
r N
AD AO5b 792 NATIONAL RANGE OPERATIONS DIRECTORATE WHITE SANDS MIS——ETC FIG 12/1

RO8UST REGRESSION: COPWUTATIONAL METHODS FOR M—ESTIMATES.(U)
JUN 78 W S AGEE. R H TURNER

UNCLASSIFIED ACD—TR—66 NL

END
OAtt

FILIE 0

9—78

~1



.~ .
~ ~~~~~~~~~~~~ 

, .
~
— ..— . —

~

LEVEL. 71
TECHNICAL REPORT

NO. 66

JUNE 1978

ROBUST REGRESSION:
COMPUTATIONAL METHODS FOR M-ESTIMATES

C)

Li-I
.

~~~~~~ON STA!~~~~~~~~~~
I~~~I PfOVSd I c~ p~~1iC re1eaI~

Ctsuthn~on Un3~udtSd

MATHEMATICAL SERVICES BRANCH
ANALYSIS & COMPUTATION DIVISION
US ARMY WHITE SANDS MISSILE RANGE

WHITE SANDS MISSILE RANGE, NEW MEXICO

78 07 19 U08



TECHNICAL REPORT

NO. 66

Prepared by
WILLIAM S. AGEE
Mathematician, Mat vcs Br

~~ tk. &1~~Mathematician, Math Svcs Br

RevIewed by ~~~~~~~~~‘- ~~~~~~~~~~~<<
JON E. GIBSON
Chief, Math Svcs Br

IsTIuBuTIoN srArEM~~
T_~~~

\ 

Approved by 
“ f~~A~~l~~~~pt Dlv

78 07 19 008



TT~~iT~~~ ~~TTTIIE
UNCLASSIFIFD

Security Classification
DOCUMENT CONTROL DATA . R & D

(5.c.~~ ty cM..tftcaIMn .1 Iit ~.. b.~~
. of abatr.c~ aa,d h,d.zlit~ annoteIM~r ~vu.s be .nS.v.d whø th. ev.,.fl r.p..t a. cla..afS.dj

). ONIGINATINO A CTIV ITY  (C.opce le alaN..,) I~~. NEPOCI’ SECUNITY CLASSIPICAT ION

Analysis & Computation Division UNCLASSIFIED
National Range Operations Directorate Sb. GNOUP

White Sands Missile Range, New Mexico 88002 NA
.~..._ 4....- ~~~~~~~~~~ 

—... “ -‘ - .  
.

~~OBUST ~EGRESSION: COMPUTATIONAL METHODS FOR M-ESTIMATES~ ~~

4. OESCmIPT IVE NOTES( p. .t ? p v 1 4MChasft. ~~~Ia )

5. AUTHON(S) (flr. *n~~~.. .id~. iaritMI. ..1n. ~~~ - - --.. - ._ :  )

}
~~~ 1~~~S/A9ee .~~ Robert H /Turner~~~L’ I

~~~~ *)t  $(P .
~
- 7& TOTA L NO. O~~ PAGES 75. NO. OP NEPS

UN~~~78)~~~~~
,.~.... ACT GWANT NO. I ~~~~~~~~~~~~~

- ---
~~•~~~ • J1~~~$.-. . . JUNalS -4

~~L~; T} ~~ 
.:.,~~

5. PNOJEC T NO. ~~~~~~. ijitt i I Re~ 44 -Ne~-4tI — - --— — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

C. Sb. OTUEN NEPONT NO(S) (Ale eN..e su~~b.,. N..t w a. ...t 11d
N.J. i pof t)

4.

10. DISTal SU TION STATEMENT DISTRIBUTION STATEMENT A

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED. ~~ ~~~~~~~~~~~ 1
I. SUPPLEMENTANY NOTES *2. $POHBONSNG MILITANY ACTIV ITY

I ~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

*3.\)~.ST NA CT 
~~-J

The c~mputation of robust M-estirnates of regression is considered in detail usingthe *p functions of Huber, Andrews, and Hampel . The computation of M-estimates of
regression is considered for linear models, linear models with vector observations,
and nonl inear models. Examples are given using actual data for each of these dif-
ferent classes of models. Careful attention is given to the important problem of
convergence of M-estimates with redescending i~ functions . A lengthy treabnent of this
problem is given for the Daniel and Wood data/by considering several starting methods
for the iterative solution and different breOkpoints for the:~ functions.

S 

. 

~~ 
- —  

— —.- 

- 
-

~~~~~~ ~~~~~ •SPLACSS 00 P00W *475 . I JAN 54. W’.~CN IS
L1PLJ I NOV IS I~~~Ill ~ 

O54OLS?E PON ANWY USS. 
UNCLASSIFIED . -

~~

Z/.~ ‘

,
~~~~ /~j~ 

• S.curl ty Classification ‘ “

.

~

. -~~~~~~~~



_w.-T_ _ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- .
~~~

---.,---
~~ 

-
~~

UNCLASSIFIED
Security ClassIfIcatIon 

__________ __________

14 .  LINK A LINK C LINK C
K EY 0050$

SOLE Nt SOLE W Y SOLE NT

Robust
Regression
M-estimates
Outl iers
Data Reduction

UNCLASSIFIED
Seosifty c*asslftcatinn 



_________ ______________  
- ,~~~~~~~

N

ABSTRACT

The computation of robust M—estlmates of regression Is considered
in detail using the *~, functions of Huber, Andrews, and Hampel . The
computation of M-estimates of regression is considered for linear models,
linear models wi th vector observations, and nonl inear models. Exampl es
are given using actual data for each of these different classes of models.
Careful attention is given to the important problem of convergence of
M-estimates with redescending ~ functions. A lengthy trea~nent of this
problem is given for the Daniel and Wood data by considering several
starting methods for the iterative solution and different breakpoints
for the ~

, functions. 
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1. INTRODUCTION

The estimation of coefficients in a linear regression model by

least squares has long been pl agued by the possibl e presence of

outliers , i.e., observations which for some reason do not belong with

the major portion of the observations or with the regression model .

