closed-form

solutions. We shall discuss in the next section the solution

K(t) to Eq. (2.3.13) as N -’-~~ to obtain a steady-state con—

troller for the stationary system and cost functional with

constant weightings .

We remark that the optimal control law given by

Eqs. (2.3.11) to (2.3.13) is not the Certainty—Equivalent

control , since the control gain depends on the parameter

variances. The Certainty—Equivalent control law is

uC~~~ (t) = — 

2
t)~~ t+1 )~~ t) x(t) (2.3.19)

b (t)K(t+1) + R(t)

where

—2 2 +i 2
K(t) = a2(t)K(t+l) + Q(t) — 

b (t)K (t )a (t) (2.3.20)
b~ (t)K(t+1) + R ( t )

This can be obtained from Eqs . (2.3.11) to (2.3.13) by setting

arbitrarily Eaa(t) 
= Ebb(t) 

= E
ab(t) 

= 0. The Certainty—

Equivalence control law does not account for the uncertainty

in the system parameters.

The optimal stochastic control is without posterior

learning. The parameters a(t) and b(t) cannot be identified ,

because by assumption they are white. Nature/chance picks

the parameters and the controller must adapt to the structural

change . This is a worst—case control system design , as com—

pared to assuming the parameters are unknown but constant or

~~~~~~~~~~~~~~~~~~~~~~~~~~ S~~~~~t - -
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slowly t ime—varying. However , the assumpt ion of purely

ran (i(nn parameters i s unreal 1st Ic from a physical point of

• v iew . The as.sumpt ion t h a t  the  parameters are unknown but

constant leads t o  the well— known dual control problem whose

exact solution cannot be easily computed analytically. The

white parameter assumption leads- to a very simple stochastic

control law Eq. (2.3.11) that can be easily imp lemented .

Economists , and in particular Chow [38~ have argued t h a t  in

economic systems. treatment of unknown parameters as being —

purely random is desirable to obtain the inherent caution

in the control especially when b(t) is not known accurately.

In (321 , Athans and Varaiva have argued that the control of

systems with white parameters represents a worst—case situa-

tion in which the ratio

K(O~E ~ 0, Z ~ 0, E ~~0)aa bb ab � 1 (2.3.21)
K(0I,~~~~=0 , Ebb O

~ 
E b

O)

provides a measure of the deterioration in performance due

to the unknown parameters, which can provide a guide as to

whether sophisticated parameter estimation and adaptive

contro l algorithms are warranted .

2.4 Asymptotic Behavior

We assume in this section that the stochastic linear

system given by Eq. (2.2.1) has wide—sense stationary statistics.

_ _ _ _ _  _ _ _
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‘l’he state and control weightings Q(t) and R(t ) are assumed

to be constant.

The Riccati — like Eq. (2.3.13) is then given by

K2(t+1)(~~~~+E )
2

K(t) = Q + K(t+1)(a~~+E ) — 
ab (2.4.1)aa (b2+Ebb )K(t+1) + 11

K(N) 0

Since the nonlinear difference Eq. (2.4.1) has con-

stant parameters , one may well think that it will attain a

steady—state solution “backward in time” as it certainly does

for the ordinary linear—quadratic problem with known param-

eters , so that one can then calculate the infinite horizon

(constant) gain. This is , however , not the case for Eq.

(2.4.1).

Figures 2.2, 2.3 , and 2.4 show the numerical solu-

tion of Eq. (2.4.1) for N=50 for different values of means

and covariances of the parameters . Note the l o g a r i t h m i c

scale used . A close examination of Eq. (2.4. 1) shows what

can happen to the solution K(t) of the Riccati equation .

Consider then Eq. (2.4.1) and assume t hat K(t+1)

is “large ” . Then the “backward i n  t ime” evolution of K(t)

is given approx imately by

- K(t) K(t+1)m (2.4.2)

• where the threshold parameter in is given by
— 

— 
(~ ~~~~ )2

m = E + a2 — 
ab (2.4.3)

aa ~hh

-— • 
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500 — d 1.1

= 1.0
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100 — 
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5 0 —  4.84
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20 — 3.6 1

2.89
10 —

2.25

1.44

- 
0.81

-

1 1 I
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TIMF
Figure 2.2 Soluti on of the Ri t -ca ti—li ke equation (2.4.1)

for N=50 and known a(t) a 1.1 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



,- 

—38—

1000 -

ti Q = R = 1 . O

-i 500 — 
a=1 . 1

1 6 = 1 . 0
1.21

V =—ab
200 -

100 -

1.00
50-

,‘ 1~ 
•

¶
20-

10 — 
0.81

0.64

5 -
0.49

- 
0.25

‘~~1 1 t_ I

0 10 20 30 40 50
TIME

Figure 2.3 Solution of the Ri ccat i—l i ke equation (2.4.1)
for N50 and known b(t)=b=1.O
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or
—2 —2 2 ——

m 
E E bb + E b  + Ebba 

_ E~~ - 2E b ab 
(2.4.4)

Ebb 
+ b

Clearly, from Eq. (2.4.2) K(t) will undergo expo-

nential growth “backward in time” if

m > 1  (2.4.5)

From the expression in Eq. (2.4.3) or (2.4.4) one can see

that there are certain combinations of the parameter means

and covariances that will yield the inequality condition in

Eq. (2.4.5). Hence , we can immediately arrive at the con-

elusion that in the case of optimal stochastic control with

purely random (white) parameters , a well-behaved solution to

the infinite horizon problem may not exist .

A different insight can be provided by examining

the dependence of the optimal cost upon the planning horizon .

Figure 2.5 shows the behavior of the optimal cost versus time

N. Note that if the threshold parameter in > 1 then the optimal

cost grows exponentially, P

* ~~~2 mNJ (N) = x (0) e , m > l  (2.4.6)

Otherwise (m < 1) the optimal cost remains bounded and finite .

Now , suppose that Eq. (2.4.1) has a steady—state

solution given by K satisfying the algebraic equation

~2(~ ~ — -~)2

K = K ( a 2 + Y  . 
) + — 

ab 
—2 (2..l .7)

)

——-S —— — - - - — - ~~~~~~-- - —- - - 
-- - -- L
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• Note that K must be positive definite. The solution to the

quadratic equation is then given by

= {_ (R(E aa
+:2 _ l) ÷ 

~~~~~~~~~~~ 
— 2 1/2

- [(R( E +a -1) - Q(Ebb+b ) )  + 4QR(E b
+a
~~
) ]

- [2((Eaa +~~
2 _1)(E

bb
+~~

2) - (E b
+i~~)

2
)] (2.4.8)

The limiting solution K is positive if

— — 2
—2 (Z ~~+ab )E + a - ~~ —2 < 1 (2.4.9)aa Ebb +b

or

m < 1  (2.4.10)

We state the following result.

Theorem 2.1

The unique positive solution to the infinite horizon

problem given by Eqs. (2.2.1)—(2.2.7) exists if and only if

m < 1.

Proof: (~~~ ) we rewrite the Riccati—like Eq. (2.3.13), re— —

versing the time index ; as

• 1 — — 2
I —2 ( E  b +ab )

K(t+1) = Q+K(t) I (E +a ) — 
a

L 
aa Ebb

+b

( E  + ),)2 K2(t)
+ 

ab 
2 K(t) — / R ~ (2.4.11)

• Ebb +b ( _2~~~I”t)
\Ebb +b /

L • 

- -~.--~~~~— ---~~--j
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Since the third term is non—negative d e f i n it e  ( R  0 ) ,

K ( t +l )  Q + K ( t ) m

t

~

‘ Q m 1 
( 2 . 4.12)

It follows immediately that if m > 1, then K(t) diverges as

t -
~

Since the third term is monotone increasing in K(t),

it follows that K(t) is monotone increasing for K(0) Q. Let

M(t) = K(t) - R (2.4.13)

(Ebb 
÷~~2) 

+ K (t)

Note that M(t) is also monotone for positive R. Thus there

exists an a ‘ 0 such that

M~~~( t )  
K~ t )  + > (2 .4 .1 .1 )

from which we have that M(t) is uniformly bounded in K (t),

that is ,

M ( t )  ~~ a , a > 0  (2.4.15)

It follows from Eqs. (2.4.11) and (2.4.15)

- — - -—  ~~~~• - ~~~~ -•-~~~~ --- - _ _ _ _ _ _ _ _ _ _ _ _
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1 —2 ( E
K(t+1) ~ Q + l (Eaa +a ~ — 

a 
—2 K(t)

L
~~~~ 

~~~~~~a 
2Ebb + b

t / b +a. b
~\ ~

~ (Q+ct a 
—2 im (2.4.16)

~=0 Ebb +b /
so that K(t) is bounded as t -~~ because m < 1.

Since there is a sharp dividing line , quantified by

the means and covariances of the random parameters , between

the cases that the optimal stochastic control exists or does

not exist for the infinite horizon case (see Fig. 2.6) it is

obvious that there is a fundamental limitation to optimal

infinite time quadratic control problem . We call this

phenomenon , the Uncertainty Threshold Principle. This result

has several implications in engineering and socioeconomic

systems , since it points out there is a clear quantifiable . 
-

boundary between our ability of making optimal decisions or

not (in the sense that the optimal cost is bounded) as a

function of the parameter modeling uncertainty.

Katayama [511 has pointed out this instability

problem when b(t) is random in a multivariable system . For

continuous—time systems the existence of solutions has been

investigated by Blsmut [45 1 , but only for finite horizon
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problems . In related problems involving control-dependent

noise, Kleinman (411 assumed the existence of a solution .

In the case of known parameters (E E E 0)aa bb ab
Eq. (2.4.4) yields m=0. This is the reason why there is no

problem with the stationary solution for standard linear

quadratic problem.

In the case where a(t)=i (E aa = O = E b)4 Eq. (2.4.4)

yields

+
~~~~~~~ 

H

m bb 
—2 (2.4.17)

so that as long as is less than or approximately equal to

one , then m < 1  and there is no convergence problem for the

solution K(t) to the Riccati-like Eq. (2.4.1), (see Fig. 2.7).

This may possibly explain Kleinman ’s results (41] on control—

dependent noise problems and their application for pilot

models controlling stable aircraft. This is also the same

stability condition derived by Katayama for random gains 151].

In the case where b(t)=b (E bb O = E ab)) Eq. (2.4.4)

yields m = Z aa. This implies that independent of the average

values of a and b , as long as the var iance Eaa of the “time

constant” a of the system exceeds unity , then one is in

— trouble for long horizon planning problems , even for systems

that are stable on the average (Ia ~ <1). This result seems

to state that when the standard deviation of the parameter

_ _  _ _ _  - - ~~~~~~~~~~
. •
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a (t) is greater than unity, then the system is statistically

mean—square unstable , and under these conditions , one cannot

stabilize the system . This provides a tie with the literature

on stochastic stability with state—dependent noises ([52),[53]).

From Eq. (2.4.3), it is evident that a non-zero

parameter correlation (E ab >O) always reduces the value of

f m , and hence it helps prevent (up to a point) the divergence

of K(t). From a modeling viewpoint , this implies that a

careful modeling of the relationship of the joint statistics

in the coefficients that multiply the state variables and

those that multiply the control variables can only help.

Suppose that the threshold parameter m < 1 so that a

steady-state i~ exists , then the steady-state control gain

given by

~~[E +~1
= u r n  G(t) ab 

—2 (2.4.18)
N~~° R+K(Zbb

+b )

is well—defined. Since the gain G(t) is constant , the re—

suiting optimal system will be linear and constant ; from

engineering point of view , such an optima l controller would

be very simple to construct for stationary systems .

Next , suppose that ~~=0, so that the system (2.2.1)

is “most uncontrollable on the average” . Note that ~~~~ and

u(t) ~‘0 provided that the correlation Eab~~
O
~ 

This means

heuristically that the random time constant system is 

-

~~~~~~~~~~~~~~~~ —-~~~~~~--~~~~ - --  

-_ _
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controllable in a stochastic sense; the nonzero covarlance

~ab 
means that a(t) and b(t) “swing together” and this implies

tha t  we can s t i l l  control  a system which  is “most uncont rol-

l a b l e  on the aver age” . This observation seems to suggest a

. 1 new concept of “stochastic controllability ” .

Note that in the case b = 0 , the uncertainty threshold

parameter m is given by

2

m = 
E bb 

- E
b + —2 (2.4.19)

bb

in view of the fact (2.2.7), this “stochastic controllability ”

is possible only for systems that are stable on the average

(I i I  <1), otherwise m > l  (see Fig. 2.8).

Suppose now that the threshold parameter m > 1 , so

that the optimal cost given by Eq. (2.3.14) grows exponentially

with the time horizon N. The control gain remains , however ,

a well-defined quantity, and is given by the constant value

~ + a b
G ab 

2 ( 2 . 4 . 2 0 )
E
bb 

+ b

which is obtained by letting K(t+1) -‘-~~~ in Eq. (2.3.13). One

could argue that there is an optimal limiting gain in the

sense that one is still trying to do his best so as to mini-

mize the rate of the exponential growth of the optimal cost

j  with increasing horizon N (see Fig. 2.5). 

- 
. - -  —- 
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Figure 2.8 Stability region defined by equation (2.4.3)
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To see f u r  t her t he imp ii ~~ t ion  of  t hi s ph ii osophy

one can substit ute the gain G in the system dynamics Eq.

(2.2.1) and o b t a i n  the stochast ft c o n t r ol  sys tem

x (t+l) = (a(t) — b(t) G) x(t) (2.4.21)

Under the assumpt ion that x(t) can he measured exactly the

mean x ( t )  =E (x(t)} will propagate (in an open-loop sense) as

~(t+1) (a — bG) x(t), x(0) x(0) (2.4.22)

The state error covariance

~ E~~x(t) - ~(t)}2 (2.4.23)

can then be shown to propagate according to

I I i .

E ( t+ 1) = m~ (t) + l Exx xx ~~aa

2E
b

(E
b
+)
~~~~ 

( Z bb+~
2) 

+ Ebb ( E b+~~~)2l —2 t)- 

(Ebb 
+ ~2)2 

x ( ,

E
~~
(0) = 0 (2.4.24) 

F

where m is the threshold parameter given by Eq. (2.4.13).

It is clear that if m 1 in Eq. (2.4.24) then the

open-loop propagation of the variance of the state E
~~

(t) is

unstable. Essentially, this says that although the steady—

state control is well-defined by a constant gain Eq. (2.1.20),

and the closed—loop system of Eq. (2.4.21) can be imp lemented .
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the variability of the state as measured by its variance

“blows up” as t becomes large .

A sufficient condition that will ensure that the

inequality (2.4.10) will be met is

E + ~2 < 1 (2.4.25)

This condition is both a necessary and sufficient condition

- 

- 

for the asymptotic var iance of the uncon trolled linear system

x(t+1) = a(t)x(t) (2.4.26)

to be finite , and thus turns out to be suf ficien t to ensure

that an optimal control exists as well.

2.5  Stochastic Stability Results

We wan t to now analyze the optima l con tro l problem

posed in Section 2.2 from an alternative point of view and

arr ive at exac tly the same conclusions . The approach treat s

the stochastic control problem as essentially a mathematical

problem , that is, stochast ic dif ference equation and we will

consider the stochast ic stability of such system under feed-

back. Asymptotic stability of linear stochastic systems

with random coefficients have been considered in [52] to [57).

Consider the first-order linear dynamical system

x(t+1) a(t)x(t) + b(t)u(t) (2.5.1)

One can include additive white noise driving the system

dynamics , but the stability result is unchanged from the

deterministic case. The question we want to deal with is

- -—~~~~~~~~~~-~~~~~~~ -5
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whet  her  or n o t  t h e  system Eq . (2. 5. 1) is s t a b i  i i  zabi  e und e r

Feedb ack when a( t ) and b( t ) are assumed to be random coe I ’ I ’ i —

C iCfl t 5.

Let

u(t) g(t)x (t) (2.5.2)

Thus the closed-loop system will propagate according to the

- . stochastic equation .

x(t+1) = [a(t) + g(t) b(t)]x(t) ~ c(t) (2.5.3)

If a(t) and b(t) are uncorrelated in time , one can calculate

the ratio

E {x 2(t+1)} 
= E{c2(1)}E{c2(2)}...E{c2(t)} ~ S(t) (2.5.~1)E{x (1))

The value of S(t) is a measure of how the second moment of

the state propagates in time . The larger the value of S(t), 
S

the more variable the state is. In particular if

lim S(t) (2.5.5)
t-*.~ P

the system (2.5.3) is unstable in the mean square sense .

The value of S(t) will be influenced in part by the

value of the feedback gain g(t) in Eq. (2.5.2). So one can

seek the value of g (t) which will minimize the ratio S(t)

in Eq. (2.5.4).

The product S(t) is minimized If each e l emen t  of

the product

= E{ [ a ( t )  + g (t ) b(t)1 2} (2.5.d)

-- 
- 
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is minimized by g(t). Since

E {c2(t)) = E {a2( t ) }  + g2(t) E{b2(t)} + 2g(t) E{a(-t)b(t)}

( 2.5.7)

therefore , the best value of g(t) is obtained by algebraic

minimization which yields

$ * 
E b + a b

g = g (t) = - 2 = constant (2.5.8)
Ebb + b

Hence the minimum value of E {c2(t)} is given by

E(c2*( t ))  = E ( [ a ( t )  + g~~b( t )) 2 }

~~
= E + ~2 — 

ab 
2 

= m (2.5.9)aa

where m is the undiscounted threshold parameter given by

Eq. (2.4.3).

It follows that

S~ ( t )  = mt (2.5.10)

and hence that
• 

. u r n  S~(t) < if m < 1 .  (2.5.11)
t.~~

We state the results in the follow ing theorem .

Theorem 2.2

The stochastic system in Eq. (2.5.1) is stabilizable

by linear feedback in a mean-square sense if and only If the

uncerta int y threshold parameter m , defined by Eq. (2.4.3) is

less than un ity .
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*We note that the minimum variance gain g in

Eq. (2.5.9) is the same as G in Eq. (2.1 . 20)  where  we con-

c luded t h a t  the limiting control gain is a constant and the

feedback system can be imp lemented . The feedback system may

or may not be stab ilizable under feedback depending on

w h e t h e r  or not the  threshold parameter m < 1 is satisfied .

The stochastic stability analysis resulted in an

optimal gain g(t) given by Eq. (2.5.8) which is identical to

Eq. (2.4.20). It yields the sufficient condition for optima l

control to exist. Since we are considering mean-square

stability, we could have obtained the same gain by setting

R = 0  in the cost functional Eq. (2.2.8); and then Eq. (2.4.18)

becomes Eq. (2.5.8). The stochastic stability condition is

thus independent of the numerical solution K.

Following Kozin [58] , we consider now the “almost

sure stability ” analysis (sample path stability) of the

stochastic linear system Eq. (2.5.1) under feedback Eq.

(2.5.2).

DefinItion 2.5.1. The equilibrium solution x(t) = 0 of the

system

x(t+1) = (a(t) + b(t) g(t))x(t)

= c(t)x(t) (2.5.12)

where

x(0) = x0 
is a random variable

is a lmo st su r e l y  s tab le  if

-5 —-mv -- - 
- 5- -  - - 
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lim P sup sup fx (t ,
w ) I  > c = 0 (2.5.13)

- . ó-~0 t~O

for any given c >0 and cS(c ,0) >0.

For discrete-time systems, an equivalent condition

is given in [59].

Definition 2.5.2. The equilibrium solution x(t) = 0 of the

system Eq. (2.5.12) is almost surely stable if for c >0

u r n  P~sup x(t) > = 0 (2.5.14)
1x01+O tt>O

Accordingly , Konstantinov in [59] proved the following :

Theorem 2.3

The solution x (t)=0 of the system (2.5.12) is almost surely

stable for t > O  if there exists a function V(t,x) CDL 
(domain

of definition) which for t ~, O satisfies the conditions

(I) V(t ,x) is continuous at x = O  and V(t ,O ) 0

(ii) inf V(t ,x) > a ( s)  > 0 for any 5>0
Ix I> 6

(iii) L[V(t ,x)] ~j 0 in some neighborhood of x 0 .

A suitab le Lyapunov function to use is •

V(t ,x) = x2(t) (2.5.15)

Then condit ion ( iii) in Theorem 2. 3 says that

E{V(t+1,x) — V(t ,x ) }  ~ 0 (2.5.16)

and using Eq. (2.5.12)

+ 2~~~g(t) + ~~~g
2(t)<1 (2.5.17)

We now show that for a+bg(t)~ < 1 , then almost every

sample sequence {x(t)} would approach zero. Following [54),

we have

- -—----a—-—— - — • . - 
-
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Theorem 2 . -I

The equilibrium solution of Eq. (2.5.12) is almost surely

stable if J a + b g j  . 1 -

Proof: We must show that

u r n  sup sup Ix(t ,w)l > = 0 (2.5.18)
6~ 0 ‘1x 01<o t�0

but ,

lim P~ sup sup Ix (t ,w)I ~S-~0 tx 0I< S t~ 0

= urn sup sup I~~ t ,0)Hx0I > (2.5.19)

~-~0 Ix 0I<~ t�0

where q (t,0) is the solution of the difference equation

~~t+1,0) = c(t) ~(t,0) (2.5.20)

Hence , Eq. (2.5.19) becomes 
I 

-

lim P~sup l -4(t ,0)l > ~~~~~~ � (2.5.21)
S÷0 t~0

lim 1P~ sup I~ (t,0)l > + P~ sup I~~(t,O)I >

6-~0 L O~t~T ( w )  ~t>T(w) J
We note that

t—1

~~t ,0) = TI (a(r) + b(T)g) (2.5.22)
-r=0

Therefore , the first term in Eq. (2.5.21) is given by

_ _  ~~~~--• -5- - -~~~~— - - -  ---- -~~~~~~~~~~~
_ —- -~~~~~~~~~
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u r n  sup 14)(t,O)I >
— 5-’~O 0~t~T (w )

= u r n  ~~~~

3 

sup t,(t,O ) I  > f l C~~
n~~ 0~t~T(w)

= ~Ir~ 3w : sup l,(t,O)I > n c~
L’~’ 

O~t~T(w )

= 0 (2.5.23)

since l~ 
+ bg~ < 1.

For ergodic process in the parameters,

u r n  4(t ,w) = E(4~( t ,w ) )  (2.5.24)
t+o~~~~

t

Given B > 0, there ex ists then a random t ime T
B
(w)

such that

f~
- •(t ,w)  — E{

~~
( t ,w ) } I  < B a.s. (2.5.25)

for all t > T
8
(w ) .

Since

E{4~(t ,w ) }  ~t (2.5.26)

then

~~~~~ 
4~
( t ,w ) I  < + a.s. (2.5.27) p

for all t > T B (w )  and

$( t ,w) < t (
5
~~
t + B) almost surely (2.5.28)

The second term in Eq. (2.5.21) is, therefore , given

by 

—5-~~~~~~~~~~~~~ -5-- - —~~~~~~~~~ 5 -— ~~~~—~~~~~~~~ •— -
~~~~~

-
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Urn P~ sup L~( t .0 ) I  ~~~~~ ~ Urn P~ sup I (
t
+~~~) t I  ~~~~~~

S-~0 ~t ’T(w) 6-’-O ~t~ T ( w )

(2.5. 2u)

Now for arbitraril y small B-~0 for T(w)-~~ in Eqs.

(2.5.24) and (2.5.25), we have in the limit
T
8
(w)

IB (w )  c = (c +B)t

so that Eq. (2.5.29) becomes

u r n  P3IT (w) 
—T(w)

1 > -~~-~~~ = 0 (2.5.30)

since l~~~<1 and 1(w) belongs to the positive integers set .

Combining Eqs. (2.5.21), (2.5.23), and (2.5.30) we

complete the proof.

We demonstrate that the mean-square stability con-

dition is stronger than the almost sure stability criterion .

From Eq. (2.5.8),

g — —2 (E 0) (2.5.31)

bb

Substitute this into Eq. (2.5.32)

+ ~~g I  < 1 (2.5.32)

we get

a E bb
—2 

< 1 (2.5.33)
Ebb

+ b

which does not hold for the general case (Ii ~~~1).

Since almost sure stability requires ~a + b g~ 1 ,

this implies that

_ _  .5
.5 ~~~~~~~~~~~~~ - -
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2a + 2 a b g + b g  (1

Note that this is less restrictive than the mean-square

stability condition given by Eq. (2.5.8). Almost sure

stability (pointwise stability) states that for the sto-

chastic system under linear feedback Eq. (2.5.12), the

equilibrium solution x(t)=0 is stochastic stabilizable.

It ensures the existence of a control that will drive the

system towards zero ( except for random fluctuations). It

is different from the mean-square stability in that it

deals with the ensemble of sample paths and says that the

variance of x(t) is finite and bounded if and only if m~~1.

2.6 The Discounted Cost Problem

In this section we will consider the effects of in—

cluding a discount factor in the objective function . Tradi-

tionally, discount factors have been used in economic prob-

lems to emphasize the near-term worth of the utility func—

tion as compared to the long-term worth [60]. One may then
I-

suspect that the inclusion of the discount factor in the

objective function may increase the threshold at which the

optimal control for the infinite horizon problem is well—

defined . That this is indeed the case will be shown in the - -
~

development below .

In control systems , the discount factor has been

used for infinite-time control problem . Since the cost is

infinite in the infinite horizon problem , it is usually
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-
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norma l i:~ed by the  p l a n n i n g  hor izon  N , t h a t is , one C’)fl—

siders

Urn ~ E’~ ~ Q x 2(t) + Ru 2(t)~ (2.6.1)
~t=1

Kushner ((61) , pp. 152—153) shows that this can be closely

approximated by

E ~~~~
t (Qx 2(t)+Ru 2(t)] 0 < c t < 1  (2.6.2)

The use of the discount factor a guarantees that all costs

are finite and prevents J from “blowing up” as N -‘

We are given that the system is described by Eqs.

(2.2.1)-(2.2.6). We consider the minimization of the dis—

counted quadratic cost given by

I N
J = E ~ ctt~Qx (t)+Ru (t)fl (2.6.3)

t=0

where N is the planning horizon and Q~~0, R> 0. The case

a = 1 is the undiscounted cost problem we have considered

in Sections 2.2-2.4. The state x(t) can be measured exactly.

The solution to the optimal control problem is ob-

tam ed by the method of dynamic programming. The deriva-

tion follows closely that given in Section 2.3 for the

undiscounted problem and , hence is not repeated . We note

that in the discounted cost prob lem , the dynamic programming

algorithm can be modified for the cost functional of the

form 

— - -—- •--~~~~~~ --
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E{cL
N
K(x(N)) + 

:~o 
ci
t 
L(t,x(t),u(t), ~(t))} (2.6.4)

0 < c i  <1

to be

V(x(N)) = K(x(N))

V(x(t)) = E )L(t ,x( t )~ u(t),~~(t)) + a V(x(t+1))~
(2.6.5)

Theorem 2.5

Given a linear stochastic system described by Eqs. (2.2.1) to

(2.2.6) and the cost functional (2.6.3), the optimal feed-

back control at each instant of time is given by a linear

transformation of the measured state , that is,

u(t) = - G(t) x(t) (2.6.6)

ct K(t+l)(Z b +a~~G(t) = 
a 

—2 (2.6.7)
R +c l K(t+l)(Ebb +b )

The K(t)’s satisfies a Riccati-like recursive equation

K(t) = Q + aK(t+1)(Eaa +a2)

ct2K2( t +1)(E b
+a

~~— 
a 

2 , K(N) = Q (2.6.8)
R+ c i K(t+l)(Ebb +b )

The optimal average cost is given by

N-i
J* 

= K(0)x2(0) + ~ at~~~K (t+1)E (t) (2.6.9)
t=0

Proof: Use dynamic programming as in Section 2.3.

The optimal solution given in Theorem 2.5 exists for

all f ini te hor izon N. However , the solution to the optimal

control problem may fail to exist (in the sense that the

_ _  _ 

H
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optimum cost is infinite) for the infinite horizon case.

The precise result is stated as follows .

Theorem 2.6

Let the horizon time N go to ~~~~. Define the undiscounted
-

- 

- 

threshold parameter by Eq. (2.4.3).

—2 ~~m = (Zaa~~~ ~ 
- 

a 
—2 (2.6.10)

Ebb 
+ b

Then the optimal solution to the infinite horizon problem

exists if and only if m ~ -
~~

-

Proof : Let a J~~~ a(t) and ~ = H/ a , E -aE E /~ Zaa aa ab ab

Then after some algebra , Eq. (2.6.8) becomes

K(t) = Q + K(t+1)(E +~~
2)

K2(t+1)(Z b ’*~
1
~~

- 
a 

2 (2.6.11)
)

The form of the nonlinear difference equation is

identical to that of Eq. (2.4.1). Hence the results follow

from Theorem 2.1.

The above results imply that if the stability con-

dition m~~-~ holds , then the limiting solution of Eq. (2.6.8)

exists , is bounded , and approaches a constant value K. 
- I

u r n  K(t) = K (2.6.12)

and it is the positive solution to the algebraic equation

_ _ _ _  
- - 

_ _ _ _  _ _ _
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2 2  — — 2
—2 ci K (E b +ab)K = Q + a(E +a )K - 

a 
—2 (2.6.13)

R+aK(E bb +b )

and , consequently, the linear gain G(t) in Eq. (2.6.7) also

approaches a constant value

aK(E +j~~)G = u r n  G(t) ab (2.6.14)
-

- - N~~ R +ciK(Ebb +b

Otherwise , u r n  K(t) is not bounded , and , K(t )  grows
N-~~exponentially as

lim K( t ) eci
~~ (2.6.15)

We remark that in the discounted problem , the more

~. - ‘ the future cost is discounted (c&+0) the more uncertainty

can be tolerated in the randomness of the parameters and

still have an optimal solution for the infinite horizon

problem .

