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ABSTRACT

The computation of robust M-estimates of regression is considered
in detail using the y functions of Huber, Andrews, and Hampel. The
computation of M-estimates of regression is considered for linear models,
linear models with vector observations, and nonlinear models. Examples
are given using actual data for each of these different classes of models.
Careful attention is given to the important problem of convergence of
M-estimates with redescending v functions. A lengthy treatment of this
problem is given for the Daniel and Wood data by considering several
starting methods for the iterative solution and different breakpoints
for the y functions.
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1. INTRODUCTION

The estimation of coefficients in a linear regression model by
least squares has long been plagued by the possible presence of
outliers, i.e., observations which for some reason do not belong with
the major portion of the observations or with the regression model.

To quote Huber [1], "even a single grossly outlying observation may
spoil the least squares estimate and moreover outliers are much harder
to spot in the regression case than in the simple location case."
Several robust alternatives to the use of least squares in estimating
the coefficients in a linear regression model have been developed which
are outlier resistant. Robust statistical methods may be loosely
described as those which will perform well under a variety of underlying
distributions or in the presence of observations from contaminating
distributions. |

Robust estimation methods have been classified by Huber [1] and [2].

Huber's classifications are termed L-estimates, M-estimates, and R-estimates.

The L-estimates are formed as linear combinations of the order statistics.
The o - trimmed mean is an example of an L-estimate for a location
parameter. The R-estimates are derived on the basis of rank tests. The
estimate of location obtained by taking the median of all pairwise
averages of the observaticns is an R-estimate. Probably, the most
popular robust regression methods are the M-estimates. Their popularity
stems from their generality, their close computational relationship to

least squares, and the ease of numerical computation.




2. M-Estimates for Regression

Given the linear model

)
yi=): X

PV S 5

where the regression parameters ej are unknown and to be estimated

from a knowledge of the values ¥; and xij' The M-estimates of

6. minimize

J
p
i 6 -jﬁlx”eJ) | 5

where p(+) is some suitable function. Differentiating (2)

LU o = |

i

leads to

n T . :
izlxi ¥(y; - x;0) = 0 (3)




where Xg = col (xi], Xj05=""s xin) and ¥(+) is the derivative of
p(+). (3) is the analog of the normal equations in least squares
regression. The estimate which results from solving (3) is called an
M-estimate. Rather than specifying the function p, M-estimates are
usually described by specifying the function v. If f(y;6) is the

probability density function underlying the observations and if we

choose ¥ = Efé%iﬁl-/f(y;e), then the M-estimate obtained is the
maximum likelihood estimate. Since the function p is usually not
homogeneous, as it would be in least squares, the M-estimates obtained
would usually not be scale invariant. To force scale invariance we

instead minimize

n s
Ie |\ 25— (4)

where s is some measure of dispersion of the residuals,

y; - 'E x,.0.. The quantity s also needs to be robust.
T 4= 1373

Several ¥ functions have been proposed in the literature. The

original ¥ function proposed by Huber limits the sensitivity of

the estimator to gross errors in the data. Thisy function is given by

{ X |x|< a
¥(x) =

a sgn (x) |x]> a
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A ¥ function of a different type which is an example of the redescending
type of ¥ function and which provides rejection of gross errors as well
as limited error sensitivity is the function proposed by Hampel [3].

r

X Ix|<a
a sgn (x) a<|x|<b
¥(x) = ¢ _
a(%—{ £ 340 (x%) b<|x|<c
L 0 |x|>¢
3




b=
o

— - —
—_—— e —— -

Hampel ¥

A v function proposed by Andrews [4] is given by

Lid s {sin (Zé-) |x|<cm

0 |x|>crm




ANDREWS ¥

y functions have also been proposed by Tukey [5] and Ramsay [6].

Tukey's ¥ function is given by
%2
X (1 - gyz) |x|<a

¥(x) =
0 [x|>a

Another ¥ function which was proposed by Ramsay is

¥(x) = xe~2 Xl




The Ramsay ¥ is of the redescending variety but the descent is very
slow in comparison with other redescending ¥ functions. Two ¥
functions which are special cases of the Hampel ¥ which we have
found to be useful are for a=b=c and b=c. We will call these H]

and HZ’ respectively. They are given by

X |x|<a
WH](X) T |x]>a
X [x]<2 v
v (x) = {a  ac|x|<b
2 acy ]
0 0 |x|>b |
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Estimates with bounded ¥ function tend to be robust. If the ¥ function also

returns to zero the estimator will tend to reject the more gross outliers and
will be robust for a larger proportion of outliers. However, the p functions
corresponding to the ¥ functions of the redescending class are not convex.
Therefore, the numerical solution for M-estimates using a redescending ¥
function may result in an estimate which does not correspond to a global
minimum of (4). This convergence to the wrong estimate may result in a
degraded robust estimate. We shall exhibit this type of behavior for a
Hampel ¥ in Section 8, which deals with the Daniel and Wood data.
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As an example of the ability of M-estimates to detect outliers
consider the data set below which is a time sequence of real
angular measurement data and contains some gross outliers which
are obvious by inspection. A quadratic curve is fit to the data for

the purpose of determining the outliers.

