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ABSTRACT. The anal ysis of computer programs is an important part of
program translation , error detection , optimization , and documentation . It
consists of two distinct activities: the construction of an abstract model
of a program , given the program itsel f in some language such as FORTRAN , and
the extraction of i nformation from the program by examination of the model . A
labeled , directed graph is a model that is often used . In recent years workers
in theoretical computer science have constructed and analyzed algorithms for
solving problem s on label ed , directed graphs which are directly related to
important problems arising in the analysis of computer programs. Some of these
algorithms and their applications are described . The discussion does not
assume a knowledge of graph theory.

1. INTRODUCTION. The analysis of computer programs is important in error
detection , optimization , documentation , translation and many other activities
associated with the design , construction , and maintenance of software. It is
difficult because of the size and complexity of programs. Generally speaking ,
program analysis has been an unorganized subject, consisting of a variety of
ad hoc techniques with littl e unifying structure, but this situation is chang-
ing. One reason for this change is the development of good algorithm s for
recognizing the implicit relationships in directed graphs . I will describe
some of these algorithms and how they can be used on probl ems in program
analysis. In doing so I hope to provide an indicati on of how we can begin
to organize the subject of program analysis.

I want to make a careful distinction between the analysis of algorithms
[1] and the analysis of programs . The analysis of an algorithm starts with
the algorithm and focuses on the problem of obtaining time and memory space
bounds or expectation values in terms of a few parameters of the underlying
problem. The analysis of a program starts with a program , say in FORTRAN or
COBOL , and proceeds to some abstract model of it on which the analysis is per-
formed . The “program ’ is expressed exactly as it will be, or has been , read
i nto the store of the computer. The construction of the abstract model of the

• program is a critical step in the analysis of programs, critical because
decisions must be made about which information is to be discarded and which
is to be retained , and the analysis will suffer if too much or too little is
discarded . Program analysis is concerned with time and memory space require-
ments but it is also concerned with far more detailed information than is
algorithm analysis; for example , program analysis is concerned with which
variables are assigned values in certain areas of the program , which sub-
routines are called by which other subroutines , which variables depend on which
other variables , and so forth. Finally, because of the large amount of infor-
mation that arises in program analysis , most of the work , If not all , is done
by computers whereas the analysis of algorithms is done by humans. 

— -~~~~- — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -- -. - .  ~~~~~~~~~~~~~~~~~~~~~~~ 
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2. PROGRAM ABSTRACTIONS. The basic structure for a program abstraction
is a directed graph [2]. The subject of graphs dates back to Euler and the
famous Königsberg bridge problem [3]. Graphs appeared in automatic computing
at an early date [4] and since then they have been used extensively to repre-
sent mac hi nes , programs, data structures and problems attacked by computers
such as network flow problems . A directed graph is shown In Fig. 2.1. It is
denoted by G(N ,E) where N i s a se t of po ints cal l ed nodes , joined by a set , E ,
of directed lines , called edges. Letters or numbers are used to Identify nodes
as i n

N = {a, b , c, d, e, fi or N = {l , 2, 3, 4, 5, 6)

and ordered pairs of nodes are used to represent edges, as in

E = {(a ,b), (b,c), (b,d), (d,e), (e,d), (d,f), (c,f)}

to represent the set of edges of the graph in Fig. 2.1. The edge (a,b) is
sa id to leave a and enter b . The notation j S~ is used to represent the numberof elements in the set S; IN I = 6 and ~EI  = 7 for the graph shown in Fig. 2.1.
A path in a graph Is a sequence of nodes joined by edges; for example
a + b • d -~~ e and b -

~~ c -, f are paths in Fig. 2.1. Sometimes intermediate
nodes along the path are suppressed and the notation a e is used to denote a
path from node a to node e. The length of a path is the number of edges on
the path: the length of a -

~~ b + c f is three. A path in which the first and
last nodes are the same is a cycle; for example, d -

