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ABSTRACT

In this thesis, we will investigate the adaptive stochastic
control of linear dynamic systems with purely random parame-
ters. Hence there is no posterior learning about the system
parameters. The control law is non-dual; still it has the
qualitative properties of an adaptive control law. In the

. perfect measurement case, the control law is modulated by the
a priori level of uncertainty of the system parameters. The
Certainty-Equivalence Principle does not hold.

This thesis shows that the optimal stochastic control of
dynamic systems with uncertain parameters has certain limi-
tations. For the linear-quadratic optimal control problem,
it is shown that the infinite horizon solution does not exist
if the parameter uncertainty exceeds a certain quantifiable
threshold. By considering the discounted cost problem, we
have obtained some results on optimality versus stability

for this class of stochastic control problems.

For the noisy sensor measurement case, we obtained the opti-
mal fixed structure estimator-controller. The control law
requires the solution of a coupled nonlinear two-point
boundary value problem. Computer simulations of the forward
and backward difference equations provided some insight into
the uncertainty threshold for the closed-loop system. Sto-
chastic stability analysis further resulted in a sufficient
condition for the mean square stability of the fixed structure
dynamic compensator.
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CHAPTER 1
INTRODUCTION

1.1 A Historical Survey of Adaptive Stochastic Control

The theory of optimal closed-loop control of stochastic
linear dynamic systems has progressed since the original con-
tributions in [1], [2]. For discrete-time linear dynamic
systems with known system parameters and known additive gaussian
noise statistics with quadratic cost, the optimum solution to
the stochastic control problem is given by the Separation
Theorem (3], (4]. These stochastic control-theoretic results
have been reconciled with the statistical decision-theoretic
results given by the Certainty-Equivalence Principle for multi-
stage decision processes (5], [6].

For linear dynamic systems with uncertain parameters
or unknown noise statistics, there does not exist at present
a general computationally feasible theory of optimum stochastic
control. Bellman first presented a mathematical theory of
adaptive control processes in [7]. He introduced the concepts
of "information pattern'" and a control device that can '"learn".
Feldbaum expanded on the concept and algorithms of adaptive
control in his four-part theory of dual control [8], so-called
because the optimum controller must actively try to identify
the unknown parameters as well as simultaneously control the

system. He showed that in dual control systems, there may

—y
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exist inherent conflict between applying the inputs for learn-
ing and for effective control purposes. The dual control law
is then to reflect the optimum interaction of caution and
probing in the closed-loop control system. Feldbaum then
distinguished between two kinds of loss, one due to the de-
viation of the state and the other due to the nonoptimal
learning control law [9].

The concepts of separation, certainty-equivalence,
neutrality, and related dual control effects have been fur-
ther clarified and discussed in [10]-[16]. The present dual
control action may influence ftuture learning. In the so-
called neutral control systems described in [17], [18], learn-
ing is independent of the control law. The neutral control
law accounts for present uncertainty, but neglect the possi-
bility that the present control action may influence future
uncertainty resulting thus in a one-way separation.

Optimal solutions to the adaptive stochastic control
of a class of linear dynamic systems with constant or time-
varying unknown parameters can be obtained, in principle,
using the stochastic dynamic programming method. The opti-
mization algorithm is constructive and the solution is ob-
tained by solving a recursive functional equation involving
alternating minimizations and expectations, [8]. However,
due to the '"curse of dimensionality'" the solution in general

cannot be obtained analytically inp closed form. The dynamic

e
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programming algorithm encounters the problem of infinite
dimensionality of the probability distribution function in
the general case.

Since we cannot solve analytically the adaptive con-
trol problem except for very special cases [19], [20], in
practice we resort to approximation methods. The degradation
in performance of the suboptimal adaptive control law can be
measured by comparing the average performance of the proposed |
suboptimal control algorithm obtained from Monte Carlo simula-
tions with the optimal but unattainable performance for the
same control system in which the parameters are known with
certainty.

There are two approaches to the approximation of the

optimal adaptive control law. First, we may approximate the

optimal solution to the adaptive stochastic control problem.
This approach is taken in (7], [8], [11], [21-23]). The

second approach is to approximate the linear system as one with
random parameters and derive the optimal adaptive stochastic o
control for the approximate control system. This can be done .

by relaxing certain mathematical assumptions and information

structure of the optimal adaptive control law. In doing so,
we may be able to obtain the suboptimal control law analyti-
cally. One such method is the enforced separation as in [24].

Another is the open-loop feedback technique [25]-[30].
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Literature surveys and reviews of the state-of-the-
art of adaptive control concepts and methods are found in
[311-[33]. An extensive bibliography on the theory and
application of the various suboptimal adaptive estimation
and control techniques is given in [34].

In this thesis, we will investigate a class of
stochastic optimal control problems with purely random (white)
parameters whose mathematical solutions reflect some of the
aspects of adaptive stochastic control laws, Fig. 1.1.

The use of multiplicative white noise parameters explicitly
tells the mathematics that the system dynamics are not known
exactly and can vary in an unpredictable way. This is an
important class of problems because it represents a worst
case design and analysis. The results provide some insights
and help to evaluate whether the use of very sophisticated
identification and control algorithms may represent an
"overkill".

Optimum control of linear systems with statistically
independent random parameters is considered in [35]. For a
constant linear system with multiplicative input noise, the
effect of the random parameters was found to show the con-
vergence of the feedback coefficients [2]. Necessary and
sufficient conditions for a class of stationary linear system
with random parameter to be controllable in mean-square sense

was examined in [36]. Solution to the optimal stochastic
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control problem with independent random parameter has been
derived in [37), [38), and [39).

The mathematical formulation of the stochastic con-
trol problem with uncertain parameters forces the solution to
be without any learning. In particular, we consider the

linear dynamical system

X(t+1) = ACt)X(t) + B(t)u(t) + £(t) (1.1.1)

t=0,1,2,...,N-1

For simplicity we shall assume that the measurement is exact.
The structure of the matrices A(t) and B(t) are known but the
elements contain uncertain parameters. §(t) is the plant white
noise (disturbance). The cost functional to be minimized is

given by the scalar

( N-1
J=E(x"(N)Fx(N) + ] x'(t)Q(t)x(t) + g'(t)ﬂ(t)g(t)l .
\ t=0 ) :
(1.1.2) |
where F, Q(+), and R(+) are at least positive semi-definite. 3
The uncertain parameters in A(+) and B(+) change

randomly with time. At each instant of time, "nature" selects

the value of the system parameters from some a priori given

e e ————

distribution. The way 'nature'" selects the particular numeri-
cal value of system parameters at each instant of time repre-
sent a chance event in time. That is, the time-varying

parameters represent a white process. Hence, the mathematics
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tells the compensator that it cannot use the measurement data

to improve the a prior mean or reduce the level of uncertainty

of parameters anymore than the a prior variance. The optimal

solution cannot involve any learning about the system parameters.
Although the mathematical formulation of the problem

precludes identification, the solution of the optimal stochastic

control problem in the sense of minimizing a cost functional

shows the effects of parameter uncertainty in the performance

of the control system. The control gain of an optimal stochas-

tic system with randomly varying parameters will depend upon

the unconditional means and covariances of the uncertain

parameters. The Separation Theorem does not hold. Random-
ness in the system parameters has strong influence on the gain
of the control system, even in the absence of any learning.

The minimum value of the expected quadratic cost
depends not only upon the means but also upon the variance of
the randomly varying parameters. In the worst case sense, one
has then an upper bound upon the performance deterioration of
the control system due to uncertain parameters. The difference
between this worst case cost and the Separation Theorem cost
is the so-called value of model information for stochastic
adaptive control problems.

This class of stochastic control problems is closely
related to the state-dependent and control-dependent noise

problem considered in continuous-time for perfect measurement
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[40] to [45] and in discrete-time for noisy measurement,

[46]) to [49]. The specific class of stochastic models given
in Eq. 1.1.1 are also known as the multiplicative noise or
random coefficient (multiplier) models. In [20] it is shown
that if the only uncertainty parameter in Eq. 1.1.1 is in the
matrix B then the nonlinear stochastic control system is
essentially a bilinear system. Hence the results for the
class of adaptive control problems are readily applicable to

the class of stochastic bilinear systems.

1.2 Structure of the Thesis

In this thesis, we will obtain the results almost
entirely for the scalar systems. In the very simple first-
order dynamical systems, we have no problem with system con-
trollability or observability. The optimized stochastic
control problem is well-posed and well-defined to give
existence and uniqueness results. The analytical results in
the subsequent chapters for the scalar linear-quadratic-
Gaussian systems must be true for multivariable-nonlinear- <
non-Gaussian systems since the LQG problem is a special
case of the more general formulation. The extension of
these results to the multivariable case is conceptually
straightforward, although notationally cumbersome.

The optimal stochastic control problem with perfect

state measurement is considered in Chapter 2. The mathematical .
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formulation of the problem is given in Section 2.2. The
solution to the "white noise parameters' optimization is ob-
tained using the stochastic dynamic programming algorithm in

Section 2.3. The important features of the control solution

are discussed. In Section 2.4, we examine the steady-state

-~

solution of the optimal stochastic control problem. In parti-

cular, we derive the inequality condition for the existence of

kb

S

a finite solution to the Riccati-like equation for infinite
horizon problem. In Section 2.5, the stochastic optimization

problem is treated as a stochastic stability problem. We

give the necessary and sufficient conditions for the almost

sure and mean square stability of the stochastic system under

5"’“;&- m—

linear feedback. The concepts of optimality versus stability
is further brought out in Section 2.6 when we consider the
discounted cost problem. We extend the results in Section 2.3
to the case where the multiplicative noises are correlated
with the additive noise in Section 2.7.

In Chapter 3, we treat the problem of optimum linear
minimum variance estimation for the random parameter system.
The estimation problem is stated in Section 3.1. The linear
minimum variance filter is derived in Section 3.2. It is
found that the parameter means and variances have to satisfy
t, a necessary and sufficient condition for the asympotic vari-
Jl ance of the uncontrolled linear system to be finite (and this

turns out to be sufficient to ensure stochastic stability as
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well). 1In Section 3.4, we discuss the case where the un-
certain parameters are uncorrelated. In Section 3.5, the
analysis is given to include mutually correlated randomly
varying parameters.

In Chapter 4, we consider the closed-loop (feedback)
control of randomly varying parameters system with noisy
measurements. The mathematical problem is formulated in
Section 4.2. 1In Section 4.3 we examine the optimal solution
to the control problem using stochastic dynamic programming.
In Section 4.4, we fix the structure of the class of dynamic
compensates to be considered. We obtain the optimal param-
eters (filter gains and control gains) first using the Matrix
Minimum Principle and then dynamic programming algorithm. The
important point is that we transformed the original stochastic
control problem in Section 4.2 into a deterministic parameter
optimization problem in Section 4.4. Section 4.5 shows that |
we have to solve a complex coupled nonlinear two-point boundary
value problem in order to compute the optimal gains. We discuss b8
the various aspects of the fixed structure estimate-controller

in Section 4.6. We consider the asymptotic behavior of the

stochastic control law derived in Section 4.7. Numerical
simulations of the stochastic equations provide the needed
insights into the existence of steady-state control laws.
Stochastic ability analysis analogous to that in Section 2.5

based on output feedback is given in Section 4.8. A sufficient
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condition for the stochastic system to be mean-square stabi-
lizable under feedback is presented.

In Chapter 5, we extend the results in Chapter 2 to
a special class of linear multivariable systems. We give the
mathematical formulation of the optimal stochastic control
problem in Section 5.2. The solution via dynamic programming
algorithm is given. In Section 5.3, we consider the optimal
stochastic control of a multivariable linear system with a
specific structure with respect to a quadratic performance
index. The system dynamics are described by a linear vector
difference equation with white, possibly mutually correlated,
scalar random parameters. In Section 5.4 we summarize the
results on the adaptive stochastic control of linear multi-
variable systems with imperfect measurements.

We summarize the results on the optimum stochastic
control of linear dynamic systems with purely random param-
eters in Section 6.1. We make conclusions about optimality
and stochastic stability in Section 6.2. We discuss the
existence, finiteness, and convergence of the derived opti-
mal control law. In Section 6.3, we recommend the direc-

tions for future research in this area.

1.3 Contributions of the Thesis

The optimal stochastic control results for the exact

state measurements problem have been known for some time in




0

[37]. However, their potential importance and their im-
plications in adaptive control has not yet been fully
realized. This thesis reports on the research of the optimal

stochastic control of white noise parameter systems. The

objective is to gain deeper insights and clearer understand-
ing of the issues and philosophy of the adaptiye control.
Even in the absence of learning, the degree of dynamic un-
certainty (as quantified by the variances of the multi-
plicative white noise parameters) influences both the optimal
control gains and the optimal value of the performance index.
In this thesis research we shall analyze stochastic
systems with white parameters as a worst case to provide a
systematic analysis and design approach to adaptive stochas- |
rn
tic control. We derive the upper bound on the average cost
for the exact measurement and the noise-corrupted measure-
ment cases. We analyze the dual nature of stochastic control
for systems with uncertain parameters in a most transparent
mathematical framework. The mathematical formulation pre- "k
cludes any learning about the parameters, however. <

We derive the necessary and sufficient condition

for the optimal control law for the perfect measurement case. f
We then derive the necessary and sufficient condition for the
stochastic stability in the almost sure and mean-square sense
for the class of stochastic systems under consideration. The

Uncertainty Threshold Principle then says there exists a

B —
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threshold of dynamic uncertainty, if exceeded then optimal
strategies cannot exist. We have derived the optimality
condition for the discounted cost problem. The problem
provides an interesting and important case study of opti-

mality versus stability problem in stochastic control theory.

We were also able to extend the anslysis on control to the
case where the multiplicative noises are correlated with
additive noises.

In deterministic linear quadratic control problem

the duality principle holds, that is, the linear stochastic

ety AT AN 3. T R T | 36 ke " o ’A e v \' R

estimation problem is related through duality to the optimal
deterministic control problem. The dual of the control prob-
lem with the pair (C”",B”) is the estimation problem pair (B.,C).
For linear discrete-time systems, duality principle says that
the various matrices that occur in the optimal regulator

problem and the optimal state reconstruction problem are

related and have symmetry property, [50]. We show that {
this duality property does not hold for the optimal regula-
tor and optimum linear minimum variance estimation problems
for the class of adaptive stochastic control problems. In

particular, the stability condition for the asymptotic be-

havior of the optimum linear minimum variance filter problem
cannot be obtained by ''dualizing'" the stability condition

for the optimum regulator problem given in Section 2.4.

T A

e e S e > —.ﬂ
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We have obtained the linear minimum variance un-
biased filter with deterministic control input. Results are
generalized to the case where all the random parameters may
be correlated. The necessary and sufficient condition for
the asymptotic stability of the state second mcment turns out
to be only a sufficient condition for the stochastic stability
of the fixed structure overall closed-loop system.

For the noisy sensor measurement case, we derived
the fixed structure dynamic compensator using dynamic pro-
gramming algorithm. We determined the average cost expression
(in a worst case sense). The use of direct output feedback
is shown to give only a sufficient condition for the mean-

square stability for the overall control system.

poa—
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CHAPTER 2

OPTIMAL STOCHASTIC CONTROUL FOR THE
PERFECT MEASUREMENT SYSTEM

2.1 Introduction

In this chapter, the optimal control problem for
purely random parameters will be formulated and solved for
the perfect observation case. We present the mathematical
model of a class of stochastic linear systems in Section 2.2
and give the technical assumptions about the statistical laws
for the random processes. The optimal stochastic control
problem is then formulated assuming perfect measurements.

In Section 2.3, we give the solution to the optimal control
problem via dynamic programming. In Section 2.4, we examine
the stability properties of a stationary system. The Un-
certainty Threshold Principle is\given in Theorem 2.1. We
examine the stochastic stability of a linear system under
linear feedback in Section 2.5. In Section 2.6, we discuss
the discounted cost problem and give a modified threshold
for the particular cost functional chosen. We discuss some
important new issues in stochastic controllability and sta-
bility. In Section 2.7, we extend the results of Sections
2.2 and 2.4 to linear systems where the random parameters

and the additive noise are correlated.




a

2.2 Problem Statement

In this section, we will state the problem. Con-
sider a first-order stochastic linear dynamical system with
state x(t) and control u(t) described by the difference
equation

x(t+1) = a(t)x(t) + b(t)u(t) + g(t) (2.2.1)
t =0,1,2,...,N-1
x(0) given.

We assume that the additive noise £(t) driving the
syvstem dynamics is a zero-mean Gaussian white roise with
known variance

E{E(t)E(T)]} = E(t)6(t,1) (2.2.2)
We assume that the purely random parameters a(t) and b(t)
are Gaussian and white (uncorrelated in time) with known means
a(t) and b(t), and covariances La(t) and be(t), respectively
and cross-covariance given by Zab(t). More precisely, we

assume that

E{a(t)} = a(t) , E{b(t)} =b(t) Vvt (2.2.8)
and _f
E{(a(t) - a() (acv) - E(r))} = I (t)8(t,T) (2.2.4)
E{(b(t) - b(t)) (b(1) - B(r))} = I p(D)8(t, 1) (2.2.9)
E)‘(““) - a(w) (b - B(T))} = £, (t)8(t,T) (2.2.6)

TN, RO




—

«26-

where §(t,tr) is the Kronecker delta and

2
Zaa(t)ﬂbb(t) - Zab(t) 20 (2.2.7)

since the correlation coefficient |p| <1.

It is assumed that the additive white noise §(t) is
statistically independent of the random parameters a(t) and
b(t). The case where a(t), b(t), and E(t) are correlated is
discussed later in Section 2.7.

For the stochastic control problem it is very
important to specify the information available for control.

In this chapter, we assume that the state x(t) can be mea-

sured exactly. Hence we assume that x(0) is given.

We assume that the admissible controls are real-
valued and of state feedback type u(t) = y(x(t),t). The
control can only depend on the given a priori information
and measurements up to time t. The control u(t) at time t
can only influence the state x(t) at T 2 t+1l and not before.
This is the important notion of causal inputs - past and
present output values do not depend on future input values.

The optimal control problem is to determine the
control law u(t) =y(x(t),t)(t=0,1,...,N-1) such that the
expected value of a quadratic cost functional is minimized.

The quadratic cost functional is the standard regulator type.

N-1 ¢
J(0) = E {F 2Ny + 7 x2oect) + u‘ﬂt)n(t)(
a(+),b(*), t=0 )
£(*) . G, WD (2.2.8)




i L

The expectation is taken with respect to the probability
distribution of the underlying random variables a(t), b(t),
and &£(t).

Based upon the application of the Bellman's Principle
of Optimality and functional equations, dynamic programming
is used to solve the optimal control problem formulated in

Eqs. (2.2.1) and (2.2.8).

2.3 Problem Solution

The solution to the optimal control problem given
in Eqs. (2.2.1) and (2.2.8) can be obtained by applying the
standard dynamic programming method. The cost-to-go at the
final time is given by
V(X(N),N) = Fx2(N) (2.3.1)

By the Principle of Optimality

V(x(N-1) ,N-1) = min E 3Q(N—1)x2(N—1) + R(N—l)uz(N—l)
u(N-1) a(N-1),
b(N-1),
E(N-1)

+ v<x<N),N)|x“‘1$

= min ‘[Q(N—l) + F(Ez(N-1)+xaa(N—1))]xz(N-1)
u(N-lﬂ
+ [R(N—l) + F(BZ(N-1)+zbb(N-1))] u(N-1)
+ 2F(a(N-1)b(N-1) + Zab(N—l))x(N—l)u(N-l)}

+ F & (N-1) (2.3.2)
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since E£(N-1) is independent of u(N-1) and x(N-1) and the
random parameters a(N-1) and b(N-1).

We minimize the algebraic expression in Eq. (2.3.2)
by taking the derivative with respect to u(N-1) and setting

it to zero, we obtain as a result

F(a(N-1)b(N-1) + % L (N-1))
2 X(N-1) {(2.5.3)

u*(N-l) s ey
(b™(N-1) + £\ (N-1))F + R(N-1)

Substituting this optimal control at N-1 into cost

Eq. (2.3.2) the optimum cost-to-go becomes

V(x(N-1),N-1) = x2(N-1)K(N-1) + F Z (N-1) (2.3.4)
where
K(N-1) = F(I_ (N-1) + 22(N-1)) + Q(N-1)
- 62(N-1) [R(N-1) + F(SZ(N-1)<+Ebb(N—1))] (2.3.5)
F {a(N-1)b(N-1) + £ _ (N-1)
G(N-1) = [ ab ] (2.3.6)

=2
R(N-1) + F(b (N—l)-#Ebb(N—l))

We note that the optimum cost-to-go at time N-1 is
of the same form as Eq. (2.3.1). The second term is due to
the additive noise driving the system. The first term in-
cludes the cost of control and implicitly the added cost

due to the randomness of the parameters a(N-1) and b(N-1).