Thus in the case that the solution exists (m<- ~)- a
the use of the optimal control laws Eq. (2.6.6) where G(t)

is the constant gain given by Eq. (2.6.14) will result in
- 

, the following optimum evolution of the state x (t),

I a K ( E  
~~~~~~ 

1
x(t+1) I a(t) — — 

—2 b(t) Ix ( t )  (2.6.16)
L R + a K( E bb

+b ) J
One may suspect that the existence of an optimal control

in the case results in the feedback stabilization

according to Eq. (2.6.16). This is not true . We will now

show that the optimal closed-loop system (2.6.16) is unstable

— 
—5---——-. - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ —~ --~~~ ——-‘.—-----— ----- — 5 — - -
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.in a mean square sense in the region 1 ~ m - in spite of

the existence of an optimum control in the region specified

above .

Recall that the stochastic system Eq. (2.2.1) is

— stabilizable if and only if the undiscounted threshold

parameter m defined in Eq. (2.4.3) is less than unity. This

holds for any stochastic linear system and any linear feed-

back control law . App lying the Theorem 2.2, the optimal

closed-loop system of Eq. (2.6.16) is not stable in a mean-

square sense in the region 1 ~ m ~ , where a is the discount

factor .

-~~~~ This is a very interesting and important result.

— The implications of the above results are best understood by

referring to Fig. 2.9a. The undiscounted threshold param—

eter m can be thought a~ a measure of the system parameter

uncertainty, since for any given mean values a and b of the

random parameters a(t) and b(t), m increases monotonically

with both parameter variances Eaa an d Zbb Note that m is

uniquely characterized by the stochastic system itself and

is independent of the performance criterion J used . For

any given discount factor a , if the system uncertainty is

large enough (Region C in Fig. 2.9a), no stabilizing

optimal control exists for the infinite horizon problem .

If the system uncertainty is sufficiently small (Region A

L 

in Fig. 2.9a) t h e n  the optima l and stabilizing feedback

contro l exists for the  i n f i n l t : e — t i m e  problem .

- 

5- - --~~~~~~~ — - _- - 
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REGION A REGION B REGION C

0 0 N

S U U

o mn m= 1/ a

o < a < 1: DISCOUNT FACTOR

(a)

REGION
REG ION A D REGION C

0 N N

S S U

o rn - i/a m~~1 
m

(b)

Figure 2.9 Behavior of solution as a function of threshold
parame ter m . Legend :
0: Optima l infinite horizon controls exist
N: Optima l infinite horizon controls do not

exist
8: Closed loop system stochastically mean

square stable
U: Closed loop system stochastically mean

square unstable

- 

- - - ——-
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The i n t e r e s t i n g  phenomenon occurs on the  extended

ex i s t e n c e  region B. Note  th a t  the  size of t h i s  region

increases as t h e  f u t u r e  is d i scoun ted  more and more (a *0).

In the extended reg ion B in Fig. 2.9a optima l c o n t r o l s ex is t .

but the resulting feedback system is unstable in the mean-

square sense according to Theorem 2.2. The existence of a

unique optimal control law in this region is due solely to

the use of the discount factor in the cost functional.

All this seems to support a separate analysis to

determine the stochastic stability conditions of the under—

lying systems as has considered . A careful analysis of the

stochastic optimization problem from the optimal contro l

theory and stability theory are needed simultaneously to

obtain the stochastic controllability and stab i1it y con—

ditions for the purely random parameter systems . In  most

stochastic contro l problems encountered , thus far , opti—

mality and stability present the same conclusions. Optima l

closed-loop control laws result in mean-square stable sys—

tems . This is clearly not the case for uncertain systems

• 
- in which the randomness enters multiplicatively as well as

additiv e ly into the stochastic system in a significan t way .

-
~~~~~~~~ Following Magill (62) and Ramsey [63] where the

discount rate ~S r — 
p is allowed to vary from —

~~~ to +~~ w i t h

- 1~ appropriate economic interpretations , we shall now consider

the di screte— time problem where the discount factor a can

i ke on va ILies 1 a — 
~~~. We can argue heurist I cal ~y that in

5 - -  -
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order for the cost functional Eq. (2.6.3) to remain finite

for lar ger N , the terms in the cost functional must decrease

faster than the growth in factor . Specifically , we have

the cost func tional

T = E{ ~ at(Qx2(t) + Ru2(t))~ (2.6.3)
t~O - )

Using Eq. (2.6.5), we obtain the optimal stochastic

control law for the discounted cost prob lem ,

-
• u(t) = - K(t+1)~~~ —x(t) (2.6.17)

R+ciK(t+1)(b I.E
bb)

where
• 

—
~~~ 2 2 —2—2• K(t) = Q+aK(t+1)a — 

ci K (t+i)a b (2.6.18)
R + ci K(t+1)(b” + Ebb)

The previous results for 0 <ci <1 can be extended to 1 <a <~~~~.

Iii Fig. 2.9(b), we have plotted the regions of mean-

square stability and optimality for 1 < c i  <~~~~. Region A is

shortened to the interval 0<m <- 1 . The use of the factor
a

1 <ci gives rise to a new region D to where the optimal solu-
I-

tion to the infinite horizon problem does not exist , but the :
I i

system is mean-square stbilizable under linear feedback .

The interpretation of this result is that the redefined cost

funct iona l grows as powers of a so fast , that no optimal

control u(t) exists to keep the cost bounded . Region C for

m~~ 1 has the same interpretation as in Fig. 2.9(a). In Fig.

2.10, we show the region of existence of optima l controls

for O~~ c t <~~.
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Figure 2.10 Optimalit v and stabil ity regions for system
equation (2.2.1)

_ 
_ _



. . &  —
.5
— — 

~~~~~~~~~~~~~~~~~~~~
- 5 - 5-  - 

- •~~~~~~~~~~ - - ~~----—- - - -- --~

*

-70-

2.7 Control of Linear Systems With Correlated Multiplicative
• and Additive Noises

The results we have obtained for the purely random

(white) parameter stochastic control problem can be extended

to allow for correlations between the system additive noise

~(t) and random parameters a(t) and b(t). We define the

correlations by

E {(a(t) — i(t))E(s)} = Ea~
(t) 6(t,s) (2.7.1)

E{(b(t) — b(t))~ (s)} = Eb~
(t) 6(t,s) (2.7. 2)

The control problem is to minimize the average

quadratic cost functional ,

( N—i I
T = E ~Qx 2(N) + ~ Q x 2(t ) + Ru2(t)~ (2.7.3)

t=O 3

subject to the same dynamical system Eq. (2.2.1).

x(t+1) = a(t)x(t) + b (t)u(t) + F~(t) (2.7.4)

We have that

V(N) = Qx 2(N) (2.7.5)

V(N-1) = E{(Qa
2(N_1) +Q)x

2(N_1) + (Qb
2(N-l)÷R)u

2(N-1)

+ 2Q(a(N—1) b(N—1) x(N—1 ) + b(N_1)E (N—1)) u(N—1)

+ 2Q a(N_1)~~(N_1)x(N_1)Ix
N_1} + QE (2.7.6)

Now the noise E ( t )  is correlated with a(t) and b(t).

The cost—to—go is minimized when

u(N—1) = — G(N—1) x(N—1) — p(N—1) (2.7.7)

-5 
- - ‘ 5 - -—  _ _ _ _  _ _ _  _ _ _
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Q(E +j~~)
G ( N — l )  = ab 

—2 (2.7.8)
fl + Q(

~~bb +b

~~~

p(N-1) = 
—2 ( 2 . 7 . 9 )

R + Q( E
bb +b )

Substituting this optima l solution into Eq. (2.7.6), we

obtain for the optimal cost-to—go that

* —2v (x (N—1).N_ 1) = + Q(a 
~~ aa~

- 

Q2 ab~~~2 12 (N l)
R+Q(b E

bb)]

- 
• 

2 ~~ +j~~) ]
+ 

R + Q
bb

+~~~
2

)~~~~~~
]

x(N—1) + constants

= K(N-1) x2(N-.1) + 2k(N—1) x(N—1) + Const .

(2.7.10)
where 

-~~~~~

—2 Q ab +5b)K(N—1 ) Q + Q(a +E ~ 
— 

—2 (2.7.11)aa R+Q(E bb +b )

and

( E  + a b )
k(N—1) Q E - 

ab E (2.7.12)a~ D . ~.( ~~( r  + 2 b~
~~
‘ b

Going back one more step to N-2, we see that the

structure of the minimization problem is the same . By
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indulation on t , we then obtain the following result .

Theorem 2.7

Under the assumptions in Section 2.2, but allowing 1(t) to

be correlated with both a(t) and b (t), the solution to the

optimal control problem specified by Eqs. (2.7.3) and (2.7.4)

ex ists and is of the form

u(t) = — G(t) x(t) — p(t) (2.7.13)

K(t+1)(E 
b~~

8
~~~G(t) = a 
—2 (2.7.14)

R +K(t+i)(Ebb +b )

bk(t+1)+K(t+1)E
p(t) = — (2.7.15)

R+K(t+i)(Ebb +b )

—2 K2(t+i)(E 
~~~~~~K(t) = Q+ (a +E )K(t+1)— a 

—2 (2.7.16)aa R+K(t+l) (Ebb +b )

k(t) = (i_ ~~G(t) k(t+1) + K(t+1)(E~~ -G(t) E b~~) 
(2.7.17)

with the boundary conditions

K(N)=Q )
(2.7.18)

k(N)= O )

The opt imal policy is seen to cons ist of a feedback

component G(t), together with a fixed component p(t). It is

interesting to note that the expression for G(t) is identical

to that given in Section 2.3, Eq. (2.3.12), so that feedback

• regulation of the state is independent of any correlation

between the additive and multiplicative noise . The optimal

feedback control law is still linear in the state. On the

—5- - ---5—- • -——~~.--5----’ ----- -- --• • , __~~~~._ __ _ __ _ _ _ •  — - -—---• -—--—- - ——----- ------ --— -
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ot her  ha nd , the correct ion term p( t ) depends c r u c i a l ly

on the cross—covariances ; if they are zero this term

vanishes and leaves us with the feedback component alone

and reduces to the results given in Section 2.3.

2.8 Conclusions

This chapter shows that the optimal control of dy-

namic systems with known structure , but with randomly vary-

ing parameters (modeled as white noise) has some limitations.

In particular , by means of a simple scalar linear - quadratic

contro l problem , it is shown in Section 2.4 that the infinite

horizon solution does not exist if the parameter uncertainty

exceeds a certain quantifiable threshold. We call this the

Uncertainty Threshold Principle. This result has major engi-

neering implications in the modeling accuracy required in

terms of the variance of the parameters of a dynamical system

before any stochastic optimal control scheme makes sense .

In Sections 2.5 and 2.6. it is demonstrated that

• the uncertainty threshold parameter is uniquely characterized

by the stochastic system itself and is independent of the per-

formance criterion used . Optimal controls may still be de—

fined , due to the inclusion of a discount factor in the per—

formance index , in region where the closed—loop system is

unstable in a mean—square sense. The engineering implication

i s  that a stochastic stability analysis should be carried

independent of the stochastic optimization results. In most

_ _ _  -- 
5- •~~~~~ _ _ _  _ _
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stochastic optimization problems solved to—date optimality

and stability are not in conflict ; optimal controls result

in stable systems. This is clearly not the case for systems

in which the randomness enters multiplicatively as well as

additively .

-4

- - 
.
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CHAPTER 3
OPTIMAL LINEAR ESTIMATION OF STOCHASTIC SYSTEMS

WITH RANDOM PARAMETERS

3.1 Introduction

In Chapter 2 we have considered the optimal stochasti-’

control of a scalar linear stochastic dynamical system with

purely random parameters . We would like to extend the analy-

sis to scalar systems with noisy measurements. Before doing

that we will examine the estimation problem .

It is well-known that for the standard linear- • 
—

- 
-
; quadratic—Gaussian problem , the optimal stochastic control

problem separates into the optimal deterministic control

problem and optimal estimation problem with no control. That

the two optimization problems are not completely unrelated is

embodied in the Duality Theorem which says that one problem

is the dual of the other . We will show that the optimal

linear estimation results are not completely the formal dual

of the optimal control problem . For the optimal stochastic

control derived in Chapter 2 to be truly optimal , the optimal - - -
•

estimation algorithm derived in this chapter will be only

optimal in the class of linear estimators. The technical

assumptions we make to derive the linear unbiased estimators

7 have excluded the filter from being the truly optimal esti-

mator . We present the results for the linear minimum variance

filter since the optimal filter would have to be nonlinear and

infinite dimensional . -•
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We will state the problem of state estimation with

purely random parameters in the next section . The mathemati cal

model developed in here can be related to the state-dependent

and control-dependent noise models. In Section 3, we de r ive

the opt imal linear unbiased estimator in the minimum variance

sense. The estimator is to operate in the open-loop sense .

We will consider feedback control in the next chapter. In

Section 4, the asymptotic behavior of the linear unbiased

- 

• 
filter is examined , first for the case where the random

parameters are all mutually uncorrelated at all times and

next for the case where the random parameters may be corre—

lated at each instant of time with each other. A stability

analysis for the stochastic estimation problem in which the

purely random (white) parameters are correlated has not been

found in the literature . We note that the results in this

chapter were obtained before the related references [64] and

[65] were found.

Linear optimal filtering for a continuous—time

linear dynamical system , in which the process and observation

have state-dependent noise was considered in 166]. For the

time—invariant problems , it was shown that the second moment

of the state must be asymptotically stable for the uniqueness

of the filtering solution . Necessary and sufficient condi-

tions for the second moment to be asympotically stable is

given in [67] - The discrete-time filtering problem was con-

sidered in [68] for the case where only the measurement 

~~~~~~~ - : ~~~~~~~~ ~~~~~~~~~~~~5-~~~~~~
_- - 5-- - —~~~~~~~~~~~~~
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equation contains state-dependent noise and no input is

applied .

3.2 Problem Statement

Suppose that the scalar linear stochastic dynamical

system is described by the difference equation

x(t+1) = a(t)x(t) +b(t)u(t) -i-~~(t) (3.2.1)

We include the second term in the estimation problem since

this will be of importance in the case to be discussed when

a(t) and b(t) are correlated random parameters. More impor—

tantly, this just represents the open—loop optimal estimation .

But when we allow u(t) to be a function of the measurement ,

then the control system is closed-loop .

Let us assume that the measurement equation is given

by

z ( t )  = c(t)x(t) +0(t) (3.2.2)

Assume that the initial state x(0) is a random variable , with

given a priori statistics .

E{x(0)} = , E{(x(0) _
~~~)2} = E 0 (3.2.3)

The initial state variable is assumed to be uncorrelated with .~~~

any other random variables in the system . The input u(t) is

assumed to be a deterministic quantity in the estimation

problem .

The additive noises E (t) and 0(t) are assumed to be

zero-mean Gaussian white noises , uncorrelated w ith eac h other

at all times , and to have known a priori statistics.
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E fr (t) ~(r)~ E (t) 1 S ( t , t )  ( 3 . 2 . - i )

E~ o(t) 0( t 
)}  

i-) (t) ~ ( t  , T )  (3.2.5)

What d istinguishes our problem f rom the standard

I incur Gaussian estimation problem is that the parameters

a ( t )  and b(t) and c (t) are assumed to be random parameters

uncor r e l a ted  in t ime , with known means and covarian (-es .

= ~(t) , E{(a(t) _a(t))(a(-r ) _a(-r ))}

E (t) ~~t , r) (3.2.6)

E-{b(t)~ = b ( t )  , E{(b (t) _~~(t)) (b(t) 
_

~~~( T ) ) }

= Ebb(t)~
S(t ,T) (3.2.7)

E{ c ( t ) }  = e (t) , E {(c(t) -~~(t)) (c(T) -c(-r ))}
= E (t) ~~( t , i )  (3 . 2 . 8)

The random p a r a m e t e r s  may  be c o r r el a t e d  w i t h  each o the r  a t

each instant of time , SO tha t

I-: ~~( a ( t )  
_
~~(t)) ( b ( T )  -~~~( t ))~~ = ~: 1 (t) 6(t,T) ( 3 . 2 . 9)

Mor eover the random parameter c( t) may he correlated with

a( t ) a n d  b( t ) that is

E~~( a ( t )  _a(t)) (c(T) _c (T))} ~~~~~
( T )  ~~( t , r )  ( 3 . 2 . 10)

1:~~( l ( t )  _ h ( t ))  (c ( T )  _ ( ( ~~~~~))} 
- l.

b
(T) ~c (t ,~~~~~) 

(3.2.11)

-~~ • ‘ aSsLime t h a t  t ho random parameters are independent of t he

~ t , y e  whit e noise ~~~~ t ) in the system dynamics and t 1 ( t )

h. i .  -~~~ 
-~ u remen t - N o t  o that In Eq - ( 3 - 2 . 1 ~ I f h( t ) i.s

_____  — .5.5- -  .5---- - -~~~~~~~~~~~~~ =— .5
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uncorrelated with a(t) and c(t) for all t , then the second

product term essentially affects the system dynamics as an

additional driving noise that can be combined with ~(t) in

the solution to the filtering problem as we will see.

The stochastic linear system given by the difference

Eq. (3.2.1) is a Gaussian—Markov process , since the random

parameters are assumed to be Gaussian white. However , the

a posteriori conditional density function is non-Gaussian

due to the random system parameter a(t). The conditional

probability density cannot in general be computed exactly

since an infinite number of conditional moments are needed.

In practice then , one would approximate the nonlinear filter

or fix a priori the structure of the estimator to be linear

and unbiased . We will constrain the filter in this chapter

to be linear in both the state and the measurements, although

it can be shown that the linear filter is not optimal in the

class of all possible filters for the system Eqs. (3.2.1)

and (3.2.2) 165].

t We shall denote the post measurements by

z~ ~ {z(1),z(2),. - - ,z(t)}

3.3 Derivation of the Linear Minimum Variance Filter

- 
We consider now the Kalman—type linear filter of

the following recursive form [69], the conditional mean being

given by

-.-- ---- --

~

‘— - -- —5 --—---- ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ •
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x ( t + l I t )  = F ( t )  x ( t j t- l )  + G ( t )  u ( t )  + ~~t) z(t) (3.3.1)

S u b s t i t u t e  Eq .  ( 3 . 2 . 2)  i n to  t h i s  equation , we get

i~( t +1~~t )  = F ( t )  ~( t I t — 1 )  + G(t) u(t) + ~~t) c(t) x(t)

+ 1~ ( t )  0(t) (3.3.2)

Subtract ing this equation f rom Eq. (3.2.1) we get

the estimation error

x(t+l) - ~(t+1It) = F(t) (x(t) - x(t~ t_1))

+ [a(t) -~~(t) c(t) _F(t)]x(t)

+ (b(t) - G(t))u(t) - ~(t) 0(t) + ~(t)

(3.3.3)

We require t h a t  the  e s t ima te  be unbiased , so t h a t

E {x ( t + 1)  — 
~ (t+lIt)} 0 Vt (3.3.4)

Taking the expectation of Eq. (3.3.3) we obtain that

F(t) = a ( t )  — i~ ( t )  c(t) (3.3.5)

G(t) = b (t) (3.3.6)

The estimation error then satisfies the recursive equation

e(t+l{t) = (~~ ( t )  - ~(t) c(t))e(tft-1) + (b ( t )  _
~~(t)) u(t)

+ [(a(t) 
_
~~(t)) + ~(t)(~~( t )  _c(t))]x(t)

- ~(t) ~(t) + r(t) (3.3.7)

and the state estimate evolves as

~(t+1jt) = 
[~~( t )  - 

~(t) c(t)]~~(t It-i ) + b ( t )  u ( t )  + 
~~~~~~~~~ ) 

z(t)

(3.3.8)

Define the conditiona l error covariance to be

E (t+ l I t) ~~l{e
2
(t+i I t ) l z t} (3.3.9)

_ _ _ _ _ _  -— - 5 -  - — -  
- -  - - 
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It is evident from Eq. (3.3.7) that the predicted error co-

variance 
~~~

(t+iIt) will involve terms requiring the com-

putation of the second conditional moment of the state.

We note here that the measurement update is unbiased ,

since if we define

~(t) ~(tIt) ~ ~ 
-~~(t)c(t)]i~(tI

t_1) + ~(t) z(t)

(3.3.10)

then

~(t)E{x(t) 
_~~(t~ t)Izt} = ~(t)E{x(t) 

_
~~(tIt_ l )fz

t
~~ }

+ ~(t)E{c(t)x(t)_ ~(t) ~(tIt_ l )Iz
t_1}

= 0 (3.3.11)

Now , the estimation error covariance is given by

~xx (t4htt) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ 
[~ aa(t) +~~~

2
( t )  E

~~~~
( t )  - 2

~ ac(t) ~~t)~E(x
2(t)}

+ tbb
( t ) u2(t) + (t) + ~

2(t) 0(t)

+

(3.3.12)

where the second moment of the state is given by

E{x
2
(t+1)} = (~~

2 (-t - + Zaa t) E{x
2
(t)} + (i

2(t + 
~bb

(t)) u
2(-t )

+ E ( t )  + 2(~
(t)

~~
(t)+E ab(t))u(t) E{x(t)} 

- 
-

(3.3.13)

- j

If we define ,

X(t+1) ~ E{x
2(t+1)}

—.5 
—5- 

5— - -- . 5 —
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We can write Eq. (3.3.13) as

X(t+~ ) = (~~
2 t + 

~aa
(t)) X (t) +(~

2(t) + 
~bb

(t)) u2(t) + E(t)

+2(i~(t)~~(t) +E b(t)) u (t)
~~
(t
~
t) (3.3.14)

and the mean is given by definition

a(t) ~(t~ t) = 
[~
(t) -~~(t) c(t)]~~(tIt_ i ) + ~(t) z(t) (3.3.15)

with initial conditions .

~(0I—i) = E(x(O)) = (3.3.16)

E
~~~~

(0
~~~

.i) = 

~xO (3.3.17)

X(0) = + (3.3.18) i 
-

We now want to determine the filter gain ip(t) such

that the error covariance in Eq. (3.3.12) is minimized . We

have a deterministic optimization problem . Taking the deriva-

tive with respect to tp (t) and setting the necessary condition

to zero , we get

* ~
(t)

~
(t)

~~ x
(t It— i) + E (t)x(t) + E

b (t)u(t)

2C (t)Zxx (tlt_ 1) + 0 ( t )  + 
~cc (t)~~ t)

(3.3.19)

Substituting this result into Eq. (3.3.12) the

minimum estimation error covariance is

E (t+lIt) = a2( t  
~~

(tlt_ fl + 
~bb ( t ) u ( t )  + Y~11

(t)X(t)

+ 2 E
ab

( t )U ( t ) E { X ( t ) } + E ( t)

- ~
2(t) 
[
~
2(t)E (t I t - i)  + ~~~,( t )X (t )  + - -

~~ t~~
]

~3. 20)
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It can be shown that the optimal filter gain 4’~ (t )  in Eq .

(3.3.19) minimizes the error covariance at any time . The

filter gains may be pre—computed since they are independent

of the measurement.

3.4 Linear Filter With Uncorrelated Parameters

In this section we will present the results on the

asymptotic behavior of the linear minimum variance filter

when the random parameters are mutually independent at all

times. This assumption is made to simplify the algebra and

notations , but do not change the conclusions .

The optimal linear filter is given by the recursive

equations.

Predict ion: (Update Cycle)

~(t+1It) = (~ (t)
_
~~(t)~~(t))~(tft_ 1) + ~(t)u(t)

+ ~p(t) z(t) (3.4.1)

The estimate has to be computed on-line since it is dependent 4

on the current observat ions. The filter gain computation is

given by

a(t)c(t)E (tlt—1)

~~t) = XX (3.4.2)
c2 t E

~~~
tIt_ 1 + E

~~
(t)X(t) + 0(t)

The estimation error covariance is given by

E~~ (t+hIt) = ~2(t)Z~~ (tIt_1) — i(t)
~
(t)E

~~
(tIt_ 1) ~~t)

+ Ebb(t~~~
(t) + t ( t )X ( t )  + E(t)

Li~ 5-5-- 5
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= a2(t)E (tlt—1 )

- ~
2( t )  

[~
2 ( t )  

~xx (tIt_1)+~ cc(t)X(t)+0(t)]

+ 
~bb

(t
~~~

(t) + Z (t)X(t) + E(t) ~3.4 3)

and can be computed off-line .

We can also rewrite the filtering equations in terms

of the mixed equations as follows .

Filtering: (Measurement Update Cycle)

From Eq. (3.4.1) we have

~(tIt) = (1—H(t)~ (t)) ~( t l t — 1 )  + H(t)z(t) (3.4.4)

We redefine the filter gain in terms of H(t), the

standard filter gain , using

~i(t) 
A 

~(t)H(t) (3.4.5)

From Eq. (3.4.2), we write the update estimation error co-

var iance as

Z
~~

(tJt ) = (i—H(t)~ (t)) E~~
(tIt_ 1) (3.4.6)

It can be seen that the estimation error covariance depend

on the input u(t—1).

• It can be shown that for the uncorrelated parameter

case that [641

E((x(t) —~~(t!t)) ~(tIt)} 0 Vt >0

if E{(x(0) -~~(0I0))x(0I0)} = 0. The estimation error is thus

orthogonal to the state estimate.

The optimal linear filter given by Eqs. (3.4.1) to

(3.4.6) resembles the standard Kalman filter for linear

L.5~~~~~ L —- 
- —- -~~~~~~~ 

-
- - ~~~~~ --—— --- 

——-- -

~~~~~~
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Gaussian estimation problems . However , the computation of

the second moment of the state X(t) is an added term for

the random parameter problem . The positive semidefiniteness

of the covariance of c(t) adds “convexity ” to the filtering

problem and makes the solution more well-behaved numerically.

The random parameter covariances incorporates equivalent

driv ing no ises and measurement noises in a natural manner

into the problem .

In the case where the random parameters have sta-

tionary statistics as well as E (t) and 0(t), stability con—

ditions for the minimum variance filter can be given . The

nonlinear difference Eq. (3.4.3) is then

E
~~

(t+1lt) = a2E
~~

(t It _ i )  + ZaaX(t) + Ebbu
2 

+

— H2(t)[~
2E~~ (t I t — i )  + Z

~~
X( t ) + e] (3.4.7)

where u(t) is assumed to be constant a lso . The case of

u(t) = constant is effectively to increase the additive noise

~(t) in the system by a time—varying additive noise b(t)u

of mean b(t)u and covariance u Z bb(t). In the steady—state

the state estima tion error covar iance is , therefore , in-

creased due to u Z bb(t).

The boundedness of the predicted error covariance

depends on the boundedness of the second state moment X(t)

in Eq. (3.4.7). From Eq. (3.3.14), the second moment is

asymptotically mean-square stable if and only if (E aa+a
2)
~
i.

If this inequality is satisfied then E(x(t)} is also 

.5 - - - 5--- - _ _ _



- - - — - - 
________

!uIr_5 -

-.87—

asymptotically mean-square stable. For stationary systems ,

the asymptotic stability of the second moment of the state

X(t) is a sufficient condition for the stability of the

estimator. If (E aa+a
2)<i then the predicted error covariance

will be bounded . The filter is effectively a Kalman filter

with time-varying noise statistics given by ~~~~~~~

We summarize the results above in the following

theorem

Theorem 3.1

The solution to the Riccati-like Eq. (3.4.7)

a2 c2 E2 (t lt— 1)
E (t+ilt) = ~~

2E ( t~t— 1) — 
X. 

—

XX XX 

~
2Zxx (tIt 1

~~~
0
~~~cc

)
~~
t)

+ E + E X ( t ) + Ebbu (3.4.8)

exists and is unique if the condition

~ +~~~~ < iaa

is satisf ied for u ( t ) constant.

The steady—state E
~~ 

satisfies the algebraic equation
-‘

= — 
xx — + E x + z u + (3. 4.9)

C
2E + E ~ + 0 aa bb

xx cc —-H

For 
~~aa~~

2)>1
~ 

the predicted error covar iance

diverges , but the filter gain computation is still given by

H —2 
(3.4.10)

C + E

since

X + E{~I
2 } (3 .4 .11)

•-. -- .5—-

~

-- --

~
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I 
- In the special case where the parameter a(t) is

known , then the necessary and sufficient condition for the

asymptotic stability of the second moment of the state is

Ia I<i.
An approximate analysis of Eq. (3.4.7) shows that

for E
~~

(t+1It) large

—2—2a c E (t t—i)
E ( t+lIt )  ~2 ~ (tlt—i ) + E E ( t l t — 1 )  — 

XX

xx xx aa xx 
~
2 + E cc

m E
~~

(tJt_ l ) (3.4.12)

where

—2 —2
m ~ -~2 + E — 

a c (3.4.13)aa —2c + E

then m > i .  However , this inequality is weaker than the

threshold condition given in Theorem 3.1 and would include

points which did not give rise to mean—square stable filters . 
—

This simple analysis shows that the expression in (3.4.13)

which can be obtained by equating b with c is only a suffi-

cient stability condition in the filtering problem .