~~ e + d and e + d -~ e d -‘ e
are cycles in Fig. 2.1. A path such as a + b d -

~ e -
~~ d in Fi g. 2.1 is said

to contain a cycle. If no path in the graph is a cycle the graph is called
acycl ic. If ever y node, save one ca l le d the root, has exactly one edge enter-
ing it and the root has no edges entering it , then the graph is a tree. A

• tree is an acyclic graph but the converse is not true. A picture of a tree and
an acyclic graph which is not a tree are shown in Fig. 2.2. If (i ,j) is an
edge in a tree then node i is called the parent of node j.

It is coninon practice to represent control flow with a graph called a
flow graph. In such a representation the nodes identify statements and the
edges Identify the order of execution of the statements. When one considers
creating such an abstraction mechanically it becomes Immediately evident that
a simple one-to-one mapping of statements to nodes is not always adequate. An
example of the kind of problem that can be encountered is illustra ted with the
DO statement in FORTRAN which actually consists of three, more elementary ,
statements separated by a group of statements following the DO. This is illus-
trated in Fig. 2.3. Even though a node in a flow graph may not represent a
statement exactly because of such compl i cations it is convenient , and should
caus e no confus ion here , to speak of nodes in flow graphs as representing
statements. A node in a flow graph with no edges entering it is called an
entry node , and a node wi th no edges leaving it is called an exit node. A sub-
routine in ANS FORTRAN would be represented by a flow graph with one entry
node, corresponding to the first executable statement and one or more exi t S
nodes corresponding to RETURN statements. It is customary to restrict flow
graphs to have a single entry node and to represent them with the notation
G(N ,E,n0) where n0, an elemen t of the set N , is the single entry node.

The nodes of a flow graph may represent larger structures than individual
statements: they may represent statement blocks , cycles , subroutines and so

- - -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Fig. 2.1

~ directed graph. The dots represent nodes , the directed lines representedges. The node set is N = (a , b, c , d, e , f} , the edge set is E = { (a ,b),(b,c), (b ,d), (d,e), (e,d), (d ,f), (c,f)}.



Fig. 2.2

Both of these graphs are acyclic but only the graph on the left is a tree.
The graph on the right is not a tree because it has a node with two edges
entering It.

.

•. • ~~~~~~~~~ ~~~~~~ ~~~ ~~~~~~~~ ~~~~~~~ .~~ ~~~ ~~~~~~~~~~~ _ ..~_ -• -~~~~~~~~~~~ •
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DO 2 0 K  = l,J ~~~~~
. 

— — —

20 CONTINUE TRUE K ~~~~
- K + I

K~~~~J

FA LSE

Fig. 2.3

The mapping of statements onto the nodes of a flow graph Is not always
- 1 -1 . The mapping of the DO statement in FORTRAN is an example of such
an exception, as shown here.

_ _ _ _ _ _ _ _ _
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forth. Each of these is a different program abstraction retaining some aspects
of control flow and suppressing others. A statement block is a sequence of
statements such that control always flows from one immediately to the next;
thus a branch statement can only appear at the~ end of a block and only thefirst statement can be branched to by some other staten ent. The transforina-
tion of a fl ow graph in which nodes represent statements to one in which nodes
represent statement blocks is illustra ted in Fig. 2.4. The resulting graph
is more compact but still shows all branches in control flow and all cycles.
The transformation of such a graph into one in which cycles are suppressed by
col lecting them into sing le nodes is illustrated in Fig. 2.5. Here cycle
information is lost but connectivity relationships between cycles are retained .

• In graph terminology the nodes of the resulting flow graph represcnt the
strongly connected components of the original flow graph. When the nodes of
a flow graph represent subroutines or procedures and the edges represent one
or more procedure calls , the graph is named a call graph. This is illustrated
in Fig. 2.6. Since FORTRAN prohibits recursion a call graph for a FORTRAN
program must be acyclic. The use of a call graph together with flow graphs
for individual subroutines naturally partitions the abstract representation
of a program into more manageabl e form for analysis.