’
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At time N-2, the cost-to-go is given by the equa-

tion

V(x(N-2) .N-2) win E 3Q(N-2)x2(N—2) + R(N-2)u’(N-2)

u(N-2)

+ V(x(N-1),N-1)|xN"2

]

min E 3Q(N-2)x2(N-2) + R(N-2)uZ(N-2)
u(N-2)

+ K(N—l)xz(N—l)IxN_zg + F Z (N-1)
(2.3.7)

This expression for the cost-to-go is identical to
that in Eq. (2.3.2) except for the time indexes. Therefore,
*
the optimal control u (N-2) is given by
K(N-1)(5(N-2)B(N-z)+-zab(N-2))

ut(N-2) = - —5 X(N-2)
(b2(N-2) + I, (N-2))K(N-1) + R(N-2)

(2.3.8)
and the optimal cost-to-go is given by
vi(N-2, x(N-2)) = K(N-2)x2(N-2) + K(N-1) & (N-2)
+ F £ (N-1) (2.3.9)

where

K(N-2) = K(N-1)(a%(N-1) + I__(N-1)) + Q(N-2)

K2(N-1)(a(N-2)B(N-2) + £ . (N-2))2
ab 2.3.10)
y — (3.3
R(N-2) + K(N-1)(B2(N-2) + I, (N-2))

By induction on t, we obtain the solution to the

stochastic state regulator problem. Given the linear stochastic
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system Eq. (2.2.1) and the cost functional Eq. (2.2.8),
where u(t) is not constrained, the optimal feedback control
at each instant of time is given by a linear transformation
of the state,
ut(t) = -G(t) x(t) (2.3.11)
where
K(t+1) (2, (t) + a(t)b(t)) | 3

G(t) = —5 (2.3.12)
R(t) + (I, ,(t) +Db7(t))K(t+1)

and K(t) is the solution of the Riccati-like equation
K(£) = (@%(t) + I (£)IK(t+1) + Q(t)
- G3(t) [R(t)-+x(c+1)(zbb(t)-+62(t))] (2.3.13)
satisfying the boundary condition

K(N) = F (2.3.14)

The state of the optimal system is then the solution

of the linear difference equation

K(t+1)(Z, () + a(t)b(t))

x(t+1l) = [a(t) - b(t) x(t)

=
R(t) + K(t+1) (5, (1) +B7(1))

x(0) = X0 (2.3.15)

The optimal control given by Eqg. (2.3.11) is a
random variable since x(t) is a random variable. It is

linear in the completely measurable state. The uncertainty
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in the parameters a(t) and b(t) introduces equivalent state
and control weightings, Zaa(t)K(t+1) and be(t)K(t+1),
respectively in a very natural way into the control problem.

In order for the extremal control to be the unique
optimal control, we need to show that the second partial
derivative of T with respect to u,

R(t) + (I (t) + B2(t))K(t+1) > 0 (2.3.16)

The solution to the Riccati-like Eq. (2.3.13) is non-negative

definite. This can be seen from the fact that for any x.

sz(t) = min E [sz(t) + u2R(t)
u

+ (a(t)x-+b(t)u)2K(t+1)] g
K(N) =F >0 (2.3.17)

Since F,Q(t) 20 and R(t) >0, the expression within the bracket
is non-negative. Since the minimization over u preserves non-
negativity, it follows that x2K(t) 20 for all x. Hence, K(t)
is non-negative definite. Since R(t) is positive definite,

we conclude that [R(t)+ (I, (t)+DB2(t))K(t+1)] > 0.

The Riccati-like Eq. (2.3.13) is a first-order non-
linear time-varying ordinary difference equation, the solution
K(t) exists and is unique. The external control given by
Eq. (2.3.11) is, therefore, the unique optimal control.

The optimal cost-to-go is obtained by substituting
the expression for the optimal control Egqs. (2.3.11) and

(2.3.12) into Eq. (2.2.8) to get
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4 2 N-1
J (x(t),t) = K(t)x“(t) + [ K(t+1) £ (1) (2.3.18)
=t

If the optimal control u(t) #0 for all states then K(t) >0
for all 0<t <N. This follows from the fact if u(t) # 0, then
the cost T must be positive. We shall say that an optimal
control exists, when J* is defined for all x(t¢) and t.
Figure 2.1 shows the structure of the optimal feed-
back system. Since the optimal control is u(t) = -G(t)x(t), t

the state x(t) is multiplied by the linear gain G(t) to gen-

L

o

erate the control. The optimal feedback system is, thus,

linear and time~varying in the finite horizon problem. This

will be the case even if the system is stationary and the cost
functional is time-invariant. Note that the optimal control

given by Eqs. (2.3.11) to (2.3.13) is modulated by the co-

B L R e
- " )

variances of the purely random (white) parameters. The optimal

controller is cautious when the parameter b(t) is uncertain.

The gain G(t) is smaller in magnitude, ceteris paribus, than

the linear-quadratic gain. The controller is more vigorous

when the parameter a(t) is uncertain, since the controller |4
E

must be more active to regulate the system. The gain G(t)

are larger in magnitude, ceteris paribus, with larger vari-

ance Eaa(t).

Since the gain G(t) is a function of K(t), the
solution K(t) to the Riccati-like Eq. (2.3.13) governs the

behavior of the optimal feedback system. The Eq. (2.3.13)
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is nonlinear and, in general, we cannot obtain closed-form
solutions. We shall discuss in the next section the solution
K(t) to Eq. (2.3.13) as N+ to obtain a steady-state con-
troller for the stationary system and cost functional with
constant weightings.

We remark that the optimal control law given by
Egs. (2.3.11) to (2.3.13) is not the Certainty-Equivalent 3

control, since the control gain depends on the parameter

variances. The Certainty-Equivalent control law is

b(t)K(t+1l)a(t)
B2(t)K(t+1) + R(t)

‘ oS Beopey wn x(t) (2.3.19)

where

=2 2 -2
K(t) = a2(t)K(t+1) + Q(t) bo(t)K (t+1)a"(t)

: e (2.3.20)
a b (t)K(t+1l) + R(t)

This can be obtained from Eqs. (2.3.11]) to (2.3.13) by setting
arbitrarily Eaa(t) = be(t) = Eab(t) = 0. The Certainty-
Equivalence control law does not account for the uncertainty
in the system parameters.

The optimal stochastic control is without posterior
learning. The parameters a(t) and b(t) cannot be identified,
because by assumption they are white. Nature/chance picks

the parameters and the controller must adapt to the structural

change. This is a worst-case control system design, as com-

pared to assuming the parameters are unknown but constant or

IJ.‘l"—-—'_""""""'.-..-.llllIIIlllIIIIIllllllIllllllllli;n======§__u_nh_“_m
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slowly time-varying. However, the assumption of purely
random parameters is unrealistic from a physical point of
view. The assumption that the parameters are unknown but
constant leads to the well-known dual control problem whose
exact solution cannot be easily computed analytically. The
white parameter assumption leads to a very simple stochastic
control law Eq. (2.3.11) that can be easily implemented.
Economists, and in particular Chow [38] have argued that in
economic systems, treatment of unknown parameters as being
purely random is desirable to obtain the inherent caution

in the control especially when b(t) is not known accurately.
In [32], Athans and Varaiya have argued that the control of
systems with white parameters represents a worst-case situa-
tion in which the ratio

E(O|Z _#0, L., 70, I 70)

K(O|,Z__ =0, I
aa

2l (2.3.21)

b==0, L. =0)

b ab

provides a measure of the deterioration in performance due
to the unknown parameters, which can provide a guide as to
whether sophisticated parameter estimation and adaptive

control algorithms are warranted.

2.4 Asymptotic Behavior

We assume in this section that the stochastic linear

system given by Eq. (2.2.1) has wide-sense stationary statistics.
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The state and control weightings Q(t) and R(t) are assumed
to be constant.

The Riccati-like Eq. (2.3.13) is then given by

Kz(t+1)(EB+zab)2

-
(b +Lbb)K(t+1) + R

K(t) = Q + K(t+1)(52+xaa) i (2.4.1)

K(N) = 0
Since the nonlinear difference Eq. (2.4.1) has con-
stant parameters, one may well think that it will attain a
steady-state solution "backward in time" as it certainly does
for the ordinary linear-quadratic problem with known param- |

eters, so that one can then calculate the infinite horizon

(constant) gain. This is, however, not the case for Eq.
(2.4.1).
Figures 2.2, 2.3, and 2.4 show the numerical solu-

tion of Eq. (2.4.1) for N=50 for different values of means

and covariances of the parameters. Note the logarithmic

scale used. A close examination of Eq. (2.4.1) shows what

e .

can happen to the solution K(t) of the Riccati equation. . §
Consider then Eq. (2.4.1) and assume that K(t+1) =
is "large". Then the "backward in time" evolution of K(t)

is given approximately by

K(t) =~ K(t+1)m (2.4.2)

where the threshold parameter m is given by

T +ab)? ;

AT e o (2.4.3)

ll(l z + l) ]
bb 1

m = z

4J-—------llIlIllllllllllllllllIllIllﬂlunzunmE;_undmmmnm**fﬁ‘
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or

+ Z_ b a
m = —2a bb aa bb ab ab (2.4.4)

Clearly, from Eq. (2.4.2) K(t) will undergo expo-

nential growth '"backward in time' if
m>1 (2.4.5)

From the expression in Eq. (2.4.3) or (2.4.4) one can see
that there are certain combinations of the parameter means
and covariances that will yield the inequality condition in
Eq. (2.4.5). Hence, we can immediately arrive at the con-
clusion that in the case of optimal stochastic control with
purely random (white) parameters, a well-behaved solution to
the infinite horizon problem may not exist.

A different insight can be provided by examining
the dependence of the optimal cost upon the planning horizon.
Figure 2.5 shows the behavior of the optimal cost versus time
N. Note that if the threshold parameter m >1 then the optimal

cost grows exponentially,

%0 & . may (2.4.6)

12

*
J (N)
Otherwise (m<1) the optimal cost remains bounded and finite.
Now, suppose that Eq. (2.4.1) has a steady-state

solution given by K satisfying the algebraic equation
O&, « - =.2

+
K (Lab ab)

B L Baed L w =
e aia sl 1"

- — (2.4.7)
R‘*K(Lbb'*b )
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Note that K must be positive definite. The solution to the
quadratic equation is then given by
& -4 e +32-1) + Q(z,, +b2))
} aa bb
1/2
-2 =2, .2 —=.2
- [(R(Zaa+a -1) - Q(be+b ))" + 4QR(Eab+a.b) ] }

g ke SRt -1
5 [2((Zaa+a2-1)(£bb+b2) 5 (Zab+ab)2)] (2.4.8)

The limiting solution K is positive if
L {
i (., *ab)
BONE el <1 (2.4.9)
aa T +-62
bb :
or ;
m<1 (2.4.10)

We state the following result. 6

Theorem 2.1

The unique positive solution to the infinite horizon f
problem given by Eqs. (2.2.1)-(2.2.7) exists if and only if

m<1.

Proof: (=) we rewrite the Riccati-like Eq. (2.3.13), re-

versing the time index; as

—2 (Zat>+55):2 .
K(t+l) = Q+K(t) (2, +a") - —3
Iy *+D
(5. +3B)2 K2(t)

ab

o B2 IR(t) -
Ly ¥D —R ) +x(t)
Ges ¥D
bt

(2.4.11) ,




gt

.
Since the third term is non-negative definite (R >0),

K(t+1) > Q + K(t)m

(2.4.12)

Iv

Il 104
o
3

It follows immediately that if m>1, then K(t) diverges as
t >,
Since the third term is monotone increasing in K(t),

it follows that K(t) is monotone increasing for K(0) =Q. Let

2

M(t) = K(t) - RK (t) (2.4.13)
_____:§> + K(t)
I+ D

Note that M(t) is also monotone for positive R. Thus there
exists an a >0 such that

_2
L. +5
1 bb s o™t (2.4.14)

-1 -
M (t) L K(t) + R -

from which we have that M(t) is uniformly bounded in K(t),
that is,

Mit) s @ , a>0 (2.4.15)

It follows from Eqs. (2.4.11) and (2.4.15)
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a8
2 (£, +ab)
K(t+1) < Q + | (2, +30) - —2B k(1)

aa
be-+b

-2

P (Zab+ab)
= =3
B *0

(X, +ab)
Bk e L — m* (2.4.16)

0 be-+b

n
I o~ et

L

so that K(t) is bounded as t +» because m< 1.

Since there is a sharp dividing line, quantified by
the means and covariances of the random parameters, between
the cases that the optimal stochastic control exists or does
not exist for the infinite horizon case (see Fig. 2.6) it is
obvious that there is a fundamental limitation to optimal
infinite time quadratic control problem. We call this
phenomenon, the Uncertainty Threshold Principle. This result
has several implications in engineering and socioeconomic
systems, since it points out there is a clear quantifiable
boundary between our ability of making optimal decisions or
not (in the sense that the optimal cost is bounded) as a
function of the parameter modeling uncertainty.

Katayama (51] has pointed out this instability
problem when b(t) is random in a multivariable system. For
continuous~-time systems the existence of solutions has been

investigated by Bismut [45], but only for finite horizon

T —

T ——
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problems. In related problems involving control-dependent
noise, Kleinman [41] assumed the existence of a solution.
In th f = = =
e case of known parameters (zaa be Eab 0)
Eq. (2.4.4) yields m=0. This is the reason why there is no

problem with the stationary solution for standard linear

quadratic problem.

In the case where a(t)=a.(£aa=()=£ab), Eq. (2.4.4)
yields
be + 52
WP ey (2.4.17)
be + b

so that as long as 52 is less than or approximately equal to
one, then m<1 and there is no convergence problem for the
solution K(t) to the Riccati-like Eq. (2.4.1), (see Fig. 2.7).
This may possibly explain Kleinman's results [41] on control-
dependent noise problems and their application for pilot
models controlling stable aircraft. This is also the same
stability condition derived by Katayama for random gains [51].

In the case where b(t)=b (B =0=E Eq. (2.4.4)

ab)’
yields ni=2aa. This implies that independent of the average

values of a and b, as long as the variance Ly, Of the "time
constant" a of the system exceeds unity, then one is in
trouble for long horizon planning problems, even for systems

that are stable on the average (|a| <1). This result seems

to state that when the standard deviation of the parameter

R e e
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a(t) is greater than unity, then the system is statistically
mean-square unstable, and under these conditions, one cannot
stabilize the system. This provides a tie with the literature
on stochastic stability with state-dependent noises ([52),[53]).
From Eq. (2.4.3), it is evident that a non-zero
parameter correlation (Zab >0) always reduces the value of

m, and hence it helps prevent (up to a point) the divergence

of K(t). From a modeling viewpoint, this implies that a
careful modeling of the relationship of the joint statistics

in the coefficients that multiply the state variables and

those that multiply the control variables can only help.
Suppose that the threshold parameter m<1 so that a

steady-state K exists, then the steady-state control gain

given by o
= l/{[Zab+zsl
G = lim G(t) = e —5 (2.4.18)
N> R+Kﬂ%b+b)
is well-defined. Since the gain G(t) is constant, the re- :

sulting optimal system will be linear and constant; from

engineering point of view, such an optimal controller would

be very simple to construct for stationary systems.

24 Next, suppose that b=0, so that the system (2.2.1)
2
i is "most uncontrollable on the average'. Note that 5740 and
i

u(t) # 0 provided that the correlation Zab# 0. This means

heuristically that the random time constant system is
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controllable in a stochastic sense; the nonzero covariance

Eab means that a(t) and b(t) '"swing together'" and this implies
that we can still control a system which is "most uncontrol-
lable on the average'. This observation seems to suggest a
new concept of ''stochastic controllability".

Note that in the case b=0, the uncertainty threshold

parameter m is given by

m = + a (2.4.19)

In view of the fact (2.2.7), this '"stochastic controllability"
is possible only for systems that are stable on the average
(la] <1), otherwise m>1 (see Fig. 2.8).
Suppose now that the threshold parameter m>1, so

that the optimal cost given by Eq. (2.3.14) grows exponentially
with the time horizon N. The control gain remains, however,
a well-defined quantity, and is given by the constant value

G = E-ab—i—a_t—;- (2.4.20)

be + b

which is obtained by letting K(t+1l) >« in Eq. (2.3.13). One
could argue that there is an optimal limiting gain in the

sense that one is still trying to do his best so as to mini-
mize the rate of the exponential growth of the optimal cost

J with increasing horizon N (see Fig. 2.95).




1.0
2pp ¥ 0 1
Zap =0
0.8
UNSTABLE

06 |- STABLE
©
@
-1

04 |-

02

0 | | i
(4} 0.2 0.4 0.6 08 1.0

Figure 2.8 Stability region defined_by equation (2.4.3)
for system (2.2.1) when b=0.0




To see further the implication of this philosophy
one can substitute the gain G in the system dynamics Eq.

(2.2.1) and obtain the stochastic control system

x(t+1) = (a(t) - b(t) G) x(t) (2.4.21)

Under the assumption that x(t) can be measured exactly the

mean x(t) =E{x(t)} will propagate (in an open-loop sense) as
X(t+1) = (a - bG) x(t), X(0) = x(0) (2.4.22)
The state error covariance
gl w(0)?
Zxx(t) E 1x(t) - x(t) (2.4.23)
can then be shown to propagate according to

Zxx(t+1) =ln£xx(t) + zaa

2% . (%

- _2
abttap B D) (B D) + I, (T,

+2,2
(B ¥ B)

Exx(O) =0 (2.4.24)

where m is the threshold parameter given’by Eq. (2.4.13).

It is clear that if m>1 in Eq. (2.4.24) then the
open-loop propagation of the variance of the state Xxx(t) is
unstable. Essentially, this says that although the steady-
state control is well-defined by a constant gain Eq. (2.4.20),

and the closed-loop system of Eq. (2.4.21) can be implemented,

“J-------l--n-lIlIllllllIllIlIIIlIIIIIlIllI=llE::::EEE-—-n-u---;ii
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the variability of the state as measured by its variance
"blows up' as t becomes large.
A sufficient condition that will ensure that the

inequality (2.4.10) will be met is

-2
Eaa T (2.4.25)

This condition is both a necessary and sufficient condition

for the asymptotic variance of the uncontrolled linear system
x(t+l) = a(t) x(t) (2.4.26)

to be finite, and thus turns out to be sufficient to ensure

that an optimal control exists as well.

2.5 Stochastic Stability Results

We want to now analyze the optimal control problem
posed in Section 2.2 from an alternative point of view and
arrive at exactly the same conclusions. The approach treats
the stochastic control problem as essentially a mathematical
problem, that is, stochastic difference equation and we will
consider the stochastic stability of such system under feed-
back. Asymptotic stability of linear stochastic systems

with random coefficients have been considered in [52] to [57]).

Consider the first-order linear dynamical system
x(t+1) = a(t) x(t) + b(t) u(t) (2.5.1)

One can include additive white noise driving the system
dynamics, but the stability result is unchanged from the

deterministic case. The question we want to deal with is

B e e TR ——— o |
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whether or not the system Eq. (2.5.1) is stabilizable under
feedback when a(t) and b(t) are assumed to be random coeffi-
cients.

Let

u(e) = g(t) x(t) (2.5.2)

Thus the closed-loop system will propagate according to the

stochastic equation.

x(t+l) = [a(t) + g(t)b(t)]x(t) 4 c(t) (2.:5.3)

If a(t) and b(t) are uncorrelated in time, one can calculate

the ratio

2
Elx (0D} - pic2(1)1E{c2(2)).. .Elc2(t)} & s(t)  (2.5.4)

E{xz(l)}

The value of S(t) is a measure of how the second moment of
the state propagates in time. The larger the value of S(t),

the more variable the state is. 1In particular if

lim S(t) » = (2.5.5)

to>o
the system (2.5.3) is unstable in the mean square sense.

The value of S(t) will be influenced in part by the
value of the feedback gain g(t) in Eq. (2.5.2). So one can
seek the value of g(t) which will minimize the ratio S(t)
in Eq. (2.5.4).