; Residuals from Residuals from
: Observations Least Squares Fit Robust Fit
-1.70987 -.157774 .000012
-1.70942 -.000204 .000004
-1.70893 .105480 .000003
-1.70845 .159227 -.000015
-1.70793 .161087 -.000010
-1.70741 .111021 -.000021
-1.70682 .009099 .000022
-1.70626 -.144780 .000019
-1.70571 ~-.350595 -.000010
-1.70510 -.608277 .000005
-1.70449 -.917885 .000004
1.43777 1.862231 3.141637
1.44602 - 1.456410 3.149243
-1.70257 -2.158177 -.000007
1.44667 873139 3.146558
9
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The residuals from the ordinary least squares fit do not yield
any information about the outliers in the data whereas the outliers

among the residuals from the robust M-estimate are obvious. The

robust M-estimate for this example used a Hampel ¥ with breakpoints
3, 6, 9.

Another example which has residuals in all regions of the Hampel
¥-function is the following data set.

10
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AV S A T —

LONOOHBWN—

LEAST
SQUARES

RESIDUALS

.011022
.009071
.007471
.005711
.004461
.002730
.001590
.000213
.001201
.002489
.003798
.005624
.005421
.008660
.006010
.009663
.011016
.010359
.011568
.012005
.012861
.013557
.014001
.014501
.015039
.015433
.015913
.016283
.016494

-.058265

. 172487
.018472
.064416
.089274
.251831
.007852
. 159606
.059168
.016704
.016296

- ROBUST

RESIDUALS

.000278

-.000006

e Gk O0F 8 6o 8 e oAl

.000033
.000151
.000123
.000136
.000144
.000135
.000038
.000014
.000082
.000748
.000564
.001617
.002037
.000662
.001113
.000392
.000019
.000291
.000129
.000075
.000222
. 000260
.000209
.000249
.000152
.000113
.000181
.075167
. 189565
.001270
.081690
.071980
. 269092

-.009326

. 142564
.042313
.000088
.000028

1

NORMALIZED

ROBUST
OBSERVATION RESIDUALS
.20642275 1.005559
.20973521 .020803
21296912 .120171
.21663652 .546808
.22006619 .445501
.22425138 .492246
.22811853 .519552
.23249603 .487267
.23718297 .136926
.24201791 .051970
.24714760 .297949
.25306741 2.703007
.25723122 2.037977
.26510980 5.845255
.26737381 7.361710
.27621340 2.394020
.28302583 4.023731
.28810282 1.418292
.29531815 .067036
.30203451 1.051051
.30944403 .464413
.31696650 .269818
.32450959 .800901
.33238295 .938668
.34056693 .754131
.34888132 .898506
.35755414 .547835
.36639033 .406971
.37534057 .654202
.30959446 271.639732
.20465789 685.052254
.40517605 4.589248
.33212063 295.211357
.49591643 260.122231
.16519139 972.446930
.43552655 33.701152
.59820610 515.197899
.50896735 152.912771
47797510 .318960
.48931307 .101770




The solution for the M-estimate used a least square starting
solution and a Hampel ¥ function with breakpoints at 2.5, 5, and
7.5. In the list of least squares residuals given above some of
the outliers are obvious while others are not. The column of nor-
malized residuals is merely the robust residual divided by the
robust dispersion measure s. If we declare that resijduals greater
than 2.5 s are outliers then we would flag observations 12, 14, 15,
17, 30, 31, 32, 33, 34, 35, 36, 37, and 38 as outliers. Some of
these outliers are much more gross than others. The M-estimate of
the parameter vector is 50 = ,20388, 51‘= .05419, 82 = .04427.

This example is simulated data so that the true parameter vector is
known to be 6, = .20388, 6, = .0537, 6, = .0445. The least squares

0 (o) 0
starting solution was e(o,= .21636, 6; = .01901, 9(2)= .05466.

3. Numerical Compu’a:ion of M-Estimates

One of the most attractive features of least squares estimation is
the ease of numerical solution. One might be inclined to think that
the numerical solution for M-estimates would in many cases be
prohibitive. This is not the case. At worst (4) can be minimized by
one of the many algorithms for minimization, e.g., the Fletcher - Powell
[7]. However, either a Gauss-Newton or a weighted least squares solution

can usually be applied to obtain the M-estimate.

12




The Gauss-Newton method can be applied to the computation of
M-estimates by linearization of (4) or (5) below. Setting the deri-

vative of (4) with respect to e equal to zero

N ¥i - X0

X o(—1) = o (5)
< s

i=1

Since (5) is in general nonlinear in 3, we must usually employ some form

of iteration for solution. Suppose we have obtained an estimate 0 (k)
in the iteration sequence. We will discuss methods for obtaining a

starting solution 5(0) in a later section. Linearizing (5) about e(k)

(k) (k) (k+1) (k).
N 5 L,
.z‘xz y (r—i- ) - % y' (r—i )x1 ) - 9 =0 (6)
1=

where ri(k) e xié (k)
solving for é(kﬂ)
k)
i -1 N r (
e(k”)=e(k)+M1-z w(—j- ) X! : (7)
3 i
i=1
where
k) T
N r ( X;X
A i L 8
M= i-fl = ) - (8)
13
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(ke1) _ e(k)ll is less than some

(7) and (8) are iterated until ||e
prescribed value or for a fixed number of iterations.