3.5 Mutually Correlated Random Parameters

In this section we will consider the asymptotic

behavior of Eq. (3.3.20). When the random parameters a(t), -•

b(t), and c(t) may be mutually correlated at each instant

of time . For the scalar stochastic system with wide—sense

stationary stat istics,
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E (t+llt) = a2E ( t l t — 1)

[i~~~~~
(tIt_ 1) + E X(t) + Eb

UE(x (t)}]2

c2E
~~

(tJt_1) + E
~~
X(t) + 0

+ E + E X(t) + 2E bUE{X(t)}+ 
E
bb

U2 (3.5.1)

In case the random parameter b(t) is not correlated

with any other white noise parameter , we have a simplifica—

tion . The predicted error covariance is given by

L a c E  (tlt— 1) + E X ( t )J
• E (t+1~ t )  = ~

2E (tlt—1) — 
XX ac

- 1 c E
~~

(tI t_ 1)+E
~~

X(t)+0

+ Eaa~~
t) + E

bb U2 + E (3.5.2)

We recall from the asymptotic stability analysis of

Section 3.4, that the solution to the above Riccati—like

$ equation will remain bounded as t-~~ if the second momen t of

x(t) is asymptotically stable. A sufficient condition for

X(t) to be asymptotically stable is that

For t~~~, and if the solution to the Eq. (3.5.2) 
‘

diverges then we can wr ite

(
~~~~~~~

+ Z  ) 2

E
~~

(t+1It) -~2 L
~~

(t!t_1) — 

~2 + ~ 

E
~~

(tIt_ 1)

+ EaaExx (t$t_1) (3.5.3)

since

X( t ) = E
~~

(t)t_1) + E{~
2(tIt—1 )} (3.5.4) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 55-~~~~
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Thus ,

E (t+1It) :m E (tlt_ 1) (3.5.5)

and m > 1 .

Where

- 

- 

—2 (a~~~+Z )
2

- ‘ m = a + E — 

—2 
ac (3.5.6)

c +~~:cc

However , this is only a sufficient condition for Eq. (3.5.2)

to diverge.

• ‘I The case in which the random parameter b(t) is cor-

related with a(t) but not with c(t), does not change the

asymptotic stability condition since l a I >i implies E
a
+
~
2>1

~

The case in which b(t) is correlated with both a(t) and c(t)

as given in Eq.  ( 3 . 5 . 1) w i l l  also not change the asymptotic

stability results given in Eq. (3.5.5).

If u(t) = 0, then the deterministic input is effec-

t ively e l iminated  from the  plant Eq.  ( 3 . 2 . 1 ) .  This  allows

us to deal with only the pure estimation problem . It does

not simplify the problem any greater than if we assumed that

the random parameter b(t) is uncorrelated with a(t) and c(t),

since then the input u(t) multiplied by b(t) affects Eq.

(2.2.1) as an additional driving noise . The analysis was

presented in Section 3.4. The effective additive noise co—
- 

variance is increased by Ebbu
2 as in Eq. (3.4.7).

-1

-— - 5’ —  — - - - -- - - - - - - — -——---
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3.6 Conclusions

This chapter considered the linear minimum-variance

estimation for stochastic systems with purely random (white)

parameters. Because of the random parameters multiplying

the state , the conditional density is non—Gaussian even if

a l l  the  random processes are Gaussian . We extend previous

results on the linear minimum variance estimation for such

a class of stochastic systems to include state— and control—

dependent noises in both the plant and measurement equations .

The linear filter determined in this chapter is

s imi la r  in form to the Ka lman f i l t e r , except that the second

moment of the s tate must be propagated . Conditions for sta-
I-

bility of the linear minimum-variance estimator are presented .

We allow for the correlations of the uncertain parameters in

the general estimation problem . For the stochastic system

with purely random (white) parameters , we have shown that

the solution to the Riccati—like forward difference equation

may become divergent as t÷~ for some quantifiable threshold

depending on the means and variances of the randomly varying

parameters . This result is analogous to the linear quadratic

control problem , but does not arise in the standard linear-

gaussian estimation problem .

L

~ 

~~~~~~~~~~~~~ 
- - ~~~ _5: ~~~~_~~~~~~~~~~~~~~ -_ _ _  ~~~~~~~~~~ -- -~~ ~~~ 5 — - .5 - - -. 5 —-- - -—- -
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CHAPTER 4
OPTIMUM CONTROL OF RANDOM PARAMETER SYSTEMS

WITH NOISY MEASUREMENTS

4.1 Introduction

In Chapter 2, optimum control of random parameter

system with noise—free state measurements has been discussed .

In this chapter we will be concerned with the optimum control

laws for systems subject to random parameters and with noisy

observations. Just as in the optimum control of systems with

deterministic parameters , the determination of random param-

eter control systems involves two problems (1) the problem of

optimum estimation and (2) the problem of optimum control. t

In the standard deterministic linear-quadratic—Gaussian (LQG)

problem the separation theorem holds [3 ] ,  [4]. A stronger

result stated as the Certainty—Equivalence Principle applies

to the LQG stochastic control problem . As we shall see in

the random parameter stochastic control problem , the optimum

solution does not separate in the sense that the filter gains

are not independent of the control computation . In the white

noise parameter control problem there is no learning in the ;

control law . The covar iances for the random parameters cannot

be reduced below their a priori values. From Chapter 2, it

follows that the Centainty-Equivalence Principle does not

apply in the random parameter problem .

The opt imum control strategy for the random parameter

system has to per form simultaneously the estimat ion and con-

trol of the state while minimizing the expected value of some



~ppppr~ 
- 

~T~-
5
~

scalar real—valued cost functional. In  this sense , the con—

tro l law derived is adaptive . It must adapt to the leVel of

j uncertainty In the parameters and the state , yet it must

regulate the control system . This is an example of non-

learning adaptive control . I f  we accept the definition of

dual control as given in [81 , [91 , and (70J our stochastic

control law is non dual , since our knowledge of the system

model does not increase .

t In Section 4.2 we will state precisely the optimal

contro.l problem . In Section 4.3 , we investigate the optimum

solution to the contro l problem formulated in Section 4.2 in

terms of the conditional means and covariances of the  state .

The optimum filter Is , in general , nonlinear and not practi-

cal to implement. Hence , we proceed to determine the sub-

optim al solution in the class of linear estimators and linear

controllers . In SectIon 4.4 we reformulate the stochastic

contro l prob lem as a deterministic optimum control problem .

Two solution methods are possible — Matrix Minimum Principle

1711 and non-stationary dynamic programming. The structure p

of the optimum controller is given in Section 4.5. In  Sec—

lion .1 .6, we discuss in more detail the qualitative proper-

ties of the optima l co n t r o l  law for the fixed structure feed—

back contro l system . In Sec t ton 4.7 , we examine the asymp-

tot  Ic behavior of’ (lW st at I on ary  con t ro l for  s t o c h a s t i c  sys-

tems w i t h  s t a t i o n a ry  s t a t i s t ic s  and c o n s tan t  weights in the

cost f u n c t i o n a l  . Analogous  to Sect ion 2 . 5 , In  Sect ion 4 .8 ,
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we analyze the stability of the stochastic system under

ou tpu t  feedback. We are interested in the question of the

existence of optimum controls in steady—state for finite cost.

4.2 Problem Statement

Consider a linear stochastic system with purely ran-

dom parameters characterized by the scalar difference Eq.

(2.2.1)

x(t+1) = a(t) x(t) +b(t) u(t) +~~~t) (4.2.1)

The measurement equation is also scalar

z(t) = c(t)x(t) + 0(t) (4.2.2)

where ~.(t) and 0(t) are mutually independent zero—mean Gaussian

white noises with known statistics ,

E(~~(t) F ( T )I  = E(t) ~S(t , r ) (4.2.3)

E{0(T) 0(t)} = 0(t) 6(t,r) (4.2.4)

The initial state x(O) has known a priori statistics

E{x(O)} = ~(O) = 
~(OI— 1) (4.2.5)

• E~~x(O) — ~(Ø))2} 
~xO 

(4.2.6)

The time varying system parameters a(t) and b(t) are

whit9 processes , uncorrelated in time , with known statistics ,

E{a(t)} = ~(t) , E{(a(t) -~~ (t))(a(T) -~~ (t))}

E (t) ~S(t,t) (4.2.7)

E(b(t)} = b (t) , E((b(t) —~~(t))(b(r) —b(t))}

= 
~bb

(t) ~S(t ,t) (4.2.8)

— ~~~~~~~~~~~~ S ~.- -~--
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The independent random parameters may be correlated with

each other at time t ,

E{(a(t) -~~ ( t ) ) ( b ( T ) -~~ ( T ) ) }  = Eab(t) ó (t ,T) (4.2.9)

• The coefficient c(t) is assumed to be white , uncorrelated in

time , with known statistics ,

Efc (t)} = ‘
~(t) , E{(c(t) —~~(t))(c(’r) —c(’r)))

E
~~
(t) ó ( t , r )  (4.2.10)

Finally, it is assumed that the output coefficient c(t) is

uncorrelated with the system parameters a(t) and b (t) for

all time indexes. The white random coefficients a(t) and b(t)

are uncorrelated with the additive noise ~(t) and c(t) is un-

correlated with the additive noise 0(t) for all time indexes .

The optimum stochastic control problem is to deter-

mine a non-anticipative closed-loop control law based on the

past and current measurements and past controls that minimizes

the expected value of a quadratic function of the state and

control variables ,

• 
‘ 2 N—i 2 2~~~~J = E~~Fx (N) + ~ Q(t) x (t) +R(t) u (t)~ (4.2. 11)

t=0 )
subject to the dynamics of Eq. (4.2.1) and measurement func-

tion Eq. (4.2.2). The weightings Q(t) and F are assumed to

• be positive semi-definite and R(t) is assumed to be positive

definite.

The admissible controls are required to be measur-

• able functions of the current and past measurements to assure

that they are a random variable. We denote the entire

-~~~ — -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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measurement history to be z~ ~ (z(O),z(1),. . . ,z(t)} and the
entire control history to be = {u(O) u(1) ,u (t—1)}.

We seek control laws of the type u(t) = y(t ,~~(tIt)), ucU ,

where ~(tIt) is a sufficient statistic of the state. The

control specified has perfect recall (memory) and a totally

nested information structure .

For the multistage stochastic control problem , we

have that

J = E{L(u(t), ~(t), x(t)) + L(x(t+1))} F~ (4.2.12)

Where we define the information available to u(t) at t as

z~ ~ {u(0),...,u(t-1),y(i),,..,y(t)) (4.2.13)

then the Principle of Optimality implies that

J*(zt) = mm E{L(u(t), ~(t), x(t)) + J
*(zt~

f1
)~ z

t) (4.2.14)
u(t)

We have examined the problem where z(t) x(t) (perfect ob-

servation of the state) in Chapter 2. When the measurement

is not exact , then the solution of Eq. (4.2.14) requires the

knowledge of p(x(t)Izt). The assumption of perfect memory

renders p(x(t)jzt) a well—defined probability distribution

function and permits a recursive computation of p(x(t+l)lz
t4’])

from p(x(t)fzt) by a filtering algorithm . If the filtering

algorithm does not depend on the control functions y(0),

y(1),...,y(t) then the Separation Theorem holds for the dy—

namic optimization problem .

• • .a~• •~ 
-
~~~~ 

— — — -
~---~ •
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4 . 3  opt imum So lu t ion  of the  S t o c h a s t i c  Contro l Prob l em

In this section , we investigate the stochastic con-

trol prob lem via the method of dynamic programming. We

derive the optimum stochastic contro l law using the lellma n ’s

Principle of Optimality. We define the cost—to—go at t N— I ,

given measurements and using optimum systems contro l

u(N-1) by

2V(N—1 ,x(N—l)) = mm E (Fx (N) +Q(N—1) x (N—I)
u (N—l)

+ R ( N — 1 )  u2(N—1)Iz~~
1}

= mm F.(x2(N—1)(Fn 2(N-l)+Q(N—1))
u ( N — 1  )

+ 2 Fa(N—1) b(N—i) x(N—1 ) u (N— l)

+ (Fb 2(N—l) +R(N-l) u2(N-l)~~~~~~

+ F (4.3.1)

since ~~N— 1) is independent of u (N—l) and x(N—l).

If we let

• ~(N-1IN -l ) 
A E(x(N_ 1)Iz

N_ l } ( 4 . 3 .2 )

be the vend ! t tonal expeetat ion of .x (N—t ) g iven  t h e  in f o r m a l  ion

st a t i s t i c and s i m i l a r l y  let

~
:
~~~

( N _ 1 3 N _ l )  A E {( x ( N - l )  ~~~(N ~ l t N _ l ) ) j zN _ h 1 ( 4 .3 . 3)

be the vond i  t lena I c o v ar l a n c i ’  . Assume that a ( t ) and b( t ) are

r 
I ndepe’ndent of x(  t ) , we t h e n  o b t a i n

I

— .- • •~~ • ~~~~~~~~~~~~~~~ -
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V(x(N-l),N-1) = mm ~ Efx
2(N_1)(F(~~

2(N_1) +z ~~
_ m fl

+ Q(N-1))Jz 
— }

+ 2F(E
ab

(N_l) +i(N-1) ~(N—1))~~(N—1jN—1)

• u(N—1) + (F(~
2(N—1) + Ebb~~~~~~ 

+ R (N—1))

• u2 N_1)~ + F ~(N—1) (4.3.4)

Taking the derivative of this expression on the right

hand side with respect to u (N—1) for the algebraic minimiza-

• tion , we get

*u (N—i) = — G(N-1) x (N—1~N—i) (4.3.5)

F(E (N—i) + a (N—1)b(N--1))
G(N—i) = ab (4.3.6)

F(b2(N—1) + Ebb N-i)) + R(N—i)

Substituting these results into the expression for

the cost-to-go , we get

V(x (N-1),N— 1) = E{X2(N_1)(F(a2(N_1)+E aa(N_1))

+ Q(N_1))Iz
N_ 15} —

F2(E ab
(N_1) +~~(N—l) b (N—i))

2

— 

F(b2(N_ 1)+Ebb
(N_l)) + R(N—1) •.

• ~
2(N—1~N—1) + F E(N—i)

= E{x2(N— 1) K(N~1)Iz
’
~~ }

[F(E (N_1)+~ (N_ 1)~~(N_1))]2
+ ab E (N-u N-i)
F(Ebb(N_i)+b

2(N_1)) +R(N-1) XX

+ F ~(N—1) (4.3.7)
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where

• K (N—l) = F(~
2(N—i) + Eaa

(N_l)) + Q

[F(~~(N_i) ~(N—1) + Eab
(N_1))]2

— 

—2 (4.3.8)
F(b (N_l)+E bb

(N_i)) + R(N—1)

S An alternative form for the cost-to-go expression

Eq. (4.3.7) is given by

V(~~(N-uIN-l),N-i) 
= K(N-1) ~

2(N-i)

• + [F(
S
~
2(N_ i)+E aa(N_1))+Q(N_1)]

• E
~~

(N_u l N_ i) + F ~(N—l) (4.3.9)

In (37] , it is claimed that the second term in the

cost-to-go expression , Eq. (4.3.7), will be independent of

the past controls if the estimation error has a conditional

covariance independent of x (N-1) and ~N-1. In the deter-

ministic linear-quadratic-gaussian control problem it can be

shown that

E{(x(t) — ~(tIt))
2,zt) 0~~ t~~N

-

• 

are independent of x (t) and z~ (see [3), [41, [72), [73])

since the estimation errors e(t) A x(t) -~~(tIt) can be shown -

•

to be independent of the past measurements or functions of 
S

these measurement. Therefore , the estimation errors are

independent of past controls. Only the first term in the •

expectation of Eq. (4.3.7) is influenced by previous control -
•

policies.
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At time t=N—2 , we have then the cost-to--go

V(N—2,x(N—2)) = mm E{V (N-1 ,x (N-1)) + Q (N-2) x2(N-2)
u(N—2)

+ R(N-2) u2(N_2)fz N-2}

= mm E (K(N-l)x2(N-1)+Q(N-2)x
2(N-2)

u(N-2)
+ R(N—2) u2(N-2)Iz~~

’2} (4.3.10)

using the property of the conditional expectation

E{E{.IzN-~ }lz
N_2

} = EI .~ z
N-2} (4.3.11)

The cost-to-go expression in Eq. (4.3.10) has a form exactly

identical to Eq. (4.3.1) except for the indexes . The in-

ductive procedure now repeats.

• We state the following theorem based on our results ,

Theorem 4.1

Given the stochastic linear dynamical system described by

Eqs. (4.2.1) and (4.2.2) and the admissible control law be—

longing to the class of causal inputs , the optimum control

law that minimizes the expected value of the cost functional

Eq. (4.2.11) is given by

u (t) = - G(t) ~(t It )  (4.3.12)

K(t+1)(a(t)b(t) + E b(t))
G(t) = 

—2 
& (4.3.13)

K(t+1)(b (t) + Ebb ( t ) )  + 11(t)

K(t) = K(t+1)(a2(t) + Eaa(t~~ 
+ Q (t)

r [K t÷1~~~~ t~~~~t + E  (t))]2
— 

ab K(N)=F (4.3.14)
K(t+1)(b2(t)+E bb(t)) + R(t)
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The estimate ~(tIt) in Eq. (4.3.12) is the condi—

tional estimate E(x(t)jzt l computed via some opt imal nonlinear

filter.

In general , the cost-to-go is given by

V ( x ( t ) , t )  E {x 2 ( t ) K ( t ) + p ( t ) I z t ) ( 4 . 3 . 1 5 )

p ( t )  = p(t+l) + K (t+1)  E ( t )

[K(t+1)(i(t)~~(t)+E b
(t))]2

+ 2 E ( t i t )
K ( t + l ) ( b  ( t ) + E

bb
( t ) )  + R ( t )  ~~

p (N) 0 (4.3.16)

The average value of the performance index , Eq. (4.2.11), is

gi ven by
N — i

J ( O)  = K (O) E{x2(O)) + ~ K (t +1)(E(t)
t-O

+ (a(t) b (t)+~ b
(t)) G(t) E

~~
(tIt)) (4.3.17)

using the fact E{E{ .Izfl = E { • } .

When the  s t a t e  va r i ab l e  x ( t )  can be measured exact lv

E {x(  t ) ~~ I becomes x( t ) and hence the term

r 12
~ L

K(t+l)(a (t) b(t) + Y (t))J tF (x(t) -x(tIt)Y~ —2 H (4.3.18)
K ( t + 1 ) ( b  (t) +E bb(t)) + R (t)

vanishes and the optima l contro l law Is

U (t) = — 6(t) x(t) (‘1.3.19)

where 6(t) i s  given by Eq. (4.3.13). These r e su l t s  for  t h e

pe r f e c t  measurement  case have been present  ed in  Sect. ion 2 . 3. 

— - -~~ —~.— — —-- - - ~~~~- • - --- -~ •.~~-~~~~~~~~~~~~~~~~~~~ 5--- -—-—--- - •--- •.~~ -•-5-
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H We remark that the gain in the optimal controller

fo r  the stochastic system with noisy state measurement is the

same as the gain in the optimal controller when the state

measurements are exact. The certainty—equivalence controller

is  not the optimal controller for the stochastic system with

-, random parameters. The control gains are functions of the

variances of the white parameteis. In this case , separation

of estim~ t ion and control exists , since the control depends

-ì only on the expected value of the current state , given past

• measurements. Separation occurs in the optimum solution

since the control affects only the conditional mean of the

state. The feedback gains in Eq. (4.3.13) can be calculated

a priori independent of the filter computations .

The optimum controller given by Eqs. (4.3.12) to

(-1.3.14) “hedges” or acts cautiously or vigorously depending

on the amount and type of uncertainty. No learning of the •

system parameters is involved in the estimation process ,

however. The controller gains are modulated by the uncer-

tainties of the parameters and exhibit the behavior of an

adaptive control law . Since there is no learning in the

closed-loop control system , the control is non—dual in the

sense of [8) and [22].

The conditional probability density function of

x (t) given z~ is in general very difficult to evaluate. A

nonlinear filter is required which is usually not realizable

for practical purposes . We will , therefore , examine some 
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approximate solutions to the stochastic contro l posed in 
S

Section 4.2 by fixing the structure of the controller and

the filter to be linear.

The stochastic contro l problem can be reformulated

in terms of the state estimate , estimation error , and error

covariance as a deterministic optimization problem . The

parameter optimization problem is solved first using the

m a t r i x m i n i m u m  p r i n c i p l e .  A t r ue  two— poin t  boundary  va lue

problem (TPBVP) results because the control now affects both

the mean and error covariance of the estimation process. We

-: do not have the standard separation theorem results. This

fixed structure controller-estimator exhibits the dual nature

of contro l where the filter gains and contro l are used to

improve the estimates. This suboptimal solution is different

from the optimal solution given in the previous Section 4.3 ,

where the control does not affect the variance of the condi-

tional estimator as contrast with a control that does affect

the linear minimum variance estimator. For simplicity of

filter structure , we have added the complexity of a policy ‘

dependent estimator , a true tradeoff in implementing a closed—

loop e s t i m a t o r — c o n t r o l l e r .

Before we proceed to present the results on the con—

st ra i ned e s t i m a t o r — c o n t r o l l e r  subopt ima l control , we s h a l l

e labora te  further on the concept of policy independence of’

t-he conditional mean and discuss a control based on the

approximation to the conditional mean . As a result , we will

~IlI-~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— - -

- :~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- ~~~~~~~~
-

~~ -—~~~~~~~~ ~~~~~
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derive an enforced separation controller for the random

parameter system .

If the conditional mean and covariance in the cost

V(N-1,~~(N-1(N--1)) is computed via the minimum variance linear

unbiased filter of Chapter 3, then we have

V(~~(N—1 l N—1),N— 1) = K(N—1) ~
2(N—l~N— 1)

+ [F(
5
~2 (N 1) + E ( N — i ) )  + Q(n_i)] E

~~
(N_1

~
N .u )

+ F E ( N — 1 )  ( 4 . 3 . 2 0 )

where

~(N—1tN—1) 
= (1 —H(N—1) ~(N—1)) ~(N—1(N—2) + H (N—1) z(N—1)

(4.3.21)

~(N—1~N— 2) = a (N—2 ) ~ ( N — 2 I N — 2 )  + b(N—2) u(N—2) (4.3.22)

H(N— 1) = E~ X
(N_uIN_2) c(N_1)[c2(N_l) E

~~
(N_ulN_2)

+ E
~~

(N_1fN_1) X(N—1) + 0(N_ 1)] (4 .3 .23)

Exx
(N_ 1

~
N_2) = ~

2(N 2) E
~~

(N_2IN_2) + Eaa(N_2)X(N_2)

+ Ebb
(N_2)u 2(N_2)+ E(N—2) (4.3.24)

E (N—lfN—1) = (1 —H(N—i) 
~
(N_i))2 E 

~
(N_1lN_2) +H2(N—1)

(Z
~~

(N_1) X(N—1) + 0 ( N — 1) )  ( 4 . 3 .2 5 )

X (N-i )  = E(x2(N_1)lz
N_l

} - 

I

= (
~
2(N_2)+E aa

(N_2))X(N_2 )

+ 2~(N—2)~~(N—2)u(N—2) ,c2(N-l~N-1)

+ (h2(N_2 )+Zbb
(N_2))U 2(N_2)+ E (N—2) (4.3.26)

—---5- - - 
—•• - —- -•~~~

—
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The est imat ion error covarlance depends on t he past

control. Hence the  op t ima l contro l u ( N— 1  ) which minimi zes

V( N — 2  I would also seek to m in  tin ize the  e~ t i m at  ion e r ro r  . In

other words , t he’ control has to per form t he  dua l t’un c t  i on o f

contro l and est ima t ion of the state and lends to t he I u s e pa r a —

hi lit v of st o c h a s t ic control and e’st imat ion . To o b t a i n  ad hoc

cent rot , ~ve can assume that 
~ 

(N—i I N — I )  Is independent of t he’

cent ro t , and hence obtain the’ en forced separ a t ion con t i’O 1 by

minimizing the cost-to—go

• V(N—l) = mm F{K(N-l) x2(N—l) +Q(N-2) x (N-2)
u(N—2) N 2

+ R(N—2) u~ (N—2)Iz 
— 

} ( 4 . 3 . 2 7 )

and oh t a In t h a t  the subop t I ma 1 c o n t r o l  Is g I yen by S

u ( N — 2 )  = — G(N-2) ~ ( N - 2 I N — 2 )  ( 4 . 3 . 2 8 )

where the control gains are the  same as t hose given by

assuming t h a t  the  measurements  are exact . So ,

u ( t )  - G ( t . ) ~ ( t  I t )  (4 3 29)

6( t )  = - 
—2 ~~~L~(t)K(t+l)_--—5-——— ( 1.3 .30 )
(b (t) + .:hb (t)) K(t+l ) + R (t)

K ( t )  = (n
_
(t)+\ ( t ) )  K ( t + 1)  + Q(t)

( . 1 3 3 1 )
(b2(t) + ~11

( t ) )  K(t+i) + R ( t )

K(N) F ( 4 . 3 . 32 )

and the estimate’ is the  minimum mean—square estima t e’ g i v e n  i n

Chapter 3.

- ~~~~~~~~~~~ - •. •~~~~~~~~~~~~ •~~~~~~~~~~~ 
-

~
~ -
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The average cost for this  enforced separation

-~ solution is given by

N—i
J(0) = K ( 0 ) ( Z

~ o + x
~~) + ~ K(t+1)  E ( t )

t=0

+ ‘
~
2(t) K2(t+1)~~

2(t+1) [11t

+ (~~2(t ) +~~ ( t ) ) K ( t+ 1 ) ]  • E~~ (tft)

(4 .3 .33)

We remark that there has been other types of sub—

optimal feedback control laws considered in the literature - •

such as the output feedback zero memory controller in

-
• 
j  continuous-time (41] , [43]. It is possible to cascade an

Iad hoc scheme based on the Kalman filter and the deterministic

control law given in Section 2.3. The Kalman filter is to be

implemented by arbitrarily setting Z a(t) 
= 

~bb
( t )  

~cc(t) = 0.

The resulting filter gains would not reflect the level of

uncertainties in the system parameters.

______________________________________4.4 Formulation of the Deterministic Control Problem

In this section we will find an approximate solution

to the optimal stochastic control problem . The goal is to

apply standard deterministic optimization techniques to the

stochastic control problem formulated in Section 4.2. We

will assume for the suboptimal adaptive feedback compensation

that_ it has a linear controller cascaded with a linear esti—

mator. We shall see that the reformulated problem is a

deterministic optimization problem . The discrete-time

_ _ _  
-j
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mintmum principle or dynamic programming method can then be

applied to find the optimal control and filter gain sequences .

We are given the first—order linear stochastic system

Eqs. (4.2.1) and (4.2.2) with quadratic cost functional Eq.

(4.2.11). Assume that the control law is linear in the state

estimate and time-varying so that

u(t) — — G(t) ~(t) (4.4.1)

where ~(t) is the best linear unbiased estimate to be deter-

mined . In general , the optima l control law would require

in fi n i te d imensiona l state est ima tors as we have seen in
I the previous section . We will thus restrict the class of

admissible control functions to be of a certain linear struc-

ture , Fig. 4.1.

The original cost functional given by Eq. (4.2.11)

is then rewritten using Eq. (4.4.1) as

N—i
J — Efrx

2(N) + 
~ 

Q(t)x
2( t )  + R (t)G2(t)~~

2(t)~ (4.4.2)
t—0

Let us define a random vector consisting of the

state variable and the estimation error (which are dual of

each other in the standard LQG problem) by (741.

I x ( t ) 1
m(t) ~ I I (4,4.3)
— Lx ( t ) - x ( t ) J

1~~~~~~~~~~ .‘rh~ use o I cons tant-  I I  near  cont ro I ler 1 ends to a di I ferent ,

s t a t  I c  m inim izat Ion problem .
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DISTURBANCES DISTURBANCES

u(t) RANDOM y (t )  
SENSOR 

2( t )

SYSTEM I
L i

_ _ _ _ _ _  
______J z

.5 .

0 Ui
I.-z U,

LU

L I N E A R  L I N E A R

CONTROLL ER ~~_~~t) ESTIMATOR 4
G(t) H(t )

$
p

Figure 4.1 Fixed structure linear controller and
estimator
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Let us denote the symmetric second moment matrix

of rn(t) as

M00(t) M01(t)

M(t) ~ E{rn(t)rn(t)} ~ (4.4.4)

M10(t) M11(t)

The cost functional then becomes

J = F M 00(N)+~~~~~Q (t)M00(t)+R(t)G
2(t)(M 00

(t)_M
01(t)

- M10(t) 
+ M11(t)) (4.4.5)

The t ransformed cost is unconditional , and , in fac t , is a

deterministic quantity.

To reformulate completely the original stochastic

- - control problem so that deterministic optimization techniques

can be used to solve the problem , we need to derive the dy-

namical equations associated with the matrix M(t).

We shall assume that the desired estimate to be used

in the feedback control function in Eq. (4.4.1) is a linear

unbiased estimate. The estimator is constrained to be of

the form ,

~(t+1) = D (t+l) ~(t) + H (t+1) z(t+1) + L(t+1) u(t) (4.4,6)

Substituting Eq. (4.4.1) and Eq. (4.2.2) into the

s t a t e  Eq~ ( 4 . 2 . 1 )  and t h e  f i l t e r  Eq. (.1.4.6) we get

x (t+1) a(t)x(t)— b (t)G(t).~(t) + ~~t) (4.4.7)

and

x (t+l) — D(t+i) x (t) + H (t+1) c (t+l) x (t+l) - L (t+i) 6(1) x(t)

+ H ( t + 1)  O (t+1) (4.4.8)

~~~~~~~~~

-- - 5 -—- - - • .. ‘ —S _-S
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Substracting Eq. (4.4.8) from Eq. (4.4.7) we get

x(t+l) —~~(t+1) = a(t)x(t)—D(t+1)~~( t )  — b(t)G(t)~~(t)

+ E ( t )  — H(t+1) c(t+1) a(t) x(t)

+ fl(t+1) c(t+1) b(t) G(t) x(t)

+ L(t+1) G(t) x(t) — I1(t+1) O(t+1)

= ((1 -H(t+1) c(t+i)) a(t) —D(t+1)) x(t)

+ D(t+1)(x(t) —~~( t ) ) + f ( t )

- 1(1 -H(t+1) c(t+1)) b(t) 
S

L
-L(t+1) G(t)x(t)

— H(t+1) O(t+1) (4.4.9)

Improving the condition that the estimate be Un-

• biased of x(t) for all u(t), i .e. ,

E{x(t) — ~(t)lz
t} = 0 Vt (4.4.10)

implies that

D(t+1) = (i—H(t+i)c(t+1))a(t) (4.4.11)

L(t+1) = (1-II(t+1) c(t+1))b(t) (4.4.12)

and that

E{x(0) — 
~(0)} 

= 0 (4.4.13)

or ~(0) = i,~.