The product S(t) is minimized if each element of
the product

E(c2(t)} = E{fa(t) + g(t) b(t)]%} (2.5.6)

.
{
'
)
i
'
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is minimized by g(t). Since

2

E{c(t)]) = E{az(t)} + gz(t) E{bz(t)} + 2g(t) E{a(t)b(t)}
(2.5.7)

therefore, the best value of g(t) is obtained by algebraic

minimization which yields

tab + ab

g =g (t) = - ————— = constant (2.5.8)

=2
be-*b

Hence the minimum value of E{cz(t)} is given by

E(c?*(t)) = E{[a(t) + g" b(t))?)

- = 2
L (Z_, +ab)
wEi i+ AT o B =m (2.5.9)
aa r +52
bb

where m is the undiscounted threshold parameter given by

Eq. (2.4.3).
It follows that
s*(t) = m® (2.5.10)
and hence that
Lim s*(t) <o if m<1. (2.5.11)
sy

We state the results in the following theorem.

Theorem 2.2

The stochastic system in Eq. (2.5.1) is stabilizable
by linear feedback in a mean-square sense if and only if the
uncertainty threshold parameter m, defined by Eq. (2.4.3) is

less than unity.

d

B T RO
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*
We note that the minimum variance gain g in

Eq. (2.5.9) is the same as G in Eq. (2.4.20) where we con-
cluded that the limiting control gain is a constant and the
feedback system can be implemented. The feedback system may
or may not be stabilizable under feedback depending on
whether or not the threshold parameter m<1 is satisfied. |
The stochastic stability analysis resulted in an

optimal gain g(t) given by Eq. (2.5.8) which is identical to
Eq. (2.4.20). It yields the sufficient condition for optimal
control to exist. Since we are considering mean-square

stability, we could have obtained the same gain by setting

R=0 in the cost functional Eq. (2.2.8); and then Eq. (2.4.18)

becomes Eq. (2.5.8). The stochastic stability condition is

thus independent of the numerical solution K.

Following Kozin [58], we consider now the '"almost
sure stability" analysis (sample path stability) of the
stochastic linear system Eq. (2.5.1) under feedback Eq.
(2.5.2).

Definition 2.5.1. The equilibrium solution x(t) =0 of the

system

x(t+l) (a(t) + b(t) g(t)) x(t)

c(t) x(t) (2.5.12)

where

x(0) = X0 is a random variable

is almost surely stable if
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lim Pg sup sup |x(t,m) > es =0 (2.5.13)

§+0 l]xq,]<8 t20
for any given € >0 and 6(e,0) > 0.
For discrete-~time systems, an equivalent condition

is given in [59].

Definition 2.5.2. The equilibrium solution x(t) =0 of the

system Eq. (2.5.12) is almost surely stable if for € >0

> es =0 (2.5.14)

lim Pgsup lx(t)
|x0|+0 t>0

Theorem 2.3

The solution x(t) =0 of the system (2.5.12) is almost surely
stable for t 20 if there exists a function V(t,6x) eDL (domain
of definition) which for t >0 satisfies the conditions

(i) V(t,x) is continuous at x=0 and V(t,0) =0

(ii) inf V(t,x) > a(8) > 0 for any 8>0
|x|>8

(iii) L[{V(t,x)] < O in some neighborhood of x=0.

A suitable Lyapunov function to use is
V(t,x) = x2(t) (2.5.15)

Then condition (iii) in Theorem 2.3 says that

E(V(t+1,x) - V(t,x)} < O (2.5.16)
and using Eq. (2.5.12)
32 + 2abg(t) + b2 g2(t) <1 (2.5.17)

We now show that for |a+bg(t)|<1, then almost every

sample sequence {x(t)} would approach zero. Following [54],

we have

Accordingly, Konstantinov in [59] proved the following:




Theorem 2.4

The equilibrium solution of Eq. (2.5.12) is almost surely
stable if |a+bg| <1.

Proof: We must show that

lim P; sup sup |x(t,w)| > e$ =0 (2.5.18)
§-0 |x l<6 t20
0
but,
1lim P; sup sup |x(t,w)| > es
§»0 (]x.|<8 t20
0
= lim Pa sup  sup |¢(t,0)||x0| > et (2.5.19)
6+0 l|x,|<s t20 )

where ¢(t,0) is the solution of the difference equation
$(t+1,0) = c(t) ¢(t,0) (2.5.20)

Hence, Eq. (2.5.19) becomes

lim P%sup lo(t,0)] > %l < (2.5.21)
s~0 lt20

lim P; sup |¢(t,0)]| > %z + p sup |¢(t,0)] > %g
§+0 | lo<t<T(w) le>T(w)

We note that
t-1
¢(t,0) = T (a(r) + b(r)g) (2.5.22)
=0

Therefore, the first term in Eq. (2.5.21) is given by
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lim P; sup |¢(t,0)| > %:
§+0 (0<t<T(w)

lim Pg sup |e¢(t,0)]| > nes
n-+o 0<t<T(w)

P[(‘\ 3(»; sup {¢(t,0)] > nes]
n=1 0<t<T(w)

0 (2.5.23)

"

since |a + bg| < 1.

For ergodic process in the parameters,

lim % ¢(t,w) = E{(¢(t,w)} (2.5.24)
tro

Given B >0, there exists then a random time TB(w)

such that
T oct,w) - Elo(t,w)}| <8 a.s. (2.5.25)

for all t >T8(m).
Since
E{¢(t,w)} = ct (2.5.26)

then

<ot 4B a.s. (2.5.27)

l% o(t,w)
for all t >T8(w) and
d(t,w) < t(Et + B) almost surely (2.5.28)

The second term in Eq. (2.5.21) is, therefore, given

by
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lim Ps sup |¢(t,0)| > 5% < lim P{ sup I(Ft+6)t| > %

. 5
§-+0 t>T(w) 8y ~ §+0 t>T(w) 6

O

(2.5.29)
Now for arbitrarily small 8+0 for T(w)>>~ in Egs.

(2.5.24) and (2.5.25), we have in the limit

SRy LA
To(w) © B m (@t + )t
so that Eq. (2.5.29) becomes

£

lim P{|T(w) oT(¥)| » :

§+0

=0 (2.5.30)

since |E|<1 and T(w) belongs to the positive integers set. |

3 Combining Eqs. (2.5.21), (2.5.23), and (2.5.30) we
complete the proof.

}“ We demonstrate that the mean-square stability con-
dition is stronger than the almost sure stability criterion.

From Eq. (2.5.8), }

g = - ab_2 (Z,,=0) (2.5.31) !
I, +b 3 ‘
bb a
Substitute this into Eq. (2.5.32) P
» la + bg| <1 (2.5.32) n
}
we get : .
al g
SRR (2.5.33) ?
Iyt P

which does not hold for the general case (|a|>1).
Since almost sure stability requires |a+bg| <1, {

this implies that




rw—!

Note that this is less restrictive than the mean-square
stability condition given by Eq. (2.5.8). Almost sure
stability (pointwise stability) states that for the sto-
chastic system under linear feedback Eq. (2.5.12), the
equilibrium solution x(t) =0 is stochastic stabilizable.
It ensures the existence of a control that will drive the
system towards zero (except for random fluctuations). It
is different from the méan—square stability in that it
deals with the ensemble of sample paths and says that the

variance of x(t) is finite and bounded if and only if m<1.

2.6 The Discounted Cost Problem

In this section we will consider the effects of in-

' cluding a discount factor in the objective function. Tradi-

tionally, discount factors have been used in economic prob-
lems to emphasize the near-term worth of the utility func-
tion as compared to the long-term worth [60]. One may then
suspect that the inclusion of the discount factor in the
objective function may increase the threshold at which the
optimal control for the infinite horizon problem is well-
defined. That this is indeed the case will be shown in the
development below.

In control systems, the discount factor has been
used for infinite-time control problem. Since the cost is

infinite in the infinite horizon problem, it is usually
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r normalized by the planning horizon N, that is, one con-

siders

N . 4
lim 3 Bd T qx2(t) + Ruz(t)( (2.6.1) |
N> )t:]_ ’ 1

Kushner ([61], pp. 152-153) shows that this can be closely

approximated by

atiax3(t) + Ru2(t)] 0<a<1 (2.6.2)
0

E
t

e~ 8

The use of the discount factor a guarantees that all costs 3
are finite and prevents J from "blowing up" as N » «,

We are given that the system is described by Egs. ]

(2.2.1)-(2.2.6). We consider the minimization of the dis-
counted quadratic cost given by
SN 2
J=ES J a(Qx(t)+Ru(t)) £2.6.3) |
t=0 ]
where N is the planning horizon and Q >0, R>0. The case
a =1 is the undiscounted cost problem we have considered !
in Sections 2.2-2.4. The state x(t) can be measured exactly.

The solution to the optimal control problem is ob-

tained by the method of dynamic programming. The deriva-
tion follows closely that given in Section 2.3 for the 3
undiscounted problem and, hence is not repeated. We note |
that in the discounted cost problem, the dynamic programming
algorithm can be modified for the cost functional of the

form
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N Mt
Eqa K(x(M) + § ofL(t,x(t), u(t), £(t)) (2.6.4)
t=0
O<ac<1
to be
V(x(N)) = K(x(N))
V(x(t)) = inf E 3L(t,x(t>.u(t),s(t>) + av(x(t+1>)$
"EE) (2.6.5)

Theorem 2.5

Given a linear stochastic system described by Egqs. (2.2.1) to

(2.2.6) and the cost functional (2.6.3), the optimal feed-
back control at each instant of time is given by a linear

transformation of the measured state, that is,

u(t) = - G(t) x(t) (2.6.6)
a K(t+1)(Z_, +2ab)
G(t) = — (2.6.7)
R+uKﬂ+U(%m+b)
The K(t)'s satisfies a Riccati-like recursive equation
K(t) = Q + a K(t+1)(Z__+a2)
aa
oa? k2(te1)(z, + D)2
- = , KW =q (2.6.8)
R+aK(t+1)(Z , +DB) :
The optimal average cost is given by $
N-1
I* = K(0) x2(0) + | o *lk(t+1) = (t) (2.6.9)
t=0

Proof: Use dynamic programming as in Section 2.3.
The optimal solution given in Theorem 2.5 exists for
all finite horizon N. However, the solution to the optimal

control problem may fail to exist (in the sense that the
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optimum cost is infinite) for the infinite horizon case.
The precise result is stated as follows.

Theorem 2.6

Let the horizon time N go to . Define the undiscounted

threshold parameter by Eq. (2.4.3).

+§5)2
5 (2.6.10)

(Zab
Ebb'*b

= —2
m (Eaa~+a ) -

Then the optimal solution to the infinite horizon problem

exists if and only if m < %.

~

s ~-A. R = v = =
Proof: Let a ® Va a(t) and R = R/a, B Wem /o Lap

Then after some algebra, Eq. (2.6.8) becomes

K(t) = Q + K(t+1)(__ +a%)

xz(tu)(iab s BBy
i — (2.6.11)
R+K(t+1)(z,, +5°)

The form of the nonlinear difference equation is
identical to that of Eq. (2.4.1). Hence the results follow
from Theorem 2.1.

The above results imply that if the stability con-
dition HIS% holds, then the limiting solution of Eq. (2.6.8)
exists, is bounded, and approaches a constant value K.

1im K(t) = K (2.6.12)
N>

and it is the positive solution to the algebraic equation

S ——————
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| i ? K%z, +7D)2
K=Q+a(£aa+a YK -

— (2.6.13) ;
R+aK(Z, +b°)

and, consequently, the linear gain G(t) in Eq. (2.6.7) also

approaches a constant value

aK(Z_, +ab)
G = lim G(t) = il —s
N-+o R+aK(I, +b%)

(2.6.14)

Otherwise, 1lim K(t) is not bounded, and, K(t) grows

|

t N+
} exponentially as

F

lim K(t) = e®™N

N-+>oco

(2.6.15)

We remark that in the discounted problem, the more
k-' the future cost is discounted (a - 0) the more uncertainty
can be tolerated in the randomness of the parameters and

F still have an optimal solution for the infinite horizon

problem.

Thus in the case that the solution exists (m:g%)
the use of the optimal control laws Eq. (2.6.6) where G(t)
is the constant gain given by Eq. (2.6.14) will result in

the following optimum evolution of the state x(t),

aK(Zab+ ab)

=2
R +aK(be+b )

x(t+l) = [a(t) - b(t)]x(t) (2.6.16)
One may suspect that the existence of an optimal control

¥ : in the case m,s%-results in the feedback stabilization
according to Eq. (2.6.16). This is not true. We will now

show that the optimal closed-loop system (2.6.16) is unstable
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in a mean-square sense in the region 1 snxs%-in spite of
the existence of an optimum control in the region specified
above.

Recall that the stochastic system Eq. (2.2.1) is
stabilizable if and only if the undiscounted threshold
parameter m defined in Eq. (2.4.3) is less than unity. This
holds for any stochastic linear system and any linear feed-
back control law. Applying the Theorem 2.2, the optimal
closed-loop system of Eq. (2.6.16) is not stable in a mean-
square sense in the region 1 snxs%-, where a is the discount
factor.

This is a very interesting and important result.
The implications of the above results are best understood by
referring to Fig. 2.9a. The undiscounted threshold param-
eter m can be thought as a measure of the system parameter
uncertainty, since for any given mean values a and b of the
random parameters a(t) and b(t), m increases monotonically
with both parameter variances Zaa and be. Note that m is
uniquely characterized by the stochastic system itself and
is independent of the performance criterion J used. For
any given discount factor a, if the system uncertainty is
large enough (Region C in Fig. 2.9a), no stabilizing
optimal control exists for the infinite horizon problem.

If the system uncertainty is sufficiently small (Region A
in Fig. 2.9a) then the optimal and stabilizing feedback

control exists for the infinite-time problem.
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—3p
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Figure 2.9 Behavior of solution as a function of threshold
parameter m. Legend:
O: Optimal infinite horizon.controls exist
N: Optimal infinite horizon controls do not

exist
S: Closed

square
U: Closed
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The interesting phenomenon occurs on the extended

existence region B. Note that the size of this region
increases as the future is discounted more and more (a +0).
In the extended region B in Fig. 2.9a optimal controls exist.
but the resulting feedback system is unstable in the mean-
square sense according to Theorem 2.2. The existence of a
unique optimal control law in this region is due solely to
the use of the discount factor in the cost functional.

All this seems to support a separate analysis to
determine the stochastic stability conditions of the under-
lying systems as has considered. A careful analysis of the
stochastic optimization problem from the optimal control
theory and stability theory are needed simultaneously to
obtain the stochastic controllability and stability con-
ditions for the purely random parameter systems. In most
stochastic control problems encountered, thus far, opti-
mality and stability present the same conclusions. Optimal
closed-1oop control laws result in mean-square stable sys-
tems. This is clearly not the case for uncertain systems

in which the randomness enters multiplicatively as well as

'
3
|

additively into the stochastic system in a significant way.
Following Magill [62] and Ramsey [63] where the
discount rate §=1r -p is allowed to vary from -« to +o with

appropriate economic interpretations, we shall now consider

the discrete-time problem where the discount factor a can

take on values 1 <a <~, We can argue heuristically that in
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order for the cost functional Eq. (2.6.3) to remain finite
for larger N, the terms in the cost functional must decrease
faster than the growth in at factor. Specifically, we have

the cost functional

(N
T = E{ I o(@xP(t) + Ruz(t))} (2.6.3)
t=0 '

Using Eq. (2.6.5), we obtain the optimal stochastic

control law for the discounted cost problem,

u(t) = Bret)ab x(t) (2.6.17)
R+aR(t+1) (B2 + £, )
where
g 2 2 92
K(t) = Q+aK(t+l)aZ - & K (ttl)a’ b (2.6.18)

=2
R+a K(t+1)(b™ + be)

The previous results for 0<a <1 can be extended to 1 <qa <,
Ini Fig. 2.9(b), we have plotted the regions of mean-
square stability and optimality for 1 <a <~, Region A is
shortened to the interval 0'<m<<%. The use of the factor
1<a gives rise to a new region D to where the optimal solu-
tion to the infinite horizon problem does not exist, but the
system is mean-square stbilizable under linear feedback.
The interpretation of this result is that the redefined cost
functional grows as powers of a so fast, that no optimal
control u(t) exists to keep the cost bounded. Region C for
m>1 has the same interpretation as in Fig. 2.9(a). In Fig.

2.10, we show the region of existence of optimal controls

for 0 <a <™,

e S —
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2.7 Control of Linear Systems With Correlated Multiplicative
and Additive Noises

The results we have obtained for the purely random
(white) parameter stochastic control problem can be extended

to allow for correlations between the system additive noise

£(t) and random parameters a(t) and b(t). We define the

correlations by

‘ —
El(a(t) o a(t))g(s)} Ze(t) 8(t,s) (2.7.1)

B{(b(t) - BCE)E(e)} = 1,.(t) 6Ct,s) (2.7.2)

The control problem is to minimize the average

quadratic cost functional,

2 Nebi o 2
T= E Qx“(N) + } Qx“(t) + Ru“(t) {2.7.3)
E!alb t=0

subject to the same dynamical system Eq. (2.2.1).

x(t+l) = a(t) x(t) + b(t)u(t) + £(t) (2.7.4)

We have that
V(N) = Q x2(N) (2.7.5) i

V(N-1) = E{(Q aZ(n-1) +Q) x%(N-1) + (@ bZ(N-1)+R)u®(N-1) B
+ 2Q(a(N-1) b(N-1) x(N-1) + b(N-1)E(N-1)) u(N-1) :
N"l} + Q2  (3.7.6) l #

+ 2Q a(N-1) £(N-1) x(N-1)|x

Now the noise E(t) is correlated with a(t) and b(t).

The cost-to-go is minimized when

u(N-1) = - G(N-1) x(N-1) - p(N-1) (2.7.7)
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|
Q(Y . +ab)
G(N-1) = ab s (2.7.8)
R+Q(E,, +b7)
Qr
p(N-1) = Py (2.7.9)

R+Q(Xbb+b )

Substituting this optimal solution into Eq. (2.7.6), we

obtain for the optimal cost-to-go that

]

v (x(N—l),N—l) Q + Q('aaT2 ot

2 g

Q°(Z_,.+a b) ’
- an x2(N-1)

R+Q(b™+1z 1)

2 (zab+ab) 5
R+Q(zbb+62) bg '

+ 21Q Zag"Q

X(N-1) + constants

K(N-1) x2(N~1) + 2 k(N-1) x(N-1) + const. :

(2.7.10)
where E
A s Q°(z,, +25)> 1 8
K(N-1) £ @ + Qa2 +35_) - - (2.7.11) |
ORHQ(E, +BY) !
and f E
(£, +ab)
k(N-1) 4 @z, - @2 ab 5 (2.7.12)

at b§

R+Q(I,, +5%)

Going back one more step to N-2, we see that the ’ ]

structure of the minimization problem is the same. By

_——._-__M
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indulation on t, we then obtain the following result.

Theorem 2.7

Under the assumptions in Section 2.2, but allowing E(t) to
be correlated with both a(t) and b(t), the solution to the
optimal control problem specified by Eqs. (2.7.3) and (2.7.4)

exists and is of the form

u(t) = - G(t) x(t) - p(t) (2.7.13)
x(t+1)(zab+§i§)

G(t) = — (2.7.14)
R+K(t+1)(Z, +b%)
b k(t+1l) + K(t+1) Lne
p(t) = = (2:7.15)
R+K(t+1)(2bb+b )
i K2(t+1) (2, +aB)°
K(t) = Q+(a®+1I_ )K(t+l)- 2 = (2.7.16)
R+K(t+1)(Z,, +5°)
k(t) = (8-B6()) k(t+1) + K(t+1) (E,, -G(t) Ly, ) (2.7.17)

with the boundary conditions

}
( . . )
0

K(N)

k(N)

The optimal policy is seen to consist of a feedback
component G(t), together with a fixed component p(t). It is
interesting to note that the expression for G(t) is identical
to that given in Section 2.3, Eq. (2.3.12), so that feedback
regulation of the state is independent of any correlation
between the additive and multiplicative noise. The optimal

feedback control law is still linear in the state. On the

—~™
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other hand, the correction term p(t) depends crucially
on the cross-covariances; if they are zero this term
vanishes and leaves us with the feedback component alone

and reduces to the results given in Section 2.3.