A somewhat simpler method for solution is obtained by approxi-

r.{k

mation of the Gauss-Newton method. Replacing ¥ —% in the above
equations by its sample mean

& 2 =192 EIW(T i

i S 60 g o 'LiTT"TrTFT_ (9)

N:v(L )
g+ and
where
N g
M =i£]X1.Xi (10)

The advantage of this simplified method is that M and its inverse need
to be calculated only once during the iteration procedure.

A simple method for the computation of M-estimates which has achieved
considerable popularity is the iterative application of weighted least

squafes. We rewrite (5) as

N

z

i=1 (’1 - X8 )
S

1Y " %)= 0 (1)

14




Now let

Then (11) is

N . .
X wi(e)xg(yi « %8y 25
i=1

in the iteration sequence. Then we approkimate (13) by

N
(k)T ~(k+1
i:]wi(e‘ ))Xi(yi - ;8 Y

Solving (14) for 6(k*1)

5(k+1)

N p -1 N "
; (jf1wi(e(k))x}xj)lif1ui(°(k))xzy1

15
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(12)

(13)

(13) can be solved iteratively as follows. Let 5(k) be an arbitrary point

(14)

(15)




Thus, we can use an ordinary weighted least squares algorithm
iteratively to obtain the M-estimate.

Throughout the discussion of M-estimates we have used the
dispersion measure s of the residuals without any consideration
for its computation. Robust dispersion measures are often taken to
be a multiple of the interquartile range or of some other range
statistic. A dispersion measure which has been popular with those
using M-estimates is the median deviation or the MAD (Median of the
Absolute Deviations) estimate as it is sometimes called. The MAD

estimate for regression is defined by

s = medlril //{6745 (16)
i

where ri=y; - X;e. Hampel [3] has shown that the MAD estimate is the
most robust estimate of dispersion. In the iterative schemes described
above a new value of s is'computed at each stage of the iteration using
the most recent set of residuals. Thus in obtaining an estimate

a(k+] ) we use

P m$d|ri(k)| //.6745 (17)

(k) -y -y olk)
where rs =Y Xie .

16




Testing of the Gauss-Newton and the weighted least squares methods
for the computation M-estimates on the Daniel and Wood data, which is
presented in a later section showed that the weighted least squares
method to be far better than Gauss-Newton. The Gauss-Newton had very
poor convergence properties for this data, especially when using the

Andrews ¥ function.

4. Covariance of Estimates

An approximate covariance for an M-estimate can be obtained from
the Gauss-Newton method. Assuming the observation errors e, and ej in
(1) to be statistically independent we use (7) and (8) to obtain the

approximate covariance for 6.

a Zads T X.6 =1 N ]
cov(s) =~E [w (—‘—S—‘-)] M (2 XXM (18)
j=1 JJ

We further approximate cov(é) by replacing the expectation in (18)

by its sample mean. Thus, we obtain

-

N y: - X6 -7 N - i
] i S SR T 1
n-pif1w ( . M (j:lxjxj)M (19)

cov(e) —~

17




Corresponding to the approximation used to obtain (9) and (10)
we can further approximate (19) by replacing ¥' (-—J in M by its sample

mean. Using this in (19) gives an alternative approximation to the

covariance
1 2 M= Xé

Lo A ) N -
cov(e) = = g2 3 xixI (20)
y; - X.8 2

b J oyl
N j=1 s

In [1] Huber considers the asymptotic bias of the expressions (19) and

(20). Huber also gives another alternative approximation to the covariance

for an M-estimate.

18




5. Starting Solutions

Any of the numerical methods used to obtain an M-estimate requires
a starting or preliminary estimate of the regression parameters 6.
The starting solution is of primary importance and for some cases will
determine whether or not a usable M-estimate is obtained. Robust
estimation using ¥ functions of the redescending type is especially
sensitive to the starting solution because the solution jteration may
converge to a local minimum which is relatively remote from the global
minimum, if a poor starting solution is used. At best, poor starting
solutions require more iterations for convergence. The most obvious
solution with which to start the M-estimation iteration is the un-
weighted least squares solution. However, since the unweighted
least squares solution is -highly influenced by the presence of outliers,
it may not provide a suitable starting solution, 5(0{ Nevertheless,
least squares is often useful for starting. In some cases where the Y5
are small and the components of 6 are also small the starting solution
5(0)= 0 may be useful. This is often the case in instrument calibration,
see [8].

A good starting solution should itself be a robust estimate of the
regression coefficients. Although the use of a robust-starting solution
may greatly increase the computing time, it will often be necessary if

the two simple procedures mentioned above fail. Several robust regression

methods which are suitable starting procedures for M-estimates are

18
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described in [9]. One of the simplest of these methods is an extension
of the method proposed by Theil [10]. In applying this method we include
a constant term 6 separately from the other terms in the linear model.
We then apply a Gram-Schmidt orthogonalization process to the remaining

independent variables. The computation of the values X'. of the

1
orthogonal variables is given by
L (21)
j-1
g~ Yo ol Ti (22)
N N 5
e - ! (23)
er ifl xu 1k/1._f] ka
In terms of the orthogonal independent variables the 1inear model is
given by
p-1
= v .y i=1, (24)
y] eo + ji] X_'JGJ + e1 1 N

20
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Estimates of the regression coefficients ej are obtained using our

modified method of Theil by the following process.