We obtain the form of the linear unbiased estimator

~(t) = (1 -H(t) ~(t ) )  (~~(t-1) -E(t-1) G(t-1)) ~(t-1)

+H ( t )  z( t ) (4.4. 14)

driven by the measurements.

The state dynamics can be rewr it ten as

x(t) = (a(t—1) —b(t—1) G(t—1)) x (t—1) 4- b(t—1) G(t—1) (x(t—1)

—~~(t.-1)) + ~(t—1 ) 
(4.4.15) 
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The state estimation error is given by

x(t) —~~(t) (1— 11 (t) c(t))x(t) — 11 (t) 0(t) — (1.- H (t)~~(t))

• (a(t—1) —~~(t—1)G(t—1))~~(t—1 )

= (i—H(t)c (t))a (t—1)x(t—1)

— (1 — H(t) c(t)) b(t—1) G(t—1). ~(t—1)

+ (1 —11 (t) c(t)) ~(t—1) —(1 — 11 (t) ~(t))

• (~~(t—1) —~~(t—i)G(t-.1))~~(t—l) — 11 (t) 0 ( t )

-

~~~ 

= (1-11 (t) c(t)) (a(t-1) -b(t-1) G(t-1)) x (t-l)

:1 + (1-11 (t) c(t)) b(t-1) G(t-1) (x(t-1) -~~(t-1))

+ (1 —11 (t) c(t)) ((t—1) + ( 1 — 1 1 ( t )  ~ ( t ) )  (a(t—1)

— ~(t—1)G(t—i))(x (t—1) —~~(t—1))

- (1-11 (t) ~(t)) (~~(t-l) -S(t-1) G(t-1))x(t-1)

— 11(t) 0(t) (4.4.16)
C

We’ remark that the estimation error x(t) -~~(t) depends

on x(t) and z~ when Y (t) ~ 0, Ebb(t) ~ 0, or ~~~(t) ~ 0. This ‘

means that the control will affect the estimation performance ,

i.e., 
~~(tIt) as we shall see in the following development

of the  M(t) matrix. 
.. 

p

In the derivations below we shall assume that a(t)

and b(t) are independent to simplif y the algebra . The ele-

ments of the second moment matrix for the vector rn(t) then

-. propagate according to the following difference equations ,

.1 - - ~~~~~~~~~~~~~~~~~~~~~~~
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P,1
00(t) 

=E { (a(t_ 1)_b(t_ 1)G(t_ 1))2 }M 00
(t_ 1)

+ 2E~~(a ( t- l )  - h(t-1)G (t-1)) b(t-l) G (t-l)~ M01(t-l)

+ E~b
2(t—1)~ G

2(t—l)M 11(t—l) + E ( t — l )

= (a(t—l) —b(t— 1)G (t—1))2 M00(t—1) 
5+5 
~aa~~~~’~ 

M 00( t — l )

+ ):bb
(t_1)G (t_l)M OO(t_l) + 2i (t—1) G(t—1) (~~(t—1)

— b (t—l)G(t—1))M01(t—l)

— 2Ebb
(t_1)G 2(t_1)M

ol
(t_1)

+ E bb
( t_ l )  G2( t- 1)  M11(t-1)

+ ~
2(t—1)G 2(t—1)M 11(t—1 ) + E(t—1) (4.4.17)

M01(t) =
E{(a(t._1)_b(t_1)G(t_1))[(1_I1(t)C(t))(a (t_1)

- b(t-1) G(t-1)) -(1-11 (t) ~(t)) (~~(t-1)

_b(t_1)G(t_1))]}M00
(t_1)

+ E{(a (t_1) _b(t_1)G(t_1))[1 — I4(t)~ (t) (i(t—1)

_b(t_1)G(t_1))]}M01
(t_1)

÷ E ~ b(t _ 1) G ( t_ 1) [ ( 1_ N (t ) c ( t ) ) ( a ( t_ 1)  -
~~~~

-b(t--1)G(t-1))

- (1-11 (t) ~(t)) (i~(t-1) -~~(t-1 ) G(t-1))]}M10
(t_1)

+ E~b(t—1)G (t—1) [(1 —11 (t) c(t)) (a(t—1)

-~~(t-l)G (t-1))

+ (1 - 11(t) c(t)) b(t-1) G(t_1)]} M11(t-1)

+ ( 1 - 11( t )  e ( t ) )  E ( t - i )  (.1418) 
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M01( t ) (1 — 11 (t) c(t)) (
~ aa (t_l) + ~bb~ 

t—1) G2( t—1)) M00( t—1)

+

—a(t—1)b(t—1)G(t—1))(M01(t— 1 )+M 10(t—1))

+ (1—11 (t) c(t)) (a(t—1) b(t—1 ) G(t—1)

+ Ebb
(t_l) G2(t—1)) M11(t—1)

— 
(Concluded)

+ (1 — 11 (t) c(t)) E(t— 1) (4.4.18)

S 

- after some algebric manipulations.

The state error covariance equation is given by

M11(t) E~[(1 -11 (t) c(t)) (a(t-l) -b(t-1) G(t-1))

- (1 -H(t) ~(t)) (a(t-1) -i (t-1) G(t~ 1))]
2
~~M00

(t_l)

+ 2Eff(1 -11 (t) c ( t )  (a(t-1) -b(t-1) G(t-l))

— (1—11 (t) ~(t)) (i~(t—1)

-~~(t-l) G (t~~1))][(1 -11 (t) ~(t)) (i~(t-1)

-b(t-1) G(t-1)) 
S

+ (1 -11 (t) c(t)) h(t-1) G (t_1)]} M01(t-1) 
:~

+ E{[(1 -11 (t) ~(t)) (a(t-l) -i (t-1) (‘,(t-l))

+ (1 H(t) c(t)) h (t 1) G(t 1)]2~~M11
(t_l)

+ ((1 -11(t)c(t))2 + ~: ( t ) 1 12(t)) E(t-l) t

I + 112(t) 0(t)

5. = (1_H (t)c(t))2[a2(t._1)M 11
(t_1)

+ .bb(t 1) C (t—1) M 11 (t—l) + Y~ 5
(t_1) M00(t—1)

+ T
bb

(t_l)Ct (t_l)M oo(t_l) (4.4.19) 

- - - - 5 — - -
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+ 2Ebb
(t_l) G2(t—1) M01(t—1) + ~(t_1)]

+ 112(t) ~cc(t)[~~
2(t 1) + 

~aa t t_ l)

— 2i (t—1) ~(t—l) G(t—1)

+ (~
2(t—1) + Ebb

(t_l)) G2(t—1)) M00(t—1)

+ ~(t—1) + 2G(t—1)(a(t—1) b(t—1)

— (~
2(t—1) + Zbb

(t_l)) G(t—1)) M01(t—1 )

+ (E2(t—1) + 
~bb

(t
~~

fl G
2(t—1) M 11(t_ 1)] S

2 (Concluded)
+ 11 (t) 0(t) (4.4.19)

The dynamical equations for the transformed system $ 
S

are given by

M00(t) (~~(t—1) —~~(t—1) G(t—l))
2M00(t—1) + 2b(-t—1) G(t—1)

• (a(t—1) —b(t— 1) G(t—1)) M01(t—1) 
+ E(t—1)

+ ~
2(t 1) G2(t—1) M11(t—1) 

+ 
~aa (t l) M00(t—1)

S + Ebb
(t_l) G2(t-1) (M 00

(t-1) - 2M01(t-l)

+ M11(t—1)) 
(4.4.20)

M01(t) 
(1_H (t)~~ (t))[a(t_1)((a(t_1)

— b (t—1) G(t—1)) M01(t—1)

+ ~(t-1) G(t-1) M11(t— 1)) 
+ Eaa

(t_
~
) M00(t-1) 

—

+ E
bb

(t_l) 02(t—1) (M00(t—1) — 2M01(t—l) 
+M 11(t—1))

+ E(t_1)] (4.4.21)

M11
( t )  = (1—H(t)c(t))2M11(t)

+ 112(t) [z~~~
t M 00 t +0(t)] (4.4.22)

L . 
-- ~~ -~~~~ -- ------~~~—-T
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M11(t) ~ ~
2(t 1) M11(t—1) + Eaa (t_l) M00(t—1)

+ 
~bb

(t_i ) G2(t—1)• (M00(t—1) .- 2M01(t—1)

+ M11(t—1)) + ~E(t—l) (4.4.23)

Initial conditions for the dynamical system is given

by

M00(0) 
= + > 0 (4.4.24)

t.ioi(0) 
= ~ 0 (4.4.25)

M11(0) 
= E 0 ~ 0 (4.4.26) 

5 

-

Thus we have formulated the following deterministic

optima l control problem . Given the system described by the

dynamical Eqs. (4.4.20)-(4.4.23), the initial condition

‘
~O~~~x0 

E 0
M ( 0 )  = (4.4.27)

~x0 ~x0

and the cost functional

, N—i r
J = tr IFM(N) I + ~ tr I~~ ( t ) M ( t )  I (4.4.28)

L J t=o L J

where

,. IF ol
(4.4.29)

— L0 0J

Q(t)+R(t)G2(t) —R(t)G 2(t)

~(t) = (4.4.30)
- S 

—R(t)G2(t) R(t)G2(t)

find the gains G(t) and 11(t) such that J is minimized . —

_ _ _ _ _ _  - -S
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This problem can be solved using the matrix minimum

principle or dynamic programming. The first solution using

the matrix minimum principle is summarized in the following

theorem .

4.5 Solution of the Deterministic Control Problem

Theorem 4.3. Given the deterministic dynamical

system Eqs. (4.4.12) to (4.4.18) and the cost functional

Eq. (4.4.19), the optimum control and filter gains are

respectively given by

— — *2 * *
* — 

a(t) b(t) (
~~~~

(t+1) H (t+1) P11(t+1) +P00(t+1))6 (t) — 

—2 *2 * *(b (t)+E bb(t))(E (t+l)H (t+1)P11(t+1)+P00(t+1))+R(t)

* 2 * (4.5.1)
+Ebb(t)(l — H 

(t+1)~ (t+1)) P11(t+l)

and

H (t+1) =

+ E
bb(t

’) C (t) (M00(t) 
.-M

11
( t )

+ E(t))] ~(t+ 1) ,[~
2(t+i)(i 2(t)M * (t)

+ E (t )  M~0( t ) + Zbb(t )  G*2(t)(M~0(t)

— M11( t ) )  + E( t ))

+ E (t+1) M~0(t+i) 
+ 0(-t+i)]

i i, S M~l(t+1)~~(t+1)[~CC
(t+1)M~o(t+l)+0 (t+1)]

1

(4.5.2)

— 5- -- -—— - --_,-~ -——- S_:
~~_ ~~~ -=-________ — - 

-5-- — 
_ - -



~~~~~~~~~ 
5-

~~” 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~

r
—117—

where the state second moment equation is given by 
S

* — — * 2 *M00(t+1) 
= (a(t)—b(t)G(t)) M00(t)

+ 2E(-t ) G~(t) (~~(t) —~~(t) G
*(t)) M 1(t) 

+ E(t)

—2 *2 * *+ b (t) G (t) 1111( t )  + E ( t )

* *+ 
~bb

(t) G (t) (M00(t) —M 11(t))

M~0(O) 
= 

~x0~~
’
~O 

(4.5.3)

The state estimation error covariance equation is given by

M 1(t+1) 
= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ 
~bb

(t) G*2(t) (M~0(t) M11(t)) 
+~~(t)]

+ H*2(t+i)[Z (t+1)M~0(t+1)+0(t+1)] ,

M~1( O )  = (4.5.4)

and the co-states P~0
(t) and P~1(t) are propagated backwards 5

by equations

P~0(t) 
= (~

2(t) + Eaa (t  cc (t+l) H
*2(t+1) P 1(t+i)

+P~0(t+1)) + Q(t)

- G*2(t) [(E
2( t )  + Ebb(t)) (E~~

(t+l) H*2(t+l)

P 1(t+1) 
+p~0(t+1)) + R(t)

+ Ebb
(t)(i_H *(t+i)c(t+1))2P11(t+1)]

+ 
~aa(t 1 ~~~~

(t+1) t+1 2
~~~i

(t+11

P~,0(N) 
= F (4.5.5)
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* —2 * — 2 *P11(t) = a (t)(i —H (t+i) c(t+1)) P11(t+1)

+ G*2(t) [(~
2( t ) + E

bb(t cc(t+l ) H
2(t+1) P~1(t+1)

+ P~0(t+i)) + Ebb(t
~~

l5 .-H(t+1)

x P* (t+1) + R(t) ]
= 0 (4.5.6)

Proof: See Appendix A.

The optimal linear time—varying feedback control law -

is thus

* *u (t) = — G (t) x(t) (4.5.7)

where time—varying gain G*(t) is given by Eq. (4.5.1) and the

- - linear minimum variance unbiased estimate ~(t It )  is given by
-p 

- 

SS~ * — — — *- - x(t+1) = (1—H (t+1) c(t+1)) (a(t) —b(t) G (t)) x(t)

+ H*(t÷1) z(t5+1) , ~(0) = (4.5.8) 
5

and z(t+1) is the measurement “driving” term :
At the initial time (t 0)

M00(0) = ExO + (4 .5 .9 )

M11(0) 
= (4.5.10)

At the terminal time (t=N) 
‘

P00
(N) = F (4.5.11)

= 0 (4.5.12) -

The fixed structure controller is shown in Fig. 4.2.

Using the Matrix Minimum Principle , we have obtained the S

necessary conditions for optimum control . To compute the

optimum control gain sequence at time t , we need P (t+1),
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and H(t+1). Since P00(t) and P11(t) are given at

the terminal t ime N , they have to be propagated backwards

from time N. The filter gains H(t+1) depends on M00(t),

and 6(t). Since M00(t) and M11(t) are given at

the initial t ime , they have to be propagated forward in

time . The solution using the Matrix Minimum Principle is

a t rue nonlinear two-point boundary value problem (TPBVP)

that has to be solved by iterative methods.

If we substitute the expression for H(t+1) into

the forward difference equations for M00(t+1) and M11(t+1) we

see that they are coupled nonlinear difference equations in

general . In the special case where 
~aa(t) = 

~bb
(t) = 

~~~
( t )  = 0,

as is assumed in the standard linear—quadratic-Gaussian prob-

lem , the M00(t) and M11
(•) equations becomes decoupled . 

—

More precisely ,

M00(t+1) 
= i2(t)M00(t)— 2~

(t)b(t)G(t)(M 00(t) 
S

-M 11(t))b
2(t) G2(t) (M00(t) -M 11(t)) 

. 

- •

+ E ( t )  (4.5.13)
p

where
b(t)P (t+1)a(t)

6(t) = 
—2 

00 (4.5.14)
b (t)P00(t+1)+R(t)

Thus, the mean-square of the state M00(t)
E{x2(t)} depends

on the error covariance quantities M11(t). But , the co—

variance is completely decoupled from the second moment of

the state since

L 
— - -  --

~~~~~~~~~~~~~~~~ - •  
-~~~~~
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M11(t+1) = (i—H (t+1)~~(t+i))
2
(~
2( t ) M 11(t)+ E(t))

+ H2(t+1) 0(t-+-1) (4.5.15)

ThIs is just the measurement update covariance equation in r
the Kalman filter.

Equation (4.5.13) for M00(t) is the mean square

history of the state variable x(t).

M00(t+1) = (~~(t).~~ (t)G(t))
2(M 00(t)—M 11(t))+E(t)

+ ~
2(t) M11(t) (4.5.16)

This is the same result obtained in ([75] , Eq. 4.7.30).

Let us now analyze the co—state equations P00(t),

and P11(t). If we let E (t) = Z
bb

( t )  = ~~~ ( t )  = C , we obtain

—2 ~
2
~~
2P~0(t+1)P00(t) 

= a (t) P00(t+1) +Q(t) 
— 

—2 (4.5.17) 5

b P00(t+1) + R( t )

This is just the nonlinear Riccati difference equation en—

• countered in discrete-time deterministic optimal control

problem . We know that the solution exists and is unique

and finite if the system is controllable.

The deterministic co—state equation for P11(t) is 
- 

‘~

given by

= ~
2(t)(i-H(t+1)~~(t+l))

2P11(t+1)

( t +l)
+ (4.5.18)
b2(t)P00(t+l) 

+ R(t)

Since in the case where the parameters are known

H(t+1) = M11(t+1)~~(t+1)0
’(t+i) (4.5.19)

-~~~~~~~ -5 .—-- - - —
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P11(t) is still coupled to the M11(t) equation , but is

uncoupled from the P00
( .)  equation .

In t1-’~ 
1 inear-quadratic--Gaussian problem M11(t)

and P00(t) are used to compute the optimal filter gains

S and control gains , respectively. The P00 forward and

backward difference equations are completely uncoupled

from each other. This is a very fortunate situation . The

two—point boundary value problem can be solved as two single-

point boundary value problems .

The fact that the co—state P00(t) is the solution

of the Riccati equation when the system parameters are known

perfectly suggest that it has some physical interpretation .

I f  we think of the co-states P(t) as the gradient of the

cost with respect to the state variables as in the Hamilton-

Jacobs’-Bellman approach , i.e.,

P(t) = 

~M(t) 
(4.5.20)

then it is evident that the co-state equation defines the

evolution of the partial derivatives ~J/~M00(t) and

3J/aM 11(t) for t £ (0,N]’.

From the expression for the average value of the

quadratic cost functional , Eq. (4.4.28)

J F M 00(N)+~~~~
Q( t ) M 00(t)+R (t)G

2(t)(M 00(t)-M 11(t)) 
—

.5.’ . (4.5.21)

If we now add P00(0) M00(O) and P11(0) M11(O) outside

the summation and compensate this by adding the terms
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P
00
(t+l) M00(t+i) 

— P
00(t) M00(t) and P11(t+1) M11(t+1) 

—

P11(t) M11(t) inside the summation , the expression is not

changed. We get

J = P00(O)M00(O)+P11(0)M11(O) +~~~~Q(t)M00(t)

+ R(t) G2(t) (M00(t) —M 11(t)) + P00(t+1) M00(t+1)

— P 00( t ) M 00(t)+P 11(t+1)M 11(t+1)-P 11(t)M11(t)

- 

S 
(4.5.22)

Now we substitute into the above equation , the

expressions for M00(t+i), P00(t), M11(t4-1), and P11(t)

M00(t+1) = (~~(t) —~~(t) G(t))
2 (M00(t) — M 11(t))

.55 +~~
2(t)M 11(t)+ ~~(t)+E (t)M 0(t)

+ 
~bb

(t) G2(t) (M00(t) —M 11(t)) (4.5.23)

Equations (4.5.4), (4.5.5), and (4.5.6) respectively , we

obtain that - - •

J = P00(O)M00(0)+P 11(O)M11(0)+~~ P00
(t +1) E ( t )

+ M11(t) [2~(t)~~(t)G (t)P 00(t+1
_
~~~~

2 t )

+ Ebb( tP OO(t+1)+ t G(t)]

— MOO(t)[(a(t)_b(t)G (t))
2
~~cc(t+1)H

2(t+1)

+ (
~~aa ( t )  -e G2(t) 

~bb
(tfl (E (t+1) H2(t+l)

+(i_H(t+1)~~(t+1))2)]P11(t+1)

+ P11(t+1){(1 —H(t+1) ~(t+i))
2 (i2(t) M11(t)

+
~~~~

(t)MOO(t)+~~bb
(t)G2(t)(MOO(t) (4.5.24)

Li~_~~~~~. _
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+ H 2(t+i)~~~~(t+1)[(~~(t)
_
~~(t)G(t))

2 (M 00
(t )_M

1(t))

+~~
2(t)M 1 (t)+~~(t)+~~~~(t)M (t)

+ Ebb(t) G
2(t) (M00(t) 

_ M
11(t))] + H

2(t+l) 0(t÷1)}

- 

[
~
2(t)(1 —H(t+i)~~(t+1))

2P11(t+1)

+ G(t) a(t) b(t)(E (t+i) H2(t+1) P11(t+1)

(Concluded)
+ P00(t+1)] M11(t) (4.5.24)

Most of the terms cancel , we get as a result the optimal cost.

J = P00(0)M00(O)÷P 11(0) M 11(0) 
+ ~ P~~(t+1) E(t)

+ P11(t+i)[(l_H(t+1)~~(t+1))
2E(t)

- 

. 

+ H2(t+1) E
~~~

( t+ i )  E ( t )  + 112(t+1) 0(t+1)] (4.5.25)

In the well—known linear-quadratic-Gaussian problem ,

the average cost is given by

J = P
00(0)M00(0)+ ~ P00(t+1) E(t)

+ P00(t+1)~~(t)G(t) ~(t)M 11(t) (4.5.26)

where

G(t) = E( -t ) P00(t+1)a(t) / (~~
2 ( t )  P00( t+ 1) + 1 1( t ) )  ( 4 . 5 . 2 7 )

In this case, if we define

+ i~(t)P00(t+1)a(t) 
(3(t) , P11(N)~ ’O (4.5.28)

- ~~~~~~~~~~ - -- - •- --5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
- - - -
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t h e n

J = P00(O)M00(0)+P11 (0)M11(0) 
+ ~ P~~ (t+l) ~(t)

+ P11(t+l)[(l —H(t+1) ~(t+1))
2 E (t)

+ H2( t +1) 0 ( t + l )~ ( 4 . 5 . 2 9 )

where

H(t+1) = M11(t+1)c(t+l)0
’(t+l) (4.5.30)

The average cost in the  stochastic control problem

is composed of terms due to the initial state uncertainty

and due to the plant noise E(t) and measurement noise 0(t).

We remark that the  form of the optimal cost obtained 
S

here is the discrete-time equivalent of that obtained in the

solution to the two—controller team problem in [74] .

Sufficiency conditions for optimality may be ob—

tam ed from the second partial derivatives of J with respect S

to C and H. Taking the derivatives of aJI~ G and ~J/~ H we

then obtain that the sufficient conditions for a strong

minimum are

(i) (1 2(t) + Eb~)
(t)) (P00(t+1) 

+ 
~~~

(t+1) H2(t+1) P11(t+1))

+ Z
bb

(t)(l_H(t+l)c(t+l)) Pll (t+l)+R(t)>O 
-:

(4.5.31)

(ii) M00(t) -M 11(t) 
> 0 (4.5.32)

(iii) ~
2( t )  ~11( t )  + 0 ( t )  + ~~~(t) M00(t) 

> 0 (4.5.33)

We remark that in condition (i), the randomness in

the parameter b(t) introduces mathematica lly equivalent

_ _ _ _ _ _ _ _  -- 
- - S  ~~~~~~~~~~~~~~~~~~~~~~ 
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control penalties into the control problem . Hence if R(t)

is selected wrong, then 
~bb
(t) can be used to accoun t for

the error. In condition (iii) ~~~(t) M00(t) is positive

semidefinite if M
00(t) is positive semidefinite. The product

will increase the effective weighting

that needs to be inverted in Eq. (4.5.2). So the randomness

in the parameters b (t) and c(t) effectively make the solution

more stable numerically.

We note that if Q(t) =0 , then P00(t) =0 if Xaa(t) =

= 0, but P00(t) ~ 0 if Ea (t) or 
~cc

(t) is nonzero . In

the case P00(t) = 0 and R(t) = 0, the control gain (3(t) in 
- S

Eq. (4.5.1) may still be a well-defined quantity due to the

uncertainty in c(t), (Z0~
(t)

~~
0).

In the special case when the measurements are exact

so that 0(t) and Z
~~
(t) = 0, then the equations for the opti—

mal stochastic control problem Eqs. (4.5.1) to (4.5.6) re- *

duces to the same results obtained in Chapter 2.

Problem Solution Using Dynamic Programming

We have seen that the minimum principle gives the

necessary conditions for the minimization of the quadratic

cost function Eq. (4.4.28). It reduced the optimum systems

control problem to a nonlinear two—point boundary value

problem . The solution yields an optimum open-loop control.

For the standard linear—quadratic (regular) problem , the

two-point boundary value problem can be replaced by solving

a Riccati difference equation to obtain the gains of the

_ 
-- 

. 

- --~~~--  
- ----- - -5
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closed—loop system . In general , the set of difference

equations may not be solved in a straightforward manner and

this remark applies to Eqs. (4.5.1) to (4.5.12).

A direct method to solve the optimization problem

S is the dynamic programming algorithm [71 . Discrete dynamic

programming is essentially the repeated sequential (stage by

stage) application of the Hamilton—Jacobi equation (continuous

dynamic programming) or the Beilmans ’ Principle of Optimality

[7]. From the solution of dynamic programming we immediately

know the cost-to-go function as well as the closed—loop con-

trol and optimum trajectory . Dynamic programming method

minimizes directly the given cost functional and thus a

Riccati equation without introducing a two—point boundary

value problem . However , it generally requires guessing the

form of the solution to the functional equation .

We give now an useful alternative method of solu-

t i on  to the optimum control problem . The objective of the

closed—loop optimal stochastic control system is to minimize

the average cost functional ,

T—1
J = E~x

2(T)F + ~ Q(t)x
2
(t )+ R ( t ) u

2
(t)~ (4.5.34)

t=0 -

where both x(t) and u(t) are random sequences subject to the

system dynamics

x(t+1) a(t)x(t)+b(t)u(t)+~~(t) (4.5.35)

The state is measured imperfectly according to equation

z(t) = c(t) x(t) + 0( t )  (4.5.36)

-

~ 

-5— — 
5 - -  -~~~- S 
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The expectation in Eq. (4.5.36) is taken with respect to

random variables x(0), f~(t), 0(t), a(t), b(t), and c(t).

In the suboptimal design of the stochastic control

system , we will restrict our attention to linear controllers

and linear filters . Using this approach necessary optimality

condition are derived using the dynamic programming method.

We are interested in control laws having the form

u ( t )  = — G(t) ~(t) (4.5.37)

where G(t) as before is a time-varying linear control gain to

be determined . The best estimate ~(t) is a priori specified

to be given by the recursive equation

~(t+1) = a (t )  ~(t) + b(t) u(t)

+ H(t+1) [z t+1) —~~(t+1) i~(t+1)] (4.5.38)

~(t+1) = ~(t) ~(t) + ~(t) u ( t )  (4.5.39)

where H (t+1) is the time-varying filter gain to be determined .

Notice that we restrict ourselves to considerations of a

specific controller—estimator structure and optimize the

choice of “control” sequences G(t) and H(t) over the param-

eter space.

Equation (4.5.37) specifies that the admissible

class of control that will be allowed in the optimization

explicitly. The structure of Eq. (4.5.37) is a mathemati-

cally realizable control. The control u(t) at any time t

depends on all information available up to time t. The

information set is {zt ,ut~~ } = fz(1),z(2),.. .,z(t),u(0),... ,

u(t—1)}. Mathematically, the u(t) Is a linear map of all

-5. - - -- -  - - a-- ---
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past measurements and controls . a n d , per haps Of  tim e
V

We expect  I e mak e  I u t u r e  o b s erv a t  ions  ( from t ~me t on) and

ha I t h e  tat ure cont  ro I s  wi  1 1 be f u n c  t I ens o 1 t hose m e a s u r e—

men t -

The st  oc has t i c  cen t  ro 1 r r~ ~b I em w i 1 1 he s t a I •d I r—

ma l iv now . Given the dynamic system Eq - 4 . 2 . I ) and the

observation Eq. (4.2 . 1 ) .  t he  In format ion sot  I ~~~~~ 
. u — l f i nd

the cen t  ro 1 law in the c lass spec i f led by Eq . (.1 .4 . 1 ‘i such

t h a t  t he  “ average cost — to—go ” g Iv en  by

sT
o

( T )  = E ) F x
2 ( N ) ÷ ~~~~~ Q ( t )  x 2 ( t ) + R ( t ) U 2 ( t ) ~~z T ,~ 1 T+

~~

(-1 .5.40)

is m i n i m u m . The weigh t i ngs are Q ( t )  :0. F:(). and RU,) ~O.

The s t a t i s t i c a l  p r o p e r t i e s  of the additive noises LU,) and

t’( t ) and p u r e ly  random ( w h i t e)  p a r a m e t e r s  a(  t ) . b( t ) . and c( t )

are t h e  same as those assumed in Section 4.2. ‘

We show in Append i ~ B . t h a t  t he opt  imum so lii t ion

obtained by applying t he  d y n a m i c  p r o g ra mm i n g  algorithm is

the same as that given in Theorem 4.3.

4.0 D i scuss ion o f t h e  Opt ima_l Linear Cent r o l ler

We remark here that t he sol at i on  i n  t erms el coup led

n o n l i n e a r  t w o — p o i n t  boundary  v a l u e  p rob lem was also obtained

i n 7-1 1 wh I ch c o n s i d e red  t h e  decen t  r a i l  ~ed cent ~~ 1 ot  i i  ne’~ r

svs t ems w i t h  di  f I5 erent in f o r m a t  ion set s . I t  was a l s o  p o i n t e d

out  I h a t  i n  the general ease

— —-- — — 
- — - -5--— ~~~-~~ - -----~~~~~rn -- 

- — —
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M01
( t )  ~ M11( t )  (4 .6.1)

S 

The filter derived in [74) is not the Kalman filter , although

it is linear and unbiased. In our problem solution , the

orthogonality condition assumption allowed the solution to

be solved analytically. This same conclusion was made by [76].

It can be seen from Eqs. (4.5.1) and (4.5.2) for the

gains G(t) and H(t) that the product of the state and co—

state P11(t) M11(t) play an important role. Note that 11(t )

depends mainly on M(t), while G(t) depends mainly on P(t).