2.8 Conclusions

This chapter shows that the optimal control of dy-
namic systems with known structure, but with randomly vary-
ing parameters (modeled as white noise) has some limitations.
In particular, by means of a simple scalar linear - quadratic
control problem, it is shown in Section 2.4 that the infinite
horizon solution does not exist if the parameter uncertainty
exceeds a certain quantifiable threshold. We call this the
Uncertainty Threshold Principle. This result has major engi-
neering implications in the modeling accuracy required in
terms of the variance of the parameters of a dynamical system
before any stochastic optimal control scheme makes sense.

In Sections 2.5 and 2.6, it is demonstrated that
the uncertainty threshold parameter is uniquely characterized
by the stochastic system itself and is independent of the per-
formance criterion used. Optimal controls may still be de-
fined, due to the inclusion of a discount factor in the per-
formance index, in region where the closed-loop system is
unstable in a mean-square sense. The engineering implication
is that a stochastic stability analysis should be carried

independent of the stochastic optimization results. In most

s e e cw—————

P L
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stochastic optimization problems solved to-date optimality
and stability are not in conflict; optimal controls result
in stable systems. This is clearly not the case for systems

in which the randomness enters multiplicatively as well as

additively.
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CHAPTER 3

OPTIMAL LINEAR ESTIMATION OF STOCHASTIC SYSTEMS
WITH RANDOM PARAMETERS

3.1 Introduction

In Chapter 2 we have considered the optimal stochastic
control of a scalar linear stochastic dynamical system with

purely random parameters. We would like to extend the analy-

sis to scalar systems with noisy measurements. Before doing

that we will examine the estimation problem.

It is well-known that for the standard linear-
quadratic-Gaussian problem, the optimal stochastic control
problem separates into the optimal deterministic control
problem and optimal estimation problem with no control. That
the two optimization problems are not completely unrelated is
embodied in the Duality Theorem which says that one problem
is the dual of the other. We will show that the optimal
linear estimation results are not completely the formal dual
of the optimal control problem. For the optimal stochastic
control derived in Chapter 2 to be truly optimal, the optimal
estimation algorithm derived in this chapter will be only
optimal in the class of linear estimators. The technical
assumptions we make to derive the linear unbiased estimators
have excluded the filter from being the truly optimal esti-

mator. We present the results for the linear minimum variance

filter since the optimal filter would have to be nonlinear and

infinite dimensional.
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4 We will state the problem of state estimation with
purely random parameters in the next section. The mathematical
model developed in here can be related to the state-dependent

and control-dependent noise models. In Section 3, we derive

the optimal linear unbiased estimator in the minimum variance
sense. The estimator is to operate in the open-loop sense.
We will consider feedback control in the next chapter. In
Section 4, the asymptotic behavior of the linear unbiased
filter is examined, first for the case where the random
parameters are all mutually uncorrelated at all times and
next for the case where the random parameters may be corre-
lated at each instant of time with each other. A stability
analysis for the stochastic estimation problem in which the
purely random (white) parameters are correlated has not been
found in the literature. We note that the results in this
chapter were obtained before the related references [64] and
[65] were found.

Linear optimal filtering for a continuous-time !
linear dynamical system, in which the process and observation
have state-dependent noise was considered in [66]. For the ; ;
time-invariant problems, it was shown that the second moment :
of the state must be asymptotically stable for the uniqueness ' ]
of the filtering solution. Necessary and sufficient condi- ﬂ
tions for the second moment to be asympotically stable is
given in [67]. The discrete-time filtering problem was con- i

sidered in [68] for the case where only the measurement
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equation contains state-dependent noise and no input is

applied.

3.2 Problem Statement

Suppose that the scalar linear stochastic dynamical
system is described by the difference equation
x(t+1l) = a(t) x{(t) +b(t) u(t) +&(t) (3.2.1)
We include the second term in the estimation problem since
this will be of importance in the case to be discussed when
a(t) and b(t) are correlated random parameters. More impor-
tantly, this just represents the open-loop optimal estimation.
But when we allow u(t) to be a function of the measurement,
then the control system is closed-loop.
Let us assume that the measurement equation is given
by
z(t) = c(t) x(t) +6(t) (3.2.2)
Assume that the initial state x(0) is a random variable, with
given a priori statistics.

E{x(O)} =Xy o E{(x(O) -20)2} = B (3.2.3)

The initial state variable is assumed to be uncorrelated with
any other random variables in the system. The input u(t) is
assumed to be a deterministic quantity in the estimation
problem.

The additive noises £(t) and 6(t) are assumed to be
zero-mean Gaussian white noises, uncorrelated with each other

at all times, and to have known a priori statistics.

b i, 1 s
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E{r.(t)r_(r)} =Bty 8(E, 1) (3.2.4)
E{ou)o(»z)} = Bt} 6L T) (3.2.5)

What distinguishes our problem from the standard
linear Gaussian estimation problem is that the parameters
a(t) and b(t) and c(t) are assumed to be random parameters

uncorrelated in time, with known means and covariances.

Elaco} = 3o, B{(act) - 1) (a0 -ac0)}

& Zaa(t)d(t.r) (3.2.6)

Epc)} = 5ty B{(b(t) - b)) (b(r) - ()]

= I (£)6(E,1) £9.5.7)
ele(t)} = Tt E{(c(t)-?(t)) (c(t) -c(0)}
o s f

= I,,(t)8(t,1) (3.2.8)

The random parameters may be correlated with each other at

each instant of time, so that
v.{(a(t) -a(t)) (b(r) —B(T))} = I, (t) 8(t, 1) (3.2.9)

Moreover the random parameter c(t) may be correlated with

a(t) and b(t), that is

"

1-:{(au) - a(t) (e(r) -T-(T))} LaolT) 8(t, 1) (3.2.10)

lf.{(h(t) - b)) (cCO) -E(r))} Iy (T) 8, 1) 13.9.11}

We assume that the random parameters are independent of the

additive white noise {(t) in the system dynamics and 0(t)

0 the measurement. Note that in Eq. (3.2.1) if b(t) is
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uncorrelated with a(t) and c(t) for all t, then the second
product term essentially affects the system dynamics as an
additional driving noise that can be combined with £(t) in
the solution to the filtering problem as we will see.

The stochastic linear system given by the difference
Eq. (3.2.1) is a Gaussian-Markov process, since the random
parameters are assumed to be Gaussian white. However, the
a posteriori conditional density function is non-Gaussian
due to the random system parameter a(t). The conditional
probability density cannot in general be computed exactly
since an infinite number of conditional moments are needed.
In practice then, one would approximate the nonlinear filter
or fix a priori the structure of the estimator to be linear
and unbiased. We will constrain the filter in this chapter
to be linear in both the state and the measurements, although
it can be shown that the linear filter is not optimal in the
class of all possible filters for the system Egs. (3.2.1)
and (3.2.2) [65].

We shall denote the post measurements by

2zt & (2(1),2(2),...,2(t)}

3.3 Derivation of the Linear Minimum Variance Filter

We consider now the Kalman-type linear filter of

the following recursive form [69], the conditional mean being

given by
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X(t+l|t) ="Fl(t) R(t|t-1) + G(E) ult) + $lt) =z(t) (3.3.1)
Substitute Eq. (3.2.2) into this equation, we get
X(t+1|t) = F(t) X(t|t-1) + G(t) u(t) + v(t) c(t) x(t)

+ yp(t) 6(t) (3.3.2)

Subtracting this equation from Eq. (3.2.1) we get
the estimation error
x(t+1) - x(t+1]t) = F(t) (x(t) - x(t|t-1))

+ [a(t) = (L) e(t) -F(t)]x(t)

+ (b(t) —G(E)uCt) - v(t) 8(t) +£(t)
(3.3.3)

We require that the estimate be unbiased, so that
E{x(t+1l) - xX(t+1]{t)} = 0O vt {8.8.4)
Taking the expectation of Eq. (3.3.3) we obtain that

F(t)

a(t) - w(t) c(t) (3.3.5)

G(t) b(t) (3.3.6)

The estimation error then satisfies the recursive equation

e(t+1[t) = (a(t) - p(t) c(t))e(t|t-1) + (b(t) -Db(t)) u(t)

+[(a(t) -a(t) + wee)(ece) -c(t))]x(t)

- Ppet) 8(t) + &(t) (3.3.7)

and the state estimate evolves as

X(t+1]t) [R(tf-w(t)E(t)]§(t|t-1)+5(t)u(t)+w(t)2(t)
(9:.3.8)

Define the conditional error covariance to be

I (t+1]t) 4 F{ez(t+1lt)|zt} (3.3.9)
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It is evident from Eq. (3.3.7) that the predicted error co-
variance Zxx(t+1|t) will involve terms requiring the com-
putation of the second conditional moment of the state.

We note here that the measurement update is unbiased,

since if we define

>

a(t) x(t]t) [E(t)-w(t)E(t)]ﬁ(tlt—l) + P(t) z(t)

(3.3.10)
then
E(t)E{x(t) -ﬁ(tlt)lzt} - E(t)E{x(t) —ﬁ(tlt-1)[zt'1}

+ w(t)E{c(t) x(t) - c(t) i(tlt—l)lzt‘l} ?

=0 (3.3.11)

Now, the estimation error covariance is given by

I (t+1]t) = [Ez(t)-+¢2(t)62(t)-25(t)6(t)w(t)]zxx(tlt_l)

2 2 '

+ [Faat®) + 30 100 - 2 weo ] BE ) ,
e 1 () uP() + 2(t) + ¥3(t) oct) |
bb ® .

+ Z[Zab(t)—w(t)zbc(t)]u(t)E{x(t)} ' 3
(3.3.12) T

where the second moment of the state is given by
2 -2 2 =2 2
E{x (t+1)} = (a (t)-+zaa(t))s{x (t)} + (B2(t) + 2, (D) u™(t)

+ () + 2(at) Bty +x , (©)u(t) E(x(t)} ' 8
(3.3.13)

If we define,
+ I\ 2 +
X(t+l) E{x“(t+1)}
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We can write Eq. (3.3.13) as

X(e+¥) = (22t +1 (0) x(6) +(B3 1) + 1, (©) u(t) + E(D)
+2(a(t) B(t) +2_ () u(t) x(t[t) (3.3.14)

and the mean is given by definition

alt)yxit|ty = [E(t) -w(t)'E(t{'§(t|t-1)+-¢(t)z(t) (3.3.15)

with initial conditions.

X(0|-1) = E{x(0)} = 2o (3.3.16)
zxx(o|_1) = ZxO (3.3.17) !
X(0) = I + §g (3.3.18) | |

We now want to determine the filter gain yY(t) such
that the error covariance in Eq. (3.3.12) is minimized. We j
have a deterministic optimization problem. Taking the deriva- '_J
tive with respect to Y(t) and setting the necessary condition |

to zero, we get

a(t)e(t)r  (tlt-1) + I ()X(t) + I (t)u(t)

Vi) = - )
c (t)Zxx(tlt—l) PR LTI 4

(3.3.19)

Substituting this result into Eq. (3.3.12) the

minimum estimation error covariance is

‘ & =2 y 2 )y
Ix(tHl|t) = a®(t)I  (t]t-1) + I, (t)Hu”(t) + I (t)X(t)
+ 28 p(tu(t) E{x(t)} + E(t)

2 T SR ; »
- ¥7(t) Ee ()T (t]t-1) + I  ()X(t) + O(ts]

(3.3.20) ]
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*
It can be shown that the optimal filter gain ¢y (t) in Eq.
(3.3.19) minimizes the error covariance at any time. The
filter gains may be pre-computed since they are independent

of the measurement.

3.4 Linear Filter With Uncorrelated Parameters

In this section we will present the results on the
asymptotic behavior of the linear minimum variance filter
when the random parameters are mutually independent at all
times. This assumption is made to simplify the algebra and
notations, but do not change the conclusions.
The optimal linear filter is given by the recursive
equations.
Prediction: (Update Cycle)
x(t+1]t) = (F(t) - w(t) S(L)Yx(t[t-1) + B(t) u(t)
+ Y(t) z(t) (3.4.1)

The estimate has to be computed on-line since it is dependent
on the current observations. The filter gain computation is
given by

E(t)E(t)zxx(tlt-1)

-2
c (t)Exx(tlt—l) + I, (DX(t) + 0(t)

(3.4.2)

v(t) =

The estimation error covariance is given by
....2 - -—
= -1) - - t
Zxx(t+1|t) a (t)Zxx(t|t 1) a(t)c(t)zxx(tlt 1) v(t)

2 =
+ Ebb(t)u (t) + Zaa(t)X(t) + 2(t)

™

X "&:«.

[ -
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= Ez(t)zxx(tlt-l)
- w2 [QB(t) 1o (t]t-1)+I __(£)X(t)+0(t)
XX cce 1

+ be(t)uz(t) + I (OX(t) + 5(t)  (3.4.3)

and can be computed off-line.
We can also rewrite the filtering equations in terms
of the mixed equations as follows.
Filtering: (Measurement Update Cycle)
From Eq. (3.4.1) we have
X(t|t) = (1 -H(t)e(t)) x(t|t-1) + H(t) z(t) (3.4.4)
We redefine the filter gain in terms of H(t), the
standard filter gain, using
p(t) & qoHnce) (3.4.5)
From Eq. (3.4.2), we write the update estimation error co-
variance as
Exx(tlt) = (1 -H(t)c(t)) Zxx(tlt—l) (3.4.6)
It can be seen that the estimation error covariance depend
on the input u(t-1).
It can be shown that for the uncorrelated parameter

case that [64]

i

E{(x(t) -x(t|t)) x(t|t)} =0 Vt>o0
if E{(x(0) -x(0]|0))X(0|0)} = 0. The estimation error is thus
orthogonal to the state estimate.

The optimal linear filter given by Eqs. (3.4.1) to

(3.4.6) resembles the standard Kalman filter for linear

-
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Gaussian estimation problems. However, the computation of
the second moment of the state X(t) is an added term for

the random parameter problem. The positive semidefiniteness
of the covariance of c(t) adds 'convexity" to the filtering
problem and makes the solution more well-behaved numerically.
The random parameter covariances incorporates equivalent
driving noises and measurement noises in a natural manner
into the problem.

In the case where the random parameters have sta-
tionary statistics as well as £(t) and 0(t), stability con-
ditions for the minimum variance filter can be given. The
nonlinear difference Eq. (3.4.3) is then

2

2
bb"

+

Zxx(t+1|t) = a Exx(t|t—1) + I X(t) + I

- Hz(t)[zzzxx(tlt-l) + I X(t) + o] (3.4.7)

where u(t) is assumed to be constant also. The case of
u(t) = constant is effectively to increase the additive noise
£(t) in the system by a time-varying additive noise b(t)u
of mean S(t)u and covariance uzzbb(t). In the steady-state
the state estimation error covariance is, therefore, in-
creased due to uzzbb(t).

The boundedness of the predicted error covariance
depends on the boundedness of the second state moment X(t)
in Eq. (3.4.7). From Eq. (3.3.14), the second moment is

asymptotically mean-square stable if and only if (Zaa+32)<1.

If this inequality is satisfied then E{x(t)} is also
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asymptotically mean-square stable. For stationary systems,

the asymptotic stability of the second moment of the state
X(t) is a sufficient condition for the stability of the
estimator. If (Xaa+§2)<1 then the predicted error covariance
will be bounded. The filter is effectively a Kalman filter
with time-varying noise statistics given by ZaaX(t).

We summarize the results above in the following
theorem

Theorem 3.1

The solution to the Riccati-like Eq. (3.4.7) |
‘5'2 62 22

—2 XX
I (t+1|t) = a“c__(t|t-1) -
XX XX -2
c Exx(tlt-l)'+0-+ZcCX(t)

(tit-1)

2

bb (3.4.8)

(1)

+ + % aX(t) + 2

a
exists and is unique if the condition i
2

g +a° <1
aa

is satisfied for u(t) = constant.

The steady-state zxx satisfies the algebraic equation : i
8 a2c?s2
z = a“I__ - 5 + zaax + beu s (3.4.9)

u Zxx+zcc){+e “A

For (Zaa+§2)>l, the predicted error covariance

i

diverges, but the filter gain computation is still given by

H = o (3.4.10)
= b 2CC
since 3
X =31 + E(&%) (3.4.11)

XX
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In the special case where the parameter a(t) is

known, then the necessary and sufficient condition for the
asymptotic stability of the second moment of the state is
la|<1.

An approximate analysis of Eq. (3.4.7) shows that 1

for Zxx(t+1|t) large

_2 EzEzzxx(tlt-l)
Zxx(t+1|t) ~ a Zxx(tlt-l) +zaazxx(t|t-1) - 5
e™ +. %
ccC
xm zxx(tlt-l) (3.4.12)
where g
&
-2 =2
uBR® 4 Taclic (3.4.13)
aa -62 + I
ccC

then m>1. However, this inequality is weaker than the
threshold condition given in Theorem 3.1 and would include
points which did not give rise to mean-square stable filters.
This simple analysis shows that the expression in (3.4.13)
which can be obtained by equating b with ¢ is only a suffi-

cient stability condition in the filtering problem.

3.5 Mutually Correlated Random Parameters

In this section we will consider the asymptotic
behavior of Eq. (3.3.20). When the random parameters a(t),
b(t), and c(t) may be mutually correlated at each instant
of time. For the scalar stochastic system with wide-sense

stationary statistics,
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E__(t+1]|t) = a2r__(t|t-1)
XX XX

[Eszx(tlt-n +I, X(t)+I u E{x(t)}]2

~2
cL  (tlt-1) + I X(t) + 0

+ WE{x(t)} + I bu2 (3.5.1)

(§9]

+ ZaaX(t) + ZZa

b b

In case the random parameter b(t) is not correlated
with any other white noise parameter, we have a simplifica-

tion. The predicted error covariance is given by

iy [EESzxx(t|t-1) + EacX(t)]z
I._(t+1|t) = a°z__(t|t-1) -
XX XX 32

zxx(tlt-1)+-ZCCX(t)+-e

2 =
+ ZaaX(t) + be11 $E (3.5.2)

We recall from the asymptotic stability analysis of
Section 3.4, that the solution to the above Riccati-like
equation will remain bounded as t+= if the second moment of
x(t) is asymptotically stable. A sufficient condition for
X(t) to be asymptotically stable is that (Zaa-+§2)<1.

For t+~, and if the solution to the Eq. (3.5.2)

diverges then we can write

(
=2 ac
Zxx(t+1|t)z a Zxx(tlt—l) - o Exx(tlt—l)

+ Eaazxx(tlt-l) (3.8.9)

since

X(t) = £ (t|t-1) + E(x2(t|t-1)} (3.5.4)

e AnSAnds o TSR e R e o G catek Slhanlh.  Srtcaliniaiit s Sl
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Thus,
Zxx(t+1|t) 2 mZxx(t|t—1) (3.5.5)
and m > 1.
Where
i (ac +z,)°
Rt e R e (3.5.6)
e+ X
cC

However, this is only a sufficient condition for Eq. (3.5.2)
to diverge.

The case in which the random parameter b(t) is cor-
related with a(t) but not with c(t), does not change the
asymptotic stability condition since |a|>1 implies Zaa+§2>1.
The case in which b(t) is correlated with both a(t) and c(t)
as given in Eq. (3.5.1) will also not change the asymptotic
stability results given in Eq. (3.5.5).

If u(t) =0, then the deterministic input is effec-
tively eliminated from the plant Eq. (3.2.1). This allows
us to deal with only the pure estimation problem. It does
not simplify the problem any greater than if we assumed that
the random parameter b(t) is uncorrelated with a(t) and c(t),
since then the input u(t) multiplied by b(t) affects Eq.
(2.2.1) as an additional driving noise. The analysis was

presented in Section 3.4. The effective additive noise co-

2
bb"

variance is increased by I as in Eq. (3.4.7).
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3.6 Conclusions

This chapter considered the linear minimum-variance
estimation for stochastic systems with purely random (white)
parameters. Because of the random parameters multiplying
the state, the conditional density is non-Gaussian even if
all the random processes are Gaussian. We extend previous
results on the linear minimum variance.estimation for such
a class of stochastic systems to include state- and control-
dependent noises in both the plant and measurement equations.