Given a flow graph the fol lowing questions may be asked about its struc-
• ture:

1) Is it acyclic?
2) What nodes lie on some path from a given node?
3) Is it possible to construct a path which includes a given set

of nodes (edges)?

• 4) Can you find a path from the entry node to an exit node which
does not include both members of certain pairs of edges?

5) Which sets of nodes have the property that there is a path from
any node to any other node of the set?

These questions and others are related to important questions that may be asked
about a program :

1’ )  Is it possibl e for this program to loop indefinitely during
executi on?

2 ’ )  Can statement s.~ be executed before statement Sj ?
3 ’ )  What is the smallest set of test data needed to execute every

statement (traverse every edge ) once?
4 ’ )  Can you find an executable sequence of statements?
5 ’ )  Can statement s .~ and s~ be in a cycle?

The questions about graph structure clearly can be answered by enumera-
tion since the graphs are finite , but graphs derived from programs may be
large and enumeration impractical . Therefore it is important to f ind al go-
rithms which are significantly faster than enumeration and it is important to
know about the compl exity of these problems . It is known , for example , that
question 4 is a probl em that is called NP-compl ete [E.]: this means tha t the
worst case execution time of any al gorithm for solving this problem on

I ;—, —•— ~~~~~~~~~~~~~~~~~~~~~~~~~~~ •——. _ _ . _ .~~..~~._._ ~~~~~__._ __~~~ _4.__—_ - .— — —— —



I F ( - - ) G O TO 9O

90 INDEX = J/ K
IR J - INDEX * K
IF (IR.EQ .O ) GO 10 95
ISHET = K - IR
INDEX = INDEX + 1

95 L = M (INDEx)

(a)

N D E X  = IR ~~~~
—

I R ’ O
* / FALSE

TRU
Eç

I R 0 — ‘ ‘

7 FALS E

/ ISHFT ø-

TRUE
(

~ INDEX
.
~ • • ‘

• L~~— 
• . .

(b)  (c)
Fig. 2.4

(a) Segment of a FORTRAN PROGRAM : (b) Segment of a flow graph derived from
the program segment, with nodes representing individual statements; (c) Seg-
ment of a fl ow graph , derived from the graph in (b), In which nodes represent
statement blocks .