In the deterministic case, G(t) depends only on P00(t) and

H(t) depends only on M11(t). The uncertainty in the param-

eters reflected by Eaa~
t
~~~

O
~ ~bb~~°’ 

and 
~cc~

tHO has

coupled the state and co-states together.

The gain G(t) resembles the filter gain (3(t) for

the deterministic LQG problem except that 0(t) is replaced

by [0(t) + E
~~

(t) M00(t)1. The co—state M00(t) now plays an

important part in the filter gain computation . Even with

perfect (noise-free) measurement , the measurement will be

weighed accordingly because of the multiplicative noise in

the measurement equation . In the deterministic LQG case,

H(t) depends only on 0(t) the measurement error covariance.

Fu thermore, M11(t) depends on P(t) through the control gains 
S

G(t).

The control gains (3(t) are similar to the G(t)

given in Eq. (4.5.27) except that P00(t), the solution to

the Riccati equation , has been replaced by expressions

— 
-~~~

- -~~~~~--~~~~~~~~~~ - -—— -- ~~~- - - - — - - --~~~~-
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invo1
~ 

ing both P( t) and M( t ) ,  I .e .  , [P00( t) 
+ 

~cc~ 
t) H (  t)

P11 (t)1 . They are no longer the deterministic optima l con-

tro l gains , but depend on the error covariances of the state

estimates .

The equations for (3(t) and H(t) are complicated

expressions , so we shall consider some of the special cases.

Remark 4.1. I f  Z (t)=0 , Zbb(t~~~
0
~ 

and 
~~a

(t)
~~
0
~ 

then we

have essentially the results of Chapter 2, control of linear

stochastic systems with perfect measurements (0(t) =0).

Remark 4.2. If 
~bb

(t)=O , then this says that the control

input has a deterministic multiplier. To reduce Eq. (4.5.1)

to the pure estimation problem (l aa(tHO ~ ~~~
(t)

~~
0). set

- 5- R(t)=O , so that

(3(t) = 
a(t) (4.6.2)
b(t)

and the closed-loop system parameter

a(t) —b( t) (3(t) = 0 (4.&~L3)

The Eqs. (4.5.3) and (4.5.4) for the error covariance t hen

evolves as

M00(t+l) = 
~
:aa(t)M o0(t)+E (t )

~~
f a 2(t)M ii(t) ( 4 . 6 . 4 )

M11 (t+1) 
= a2(t) M11(t) + Zaa(t ) M00(t) + 

E ( t )  (4.6.5)

M 11( t +t )  = (1_H(t+1)c(t+l))2[a2(t)M 11(t)+ E (t)M 00(t)

+ E ( t ) ] + H 2 ( t + 1) [
~ 

(t+l) M00(t+1) 
+ ~~t+l ]

= (1 —H (t+1) c (t+l)) M11(t+1) (.1.6.6)

L ~~ 
- 

_ _ _
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The perfect control

a~t~ 
A

u(t) = — ‘ / x(t) (4.6.7)

-

, b(t)

drives the estimated state to zero just prior to measurement

update , i.e.,

~(t÷1) = a(t) ~(t) — b(t) (3(t) ~(t) 0 (4.6.8)

and the state estimate evolves as

~(t) = 11(t) z(t) (4.6.9)

since the predicted state estimate ~(t) O.

Note that in this case , the optimal gains are in—

dependent of the state weightings Q(t) used in the original

cost functional . Only a single-point boundary value problem

need to be solved to compute the optimal filter gain Se-

quence since the filter equations have been uncoupled from

the co-state equations P(t). Since the optimal gains are

independent of the data , they may be pre-computed off-line

• given the noise statistics .

We remark that since the control in this case may

be written as

u(t) = — 
a(t) 11(t) z(t) (4.6.10)
b(t)

it is a linear function of the measurement z(t) and 11(t).

This is an example of the nonclassical information pattern ,

Wittsenhausen [4]. The controller is a zero-memory (~()ri

troller without perfect recall.

Remark 4.3. The presence of the uncertainty ~aa
(t) and

S ~cc
(t) in the parameters a(t) and b ( t )  mul t ip l y i ng t h e  S 

-
~~~: ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ - - 

- -—5-
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state x(t) tends to destabilize the system . This is readily

seen from Eqs. (4.6.5) and (4.6.6) since the variance can be

destabilized by large and high gain 11(t).

M11(t+1) — ~
2(t) (1—H (t)~~(t))

2
~~11(-t)÷ ~aa

(t)
~~ii

(t)

+ E(t) +H2(-t ) [z~~~
t Ü11(t) + 0(t)] ~

2(t)

(4 . 6.11)

This result is very intuitive and cautions one against using

arbitrarily high gains in the closed—loop system .

Remark 4.4. The stochastic singular control problem

R(t)=O), represents the formal dual to the

optima l stochastic control with perfect estimation discussed

in Chapter 2. To see this , we write for the optimal filter

gain

H(t)=M ll (t)~~(t)[~
2(t)Mll(t)+~~cc (t)MOO(t)+0(t)]_1

(4.6.12)

where

M11( t )  ~
2(t—1) M11(t—1) + 

~aa (t_l) M11(t—1) + E (t—1)

(4.6.13)

since ~11(t) M00(t).

The predicted error covariance then satisfies the

equat ion

M 11( t + 1 ) = ~
2(1 ) M11(t) 

— ~
2(t) 11(t) ~(t) M11(t)

+ )~ (t)M (t)+E(t) (4.6.14)
an 11

u s i n g  Eq. (-1.6.12)

Li ~ - — —  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~~~~
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(~
2(t) + Eaa ( t

~~ 
~11(t) 

+ E(t)

—2 —2 A2
a (t) C (t)M (t) 

S

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(4.6.15)

(c (t) + E (t)) M11
(t) + 0(t)

and

~(t) ~11
(t)

11(t) = _2 A 

(4.6.16)

(c (t)+E cc
(t))M 11

(t) 0o )

The equationS 
are the formal 

duals to the Eqs.

(2.3.12) and (2.3.
13) for the optimal 

stochastic control

S 
with perfect 

measurem~~
t5. Note that the 

linear feedback

control given b~ 
Eq. (2.3.11) is 

the optimal 
solution whereas 

S

the linear unbiased 
filter structure 

given by Eqs. (4.6.
12)

and (4.6.13) iS 
not the optimal 

solUt~~
fl to the origin~~

stochastic control 
problem. 11enCe, the duality 

relationshiP

between the perfect 
estimation problem 

and the perfect 
con-

trol problem is 
only formal .

~ecalling the 
result of Chapter 

3, we see that 
the

results for the 
linear unbiased 

minim~~ 
variance estimator

did not represent 
a dual to the 

optimal stochastic 
control

problem with perfect 
measurement considered 

in Chapter 2.

For the optimal 
linear estimation 

problem s it was found 
that

the dual problem 
is a control 

problem with 
constraints on

the states . The similarity 
in the solutions 

are presented

in Sankaran and 
Srinath I77~~

.

c~~~ius 
ioflS

In this sect i0f l  we have 
discussed the optimum 

cofl-

trol of independent parameter 
systems using a ~~~

ed structure

L ~~~~~~ — — S



_______________________ -- ~~~~~ ~~~~~~~~~~~~~~~~ ‘~~~~~~~~ ‘~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ —- r

-135—

dynamic  compensator.  The s t ruc tu re  of the l inear  es t imator—

c o n t r o l ler  is given in F ig .  4 . 2 .  We discussed in more de-

tail the solution to this problem , i.e., coupled Rlccati-

type equations . We note from Eq. (4.5.5) that P11(t) is

uncoup led from the P00(t) equation if E
~~

(t) =0 , Vt , and

the measurement data is noise free. In the noisy sensor

measurement case, P11(t) is uncoupled from the P00(t) equa-

tion if the covariances E (t) = Ebb(t) 
= 0; and this is the

standard linear-quadratic—Gaussian problem . The assumption

of randornl~’ varying parameters in the dynamic system has

coupled the “s ta te” M and “co-state” P together.  The solu-

tion of a matrix two-point boundary value problem will yield

the optimal gains of the dynamic compensator. The optimal

controls are not given by the separation theorem .

We then considered several special cases for the

dynamic system with purely random (white) parameters. We

discussed a case of deadbeat control problem in discrete-

t ime systems . The optimal control gains is independent of

Q in the cost function . They may be computed a priori given

the noise statistics. The solution is applicable to the

“stochastic ” singular control problem ; and only a single S

point boundary value problem needs to be solved . The sto-

chastic singular control problem is the dual of the control

problem with exact measurements considered in Chapter 2:

hence one can replace in the solut ion equations given in

Section 2.3 the symbols (a, E ) by (c . ~ ) .  K by M11,aa

and C by II.

5- ~~~~~~ S-~~~~~~~~~ -~ ~~~~ S -~~~~~~~~~~~~ 5—--
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4.7 Optimum Stationary Linear Control

In Section 2.4, we showed that the infinite horizon

solution to the optimal control of dynamic systems with un-

certain parameters and exact measurements, does not exist

if the parameter uncertainty exceeds a certain quantifiable

threshold. We call this the uncertainty threshold. For

dynamic systems with randomly varying parameters and noisy

sensor measuremen ts , we seek the threshold parameter associ-

ated with the infinite horizon problem .

In this section we will investigate the question of

the existence of steady state linear optimal stochastic con-

trols for the random parameter problem . We assume that the

system has stationary statistics so that for the random

parameters

E{a(t)} = cov{a(t), a ( T ))  = 6(t,r) (4.7.1)

E{b(t)} = cov{b(t), b(t)} = E
bb S(t ,t) (4.7.2)

E{c(t)} = cov(c(t), c(—r )} = 5( t , r )  (4.7.3)

and additive noises

cov{~ (t), ~~( r ) }  = E ô(t ,t) (4.7.4)

cov(e(t), O(t)} = 0 ~( t ,t) (4.7.5)

We will examine the existence and finiteness of

steady—state contro l for the infinite—time stochastic con—

trol problem by analyzing the solutions to the forward

difference equations , 

—~~~ 

-
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M 00
( t + l )  = ( a - bG ( t ) ) 2

M00( t )  + 2i~ G ( t )  (~~~- b G ( t ) ) M 11( t )

+ E + ~2 G2(t) M11(t) + E M00
( t )  + Ebb G

2(t)

(4.7.6)

- —2M
00

(0)

= ~
2 M11(t)+E M00(t)

+ Ebb
(
~~~

t) ( M
00

( t )  -M 11
( t ) )  + E (4.7.7)

H(t+1) Mll(t+1)~~ [c
2Mll(t+1)+E ~ C Moo(t+1)+0]

1 
S

(4.7.8)

M11(t+l) 
= (1-H(t+1)c(t+1))2 M11(t+1)

+}12(t+1)(E M00(t+l)+0) (4.7.9)

M11(O) 
= E 0

-

S 

and backward difference equations .

P00( t )  = (~~
2 +E aa)(Ecd H2(t+1)Pll(t+1)+P OO(t+1) 

+ Q

-

~~ 

— G2(t)[(b
2 +~~bb)(E H2(t+1)P 11(t+1) +P00(t+1))

+ R+ (1 —H(t+l)~)411(t+1) Ebb] 
(4.7.10)

P00
( N )  = Q

-~ P11(t) 
= ~

2(1 - H ( t +1) c) 2P11(t+ 1)  ~

+ G2(t)[R+ (Ebb
+b 2)(E 112(t+l)P ll (t+1) 

:

+ P00 ( t + 1) )  S

+ E
bb

( l  _ H ( t + 1 )~~ ) 2 P11( t+ 1)] ( 4 . 7 . 1 1 )

P00(N) = 0

— - -  ~~~~S —— - 

-

-5 
— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

-5— 

~~~~~~~~~
~-
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where

ab(E H2(t+1)P (t+1)+P (ti-i))

(b +E bb)(Z H (t+i)P11(t+1)+P 00(t+1))+R

— 2 (4.7.12)
+ E bb (l. — H(t+1) C) P11(t+1)

We can obtain the necessary conditions for the

existence of the steady—state solution to the difference

equations by assuming that as time extends to infinity in

both directions (that is ( t
0

-*- _co , N -~-+~ ) that P~~~, ~~~~~~~~~~ ~~~~
and are the steady-state values .

G and ii can be eliminated from Mo€~, M11, and

and P~~ equations to obtain a system of quadratic equations

in IiØØ and and and i5j~ separately. Simultaneous -
S

sOlutions of two quadratic equations requires solving a

quartic equation. Hence , the algebraic solution to the

linear stationary system is intractable mathematically in

closed functional form except by numerical methods .

An alternative approach to the algebraic solution

of the quartic equation resulting from a system of quadratic . 

S

equations is the solution method of successive approximation .

In particular , we propose to solve the coupled nonlinear

difference equations using the control iteration method .

This essentially means that we start with an initial guess

of the solution G(t) gain sequence to be used in computing

the forward difference equations M00(t) and M11(t). The

— ~~~~~~~~~~
- —--

~~~~~~~
-S- -

~~ 

~~~~ - -~~—
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computed solution 11 (t) sequence is stored on the forward
5 ,-

pass . On the backward pass the stored 11(t) are used to s o lv e

the backward  difference equations P00(t) and P11(t): the

control gains G(t) are stored on the backward pass. These

forward—backward steps are iterated unti1 the solutions

converge to some convergence criterion chosen (0.001 in our

ease) and the average cost stops to change significantly.

The simulation results are used to guide the analy-

sis of the coupled nonlinear difference equations M00(t),

M11(t), P00(t), and P11(t) that have to be 
solved to obtain

the optimal control gains and filter gains. If the measure-

ments are exact and E 0, the stability results of Sec-

tion 2.4 apply to the  opt imal s tochast ic con t rol pr ob lem

since a l l  equations reduce to the perfect measurement case.

We now give the following theorem .

Theorem 4.4. For the linear stationary system , if the S

q u a n t i t y

9 
_ _ _ _ _ _ _- 
a b (-1 .7.13)

an b + E bb

then the Riecati—t ype equation P00
(t) diverges as N becomes

+ . The resultant closed—loop eontro l system is unstable

in mean-square sense.

Proof: From Eq. (4.5.5)

P00(t) (:~
2 + y 5aa )(~ cd H2(t+l)P 11(t+1) +P00

(t+i)+Q

(-1 .7.1-1 )

-5— -- S ~~~~~~~~~~~~
-- - 

=-S~~~~~~~ - _ _ _ _ _
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~
2
~~
2(E  H2(t+1)P (t+1)+P (t+l))2

(b +E bb )(E H (t+1)P11(t+1) +P00(t+1)) +R

+ Ebb
(1_H(t+1)

~~
)2Pll (t+1)

— 2 ( Concluded)
+ Eaa (l_H (t+l)C) P11(t+1) (4.7.14)

Adding 
~~~

H2(t)P
~i
(t) to both sides , and define

+ 
~~~ 

H~ P11 we obtain that S

~(t) = (i2+E )P(t+1)+Q

—2 —2~~2a b P11(t+1)
— 

(~~
2 + Ebb) ~(t+1)+ Ri- Ebb(l_H (t+l) c)

2 P11(t+1) -;

+ (Eaa(1_H(t+1)~~)
2 + E<.~~

H2( t ) ) P ii(t) (4.7.15) 
5

—2—2~~2

~(t) > (a
2 +E )~~(t+1)— 

a b P ( t +1) + Q (4 .7 .16)aa (b +E
bb
)P(t+l)+R

We have proved in Section 2.4 for the perfect measurement

a Riccati equation of the form above has a finite solution if

and only if the means and covariances of the random parameters

satisfy the condition

—2 —2
+ ~ — 

a b 
< 1 (4.7.17)aa b

We have obta ined , therefore , a sufficient condition

for the Riccati—type equation for 13( t )  to diverge for the

infinite-horizon stochastic control problem . 

—-----5- 



________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~ - -~~~~~~~ i~~~ -~~~~ ~~~~~~~~~~~~~~~~~~~~ 

— 
- -  — —— ~—

—141—

If P(t) diverges , we may have the case that only

P00(t) diverges while P11(t) converge . But this is not

possible from Eq. (4.7.11).  We c~in also have the case that

P00(t) converges and P11(t) diverges. Again this is not

possible from Eq. (4.7.10). Hence we can only conclude

tha t  both P00 ( t )  and P11( t )  diverge together .

Remark 4.5. Consider the special case Eaa = E bb =O P then

the co—state equations simplif y to

P00(t) 
= a2(E H2(t-i-i)P 11(t+1) + P00(t+1)) + Q

~
2
~~
2(E H2(t+1)P11(t+i)+P 00(t+1))

2 
S

— 
CC ( 4 . 7.18)

b2(~~~~H (t+1)P11(t+1)+P 00(t+l))+R

P11(t) 
= ~

2(1 —H(t+l)

~
2
~~
2(E H2 P11(t+1)+P 00(t+i))

2

+ CC ( 4 . 7 . 19 )
b2(~~~~H P11(t+i) +p 00(t+1)) +R

Note that Eq. (4.7.18) is jus t  the standard Riccati

equation for the linear quadratic control problem , P00(t)

S 
does not diverge independent of what P11(t) does. If P11(t)

diverges , then P00(t) approaches (a
2/b2 R+Q ) as N -

~~~~~~~ . In

other words , the Riccati equation P00(t) converges for any

value of E .
Cc

If the co-state P11(t) diverges , then

P11(t) 
= ~

2(1 — H ( t + 1 )  c) 2 P11( t + 1)  + ~2 E
~ 

H2(t+1) P11(t+1)

> —2 
CC P11(t+1) (4.7.20)

c + 
~~~
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A sufficient condition is that (i2 
E / C

2 
+ Z )  > 1 for P11(t) 

S

to diverge . In deriving the inequality above we have claimed

that the minimum variance filter gain is given by Zcc/(C
2+Ecc)

This can be readily deduced from the filter equations . Note

that Eq. (4.7.20) is the same condition we derived for the

linear minimum variance estimator in Eq. (3.4.12).

Remark 4.6. In the special case that Ebb =O
~ 

then we have that

P11(t) = ~
2(1—H (t+1)~~)

2P11(t+1)

~2 ~
2(E 

~ 
112( t+1) P11(t4-1) + P00(t+1))

2

+ C
2 

( 4 . 7 . 2 1)
~
2(E II ( t +1) P 11(t+1)+P00(t+1))+R

If the homogeneous part of P11(t) diverges then 
~2 (E /C

2 
—

+ 1. The co—state equation is given by

P00(t) 
= (i2 ÷ E  ) ( E  H2(t+1)P11(t+1) + P00(t+1)) + Q

~.
2b2(E H (t+1)P (t+1)+P (t4~1))

— 

~
2( E

~~~
H2(t+1)Pii(t+1)+P oo(t+1)) + R

+ Eaa(1_H (t+1)~~)
2Pii(t+1) 

(4.7.22)

This is not In the form of the standard R iccat i equat ion. The

inequality condition of Eq. (4.7.12) is still a sufficient 
p

condit ion for divergence , however.

Remark 4.7. In the case that E = O , we have then the co—state 
- 

-

P00(t) 
= ~

2 ( E  H 2 ( t + 1) P 11(t+1) +P00(t)) 
+ Q

— 
~
25
~
2(z~d H

2(t+1 Pllc t+1 +p OO t+i
~~

2

(~ 2 + Ebb)(Ecc H2(t+i)P ll (t+i) +P00(t+1)) +R

2 
(4.7.23)

+ Ebb(l 
— H (t+1) c) P11(t+1) S

L~. 

S
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and 

S

P11(t) 
= a2(1 —H(t+1)c)2P11(t+1)

+ 
a2 b

2( E  H2(t+1) P11(t-f l) + P00 ( t + 1) ) 2

(
~~

2 + E
bb

) ( E H 2
( t + i) P ll ( t + 1 ) + P oo ( t+1)

— 2 ( 4 . 7 . 2 4 )
+ R + E bb(l_}I(t+l)c) P11(t+1)

The sufficient condition for divergence as given by the

inequality Eq. (4.7.13) holds in this case (E a =O)~
Remark 4.8. For the lack of an analytical result on the

asymptot ic s t a b i l i t y  of closed—loop stochastic control

system , we turned to simulations to guide the analysis.

L 

Solutions to the state and co-state equations were obtained

I by the method of successive approximation . Solution values

for  P00 ( t ) ,  P11( t ) ,  M00 ( t ) ,  and M11( t )  are recorded to

determine the limiting solution value in case they converge .

For a particular system (E cc =l
~
O
~ 

c 1.0, a=1.1 , i~=1.0), S

Fig. 4.3 gives the stability and instability regions for the

random parameter system . We see that for certain combinations

(Eaa~ 
Ebb) the steady-state solution to P00

(t) and P11(t) does 
‘

not exist because the uncertainties are larger than some

threshold for the closed—loop system .

If we draw in the curve for

—2 —2
+ E — 

a b 
= 1 (4.7.25)aa b + E bb

it will be much above the computed stability curve in Fig.

4.3 since it is only a sufficient condition . Now if we

- - ---
~~~~~~~~~~

-- - 
-- —- - - S~~~~~~~~~~~ --



— - - - -  — - r’ ~~~~~~~~~ 
_S_~~~: _S 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - S  - 51 _ 5~~~ S5~~~
SSs . S 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

~~~,hh1 u,

-144—

Q

‘0
C

‘-5

‘-4

1
/ L C ~

C
0
4-)

a,
a)

~~~0 .o
Ca)

‘-0 0 0•‘ -0 ’— ’-
II U It II II LU EI C ~~~~LO .~~~ IC.) C.) -J

L 0 2  )

Cl)z

C
0

a)LU 
S

-j 0-

‘- S5— 4.)
‘4.

,-.1
Cl) •r4

.0
4.’
Cl) . 5 -

‘C—’
- .

0
Q4 ,’~

l

~~~~

I 
I I 0

C~) C~i 0
C 0 0

IL 
--S _ 

-5 -
~~~~~~ Si



-- —- S 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ - — - ~~~~~~~~~~~~~~~~~~~~~~~ - jIIIP~~

—145— - 

-

d raw in the  cu rve  ( see F ig .  4 . -I )

I ~ \ —2 —2
m 0 — 

— 2 + + ( — 2  — l ii
i 

a b 
= 1 ( . 1 . 7 .2 6 )

+ E / ~bb 
+ b

it will be somewhat below the  computed s t a b i l i t y  cu r v e  in

Fig. -1.3 so that if m9 is satisfied , then the closed—loop

system is asymptotically stable. We conjecture , for now ,

this is a sufficient condition for the existence of a steady—

state solution . (This is the output feedback stability analy—

sis resul t  obtained in the next section.) The modification

in Eq. (4.7.26) is motivated by the appearance of (1—He)2

in the P equat ions.  Since the expression actually occurs

squared we then revised the con jec ture  to be (see F ig .  . 1.5)

/ ~ \2 —2 —2
+ ( cc \ a b (4.7.27)aa 

~~ +E 2 / ~~~ —

/ bb

and this is a tighter upper bound curve on the stability

region for  t h i s  special set of parameter u n c e r t a i n t i e s .  5 

-

The behavior of a stable closed—loop system in the

mean-square sense is given in Fig. 4.6. We note tha t  the . 
-

steady—state region is the interval where all the “co—states” -

P00(t) and P11(t) and “states” M00(t) and M11( t )  are at a .

constart value . In this interval , the controller has con— 
-

stant gains and the filter has constant gains , Fig. 4.7. -

Note that there are some transient behavior or endpoint

effects associated with the numerical solutions.

--5---- --~~~~~~~~~~~-
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0.4

a= 1.1

\ 
6= i .o

0.3 - 

\

~cc = l .o

0.2 -

~~54

UNSTABLE

0.1 - 
STABLE :

0 I I
0 ~Y.5 1.0 1.5 2.0 2.5

~bb

Figure 4.4 Lower bound on the stability region defined -

by equation (4.7.26 ) for system given by
equations (4.4.1) and (4.4.14)
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4.0

COSTATE, P11 (t)

SECOND MOMENT, M~~(t)
3.5~~
(

~~~

~aa 0.01

~bb 001
- 

~‘CC ~~

I

= 1.0
2.5

0=1.0

2.0 COVARIANCE, M11 U)
COSTATE. P~ U)

1.0

‘5

0.5 —

0 I
0 40 80 120 160 200

TIME

Figure 4. 6 Behav ior of the states and cos tates gi ven
by equations (4.7.6) to (4.7.12)
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~ab 
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Figure  4 . 7  Behavior of the  o p t i m a l  control  and f i l t e r

gain sequences G(t) and H(t)
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In Fig. 4.8 we show what happens to the solution

values of P00(t), P11(t), M00(t), and M11(t) in an unstable
S 

closed-loop system . The solution values for a l l  four vari-

ables increases monotonical ly and for a l l  prac t ica l  purposes

diverge .

Remark 4.9. The effect of uncertainty in the parameter c is

investigated in Fig. 4.9. For Eaa =
~

Ibb =O
~ 

the covariance

of c contributes to the destabilization of the closed-loop

system when the parameters are known with certainty . In the

case illustrated a=1 .1 , b=1.0 , and c=1.0 , the co—state

- I ~~t) becomes exponent ially large when exceeds the value

-
- In Fig . 4.10 we show the effect of ~~~~~~~ Eaa O

S on the uncertainty threshold developed in Chapter 2.

—2—2
m = ~2 + ~ — 

a b (4.7.28)aa b + E bb

It is intuitively obvious that the effective threshold is

higher , that is, there is less tolerance for the uncertainty

in the parameters b in order for the closed—loop system to

be asymptotically stable. We show similarly in Fig. 4.11 ,

for Zbb =O , the level of uncertainty Eaa the closed—loop

system wi l l  tolerate is smaller than  the perfect  observation 5

case. Figures 4.10 and 4.11 can be compared with those of

Figs. 2. 2 and 2.3.

The larger the covariance of b , ceteris paribus ,

the smaller the magnitude of the control gain and the larger

- S



- - - — . .__ L ~~~~~~~~~~~~~~ ~~~ ~~ —- ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ - _5.5~~~ S S.. .S~~ — S ~S
_

—151—

‘S aa
300 

~bb= 0.2
V ‘- - 1 0
\ 

cc -

\ ~~- i . i

——ab -

‘ I (~0 — l U

200 -

,,

C,

100 - -
S

1~j
0 I I 

S

0 40 80 120 160 200
TI ME

FIgure 4.8 Behavior of the divergent states and
costates given by equat ions ( 4 . 7 . 6 )  to
(4.7. 12)



. ...._.L. - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 

~i52-

10,000 W

6

1.000 -

:.~~

U 

‘ 

_______________________________

3

1 0—

‘5

H

1 1 I I~~~~~ _ 

I 

-

0 20 40 60 80 100 120 140 160 180 200
TIME

Figure 4.9 Solution of_ costate equation (4.7.18) for
known a(t)=a=1.1 and b(t)=b=1.0

-- 
- . 5 - - - - 

_



‘2ar ~rflv— ~-fl ~~~~-- -. -s--- r--- - - ..‘- . p. , —
-

—153—

10 •000
: \ 

S

\

~~~= 1.0
- 

= ISO
- 4.0

1,000~~~~~~~~~~~~~~~~~~~~~~~~~

~ 100 -

26
C,,
C
0 -

— 2.2

2.0 5

10

1.0 
- 

S

0_ s 
..~~~~~~~ 

-:

~.bb O
-

~~

1 I I I I I I

0 20 40 60 80 100 120 140 160 180 200
T I ME

Figure 4.10 Solution of the costate equation
(4.7.23) for known a(t)=a=1.1

_ _  -“- -~~~~~~~- - --



r -

~

—

~~~~

- 
- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-154—

10.000

0.45
- 

1=1 . 1

1.000~~ 
S

0.40

~~~100 ..

8

- 
- 0.350

10 - 0.325

0.305

I I I 1 ~~~~ 

S

0 20 40 60 80 100 120 140 160 180 200
T IME

Figure 4.11 Solution of the costate equat ion (4.7.22)
for known gain b ( t )= b= 1 . 0

A



_________________________- ~~5~~~ _I~ -55~ ____________________________________ - ______

L

—155—

the filter gain in general. The controller is exercising 
S

c a u t i o n  in  cont ro l , s ince the input is being applied w i t h

larger  u n c e r t a in t y  about the mean . The multiplic ative noise

on the  i n p u t  adds to the total disturbance in the system

dynamics  equa t ion .

The larger the covariance of a , ceteris paribus ,

the larger the magnitude of the control gain. This is

intuitively obvious since the control wants to exercise 
S

more probing to reduce the uncertainty in the state. The

filter gain , ceteris paribus , is also larger for larger Eaa~
The m u l t i p l i c a t i v e  noise on the s tate  e f f e c t i v e l y  increases

the plant noise in the estimation problem . This says that

the correction from the measurement update will be larger.

The larger the covariance of c , ceteris paribus ,

the smaller  the filter gain. The random parameter c multi —

p l y in g  the s ta te  e f f e c t i v e l y  increases the additive measure— S

ment noise 0. The control gain is , however , larger in magni-

tude as the adaptive control will use the input u(t) to re- S

duce the  unce r t a in ty  in the s tate .  -. 
‘5

As we can readily see from the numerical simulation

tha t  the random parameter stochastic control system behaves

as a non- learn ing  adaptive contro l system . All future mea-

surements are avai lable for the stochastic control and esti-

mation . The control law appropriately regulate the system

over the time horizon to minimize the average of the devia-

t ion of the state from zero and contro l e f f o r t ; and th is

control  involves no parameter  i d e n t i f i c a t i o n.
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The control input u(t) affects the estimation

process and the es t imat ion performance a f f e c t s  the amount

of control action necessary to regulate the system . The

system is not neutral. Caution and probing is an important

f u n c t i o n a l  part of the  cont ro l le r .  The control gains are

modulated by the covariances , which are in term a f f ec t ed

by the control action .

The value of in format ion  for  the stochastic control

problem in general is defined as the d i f f e rence  between the

expected cost J1, the best we can do wi th  the informat ion

and J2 ,  the best the controller can do wi thout  the informa—

tion . This value of informat ion provides a measure of how

the performance of a random parameter system is degraded

when we assume that nature specifies the system parameters

at all times .

To obtain a comparison of the cost among the several

control schemes , the constrained controller-estimator of

Section 4.4 , the certainty—equivalent controller , the en-

forced separation controller , and Kalman f i l t e r —p e r f e c t

es t imat ion controller , one could proceed wi th  a Monte Carlo

simulation of the closed—loop system .