ROOL L MRS 8

1. dm(i,J) = T—T— Jj>»i i=1,N-1
Jm m
2. &' =medd (i,j)
m i,j m
} m=],p"]
3. em “ em + Gem
- ' . j=
4 yyey; - sl X ds1N
y

5. Repeat steps 1-4 until convergence.

~

6. 8, m:d Y5

In the above med Zi means to take the median of the variables zi over the
: i

index set i. In order to recover the original regression coefficients,

it is necessary to apply the Gram-Schmidt process to the ej.

Ao amco aLh ot il e



)

e e il e L e At bbb

p-1 (25)

i-1

Ppu1-1 7 L) Tpetogpe1aifpreg 1STaP-2 (26)

ep-l-i R
For even moderate values of N the number of slopes dm(i,j) which must
be computed is quite large. Rather than use all of these slopes we
can instead work with a reduced number of slopes. One possible reduced
set of slopes can be obtained letting the x'1m be arranged in increasing

order for each m and let N* = [uilﬂ. Thus, if N is odd xN*h is the median

of the x%m’ i=1,N. We then use the slopes

d (i) = ‘yN*"‘i 6 ‘yi 1=]’N: ‘ (N even)
y t=1,N" - 1 (N odd)

XN 4i,m” X im
These slopes are then used in step 2 of the iteration process with

80, = med dm(j).
J

22




Another robust regression method for obtaining a starting solution
for M-estimates is an application of Spearmans p as described in [9].
We again form a set of orthogona] independent variables x%m i=1,N by
applying the Gram-Schmidt process in (21) - (23). Let inm be the rank
of x%m among the xém j=1,N and let Ry1 be the rank of y; among the
yj, j=1,N. Then Spearmans p, a nonparametric estimate of the population
correlation coefficient is defined as

N
R -R IR, -K
izl( Xim “m)( Yi Y) (27)

is just the ordinary defining equation for the correlation coefficient with
the variates replaced by ranks. A more useful definition of pxmy for

computing is

g B - (28)
X N(N2 - 1)

a3




where di is the rank difference

In an orthogonal regression model the estimates of the regression

coefficients may be written as

fa (29)
m XY 5y
m
where p_ ., o s 5 are the ucual sample correlation coefficient and
W Y X

standard deviations. An obvious method of obtaining a robust estimate

of o is to replace pxmy.'oy. cxm in (29) by nonparametric estimates
of these quantities. Thus, we replace pxmy by Spearmans p and replace

-~

b,
oyy

*
: med|y; - ¥ |
AR e

y .6745

(30)

where y* = med Yy We could also replace ; by an estimate similar to
i Sy N _ 2
(30) but in most cases oxm = N}T 121 (x;m - xm) is sqff1c1ent. The

process is used iteratively to improve the estimate of 96. The procedure

is implemented by the following steps.

24




Ux = I ] 'Z{ (
S %
RT =1 ™
Ryi = rank Y5
y* = med y.
R
f m?dl.v,- 295
% .6745
d. =R -R
L b
L
6 ] d,
" i=1
§p_ =1 -
m 2
» N(N -1)

ag
' = _l
Gem Sp,

yi g yi L Gel;l x.‘im "=],N

> m’] ’p"]




4. Repeat steps 2-3 until convergence.

5. o - m?d ¥4

As before we must apply the Gram-Schmidt process to the e& in order

to recover the original regression coefficients.

A third method for oﬁtaining a robust starting solution is the
orthogonal Brown-Mood method. This is a variation of the Brown-Mood
method [11] which uses orthogonal independent variables. Let
x%m’ m=1,p-1,i=1,N be a set of orthogonal independent variables
obtained by applying the Gram-Schmidt process. Let x; be the median
2 (k)

of the x%m i=1,N. The Brown-Mood method is iterative so let 8

be some estimate in the iteration sequence and let rgk) be the

residuals

-1
1Y 1 VRN I TR R |
Mt Tl S R (1)

26
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(k)

The Brown-Mood method computes corrections 66% to e by

+
e (0 _p ()
58! =
w -t
m m
where
+ Lo L] b . ) *
i med X IU ‘ {I'Xim > Xy}
ieIU
- (] . ] *
x. = med x.o L= (g < %)
iEIL
+
r.(k) = med r.(k)
i < j
1eIU
r.(k) = med r.(k)
i : i
1sIL

: ~ (k1) ~ £k)
The estimates are updated by eﬁ « eﬁ
procedure is iterated to convergence. Finally, the estimate of 8,
is obtained from

(k)

8 =med r
[o] .i 1

27
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(33)

(34)

(35)

(36)
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The orthogonal Brown-Mood method is implemented by the following steps
(starting with 8( 0) _ 0)