L • -
~
.. — - • — . — •

~~~~~— • - .  ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ — . ~~~~~~~~~-• ~~~ • • — ~~~~~~~~~~~~~~~ — 
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C d : 0, f , g ) ’~~~~~~~~ (I)

9

(a) (b)

Fig. 2.5

(a) Segment of a flow graph with cycles; (b) Segment of a flow graph ,
derived from (a), in which nodes represent strongly connected cciii-
ponents.
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(MAIN PROGRAM )

CALL SUB A (- - -)

CALL SUB B (- - -)

• CALL SUBA( - - -)

MAIN PROG.
END
SUBROUTiNE SUB A (- - -) SUB A

SUS B

CALL SUB B (- - -) SUB C

CALL SUB C ( - -)  
(b)

END

SUBROUTINE SUB B (- - -)

END

SUBROUTINE SUB C (- - -)

END

(a)
Fig. 2.6

(a) FORTRAN program with subroutine calls; (b) Call graph for program in (a)

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~
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arbitrary graphs is almost certainly going to be exponential in the size of
the graph as measured by IN I and FEL Other questions in this group can be
answered by very fast algorithms ; for instance question 5 can be answered by
an algori thm that has time complexity OflNl+IE 1).*

Association of information describing data actions with the nodes of a
flow graph makes it possibl e to analyze sequences of data actions , called data
flow. For example, consider a particular variabl e, say X , and label each node

• with the symbol r, d, or e according as X is referenced (its value is fetched
from memory as in V i- x+l), defined (a value is assigned to X as in X i- ‘(+1),
or X is not referenced or defined. If more than one action on the variable
takes place as in X + X+l then an appropriate sequence of action symbols , rd ,
is attached to the node. An example is shown in Fig. 2.7: every path in this
labeled graph corresponds to a sequence of data actions as illustrated below
for the variables X and V.

Path Data Actions

l+2+3+5~7 e d r e (x)

• e e r e e  (Y)

l+2+3+4+6+4 7 e d r r r d  r e (Y)

• 
• e e r r e r e  (Y)

Looking at the data flow described on the right it is evident that V must be
assigned a value before entry to the program since there are paths on which

* the first action is r. It also appears that X need not be assigned a value
before entering the path since it is defined before any reference; further
consideration shows that X does not need to be assigned a value before enter-
ing any path starting at no.

Analysis of data flow can provide answers to the following questions about
a program:

1) Are undefined variables referenced?
.2) Are there unnecessary definitions of values?
3) Which parameters in a procedure call need to be assigned values

• before entry?
4) Wh ich parameters in a procedure call may have altered values upon• return?

*Let f (~N~,jE~) represent the time to execute the algorithm as a function of
IN I and IE I , then time complex i ty o( IN I+1E ) means

~Nl +j E I- *o3 = k , k a constant unequal to zero. Time

complexity O( INI+IE !) implies that the approximation f(INI,IED k x ( t N l + I E I )
may be used for large !N1+ !E !.

_ _ _ _ _ _ _ _ _  • ~~~~~~~~~~
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(b)  (c)

Fig. 2 ,7

(a) Flow graph with nodes numbered for identification and relevant state-
ments corresponding to nodes indicated ; (b) Flow graph , derived from (a)
with data actions on X indicated ; (c) Flow graph derived from (a) with
data actions on V indicated .
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Analysis of data flow can detect programming errors. If the first data action
on a path is r then it is likely that a data initialization has been omitted ,
or the reference action is incorrect because the variable was misspelled , or
the referencing statement is in the wrong place , and so forth. Similarly if
a d is fol l owed by a d without an intervening r then a variable may have been
misspelled causing the redundant definition or causing the omission of the
intervening reference. Analysis of data flow can also assist in the global
optimization of programs , in providing documentation aids , and in program modi-
fication .

It should be evident from this that algorithms for manipulating graphs
• • and for extracting impl i ed relationships in graphs have many applications in

program analysis. However, not all useful abstractions require graphs. In
some appl ications , for example , sets of variables are sufficient: the set of
variables declared as formal parameters to a procedure should be a subset of
the set of variables used in a procedure; sets of variables which are equivalent
in the sense that all variables in the set represent the same memory location
are important for a consideration of aliasing. Thus algorithms for set opera-
tions are also important for program analysis. Here, however, our attention
is directed at graph algorithms .

3. ALGORITHMS. A flow graph contains explicit and implicit information .
Explicit information is Information associated wi th a node or edge which is
independent of information at other nodes or edges. Thus it is l ocal informa-
tion about the program, determined at a cost that is Independent of the program