The linear filter determined in this chapter is
similar in form to the Kalman filter, except that the second
moment of the state must be propagated. Conditions for sta-
bility of the linear minimum-variance estimator are presented.
We allow for the correlations of the uncertain parameters in
the general estimation problem. For the stochastic system
with purely random (white) parameters, we have shown that
the solution to the Riccati-like forward difference equation
may become divergent as t+x for some quantifiable threshold
depending on the means and variances of the randomly varying
parameters. This result is analogous to the linear quadratic
control problem, but does not arise in the standard linear-

gaussian estimation problem.
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CHAPTER 4
OPTIMUM CONTROL OF RANDOM PARAMETER SYSTEMS
WITH NOISY MEASUREMENTS

4.1 Introduction

In Chapter 2, optimum control of random parameter
system with noise-free state measurements has been discussed.
In this chapter we will be concerned with the optimum control
laws for systems subject to random parameters and with noisy
observations. Just as in the optimum control of systems with
deterministic parameters, the determination of random param-
eter control systems involves two problems (1) the problem of
optimum estimation and (2) the problem of optimum control.

In the standard deterministic linear-quadratic-Gaussian (LQG)
problem the separation theorem holds [3], [4]. A stronger
result stated as the Certainty-Equivalence Principle applies
to the LQG stochastic control problem. As we shall see in
the random parameter stochastic control problem, the optimum
solution does not separate in the sense that the filter gains
are not independent of the control computation. 1In the white
noise parameter control problem there is no learning in the
control law. The covariances for the random parameters cannot
be reduced below their a priori values. From Chapter 2, it
follows that the Centainty-Equivalence Principle does not
apply in the random parameter problem.

The optimum control strategy for the random parameter
system has to perform simultaneously the estimation and con-

trol of the state while minimizing the expected value of some
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scalar real-valued cost functional. 1In this sense, the con-
trol law derived is adaptive. It must adapt to the level of
uncertainty in the parameters and the state, yet it must
regulate the control system. This is an example of non-
learning adaptive control. If we accept the definition of
dual control as given in [8], [9], and [70] our stochastic
control law is non dual, since our knowledge of the system
model does not increase.

In Section 4.2 we will state precisely the optimal
control problem. 1In Section 4.3, we investigate the optimum
solution to the control problem formulated in Section 4.2 in
terms of the conditional means and covariances of the state.
The optimum filter is, in general, nonlinear and not practi-
cal to implement. Hence, we proceed to determine the sub-
optimal solution in the class of linear estimators and linear
controllers. In Section 4.4 we reformulate the stochastic
control problem as a deterministic optimum control problem.
Two solution methods are possible - Matrix Minimum Principle
[71] and non-stationary dynamic programming. The structure
of the optimum controller is given in Section 4.5. 1In Sec-
tion 4.6, we discuss in more detail the qualitative proper-
ties of the optimal control law for the fixed structure feed-
back control system. In Section 4.7, we examine the asymp-
totic behavior of the stationary control for stochastic sys-
tems with stationary statistics and constant weights in the

cost functional. Analogous to Section 2.5, in Section 4.8,

ki
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we analyze the stability of the stochastic system under
output feedback. We are interested in the question of the

existence of optimum controls in steady-state for finite cost.

4.2 Problem Statement

Consider a linear stochastic system with purely ran-
dom parameters characterized by the scalar difference Eq.
(2.2.1)

x(t+l) = a(t) x(t) +b(t) u(t) +&(t) (4.2.1)

The measurement equation is also scalar

z(t) = c(t) x(t) + o(t) (4.2.2)
where £(t) and 6(t) are mutually independent zero-mean Gaussian
white noises with known statistics,

E{E(t) E(T)} = E(t) &(t,1) (4.2.3)

E{0(t) 0(t)} = 0(t) 8(t,1) (4.2.4)
The initial state x(0) has known a priori statistics

E{x(0)} = X(0) = x(0]-1) (4.2.5)

E((X(0) - %(0))°} = b (4.2.6)

The time varying system parameters a(t) and b(t) are

white processes, uncorrelated in time, with known statistics,

E{a(t)} = a(t) , E{(a(t) -a(t))(a(t) -a(t))}
= Zaa(t) S(t,t) (4.2.7)
E(b(t)} = b(t) , E{(b{t) -b(t))(b(T) -b(1))}

= be(t) §(t,t) (4.2.8)

-
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The independent random parameters may be correlated with
each other at time t,
E{(a(t) -a(t))(b(t) -=b(t))} = L, (t) 8(t,T) (4.2.9)
The coefficient c(t) is assumed to be white, uncorrelated in
time, with known statistics,
E{c(t)} = c(t) , E{(c(t) -c(t))(c(T) ~c(T1))}
= ch(t) §(t,T) (4.2.10)
Finally, it is assumed that the output coefficient c(t) is
uncorrelated with the system parameters a(t) and b(t) for
all time indexes. The white random coefficients a(t) and b(t)
are uncorrelated with the additive noise £(t) and c(t) is un-
correlated with the additive noise 6(t) for all time indexes.
The optimum stochastic control problem is to deter-
mine a non-anticipative closed-loop control law based on the
past and current measurements and past controls that minimizes
the expected value of a quadratic function of the state and
control variables,

N-1

J = E{sz(N) + T Qet) ety +R(t)u2(t)} (4.2.11)
=0

t
subject to the dynamics of Eq. (4.2.1) and measurement func-
tion Eq. (4.2.2). The weightings Q(t) and F are assumed to
be positive semi-definite and R(t) is assumed to be positive
definite.

The admissible controls are required to be measur-

able functions of the current and past measurements to assure

that they are a random variable. We denote the entire
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measurement history to be zt 4 {z(0),2(1),...,2(t)} and the

entire control history to be ul~?

= {u(0),u(1),...,u(t-1)}.
We seek control laws of the type u(t) = y(t,x(t|t)), ueU,
where §(t|t) is a sufficient statistic of the state. The
control specified has perfect recall (memory) and a totally
nested information structure.

For the multistage stochastic control problem, we

have that

J = E{L(u(t), E(t), x(t)) + L(x(t+1))} £EeQ (4.2.12)

Where we define the information available to u(t) at t as

z% 8 {u(0),...,u(t-1),y(1),...,y(t)} (4.2.13)

then the Principle of Optimality implies that

t+1

7 (z%) = min E{L(u(t), £(t), x(t)) + 3zt |2%) (4.2.19)

u(t)

We have examined the problem where z(t) =x(t) (perfect ob-
servation of the state) in Chapter 2. When the measurement
is not exact, then the solution of Eq. (4.2.14) requires the

knowledge of p(x(t)lzt). The assumption of perfect memory

renders p(x(t)lzt) a well-defined probability distribution
t+1

algorithm does not depend on the control functions Y(0), 4

function and permits a recursive computation of p(x(t+1)|z

from p(x(t)|z%) by a filtering algorithm. If the filtering

y(1),...,Y(t) then the Separation Theorem holds for the dy-

namic optimization problem.




-97-

4.3 Optimum Solution of the Stochastic Control Problem

In this section, we investigate the stochastic con-
trol problem via the method of dynamic programming. We
derive the optimum stochastic control law using the Bellman's
Principle of Optimality. We define the cost-to-go at t=N-1,
given measurements zN'] and using optimum systems control
u(N-1) by

V(N-1,x(N-1)) = min E{sz(N) +Q(N—1)32(N-1)

u(N-1)

+ R(N-1) u?(N-1)|2zN"1)

= min  E{x2(N-1)(F a2(N-1) + Q(N-1))
u(N-1)

+ 2 Fa(N-1) b(N-1) x(N-1) u(N-1)
+ (Fb2(N-1) +R(N-1) u®(N-1){zN"1)
+ F B (4.3.1)
since £(N-1) is independent of u(N-1) and x(N-1).
If we let

N—l}

X(N-1|N-1) & E{x(N-1)]|= (4.3.2)

be the conditional expectation of X(N-1) given the information

statistic zM ! and similarly let

£ (N-11N-1) & E((x(N-1) - R(N-1|N-1))? 2N (4.3.3)

be the conditional covariance. Assume that a(t) and b(t) are

independent of x(t), we then obtain
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V(x(N-1),N-1) = min E{xz(n-l)(F(Ez(N-l)-+z (N-1))
{ u(N-1) i o
+ Q(N-1)) |z }
' + 2F(Z,, (N-1) +a(N-1) B(N-1)) X(N-1|N-1)
. u(N—l)-+(F(52(N-1)-+be(N-1))-+R(N~1))
- w2(N-1)} + F 3(N-1) (4.3.4)

Taking the derivative of this expression on the right ,
hand side with respect to u(N-1) for the algebraic minimiza- ‘
tion, we get

u'(N-1) = - G(N-1) R(N-1[N-1) (4.3.5)
F(L,, (N-1) + a(N-1) b(N-1))
G(N-1) = ——= (4.3.6)
F(b“(N-1) + L, (N-1)) + R(N-1)
;' Substituting these results into the expression for
the cost-to-go, we get
V(x(N~1) ,N-1) = E{xz(N-l)(F(EZ(N-l)-+Zaa(N-1))
+ Q(N-1)) |21y
Fz(zab(N-1)-+E(N-1)S(N-1))2
 F(B2(N-1) +3,, (N-1)) + R(N-1)
. %2(N-1|N-1) + F E(N-1)
= E(x%(N-1) K(N-1) |2V 1}
- = 2
&xz b(N-1)+a(n-1)b(n-1))]
+ a ~ £__(N-1|N-1)
F(Z,,(N-1)+b“(N-1)) + R(N-1) s
+ F E(N-1) (4.3.7)
[
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where

K(N-1) = F(aZ2(N-1) + I (N-1)) +Q

[F(E<N-1)S(N-1)+xab(n-l)ﬂz
= S (4.3.8)
F(5%(N-1) + £, (N-1)) + R(N-1)

An alternative form for the cost-to-go expression
Eq. (4.3.7) is given by

V(R(N-1|N-1),N-1) = K(N-1) R2(N-1)
+ [FEP-n +r -1 + e ]
. Xxx(N-llN-l) + F E(N-1) (4.3.9)

In {37], it is claimed that the second term in the
cost-to-go expression, Eq. (4.3.7), will be independent of
the past controls if the estimation error has a conditional

N-l. In the deter-

covariance independent of x(N-1) and z
ministic linear-quadratic-gaussian control problem it can be
shown that

Euxu)-ﬁuln)%zt} 0<tsN
are independent of x(t) and 2zt (see [3], [4), [72]), [73))
since the estimation errors e(t) 4 x(t) - x(t|t) can be shown
to be independent of the past measurements or functions of
these measurement. Therefore, the estimation errors are
independent of past controls. Only the first term in the
expectation of Eq. (4.3.7) is influenced by previous control

policies.




r—'ﬂ’"’l( B . y s Cagas v -

oo

~100-

At time t =N-2, we have then the cost-to-go

min  E{V(N-1,x(N-1)) + Q(N-2) x2(N-2)
u(N-2)

V(N-2,x(N-2))

+ R(N-2) u?(N-2)|2V"2)

min  E{K(N-1) x2(N-1) + Q(N-2) x2(N-2)

u(N-2)
+ R(N-2) u2(N-2)[2N"?} (4.3.10)
using the property of the conditional expectation
B{E{- |21} |22} - B(.}2N2) (4.3.11)

The cost-to-go expression in Eq. (4.3.10) has a form exactly
identical to Eq. (4.3.1) except for the indexes. The in-
ductive procedure now repeats.

We state the following theorem based on our results,

Theorem 4.1

Given the stochastic linear dynamical system described by
Eqs. (4.2.1) and (4.2.2) and the admissible control law be-
longing to the class of causal inputs, the optimum control
law that minimizes the expected value of the cost functional

Eq. (4.2.11) is given by

wh(t) = - G(t) x(t]t) (4.3.12)
K(t+1)(a(t) b(t) + I, (1))

G(t) = =3 (4.3.13)
K(t+1)(B2(t) + 5, (£)) + R(t)

K(t) = K(t+1)(a%(t) + 5, (£)) + Q(t)

ke aw s sz o F
K(t+1)(B2() + I (£)) + R(t)

, K(N)=F (4.3.14)

e o S
3
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The estimate X(t|t) in Eq. (4.3.12) is the condi-
tional estimate E{x(t)lzt) computed via some optimal nonlinear
filter.

In general, the cost-to-go is given by

V‘(X(t).t) - E{xz(t) K(t)*-p(t)lzt} (4.3.195)

p(t) = p(t+l) + K(t+1) E(t)

[kceeny @) Beey +x, (enf? i
* s . (k]
K(£+1)(B2(t) + 3, (1)) + R(t) ¥
p(N) = 0 (4.3.16)

The average value of the performance index, Eq. (4.2.11), is

given by
9 N-1
J(0) = K(0) E{x“(0)} + J K(t+1)(E(t)
t=0
+ (AL B +5 ) (1)) G(t) T (t]1)) (4.3.17)

using the fact E{E{:|z2}} = E{-}.
When the state variable x(t) can be measured exactly

E{x(t)lzt} becomes x(t) and hence the term

\

o [K(+ D@ B + 5 (t))]zt tl 1.3
2 (4.3
\

E{(x(t) - x(t[t)) . ab 18)
? K(t+1)(b(t) +Xbb(t)) + R(t)
vanishes and the optimal control law is
u'(t) = - G(t) x(t) (4.3.19)

where G(t) is given by Eq. (4.3.13). These results for the

perfect measurement case have been presented in Section 2.3.

PR IO T
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We remark that the gain in the optimal controller
for the stochastic system with noisy state measurement is the
same as the gain in the optimal controller when the state
measurements are exact. The certainty-equivalence controller
is not the optimal controller for the stochastic system with
random parameters. The control gains are functions of the
variances of the white parameteis. In this case, separation
of estimation and control exists, since the control depends
only on the expected value of the current state, given past
measurements. Separation occurs in the optimum solution
since the control affects only the conditional mean of the
state. The feedback gains in Eq. (4.3.13) can be calculated
a priori independent of the filter computations.

The optimum controller given by Eqs. (4.3.12) to
(4.3.14) "hedges" or acts cautiously or vigorously depending
on the amount and type of uncertainty. No learning of the
system parameters is involved in the estimation process,
however. The controller gains are modulated by the uncer-
tainties of the parameters and exhibit the behavior of an
adaptive control law. Since there is no learning in the
closed-loop control system, the control is non-dual in the
sense of [8] and [22].

The conditional probability density function of
x(t) given zt is in general very difficult to evaluate. A
nonlinear filter is required which is usually not realizable

for practical purposes. We will, therefore, examine some
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approximate solutions to the stochastic control posed in
Section 4.2 by fixing the structure of the controller and
the filter to be linear.

The stochasiic control problem can be reformulated
in terms of the state estimate, estimation error, and error
covariance as a deterministic optimization problem. The
parameter optimization problem is solved first using the
matrix minimum principle. A true two-point boundary value
problem (TPBVP) results because the control now affects both
the mean and error covariance of the estimation process. We
do not have the standard separation theorem results. This
fixed structure controller-estimator exhibits the dual nature
of control where the filter gains and control are used to
improve the estimates. This suboptimal solution is different
from the optimal solution given in the previous Section 4.3,
where the control does not affect the variance of the condi-
tional estimator as contrast with a control that does affect
the linear minimum variance estimator. For simplicity of
filter structure, we have added the complexity of a policy
dependent estimator, a true tradeoff in implementing a closed-
loop estimator-controller.

Before we proceed to present the results on the con-
strained estimator-controller suboptimal control, we shall
elaborate further on the concept of policy independence of

the conditional mean and discuss a control based on the

approximation to the conditional mean. As a result, we will
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derive an enforced separation controller for the random
parameter system.
If the conditional mean and covariance in the cost

V(N—l,ﬁ(N—llN-l)) is computed via the minimum variance linear

unbiased filter of Chapter 3, then we have
V(X(N-1|N-1),N-1) = K(N-1) x2(N-1|N-1)
_2 =
+ [F(a (N—1)-+Zaa(N-1)) + Q(n—l)] zxx(N—1|h-1)

+ F Z(N-1) (4.3.20)
where

(1 -H(N-1) c(N-1)) Xx(N-1[N-2) + H(N-1) z(N-1)
(4.3.21)

X(N-1|N-1)

X(N-1|N-2)

a(N-2) X(N-2|N-2) + D(N-2) u(N-2) (4.3.22)

H(N-1) = zxx(N-1|N-2)E(N-l)[EZ(N-l)zxx(N-1|N-2)

-1
+ ZCC(N—llN—l)X(N-l) + O(N—lﬂ (4.3.23)

=2
Zxx(N-llN-Z) a (N—2)Zxx(N-2|N—2) + I, (N-2) X(N-2)

¥ be(N—Z)uz(N—2)+ Z(N-2) (4.3.24)

]

- g 2
Zxx(N-llN—l) (1 - H(N-1) c(N-1)) Zxx(N—llN-2)-+H (N-1)

. (ch(N—l) X(N-1) + O(N-1)) (4.3.25)

N—l}

X(N-1) = E{x%(N-1)|z

—2
(32(N-2) + £__(N-2)) X(N-2)
+ 28(N-2) B(N-2) u(N-2) x2(N-1|N-1)

+ (FZ(N—2)~+be(N-2))uz(N-2)+ Z(N-2) (4.3.26)
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The estimation error covariance depends on the past
control. Hence the optimal control u(N-1) which minimizes
V(N-2) would also seek to minimize the estimation error. In
other words, the control has to perform the dual function of
control and estimation of the state and leads to the insepara-
bility of stochastic control and estimation. To obtain ad hoc
control, we can assume that Exx(N—llN—l) is independent of the
control, and hence obtain the enforced separation control by
minimizing the cost-to-go

V(N-1) = min E{K(N-1) x2(N-1) +Q(N-2) x%(N-2)

u(N-2) ¢
+ R(N-2) u?(N-2)|2""2)

and obtain that the suboptimal control is given by
u(N-2) = - G(N-2) X(N-2|N-2) (4.3.28)

where the control gains are the same as those given by

assuming that the measurements are exact. So,
u(t) = - G(t) X(t|t) (4.3.29)
G(t) = - (18985490 14 5.0 5 58 (4.3.30)

Tl "
(b7(t) +Lbb(t)) K(t+1) + R(t)

K(t) = (a%(t) + £ (1)) K(t+1) + Q(t)

— . 2
R { (&SR T4 PE 1k DD (4.3.31)
(BZ(t) + 5, (1)) K(t+1) + R(t)
K(N) = F (4.3.32)
and the estimate is the minimum mean-square estimate given in

Chapter 3.
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The average cost for this enforced separation

solution is given by
N-1

I(0) = K(O) (g +Xg) + T K(t+1) E(t)

+ Ez(t)x2<t+1)62(t+1)[n(t)
—92 =1
+ .
(b (t)+zbb(t))x(t+1)] Exx(tlt)
(4.3.33)
We remark that there has been other types of sub-
optimal feedback control laws considered in the literature
such as the output feedback zero memory controller in
continuous-time [41], [43]. It is possible to cascade an
ad hoc scheme based on the Kalman filter and the deterministic
control law given in Section 2.3. The Kalman filter is to be
implemented by arbitrarily setting Zaa(t) =be(t):=zcc(t)=(l
The resulting filter gains would not reflect the level of

uncertainties in the system parameters.

4.4 Formulation of the Deterministic Control Problem

In this section we will find an approximate solution
to the optimal stochastic control problem. The goal is to
apply standard deterministic optimization techniques to the
stochastic control problem formulated in Section 4.2. We

will assume for the suboptimal adaptive feedback compensation

that it has a linear controller cascaded with a linear esti-

mator. We shall see that the reformulated problem is a

deterministic optimization problem. The discrete-~time
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minimum principle or dynamic¢ programming method can then be
applied to find the optimal control and filter gain sequences.
We are given the first-order linear stochastic system
Eqs. (4.2.1) and (4.2.2) with quadratic cost functional Eq.
(4.2.11). Assume that the control law is linear in the state
estimate and time-varying so that‘

u(t) = - G(t) X(t) (4.4.1)
where X(t) is the best linear unbiased estimate to be deter-
mined. In general, the optimal control law would require
infinite dimensional state estimators as we have seen in
the previous section. We will thus restrict the class of
admissible control functions to be of a certain linear struc-
ture, Fig. 4.1.

The original cost functional given by Eq. (4.2.11)
is then rewritten using Eq. (4.4.1) as
J = E;sz(N) +’:z: Q(t) x3(t) + R(t)Gz(t)ﬁz(t)s (4.4.2)
Let us define a random vector consisting of the
state variable and the estimation error (which are dual of

each other in the standard LQG problem) by [74].

m(t) 8 X(ti (4.4.3)
x(t) - x(t)

*
The use of constant linear controller leads to a different,

static minimization problem.