\
*
L 1. I mﬁd Xim
+ [}
2. i??d Xim
U
Xx. = med x!
'ieIL Ly
+
3 y; = medy, LR
i ieIU i » m=1,p-1
y: = medy.
L ‘ieIL L
vi - ¥;
4. sel = ——1
*m = %m
e& « °$ + aeé
5. y{ palt [ e ceﬁ Xim i=1,N 3

6. Repeat steps 3-5 until convergence

Z. o= m$d Y5




6. Robust Regression with Vector Observations

The problem of linear regression with observations of more than one
dependent variables is quite common. In this case we are given N obser-
vations of each dependent variable Yy a=1,m. We denote these observations
by ya(i), i=1,N 5 a=1,m. The vector of parameters to be estimated is still
denoted by 6. The observations are related to the parameter vector by the
linear model

y(i) = A(i)e + e(i) i=1,N (37)
where A(i) is an mxp matrix, y(i) is an m-vector of observations and e(i) is
an m-vector of measurement errors. A least squares estimate of 6 would
minimize

3 T
Z] (y(i) - A(i)e) (y(i) - A(i)e) (38)

A robust alternative to the Teast squares estimate would minimize

m 'y (i) - a_(i)e
N (39)

1 o

where a (i) is the ath row of A(i) and pa(') may be a different function
for each of the dependent variables, and Sy is a robust estimate of
dispersion for the residual ya(i) - aa(i)e. Setting the derivative of

(39) with respect to 6 to zero gives

N m al(i) ,ya(i) - au(i)e

(40)
i=1 a=1 Sa - %
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(40) can be conveniently be rewritten as
N
_Z] ATy g é’l(y(i) - A(i)e)> (41)
i=

where D is the diagonal matrix D=diag (s], Sps=="> sm) and §

is the vector of y funstions

[ vy (xq)
¥o(x,) \

¥(x) = ' (42)

;m(ﬁn)

Either a Gauss-Newton or a weighted least squares solution can be used
to iteratively obtain the M-estimate from (42). If a(k) is an arbitrary
point in the iteration sequence, the weighted least squares method applied

to (42) gives

3 N
plk1) _ I AT(i)D W(i)0 y(4) (43)
d 1=

where D is the diagonal matrix

D diag (S]Q st"" ,sm)

and

N
- 1 AT 0 AG) (a4)
J=

W(i) is a matrix of weights given by

" rgk)(i) " rér)(i) : r;k)(i)
i S S, g Sm
Bipes LR TR T i
51 ) Sm
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where rik)(i) is the residual
ek (i) = y (1) - a (i)e(K) (46)

’s an example of robust linear regression with vector observations
consider the calibration of a laser tracker. The laser tracker measures
the range, azimuth and elevation of M targets with known range, azimuth,
and elevation. Calibration constants for the tracker are computed by
comparing the observations against the known positions of the M targets.
Let st, Esj’ and Asj be the known surveyed range, azimuth, and elevation
of the jth target. Suppose that multiple observations of the targets are

available so that we have Nj observations for the jth target. Denote these

range, azimuth, and elevation observations by Rij’ A.., and Eij’ i=1, Nj,

ij
j=1,M. Let
AR.. =R,. -R_. = rTe + r..
ij ij sj J ij
AM..=A,. - A . = aTe +a..
ij ij s J ij
AE..=E..-E.=eTe+e.
ij ij sJ J ij

where 6 is an unknown parameter vector, rj. aj, and ej are known vectors,

van Reas : A g
and r1J, a1J eij are random error terms. A common model for rJ, i’

and e, is given by

J

rTe =03+ 0, R_; (47)
J 1 2 s)

T = - -

elo =6, + 6, sinA_, - 0, COSA (49)
J 7 4 sj 5 s

3

rrr————

3
:




The M-estimate for this example minimizes

N, T T T

M [ AR, .-r.9 AA; .-a.0 AE, .-e.0

I0T e +p__1.1;_.1_ +p_1Js_.1_ (50)
i=1 i=1 [ r a e

where Sps Sgs Sp are robust measures of the dispersion of the range,

azimuth, and elevation residuals. Differentiating (50) gives the analog

to the normal equations

- TA TA TA
M AR, .-r.0 \r, DA :-a.0 \ a, AE, .-e.0 \e,
g 5 e g R 4 (8 R R B e i T I (51)
I 2l v v
j=1 i) Sp Sp Sa Sa Se Se :

(51) is solved iterative]y'using the weighted least squares algorithm with

(%)
]

3 r;legldr(i.j)l /6745

med|d_(i,3)] /.6745
i,J

w
/]

U
]