size. Examples of explicit information are: the statement type; the list of
variables appearing in a statement; the branch condition on an edge, for exam-
ple the fact that A � 0 is true if the edge is traversed during execution .
Implicit information may be associated with a node or edge also , or it may be• associated with a larger structure including the entire flow graph: it is

• dependent on information at more than one node or edge, perhaps all of them.
Thus implicit information is global information that may, and usually does,
depend on the program ’s size. Examples of implicit Information are: the set
of statements which can be reached on all paths from a given statement; the
set of variabl es on which the first data action will be definition on all paths
from a given statement; the set of statements which are on all paths to a par-
ticular statement. Explicit information is collected at the time the abstract
model of the program is created . It is , In fact, part of the model itself.
Implicit information is derived from the model . It is the derivation of this
implicit information that is the focus of attention in the subsequent discus-
sion.

Two mechanisms are frequently used for deriving information from a fl ow
graph : one consists of performing graph transformations , [6,7] the other con-
sists of performing a search on a graph [8,9]. When graph transformations are
used a flow graph G (N,E ,n0) is transformed Into another flow graph G(N’,E’,n~,):the transformation is not only one of structure but also one of information
attached to nodes and edges. This approach generally consists of a sequence of -;
trans forma ti ons , each being an elementary transformation in some sense. Through
an appropriately chosen sequence of transformations globa l Information about the
program can be collected and distributed to appropriate nodes. A search con-
sists of moving over the graph in a systematic manner dictated by the relation-
ships between nodes implied by the edges. During the search global information
about relationships can be col lected. Transformations may be used to assist
the search , and transformations may be used in place of a search.

- ----1-•—• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~• -~~~~-~~~~•• -~~-•- --- ~~~
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Two kinds of search on a flow graph are conrion: depth-first and breadth-
first. A depth-first search is defined by the following algorithm :

Al gorithm (DFS)
1. Push the entry node on a stack and mark it (this Is the first node

visited , nodes are marked to prevent visiting them more than once).
2. While the stack is not empty do

2.1 If there is an edge from the node at the top of the stack to an
unmarked node then push the unmarked node on the st4ck and mark
it else pop the stack.

• 3. Stop.

A breadth-first search is defined by the fol l owing algorithm :

Al gorithm (BFS)
1. Put the entry node on a queue and mark it.
2. While the queue is not empty do

2.1 If there is an edge from the node at the head of the queue to
• an unmarked node then add the unmarked node to the end of the

queue and mark it else remove the node at the head of the queue
3. Stop.

A search defines a numbering of the nodes determined by the order in
which they are visited . Two numberings of importance associated with DFS are

* preorder numbering and postorder numbering : preorder numbering corresponds
• to the order in which the nodes are first visited in a depth-first search and

postorder numbering corresponds to the order in which they are last visited in
a depth-first search.* These numberings are illustrated in Fig. 3.1. When a
graph is a tree preorder numbering assures that every node has a higher number
than its parent and postorder numbering assures that every node has a l ower
number than its parent. This is illustrated in Fig. 3.2. When an arbitrary
graph has a preorder numbering the presence of an edge (vj,vj) such that

Vj Implies the graph is not a tree but the converse Is not true. When an
arbitrary graph has a postorder numbering the presence of an edge (vj,vj) suc h
that v1 ~ V j implies the presence of a cycle; removal of all edges with this
property transforms the graph into an acyclic directed graph , but not neces-
sarily a tree. It is important to recognize that a preorder or postorder
numbering can be done quickly. The time required for a depth-first search
increases linearly with the number of edges in a connected graph : each edge
is traversed once in a forward direction and once In the backward direction ,
thus the time complexity for the DFS algorithm is O(~E~).

*There has been some confusion In the literature wi th this terminology. Our
definition corresponds to recent usage [1] but differs from Knuth [10].

- — -
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(a) (b )

Fig. 3.1

(a) Flaw graph with nodes numbered in preorder; (b) Flow graph with nodes
numbered in postorder.

p.
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(a) (b)

Fig. 3.2

(a) Tree with nodes numbered in preorder , each node has a higher number
than its parent ; (b) Tree with nodes numbered In postorder , each node has
a lower number than its parent.