Remark 4.10. For stable systems where I a ~ < 1 , it is observed

from the simulation results that if

(-~2 + ~ < 1 (4.7.29)
aaj

the closed-loop system converges for any values of means

and Lovariances .

_ 
- -_ _  J
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I f  (~~~ + ~~~~~~~~~ 1 . t hen  the  s o lu t  ion  v a lu e s  o f  P
00

(t)

and  P 1 1 ~ d i  ver ge s  f or  certa in c o m bi  n at  i o n s  of  t h e  means

S 
and v a r  i afl~-es ot ’ t h e  pa ramete r s  . In  genera l . t h e  su f t . i  CI en

Cond i t  ion Eq . ( -1  - 7 . ia ~ ho ld s f o r  t he o r i g i n a l  si able as w e l l

as uns  t ab le svst ems

If ~: = Y = 0 , then there is no p ossib i  l i t  v o faa bb
d i  vergence  si rice t h e  s t abi  1 i t  r eg ion  is above t h e  cu r v e

V

~cc -—2 -.a 1 (-I .e ~~0)

C ~.
‘

For t h e  s t a t  io n ar v  sv s tern , we cons i (ler t he per t e c  t

cent rol prol) lem presented in Sect ion -1 .6. The e x i s t e n c e  o F

a sel Ut ion  t o  t h e  st o .’hast. i c si n g u l a r  cont  rol  p r o b le m  depends
~ .;  I

on the  e x i s t e n c e  of positive —de finite s o l u t i o n  o f  t h e  alge-

br a i c  R i c c a t i — t y p e  equa t ion .

M 11( t + l )  = (~~
2 +~ )~~11 (t) +~~ 

- 9
a c M ( t )  ( 4 . 7 .31)

(c~~+ Y ) M ( t ) + ~~ S S

The c r i t i c a l  po in t s  of t h i s  typ e  of algebraic equat ion was

discussed in Section 2.-i. By identif ying M
~~ 

with K in

Eq. (2.4.1) the following result can be s t a t e d .

Theorem 4. 5

If the means and covar iances  of the random parameters are

such that

—
~~~ —2

+ ~

. 
— 

a c 
~. ( 4 . 7 . 3 2 )aa —2C + ~ - cc

then a non—negative definite solution of Eq. (4.7.31) ex i s t s .

- - S __ - S ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~
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Proof: The proof is similar to that given in Section 2.4.

This inequality condition can be analyzed in the

• same manner as for  the perfec t  es t imat ion case . The stochas-

t i c  singular control system is stable if and only if the

inequa l i ty  in Eq.  ( 4 . 7 . 3 2 )  is sa t is f ied.

The covariance may be wr i t t en  as ,

S M11( t+ 1) (1 — H ( t )  ~ ) 2
~~11( t )  + Z ~11( t )  +

+ 
~

2 H2 ( t ) [E ~~~~ 11( t ) + 0 ]  ( 4 . 7 . 3 3 )

where ( ( 1 - H ( t ) c ) a ]  is the closed—loop system parameter

and

H ( t )  = ~ll ( t )~~~[(~~
2 + E cc ) Ü ll ( t ) + 0 ( t ) ] _ 1  ( 4 . 7 . 3 4 )

When 
~aa~~~~cc 0 ’ the s u f f i c i e n t  condition for s t ab i l i ty  is

• that ~11(t) be stable. It is well-known that in general if

the system is observable , then the propagation of the co—

variances will converge to some steady—state value ; and this

is true for a scalar system . S

When Z aa~~0 and ~~~~~~~ then stability of the co—

variance equation depends on the level of uncertainty in the

parameters a(t) and c(t). Note that both uncertainties de-

stablize the covariance propagation equation . The destabiliz-

ing e f fec t  due to wi l l  be greater since it is mu l t i p li ed

by the square of the filter gain.

Conclusions

In this subsection we summarize the key results

obtained in Section 4.7. We are interested in seeking a

- - -  - - --—~~~~~~~~ .—~~~~~~~--—-5- - - -~~~~~~~~ —--~~~~~~~~~~~~~~~~ - -~~~~~ --
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threshold condition for the infinite horizon problem ; and ,

hence , the existence of steady—state control law . Since the

coupled nonlinear Riccati—type matrix difference equation is

computational ly complex to solve analytically, we used the

contro l iteration method to simulate the system of equations

in the two-point boundary problem . We were able to irnmedi-

ately obtain a sufficient condition for the solution to the

coup led Riecat i-type equations to diverge for infinite—horizon 5

problem .

Next we proceeded to investigate some special cases.

1) E
aa bb 

= 0, the Riccati—like equation for P00(t) always

has a limiting solution , 2) Zaa~~
0
~ ~bb °’ P00(t) may diverge

as N -~~ , and 3) 
~aa °’ Ebb~~

0
~ 
P00(t) may diverge as ~~~~~ S

The computed (simulated) stability region curve is then

presented in Fig. 4 .3 .  Some conjectures on the  s u f f i c i e n t

conditions for mean—square stability are given in Figs . 4.4

and 4.5. The uncertainties in the random parameters have a

destability effect on the dynamic system , in moving the

e f f e c t i v e  poles outside the  un i t  disk. This is argued as ‘5 -

follows . The unce r t a in ty  in a increases the magnitude of

the control ga in .  The uncer ta in ty  in b increases the magni—

tude of the f i l t e r  gains .  The unce r t a in ty  in c reduces the 5

f i l t e r  gains , but it increases the control gains since the

variance E C -~~0 is e f f ec t i ve ly  addi t ional  control weight

in the co—state equations . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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If the random system is originally stable , we can

sa something more about t h e  mean—square stabi Ii ty of t h e

l i near contro I system . The feedback system is stable i f
.-)

(a~ + ~: )  1. If = 

~bb 
= 0, then the fixed structure con-

trol system is  a l w a y s  stable.

For the  stochastic singular control system , we ob-

tained the suffi cient condition for mean—square stability

under feedback : which is the dual to the case with ex a ct

measurements 
~~~~~~~~~ 

0=0). If this threshold condition

is violated , then the optimal solution to the infinite hori—

ZOfl problem does not exist.

4.8 Stability of Stochastic Dynamical Systems

In this section we will follow by analogy with the

J method of a n a l y s i s  i n  Section 2 .5  and derive the cond i t ions

for the asymptotic stability o the closed—loop system . In

particu lar , we shall deal with the stochastic difference —

equation

1’ y(t+1) = a(t)x(t)+b(t)u(t) (4.8.1)
a — ‘5

where the linear output feedback law

u(t) = g (t)y(t) (4.8.2)

and output

- , y(t) = c(t) x(t) (4.8.3)

then

y ( t + l )  = [a(t) +b(t) g(t) (.(t)] x(t) ~(t) x(t) (1.8.-i)
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-
S The propagation of the  second moment of x is given

by

E {x 2(t+1)} = Efa2(t) +b2(t) g2(t) c2(t)

+ 2a(t) b(t) g(t) c(t)} E{x2(t))

= E {a 2(t)} + g2( t )  E{b2(t) C2( t ) }

+ 2g(t) E(a(t) b(t) c(t)}] E(x2(t)} (4.8.5)

E(x2(t+1)} 
= E {~

2(1)} E{~
2(2)}. . .~~{~~~(t)} = S(t) (4.8.6)

E{x (l)}

The minimum of S(t) is obtained if each term is

minimized for all t. Thus , taking the algebraic minimization

we get that

~(t) = — 
E{a(t) b(t)c(t)} (4.8.7)
E{b (t) c (t)}

Substitute this result into Eq. (4.8.6) we get the 

Lminimum value of 6(t) is

3(t) =[a2(t) - ~ t)bWc(t)21t ( 4 . 8 . 8 )
L b2(t) e2(t) J U

In the case where the system parameters a(t) and b(t)

are uncorrelated with the measurement parameter c(t) as has

been assumed in Section 4.3 , we then have

g~(t) = - 
a(t) b(t) c(t) (4.8.9)

b
2(t) c2(t)

The minimum value of S(t) is then , assuming the random param-

eters are wide sense stationary ,

— — 
~~~~~ •~~~~~~ S _____________
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[ 
~~~~~ )

2~~2 it
S(t) = Ia +~~ 

— 
ab ~ ~t (4.8.10)

L aa 
bb

2
~~~cc~~~

2
~J

The variance of x ( t )  is bounded if and only if

< 1 (4.8.11)

If we rewrite this result as

/ — — 2
—2 1 £~ ~ (E 

b +ab)
= a 4

~~aa~ ~ 
c
_2 — 

a 
—2 < 1 (4.8.12)

\ ~~~ +-c / (Zbb +b )

We find that this threshold 1 differs from the m in Eq. (2.4.3)

in the expression Zcc
2 +E cc) —1). We note that if

then ~ reduces to m. Effectively, driving the system in

Eq. (4.8.1) using direct output feedback represents a worst-

case analysis. S

In other words , we can improve on this sufficient

p condition for mean square stability by using any reasonable -1

control law . This is verified when we use the linear unbiased

estimator of a fixed structure given by Eqs. (4.5.2) to (4.4.4).

In principle , we have then derived the lower bound on the

actual stability curve for the closed-loop system given by ‘5

Eq. (4.8.12).

We remark that from Eq. (4.8.12) if a2 +E aa~~
1 and

then the stable system (4.8.1) is again stabilizable

under feedback . Mathematically, this says that for the corn-

bination of means and covariances that satisfy inequality

(4.8.12) also satisfies the true threshold condition . The

converse is not true . The inequality condition in Eq. (4.8.12)

5 1
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is only a sufficient condition . This is illustrated in
S 

Fig. 4.4. Superimposing Fig. 4.4 on Fig. 4.3 would show

that the stability region curve given by Eq. (4.8.12) is

below the computed mean-square s t a b i l i t y  region curve in

Fig.  .1.3 . Hence , it is not su rpr i s ing  to see from t h a t

the stability curve of Eq. (4.8.12) in Fig.  4.4 is lower

than the experimental curve in Fig. 4.3 obtained from 
S

simulations.

Consider now the case 
~bb °’ then the threshold

rn becomes S

—2 —2
= ~ + cc ~2 = ~2 + ~ — 

a c (4.8.13)aa 
~ +~~

2 aa 
~cc cc

and from Eq. 

g = — 
— —2 (4.8.14)
b(Z

~~~
+c )

If 
~cc

=°’ we have the stability condition E <1. 
S

In the case E~~~~ 0, ~1’ a
2 +

~~aa
< 1 , then the system is stabi—

lizable under linear feedback for all levels of parameter S

uncertainty.

We have stated that the inequality condition in

Eq. (4.8.11) is only a sufficient condition for mean—square

stability, the gain in Eq. (4.8.14) does not correspond to

- . the limiting control gain obtained from the TPBVP , i.e.,

lim G(t) (4.8.15)
S N-~~ b

-J 
- -—-S-~~~~

-
~~~~~~~~ 

-“ -~~~~~~~
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which is independent of and c. This is obvious since
ci *the g here is based on output feedback. So that when

-

~~~~~~ 
E
~~~

=0 , 

*g = — — (4.8.16)
b c

If in addition 
~aa 0’ then

— 

= 
— 

(4.8.17)
+ ~cc 

S

S 

Hence , the closed—loop system is mean—square stable for all

l a l < 1. In the perfect estimation problem m = 0 , of course. 
S

If E = 0 , but 
~bb

>0 ’ then the sufficient condition P
for mean-square stability becomes

-

, 

+ (__
E 

- i\ ~~
2
~~
2

2 
(4.8.18)

/ Zbb + b

and

* 
_ _ _ _ _ _ _g = - (4.8.19)
(E
bb +b )(~~~~+c )

For l a l < 1 , the system is stabilizable under linear feedback .

We conclude that the really interesting cases to

study are systems with (a2 + Eaa) > 1 and m < 1. The destabi-

lizing effect of the variance of c(t) is manifested in this

range of values .
- 

Stochastic Stability Using Fixed Structure Controller

The next problem to examine at this point is if the

S parameter uncertainties are such that

~ 

~~~~~~~~~~~- ‘ -  -
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-.) (a~~+ ~+ y a 
> 1 (4.8.20)aa 

bb + b ) cc
4
~~~~

can the  s t o c h a s t ic  sys tem w i t h  random parameters  s t i l l  be

m e a n — s qu a r e  st a h l  i iza ble  under  l i n e a r  feedback (u (  t )  = g x( t))

We wil l a t t e m p t  to f o r m u l a t e  t h i s  problem i n  the

subsequent  a n a l y s i s .  We propose to use a l i n e a r  unba i sed

e s t i m a t o r  for the s t a t e  in the closed— loop controller . i . e .  
S

x ( t )  = ( 1 — h c ) x ( t — 1 ) ( a + b g )  + h y ( t )  ( . 1.8 .2 1)  S

where

y ( t )  = c(t)x(t) (4.8.22)

and t h e  elosed—loop system is

x(t+1) = a(t) x(t) + b(t) g (t) x(t) (4.8.23)

The naive estimate of the form S

x ( t )  = y ( t )  = -i-- x ( t )  (4.8.2-1 )
C C’

Therefore ,

u(t) = g (t)-~--x (t) (4.8.25)
C

Substituting this into Eq. (4.8.1) we get that

x(t+1) = [a(t)+b (t)~~(t)~~~~~]x(t) (-1.8.26)
C

Minimizing the variance of x(t), we obtain that

~~~

{a
2(t)+:2(t)g2 t)(

~~

t))2 + 2a(t)b(t)g(t) ci:} o

S - - -
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S The resulting control law is given by

u( t) = — 
c x(t) (4.8.28 )

b2 c2

We note that this is the same control law as using

the direct output feedback. Hence , all the previous results

follow (Eq . (4.8.11)). It is obvious from Eq. (4.8.21) that if 
S

h =- .~ (4.8.29)

then Eq. (4.8.24) follows. Therefore , the output feedback

control is equivalent (identical) to h 1/c. S

In the linear-quadratic—Gaussian problem we are able

to examine the necessary and sufficient conditions for the

existence of stabilizing gains . In the time-invariant case ,

the characteristic values of the closed—loop system comprise

the characteristic values of [a-bg ~ (the regulator poles)

and the characteristic values of [a-h ci (the estimator poles).

Overall system stability then requires the poles to be inside

the unit circle. For the random parameter system , the cas-

caded system poles do not comprise of those of the deter~— S

m in i s t i c  optimal control problem and those of the optimal

estimation problem since the Separation Principle no longer

is true . Hence , we need a separate analysis and a measure

-
. 

of stochastic stability to consider. S

We want to analyze the stability of the fixed struc-

ture control system and obtain a tighter lower bound on the

stability region curve . We have that
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x(t+l) a (t)x(t)+b(t)g(t)~~(t) (4.8.30)

where

x (t) = (1- h (t) ~) x(ttt-1) + h ( t )  c ( t )  x ( t )  (- 1 . 8 .31)

From Eq. (4.8.30) we have that

~(t+1~ t ) i ~~(t)+Eg (t)x(t) (~~+~~ g)~~(t) (4.8.32)

We can then w r i t e  for  the closed—loop contro l system

a second—orde r difference equation in E x ( t + 1 ) ,  ~ ( t + 1 ( t ) ]  ~~x ( t + 1) .

We remark t h a t  t h i s  “ st a t e ” r e p r e s e n t a t i o n  is equivalent to a

E -~(t+1Jt ), e(t+lJt)] representation if we d e f i n e

e (t+lJt) ~ ~(t+1Jt) - x(t+1) (4.8.33)

Then we have

x(t+1) a(t) + h ( t ) g ( t ) h ( t  ) c ( t )  b ( t )  g ( t ) ( l  - h (t) 
~~~)

[x(t+ lJt) J L (~~+bg (t)) h(t) c ( t )  (a+ ~~ g(t))(1 - h(t)~~) 
S

[ x(t) 1
x I (-1.8.34)

-

S L x ( t I t l)J 
S

We write the above as

~(t+1) ~ A(t )~~(t) (4.8.35)

We analyze the mean—square stability of such a second-

order system by examining the Lyapunov function

V(~~(t)) = x (t)~~(t) (4.8.36) 5

Then we compute - S

E{V(x(t+1)) — V(x (t))} = i (t)(A (t) A(t) — I) ~(t) (4.8.37)

Theorem 4.6. The solution of the system given by the second-

order difference equation is mean—square stable it ’ and o n l y  if 



_~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 

:--~z-~----- 
- = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-168-

E{A (t) A(t)} — I < 0 (4.8.38)

or that the maximum eigenvalue of the matrix E{A (t)A(t))

has to be less than unity in magnitude , i.e., max l (A 1, \
2)l ‘- 1 .

P r o o f :  See [581.

Applying this fact to our system , then

a2 + 2~~~gh~~ +b
2 g2 h2 c2 (~~ i +b

2 gh~~) g(1 -he)

+ (a + b g ) 2 h2c2 + (~~+bg)
2hc(1 - he )

E I A ( t ) A ( t ) J  =
— 

g(1 - he) (~~~+b
2 gh~~) b2 g2(1 - h~~)

2

+(a+bg)2 (1-hc) 2

( 4 . 8 . 39)
The eigenvalues of this symmetric matrix is obtained

-
~~ by solving det ( A - A I ) = O .  We are free to choose g and h.

A f t e r  some algebraic manipula t ions , we obtain that the roots

of the characterist ic equation are given by

(4.8.40)

If we define

— 

[~~~
+2~~ ghe+b

2g2 h
2c2 +(a+bg)

2h
2 c2

+ (1_h ~~)
2 (b 2 g2+ (a+bg)2)] (4.8.41)

and

a A gh~~ +~~~ g
2 h2~~~

S 
+ (~~+~~~g) 2 h

2
c2][b

2
g
2 + ( a+ b g ) 2 ] (1_ h c )

2 S

- ~~~~~~~~~~~~~~ + (ii +bg )
2
hc]2 (1 - h t ~)

2 (4.8.42)

-
~~~~~~~~~~~~~-- - _ _ _  — -~~~~~-
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~
2 _4u ~?+2~~ 

gh~~ 
~~~~g

2~~2 c
2 +

ThUS ’

-

+ 4~~~~~+?g~~~~~ 
+ (~~+bg )

h~~~ 

> 0

(4.8.43)

The problem 
is to choose 

g and h 
such that 

the

max( i~ ’~~~2~~ 

<1 . This ~flVOI~~~
5 ~~~ 

solutjofl 0f a 
5ystem

0f quart~~ 
equations in 

g and h, 
reSU1t1~~ 

from the 
neCe55a~~

conditi0fl~~

~~~~- B ~~ ~~~~~
and 

(4.8.44)

The computat
ion is alge~~~~~~~~~ 

cumbers0me .

In the case 
o~ 

output fee
a~~ 

the above 
equations

simP U~~ 
since we have

h , 
g 

(4.8.45)

C b
2 C

2

— 

So that 
Eq. (4.8.

47) becomes H

- . 

\?c2/ 
C 

-

~~~~~

_ _2 2 2

+ -

~~~~ 

.

~~~

(4.8.46)

I 
- - - 

- 

~~~
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The nonzero eigenvalue is thus given by

= 
(—

~ 
- 

~~~ 
+ ~2 ~~~ - 2~~ ~~ + ~~ 

~~2 ~2

b2 c2/  b2 b2 b2 c2

(4.8.47)

Hence , the condition that

b2 C2

does not satisfy the necessary conditions in Eq. (4.8.38).

It is, therefore , not the opt imal values of g and h.

Conclusions

We summarize the main results in this subsection .

It is shown that the feedback linear control using output

directly gives a sufficient condition for the mean—square

S stabi l i ty  of the randomly—varying dynamic system . By analogy

with the reasoning in Section 2.5, the optimum gain using

output feedback obtained from the stability analysis is the

true limiting gain for the truly optimal stochastic control

law in the unstable region (in the mean-square sense).

S For the fixed structure feedback control system , S

we then give the necessary conditions for the optimal gains

and implicitly the necessary conditions for mean—square S

stability. It is then shown that the optimum gains derived

for the output feedback do not satisfy the n~cessary condi-

tions for the mean-square stability of the fixed structure

control system .
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4.9 Conclusions

In this chapter we have presented the results for

the adaptive stochastic control of linear systems with purely

random ( w h i t e )  parameters . The system s ta te  cannot be mea-

sured exac t l y .  The measurement data is computed by add i t ive

w h i t e  noise . We f i r s t  gave the optimum control  law in terms

of the conditional means. We know that for this class of

non-l inear- -quadra t ic—gauss ian  s tochastic control problem , the

opt imum estimator is nonlinear and requires computation of

all the moments. Hence , we seek adaptive controllers with a

given f ixed  s t ruc ture . The class of admissible controllers

are thus restricted to be linear feedback regulator type .

The original stochastic system is then transformed into a

de t e rmin i s t i c  system . We solved the dynamic de terminis t ic

optimization problem first using the Matrix Minimum Principle

and then the dynamic programming . W i t h  the  s t ruc tu re  of the

dynamic compensator f ixed , we subsequently optimize the free

parameters of the compensators . The free parameters are the

l i n e a r  control and estimator gains .

In the resul t ing t ime—varying feedback con tro ller .. S

the off-line computational requirements seem more severe than

the case of optimal stochastic controller . To obtain the

optima l gains we have to solve a coupled nonlinear two—point

boundary value problem involving difference equations. This

is not a trivial computation even compared to solve the non—

linear filtering problem . - .

- - —- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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In the fixed structure dynamic compensator , the

control now affects both the mean and variance of the

estimation error. This is an example of cautious control.

This is contrasted with the optimum solution obtain by

stochastic dynamic programming where the minimum variance

of the state estimate is independent of the control. In

the linear minimum variance filter , the control does affect

the estimation accuracy.

For the first time in the literature , the asymp-

totic behavior of the linear controller for stationary

system is examined. Taking an approach analogous to that

in Section 2.5, we der ived a suf f ic ien t  condition for the
S ex istence of optimum linear feedback control ler .  We also

S derived a su f f i c i en t  condition for the system to be mean-

square unstabilizable under linear feedback. - ;

In Chapter 3 , we obtained the result that  the

linear discrete filter is stable if the second moment is

bounded. The necessary and sufficient condition for asymp-

totic stability of the second moment is that the a2+Zaa <1.

This is only a sufficient condition in the fixed structure

optimal control problem . As indicated by the stability

region (boundary ) curve derived from computer simulations ,

-. the true stability curve is somewhere between that given by S

the output feedback stability analysis in Section 4.8 and

the unce r t a in ty  threshold for the exact measurement case in

Section 2.5.

- 
S -~~~ --_ -~~ S -
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We have shown that for the linear dynamic systems

with fixed structure feedback controller , there exists a 
-

t h reshold determined by the means and covariances of the -

randomly varying parameters such that optimum linear control - -
~

laws for the infinite horizon problem exist if and only if

tha t  i n e q u a l i t y  cond i t ion  is s a t i s f i ed .

F ,

-
~~

I-
,

- 
- 

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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CHAPTER 5

ON LINEAR MULTIVARIABLE C~ NTROL SYSTEMS

5.1 Introduction

In this chapter , we shall extend the analysis in Chapter

2 to linear multivariab le control systems . We will consider

the exact measurement case in Section 5 .2 .  We s ta te  the optima l

stochastic control problem with purely random parameters ; the

results have been presented in 135 1 and [37). In Section 5.3,

we consider a special case of the problem stated in Section

5. 2. In pa r t i cu l a r , we present the o p t im a l i t y  and s t a b i l i t y

results when the matrices ~ and B are multiplied by some

scalars , scquentially uncorrelated in time . The results have

appe ared in 151) and [791. - 
—

In Section 5.4, we consider the inexact measurement

case , where the observations are corrupted by w h i t e  noise .

The solution to the fixed structure estimator—controller is

given . The pr imary mot iva t ion  for this chapter is to indicate

where the previous results apply and can be extended readi l y ,

and to ind ica te  the mathemat ica l  no ta t iona l  complexi ty and S

computational burden required. Basicall y, no new theoretical

results are presented in the analysis.

— - - -~~~~~~ -- ~~~~~~~~~~~~~~~~~~
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5.2 Optimal Control of Systems with Exact Measurements

Consider a first-order linear dynamical system with state

vector x(t) and control u(t) described by the difference equa—

tion

x(t+l) = A(t)x(t) + B(t)u(t) + F~( t )  (5.2.1)

t = 0,1,2,...

where x(t) is an n—dimensional vector , A( t )  is an n x n matrix ,

B(t) is an n x m matrix , u(t) is an rn-dimensional vector , and S

~(t) is an n—dimensional white noise vector. The initial state

vector x(0) is given .

It is assumed that we have exact measurement of the state ,

£(t) = x(t) (5.2.2)

In Eq. (5.2.1), it is assumed that the system parameters

A ( t )  and B ( t )  contain purel y random parameters as elements S

I which may be grouped into a random parameter vector 2(t). It S

is assumed that the random vector 2(t) is statistically inde-

pendent and identically distributed in time. The random vectors

selected at each time may have correlated elements , so that the

off-diagonal elements of the covariance matrix of 2(t) are non—

zero. To be more precise , we assume that for wide-sense station-

ary parameters in A(t )  and B(t) ,

E(~ ( t ) } = (5 .2 .3 )

E{(~~( t )  — ~
) (~~(t) — 

~)‘} 
= ~~6(t,r) (5.2.4)

where 6(t ,r) is the Kronecker delta function .
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However , to be able to wri te  down mathemat ically the

ensuing results for the mult ivar iable system , we will soon need

some machinery from tensor analysis , since the covariance of

A ( t )  is a fourth-order ten sor of n 4 components. Alternative-

ly ,  because of our particular formulation of the white para-

meter problem , the notational complexity is lessened . We will

need the relationship following [80]

E{x ’(t+l )~~ x ( t +l ) )  A i’(t+l)~ ~(t+l) + tr ~ Ex (t+l)

(5. 2.5)

th . x(t+l)where the ij element of the matrix E is given by ‘ -

using Eq. (5.2.1)

x(t+l) A1A~ AjB~
= x ’( t )  E x( t )  + 2x ’( t )  ~ u(t)

B1Bj  ~~~~+ u ’( t )  z u(t) + ~ (5 .2 .6 )

A B
where Z ~ ~ is the covariance matr ix  of the jth row of A w ith

the jth row of ~~~.

Finally, we remark that the additive noise E~(t) is assumed

to be zero-mean Gaussian white , and independent of {A( t ) } and

The control problem is the stochastic regulator type

optimization problem with the expected cost function given by

* If ~ (t ) is a colored noise , then we can always generate it

with a pre—whitening filter . If ~,(t) is correlated with ~(t)

and B(t) , then expressions in Eq. (5.2.6) are appropriately
changed.
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N-].

J = E{x ’(N)F x(N) + ~ x ’ ( t )  Q(t) x( t )  + u’( t )R( t )u( t )}
t=O

(5.2.7)

where ~(t), R(t), and F are symmetric positive semi-definite

matrices. The quadratic cost funct ional  in Eq. ( 5 . 2 . 7 )  assigns

a real member to the pair vector x(t) and u(t).

The set of admiss ible controls u( t ) £ U ( t )  where U ( t )  is

a subset of the rn-dimensional Euclidean space . Since we are

interested in closed—loop controls , the admissible controls

u(t) are assumed to depend only on the a priori given informa-

tion and

yt = {~~(0),~~( l) , y(t) } and U~~~= {u(0),u(l),

~(t—1))

The stochastic control problem is to find a control se-

quence {u(0), u(l) u(N—l)} such that it minimizes the 
S

expression in Eq. ( 5 . 2 . 7 ).  The solution is given by the sto-.

chastic dynamic programming algorithm. ‘

The opt imal control law is given byt 
S

u*(t) = — G*(t)x*(t) (5.2.8)

_________- B B
tlf botH H and ~ matrices are 2 x2 , then tr ~~ B

1 2 2B1 B2B2+ q
12 Z + + q22 E

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -- ~~~~~~ ——- -~~~
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- l 
____________________________I - r BB1~~-1 G*( t )  = — [R(t) + B’ K*(t+l)B + tr K(t+l)E j

I 

(B’ K*(t+l)~~ + (tr K*(t+l) Z~~ )’} (5.2.9)

where the Riccati-like matrix difference equation is

K*(t) = 2(t) + A ’ ~~t+l)A + tr K*(t+l) EAA

—5*(t) (B’K*(-t+l)B + (tr K*(t+l) E~~ )‘ ) (5.2.10)

K*(N) = F

and 
____________

S*(t) A (A’K*(t+l) B + ( t r  *(t+l)
_
~~~~

BB
~~~~~

S 
+ B’K*(t÷l) B + tr K*(t+1) Z ] (5.2.11)

The recursive functional equation is thus

V(N) = x’*(N) F x*(N) (5.2.12)

N-l

V(t,x*(t)) = 
*I

( t ) K ( t ) *( t )  + ~ K*(t+l) (5.2. 13)
-t=t

From the results for scalar system analyzed in Chapter 2,

we know that the convergence of the sequence of {K(t)} generated

by the Riccati—like equations (5.2.10) and (5.2.11) must satis-

S
. 

fy some inequality condition on the a priori means and covar-

iances of the randomly varying parameters. The steady—state

solution K then satisfies the so—called algebraic Riccat i  equa-

S t ion , and the contro l law has linear constan t gains in the

-- -.—~~~~~ ~~~~~~~~~~~~~~~~~~ — - S -~~~~~~~~~~~ - ~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ 
- -

-179— 1
steady—state interval.

‘
I

The limi t ing gain for the closed—loop control system

exists  even if  the Ricca t i  s o Ju t i o n s  diverge , as shown in the

scalar system examined in Chapter 2.  The gain in the l im i t

is obta ined from Eq. ( 5 . 2 . 9 ) .  A l t e r n a t i v e l y ,  the  gain can be

derived by considering the mean—square stability of a stochastic

system Eq. (5.2.1), under linear feedback as demonstrated in -

Section 2.5. In any case , the analysis will give the stabil— S

ity condition for the closed—loop stochastic control system .