To quote Huber [1], “even a single grossly outlying observation may

spoil the least squares estimate and moreover outliers are much harder

to spot in the regression case than in the simpl e l ocation case.”

Several robust alternatives to the use of least squares in estimating

the coefficients in a linear regression model have been developed which

are outlier resistant. Robust statistical methods may be l oosely

described as those which will perform wel l under a variety of underlying

distributions or in the presence of observations from contaminating

distributions.

Robust estimation methods have been classified by Huber [1] and [2].

Huber ’s classifications are termed L—estimates , M—estlmates, and R—estlmates.

The L-estimates are formed as linear combinations of the order statistics.

The ~ - triniiied mean is an example of an L-estimate for a location

parameter. The R-estimates are derived on the basis of rank tests. The

estimate of location obtained by taking the median of all pairwise

averages of the observations is an R-estimate. Probably, the most

popular robust regression methods are the M-estimates. Their popularity

stems from their generality, their close computational relationship to

least squares , and the ease of numerical computation .

I
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2. M-Estimates for Regression

Given the linear model

. ‘~ 
x1~e~ + e1 i=l ,n (1)

where the regression parameters are unknown and to be estimated

from a knowledge of the values y1 and x~~. The M-estimates of

e. minimi ze

i=l ~ ~~ ~=l 
13 (2)

where p( ) is some suitable function . DifferentiatIng (2)

leads to

n T  
.

E X .~ v(y. - x .o )  = 0 (3)
1=1 1 1

2



where 4 = col (X
j1~ 

x12,---, x1,,) and v(.) is the derivative of
p(.). (3) is the analog of the normal equations In least squares

regression. The estimate which results from solving (3) is called an

M—estimate. Rather than specifying the function p, N-estimates are

usually described by specifying the function v. If f(y;e) is the

probability density function underlying the observations and if we

choose 11~ = ~~~~~~~~ /f(y;e), then the N-estimate obtained is the

maximum likel ihood estimate. Since the function p is usually not

homogeneous, as it would be in least squares, the M—estimates obtained

would usually not be scale invariant. To force scale invariance we

instead minimize

~ fy. - x e \
~~~l I
) 

(4)

where s is some measure of dispersion of the residuals,

- x. .0.. The quantity s also needs to be robust.
13 3

Several ‘I’ functions have been proposed In the literature. The

original ‘v function proposed by Huber limits the sensitivity of

the estimator to gross errors in the data. Thisv function is given by

Ix  Ix l~.a
[ a sgn (x) lx i> a

3
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A ‘p function of a different type which is an example of the redescending
type of ‘p function and which provides rejection of gross errors as well
as limited error sensitivity Is the function proposed by Hampel [3].

x ix I~
a sgn (x) aclx I cb

y(x) =

: ~ sgn (xl) b<Ix~~.c

x l~c

4
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A v function proposed by Andrews [4] 
is given by F .

Isin (~
) Ixkc~C -

L 0 ix t >c

~ 5
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‘p functions have also been proposed by Tukey [53 and Ramsay [6] .

Tukey’s ‘P function is given by

x (1 
x2)2 

ix l <a

‘v (x)  =

0 x~~a

Another ‘V function which was proposed by Ramsay is

= xe~~~~

6 
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The Ramsay ‘4’ is of the redescending var iety but the descent is very

s low in comparison with other redescending ‘~‘ functions. Two ~
functions whi ch are spec ial cases of the Hampel ‘V which we have
found to be useful are for a=b=c and b=c. We will call these H1
and H2, respectively. They are given by

x lxl<a
‘VH (X) = 

f O

x ix I~~ ‘P

~
P
H

(x) = 
~

‘PH1 

a

- 

-b -a A.1 x

‘PH 

a b

--
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Estimates with bounded ‘v function tend to be robust. If the ~‘ function also

returns to zero the estimator will tend to reject the more gross outl iers and

will be robust for a larger proportion of outliers. However, the p functions

corresponding to the ‘v functions of the redescending class are not convex.

Therefore, the numerical solution for M-estimates using a redescending ‘~‘

function may result in an estimate which does not correspond to a globa l

minimum of (4). This convergence to the wrong estimate may result in a

degraded robust estimate. We shall exhibi t this type of behavior for a

Hampel ‘p in Section 8, which deals wi th the Daniel and Wood data

.8
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As an example of the ability of M-estimates to detect outliers

consider the data set below which Is a time sequence of real

angular measurement data and conta ins some gross outliers which
are obvious by inspection. A quadratic curve is fit to the data for

the purpose of determining the outliers.

Residual s from Res iduals from
Observations Least Squares Fit Robust Fit

-1.70987 -.157774 .000012

-1.70942 - .000204 .000004

-1 . 70893 .105480 .000003

-1 .70845 .159227 -.000015

-1.70793 .161 087 -.000010

-1.70741 .111021 - .000021

-1.70682 .009099 .000022

-1.70626 - .144780 .000019

-1.70571 — .350595 -.000010

-1.70510 — .608277 .000005

-1.70449 -.917885 .000004

1.43777 1.862231 3.141637

1.44602 . 1.456410 3.149243

-1.70257 —2.158177 -.000007

1.44667 .473139 
3.1465589



- —-  —

The residuals from the ordinary least squares f it do not yield

any information about the outliers in the data whereas the outliers

among the residuals from the robust M—estimate are obvious. The

robust M-estimate for this example used a Hampel v with breakpoints

3, 6, 9.

Another example which has residuals in all regions of the Hampel

‘V- Function is the following data set.

10 



LEAST NORMALIZED
SQUARE S ROBUST ROBUST
RESIDUALS RESIDUALS OBSERVATION RESIDUALS

1 -.011022 -.000278 .20642275 1.005559
2 - .009071 - .000006 .20973521 .020803
3 -.007471 — .000033 .21 296912 .1201 71
4 -.005711 .000151 .21663652 .546808
5 — .004461 - .000123 .22006619 .445501
6 — .002730 .000136 .22425138 .492246
7 - .001590 — .000144 .22811853 .519552
8 - .000213 - .000135 .23249603 .487267
9 .001201 — .000038 .23718297 .136926
10 .002489 - .000014 .24201791 .051970
11 .003798 .000082 .24714760 .297949
12 .005624 .000748 .25306741 2.703007
13 .005421 - .000564 .25723122 2.037977
14 .008660 .001617 .26510980 5.845255
15 .006010 - .002037 .26737381 7.361710
16 .009663 .000662 .27621 340 2.394020
17 .011016 .001113 .28302583 4.023731
18 .010359 — .000392 .28810282 1.418292
19 .011568 .000019 .29531815 .067036
20 .012005 — .000291 .30203451 1.051 051
21 .012861 -.000129 .30944403 .464413
22 .013557 — .000075 .31696650 .269818
23 .014001 -.000222 .32450959 .800901
24 .014501 -.000260 .33238295 .938668
25 .015039 — .000209 .34056693 .754131
26 .01 5433 - .000249 .348881 32 .898506
27 .01591 3 -.000152 .35755414 .547835
28 .016283 -.000113 .36639033 .406971
29 .016494 - .000181 .37534057 .654202
30 -.058265 -.075167 .30959446 271.639732
31 -.172487 -.189565 .20465789 685.052254
32 .018472 .001270 .40517605 4.589248
33 - .064416 - .081690 .3321 2063 295.21 1357
34 .089274 .071980 .49591643 260.122231
35 — .251831 -.269092 ~l6519l39 . 972.446930
36 .007852 -.009326 .43552655 33.701152
37 .159606 . .142564 .59820610 515.197899
38 .059168 .042313 .50896735 152.912771
39 .016704 .000088 .47797510 .318960
40 .016296 - .000028 .48931307 .101770

11
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The solution for the M-estimate used a least square starting

solution and a Hampel ‘V function wi th breakpoints at 2.5, 5, and

7.5. In the list of least squares residuals given above some of

the outliers are obvious while others are not. The column of nor-

malized residuals is merely the robust residual divided by the

robust dispersion measure s. If we declare that residuals greater

than 2.5 s are outliers then we would flag observations 12, 14, 15,

17, 30, 31 , 32, 33, 34, 35, 36, 37, and 38 as outli ers. Some of
these outliers are much more gross than others. The N-estimate of

the parameter vector is o~ = .20388, e1 = .05419, 
~2 

= .04427.

This example is simulated data so that the true parameter vector Is

known to be 0~ 
= .20388, 

~ i 
= .0537, 0 2 = .0445. The least squares

(o) Co) (a)
starting solution was o~ 

= .21636, e~ = .01901, 02 .05466.

3. Numerical Compu~.~ ion of M-Estimates

One of the most attractive features of least squares estimation is

the ease of numerical solution. One might be incl ined to think that

the nl.mlerical solution for M-estimates would In many cases be

prohibitive. This is not the case. At worst (4) can be minimized by

one of the many algori thms for minimization, e.g., the Fletcher - Powell

[7]. However, either a Gauss—Newton or a weighted least squares solution

can usually be applied to obtain the M-estimate.

12
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The Gauss-Newton method can be applied to the computation ol’

M-estimates by linearization of (4) or (5) below. Setting the deri-

vative of (4) wi th respect to 9 equal to zero

N, . y. - X .o
zX ’p( 1 1

)
... 0 (5)

1=1

Since (5) is in general nonlinear in 0 , we must usual ly employ some form
of iteration for solution. Suppose we have obtained an estimate ~
in the iteration sequence. We will discuss methods for obtaining a

starting solution (0) in a later section. LinearizIng (5) about

~ xT 
~~~~~~~ 