2 ?egme(i,j)l /.5745

where
d (i,3) = aRys - rlg
| bt .3
d_(i,j) = bA,, - ale
iy o RDA

TA

de“:j) = AE‘ij - eje

The following illustrates the application of the above to real field
data. The laser tracker is calibrated using range, azimuth, and elevation
measurements from eight reflective, surveyed targets arranged in a circular
pattern around the tracker at a range of about 2500 feet. We use the model
in (47) - (49). Since the elevations of the eight targets are approximately
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equal, it is obviously impossible to estimate 0 in (48) without additional
observations. In order to provide these extra observations, we observe the
same calibration targets but with the tracker "dumped", i.e. with an azimuth
of approximately Asi + 180° and an elevation of approximately Esi - 180°.
These additional observations are called dumped readings and are treated as
additional calibration targets. Also, it will not be possible to estimate
8, in (47) since all ranges are approximately equal. In order to estimate
8,, we observe four additional targets with ranges varying from 20,000 feet
to 60,000 feet. Robust estimation of 6 was done for this example using a
Hampel y function with breakpoints a=2.5, b=5.0, and c=7.5. Approximately
250 observations are available for each target. The results of this robust
calibration are summarized in the following table by tabulating the number
of residuals for each target lying in each fégion of the Hampel y. The
number of residuals in each region is the sum of the number in the positive
and corresponding negative regions of the y function. The first eight
target boards are at 2500 ft. circularly about the tracker. Targets 9-12
are the long range target boards. Targets 13-20 are "dumped" readings of
the first eight targets. From the table it is obvious that most of the
observations from several target boards are outliers, particularly for

the "dumped" readings. This example has about 22% contamination by outliers
which is extreme for this application, but illustrates the power of the

M-estimation process in dealing with many outliers.
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7. Nonlinear Regression

Instead of estimating regression parameters in the linear model
suppose we want an M-estimate of the parameter vector 6 in the nonlinear
mode’

¥ = fi(e) t e i=1,N (52)
where fi(') is a given nonlinear function. Then an M-estimate of 6
is obtained by minimizing

‘y‘i = fi(e)

N
S e oo (53)

Differentiating (53) with respect to 6 gives the nonlinear equations

W y: - f.(8)
] ey | 57— =0 ()
i=1

where Fi(é) is the derivative vector
afi (o)
36

Fi(6) = (55)

bl o il

(54) can be solved by iteration. Either Gauss-Newton or weighted least

squares iteration can be used to solve (54). Suppose we use weighted

T T e

least squares. We rewrite (54) as

ne~—mZ

! | g (yi € fi(a)) :
,’ o N i
. F1(6) (" i(e)) - 0 (6)
e yq - fy(e)
S

Ty
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Let 5(k) be an arbitrary point in the iteration sequence. Linearizing

(56) about 5(k) and discarding higher order terms gives

" ey ; el :
1 w6 FTR) [y - F e 5y} =0 (an)

where %
¥ <?i i fi(e(k));)
(60 - -

S

(58)

Solving (57) for 8(k*1) 1

2 N . ~(1y. (59)
5(k+])=§(k)+ g]wj(g(k))F;(g(k))pj(e(k)) .zlwi(e(k))FE(e(k))yi
= 15

The choice of starting solution for a nonlinear problem presents additional
difficulty if the unweighted least squares solution is not suitable. Methods

for obtaining other starting solutions are dependent on the nature of the

problem.

As an example of the application of M-estimates with a nonlinear model

consider the N-station cinetheodolite trajectory data reduction problem.
In this situation we are given azimuth observations au(ti) and elevation
observations ea(ti). a=1,N1 at each time point ti along a trajectory.

From these N1 cinetheodolite; (tracking cameras) we must estimate the

cartesian position x(ti), y(ti). z(ti) at each time point. The observations
are aa(t1)=Aa(§})+ error and ea(t1)=Ea(§})+ error, where i} is the 3-vector

[x(t;) y(t;) 2(t;)]. The measurement functions A (X;) and E (X;) are given

by
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—_ -1 x(t.l) =X
A,(x;) = tan m?___y&
1 z(ti) = Zu
[(x(t) - x)2+(y(e,) - y,)7 V2

E,(x;) = tan”

where (xa, Yoo za) is the cartesian position of the ath camera. In this
case we have a nonlinear regression problem with vector observations. In

this application we minimize

% (t:)-A (X;) el
GZ; p(‘a"—‘T:iL)coszea(ti)+pé_(___1)s___:(x1>

As a numerical example of this application consider the following situation
which is rather extreme but sometimes occurs. A missile is fired at a drone
and cinetheodolites are observing both the missile and the drone. It is
required to estimate trajectories for both the missile and drone. Due to a#
inadvertent clerical error, one of the cameras which was actually observing
the missile was erroneously listed as observing the drone. Obviously, when
doing a least squares solution to obtain the drone trajectory, the azimuths
and elevations from one camera will be gross outliers and will destroy the
least squares solution for_the drone position coordinates. A single point

of this situation is given by the data below.