~~~~~~~~~~~~ ~• ~~~~~~~~~~~~~~~~ •
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It is useful for a number of applications to know whether a pair of nodes
can be on a path. This gives rise to the fol l owing probl ems : given a node , u,
determine all nodes v such that there is a path from u to v (symbolically this
is expressed as the set S(u) = (v~u ~‘ vi); and given a node, u , determine all
nodes v such that there is a path from v to u (symbolically this Is expressed
as P(u) = {vlv u}). Any algorithm for solving the first problem can be used
to solve the second problem simply by reversing the directions of the edges.
The reflexive and transitive closure of a graph is defined as the set of all
ordered pa irs of nodes (u,v) such that there is a path (including a path of
zero length) from u to v (symbolically this is {(u,v)I u ~ vi). If paths of
zero length are excluded then the set is called the transitive closure
(symbolically this is Uu,v)I u ~ vi).

An algorithm by Warshall [11] for computing transltive closure is based
on matrix multiplication and has time complexity O (!Nl~~). It is not difficult
to see that the transitive closure could be computed by performing J N J depth-
first searches, one search from each node. 3his approach would require a time
proportional to IN I~ EI . Of course l E t � TNV so in the worst case the time
required would also be proportional to t N t 3. But for programs it is more
conuiion that ~EI � k i N t where k is a constant and so the time would be propor-
tional to IN F

A clever idea described by Schnorr [12] may allow further improvement of
the computation time for transitive closure. Consider a node v of G(N,E,n0)
and suppose v u1, v u2,...,v u~ where k = rlNI,2 + 11. Now consider a
graph G’(N,E’) derived from G by simply reversing the direction of all of the
edges. Let w be a node and suppose in G: w r1, w - r2,...,w rk where k
is defined as before. It is easy to see that the sets {u1,u2,. .. ,u~} and
{rl~

r2~
...
~
rk} must have at least one node in conmion since 2 

x rlNl,2 + 1~i
equals t N t + 2 or J N J + 3 according as ~~ is even or odd . This idea is the
basis of an algorithm which uses breadth-first search to compute transitive
closure but terminates the search from a node after flNt/2 + 11 nodes have been
reached, unless it terminates earlier because no more nodes can be reached.
Then the idea just described is applied to complete the computation of the
transitive closure. The interesting property of this algorithm is that its
expected time for execution is O( IN ! + IEI*) where I El* is the expected number
of edges. The model used for computing the expected values consists of an
ensemble of random graphs with t N t nodes and for any pair of nodes u and v
there is constant probability p for an edge (u,v). Unfortunately, this ensemble
probably does not match the ensemble for real programs very well.

A determination of strongly connected components Is useful In some aspects
of program analysis. A strongly connected component, SCC, of a flow graph.
G(P4,E,n0) Is a subset of N defined as follows : for every pair of nodes u, v
in the SCC there is a path from u to v and v to u in G, and no more nodes may
be added to 5CC preserving this property. In general a graph may have more
than one SCC. Once the SCC ’s of G have been determined it is possible to make
a transformation G(N,E,n0) + G’(N’,E’ ,n0) where the elements of N’ are the
SCCt s of G and the elements of E’ represent paths between components impl ied

I.. ~ 
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by the elements of E: the idea is illustra ted In FIg. 2.5. The flow graph G’
is acyclic and so a partial ordering of the nodes is possible. In particular ,
if the nodes of G’ are numbered in postorder then on every path , fl

9 
-, n , n ~ N’,the numbering of the nodes will be in decreasing order. This partial ordering

is useful in data flow analysis. A fast algorithm for computing SCC’s has been
described by Tarjan [13]. In this algorithm a pair of numbers , preorder(n) and
l owlink(n), is associated with each node n; preorder(n) is the preorder number
defined earlier ,lowlink(n) is defined by

l owlink(n) = min [preorder(v)], S(n) {vfn vi.
S(n)

This numbering is illustrated in Fig. 3.3. Tarjan shows that a pair of nodes
are in the same SCC if and only if they have the same lowlink number and that
the l owlink numbers can be computed using a depth-first search. The time
complexity for Tarjan ’s algorithm applied to a flow graph is o(IN (+JEI).