- 
~~
‘ (\

.~~)x~ (o
~~

1) 
- 0 (6)

wtlere r1
0’
~ = y~ 

- 
(k)

solving for ;(k+l)

N (k)
~(k+l) = + M ’ ~~ ‘p(

i_ ) ~T (7)
1=1 ~

where

N (k) Tr~ ~~~z ‘p ’ (—
~ 

) ...L.L (8)
1=1 S

13
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(7) and (8) are Iterated until - e~~~i i is less than some

prescribed value or for a fixed number of Iterations.

A somewhat simpler method for solution is obtained by approxi-
fr1 (k)\mation of the Gauss-Newton method. Replacing ‘V 
~~~~~~~ 
,) in the above

equations by its sample mean

N r.(k) .
~~

- 
E~~~

(-1 )X~
~(k+ l) 

= ~(k) + M
1

s i N  r.(k)
~i~~~~~~~’V(_L

1=1 ~

where

N TN = £ X .~X. (10)
1

The advantage of this simplified method Is that M and its inverse need

to be calculated only once during the iteration procedure.

A simple method for the computation of N—estimates which has achieved

considerable populari ty is the iterative application of weighted least

squares. We rewrite (5) as

y4 — X4e )
E xT (~’i 

— X18)... o (11)
1=1 (

Yi Xi~ 
I

S

14
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Now let

y. - X.o
‘p(

1 1 )
W~(o) = 

.‘ (12)y1 - X 1o(—
S ~

Then (11 ) is

E W ~(0)4(~1 - X10 ) = 0 (13)

(13) can be solved iteratively as fol lows. Let 0(k) be an arbitrary point
in the iteration sequence. Then we approximate (13) by

E Wj (e
~~~)XT(y j - x1e~~~ ) = (14)

Solving (14) for ~(k+l )