-
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Figure 4.1° Fixed structure linear controller and
estimator
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Let us denote the symmetric second moment matrix

of m(t) as

Moolt) My, (t)

M(t) & E(m(tym (t)) & (4.4.4)

Mip(t) My, (t)

The cost functional then becomes

N-1
2
J = FMy (N)+ tgo QUE) Mg (t) + R() GE(L) (Mg (t) - My, (t)

- Mi(t) + M () (4.4.5) 4

The transformed cost is unconditional, and, in fact, is a
deterministic quantity. .

To reformulate completely the original stochastic

control problem so that deterministic optimization techniques

can be used to solve the problem, we need to derive the dy-

namical equations associated with the matrix M(t).

We shall assume that the desired estimate to be used
in the feedback control function in Eq. (4.4.1) is a linear
unbiased estimate. The estimator is constrained to be of
the form,

X(t+1) = D(t+1) X(t) + H(t+1) z(t+1) + L(t+1) u(t) (4.4.6)

Substituting Eq. (4.4.1) and Eq. (4.2.2) into the

P A ———

state Eq. (4.2.1) and the filter Eq. (4.4.6) we get

X(t+1) = a(t) x(t) - b(t) G(t) x(t) + E(t) (4.4.7)

and

R(t+1) = D(t+1) X(t) + H(t+1) c(t+1) x(t+1) = L(t+1) G(t) xX(t)

+ H(t+1) 6(t+1) (4.4.8)
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Substracting Eq. (4.4.8) from Eq. (4.4.7) we get
a(t) x(t) -D(t+1) x(t) - b(t) G(t) x(t)

x(t+1) - X(t+1)
+ E(t) —H(t+1l) c(t+l) a(t) x(t)
+ H(t+1) c(t+1) b(t) G(t) X(t)
+ L(t+1) G(t) x(t) - H(t+1l) 8(t+1)

((1 ~H(t+1) c(t+1)) a(t) -D(t+1)) x(t)

+ D(t+1)(x(t) -x(t)) + E(t)
- [ (1 -H(t+1) c(t+1)) b(t)
-L(t+1)]c(t)§(t) 1

- H(t+1) 68(t+1) (4.4.9)

Improving the condition that the estimate be un-

biased of x(t) for all u(t), i.e.,

E{x(t) - x(t)]z%) = 0 vt (4.4.10)
implies that '
D(t+1) = (1 -H(t+l) c(t+1))a(t) (4.4.11) "
L(t+1) = (1 -H(t+l) c(t+1))b(t) (4.4.12) !
and that g
E{x(0) - X(0)} =0 (4.4.13) e ’

or X(0) = X,. :
We obtain the form of the linear unbiased estimator f !
X(t) = (1 -H(t)c(t)) (a(t-1) -b(t-1) G(t-1)) x(t-1) f
+H(t) z(t) (4.4.14)
driven by the measurements.
The state dynamics can be rewritten as 4

x(t) = (a(t-1) -b(t-1) G(t-1)) x(t-1) +b(t-1) G(t-1)(x(t-1)
-x(t-1)) + E(t-1) (4.4.15) ]
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The state estimation error is given by

X(t) =X(t) = (1 -H(t) c(t)) x(t) -H(t) 0(t) - (1 -H(t) (L))

« (a(t-1) -=b(t-1) G(t-1)) x(t-1)

= (1 -H(t) c(t))a(t-1) x(t-1)
- (1 -H(t) c(t))b(t-1) G(t-1)+ x(t-1)
+ (1-H(t) c(t)) E(t-1) - (1 -H(t) c(t))

« (a(t-1) -b(t-1) G(t-1)) x(t-1) -H(t) 6(t)

= (1 -H(t) e(t)) (a(t-1) -b(t-1) G(t-1)) x(t-1)
+ (1 -H(t) c(t)) b(t-1) G(t-1) (x(t-1) - x(t-1))
+ (1 ~H(t) c(t)) E(t-1) + (1 -H(t) c(t)) (a(t-1)

- b(t-1) G(t-1))(x(t-1) - X(t-1))
- (1 -H(t)c(t)) (a(t-1) - b(t-1) G(t-1)) x(t-1)
- H(t) 68(t) (4.4.16)

We remark that the estimation error x(t) - x(t) depends
on x(t) and z% when La(t)#0, I (t)#0, or I_(t)#0. This
means that the control will affect the estimation performance,
i.e., Xxx(tlt) as we shall see in the following development
of the !(t) matrix.

In the derivations below we shall assume that a(t)
and b(t) are independent to simplify the algebra. The ele-
ments of the second moment matrix for the vector m(t) then

propagate according to the following difference equations,
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M. (t) = Ed(act-1) -b(t-1)G(t-1))2} M_ (t-1)
00 1 i Yoo
+ 2E{(a(t-1) ~b(t-1)G(t-1)) b(t-l)G(t—l)}M01(t—l)
{2 2 :
+ L‘b (t—l)’ G (t—l)Mll(t—l) + E(t-1)
- (2(t-1) - BCt-1)6(t-1))> Mgo(t-1) + I (t=1) Mg (t-1)
y 2 & i
+ 3, (E=1)GP(t-1)My (t-1) + 2B(t-1) G(t-1) (a(t-1)
- S(t—1)c(t-1))u01(t-1)
2
- 25, (£-1)G(t-1)My, (t-1)
2
+ I (t=1) G2(t-1) My, (t-1)
+ Bz(t-l)Gz(t-l)Mll(t-l) + 5(t-1) (4.4.17)
My, (1) = E{(a(t-l) —b(t—l)G(t-l))l}l “H(t)e(t))(a(t-1)

-b(t-1)G(t-1)) - (1 -H(t) c(t)) (a(t-1)

-S(t-l)G(t-l)iﬂ}uoo(t—l) b 3

+ E{(a(t—l) —b(t-l)G(t-l))[l SH(E)S(t) (a(t-1)

- B(t-1) 6(t-1)) } Mgy (t-1)
+ E{b(t—l)G(t—l)[(I-H(t)c(t))(a(t-l) i

- b(t—l)G(t—l))
_ (1 -H(t) E(t)) (a(t-1) -B(t-1) G(t-m]}mm(t—l)

!

+ E{b(t-l)c(t-l) Bl H(t) S(t)) (a(t-1) ‘ j
-b(t-1)G(t-1))

+ (1 -H(t) c(t)) b(t-1) G(t—l)]} Mll(t-l)

+ (1 -H(t)c(t)) 5(t=1) (4.4.18)
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Mo (t) = (1-H(t) &(t)) (I, (t-1) + £ (t-1) Gz(t—l))uoo(t-l)

+ (1 -H(t)o(t)) (a2(t-1) - 21, (t-1) G2(t-1)
-a(t-1) b(t-1) G(t-1))(My, (t=1) + Mo (t-1))

+ (1 -H(t) c(t)) (a(t-1) b(t-1) G(t-1)

2
+Ebb(t—1)G (t—l))Mll(t-l)

= (Concluded)
+ (1 -H(t) e(t)) E(t-1) (4.4.18)

after some algebric manipulations.
The state error covariance equation is given by
M () = E{[(l -H(t) e(t)) (a(t-1) -b(t-1) G(t-1)) A,

- (1 -H(t) S(t)) (a(t-1) -E(t-l)G(t-l))]z}uoo(t-l)

+ 2E{[(1-—H(t) c(t) (a(t-1) -b(t-1) G(t-1))

- (1 =H(t) c(t)) (a(t-1)
-b(t-1) G(t-l))][(l -H(t) c(t)) (a(t-1)

-b(t-1) G(t-1))

f MOI(t-l)

+ E{[(1-H(t)3(t))(5(t-1)-'S(t.-1)c.(t-1)) ,

+ (1 =H(t) e(t)) b(t-1) G(t-l)]l

+ (1 -H(t) c(t)) b(t-1) G(t-l)]z}ﬂll(t-l)

s (-n N () E3() B(e-1)

+ 12y o(t)
- (1 -n(t)F(tnz[Ez(t-l)un(t-x)
Ay 2 -
3 (8=1) G2(t=1) My, (t=1) + I (t-1) M (t-1)

2
+ Xbb(t-l)G (t—l)Moo(t—l) (4.4.19)
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2 .
+ 28 (t-1) G2(t-1) Mg, (t-1) + :(t—l)]
+ H3(t) I, (t) [(Ez(c-n +3_ (t-1)

- 2a(t-1) b(t-1) G(t-1)

+ (B2(t-1) + L (t-1)) G2 (t-1)) Moo t-1)

+ E(t-1) + 2G(t-1)(a(t-1) b(t-1)

=2
- (b (t-l)-Ftbb(t-l))G(t—l))MOl(t-l)

+ (B2(t-1) + I p(t-1)) G2(t-1) My (t-1)

2 (Concluded)
+ HY(t) o(t) (4.4.19)

The dynamical equations for the transformed system

are given by
Moo(t) = (A(t-1) -B(t-1) G(t—l))ZMOO(t-l) +2b(t-1) G(t-1)
« (al(t-1) -b(t-1) G(t-1)) My, (t-1) + E(t-1)

+ B2(t-1) G2(t-1) My (t-1) + £ (+-1) My (t-1)
2
+ £ (8-1) G2(t=1) (My(t-1) - 2My, (t-1)

+ Mll(t—l)) (4.4.20)

Mor(t) = (1-R(®) T (2)) [ce-1) ((Ace-1)
- b(t-1) G(t-1)) My, (t-1)

+ b(t-1) G(t-1) un(t-1)) +5 . (t-1) Mg (t-1)

2
+ be(t~1) G (t—l)(Moo(t—l) —2M01(t-1)-fM11(t—1))

+ E(t—l)] (4.4.21)

T e i i i e e

- 2 A
My, () = (1 -H(t) c(t)) My, (L)

' + w3t [ch(t) Myo(t) +O(t)] (4.4.22)
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o 5 =2
My (6) = @S(e-1) My (E-1) + T (t-1) M (t-1)

2
+ be(t-l) G (t-l)'(Moo(t-l) -2M01(t-1)

* My, (-

Initial condition
by

Moo(0)

M01(0)

M,,(0) =

1)) + 5(t-1)

(4.4.23)

s for the dynamical system is given

- T2
X0 + £x0 >0 (4.4.24)
= sz 20 (4.4.25)
ExO >0 (4.4.26)

Thus we have formulated the following deterministic

optimal control problem.

Given the system described by the

dynamical Eqs. (4.4.20)-(4.4.23), the initial condition
—2
X6 0 Exo
M(0) = (4.4.27)
; L0 Iyo
and the cost functional
X N-1 2
J = tr [E!(N)] ¥ tr[g(t)_ng(t)] (4.4.28)
t=0
where
% F 0
! e (4.4.29)
0 0
j 2 2
Q(t) +R(t) G7(t) -R(t) G (t)
Q(t) = (4.4.30)
i ~R(t) G3(t) R(t) G2(t)

find the gains G(t) and H(

t) such that J is minimized.
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This problem can be solved using the matrix minimum
principle or dynamic programming. The first solution using
the matrix minimum principle is summarized in the following

theorem.

4.5 Solution of the Deterministic Control Problem

Theorem 4.3. Given the deterministic dynamical

system Eqs. (4.4.12) to (4.4.18) and the cost functional
Eq. (4.4.19), the optimum control and filter gains are

respectively given by

- - *2 * *
a(t) b(t) (I, (t+1) H “(t+1) P,,(t+1) + P, (t+1))

*
) B ren, (D) (5. (DR (AP’ (E+ )P (£+1))+R(E)
( bb cc 11 00

(4.5.1)

* =8 2_%
+Ebb(t)(1-ﬂ (t+l)c(t+1)) pll(t+1)
and
nY(t+1) = [Ez(t)uIl(t)waa(t)nso(t)
*2 * *
v 1, (8) GTE(E) (Mg (1) - My, (©)
+ 200 ] Beern) /[Pl @ w0
* *2 *
+ D (E) MO (E) + B (£) G 2(8) (Mg (¢)
- My (£)) + E(E)

*
+ ch(t+1)M00(t*1)*'0(t+1q

MIl(t+1) c(t+1) [zcc(tﬂ) M;o(t+1) + G)(t+1)] -1

(4.5.2)
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where the state second moment equation is given by

*
Moo(t+1) = (A(t) -B(t) G (£))Z My (t)

+ 2B(t) 67 () (A(t) -B(t) G (1)) My, () +E(t)

+ B2ty 6 2 (t)M L)+ T (t)MOO()

+ I (8) GT2(E) (Mg (1) - M ()

* & =2
Myo(0) = £ o+ %5 (4.5.3)

The state estimation error covariance equation is given by
* 3 * = 2[-2 * *
Mll(t+1) (1 -H (t+1) c(t+1)) [a (t)Mll(t)i-Zaa(t)Moo(t)
L g Tt W +E(t
pp(t) G “(t) (Mg (t) - M, (t)) +E(t)

H*z(t+1)[ (t+1)M (t+1)+e(t+1)] ,

*
M;,(0) = 2 (4.5.4)

x0

and the co-states P (t) and P 1(t) are propagated backwards

by equations

* T *9
Poo(t) = (a (t)-+2aa(t))(2cc(t+1)H (t+1)P11(t+1)
*
+P00(t+1)) + Q(t)

- G*Z(t)[(sz(tnz (t))(zcc(t+1)u*2(t+1)
(t+1)+P (t+1)) + R(t) i |

pp(t)(1 = B (t+1) c(t+1))2 p (t+1)]
Zaa(t)(l-—l{ (t+1)E(t+1)) pu(t+1)

*
Poo(N) =k (4.5.5)




T

~118-
P;l(t) = 32(t)(1 -u*(t+1)’é(t+1))2p;1(t+1)
* —
+ G 2(t)[(b2(t) £ 3L (E))(E  (t+1) Hz(t+1)P;1(t+1)
+P;0(t+1)) +zbb(t)(1-u(t+1)5(t+1))2
x PA, (E41) + R(1) ]

*
pll(N) =0 (4.5.6)

Proof: See Appendix A.

The optimal linear time-varying feedback control law -
is thus
* * A
u (t) = - G (t) x(t) (4.5.7)
*
where time-varying gain G (t) is given by Eq. (4.5.1) and the
linear minimum variance unbiased estimate ﬁ(tlt) is given by

R(E+1) = (1 -H (t+1) T(t+1)) (a(t) =B(t) G (t)) x(t)

+ B (41) 2(t41) ,  X(0) = X, (4.5.8)
and z(t+l) is the measurement ''driving" term
At the initial time (t =0)
Mgo(0) = I + Xo (4.5.9)
"11(0) = I0 (4.5.10)
At the terminal time (t =N)
POO(N) = F (4.5.11)
pll(N) =0 (4.5.12)

The fixed structure controller is shown in Fig. 4.2.
Using the Matrix Minimum Principle, we have obtained the
necessary conditions for optimum control. To compute the

optimum control gain sequence at time t, we need Pll(t+1),
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POO(t+1), and H(t+1l). Since Poo(t) and Pll(t) are given at
the terminal time N, they have to be propagated backwards
from time N. The filter gains H(t+1l) depends on Moo(t),
Mll(t), and G(t). Since Moo(t) and Mll(t) are given at
the initial time, they have to be propagated forward in
time. The solution using the Matrix Minimum Principle is
a true nonlinear two-point boundary value problem (TPBVP)
that has to be solved by iterative methods.

If we substitute the expression for H(t+1) into
the forward difference equations for Moo(t+1) and Mll(t+1) we
see that they are coupled nonlinear difference equations in

general. In the special case where Za (t):=2bb(t) =ch(t)==0,

a
as is assumed in the standard linear-quadratic-Gaussian prob-
lem, the Moo(t) and Mll(') equations becomes decoupled.

More precisely,

- g s
Moo(t+1) = a (t)MOO(t)— 2a(t)b(t)G(t)(M00(t)
2 2
- My 1 (£)) (L) G () (Mg (t) - My (1))
+ Z(t) (4.5.13)
where

b(t) P..(t+1) a(t)
00 (4.5.14)

6(t) = =
B2(t) Pyg(t+1) + R(t)

Thus, the mean-square of the state Moo(t) =E{x2(t)} depends
on the error covariance quantities Mll(t). But, the co-
variance is completely decoupled from the second moment of

the state since

’
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My, (t+1) = (1-n(t+1)6(t+1))2(32(t)Mu(t)+ 2(t))
+ H2(t+1) 0(t+1) (4.5.15)

This is just the measurement update covariance equation in
the Kalman filter.
Equation (4.5.13) for Moo(t) is the mean square
history of the state variable x(t).
Moo(E+1) = (a(t) =B(t) 6(£))Z(My (1) - My (£)) + E(t)
+ 3%(t) My (t) (4.5.16)

This is the same result obtained in ([75], Eq. 4.7.30).
Let us now analyze the co-state equations Poo(t),

and Pll(t). If we let Zaa(t) =Ebb(t) =ch(t)==0, we obtain

=2 =22
a~ b Poo(t+1)

—2
P (t) = a2(t) P..(t+1) +Q(t) - (4.5.17)
00 00 b2 Poo(t+1) + R(t)

This is just the nonlinear Riccati difference equation en-
countered in discrete-time deterministic optimal control
problem. We know that the solution exists and is unique
and finite if the system is controllable.

The deterministic co-state equation for Pll(t) is
given by

P () = B2(£)(1 - H(t+1) T(t+1)) P, (£+1)
B2(t) a2(t) P2, (t+1)

o (4.5.18)
b(t) Py(t+1) + R(t)

Since in the case where the parameters are known

1

H(t+1) = M__ (t+1) c(t+1) 07 "(t+1) (4.5.19)

11(

panovS:

1

RPN SRS S
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Pll(t) is still coupled to the Mll(t) equation, but is
uncoupled from the POO(-) equation.

In thke 'inear-quadratic-Gaussian problem Mll(t)
and Poo(t) are used to compute the optimal filter gains
and control gains, respectively. The pOO forward and
backward difference equations are completely uncoupled
from each other. This is a very fortunate situation. The
two-point boundary value problem can be solved as two single-
point boundary value problems.

The fact that the co-state Poo(t) is the solution
of the Riccati equation when the system parameters are known
perfectly suggest that it has some physical interpretation.
If we think of the co-states P(t) as the gradient of the

cost with respect to the state variables as in the Hamilton-

Jacobs'-Bellman approach, i.e.,

P(t) = =oJ (4.5.20)

M(E)
then it is evident that the co-state equation defines the
evolution of the partial derivatives BJ/BMOO(t) and
aJ/3M11(t) for t e [O,N].