In testing a program the notion of coverage or completeness of a set of
tests is important [14,15]. One measure of test coverage is the percentage of
nodes executed or edges traversed in the flow graph. Randomly selected input
data for a set of tests will give poor coverage, therefore some care in
choosing test data is necessary. In attempting to choose the test data care-
fully the question of whether it is possible to execute a given set of nodes
in a test arises. This question is closely related to the following one about
a flow graph of the program : given the flow graph G(N,E,n0) and a set N’,
N’ c N, is there a path n0 

-.- n , neN , which includes every node in N’ . Note
that if the answer to the graph question is no, then the answer to the ques-
tion about the program is certainly no; however, If the answer to the graph
question is yes one cannot infer that the answer to the question about the
program is yes because it may not be possible to satisfy all of the branch
conditions as illustrated in Fig. 3.4. Gabow , Maheshwarl , and Osterweil [5]
have described an algorithm for answering the flow graph question . The idea
is based on a consideration of an acyclic directed graph which would result
from an arbitrary flow graph if one were to replace all SCC’s by single nodes.
Note that if any node v in N’ , the set of nodes to be included in the path , is
in a SCC then a path to any member of that SCC can be extended to include v.
Thus the ori ginal graph question only needs to be asked about an acyclic
directed graph . In presenting the algorithm we use the word “frontier” for
the set of entry nodes (initially the frontier Is {n0}) removing a node from
the graph implies all edges leaving the node are also removed. Here is the
algorithm :

un til the frontier is empty or the frontier contains
more than one node in N’ do

if the frontier is a singleton then remove this node
else remove a frontier node that is not in N’;

stop. -

If the graph Is empty when this algorithm terminates then there is a path
n which includes all nodes of N’ , and if the graph is not empty then there

is no such path. This algorithm is illustrated In Fig. 3.5. The time corn-
plexity for this algorithm is O Ct E t ) and since the time compl exity for getting
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3~~~~~~~~5 , 1)

Fig. 3.3

Flow graph wi th nodes labeled (1 ,j) where I is the preorder number and j
is the lowlink number. All nodes with the same lowlink number are in the
same strongly connected component and nodes with different l owlink numbers
are in different strongly connected components.
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TRUE
x .,* -x +

d 0
* TRUE/ \.

e “c FA LSE

Fig. 3.4

Flow graph with nodes labeled , and associated program statements indicat-
ed. The path a -

~ •b -‘- c + d -~ e is unexecutable since the computation at
a implies y ? 0 and traversing the edge (d,e) implies y < 0.
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P~~~~~~~~~~~ p

(a)
(b)

p p p P

C c) 
(d)

Fig. 3.5

Illus tration of steps in the Maheshwari , Gabow, Osterweil algori thm to de-
termine existence of a path through a set of nodes. Nodes to be on. the
path are marked by p In (a). Nodes in the same SCC are collapsed Into a
single node resulting in (b). The frontier node is removed resulting in
(c). The frontier node in Cc) is removed resulting in (d). Now there are
two nodes on the frontier both of which are to be on the path and the al-
gorithm stops. Since the graph Is not empty at this point the conclusion
is there is no path in the graph (a) which inc ludes all nodes marked p.
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• the SCC ’s by Tarjan ’s algorithm is also o (tE~) it follows that the overall• time complexity for answering the oriqin al graph question is ~(tEI).
Data flow analysis has appli cations in global program optimization [16 ,17],

error detection [9], discovery of unexecutable paths [lfl ,l93 , and detection of
deadlock [20]. A basic problem in data flow analysis is the so-called live
variable problem. This problem can be stated as follows : given a flow graph
G(N,E,n ) with the nodes labeled to show the reference (r) actions and defini-
tion (dl actions on a variable x, and given n , n N , does there exist a path
from n such that the first action on x is r. rf the answer to this question
is yes, then x is said to be live at n , otherwise it is dead at n. If only one
variable and one node were involved the easiest way to answer this question
would be to conduct a depth-first search from n. However, the normal situation
is that this question is to be answered for many variables at all nodes of the
flow graph. A number of algorithms for’ treating this probl em have been
described in the literature [6,7,8,16,21]. A particularly simple and effective

• algorithm is the one due to Hecht and llllma n [8]. The main ideas are as
follows . We associate three sets with every node: at node n these sets are
ref(n), def(n), live(n). The sets are initialized as follows for all n , n~N:

1. ref(n) = {V! V a variable referenced at ni
2. def(n) = {V~ V a variable defined at n}

(for simplicity we assume here that a variable is
not referenced and defined at the same node.)