~(k+l ) = w (~(k) )xTx ) ’ E W (e (k) )x TY (15)
.i=l j 

~~ 1=1

15 . .~~~~~~~~~~~~~~~~



- ..- - - -,-- ——~~~~~~
-—, .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-~~~~~~ - - - - -.
~~~~~~---- ~~~~~~~

Thus, we can use an ordinary weighted least squares algori thm

iteratively to obtain the M—estimate.

Throughout the discussion of M-estimates we have used the

di spers ion measure s of the res iduals w ithout any consideration
for its computation. Robust dispersion measures are often taken to

be a multipl e of the i nterquartile range or of some other range

statistic. A dispersion measure which has been popular with those

using M—estima tes is the median deviation or the MAD (Median of the 1 1

Absolute Deviations) estimate as it is sometimes called . The MAD

estimate for regression is defined by

s = med~r1 i /.6745 (16)

where r1=y
~ 

— X 10. Hampel [3] has shown that the MAD estimate is the

most robust estimate of dispersion. In the iterative schemes described

above a new value of s is computed at each stage of the iteration using

the most recent set of residuals. Thus in obtaining an estimate
ik+l)0 we use .

s = medir.~~~I / .6745 (17)
1 1 I

where r1~~ = y - 
~~~~~~~~~~~~~~~

16 
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Testing of the Gauss-Newton and the weighted least squares methods

for the computation M-estimates on the Daniel and Wood data, which is

presented in a later section showed that the weighted least squares

method to be far better than Gauss-Newton. The Gauss-Newton had very

poor convergence properties for this data , especially when using the

Andrews ‘i’ function .

4. Covariance of Estimates

An approximate covariance for an M—estimate can be obtained from

the Gauss-Newton method . Assumi ng the observation errors e
~ 

and e~ in

(1) to be statistically independent we use (7) and (8) to obtain the

approximate covari ance for 0.

F 2 y . - x o i  -1 N -‘
cov (9) ~~ E ~ 

1 l
)j M ( zxTx . ) M (18)

We further approximate cov(e) by replacing the expectation in (18)

by its sampl e mean. Thus, we obtain

cov(o)~~~ 
—1-— E ~

2
(~~ 

X
1
0 

E x~x .)M 1 (19)n p 1.1 S

17 
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Corresponding to the approximation used to obtain (9) and (10)
we can further approx imate (19) by replac ing v I(4) In H by Its sample
mean. Using this In (19) gIves an al ternative approximation to the
covariance

cov(): ~~ 

~~~~~~~ 

:~~~~~ 
::~ 

2 
s2 (
~ 

X~X~~~~ (20)

In [1] Huber considers the asymptotic bias of the expressions (19) and
(20). Huber also gives another alternative approximation to the covariance
for an N-estimate. ‘1

18
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5. Starting Solutions

Any of the numerical methods used to obtain an H—estimate requi res

a starting or preliminary estimate of the regression parameters 0.

The starting solution is of primary importance and for some cases will

determine whether or not a usable M—estimate Is obtained. Robust

estimation using ‘~‘ functions of the redescending type Is especially

sensitive to the starting solution because the solution iteration may

converge to a loca l minimum which is relatively remote from the globa l

minimum, if a poor starting solution is used . At best, poor starting

solutions require more iterations for convergence. The most obvious

solution with which to start the M-estimation iteration is the un-

weighted least squares solution. However, since the unweighted

least squares solution is highly infl uenced by the presence of outliers ,
(a)

it may not provide a suitable starting solution , 0 . Nevertheless ,

least squares is often useful for starting . In some cases where the y1
are small and the components of 0 are also small the starting solution
to)

e = 0 may be useful . This is often the case in instrument calibration,

see [8].

A good starting solution should itself be a robust estimate of the

regression coefficients. Although the use of a robust starting solution

may greatly increase the computing time, it will often be necessary if

the two simple procedures mentioned above fall. Several robust regression

methods which are suitable starting procedures for M-estimates are

19



described in [9]. One of the simplest of these methods is an extension

of the method proposed by Theil [10]. In applyi ng this method we include

a constant term 0 separately from the other terms in the linear model .

We then apply a Gram-Schmidt orthogonal i zation process to the remaining

i ndependent variabl es. The computation of the values of the

orthogonal variable s is given by

X’ = X.1 (21)
ii 1

= X i • - 
~ 

r
~k

Xlk (22)

rJk 
= 

~f1 XijX~k,,/
’

1~1 
X
~
’k
2 

(23)

In terms of the orthogonal i ndependent variabl es the linea r model is

given by

= 

~0 
+ 
j
~ 

X~~O~ ~ e1 , i 1 ,N (24)

20
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Estimates of the regression coefficients o,j are obtained using our

modified method of Theil by the following process.

y. - y.
1. dm (l~

J) = 
— ~~, j>i i=l ,N—l

jm im

2. Se~ = med d( i , j  )
1 ,3

m=l ,p—1
3.

~ y
~ 
÷y~ - d0~~ X

~m i=l ,N

5. Repeat steps 1—4 until convergence.

6. 80 = med y1

In the above med z. means to take the median of the variabl es z~ over thei i
index set i. In order to recover the original regression coefficients,

it is necessary to apply the Gram—Schmidt process to the 0 ’ .j

21
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0p-1 = 

~
‘p~l (25 )

1—1
0p-1—i ~~~~ 

— 

j=~O 
~~~~~~~~~~~~~ i=l,p—2 (26)

For even moderate va lues of N the number of slopes dm (i~j) which must
be computed is quite large. Rather than use all of these slopes we

can instead work with a reduced number of slopes. One possible reduced

set of slopes can be obtained letting the X’jm be arranged in increasing

order for each m and let N* = [~i]. Thus , if N is odd XN*m is the median
of the X

~m~ 
i=l ,N. We then use the slopes

- Y.~ i=l ,N* (N even)dm(1) = 

x * -x ’ i=1 ,N* - 1 (N odd)N +i,m Im

These slopes are then used in step 2 of the i teration process with

‘50m = med dm(i)~
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Another robust regression method for obtaining a starting solution

for H-estimates is an application of Speannans p as described in [9).
We again form a set of orthogonal Independent variabl es x~m 