Camera Qbs. Azimuth : Obs. Elevation
1 .568106 .338886
2 -.626010 . 122620
3 -2.665036 .359168
4 1.926249 32177
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Camera 2 is the one which is actually tracking the missile rather than the

drone. Obviously, as in most situations which are the nunlinear, there is

no way of distinguishing the outliers by inspecting the observations. As

always in robust estimation a preliminary solution is required to start the

iteration. Let (xa, Yoo za) be a position solution obtained from the ath

pair of cameras. In this example we have six possible pairs of cameras so that

a=1,6. We then start the iteration with (x°, y°, z°) where x°= med Xy a=1,6,

y°= med Yy» @=1,6, 2°= med Z,, a=1,6. For the example, the median guess

solution is x°= -45147.9 ft., y°= 87423.8 ft., z°= 11117.3 ft. After five

iterations the sequence has converged to the solution x= 32964.8 ft., j

y= 87425.2 ft., z= 11114.9 ft. The residuals from the final solution are

RESIDUALS
CAMERA ’ AZIMUTH ELEVATION
1 .000008 -.000064
2 - 242553 .011513
3 .000022 .000081
4 ; .000057 -.000019

Thus, the robust solution using the Hampel y with breakpoints of 3, 6, 9,
correctly identified the outliers. Let us carry this example farther.
Suppose we have no observations from camera 1, i.e., we have data from only
three cameras one of which is bad. In this case our starting solution turns
out to be x°= 45147.9, y°= 87424.1, 2°= 11120.2. After four iterations the
solution has converged to x= -32966, y= 87424.6, z= 11115.3. Thus, we are
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again able to correctly identify the bad camera. Now suppose we have

data from cameras 1, 2, 3. In this, the initial guess solution is

x°= 45147.9, y°= 67033.9,‘z°= 11118.9. After ten iterations the solution
is x= -35023.9, y= 84462.1, z= 11004.1. The solution eventually converges
to the correct value, but slowly. A third possibility to have data from
only three cameras is observations from cameras 1, 2, 4. In this case

the guess solution is x°= -46454.3, y°= 87548.3, z°= 7262.7. After

three iterations the solution has converged to x= -35392.6, y= 86464.3,

z= 1044.8. Thus, in this case the iteration has converged to the wrong
solution. In the last two cases where the solution converged very slowly
and converged to the wrong solution, the starting solution was too far
from the correct solution. If a sufficiently good start had been provided,
the solution would have cdnverged correctly in a few iterations. If the
number of cameras were great enough in comparison to the number of bad
cameras, using the median of the solutions obtained from the camera pairs
provides an acceptable starting solution. Unfortunately, the number of
cameras is often no more than three or four. In the case of three cameras
the use of a starting solution predicted from preceding points might be a
desirable procedure.

8. EXAMPLE - The Daniel & Wood Data

The Daniel and Wood data has been used by several authors [4], [12],
[13] to illustrate robust regression methods. The data is taken from
Daniel and Wood [4], Chapter 5, where it is examined in considerable detail.
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The Daniel and Wood data is a sequence of 21 observations in 3 independent

variables given below

Obs #

Ww 00 N O O AW N -

~N N — — — — - — o— — — —
- O o @ ~N o o = w n mat o

¥

42
37
37
28
18
18
19
20
15
14
14
13
1
12

-—
g © O OO N ©®©

-

40

X2
27
27
25
24
22
23
24
24
23
18
18
17
18
19
18
18
19
19
20
20
20

X3
89
88

90
87

87

87
93
93
87
80
89
88
82
93
89

86

72
79
80
82
91
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The linear model assumed for this example is

Yi = 09 F 09Xy + 0%y + BaXg, + o€y i=1,21
The Daniel and Wood data is treated here first by ordinary least squares
and then by M-estimates using Huber, Hampel, and Andrews y-functions com-
bined with different possible starting solutions for these M-estimates.
We denote the M-estimation process with a Huber y function having a
breakpoint at x=a by Hu(a), and with a Hampel y function having breakpoints
of a, b, ¢ by Ha(a, b, c), and with an Andrews y function with parameter a
by An(a). When starting these M-estimation processes with the ordinary

least squares solution, we obtain the following sets of regression parameter

estimates.
®0 & 55 83
0LS -39.92 .7156 1.295 -.1521
Hu(1.4) -41.06 .8249 . 9466 -.1291
Ha(1.4,2.8,4.2) -42.88 .9233 .6736 -.1079
An(1.4) -42.41 . 9257 .6617 -.1120

The residuals from these solutions are

2§i oLs H,(1.4) H,(1.4,2.8,4.2) A,(1.4)
1 3.0 3.01 2.43 2.46
2 <19 -2.12 -2.67 -2.65
3 4.56 4.16 3.50 3.52
4 5.70 6.44 6.86 6.88
5 =Ln -1.67 -1.80 -1.79
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_#_ 0L H,(1.4) H,(1.4,2.8,4.2) A,(1.4)
6 -3.01 -2.61 ~2.47 -2.45
7 -2.39 -1.79 -1.50 -1.44
8 -1.39 - .79 - .50 - .44
9 -3.14 -2.31 -1.78 -1.75
10 1.27 .51 - .16 - .23
1N 2.64 1.68 .81 : .78
12 2.78 1.49 .37 .33
13 -1.42 -2.23 -2.95 -3.00
14 - .05 - .75 -1.43 -1.43
15 2.36 2.28 2.19 2.19
16 .90 .89 .87 .85
17 -1.59 - .87 - .3 - .38
18 - .46 .04 .44 .40
19 - .60 .22 .88 } .85
20 1.4 1.53 1.55 | 1.52
21 -7.24 -8.86 -10.40 . =10.43