5.3 Linear Multivariable Control for Systems with

S 
Scalar Random Parameters

In this section , we will consider a special case of the -

linear multivariable system formulated in Eq. (5.2.1). In par— 
-

ticular , instead of the random matrices we have to deal with in S

Eqs. (5.2.1) and (5.2.2). we replace the randomness by a random 
S

scalar multiplying the matrices A(t) and 13(t). So the notations

and symbols invo1ved in the solutions are that much less cumber-

some. The results given in this section are also found in [51)

and generalized in [79].

Consider then the linear discrete—time stochastic system ,
whose dynamics are described by the vector difference equation

x(t+l) = y (t)A x(t) + 5 ( t )  B u(t) + ~~t) (5.3.1) -

Both the system matrix A and the control matrix B are multiplied
p

by white , possibly correlated , sc alar random sequences. We -

S 

S

-A
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- I - assume that A and B are constant matrices of appropriate di-

mensions without loss of generality, since the product (y(t)A)

is time—varying. The additive noise E (t) is a zero—mean Gaus-

sian white noise. Assume that [A ,B1 is a controllable pair

S and that B is n x n and of full rank.

We further assume that the scalars y(t) and 5 ( t )  are Gaus-

sian white random sequences with known stationary statistics.

More prec isely , we have :

E{y(t)} = , E{(y(t)— ~)(y(t) — 

~
) } = I’ 6( t ,-t) S

( 5 .3 . 2 )

E {6 ( t ) }  = (5 , E{(6(t) — 
~~ ) ( 6 ( t )  — 6)) = ~ 6(t,r) (5.3.3)

E{(y(t) — 

~
) ( 6 ( t )  — = A6(t ,r) (5.3.4)

E (~ (t)} = 0 , E(,~( t )~~’(t)} = 6 ( t , -t )  ( 5.3.5)

where d (t , -r ) is the Kronecker delta. Furthermore, we assume

• that the plant noise j(t) is mutually independent of the scalar

S 
random sequences y (t) and 6(t).

We have the standard quadratic cost function (5.2.7) we

want to minimize. Assume that [A , is an observable pair.

Under the assumption that we can measure the entire state vector

x(t) exactly, at each instant of time , we wish then to find the

feedback optimal control sequence u(0), u(l), u(2), ... such

that the quadratic cost (5.2.7) is minimized .
S 

The problem can be readily solved using the dynamic pro-

gramming algorithm as in Section 5.2. The optimal control is

—S 
- - - -  -S 

—_______ -
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in linear state variable feedback form ,

u*(t) = — G*(t) x*(t) (5.3.7)

where the optimal feedback gain is given by

— l
G(t) = ER + ( 5 2 -4-~ )B’K (t+l) B] (y1+A)B’K(t+l)A (5.3.8)

The n ~ n matrix K(t) satisfies a recursive matrix equa-

tion of the form

K(t) = (y 2 + r)A’K(t+l)A + Q — 
S

(
~~ + A~~ A’K(t+l)B [R + (~~

2+ A  ) B ’ K ( t + l ) Bj ~~~B ’ K ( t + l ) A  J
(5.3.9)

K(N) = 0

We remark that the matrix Riccati—like equation (5.3.9) cannot

be related to a coupled set of 1i.~ear equations , however.

Therefore , it w i l l  be referred to as the “UTP m a t r i x ” eq uat i on .

Under our assumptions , the solution to the UTP matrix equation

(5.3.9) exists and is positive definite and bounded for all

finite planning horizon times, N. The average optimal cost is

given by N

J*(x (O),N) = x ’(O) K(0)x(0) + tr ~ K(t) (5.3.10)
t=O

For the infinite horizon case as N -, 
~~~~, we are interested

in examining the existence of an optimal solution and the

stabilization of the stochastic system Eq. (5.2.1). We prove

the following theorem.

S

~~~~i1 
- - -.~~ -~~~
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Theorem 5.1 (Uncer ta in ly  Threshold Principle)
S An optimal solution exists for the problem given by Eqs.

(5.3.1) to (5.3.6), as N -- a - i f  and only if

max A. (A)I~~
! i = 1,2 , n (5.3.11)

i B

where B is defined by

= y2 + r ~~~~
Y6
~~~

1
~
) > 0  (5.3.12)

S 

-

and max ~X~ (A)I denotes the magnitude of the maximum eigen-

value of the constant system matrix A in Eq. (5.3.1).

Before we present the proof of the theorem , it is impor-

tant to make some remarks.

Remark 1. In the case of non-random parameters (F = ft = f t

= 0), B = 0, this means that given our assumptions of the

pairs [A ,BJ controllability and [A , Q~] observability, one 
S

can always solve the infinite horizon optimal control problem

independent of the (open—loop) eigenvalues of A. On the

other hand, as the variances r and ~ of the random parameters

increase , then 8 increases and the value of 1/B defines the - : I
-I

radius of a shrinking disc which must contain all the open-.

loop elgenvalues of A in order for the problem to have a t

solution .

Remark 2. If the condition in Eq. (5.3.11) is violated ,

i.e., if S

max ~A 1(A)l 
> .

~~ 

(5.3. 13)
5 

i
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then there is no solution to the optimal control problem ,

and one cannot stabilize (in the mean—square sense) the system

of Eq. (5.2 .1). Under these conditions , (5.3.13), the optimal

cost in (5.3.10), undergoes exponential growth as N increases ,

so that

J*(N) > c e~~~~
1
~~ 

, c = constant (5.3.14)

Because of the explosive growth of the optimal cost in (5.3.14)

then only the short—term (small N) control makes sense ; see

also Section 2.4.

As in the scalar system in Section 2.4, even if condition

Eq. (5.3.12) holds , the control gain matrix G(t) in (5.3.8)

remains well-behaved and is bounded , so the limiting gain

— —  — l
G = l im ~ ~~~ [B’ K(t+l)B J B’K(t+l)A (5.3.15)
— 

~~~ ~~ 

— — — —

Next , we prese~-it the details of proving Theorem 5.1. We

remark that the proof essentially uses algebraic manipulat ions

and well known properties of the discrete Lyapunov and Riccati

matrix equations. The main idea of the proof is to examine

the behavior of lim K(t) or the behavior “backward in time”
N-~ 

S

of the UTP matrix equation (5.3.9). The arguments are simi-

lar to that used in [51].

Proof: For the sake of no t a t i ona l  conven ience , def ine

the scalars
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2 ft 1
~ = y  + r , a = ( y ( 5 + A )  , a =

1 2 3

(5. 3.16)

The UTP matrix equation (5.3.9) can then be written as

K(t) = c& A ’K ( t + l ) A  + — a A’K(t+l)B [R + —
~~~---- B’K(t+1)B]’~~

B’K(t+l)A (5.3.17)

t 

—

I From Eqs . (5.3.12) and (5.3.16), we obtain that

B 2 = a
1 

— a2a3 
(5.3.18)

By adding and subtracting a2a3A’K(t+l)A to the right-hand

S side of (5.3.17), and af ter some algebraic manipulat ions, Eq.

(5.3.17) reduces to

K(t) = B 2
~~’~~(t _1)~~ + + K(t+1) — K ( t + l ) B

Ea R  + B’K(t+l)B]~~ B’K(t+l)} A (5.3.19)

Atten tion is focused on the matr ix we now def ine:

- 
, M(t+l) ~ K( t+l ) — K(t+l) B [~~ R + B’K(t+l) BY

1 B’K(t+l)

(5.3.20)

Such matr ices arise naturally in the matrix Riccati equation

of standard linear—quadratic problems where the control weight-

ing matr ix  is a 3 R [81]. Under the given assumptions of [A ,BJ

control labi l i ty  and [A ,Q~ ] observability, it is well known

I!

--~~~~~~~~~~~~~~~~-“~~~~~~~~-~~~~~~~~ --- - -
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[81], [82 ] that

M(t+l) = M’(t+l) > 0 (5.3.21)

and there exists a bound

L > M(t) , for all t (5.3.22)

Since M(t+1) is positive definite , so is a2a3 A ’ M ( t + l ) A .

Hence , we readily obtain

K( t ) > B~ A’K(t+l)A + (5.3.23)

From Eq. (5.3.23) it is obvious that if any eigenvalue

of ( B A )  is greater than unity, then K(t) grows without any

bound backward in time , lim K( t ) does not exist , and the

optimal cost undergoes exponential growth as given by

Eq. (5 .3 .14) .

On the other hand , from (5.3.22) and (5.3.23), we obtain

that

K(t)  < B2A ’ K( t+l)A + + a
2a 3 A ’L A (5.3.24)

Hence , if all the eigenvalues of (BA) are less than unity,

the right—hand side of the recursion Eq. (5.3.24) will approach

a bounded constant solut ion matr ix , and so will K(t). The S

limiting solution lim K(t) is well defined.
N+=

We make an important remark that  the proo f requires that

B matr ix is n x n and nonsingular , as required in the corollary
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of [5 1) . However , we believe that  th i s  is a s u f f i c i e n t ,

but by no means a necessary, condition .

5.4 Optimal Control for  Systems wi th  Inexact Measurements
r

In this section , we shall consider the optimal stochastic

control of linear dynamical systems with purely random para-

meters and imperfect measurements. More precisely , we have the

same linear dynamical system as in Eq. (5.2.1) , but the measure-

ment data are now assumed to be corrupted by additive white

noise , i.e.,

1S ~

I 
z(t)  = ç( t ) x( t) + 0( t )  ( 5 . 4. 1 )

where 0(t) is the zero—mean Gaussian white noise vector , and 5

C(t )  is assumed to contain elements that are randomly varying.

This general case has been considered in [ 3 71  . The

cost functional we want to minimize is that given by Eq.(5.2.7).

Using dynamic programming algorithm , the opt imal control at

t N—i is given by

u*(N...1) = — G ( N — l )  x ( N — l / N — 1)  ( 5 .4 . 2 )  ~S

where x(N—l/N--l) is the conditional mean of x(N—1) given

the past measurements up to time N—i under controls up to N-2, S

and
S . —1

G(N— 1) = [R ( N — l )  + B’(N—l)F B(N-.l)] B’(N—l)F A(N—l) (5.4.3)

We note that in computing the optimal control at t = N-2,
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it is important to have the estimation error have a conditional

covariance matrix 
~~~ 

(N—i/N-i) be independent of ~(N— l) and

= { z(0), . . . ,  z(N—l) }. If this  is true , then the co-

variance will be independent of the past controls. In linear—

quadratic—Gaussian problems , the linearity of both the system

and measurement equation s is s u f f i c i e n t  for  the  condit ional

covariance to be independent of past controls. Under these

assumptions , then the optimal control at time t is given by

u*(t) = — G ( t )  x ( t/ t )  ( 5 . 4 . 4 )

where ________________ _______________

G(t) = [R ( t )  + B’ (t) K(t+l)B(t)f1 B’(t)K(t+l)A(t)

(5.4.5)

and the Riccati—like matrix difference equation is given by

K ( t )  = A’(t)K(t+l) A(t) + Q ( t )  —

A ’ ( t )  K ( t ) B ( t )  [R( t )  + B’(t)K(t+l)B(t)]

B ’( t )  K ( t + l ) A ( t )  ,

K ( N )  = F ( 5 .4 . 6 )

Note that the optimal gain G(t) in Eq. (5.4.5) is not random .

The optimal cost—to—go expression is then given by
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• J(t) = x’(t) K(t)x(t) + tr K(t) E(t/t)

N-i
+ ~ tr K(r+l) (E + B(r )G(r)

(5.4.7)

The conditional mean is not computable in closed form, since

the truly optimum filter is infinite—dimensional .~ However,

analogous to the development in Section 4.3, we can restrict

our attention to a fixed structure dynamic compensator , where

we cascade a linear filter with a linear controller. And we

reformulate the original stochastic control problem into a

deterministic parameter optimization problem , using only the

• first and second unconditional moments.

Fixed—Structure Linear Controller

Suppose the linear multivariable dynamic system is des-

cribed by the vector difference equation

x(t+l) = A(t)x(t) + B(t)u(t) + ~(t) (5.4.8)

t = 0,1,2,...

where ~(t) is the n—dimensional state vector in

u(t) is the rn—dimensional control vector in Rn •

~(t) is the zero-mean white Gaussian noise vector ,

with covariance matrix E ,

*Aoki’s book contains an error in using the Kalman filter.

LI 
-- 

~~~~~~~~~~~~~~~~ .•— - • _
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x(0) is a random vector with mean 
~ 

and covariance

The measurement data are given by

z(t) C(t)x(t) + ~(t) (5.4.9)

z(t) is the actual r-dimensional sensor measurement

vector in

e (t) is the r-dimensional zero—mean white Gaussian noise

vector with covariance matrix 0

The matrices A(t), 8(t) and C(t) in Eqs. (5.4.8) and (5.4.9)

contain elements that are uncertain. We assume that the unknown

parameters are purely random processes. We also assume that

their structure is known .

In the case of stochastic regulators, we define the

scalar index of performance by a quadratic cost functional of

the form

N-i
J = E{x’(N)F x(N) + ~ x’(t)Q x(t) + u’(t)R u(t)} (5.4.10)

t=0

where F, Q, R > 0. The optimal stochastic control problem is

to minimize the cost functional in Eq. (5.4.10) subject to the

dynamic system constraints Eqs. (5.4.8) and (5.4.9).

We fix the structure of the optimal stochastic controller

or compensator to be considered . The optimal stochastic con—

trol at each constant of time is to be generated by time-vary-

ing control ,

I

I- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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u(t) = — G(t) x(t) , (5.4.11)

x(t) ~ R
n (it arbitrary , but finite).

The quantity x(t) is the state estimate of the true

state vector x(t) and is to be generated by the linear unbiased

est imator

x(t) (i — 11(t) ~(t)) (~~
(t_ 1) — ~(t_1)~ (t_l)) x(t—l)

+ 11(t) z(t) (5.4.12)

x(0) = x-o

From the results presented in Section 4.4, we can write

down the recursive equations for the propagation of the second

moment matrices~ t

M ( t ) = - ~ ~(t_ 1))~~0 0
(t_1)(~

_
~ G(t-l)~’+ ~ G(t-1)M (t-1)

— B ~(t—1 )~ ‘ + (A_B ~(t_1)) M ’(t—1)G’(t—1)~~’

+ E + B G(t—1)M11
(t—1)G’(t—l) ~~ +

tr ~~~~~0(t-l) 
+ tr ~

BB
(G(t 1) (M (t-l) -

M ( t-l) - M 1
1(t—l ) + ~t11 (t_l))~~

’(t_ 1))

(5.4.13)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

- Hi
ttr 

~11 ~ 2 1  
~A2A 1 + 

~ 22  

A 2A 2 where

I . ?I
A
J = covariance of the ith column oi A and jth

column of A.
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M
0 1

( t )  = - (I - H(t)~ (t))[K ~~~~~~~~~~~~~~ G(t-l)~~’+ M 1~~(t-l)

XG’ (t I) — tr yAK ~~~~~ — tr 
0

G (t-1) 
(~~00

(t_1) - M (t-I)- (t-1) + M
11

(t- l))

( 5 . 4 .1 4)

M (t) = - 11(t)~ (t)) [~ 
M (t-l)~~ + tr ~AA M 0 0

(t-I) +

+ tr (t—1) ( M 00
( t - l)  - M (t-1) - M ’ (t-l)

+ M ( t ~ l))G’(t~ i)] 
_____—

~~~~~~~~

(I — H(t)C(t) ) ‘ + 11(t) ~CC M
00

(t)+ o)H’ t

‘I :
(5.4.15)

The cost function to be minimized becomes:

j  = tr [F M
00 (N)) + tr[ ~ M (t)J +

tr ~G’(t) 11 G(t) (M (t) - M (t) - M0;(t) + M ( t ~j

(5.4.16)

The original problem has now been reformulated as a minimiza-

t ton over the t iements of the controller matrices G(t) and

11(t).
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The deterministic optimization problem is then given

the constraint equations (5.4.13) to (5.4.15) and initial

conditions

i ~ ‘+ E—o —o —Xo —xo

M(O) = (5.4.17)

~-xo ~.xo 
0

and the cost functional , Eq. (5.4.16), find the controller

matrices G*(t) and R*(t) such that J is minimized.

The optimization problem can be solved using the Matrix

Minimum Principle or Dynamic Programming algorithm. The re-

suits are summarized in the following theorem. The proof is

similar to that given for the scalar system, and hence will

not be repeated. 0

Theorem 5.2 
0

The optimal gain matrices to the deterministic optimiza-

tion problem formulated in Eqs. (5.4.13) to (5.4.17) are given

by

H*(t) = E
~~~

(t/t_ 1) ~~~~~~~~~~~~~~ ~~~‘ +

tr L
CC (t) + e j  (5.4.18)
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U~ (t-l) = [
~

‘ (
~~

. I L ’ ( t )  P(t)H(t) +

+ j~ + tr (tr H’ (t)P(t)ii(t)~~ + (i -

P ( t )  (~ 
- 1t(t~ + 

-
~~

cc
~~ }L’(t )P(t.)H(t) ~ + K(t)) K (5.4.19)

~v t i t ’ r t ’ 
—

K(t) = ~~~~ ‘ ( t r H ’ ( t + I ) P ( t + l ) f l ( t +~~)~~~~~ +

+ - ~~~
‘ (tr ll’ (t+~ )P(t+1)}L(t+l) ~~~ + K(t+l))

~ [~
‘(tr H ’ (t+l)P(t+l)H(t+l) y

CC 
+ K(t+1))~~ + II

+ tr ~~~~~~~~~~~~~~ ~CC 
+ (I~~1I(t+ .I) 

~
)‘

P(t+i) (I_H( t+~ ) c) + K (t+i))y~
4t
~] ~~~

‘

1t r  H (t~~t)P(t+1)H(t+t) ~
CC 

+ K(t+l)’~~ +

tr ( tr H
’ (t+l)P( t +L)H(t+l) ~CC + K ( t +1) +

y~
H (t+1) 

~
) i~(t+I) — !~(t+1 ) ~ )) yAA

K(N) F (5 . 4.20)
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P(t) = ~K - H(t+l)~~) 
P(t+l) (!-~ (t+1) ~

) x

+ tr H’(t+l)P(t+l)H(t+l) ~CC 
+

H’(t+l)P(t+l)}l(t+l) + K(t+l)) ~ + it

+ tr (tr H’(t+l)P(t+l)H(t+l) ~
CC 

+ 
(~

_
~~ t÷u ~

)‘

~R t7i)~~~ + IC(t+l))Y~~]’~~
’

(
tr H’(t+l)P(t+l)R (t+l) ~CC +

P(N) = 0 (5.4.21)

where we also identi fy X(t) P400
(t) and E

~~
(t/t) M~ 1(t).

It can be shown that M 11(t) = M 0 1 (t), hence the state

second moment is given by

X(t) = (
~ 

- ~ ~(t_1))~~(t_n (
~

_
~ 

~(t_l))
’ 

+ ~ G(t-1)

M
11 (t—l) (~~

_
~~Q t+1 )’ + 

(~~
_
~~2(t+1) M 11 (t.-l)

G’ (t—1) ~~‘+ E + ~ G(t—1) M11(t—1) C’ (t—1) ~~
‘ +

tr y
AA X(t-l) + ~~ y

BB G(t-1) IM (t-l)-

M11(t—1)J G’(t—l) (5.4.22)
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The optimal cost is given by

J = tr [K(O)X(0) + P(0) 
~~(o/o)j 

+

IN — i /
tn ~ K(t+1) + P(t+l) (I—H(t+l)C ) (I—H(t+l)C)’Lt= o /

+ P(t+i)H(t+l) tr H’(t+i) +

P(t+i) H(t+l) e H’(t+l) (5.4.23)

To obtain the optima l gain matrices , we have to solve

a coupled nonlinear two-point boundary value problem which

involves matrix difference equations (5.4.20) — (5.4.22) and

(5.4.15). Hence , there is no separation between control and

filter equations. Numerical solutions to the TPBVP can be

obtained by using the successive approximation method .

t :~
I
4 
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5.5 Conclusions

For algel raic simplicity, we have thus far restricted

our consideration to the case of scalar linear control systems

only. An extension to the linear muitivariable systems with

purely random parameters can be made in a straightforward

manner. The results of Sections 2.2 and 2.3 are extended in

Sections 5.2 and 5.3 for a particular class of problems in

which the random parameters are scalar variables. The results

of Sections 4.2 and 4.3 to 4.4 are extended in Section 5.4 to

linear multivariable control systems.

For the special case of a multivariable linear system , we

derived a threshold condition involving the maximum eigenvalue

of the system matrix A and the means , variances, and cross-

correlations of the purely random parameters. If the threshold

condition is violated , then there does not exist an optimal

solution to the infinite horizon problem . The linear multi—

variable system is then not mean—square stabilizable under

linear feedback.

In Section 5.4, we presented the form of solutions to the

linear multivariable control systems with fixed structure feed—
.
~ t

back regulator to control the dynamical system. The specific

notation used readily degenerates to the standard linear-quad—

ratic—Gaussian solutions. Other possible notations involve

tensors and Kronecker products (direct products). The corn—

plexity of the matrix difference equations would even make the

computer simulations a nontrivial problem .
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CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1 Summary of the Main Results

In this research , our objective has been to investi—

gate the optimal stochastic control of linear dynamical

systems with purely (white) parameters. The uncertain para—

meters are thus uncorreiated in time. The white parameter- F
approach to adaptive stochastic control is important because

it shows (in a worst case sense) the fact that the control

gains of an optimal stochastic system with purely random

parameters depend not only upon the mean values, but also

upon the variances of the random parameters. The solution

of this class of problems iliustr~ ces how the effects of

model parameter uncertainty, as quantified by the parameter

variances, modulate the control gains , thus introducing the

notion of “hedging” in the presence of dynamic uncertainty .

In Chapter 2 we analyzed the adaptive stochastic

control of uncertain systems with exact measurements of the

state. We obtained the time-varying linear feedback control

law. We then investigated the existence of optimal control

law for the infinite horizon problem . The result is known

- as the Uncertainty Threshold Principle. The solution to the 
-

-

discounted cost problem further emphasizes the issue of

optimality versus stability in adaptive stochastic control

problem . Optimality is based on Bellman ’s Principle of
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Optimality or Pontryagin ’s Maximum Princip le. Stability of

stochastic systems under feedback is an extension of the

Lyapunov stability concept for deterministic systems . Both

the almost sure (pointwise) stability and mean-square

stability criteria are obtained for the perfect measurement

system .

In Chapter 3 we analyzed the optimal stochastic

estimation of linear systems with randomly vary ing parameters.

Since the optimal estimator is nonlinear and infinite dimen—

sional , we derived the optimal linear minimum variance un-

biased filter. The optima l linear estimator turns out not

to be the dual of the optimal control problem considered in

Chapter 2. We note that the optimal solution derived in

Chapter 2 is the truly optimal control law , whereas the opti-

mal state reconstructor in Chapter 3 is only the linear m m —

Imum variance estimator.

In Chapter 4 we considered the optimal control of

linear systems with purely random parameters and noisy sensor

measurement data . Hence , we need to solve simultaneously

the optimal stochastic estimation and the optimal stochastic ~ I

control problems . The optimal controller must reduce the

uncertainty in the state and regulate the process. In the

case of stochastic systems with uncertain parameters, “good”

knowledge of the future values of the state is not available.

Our approach is to let the mathematical formulation of the

problem handle the complex tradeoff between good identifica-
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tion and good control , and provide the optima l solution con-

taining the appropriate strategy for optimizing a performance

index as a function of time . Since the problem is a non-

linear stochastic contro l problem , we then consider the de-

sign of the control structure composed of a linear controller

and a linear estimator. We thus transform the original sto-

chastic control problem into a determinist ic parameter

optimization problem . We jointly optimize the control and

filter gains to minimize the expected value of the quadratic

performance index.

The solution to the deterministic optimizat ion

problem can be obtained using the Matrix Minimum Principle

or the dynamic programming method . We then considered the

infinite horizon problem , and found the stability region for

a particular set of parameter means and variances through

the computer simulations of the two—point boundary value

problem . We carried out the mean—square stability analysis

using the direct output feedback , and obtained the sufficient

condition for stability.

In Chapter 5 the results obtained for the scalar

systems are then generalized to linear multivariable systems .

The notations quickly become cumbersome . We then considered

a special class of linear multivariable control systems where

the constant system matrices are multiplied by scalar random

variables , and derived stability criteria for such a system .

We also indicated the form of solution to the optimal control

-. ~~
--- —- -

~~~~~-- -~~~~~~~-- ---~~~~~~~~~~~,- -
~~~~~

-
-~~~~~~~~~~~~ 

- - -



- -~~~~~

—200-

problem of systems with noisy sensor measurements employing

the design based upon the decomposition of the control

structure into a linear control and linear estimator of fix-

ed finite dimension .

6.2 Conclusions

We have shown in this thesis that for dynamic sys-

tems with known structure , but randomly varying parameters

(modelled as white noise), the Uncertainty Threshold Princi-

ple states that optimal infinite horizon control exists if

and only if the dynamic uncertainty (as quantified by the

means and variances of the uncertain par’~.meters) satisfies

a certain threshold condition . If this threshold is exceed—

ed, then the optimal stationary control does not exist.

Further , the results obtained for the discounted

cost problem seem to imply that one has to be careful in

interpreting the stochastic optimization results , and that

an independent stochastic stability analysis should be per—

formed. In most stochastic optimization problems solved to

date , optimality and stability are not in conflict; optimal

feedback controllers result in stable systems. (The system

may be inherently unstable in the absence of control.) This

is clearly not the case for uncertain systems in which the

randomness enters in multiplicatively as well as additively

(such as in the standard linear—quadratic—Gaussian problems).

The results on the optimal linear state reconstruct— 

-~~~~~~~~~~~-.__
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ion for systems with randomly varying parameters give a

sufficient condition for the stability of the linear t’stima-

tor. The condition turns out to be sufficient to ensure that

the uncertainty threshold condition In Chapter 2 will be met.

It Is also the necessary and sufficient condition for the

asymptotic variance of the uncontrolled linear system to be

finite.

In the fixed structure linear control and estimator

design for systems with noisy sensor data , the filter stabi-

lity condition dominates the contro l stability condition .

I -f the filter stability condition is satisfied then the

sped ftc structure dynamic compensator has steady—state solu-

tion . The linear controller is mean-square stabilizable

under feedback for all system parameter means and variances

that satisfy the linear estimator stability criteria. If

the linear dynamic compensator is stabilizable , then the

uncertainty threshold for the eflact measurement case is sat-

1sf-ted. The true stability criteria for the t’ase with random-

ness in the measurement equation lies between the above two

stability conditions. The stability region for linear systems

with random measurement parameters Is much reduced from the

exact measurement case , but it Is l arger than that for the

linear minimum variance filter problem .

- ~~~—-
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6.3 Suggestions for Future Research

(A) It would be desirable to derive the uncertainty

threshold condition for the linear multivariable systems

both for the exact measurement and the noisy sensor measure-

ment cases. It is obvious that the uncertainty threshold

condition will involve the means and covariances of the purely

random (white) parameters. In the perfect measurement case ,

the analog of Eq. (2.4.13) appears to be a matrix recursion

of tne form

K ( t )  ~ M K(t+1) M’

where the matrix M contains all the mean values of the vector

parameters and their covariance matrices . Non-existence of

a stationary solution for the infinite horizon problem would

result if an eigenvalue of the matrix M is greater than un ity.

(B) The results given in this thesis can be used to

analyze the performance of aggregated small models versus the

large model. The approach is to treat certain coefficients

In the aggregated model as being purely random. The variance - . I i

of the coeff icients should be such that the forecasts of the

state variables generated by the more complex model would

fal l within the three standard deviations of the forecasts

generated by the aggregated model . To accomplish th is may

require some of the uncertain parameters of the aggregated

model to be time-varying , and analytical methods will have to
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be developed to determine how the variances are to be chosen .

It is conjectured that the optimum determination of the para-

meter covariance matrix can be formulated and solved as a

deterministic optima l control problem using the minimum prin—

ciple.

We remark that the use of random coefficient models

in economic policy analysis is very common . The benefits to

economic stabilization policy analysis is apparent if we are

able to devise methods for evaluating aggregation costs in a

- 
- well-defined manner.

(C) An important aspect in designing optimal stocha-

stic control law concerns the sensitivity of the resultant

system to large parameter variations. The analysis of sto-

chastic systems with randomly varying parameters can further

develop and aid the design of optimal stochastic controller.

The dependence of the random parameter system control law on

the parameter covariances can systematically indicate which

system parameters are more important in the design of the

closed—loop system controls. An extension and application

of the theory in this thesis to the socio—economic models in

1 83) would demonstrate the importance of an understanding of

the random parameter systems .

(D) The analytical results from the adaptive stocha-

stic control of linear systems with white parameters are

applicable to the Multiple Model Adaptive Control systems

design [841 since in the MMAC design , we hypothesize a set
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of possible models that the actua l operating system we are

trying to control may belong to. Additional quantitative

measure can be introduced into the analysis by assigning the

• parameters with a priori variances to reflect the uncertainty

in our knowledge of the random system parameters.

(E) The results in this thesis research can be

directed toward the further understanding of the dual control

methods . Since most dual adaptive control algorithms are

computationally iterative in nature , the assumption of pure-

ly random parameters in the future can reduce the analysis

required to generate an approximate optima l nonlinear stocha—

stic control law. We have seen that the control gains of the

optima l stochstic control system are strongly modulated by

the uncertainty level of the random parameters. These re-

suits can be used to refine the suboptima l dual control

methods so as to preserve the planned learning concept , but-

reduce the real-time computational requirements.