1=1 ,N by

applying the Gram-Schmidt process in (21) - (23). Let R
~ 

be the rank
im

of x m among the X.m 
j=l ,N and let Ry1 

be the rank of y1 among the

y
3
, j l ,N. Then Spearmans p, a nonparametric estimate of the population

correlation coefficient is defined as

N

~~~~ 
- R  )(R -~~

)
i=1 im ~ y1 y

~
XmY

~~~~~ (R _~~~~)2

=1 Xim ~

where
~~x~~~~y 

14+1

is just the ordinary defining equation for the correlation coefficient with

the variates replaced by ranks. A more useful definition of 
~~~~ 

for

computing Is

N
6! d1

2

= 1 -  
(28)

~
xmy 14(142 - 1)
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where d1 is the rank difference

d. = R  - R1 y1 xlm

In an orthogonal regression model the estimates of the regression

coefficients may be written as

= 

~~~ 
~~m 

(29)

where are the u~~al sample correlation coefficient and
nT3

~ ~“ m
standard deviations. An obvious method of obtaining a robust estimate

of o~ is to replace p . ‘ 
in (29) by nonparametri’c est imates

of these quantities . Thus, we replace by Speannans p and replace

by

med~y1 - y*~
_ _ _ _ _ _  (30)

.6745

where y* = med y.. We could also replace ; by an estimate similar to
j i 

~~~2 N 2
(30) but In most cases 

~x 
= E (x

~m 
- 

~~ 
Is sufficient. The

m 1=1
process is used iteratively to improve the estimate of e,~. The procedure

is impl emented by the following steps.
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1. R = rank xtX im tm

Oxm 

~~ l~l~~
1m -

Ry~ 
= rank y~

y*~~~~d y .
1

med Jy~ 
- y*I

Ic5y = .6745

3~ 

m

~~

R

~~
_

_ :~;, d12 
m=l ,p-l

N(N - 1)

= 

~m 
Xm

0ri 4- +

yl .4- y1 - 6O~ x~m 
i=l ,N
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4. Repeat steps 2-3 until convergence.

5. e = m e d y1
1

As before we must apply the Gram-Schmidt process to the In order

to recover the original regression coefficients.

A third method for obtaining a robust starting solution is the

orthogonal Brown-Mood method . This is a variation of the Brown-Mood

method [11] which uses orthogonal independent variables. Let

~~~ m=l
,p-l ,i l ~N be a set 

of orthogonal Independent variables

obtained by applying the Gram-Schmidt process. Let x~ be the median

of the i=l ,N. The Brown-Mood method is i terative so let 0
(k)

be some estimate in the iteration sequence and let ~~~ be the

residual s

= y. — x
~m 

~,(k) (31)
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(k)
The Brown-Mood method computes corrections oo~ to 0m by

r (k)~ -
= ~ 

x~~- x 
(32)

where

= 
•~~

d xj’m 
= {i(X

~m 
> x }  (33)

1CI Ij

x = med X;m ‘L 
= { i IX ;m < x ~ } (34)

id
1

= med r1
0
~ 

(~5)
Id

= med ~~~ 
(36)

(k+l) (k)
The estimates are updated by e~ 

..- + and the above

procedure is iterated to convergence. Finally, the estimate of o
~

is obtained from

0 = med r~~~• 0 j I

• .
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The orthogonal Brown-Mood method is implemented by the following steps

(starting wi th ~ 
( 0) 

= 0)

1. x = med x~

+2. xm = med X
~m.IdI

x = 
•
med X

~mid!
1

3. = 
•
m~d y1 m=l ,p-1L U

y: = med y.
iL L
+ -yj -

4. iS0~~= + -

~~~~
Xm

0rn 0,~ +60~

5. y1 + y1 
— 

~ 
X
~m i=l,N

6. Repeat steps 3-5 unti l convergence

7. 00 = med y11

28
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6. Robust Regression with Vector Observations

The problem of linear regression with observations of more than one

dependent variables is quite common. In this case we are given N obser-

vations of each dependent variable y ,  c~=l,rn. We denote these observations

by y~(i), i=l ,N ,  c&=1 ,m. The vector of parameters to be estimated is still

denoted by 0. The observations are related to the parameter vector by the

linear model

y(i) = A(i)o + e(i) 1=1 ,14 (37)

where A(i) is an mxp matrix, y(i) is an rn—vector of observations and e(i) Is

an rn-vector of measurement errors. A least squares estimate of 0 would

minimize

N
~ (y (1) — A( i )e)T (y(i) — A (i)e) (38)

1=1

A robus t alternat ive to the least squares est imate would minimize

(Y
u(i) - a a(i)e)

where a (I) is the czth row of A(i) and p~(•) may be a different function

for each of the dependent variables , and sa Is a robust estimate of

dispersion for the residual y~(i ) - aa(i)e. Setting the derivative of

(39) wIth respect to 0 to zero gives

N m aT(I) f
’
y (I) - a (I)e\

i~1 il 
“

~~~ 

a a ) = 0 (40)
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(40) can be conveniently be rewritten as

1 ~~lA ( i )D ~ (D (y(i) — A(i)e)) (41)
i 1  F

where D is the diagonal matrix D=diag 
~ i’ ~~~~~ ~~ 

and 
~

is the vector of q, functions

*2(X2)

~(x) = : (42)

Either a Gauss-Newton or a weighted least squares solution can be used

to iteratively obtain the N-estimate from (42). If is an arbitrary

point in the iteration sequence, the weighted least squares method appl ied

to (42) gIves

~(k+l) = M 1 
~ AT(i )D~~W( i )D~~y(i) (43)

where D is the diagonal matrix

D = diag 
~ i’ ~2’~~~’ ~~

and
N T 1 1M = .! A ( i )D W ( i )D A( i ) (44)

j=l

w(i) Is a matrix of weights given by

~2 
(r~~~(i)) *m (r~~

:(1))

\ r~ (i ) r~~ (i) r~ 
) (j )

- 

~2 
Sm
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where r~~ (i) is the residual