In the above sets of residuals there are no grossly outlying observations
so that we cannot readily judge the four regression methods. The robust
methods have somewhat smaller residuals than the OLS method and possibly
the regression with the Hampel or Andrews y-function gives slightly
smaller residuals than regression with the Huber w-fuﬁction. The non-
parametric measure of dispersion for the residuals in each of the

regressions is
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oLS Hu(1.4) Ha(1.4,2.8,4.2) An(1.4)

s 2.8 2.49 2.30 2.25

If the residuals were tested for outliers against 3s, the OLS regression
does not indicate any outliers, but the Huber, Hampel, and Andrews re-
gressions indicate that the 21st observation is an outlier. In addition,
the Andrews regression shows the 4th observation to be an outlier. Both
the Hampel and Andrews regressions show the 21st observation as a gross
outlier by giving it a zero weight.

Daniel and Wood, after some exhaustive analysis, declare that obser-
vations 1, 3, 4, and 21 are outliers. Also, in reading about the
experiment from which the data were gathered, it is discovered that
observations 1, 3, 4, and 21 were taken during transient conditions of the
plant whereas the other observations were taken during steady state con-
ditions. Thus, on the basis of Daniel and Woods work and the observations
by the original experimenters observations 1, 3, 4, and 21 are probably
outliers. The regression solution without these four points is 50 = -37.65,
5] = ,7977, 52 = 5773, 83 = -.0671. The failure of the robust regressions
to detect all of the outliers can be traced, at least in the case of the
Hampel and Andrews regressions, to the inadequate least squares starting
solution. We will demonstrate in the following that with a sufficiently
good starting solution the Hampel and Andrews regressions will converge
to solutions for which the outiiers are obvious. Suppose we try the
orthogonal Theil method, thé Spearmans p method and the orthogonal

Brown-Mood methods previously described to start the M-estimate regressions.
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From these starting methods we obtain the following regression coeffi-

cients which will be used to start the M-estimates.

% £ ke %
Spearman p -43.25 .7578 .8100 -.0257
Theil -40.93 .7761 .6928 -.0384
Brown-Mood -39.21 .7981 . 3846 -.0000
OLS (w/o 1,3,4,21) -37.65 7977 .5773 -.0671

Both the Ha(1.4,2.8,4.2) and the An(1.4) regressions converge to the same
solution as before when using the Spearman p starting solution. Also, the
An(l.S) converges to the.same solution as before when using the Theil
starting solutions. The An(1.4) converges to a solution for which the
outliers are obvious when using the OLS (w/o 1,3,4,21) or Brown-Mood starting
solutions. Also, the Ha(1.4,2.8,4.2) regression converges to a solution

for which the outliers are obvious when using either the Brown-Mood, the
Theil or the OLS (w/o 1,3,4,21) starts. The regression coefficients

obtained are

) % 82 83
An(1.4) from OLS (w/o -37.85 .8239 .5494 «.0751
1,3,4,21) and Brown-
Mood
Ha(1.4,2.8,4.2) from -37.39 .8113 .5548 -.0734

Brown-Mood, OLS (w/o
1,3,4,21) and Theil

The residuals from these solutions are
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An(1.4) from OLS (w/o Ha(l.4.2.8.4.2) from Brown-Mood
0BS # 1,3,4,21) and Brown-Mood and OLS (w/o 1,3,4,21)
1 5.78 6.04
2 71 .97
3 6.08 6.28
4 8.11 8.16
5 - .79 - .73
6 -1.34 -1.28
7 - .44 - .40
8 .56 .60
9 -1.04 -1.04
10 .18 .22
1 .85 .88
12 .33 .37
13 -2.67 -2.63
14 -1.40 -1.38
15 1.44 1.38
16 .22 .15
17 - .38 - .43
18 .14 .09
19 .67 .60
20 1.88 1.88
21 -8.98 -8.81

The four outliers have now pecome fairly obvious among the residuals.
Both of the regressions give zero weight to these observations.
The dispersion measure for the residuals in Andrews regression is 1.26

and in the Hampel regression is 1.44.
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The convergence of ihe An(l.4) and Ha(1.4,2.8,3.2) regressions on the
Daniel and Wood data to a solution close to the OLS (w/o 1,3,4,21) regres-
sion in which the outliers are obvious is very sensitive to the starting
solution. The sensitivity of the robust regressions to the starting
solution for the Daniel and Wood data can be greatly lessened by changing
the breakpoints of the y-functions so that we are doing An(l) and Ha(1.2,3)
regressions. Both the An(l) and Ha(1,2,3) regressions converge to the
same solutions starting from OLS, Spearman p, Theil, and Brown-Mood starting

solutions. The regression coefficients obtained are

) ® ) 83
A1) -37.1 .8190 .5175 -.0727
Hy(1, 2, 3) - -37.01 .8183 .5202 -.0742

The residuals from these solutions are

0BS # An(]) Ha(]' 2, 3)
] 6.09 6.1
2 1.02 1.04
3 6.30 6.32
4 8.24 8.25
5 - J2 = 9
6 -1.24 -1.23
7 - .32 - .30
8 .68 .70
9 - .96 - .9
10 g2 i
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