From the expression for the average value of the
quadratic cost functional, Eq. (4.4.28)
N-1

2
J = Flgg(N) + 1 Q) Moo(t) + R(E) G(1) (Mgg(8) =My, (1))

(4.5.21)

If we now add POO(O)MOO(O)and P11(0)M11(0)0utside

the summation and compensate this by adding the terms

e o

™

i
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Poo(t+1)M00(t+1)— Poo(t)MOO(t)and Pll(t+1)M11(t+1)-
Pll(t)Mll(t)inside the summation, the expression is not

changed. We get

N-1
J = Py,(0) My (0) + Py, (0) My (0) + t£0 Q(t) Mg (t)

2
+ R(t) G7(t) (Moo(t) —Mll(t)) + Poo(t+1) Moo(t+1)
- Poo(t) Moo(t)+-P11(t+1) Mll(t+1)-—P11(t) Mll(t)
(4.5.22)
Now we substitute into the above equation, the
expressions for Moo(t+1), Poo(t), Mll(t+1), and Pll(t)
L = 2
Moo(t+1) = (E(t) -B(t) G(t))% (My(t) - My, (1))
+ A2(E) My, (£) + (L) + (1) Myo(t)
2
+ be(t) G (t) (Moo(t)-Mll(t)) (4.5.23)
Equations (4.5.4), (4.5.5), and (4.5.6) respectively, we

obtain that
N-1

J = POO(O)M00(0)4-P11(0)M11(0)-th Poo(t+1) E(t)

0

+ My (L) [2E(t)5(t)c(t)p00(t+1)- ((®2(t)
2
+ Typ(8)) Pog(t+1) + (1)) 67(1) |
- Moo (t) [(E(t) ~B(t) G(t))2 ch(t+1)H2(t+1)
s (5, (D) +63(0) 5, (1) ( (t+1) H2(t+1)
aa bb cc

+(1 - H(t+1) E(t+1))2)] Py (t+1)

+ pn(t+1){(1 CH(t+1) S(t+1))2 (32(t) My (1)

2
+Xaa(t)M00(t)+-£bb(t)G (t)(MOO(t) (4.5.24)
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My (6)) + E(E))

* 200 1o (1) [ R0 B 60607 Mg (e) =y (4)

+ A2(E) My (6) + E(E) + 3, () My (1)

* Typ(6) G2(8) (Moo(e) -y (00) | + wPcerd) oceen))

s [Ez(t)(l —H(t+1) E(t+1))2p11(t+1)

+ G(t)E(t)B(t)(zcc(tﬂ)az(t+1)p11(t+1) 5
(Concluded)
+ Poo(t+1)] My (t) (4.5.24)

Most of the terms cancel, we get as a result the optimal cost. | &

N-1
J = POO(O)Moo(O)i-Pll(O)Mll(O) + tzo Poo(t+1) E(t)

+ pu(t+1)[(1 -u(t+1)€(t+1))2.=_(t)
+ B2(t+1) I (t+1) 5(t) + H2(t+1) 0(t+1)] (4.5.25)

In the well-known linear-quadratic-Gaussian problem,

the average cost is given by

N-1 i
J = POO(O)MOO(0)+ tZO Poo(t+1) E(t) |

+ poo(t+1)6(t)c(t) E(t)mn(t) (4.5.26) R

where

_ T - =2
G(t) = B(t) Pyo(t+1) a(t) / (B*(t) Pyy(t+1) +R(1)) (4.5.27)

In this case, if we define

P (t) = 22(t)(1 - H(t+1) E(t+1))2p11(c+1)

+B(t)p00(t+1)5(t)0(t) v Piq(N)=0 (4.5.28)




then

N-1
J = POO(O) Myo(0) + Py (0) M ,(0) + t£0 Pyo(t+1) E(t)

+ pn(tﬂ)[(1-H(t+1)6(t+1))2 T (t)
+ Hz(t+1)0(t+1)] (4.5.29)
where
H(t+1) = Mu(t+1)6(t+1)o‘1(c+1) (4.5.30)

The average cost in the stochastic control problem
is composed of terms due to the initial state uncertainty
and due to the plant noise £(t) and measurement noise 6(t).

We remark that the form of the optimal cost obtained
here is the discrete-time equivalent of that obtained in the
solution to the two-controller team problem in [74].

Sufficiency conditions for optimality may be ob-
tained from the second partial derivatives of J with respect
to G and H. Taking the derivatives of 3J/3G and d8J/3H we
then obtain that the sufficient conditions for a strong
minimum are

; i 2
(i) (b7(t) + I () (Pyy(t+1) + I, (t+1) H (t+1) Py, (t+1))

+ I (0 (1= H(t+1) T(t+1)) 2P, (1+1) +R(1) >0
(4.5.31)
(ii) Moo(t) -Mll(t) >0 (4.5.32)
(iii) Ez(t) mll(t)4-9(t)+ ch(t)Moo(t) >0 (4.5.33)

We remark that in condition (i), the randomness in

the parameter b(t) introduces mathematically equivalent

\e

R T




-126-

control penalties into the control problem. Hence if R(t)

is selected wrong, then Ebb(t) can be used to account for

the error. In condition (iii) ch(t) Moo(t) is positive
semidefinite if Moo(t) is positive semidefinite. The product
will increase the effective weighting [0O(t) +Ecc(t) Moo(t)]
that needs to be inverted in Eq. (4.5.2). So the randomness
in the parameters b(t) and c(t) effectively make the solution
more stable numerically.

We note that if Q(t) =0, then Poo(t)==0 if Eaa(t)=
ch(t)==0, but Poo(t)f()if Zaa(t) or Ecc(t) is nonzero. In
the case Poo(t)==0 and R(t) =0, the control gain G(t) in
Eq. (4.5.1) may still be a well-defined quantity due to the
uncertainty in c(t), (Ecc(t)f()).

In the special case when the measurements are exact
so that O(t) and ch(t)==0, then the equations for the opti-
mal stochastic control problem Eqs. (4.5.1) to (4.5.6) re-
duces to the same results obtained in Chapter 2.

Problem Solution Using Dynamic Programming

We have seen that the minimum principle gives the
necessary conditions for the minimization of the quadratic
cost function Eq. (4.4.28). It reduced the optimum systems
control problem to a nonlinear two-point boundary value
problem. The solution yields an optimum open-loop control.
For the standard linear-quadratic (regular) problem, the
two-point boundary value problem can be replaced by solving

a Riccati difference equation to obtain the gains of the

B ——
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closed-loop system. In general, the set of difference
equations may not be solved in a straightforward manner and
this remark applies to Eqs. (4.5.1) to (4.5.12).

A direct method to solve the optimization problem
is the dynamic programming algorithm [7]. Discrete dynamic
programming is essentially the repeated sequential (stage by
stage) application of the Hamilton-Jacobi equation (continuous
dynamic programming) or the Bellmans' Principle of Optimality
[7]. From the solution of dynamic programming we immediately
know the cost-to-go function as well as the closed-loop con-
trol and optimum trajectory. Dynamic programming method
minimizes directly the given cost functional and thus a
Riccati equation without introducing a two-point boundary
value problem. However, it generally requires guessing the
form of the solution to the functional equation.

We give now an useful alternative method of solu-
tion to the optimum control problem. The objective of the
closed-loop optimal stochastic control system is to minimize
the average cost functional,

T-1

J = E;xz(T)F + } Q(t) x2(t)+R(t)u2(t)€ (4.5.34)
t=0

where both x(t) and u(t) are random sequences subject to the
’

system dynamics
x(t+1) = a(t) x(t)+b(t)u(t) +&g(t) (4.5.35)

The state is measured imperfectly according to equation

z(t) = c(t) x(t)+06(t) (4.5.36)
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The expectation in Eq. (4.5.36) is taken with respect to
random variables x(0), &£(t), 6(t), a(t), b(t), and c(t).

In the suboptimal design of the stochastic control
system, we will restrict our attention to linear controllers
and linear filters. Using this approach necessary optimality
condition are derived using the dynamic programming method.

We are interested in control laws having the form

u(t) = - G(t) x(t) (4.5.37)
where G(t) as before is a time-varying linear control gain to
be determined. The best estimate §(t) is a priori specified

to be given by the recursive equation

x(t+1) = a(t) x(t) + b(t) u(t)
+ H(t+1) [z(t+1) —c(t+1) §(t+1)] (4.5.38)
X(t+1) = a(t) x(t) + b(t) u(t) (4.5.39)

where H(t+1) is the time-varying filter gain to be determined.
Notice that we restrict ourselves to considerations of a
specific controller-estimator structure and optimize the
choice of "control" sequences G(t) and H(t) over the param-
eter space.

Equation (4.5.37) specifies that the admissible
class of control that will be allowed in the optimization
explicitly. The structure of Eq. (4.5.37) is a mathemati-
cally realizable control. The control u(t) at any time t
depends on all information available up to time t. The
information set is {z%,u®™'} = {2(1),2(2),...,2(t),u(0),...,

u(t-1)}. Mathematically, the u(t) is a linear map of all

s T ——
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past measurements and controls, and, perhaps, of time t.
We expect to make future observations (from time t on) and
that the future controls will be functions of these measure-
ments.

The stochastic control problem will be stated for-
mally now. Given the dynamic system Eq. (4.2.1) and the

observation Eq. (4.2.1), the information set {zt,ut'l} find

the control law in the class specified by Eq. (4.4.1) such

that the "average cost-to-go'" given by

N-1
Lk e E;sz(NH I QUt) x2(t) + R(t) u?(t) z‘,u”li-

t=T
(4.5.40)

is minimum. The weightings are Q(t) 20, F20, and R(t) > 0.
The statistical properties of the additive noises &£(t) and
8(t) and purely random (white) parameters a(t), b(t), and c(t)
are the same as those assumed in Section 4.2.

We show in Appendix B, that the optimum solution
obtained by applying the dynamic programming algorithm is

the same as that given in Theorem 4.3.

4.6 Discussion of the Optimal Linear Controller

We remark here that the solution in terms of coupled
nonlinear two-point boundary value problem was also obtained
in [74] which considered the decentralized control of linear
systems with different information sets. It was also pointed

out that in the general case
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MOl(t) # Mll(t) (4.6.1)

The filter derived in [74) is not the Kalman filter, although
it is linear and unbiased. In our problem solution, the
orthogonality condition assumption allowed the solution to
be solved analytically. This same conclusion was made by [76].

It can be seen from Eqs. (4.5.1) and (4.5.2) for the
gains G(t) and H(t) that the product of the state and co-
state Pll(t) Mll(t)play an important role. Note that H(t)
depends mainly on M(t), while G(t) depends mainly on P(t).
In the deterministic case, G(t) depends only on Poo(t) and
H(t) depends only on Mll(t)' The uncertainty in the param-
eters reflected by Zaa(t) #0, be#O, and ch(t) # 0 has
coupled the state and co-states together.

The gain G(t) resembles the filter gain G(t) for
the deterministic LQG problem except that O(t) is replaced
by [O(t)-#ch(t) Moo(t)]. The co-state Moo(t) now plays an
important part in the filter gain computation. Even with
perfect (noise-free) measurement, the measurement will be
weighed accordingly because of the multiplicative noise in
the measurement equation. In the deterministic LQG case,
H(t) depends only on O(t) the measurement error covariance.
Futhermore, Mll(t) depends on P(t) through the control gains
G(t).

The control gains G(t) are similar to the G(t)
given in Eq. (4.5.27) except that Poo(t), the solution to

the Riccati equation, has been replaced by expressions

o
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involving both P(t) and M(t), i.e., [Py (t)+E_ (1) H (1)
pll(t)]' They are no longer the deterministic optimal con-
trol gains, but depend on the error covariances of the state
estimates.

The equations for G(t) and H(t) are complicated
expressions, so we shall consider some of the special cases.
Remark 4.1. If ch(t)=0. be(t)#o, and Zaa(t)#o, then we
have essentially the results of Chapter 2, control of linear
stochastic systems with perfect measurements (0(t) =0).
Remark 4.2. 1If Ebb(t)==0, then this says that the control
input has a deterministic multiplier. To reduce Eq. (4.5.1)
to the pure estimation problem (Zaa(t)-#o, ch(t)~f0), set

R(t) =0, so that

G(t) = &) (4.6.2)
B(t)

and the closed-loop system parameter
a(t) ~b(t) G(t) = 0 (4.6.3)
The Eqs. (4.5.3) and (4.5.4) for the error covariance then

evolves as

=7 o w2
Moo(t+1) = °aa(t) MOO(t) HEE ) aatt) Mll(t) (4.6.4) %
3 - a8 ) i
Mll(t+1) = a (t)Mll(t)+ Zaa(t)MOO(t) +8IGE) (4.6.5) :
4 = 2[=2 . :
Mll(t*l) = (1 -H(t+1) c(t+1)) [a (t) Mll(t) 35 “aa(t) Moo(t)

2 2 5 -
+ :(t)] +H(t+l) ["cc(t+1) MOO(t+1) o 0(t+1)]

(1-u(t+1)at+1))ﬁ11(t+1) (4.6.6)

- - “ —— B e kil it it -, o
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The perfect control

uce) = - 222 Xce) (4.6.7) :
B(t) |

drives the estimated state to zero just prior to measurement

update, i.e.,
x(t+1) = a(t) X(t) - b(t) G(t) x(t) = O (4.6.8)
and the state estimate evolves as
x(t) = H(t) z(t) (4.6.9)
since the predicted state estimate x(t) =0.

Note that in this case, the optimal gains are in-
dependent of the state weightings Q(t) used in the original
cost functional. Only a single-point boundary value problem
need to be solved to compute the optimal filter gain se-
quence since the filter equations have been uncoupled from
the co-state equations P(t). Since the optimal gains are
independent of the data, they may be pre-computed off-line
given the noise statistics.

We remark that since the control in this case may

be written as

u(t) = - 2 Hee) a(t) (4.6.10)

it is a linear function of the measurement z(t) and H(t).
This is an example of the nonclassical information pattern,
Wittsenhausen [4]. The controller is a zero-memory con-
troller without perfect recall.

Remark 4.3. The presence of the uncertainty xaa(t) and

ch(t) in the parameters a(t) and b(t) multiplying the
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state x(t) tends to destabilize the system. This is readily
seen from Eqs. (4.6.5) and (4.6.6) since the variance can be
destabilized by large Zaa and high gain H(t).
My, (t+1) = a2(t) (1-H(O SN2 () + £ (1) My, (1) |
+ s(t)+Hz(t)[zcc(t)iu(t)+e(t)] aZ(t)
(4.6.11)
This result is very intuitive and cautions one against using
arbitrarily high gains in the closed-loop system.
Remark 4.4. The stochastic singular control problem
(Xbb(t)==0, R(t) =0), represents the formal dual to the
optimal stochastic control with perfect estimation discussed
in Chapter 2. To see this, we write for the optimal filter
gain
HOE) = iy (0) 800 [T My (0) + 5 () M) oy |
(4.6.12)
where

My (L) = aZ(t-1) My (t=1) + I (t-1) ﬁn(t-n + E(t=1)
(4.6.13)
since Mll(t) = Moo(t).

The predicted error covariance then satisfies the
equation
A . __2 A _.2 " -— A
Mll(t+1) = a“(t) Mll(t) - a“(t) H(t) c(t) Mll(t)

+ qu(t)Mll(t)+ (%) (4.6.14)

using Eq. (4.6.12)

— ey P - w e
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iy (t41) = PR B VI A

32(t) 2(v) ﬁil(t)

DR e snallshaabon = M Lo s
i - (4.6.15)
@2(0) + T (1)) My (8) ¥ 0(0)
and
T(t) My, (L)
11 (4.6.16)

Bty m s T TRy
G2ty + L (£)) iy (1) + 68D

The equations are the formal duals to the Egs-
(2.3.12) and (2.3.13) for the optimal stochastic control
with perfect measurements. Note that the linear feedback
control given by Eq. (2.3.11) is the optimal solution whereas
the linear unbiased filter structure given by Eqs. (4.6.12)
and (4.6.13) is not the optimal solution to the original
stochastic control problem. Hence, the duality relationship
petween the perfect estimation problem and the perfect con-
trol problem is only formal.

Recalling the result of Chapter 3, we see€ that the
results for the linear unbiased minimum variance estimator

did not represent 2 dual to the optimal stochastic control

problem with perfect measurement considered in Chapter 2
For the optimal linear estimation problem, it was found that
the dual problem is a control problem with constraints on
the states. The similarity in the solutions are presented

in Sankaran and Srinath [771.

Conclusions

COont - 2 —

In this gection we have discussed the optimum con-

trol of independent parameter systems using @ fixed structure

e |
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dynamic compensator. The structure of the linear estimator-

controller is given in Fig. 4.2. We discussed in more de-

tail the solution to this problem, i.e., coupled Riccati-
type equations. We note from Eq. (4.5.5) that Pll(t) is
uncoupled from the Poo(t) equation if ch(t)=(L Vt, and
the measurement data is noise free. In the noisy sensor
measurement case, pll(t) is uncoupled from the Poo(t) equa-

tion if the covariances Zaa(t) =% . (t)=0; and this is the

bb
standard linear-quadratic-Gaussian problem. The assumption

of randomly varying parameters in the dynamic system has

coupled the '"state'" M and 'co-state'" P together. The solu-

tion of a matrix two-point boundary value problem will yield

the optimal gains of the dynamic compensator. The optimal

controls are not given by the separation theorem.

We then considered several special cases for the f
dynamic system with purely random (white) parameters. We
discussed a case of deadbeat control problem in discrete- é
time systems. The optimal control gains is independent of
Q in the cost function. They may be computed a priori given N
the noise statistics. The solution is applicable to the <
"stochastic" singular control problem; and only a single

point boundary value problem needs to be solved. The sto-

chastic singular control problem is the dual of the control
problem with exact measurements considered in Chapter 2;
hence one can replace in the solution equations given in

| Section 2.3 the symbols (@, I, ) by (¢, £ ), K by Myqs

and G by H.
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4.7 Optimum Stationary Linear Control

In Section 2.4, we showed that the infinite horizon
solution to the optimal control of dynamic systems with un-
certain parameters and exact measurements, does not exist
if the parameter uncertainty exceeds a certain quantifiable

threshold. We call this the uncertainty threshold. For

dynamic systems with randomly varying parameters and noisy
sensor measurements, we seek the threshold parameter associ-
ated with the infinite horizon problem.

In this section we will investigate the question of
the existence of steady state linear optimal stochastic con-
trols for the random parameter problem. We assume that the

system has stationary statistics so that for the random

parameters
E{a(t)} = a cov{a(t), a(t)} = i i 8(t,t) (4.7.1)
1}
E{b(t)} = b covi{b(t), b(t)} = Zob 5(t,T) (4.7.2)
E{c(t)} = ¢ cov{c(t), c(1)} =z, &(t,1) (4.7.3) |
and additive noises |
cov{E(t), E(T)} = E 8(t,1) (4.7.4) .
cov{B(t), 6(t)} = 0 &(t,T1) (4.7.5) -

We will examine the existence and finiteness of

steady-state control for the infinite-time stochastic con-
trol problem by analyzing the solutions to the forward

difference equations,
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Moo(t+1) = (T -BG(£))%My(t) + 26 G(t) (-5 G(t)) My, (1)
+ 5+ BEGA(H) My (0) + I Mo (t) + I G2(t)
1 X (Mg(t) =M (1)) (4.7.6)
; Uool0) = 2, * 50
f Hy (241) = 32 (1) +2, Mo (1)
] + I GA(L) (Mo (t) - M (£)) + = (4.7.7)

gy A — =2 A -1
H(t+1) Mll(t+1) c ':c Mll(t+1) + Ecc Moo(t+1) + G)]

(4.7.8)
. = 2
Mll(t+1) = (1 -H(t+1l) c (t+1)) Mll(t+1)
2
+ H (t+1)(ZCC Moo(t+1)+0) (4.7.9)
M11(0) iz ZxO

4 and backward difference equations.
o (2B 2
4 Poo(t) = (a +Zaa)(chH (t+1)P11(t+1)+POO(t+1) + Q

2 2
G )(ZCCH (t+1) P

2 -
- G (t)[(b bb t+1) + Poo(t+1))

11¢
+ R+ (1 -H(t+1)5) Py (t+1) zbb] (4.7.10)

4
1
{ PogM) = Q
1

! Py (1) = a2(1 -H(t+1) P (+1)

+ G2(t) [R Ty +62)(zcc H2(t+1) Py (t+1)

s G

+ Pyl t+1))

-
+ be(l-H(t+1) c) Pll(t+1)] (4.7.11)

POO(N) =0

o oy 1 i, 1
i B
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where

_-= 2
a b(zCCH (t+1) Pu(t+1) + Poo(t+1))
=92

2
(b -+Xbb)(XCCH (t+1)P11(t+1)-+P00(t+1))4'R

G(t) =

(4.7.12)

+ £, (1~ H(t+1) ©)2 Py, (t+1)

We can obtain the necessary conditions for the
existence of the steady-state solution to the difference j

equations by assuming that as time extends to infinity in

both directions (that is (t0~+—m, N + +o) that pOO’ pll’ MOO’

and M,, are the steady-state values.

11
G and H can be eliminated from MOO’ Mll’ and pOO

and 511 equations to obtain a system of quadratic equations

in MOO and M11 and pOO and Pl1 separately. Simultaneous
solutions of two quadratic equations requires solving a
quartic equation. Hence, the algebraic solution to the
linear stationary system is intractable mathematically in

closed functional form except by numerical methods.

An alternative approach to the algebraic solution 4

of the quartic equation resulting from a system of quadratic e
equations is the solution method of successive approximation.

In particular, we propose to solve the coupled nonlinear

difference equations using the control iteration method.

This essentially means that we start with an initial guess

of the solution G(t) gain sequence to be used in computing

the forward difference equations Moo(t) and Mll(t)' The 3

— —d
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computed solution H(t) sequence is stored on the forward

pass. On the backward pass the stored H(t) are used to solve v
the backward difference equations Poo(t) and Pll(t); the

control gains G(t) are stored on the backward pass. These

forward-backward steps are iterated until the solutions

converge to some convergence criterion chosen (0.001 in our
case) and the average cost stops to change significantly.
The simulation results are used to guide the analy-
sis of the coupled nonlinear difference equations Moo(t),
Mll(t), Poo(t). and Pll(t) that have to be solved to obtain
the optimal control gains and filter gains. If the measure-
ments are exact and ch==0, the stability results of Sec-
tion 2.4 apply to the optimal stochastic control problem
since all equations reduce to the perfect measurement case.
We now give the following theorem.