= 

~~~~ 
- a (i)e~~ (46)

“~ an example of robust linear regression with vector observations

consider the calibration of a laser tracker. The laser tracker measures

the range, azimuth and elevation of M targets with known range, azimuth,

and elevation . Calibration constants for the tracker are computed by

comparing the observations against the known positions of the N targets.

Let R5., E5~ and A5~ be the known surveyed range, azimuth , and elevation
of the jth target. Suppose that multiple observations of the targets are

ava ilable so that we have N~ observations for the jth target. Denote these

range, azimu th, and elevation observations by ~~~ A1~~ and i=l , ~~
j=l ,M. Let

T
— E1~ — E5j — e~e +

where 0 i s an unknown parameter vec tor , r
3
, aj~ and ej are known vectors,

and 
~~~ 

a1~~ ~~ 
are random error terms. A comon model for ~~ ~~

and e~ Is given by

r~0 = 01 + °2 R~j 
. (47 )

a~o = 03 - 04 tanE5~cosA5~ - 05 tanE5~s inA5~ - cos E5~ (48)

e~e = 97 + 04 s inA53 — 05 cosA5~ (49)
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The N-estimate for this example minimi zes

j~l j [
~ (~:‘°)+ ~~~ 

~

(

~
E
ii;:~

o 

) ] (50)

where Sr~ 
Sa~ 

5e are robust measures of the dispersion of the range,
azimuth, and elevation residuals. Differentiating (50) giv es the analog
to the normal equations

j~l ~ [
~ 

~~~~~~~~~~ 
+ 

~ 

+ * 
(

~
Ei~~~~

)

~~ 

J 
= ° (51)

(51) is solved iteratively using the weighted least squares al gorithm with

= medjd (i,j)J /.6745

= med j da (i ,j)I /.6745
1,3

= rnedlde(i,j)J /.67451,3

where

r 1,3 — 

~~ ij 
— r.0

a ‘~~ 
— 

i 
— 

-

e ‘~~ 
- -e .

The following illustrates the application of the above to real field

data. The laser tracker is calibrated using range, azimuth , and elevation

measurements from eight reflective, surveyed targets arranged in a circular

pattern around the tracker at a range of about 2500 feet. We use the model

in (47) - (49). Since the elevations of the eight targets are approximately
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equal , it is obviously impossible to estimate 06 in (48) without additional

observations. In order to provide these extra observations , we observe the
same calibration targets but with the tracker “dumped” , i.e. wi th an azimuth

of approximately A
~j 

+ 1800 and an elevation of approximately E5~ 
- 1800.

These additiona l observati ons are called dumped readings and are treated as

additional calibration targets. Al so, it will not be possible to estimate

02 in (47) since all ranges are approximately equal . In order to estimate

02, we observe four additional targets wi th ranges varyi ng from 20,000 feet

to 60,000 feet. Robust estimation of 0 was done for this exampl e using a

Kampel ~p function with breakpoints a=2.5 , b=5.O , and c=7.5. Approximately

250 observations are available for each target. The results of this robust

calibration are summarized in the following table by tabulati ng the number

of residuals for each target lying in each region of the Hampel 4. The

number of residuals in each region is the sum of the number in the positive

and corresponding negative regions of the 4’ function . The first eight

target boards are at 2500 ft. circularly about the tracker. Targets 9-12

are the long range target boards. Targets 13-20 are “dumped” readings of

the first eight targets. From the table It is obvious that most of the

observations from several target boards are outliers, particularly for

the “dumped” readings. This example has about 22% contam ination by outliers

whIch is extreme for this application , but Illustrates the power of the

H-estimation process in dealing with many outl iers.
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7. Nonlinear Regression

Instead of estimating regression parameters in the linear model

suppose we want an N-estimate of the parameter vector e in the nonlinear

model

y. = f~(o) + e1, i=l ,N (52)

where f1 t) is a given nonlinear function. Then an M—estimate of 0

is obtained by minimizing

N (
~. - f.(e)\1 (53)

Di fferentiating (53) with respect to e gives the nonl inear equations

~ 
F~(o) ~ (

~ 
fi(~)) = 0 (54)

where F1 (o) is the derivative vector
af.(e)

F1 (o) = -. (55)

0=0

(54) can be solved by iteration. Either Gauss-Newton or weighted least

squares iteration can be used to solve (54). Suppose we use weighted

least squares. We rewrite (54) as

- f1(~)
\

* S 2 FT(e) (Y
i 

- 

= 0 (56)
1=1 

; ~ 
S
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Let ~~ be an arbitrary point In the iteration sequence. Linearizing

(56) about 0(k) and discard ing higher order terms gi ves

i~l 
w~(~~

)) F~(~~~ ) - F1~~~~ )(~(~~l) - ~(k)
)) 

= 0 (57)

where (~ 
—

= 
\ (58)
y1 

— f1(6
(k))

Solving (57) for ~(k+l ) 
-1

~(k+l )~~(k)~ 
(.
~
1
W~ F~~~~ )F~(9

(k)
)) 

~
1
w1

k F k
~~~

9

The choice of starting solution for a nonlinea r problem presents additional

difficulty if the unweighted least squares solution is not suitable. Methods

for obtaining other starting solutions are dependent on the nature of the

problem.

As an example of the application of N-estimates with a nonlinear model

consider the N—station cinetheodolite trajectory data reduction problem.

In this situation we are given azimuth observations a
~
.(tj) and elevation

observations e(ti), a=l~
Ni at each time point t1 along a trajectory.