3. live(n) = 0 (the empty set)

• After this initialization ref(n) and def(n) are not changed , but live(n) is
* modified by applying the following formula i teratively to the nodes of

G(N,E,n0): 1
• live(n) = 

~~~~ 
1live(k) n~~def(k) u ref(k)

k~S(n)k

where S(n) = {j!(n,j)€E}, the set of successors of n . Two examples of the
appli cation of this formula are shown in Fig. 3.6. Hecht and Ulima n have
shown [8] that if this formula is applied iteratively to the nodes of G(N ,E,n0)
in postorder , the convergence is quite rapid. In practice the number of
iterations can be expected to be less than four or five . The application of

• this algorithm to the detection of uninitialized variables in entire programs
has been thoroughly discussed by Fosdick and Osterweil [9].

There is an interesting connection between an important probl em in program
analysis and non-linear optimization . I mentioned earlier that a path in a
program flow graph may not represent a sequence of statements that could
actually be executed : Fig. 3.4 illustrates this situation . Suppose that we
are given a path no n in a fl ow graph and we wish to determine whether the
path can be executed . To do this imagine moving along the path writing down
the predicates that must be satisfied at every branch. In doing this we must
take into account changes in values of variables caused by assi gnments so that
a particular variable name represents the same va l ue in every pred i cate. A
necessary and sufficient condition for the path to be executable is that the
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live (n) live (n
• n ref(n) def(n) (initial) (fjnal

6 
‘

~ 0 0 x ,y

2 y ~~~~~~~
.

5 
3 x ,y 0

~/ \\ 4 z

5 x 0 0 x ,y,zc.
~~

” 

~~~~~~ 
6 0 y 

— 

0 ~ x ,y,z

7 0 0 0

(a)

~ 3 l ive(n) l ive(n) llve(n)
( n ref(n) def(n) (initial ) (after 1 iter.) (fina~I

‘I x 1 0 1 z x ,y,z

2 2 z 0 j x ,y,z x ,y,z

3 y 0 0 j x ,y,z x ,y,z

(b)

Fig. 3.6

(a) Illus tration of live sets, for given sets ref(n) and def(n) on a
graph. Nodes are numbered in postorder and just one application of the
live formula to the nodes In postorder produces the final live sets.
(b) Another illustration of live sets. In this case two applications
of the live formula to the nodes in postorder is required to obtain the
final live sets.
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system of predicates written down is consistent; that -is , there must exist an
assignment of values to variables appearing therein such that every predicate
is satisfied . Now this issue of consistency is exactly the same one that
arises in trying to determine whether there is a feasible region defined by
the constraints in a non-linear (or linear) optimization problem . This problem
is diffi cult and there are no really good algorithm s for dealing with it.
Clarke has discussed the probl em and some experience in attempting to solve it
in a recent paper [22].

4. CONCLUSION. Recent work has provided a number of algorithms whichhave important applications in the analysis of computer programs. While much
work remains to be done in the development of these algorithms , we are now in
a position to build some important program analysis tools based on these algo-
rithms . Such tools could be used for program optimization , error detection ,
testing , and documentation .

These tools should be organized into a library that is easy to use. This
will take careful planning. Consistent patterns of use must be developed , and
portability , and adaptabili ty to various language dialects must be taken into
account. It is a large and difficult challenge , but one which we shouldaccept.
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