— - — -- - — ‘... —~~~~~~~~~~ ~~~~~~~~~~~~~~~~- ~~~~ -— —r

-205-

APPENDIX A

DERIVATION OF ThE OPTIMAL LINEAR CONTROL USING

THE MATRIX MINIMUM PRINCIPLE

The system defined by difference equations (4.4.12) -

-~ 
(4.4.18) and the scalar cost functional Eq. (4.4.5) are in the

form required to use the matrix minimum principle [71] . So,

let P(t) be the co—state matrix associated with M(t). The

Hamiltonian function c~~(M(t), P(t+1), G(t), H(t+l),t) for

our problem is then

Z [M(t)~ P(t+1), G(t), H(t+1), t) — tr[Q(t)!(t) ) +

tr t(!(ti-l) — M(t))P’(t+l)] (A.1)

If (G*(t), t 0 ,1,..., N—l} and {H*(t+1), t=0,l ...,N—1}

are optimal gains and {&I*(t), t—0,l,..., N} is the optimal

state, then the discrete minimum principle states that there

exists a co—state {P*(t), t—O ,1,..., N} such that the fol—

lowing hold:

The canonical equations are given by 
• -

M*(t+l ) — M* ( t )  = a~~ ]) ) 
( A . 2)

r ~ 
-

. 

P*(t+l) — P *(t)  = — 

~ f(t) 
(A 3)

The boundary conditions are given by

M *(O) = M( 0) ( A . 4)

p*(N) = F (A.5)

Ih.~1~~~I 
_ _ _
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First , we expand the terms in the Hamiltonian to obtain

2t D 4 ( t ) ,  P(t+l), G(t), H(t+l), tJ [Q t +R(t G2 t~ r&
00

t

— G2 ( t ) R ( t ) M 10 ( t )  — G2(t)R(t)M 0 1
( t )  +

G2(t)R(t)M
11(t) + (M 00

(t+l) — M 00 (t))P0 0 (t+l)

+ (M 0 1
(t + l )_  M 0 1 ( t )) P

0 1
( t + l ) +(M 10

( t +l )_  M (t))

P
0

( t+l)  + (M 11
( t +l)  - M

11
(t)) P11

(t+l) 
A 6

From Eq. (A.3), the components of the co-state matrix P are

given by

P * ( t) = Q(t) + G2(t)R(t)+ ~~i(t)- ~(t)G(t))2 + 
~aa

( t )  +

~bb(t (t)lP* OO (t~~~ + D — H ( t + l )  ~ (t+1)J

E~aa( t )  + 
~bb
(t)G2(t)] ~~ (t+l) + p* (t+1)J

+ [u_H(t+l)c(t+l))2 (~ aa
(t )  + 

~bb
( t
~~~

(t))

+ 
~cc~

t4i) H2(t+l) 
(~~~

t _  b(t)G(t))2 + 
~aa

(t)

+ ~:bb ( t ) G 2(t )) 1 P* (t+l)
11 (A.7)

P* (t) = — G2(t)R(t)+ P~ 0 (-t +l)[E(t)G(t)( ~(t)—E(t)G(t)) —

~bb(t
2(t)] + [(1_H(t+l)~ (t+l)) (~

2(t) -

~bb
(t
~~~~

t) — ~(t)~ (t)G(t)] P* (t+l) + P~~1(t +l)

[_ (l_H(t+1)~a(t+l))2 ~bb (t
~~~~~t)  + ~~~~~~~~~~~~~~~

~~~~ - (~~ 2 ( t )  + 
~bb(t (t)) G(t)

• (A.8)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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P~~1 ( t )  = G2(t)R(t) + [b b
t + 6 (t)) G2(t)1 P 0(t+l)

+ [(1_H t_ 1~~~~t+l ) (~~(t)~~ t)G(t) + ~bb(t)G
2(t))]

(P~ 0(t÷l) + P* (t+l )) + P’
~1(t+l ) [(l_H(t+1)~

(t+l)~
2

(~~ 2 ( t )  + 
~bb

(t (t)) + z
~~

(t+l)H 2(t+l)

(E2 t + Ebb(t)~ 
G2(t)1 (A.9)

For every G(t) and H(t), t = 0,1 ,2,.... N-I ,

j [M* t , p*(t+l).G*(t),H*(t+l)J < flM* (t),P*(t÷fl~ Gt ).H(t+l)]

(A.l0)

Since the “controls” G(t) and 11(t) are unconstrained in this prob—

1cm , the necessary conditions for the minimization of the Hamil-

tonian f u n c t i o n  are :

a 
= 0 , 

— 
a ~ = 0 (A. 11)

aG (t) 3H(t+l) 
*

S.

We obtain from the necessary conditions ~1~/aG that

0 = 6( t )  (E cc ( t+  112(t+ P11
(t+l)+ P00(t+l~~ (t)~ M 00 (t) — t

M 0 1 ( t)) + i~( t ) P 0 , ( t+l)(]._ H ( t + l ) c ( t + l ) a ( t )  [M ( t )  — M ( t )]

f . — [62 ( t )(E  (t + l )U 2(t+l)P (t+1)+ P (t+1)9. R(t) +

Ebb( t ) (E cC (t+ 1 ( t+1)P
I I

(t + l )  + P (t+l))+ -

(l_R( t+l t÷l )2P
1 1

t+1 + [l_R (t+l)a(t+l)}P 0 1 (t+l)]

4
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~ ~~( t )  [M 00 ( t )  - 2M
~~1

( I  ) + M 1~~(t)] (A.12)

and from 1’ / ~11 that

0 = P
11
(t+1) [It(t+1)~~~(L+l ) (~t

2
(t )M (1) + :(t)+ 

~bh
(t)G 2(t)

(~i~ ~
( t )--2M~( t ) ~ t t )M( t ))  + 1l( t+l ) ~~

( t+1)

~~(1n o t (.t t _ i (t)G(t)) 2 + M ( t )~~~~ (t)+
y
Llb

(t)G2 (t
~

(~
1 (t) - 2M 0 1 (t) + M11(t)) - 2M 01 (t)(_ ~(t)~~(t)G(t)

+ I~
2 ( t ) G 2 (t~~f M (t)t~

2 ( t ) G ~ (t)) ÷ H(t+l) O (t+1) -

~(t+I) (~~
2 (t )M

1
( t ) + E ( t )  

~ 1~~
( t 1

0 0
( t )  +

~bb (t)(; (t) 
(~

I
0 0

(t)_2~1
0 1
(t~ + M ( t ) ~~] 

-

P
1 1

( t + l ) ~~(t+l)[( h(t)G(t)M
1 1

( t )  ÷ (~~(t)_b(t)G(t))

M o~~( t ) ) a ( t )  + E  ( t ) M ( t )  + 
~bb

(t
~~~~

(t)

(M 0~~~t 
— 2M

0 1
(t) f M

~~~
( t )

~ + 

~~ N— 1 

( A . 1 3 )

It we assume that the orthogonality condition holds ,

Ei [x ( t )  — x(t) )x(tY~ = 0 (A.14)

so that M
01
(t) = M

11
( t )  and assume P

01
(t+l) = 0, the Eq.

(A.12) is sat~ sfied if the optima l control gain is given by

G(t) = 
[~~

t (~~CC
t+1 H2 t+l~~~1

(t+l)÷ Po)(t))i(t)
1/~

62 ( t )  +

Ebb(t)) ~~~
(t+l)H2 (t+I)P

11 
(ti-i ) + P (t) + R(t)

+ Ebb(t) (1_H t+1 c t+1~~ P (t+i)] (A.15)
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and we conclude izmnediately from Eq. (A.13) that

• H(t+1) =

+ o (t+l) ] (11.16)

where

M 11 (t+l) = ~
2 ( t ) M

11
( t )  + E(t) + El)b(t)G (t)[M00(t) M1 (t)]

( A . 17 )

Substituting the optimum gain Eq. (A.15 ) into (A.8), we

obtain that  P 0 ( t )  = 0. Since we choose P (N) = 0, we con-

clude that P (t) = P ( t )  = 0 for all t c [0,N].
01 10

The difference equation for the correlation between state

estimate and the estimation error is gi~ en by

• E ( ( x ( t )  - x ( t )  ) x ( t )~ = M~~1 ( t )  - M 11 ( t )  (A.18)

It can be shown that if M01 (t) = M11 (t) and the filter gain

given by (A.l6) then M01 (t+l) = M 11
(t + 1 ) .  Since by choice

of init ial condition, Eq. (4.4.19), M
11
(0) = M

01
(0), we con—

elude that M ( t ) = M
01

(t )  for all t ~ [0 J, N] .

The filter and control gains for the deterministic optim-

izatlon problem are given by Eqs. (11.15) and (A.16). The co--

states propagate backwards according to 
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P00 (t) = (~ (t — ~(t)G(t))
2
(ECC

(t+l)H2(t+l)Pl l(t+l)P (t+l))

+ Q(t) + E ( t )( ~~~~( t  )H2(t ( t + l )  + 
~~~ 

( t + l ))

+ G 2(t) [Rt + 
~ b

(t) 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ (1_11(t+l) ~i(t+l))
2 P (t+l))

]11

P
00
(N) = F (A.l9)

P11 (t) 
= i

2
( t )  (1_H (t+l~~ (t+1)2 P11 t+u + G2 ( t )[f r2 ( t )

+Ebb(t))E (t+l)H
2(t+l)P l l

(t+l)+ P (t+1))

+R(t) + 
~bb

(t)(1_ t+ t ÷ ) P l l
(t
~~~]

P11
(N) = 0 (A.20)

Note that the co-state equations are coupled nonlinear

difference equations.

The closed-loop system transition parameter is given

by

•( t )  = ~(t) l—E~(t) (
E~~ (t+l)H

2 t+l P (-t+l)+ P (t+1))

[(~~2 ( t )  + Ebb(t)) (E~~ t+l
H2 t+1 P

11
t+l + P

00
(t+l ))

+ R ( t )  + Ebb(t) (
l_H (t+1 c t+l

) 
P

11
(t+l)] ~

(A.21) 

—- - - -
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APPENDIX B
DERIVATION OF THE OPTIMAL LINEAR CONTROL

USING DYNAMIC PROGRAMMING

The optimal control problem stated in Eqs. (4.5.34)

to (4.5.36) is solved in this appendix using the dynamic

programming method . At time t=T-1 , the expected cost-to-go

is given by

J(T— 1 , ~ (T— 1))  = E{F x2 (T)  + Q(T—1) x2(T—1)

+ R(T-1) u2(T_l)lzT 1 , uT_2} (B.1)

Imposing the constraint that the control u(t) be

• given by the linear time-varying feedback law of the form

u(t) = — G(t) x(t) (B.2)

we get

J(~~( T — 1) , T— 1) = mm E Q(T—1) x2( T— l )  + R(T—1) G2(T—1)
G(T—1)
H(T- 1)

• ~~~T 1) +F [a
2(T:1) x2(T—1)

+ b (T—1)G (T—1)x (T—1)

— 2a(T—1) b(T—1) x(T—1) G(T—1) ~(T—1)

+

= mm E)[Q(T_1)+Fa
2(T_1)]x2(T_ 1)fz

T_1
~

G(T—1)
H(T — 1)

+ E~ ( R(T-l)  + F b2(T-1)) G2(T-1) ~
2(T-1)

- 2Fa(T-l) b(T-1) G(T-1) x(T-1) 
~
(T_l)Iz 

-

+ F E(T—1) (B.3)

I. 
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To compute the cost-to-go expression we need to

evaluate E{x(t)x (t)Izt } and E{~
2(t)Iz t } and obtain their

dy n a m i c a l  equa t ions .

The state of the constrained linear controller—

estimator system are given by

x(t+l) a(t) x(t) — b(t) G(t) ~(t) + E~(t) (B.4)

Denote the predicted estimate by x(•) then

~(t+l) = (1 — H(t+1) c(t+1)) x(t+1) + H(t+1) z(t+1) (B.5)

The estimate x(t+1) is a random process since it depends

on z(t+1), the measurement process.

The predicted state estimate is given by

x(t+l) = (a(t) —b(t) G(t)) ~(t) (B.6)

Using Eq. (B.4) we calculate the quantities

E{x(t)x(t)~ zt} E)[(1_H(t)~~(t))x(t)

+ H ( t ) z ( t )] x ( t )~~zt

= E{x(t)e(t) }

+ H ( t ) C ( t )
~~xx

(tk_1)+E{ X2( t ) }

+ H(t)c(t)E{e(t)x (t)} ( B . 7 )

where ~ ( t ) x ( t ) — ~~( t ) .

From the derivation of the optimal solution to the

deterministic problem in which the control is constrained to

be l inear  mapping of the outputs  of l inear f i l t e r  dr iven by

measurement , it was shown with the assumption of

E{e(0)x(0)) 0, ~(0) 
= x(0)—~~(0) (B.8)

the filter and control gains given by Eq. (4.5.1) and
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Eq. (4.5.2) jointly satisfy the necessary conditions for

optima l-its’ . In addition , the orthogonality condition

E-L~(t) e(tlt) } = 0 for all t c[0,N) , so that the estimate

and the error are uncorrelated.

Then we have

E{x(t) ~(t)(z
t } = X ( t )  + H ( t ) ~~ ( t )  ~~~

( t I t _ 1)  (B.9)

- 
where

I
X(t) ~ E{x

2(t)} (B.10)

E {~
2(t)tz t } = E{(1 -~~(t) ~(t))

2
~~
2(t) +112(t) z2(t)p

= ~(t) + J 12 ( t ) ( O ( t )  +~~
2(t) 

~xx (t)

+ X
~~~

( t ) X ( t ) )  = ~~(-t ) (B.11)

where the orthogonality conditions was used , and we define

X(t) ~ E(x
2(t)} = 

~~~
(t) + X(t) (B.12)

Substitute these results for E(~ (T-1) x(T-1)IzT~~}

-, and ECx 2(T-1))zT~~ } into the cost-to—go we obtain

J(T-1) = E~[
Q(T_1) +Fa2(T_1)]x2(T_1)IzT 1~ + E)[R(T_1)

+ F b 2(T_ 1)](G
2(T_1)(~~(T_1)

+ H2(T-l)(c2(T-l) 
~~~

(T_1) + 0(T-1))

2
+ H (T—1) E

~~
(T_l)X(T_1))

— 2F a(T—1)b(T—1) G(T—l) (X(T—1)

+ H(T_1)C(T_1)•
~xx

(T_1)) + F E(T—l) (B.13)

We want to minimize the cost-to—go with the G (T—1)

and H(T-l). The necessary conditions for optimality are 

~~~- --.~~~~~~~~~~~~~~~~~~~~~~~~~ - - - --_
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ob t a i n e d  by set t In g  the  p a r t i a l  derivatives ~J/ ~G(T—l ) and

~J/  a H ( T — 1  ) to zero , respect i vel  y . Therefore ,

~G(T_ 1 ) L = 0 = [R(~ ’ 1 )  + F ( ~~
2 ( T — 1 )  + 

~bh
(T_1f] G ( T - 1)

• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ O(T-l) + (.( . ( )  X(T-1)))

— F a(T—t)h(T—t)(X(T—l)

+ H ( T — l )  ~( ‘r —l )  ~: (T—l)) (13.14)

~ L o [R(’r-l) + F(i
2
(T-1) + 

~ib
(T_l ))]  (‘ 2 (T l )

• ll(T—1)(c2(T—1) )
~~~

(T_l) + O ( T — 1 )

+ ( T — l )  X(T—1 ) )

- F u(T-l) b(T-t) G(T—1 ) c(T-l) ~~~(‘I’-l)

(11.15)

Mult iply t h e  first Eq.  (13 .14) by (i(T—1) and the

second Eq. ( 13 .15) by H (T—1), then subtract Eq. (11.15) from

Eq.  ( 11. 14)  we obtain that

G
4

(T -1) = 
F~~~T- l )~~~T-1j~ (13.16)

R(T-l) +F(h (T—I) +
~~bb

(T_l)

Su b st i  t u t  P t h i s  op t ima l cont rO l E n  Eq. ( 4 . 4 . 7 5 )  we .

~~ I
get then

~~~~
(T l )  c ( T — 1)

II (T— i) = 
____ —___________

e~~( T - l)  ~: ( T - l )  + 0(’P-l) + ~: (T - i ) x(T-1)

-

~~~~~ X X  
( 1 L 1 7 )
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where

~~~(T l) = ~
2(T—2 )  E

~~~
(T_ 2)  + Z aa (T_ 2)  x (T—2)

+ Zbb(T2 T2) T2)+
~~~
T2)

To evaluate the cost—to-go at t T-1, we substitute

the optimal linear control gain G*(T_1) and filter gain

H*(T l) into the cost—functional Eq. (B.13) to get

J(~~(T-1),T-1) = [Fi
2(T_ 1) + Eaa(T~~ fl 

+Q(T_1)]

• E(x 2(T—1) f~~
T_ 1j

[F E(T—1) ~(T—1)] 
2

-

- 

+ 
[R(T_ 1) + Fe~~

2( T_ 1) + z bb(T_ 1))]

•E{~
2(T_ 1)Iz

T_l
}

- 2  —2[R(T 1 ) +F ( b (T 1) + Z bb (T 1))]

•E{x(T—1)~~(T—1)Iz
T
~
’}

+ F E(T— 1)

E {K(T_ 1) x2( T_ 1) I Z T_ l }+ G 2(T_ 1) [R(T_ 1)

+ F(~~
2( T _ 1 ) +Z

bb
(T_ 1))] Exx(T_ 1)

+ F E(T-.1) (B.19)

where we define the variable

K(T-1) = F(~~
2( T _ l ) + S aa (T_ 1))  + Q(T—1 ) - G2(T—1)

[R(T_ 1 +F(~
2(T-1) +Zbb(T_1))] 

(B.20)

and

k(T— 1)  = G2(T_1)[R(T—1 ) +F(62(T—1) +Zbb(T_1))] 
(B.21)

LJ~ ~~ — - - - - - — - ___________
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Now we will proceed to find the optimal G(T-2) and

H(T-2), using the Principle of Optimality, we have

J(~~(T—2) ,T—2) = E K(T—1) x2(T-1) + k(T-1) E (T-l)

+ F E(T—1) +Q(T-2) x2(T-2)

+ R(T—2) G2(T—2) ~
2(T 2)IzT_2} (B.22)

Since the covariance of the estimation error is not indepen-

dent of the past controls , we have to include it in the

recurrence functional equation . The dependence on x(t) and

is evident in the covariance propagation equation for

E
~~

(t), Eq. (B.14). The problem of estimation is no longer

separable from that of the control .

Hence the cost-to-go becomes

J(1~~(T—2),T—1) = E{(a
2(T_2) K(T_1)+Q(T_2))x2(T_2)IzT2}

+ E{[R(T_2) +K(T—1) b2(T_2)]

G2(T_2)~~
2(T_2)JzT2}

- 2K(T—l) E{a(T—2) b(T—2)} G(T—2)

E{x(T_2) ~(T—2) iz
T2}

+ K(T—1) E(T—2) + k(T—1) 
~~~

(T_l)

+ F ~(T—l) (B.23)

We need to expand the express ion f or the error co-

variance E
~~

(T_1
~
T_ 1) from Eq. (B.14)

E~~ (T_1) = (1 -H (T-1) ~(T-1))
2
~~~~(T-1)

+ H2(T_l)[E
~~

(T_1)X(T_1)+0 (T_1 )] (B.24 )

H _
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and the predicted covariance is given by

= ~
2(T—2) E~~ (T~2) + Z (T-.2) x(T-2)

+ Ebb
(T_2) G (T_ 2)E{x (T—2)Iz } + E(T-2)

(B.25)

The cost-to-go is , therefore ,

J(T-2) = 
[(~

2(T 2) + E aa ( T_ 2 ) )  IC(T- 1) +Q (T-2 )

+ k(T— 1)(1— H(T—1) ~ (T— 1)) 2 z aa (T_2 :;]

• E{x
2(T_2)~ z

T_
2}

+ [R T_2 + K ( T — 1) ( b 2 (T—2) + Ebb
(T_2))

+ (1_H(t_1)
~~
(T_ 1))

~~
Ebb

(T_2) k(T_1)] G2(T-2)

• Etx
2(T_ 2) f z

’
~~2}

— 2X(T—1)i(T—2)b(T-2)G(T—2)

•E{x(T_2)~~(T_2)tzT2}

+ k(T_1)[~
2(T_2) E

~~
(T_2)

+ E(T—2)] (1—H(T— 1)~~(T—1))
2

+ k(T-1) H2(T-1) [z~~
(T_i) X(T-1) + e(T_1)]

+ K(T—1) E(T—2) + F ~(T—1) (B.26 )

Substituting the expressions for E(~~(T-2) x (T-2) }

E {~
2(T—2)}, Exx (T

~
2)
~ 

and X(T—1 ) yields

X(T—1) = (~~(T—2)  —~~(T—2)  G ( T — 2 ) ) 2 X(T—2)

• 
+ 26(T—2) G(T—2)(a(T—2) —~~(T— 2) G(T—2)) S(T—2)

+ E(T—2) +62(T-2) G
2(T-2) E

~~
(T_2 )

+ E (T-2) X(T-2) + ~ (T-2) ~(T-2) G
2(T-2)

aa bb (B.27)
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where we identify S(t) M
01(t), Eq. (4.4.18).

J(T-2) [(~
2(T 2) +E aa (T_2))Kcr_l)+Q(T_2)

+ k(T—1)(1 — H( T— 1)  ~~( T — 1 ) ) 2 E (T-.2)

+ k(T—1) 112(T—1) 
~cc(T )

2(T_2)

+ Eaa (T_ 2))] E{x
2(T_2) ~

T_
2}

+ [R(T_2) +K(T—1)(b2(T—2) +
~
:bb

(T_2))

+ Ebb
(T_2)(l —H(T—1) c(T—1))2k(T—1)

+ k(T—1) H2(T—1) 
~~~

(T_1)(62(T_2)

+ Ebb
(T_ 2

~~] 
G2(T_2){5~(T_2) 

-:

+ H2(T—2)(~~
2(T-2)~~~~(T—2)+0 (T—2)

+ 
~cc(T_2) X(T_2))}

- [2K(T_1) ~(T—2) b(T—2) G(T—2)

— — 2
+ 2a(T—2) b(T—2) G(T—2) k(T—1) H (T—1)

+ k ( T — 1) ( 1  — H ( T — 1 )  ~ ( T_ 1) ) 2 [i2 ( T_ 2)  Z~~~
(T_ 2)

+ E(T _ 2) ] +- k ( T _ 1 )H 2 ( T — 1 ) O ( T — 1 )  
.

.. 
p

+ k(T—1)  H2(T—1 ) Z (T..~1) E ( T — 2 )

+ K(T—1)E(T—2)+F E(T—1) (B.28)

Carrying out the algebraic minimizat ion , we get

aG( ’r—2) L = [R(T_2)4K(T .1)(
~~
2(T_2)+E bb(T_2))

+ Ebb (T
~
2)(l —H(T— 1)~~(T—1))

2 k(T—1)

—--- i-
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+ (b2(T_2)+L bb(T_2))H
2(T_1)

~~cc(T_1)

• k(T_1)]G(T_2) [~~(T_2

+ H2(T-2)(c 2(T-2) E
~~
(T_2)

+ 0(T—2) + E
~~

(T_2) X(T—2))]

— 
[~~

T_2) b(T—2) k(T—1) H2(T—1) E (T—1)

+ K(T-1) ~(T-2) ~(T_2)] [~
(T_ 2)

+ H(T_2)E(T_2)!
~~
(T_2)] (B.29)

and

3H(T—2) L = 0 = [R T_2 +KT_ 1) 2(T_2 +E bb
T_2

~~

+ Ebb
(T_2)(l —H(T—1) ~(T—1))

2k(T—1)

+ k(T-1)(~
2(T—2) + Ebb (T_2)) H

2(T—1) E
~~
(T_1)]

• G2(T—2) H(T.-2) (c2(T—2) ~~~
(T_2)

+ O(T_2)+E
~~

(T_ 2)X(T_2))

— [K T_1 +H2(T—1) E
CC

(T
~
1) k(T—1)]

• i(T-2) E(T-2) G(T—2) ~(T-2) ~~~(T—2)

(B.30)

Mult iplying the first equation by G(T-2) and the

second equation by H(T-2) we get that the solution is given by

* 
6(T—2) ~(T-2) (K(T-1) +}!

2(T—1) E
~~

(T_l) k(T-1))
G (T-2) 2 2

R(T—2)+(b (T_2)+
~bb

(T_2))(K(T_l)+H (T_1)E .~
(T_1)k(T_l))

2 (B.31)
+ ~bb

(T_ 2 ’) ( 1 — H ( T — 1 )  e ( T — 1) )  k ( T — 1 )
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* 
c ( T — 2 ) ~~ (T — 2)

II (T—2) = 
xx

c ( T — 2 )  E
~~

(T_2) + 0(T—2) + 
~cc

(T2
~~~~

T2)

(B.32)

The cost—to-go when evaluated at t = T-2 is given by

J(T-2) [(~~
2(T 2) + 

~aa
(T_2 (T- 1) +k(T-1) H2(T-1) E

~~
(T_l))

+ Q(T—2) k (T—l)(1—H(T—1)~~(T—1))
2 
~aa

(T_2)

— G2(T—2)(R(T—2) + (E2(T—2) + Ebb
(T_2))

(K(T—1) ÷k(T—1) H2(T—1) ~~~(T—l))

+ 
~
:bb(T 2)(l _H(T—1 )~~(T_1))

2
k(T—1))] X(T—2)

+ G2(T_2)[R(T_2) + (~
2(T—2) +

+ k(T—1) H2(T—1) 
~~~

(T_1))

+ Ebb (T
~~~~~

i —H(T—1) ~ (T_1 ))
2
k(T_1)] E (T—2)

+ k(T—l)(1 —H(T—1) c(T—1))
2

i~
2(T—2) E

~~~
(T_2)

+ k(T—1) [(1 — H(T—1) c(T—1))2 E(T—2)

+ 
p~~

( )  H2(T—1) E(T—2) + ~cc
(T_ i ) 0(T_ 1)]

+ K ( T — 1)  ~( T — 2 ) + F E ( T — 1 )
T-l

= E{K(T_2) x2(T_2jz
N_
2} + k(T—2) ~ (T—2) + ~ K(-t+l) E(t)

XX T-2

+ k(t+1)[(l_H (t+1)c(t+1))2 E(t)

+ H 2( t+ 1)  ~~~
( t+ 1 )  ~ ( t )  + H 2(t+1) 0( t+1) 1 (B.33)

where we def ine

K ( T — 2 )  = (a2(T—2) + Eaa
(T_2))(K(T_1)+

~~cc(T_1)H
2(T_1)k(T_1))

+ Q(T—2) +Z (T—2)(l -H(T-1)c(T—1))2k(T-1)

- - 

(B.34) 

~~
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— G2 ( T — 2 ) [ R ( T — 2 ) + ( ~~
2 ( T — 2 ) + E  ( T — 2 ) ) ( K ( T — 1)

+ H2(T—1) E (T— k(T~1))

— 2 (Concluded)
+ E

bb
(T_ 2)  - U ( T ) c ( T ~ l)) k(T_1)] (8.34)

k(T—2) = ~
2(T—2)(1—R(T—1)~~(T— 1))

2+G2(T—2) [R(T—2)

+ (62(T—2) +E bb
(T_ 2))(K(T_l) +H2(T—1)

E (T—.1) k(T—1))

+ Ebb
(T_ 2)(1_H (T_1) T_l k(T_1)] (B.35)

Using the Principle of Optimality we have that

J(~~( T — 3 ) , ( T — 3 ) )  = mm E {J(T_2) +Q(T—3) x2(T—3)
G(T—3)
H(T—3)

+ R(T_3)G2(T_ 3)~~
2(T_3)Jz

T_
3} 

- 

-

a 
• 

= mm E K(T-2)  x2 (T-2)
G(T—3) a(),b ( ) ,c ( )
H(T—3) ~(.),O(•)

2
+ k(T—2) E

~~
(T_2IT_2)+Q(T_3)x (T—3)

+ R(T_3)G2(T_ 3)~~
2(T_ 3)tz

T_
3t (B.36)

This is exactly identical to the form of cost-to—go expression
S.

in Eq. (B 22 ) except for the indices . By induction on t , we

obtain the solut ion to the opt imum constra ined linear t -
estimator-controller system problem ,

u(t) = — G(t) ~(t) (B.37)

a

I 
_ _
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where

G ( t )  = [R(t) + (h2(t) + hl (t t +1)  +11 2(1+1)

• Y (t+1) k(t+1))

+ ~;11)(t)(1 -H (t+1) c(t+1))
2 k(t+1)] ’ b(t)u(t)

[K .t+l +11 2(t+1) ~~~(t+1) k(t+1)] (B.38)

2K(t) = (a (t) + Y (t))(Ktt+1) +11 (t+l) Y (t+1) k(t+1)) +Q (t)

—“ — ‘) 2b (  t ) a ( t ) (K( t+1 ) + H( t+l ) Y~~ ( t +1) k( t +1))

•k(t+1)+ 
~bb

(t
~~~~~~~

tfl) ~(t+i))
2 k( t+1)]

—2 — 2 

(13 .39)

k(t) = a (t)(1 —H(t+1) c(t+1))

—2 —2 2b (1) a (t)(K(t+1) + H (t+1) E (t+l) k(t+1fl
+ - 

—2 
-

~~~~~~~~[R t + (
~~bb

(t)
~~ 

(t))(K(t+1) +11 (t+ 1 ) Y
~~.

(t+1)

• k(t+1)) + 
~bh

(t)(l -H(t+l) c(t+1))2 k(t+1)]

— 
(B.40)

c ( t ) E (t) S.

11(t) = 
—2 — 

XX (8.41)
c ( t ) E

~~
(t) + @(t) + 

~~~
(t) X(t)

and

x (t) = (1 — 11 (t) c(t)) (a(t—1 ) —b(t—1) G(t—1)) x(t—l)

+ 1 1( t )  z(t) (B.42)

where 
~~~

(t) is given by Eq. (4.4 .15) and Eqs. (4.4.12) to

(4.4.15) if we identify ~~~ (t) M11(t) and E
~~

(t) M11(t),

and X(t)=M 00(t).
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