From these Ni cinetheodolites (tracking cameras) we must estimate the

car tes ian position x(t1), y(t1), z(t1) at each time point. The observations

are aa(ti )=A~(~j)+ error and ea(ti)=Ea(~j)+ error, where is the 3—vector

[x( t1) y(t1) z(t1)]. The measurement functions A (~1) and E ( ~1) are given

by

36
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• — i x(t~)— xAa(x i
) = tan y(t1) —

1 z ( t ) — z
E (x 1 ) = tan ’ a

• 

a [(x( t
~
) - x )2+(y(t 1) - y )2] 1/2

where (X
a

s 
~
‘
a’ Za) 

is the cartesian position of the ath camera. In this

case we have a nonlinear regression problem wi th vector observations. In

this application we minimize

~~~~

As a numerical example of this application consider the following situation

which is rather extreme but sometimes occurs. A missile is fired at a drone

and cinetheodol ites are observing both the missile and the drone. It is

required to estimate trajectories for both the missile and drone. Due to an

inadvertent clerical error, one of the cameras which was actually observing

the missile was erroneously listed as observing the drone. Obviously, when

doing a least squares solution to obtain the drone trajectory, the azimuths

and elevations from one camera will be gross outliers and will destroy the

least squares solution for the drone position coordinates. A single point

of this situation is given by the data beF,w.

Camera Obs. Azimuth - Ob.~ Elevat ion
1 .568106 .338886
2 -.626010 .122620
3 —2. 665036 .359168
4 1.926249 .327177
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Camera 2 is the one which is actually tracking the missile rather than the

drone. Obviously, as in most situations which are the nt~ l1near, there is
no way of distinguishing the outliers by inspecting the observations. As

always In robust estimation a preliminary solution is required to start the

iteration. Let (Xa, ~ct ’ Za ) be a position solution obtained from the ath

pair of cameras. In this example we have six possibl e pairs of cameras so that

ci= l ,6. We then start the iteration with (x°, y°, z°) where x°= med X ,  a=l ,6,

y°= med 
~a’ c z l ,6, 2

0 = med 2a’ a l ,6. For the exampl e, the median guess
solution is x°= —45147.9 ft., y°= 87423.8 ft., z°= 11117.3 ft. After five

Iterations the sequence has converged to the solution x= 32964.8 ft.,

y
~ 87425.2 ft., z= 11114.9 ft. The residuals from the final solution are

RESIDUALS
CAMERA AZIMUTH ELEVATION

1 .000008 -.000064

2 -.242553 .011513

3 .000022 .000081

4 . .000057 -.000019

• Thus, the robust solution using the Hampel * with breakpoints of 3, 6, 9,

correctly identified the outl iers. Let us carry this example farther.

Suppose we have no observations from camera 1, i.e., we have data from only

three cameras one of which is bad. In this case our starting solution turns

out to be x°z 45147.9, y°= 87424.1, z°z 11120.2. After four iterations the

solution has converged to x= -32966, y 87424.6, z= 11115.3. Thus, we are
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again able to correctly Identify the bad camera. Now suppose we have

data from cameras 1 , 2, 3. In this, the Initial guess solution is

x°= 45147.9, y°= 67033.9 , z°= 11118.9. After ten iterations the solution

Is x= —35023.9, y= 84462.1, z= 11004.1. The solution eventually converges

to the correct value, but slowly. A third possibility to have data from

only three cameras is observations from cameras 1 , 2, 4. In this case

the guess solution is x°= -46454.3 , y°= 87548.3, z°= 7262.7. After

three iterations the solution has converged to x= —35392.6, y 86464.3,

• z= 1044.8. Thus, in this case the iteration has converged to the wrong

solution. In the last two cases where the solution converged very slowly

and converged to the wrong solution, the starting solution was too far

from the correct solution. If a sufficiently good start had been provided,

the solution would have converged correctly in a few iterations . If the

number of cameras were great enough in comparison to the number of bad

cameras , using the median of the solutions obtained from the camera pairs

provides an acceptable starting solution. Unfortunately, the number of

cameras is often no more than three or four. In the case of three cameras

the use of a starting solution predicted from preceding points might be a

desirable procedure.

8. EXAMPLE — The Daniel & Wood Data

The Daniel and Wood data has been used by several authors [4), [12],

[13] to illustrate robust regression methods. The data is taken from

Daniel and Wood [4], Chapter 5, where it is examined in considerable detail.
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The Daniel and Wood data Is a sequence of 21 observations in 3 independent

varIables given below

Obs # x1

1 42 80 27 89

2 37 80 27 88

3 37 75 25 90

4 28 
•

62 24 87

5 18 62 22 87

6 18 62 23 87

7 19 62 24 93

8 20 62 24 93

9 15 58 23 87

10 14 58 18 80

11 14 58 18 89

12 13 58 17 88

13 11 58 18 82

14 12 58 19 93

15 8 50 18 89

16 7 50 18 86 •
17 8 50 19 72

18 8 50 19 79

19 9 50 20 80

20 15 56 20 82

21 15 70 20 91
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The li near model assumed for thi s example is
= eo + 0 1x11 + 02X2.~ + 03X3i + ei 1=1,21

The Daniel and Wood data is treated here first by ordinary least squares

and then by N-estimates using Huber, Hampel , and Andrews *—functions com-

bined with different possible starting solutions for these H-estimates.

We denote the M-estimation process with a Huber ~ function having a

breakpoint at x=a by H
~
(a). and with a Hampel ~ function having breakpoints

of a, b, c by Ha(a, b, c), and with an Andrews ~ function with parameter a

by An(a). When starting these N-estimation processes with the ordinary

least squares solution , we obtain the following sets of regression parameter

estimates.

00 01 e2 03

OLS —39.92 .7156 1.295 — .1521

H
~
(1.4) -41.06 .8249 .9466 — .1291

Ha(l.4s2.8~
4.2) -42.88 .9233 .6736 -.1079

A~(1.4) -42.41 .9257 .6617 — .1120

The res idua ls from these solutions are
OBS
It OLS Hu(1•4) Ha(1~

4s2•8s4~
2) A~(l.4)

1 3.23 3.01 2.43 2.46

• 2 —1.91 —2.12 —2.67 —2.65

3 4.56 4.16 3.50 3.52

4 5.70 6.44 6.86 6.88

5 —1.71 -1.67 —1.80 —1.79
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OBS
OLS H

~
(1.4) Ha (1•4 i2~

8s4 *2) A~(l.4)

6 -3.01 -2.61 ‘2.47 -2.45

7 —2.39 —1 .79 — 1.50 -1.44

8 -1.39 - .79 — .50 - .44

9 —3.14 -2.31 —1.78 —1.75

10 1.27 .51 — .16 — .23

11 2.64 1.68 .81 . .78

12 2.78 1.49 .37 .33

13 —1.42 -2.23 —2.95 -3.00

14 — .05 - .75 -1.43 —1 .43

15 2.36 2.28 2.19 2.19

16 .90 .89 .87 .85

17 —1 .59 - .87 — .31 — .38

18 - .46 .04 .44 .40

19 — .60 .22 .88 .85

20 1.41 1.53 1.55 1.52

21 —7.24 —8.86 -10.40 • -10.43

In the above sets of residuals there are no grossly outlying observations

so that we cannot readily judge the four regression methods. The robust

methods have somewhat smaller residuals than the OLS method and possibly

the regression with the Hampel or Andrews *-function gives slightly

smaller residuals than regression with the Huber *—functlon. The non—

parametric measure of dispersion for the residuals In each of the

regressions Is
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OLS H
~
(I.4) Ha(l~

4
~
2
~
8s4•2) A~(1.4)

s 2.83 2.49 2.30 2.25

If the residuals were tested for outliers against 3s, the OLS regression

• does not indicate any outliers , but the Huber, Hampel , and Andrews re-
gressions indicate that the 21st observation is an outlier . In addition,

the Andrews regression shows the 4th observation to be an outlier . Both

the Hampel and Andrews regressions show the 21st observation as a gross

outlier by giving it a zero weight.

Daniel and Wood, after some exhaustive analysis, declare that obser-

vations 1 , 3, 4, and 21 are outliers. Al so, in reading about the

experiment from which the data were gathered, it is discovered that

observations 1 , 3, 4, and 21 were taken during transient conditions of the

plant whereas the other observations were taken during steady state con-

ditions . Thus, on the basis of Daniel and Woods wor.k and the observations
by the original experimenters observations 1 , 3, 4, and 21 are probably
outliers. The regression solution without these four points Is = —37.65,

01 = .7977, 02 = .5773, 03 = — .0671. The failure of the robust regressions

to detect all of the outliers can be traced, at least in the case of the
Hampel and Andrews regressions, to the inadequate least squares starting

solution. We will demonstrate in the following that with a sufficiently

good starting solution the Hampel and Andrews regressions will converge

to solutions for which the outliers are obvious. Suppose we try the

orthogonal Theil method, the Spearmans p method and the orthogonal
Brown—Mood methods previously described to start the M-estimate regressions.
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From these starting methods we obtain the following regression coeffi-

cients which will be used to start the N—estimates.

00 01 02 03

Spearman p -43.25 .7578 .8100 -.0257

Theil -40.93 .7761 .6928 -.0384

Brown-Mood -39.21 .7981 .3846 -.0000

OLS (w/o 1,3,4,21) -37.65 .7977 .5773 — .0671

Both the Ha(l
~

4i2~
8
~

4
~

2) and the An(l~
4) regressions converge to the same

solution as before when using the Spearman p startIng solution. Also, the

A~(1.5) converges to the same solution as before when using the Thell

starting solutions. The A~(l.4) converges to a solution for which the

outliers are obvious when using the OLS (w/o 1 ,3,4,al) or Brown—Mood starting

solutions. Al so, the Ha(l~
4
~
2•8

~
4•2) regression converges to a solution

for which the outliers are obvious when using either the Brown—Mood, the

Theil or the OLS (w/o 1 ,3,4,21) starts. The regression coefficients

obtained are

0
1 

8 2 83

An(l~
4) from OLS (w/o —37.85 .8239 .5494 ~.075l

1,3,4,21) and Brown-
Mood .

Ha(l~
4s2~

8s4~
2) from —37.39 .8113 .5548 -.0734

Brown-Mood, OLS (w/o
1 ,3,4,21) and Theil

The residuals from these solutions are
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An(1~
4) from OLS (w/o 