Theorem 4.4. For the linear stationary system, if the

quantity

= =2
rL S SERES W RS | (4.7.13)
aa 62 e
bb
then the Riccati-type equation Poo(t) diverges as N becomes i
+ ., The resultant closed-loop control system is unstable

in mean-square sense.

Proof: From Eq. (4.5.93)

- (2% 2 + +1) +
Poo(t) (a +7.aa)(57CCH (t+1)P11(t+1) P.~(t*l) +4q

00
(4.7.14)
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=3 =2 2 2
a” b (chH (t+1)P11(t+1)+P00(t+1))

Yoottt T ro5 3
(B2 + 2, (3, H2(t+1) Py (£+1) + P (t+1)) +R

+ I (1 - H(t+1) E)2P11(t+1)

— 2 (Concluded)
+ zaa(l—ﬂ(t+1) c) Pll(t+1) (4.7.14)

2 A
Adding T__ Hz(t)Pll(t) to both sides, and define P =P,

2 4
+ chll P11 we obtain that

A ot —2 ~ ]
P(t) = (a +zaa) P(t+1) + Q ?

—2 =2 A2
a“bp Pll(t+1)

s ~ —5
(b +be) P(t+1) + R+ be(l—H(t+1)c) Pll(t+1)

+ (2, (1-H+ ) D2 4 1 H2(£) P, (t)  (4.7.15)

~

—2 —2 A2
a2 B2 B2(t+1) +Q (4.7.16)

(_62 +Ip) P(t+1) + R

B(t) > (a2 + 1) B(t+1) -

We have proved in Section 2.4 for the perfect measurement
a Riccati equation of the form above has a finite solution if

and only if the means and covariances of the random parameters

satisfy the condition

-2 =2

L o o g (4.7.17) -

aa B‘z+2 4
bb

—a'2

We have obtained, therefore, a sufficient condition
for the Riccati-type equation for ﬁ(t) to diverge for the

infinite-horizon stochastic control problem.
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If ﬁ(t) diverges, we may have the case that only
Poo(t) diverges while Pll(t) converge. But this is not
possible from Eq. (4.7.11). We can also have the case that
Poo(t) converges and pll(t) diverges. Again this is not
possible from Eq. (4.7.10). Hence we can only conclude
that both Poo(t) and Pll(t) diverge together.
Remark 4.5. Consider the special case Za = ., =0, then

a bb
the co-state equations simplify to

C e 2
Poolt) = 32(I_, HE(t+1) P, (t+1) + P (t+1)) + Q
2% Bz(zcc H2(t+1) Py (t+1) + Poo(t+1))2

- =3 5 (4.7.18)
BI(E , HO(t+1) Py (t+1) + P (t+1)) +R

Py () a2(1 -H(t+1) 0)2 Py (t+1)

- Bz(zcc n2 Py (t+1) + poo(t+1))2
s (4.7.19)

+
=2
b (chli Pll(t+1)-+P00(t+1))-+R

Note that Eq. (4.7.18) is just the standard Riccati
equation for the linear quadratic control problem, Poo(t)
does not diverge independent of what Pll(t) does. If Pll(t)
diverges, then P, (t) approaches (52/52 R+Q) as N>«, In
other words, the Riccati equation Poo(t) converges for any
value of ch

If the co-state Pll(t) diverges, then

_ =2 -2 -2 2
Pyo(t) = @%(1 - H(t+1) ©)“P  (t+1) + a I  H(t+1) Py, (t+1)
-2 Z c
> a . P, (t+1) (4.7.20)
=2 11
b ;. Z:CC
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A sufficient condition is that (a2 ):cc/'c‘2

+ zcc) >1 for pll(t)
to diverge. In deriving the inequality above we have claimed
that the minimum variance filter gain is given by ch/(52+zcc).
This can be readily deduced from the filter equations. Note
that Eq. (4.7.20) is the same condition we derived for the
linear minimum variance estimator in Eq. (3.4.12).

Remark 4.6. In the special case that I b=0, then we have that

b
P..(t) = a2(1 -H(t+1) ©)2 P, (t+1)
11 11

-2 -2 2 2
a“ b (L HY(t+1) P . (t+1l) +P__(t+l))
ce i o8 (4.7.21)

=2 2
b (zccn (t+1) pll(t+1) +P00(t+1)) +R

If the homogeneous part of P, (t) diverges then re ():(:c/_c'2
+ ch) >1. The co-state equation is given by

Poo(t) = (3241, )(I  HA(E+1) Py (t+1) + Py (t+1)) + Q

=22 2 2
a” b (ZCCH (t+1) Pll(t+1)+P00(t+1))

=2 2
b (z:ccu (t+1)p11(t+1)+P00(t+1)) + R

+ zaa(1-n(t+1)6)2p t+1) (4.7.22)

11(
This is not in the form of the standard Riccati equation. The
inequality condition of Eq. (4.7.12) is still a sufficient
condition for divergence, however,.

Remark 4.7. In the case that Zaa=0, we have then the co-state

_ =2 2
Poo(t) = a (Z, H (t+1)P11(t+1)+P00(t)) +Q

=2 =2 2 2
a” b (ZCCH (t+1) P t+1)+Poo(t+1))

11¢
—3 5
(52 + 5, ) (E o H2(t41) Py (£41) + Py (t+1)) + R

(4.7.23)

=
+ Ebb(l - H(t+l) c) Pll(t+1)

R
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b

and
P..(t) = 22(1 -H(t+1) ©)2P, (t+1)
11 11

=2 =2 2 2
A b7(Z,, HO(t+1) Py, (t+1) + P (t+1))

=2 2
(b 'szb)(zccH (t+1)P11(t+1)-+P00(t+1)

—— (4.7.24)
+ R+ be(l -H(t+l) ¢) Pll(t+1)

The sufficient condition for divergence as given by the

inequality Eq. (4.7.13) holds in this case (Zaa==0). ! ;

Remark 4.8. For the lack of an analytical result on the

asymptotic stability of closed-loop stochastic control

system, we turned to simulations to guide the analysis.

Solutions to the state and co-state equations were obtained

by the method of successive approximation. Solution values
for Poo(t), Pll(t), MOO(t), and Mll(t) are recorded to
determine the limiting solution value in case they converge.
For a particular system (I  =1.0, e=1.0, a=1.1, b=1.0),
Fig. 4.3 gives the stability and instability regions for the
random parameter system. We see that for certain combinations
(Xaa, be) the steady-state solution to Poo(t) and Pll(t) does

not exist because the uncertainties are larger than some

threshold for the closed-loop system.

If we draw in the curve for b ;

& —2 -2
B B e i e wi'y (4.7.25)
aa 32 + 3 |

bb {

it will be much above the computed stability curve in Fig.

4.3 since it is only a sufficient condition. Now if we
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draw in the curve (see Fig. 4.4)

EC(‘ '52 6‘2
m = a°+7 s — . _ ] —_— = 1 (1726) ’
2 aa =2 =2
e+ 0% +b

ce bb

-

it will be somewhat below the computed stability curve in |
Fig. 4.3 so that if mo, is satisfied, then the closed-loop

system is asymptotically stable. We conjecture, for now,

this is a sufficient condition for the existence of a steady-

state solution. (This is the output feedback stability analy- [

sis result obtained in the next section.) The modification i
in Eq. (4.7.26) is motivated by the appearance of (1 —}15)2
in the P equations. Since the expression actually occurs |

squared we then revised the conjecture to be (see Fig. 4.5)

2
2 =2 =2
tard et N Lyl A (4.7.27)
aa 2 =9
2 - 5 + b
CccC bb ‘

and this is a tighter upper bound curve on the stability
region for this special set of parameter uncertainties.
The behavior of a stable closed-loop system in the ‘ ‘ ;
mean-square sense is given in Fig. 4.6. We note t;at the g g
steady-state region is the interval where all the 'co-states"

Poo(t) and Pll(t) and '"states" Moo(t) and Mll(t) are at a ¢

constant value. In this interval, the controller has con-
stant gains and the filter has constant gains, Fig. 4.7.

Note that there are some transient behavior or endpoint

effects associated with the numerical solutions.

B ———————————————————"
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Figure 4.6 Behavior of the states and costates given
by equations (4.7.6) to (4.7.12)
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In Fig. 4.8 we show what happens to the solution
values of Poo(t), Pll(t), Moo(t), and Mll(t) in an unstable
closed-1loop system. The solution values for all four vari-
ables increases monotonically and for all practical purposes
diverge.
Remark 4.9. The effect of uncertainty in the parameter c is
investigated in Fig. 4.9. For Zaa==2bb==0, the covariance
of ¢ contributes to the destabilization of the closed-loop
system when the parameters are known with certainty. In the
case illustrated a=1.1, b=1.0, and ¢=1.0, the co-state
Pll(t) becomes exponentially large when ch exceeds the value
5.0.

In Fig. 4.10 we show the effect of zcc:>0, Zaa==0

on the uncertainty threshold developed in Chapter 2.

—2-2
m=as + I e (4.7.28)

It is intuitively obvious that the effective threshold is
higher, that is, there is less tolerance for the uncertainty
in the parameters b in order for the closed-loop system to
be asymptotically stable. We show similarly in Fig. 4.11,

for £,., =0, the level of uncertainty zaa the closed-1loop

bb
system will tolerate is smaller than the perfect observation
case. Figures 4.10 and 4.11 can be compared with those of
Figs. 2.2 and 2.3.

The larger the covariance of b, ceteris paribus,

the smaller the magnitude of the control gain and the larger

e ——— Sy
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Figure 4.8 Behavior of the divergent states and
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(4.7.23) for known a(t)=a=1.1




v g (s

-154-
10,000
1,000
k)
-8
"
= 100
-
8
Q
10
1 | VRN S, ] 1 UL SR 1
O 20 40 60 80 100 120 140 160 180 200
TIME

Figure 4.11 Solution of the costate equation (4.7.22)
for known gain b(t)=b=1.0




-155-

the filter gain in general. The controller is exercising
caution in control, since the input is being applied with
larger uncertainty about the mean. The multiplicative noise
on the input adds to the total disturbance in the system
dynamics equation.

The larger the covariance of a, ceteris paribus,
the larger the magnitude of the control gain. This is
intuitively obvious since the control wants to exercise
more probing to reduce the uncertainty in the state. The
filter gain, ceteris paribus, is also larger for larger Xaa
The multiplicative noise on the state effectively increases
the plant noise in the estimation problem. This says that
the correction from the measurement update will be larger.

The larger the covariance of c¢, ceteris paribus,
the smaller the filter gain. The random parameter c¢ multi-
plying the state effectively increases the additive measure-
ment noise 0. The control gain is, however, larger in magni-
tude as the adaptive control will use the input u(t) to re-
duce the uncertainty in the state.

As we can readily see from the numerical simulation
that the random parameter stochastic control system behaves
as a non-learning adaptive control system. All future mea-
surements are available for the stochastic control and esti-
mation. The control law appropriately regulate the system
over the time horizon to minimize the average of the devia-
tion of the state from zero and control effort; and this

control involves no parameter identification.
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The control input u(t) affects the estimation
process and the estimation performance affects the amount
of control action necessary to regulate the system. The
system is not neutral. Caution and probing is an important
functional part of the controller. The control gains are
modulated by the covariances, which are in term affected
by the control action.
] The value of information for the stochastic control
problem in general is defined as the difference between the

expected cost J the best we can do with the information

1 ’

f and J the best the controller can do without the informa-

2)
k tion. This value of information provides a measure of how

the performance of a random parameter system is degraded

when we assume that nature specifies the system parameters

at all times. "%

To obtain a comparison of the cost among the several

S —

control schemes, the constrained controller-estimator of
Section 4.4, the certainty-equivalent controller, the en-
forced separation controller, and Kalman filter-perfect
estimation controller, one could proceed with a Monte Carlo
simulation of the closed-loop system.

Remark 4.10. For stable systems where |a| <1, it is observed

E from the simulation results that if
2 aZ + T <1 (4.7.29)
| aa

the closed-loop system converges for any values of means

and covariances.




e

s )
SIS S > 5 SRR ol WaRdies 0P
I (& qq) 1, then the solution values of Poo(t)

and P11(L) diverges for certain combinations of the means
and variances of the parameters. In general, the sufficient
condition Eq. (4.7.13) holds for the original stable as well
as unstable systems.

If 0, then there is no possibility of

X =7 =
aa bb
divergence since the stability region is above the curve
L 2
(e = o
:,)—g———"‘ t = 1 (4.7.30)
e kil
ce
For the stationary system, we consider the perfect
control problem presented in Section 4.6. The existence of
a solution to the stochastic singular control problem depends
on the existence of positive-definite solution of the alge-
braic Riccati-type equation.
—2 =2 ~2

ﬁll(t+1) = (52-+S 3 ﬁll(t) + 5 - _za = M,ft)
]a. (¢ -+XCC)M(t)+\‘

(4.7 .31)

The critical points of this type of algebraic equation was
discussed in Section 2.4. By identifying ﬁll with K in
Eq. (2.4.1) the following result can be stated.

Theorem 4.5

If the means and covariances of the random parameters are

such that

- a” ¢
8 + 2 e L (4.7.32)
aa CZ + 5

then a non-negative definite solution of Eq. (4.7.31) exists.
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Proof: The proof is similar to that given in Section 2.4.

g This inequality condition can be analyzed in the

E same manner as for the perfect estimation case. The stochas-
tic singular control system is stable if and only if the
inequality in Eq. (4.7.32) is satisfied.

The covariance may be written as,

ﬁn(tu) = (1-n(t)8)‘?ﬁ11(t)+zaaﬁ11(t) + 5

.—2 2 A
+ a“H (t)[zccull(t) +0] (4.7.33)
where [(1 -H(t) ¢)a] is the closed-loop system parameter
and

H(E) = fip (03 [(@2 4z )y ey +oce)] (4.7.39)

When Eaa==2cc==0, the sufficient condition for stability is
that ﬁll(t) be stable. It is well-known that in general if
the system is observable, then the propagation of the co-
variances will converge to some steady-state value; and this
is true for a scalar system.
When Eaafo and chfo, then stability of the co-
variance equation depends on the level of uncertainty in the
parameters a(t) and c(t). Note that both uncertainties de- b
stablize the covariance propagation equation. The destabiliz-

ing effect due to Zc will be greater since it is multiplied

c
by the square of the filter gain.

Conclusions

In this subsection we summarize the key results

obtained in Section 4.7. We are interested in seeking a
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threshold condition for the infinite horizon problem; and,

hence, the existence of steady-state control law. Since the
coupled nonlinear Riccati-type matrix difference equation is
computationally complex to solve analytically, we used the

control iteration method to simulate the system of equations
in the two-point boundary problem. We were able to immedi-
ately obtain a sufficient condition for the solution to the

coupled Riccati-type equations to diverge for infinite-horizon

-
«

problem.
Next we proceeded to investigate some special cases.

1) Zaa==2bb==0, the Riccati-like equation for POO(t) always

has a limiting solution, 2) Eaa.#o’ be==0, Poo(t) may diverge

as N»>«, and 3) Za =0, be#O, Poo(t) may diverge as N + o,

a
The computed (simulated) stability region curve is then
presented in Fig. 4.3. Some conjectures on the sufficient
conditions for mean-square stability are given in Figs. 4.4
and 4.5. The uncertainties in the random parameters have a
destability effect on the dynamic system, in moving the
effective poles outside the unit disk. This is argued as
follows. The uncertainty in a increases the magnitude of
the control gain. The uncertainty in b increases the magni-
tude of the filter gains. The uncertainty in c reduces the
filter gains, but it increases the control gains since the

variance ch#()is effectively additional control weight

in the co-state equations.
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If the random system is originally stable, we can
say something more about the mean-square stability of the
' linear control system. The feedback system is stable if

(a2

+ 3 i 198 e I on t xed struc > con-
au)<~1 If Lua Lbb 0, then the fixed structure con

\ trol system is always stable.

For the stochastic singular control system, we ob-

tained the sufficient condition for mean-square stability

under feedback; which is the dual to the case with exact

measurements (Xc =0, 0=0). If this threshold condition

C

is violated, then the optimal solution to the infinite hori-

zon problem does not exist.

4.8 Stability of Stochastic Dynamical Systems

In this section we will follow by analogy with the
method of analysis in Section 2.5 and derive the conditions
for the asymptotic stability of the closed-loop system. In
particular, we shall deal with the stochastic difference
equation

y(t+1l) = a(t) x(t) + b(t) u(t) (4.8.1)
where the linear output feedback law

g(t) y(t) (4.8.2)

u(t)

and output

i

y(t) c(t) x(t) (4.8.3)
then

y(t+1) = [a(t) +b(t) g(t) c(t)] x(t) = o(t) x(t) (4.8.4)
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b e b b

The propagation of the second moment of X is given

by
E{x2(t+1)} = E{a2(t) + b2(t) g2(t) c2(t) i1
+2a(t)b(t)g(t)c(t)}E{x2(t)}
= _E{az(t)} + gz(t) E{bz(t) cz(t)} ‘.
+ 2g(t) E{a(t)b(t)c(t)}] E(x2(t)} (4.8.5)
z;
E{T 2:+:;} = E(o%(1)) E{¢2(2)}...C{¢2(t)} = S(t) (4.8.6)
E{xT(1

The minimum of S(t) is obtained if each term is
minimized for all t. Thus, taking the algebraic minimization

we get that

'
t:
t

5
]

E{a(t) b(t) c(t)}

*
g(t) = -
E{b2(t) (1)}

(4.8.7)

Substitute this result into Eq. (4.8.6) we get the

minimum value of §(t) is

21|t
s(t) =| a®(t) - BRI D(L) c(X) (4.8.8)

b2(t) c2(t)

In the case where the system parameters a(t) and b(t)

are uncorrelated with the measurement parameter c(t) as has

been assumed in Section 4.3, we then have

* i

g (t) = - a(t) b(t) c(t) (4.8.9) >
b2(t) c2(t) .

The minimum value of S(t) is then, assuming the random param- ‘
eters are wide sense stationary, ?
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-= 2 -2 t
(ab +Zab) c

>
t
ct

2

S(t) = |a“+z__ - m (4.8.10)

=2 )
(Zpp *PI(I o * e

The variance of x(t) is bounded if and only if

m< 1 (4.8.11)

If we rewrite this result as

B
= I (Los R
b= atef 4 F—u88. ] ab o (4.8.12)
aa 5 +EZ (z +62)
cc bb

We find that this threshold m differs from the m in Eq. (2.4.3)
in the expression ((ZCC/EZ-+ZCC) -1). We note that if ch==0,
then m reduces to m. Effectively, driving the system in
Eq. (4.8.1) using direct output feedback represents a worst-
case analysis.

In other words, we can improve on this sufficient
condition for mean square stability by using any reasonable

control law. This is verified when we use the linear unbiased

estimator of a fixed structure given by Egqs. (4.5.2) to (4.4.4).

In principle, we have then derived the lower bound on the
actual stability curve for the closed-loop system given by

Eq. (4.8.12).

2

We remark that from Eq. (4.8.12) if a +>:aa51 and

Eabz(L then the stable system (4.8.1) is again stabilizable
under feedback. Mathematically, this says that for the com-
bination of means and covariances that satisfy inequality
(4.8.12) also satisfies the true threshold condition. The

converse is not true. The inequality condition in Eq. (4.8.12)

T
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is only a sufficient condition. This is illustrated in
Fig. 4.4. Superimposing Fig. 4.4 on Fig. 4.3 would show
that the stability region curve given by Eq. (4.8.12) is
below the computed mean-square stability region curve in
Fig. 4.3. Hence, it is not surprising to see from that
the stability curve of Eq. (4.8.12) in Fig. 4.4 is lower

than the experimental curve in Fig. 4.3 obtained from

simulations.
Consider now the case be==0, then the threshold
m becomes
z =D
- R e S - A SRR (4.8.13)
aa -2 aa -2
& e X +c
ce ce
and from Eq. (4.6.9)
5 T
e S —5 (4.8.14)
b(ch-+c )
If ch==0, we have the stability condition Zaa <A

In the case I__#0, if Z‘?+2Ml <1, then the system is stabi-

lizable under linear feedback for all levels of parameter
uncertainty.

We have stated that the inequality condition in
Eq. (4.8.11) is only a sufficient condition for mean-square
stability, the gain in Eq. (4.8.14) doe<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>