~~~~~~~~~~~ 
from Brown—Mood

OBS It 1 ,3,4,21) and Brown—Mood and OLS (w/o 1,3,4,21)

1 5.78 6.04
2 .71 .97
3 6.08 6.28
4 8.11 8.16
5 — .79 — . 73
6 -1.34 -1.28
7 - .44 - .40
8 .56 .60
9 -1.04 -1.04
10 .18 .22
11 .85 .88
12 .33 .37
13 -2.67 —2.63
14 -1.40 -1.38
15 1.44 1.38
16 .22 .15
17 - .38 — .43
18 .14 .09
19 .67 .60
20 1.88 1.88
21 -8.98 -8.81

The four outliers have now become fairly obvious among the residuals.

Both of the regressions give zero weight to these observations.

The dispersion measure for the residuals In Andrews regression is 1.26

and in the Hampel regression is 1.44.
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The convergence of the An(l~
4) and Ha(l•4~2~8~3*2) regressions on the

Daniel and Wood data to a solution close to the OLS (w/ o 1,3,4 ,21) regres-

sion in which the outliers are obv ious is very sensitive to the starting

solution. The sensitivity of the robust regressions to the starting

solution for the Daniel and Wood data can be greatly lessened by chang ing
the breakpoints of the *-functions so that we are doing A~(1) and Ha(l~

23)

regressions . Both the A~(l) and Ha (l
~

2
~

3) regressions converge to the

same solutions starting from OLS, Spearman p, Theil , and Brown-Mood starting

solutions. The regression coefficients obtained are

00 01 e2 83

A~(l) -37.11 .8190 .5175 -.0727

2, 3) -37.01 .8183 .5202 — .0742

The residuals from these solutions are

OBS # A~(l ) Ha(1~ 2, 3)
1 6.09 6.11

2 1.02 1.04

3 6.30 6.32

4 8.24 8.25

5 — .72 — .71

6 —1.24 -1.23

7 — .32 — .30

8 .68 .70

9 - .96 — .96

10 .12 .13
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OBS # A~(1) Ha (1
~ 

2, 3)
11 .77 .79

12 .21 .24

13 -2.74 -2.73

14 -1 .46 -1.43

15 1.32 1.34

16 .10 .12

17 - .43 - .44

18 .08 .08

19 .63 .63

20 1.86 1.87

21 -8.95 —8.92
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