AD=A056 771

UNCLASSIFIED

] I G T s
(20 I3 I N (0 (T e
= i] [e M p
=58 I [0 O 0 Y
I I 6 T (O]
LI 10D

MITRE CORP BEDFORD MASS F/6 972

SOFTWARE DESIGN METHODOLOGIES AND AIR FORCE SOFTWARE ACQUISITIO==ETC(U).

JUN 78 D L JAMES F19628-77-C=0001
MTR=-3508 _ ESD-TR=78=147

o

1 M TR-78-147

s |

S T

A —/ SOFTWARE DESIGN METHODOLOGIES

O AND AIR FORCE §OFI‘WARE ACQUISITION ENVIRONMENT,
m } ARt e :~ e ———-————_————— —

S O g

R o L= ~—
a
<C

Prepared for

ROME AIR DEVELOPMENT CENTER
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
Hanscom Air Force Base, usetts s sm— /

DDC FILE COPY,

AD No

THE MITRE CORPORATION

Bedford
contuctd F19628-77-CWI ’

IS,
78 07 27053
235 AsL ‘

When U.S. Government drawings, specifications,
or other data are used for any purpose other
than a definitely related government procurement
operation, the government thereby incurs no
responsibility nor any obligation whatsoever; and
the fact that the government may have formu-
lated, furnished, or in any way supplied the said
drawings, specifications, or other data is not to be
regarded by implication or othe-wise, as in any
manner licensing the holder or any other person
or corporation, Or conveying any rights or per-
mission tc manufacture, use, or sell any patented
invention that may in any way be related thereto.

Do not return this copy. Rouin or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

e — e ——

Saul

Project Engineer Ch, Info Mat Sciences Section

DAl & crmamt

.) 9 SAF
Ch, Info Sciences Division

fhasunin g e

b TR SR s e A RN Wt

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEFOBE COMBLETIIG PORM
[T, REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
ESD-TR-78-147 /
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
SOFTWARE DESIGN METHODOLOGIES AND
AIR FORCE SOFTWARE ACQUISITION / e —
. PERFORMING ORG. REPORT NUMBER
ENVIRONMENT - MTR-3508 ¢
7. AUTHOR(s) om)
D.L. James F19628-77-C-0001

. PROGRAM ELEMENT, PROJECT TASK

9. PER?F ESS
ERFORMING ORGANIZATION NAME AND ADDR AREA & WORK UNIT NUMBER

The MITRE Corporation

P.O. Box 208 2 Project No. 522M
Bedford, MA 01730 ,

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE /
Information Processing Branch JUNE 1978
Rome Air Development Center 13. NUMBER OF PAGES
Griffiss Air Force Base 13441 125

. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 18. SECURITY CLASS. (of this report)
Electronic Systems Division, AFSC
Hanscom Air Force Base, MA 01731 URCLASSLFIED
1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

' *7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and i ity by block ber)

HIERARCHICAL DESIGN METHODOLOGIES (SRI)
RATIONAL DESIGN METHODOLOGY (RADC /Honeywell)
SOFTWARE ACQUISITION

SOFTWARE DESIGN METHODOLOGIES

20. ABSTRACT (Continue on reverse side If necessary and identify by block numbe

This report represents the final report for the Design Methodology Transfer subtask of
the Formal Design Methodologies Task of Project 5220.WThe general goal of the subtask
was to explore the ease of transfer of technology on software design methodologies to
the Air Force software acquisition environment by studying two methodologies selected

by RADC, comparing them with the acquisition environment, and discussing them with .J-—?

DD , 5n'ss 1473 eoimion oF 1 NOV 68 1s OBsOLETE UNCLASSIFIED

— —
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Deta Entered)

20. ABSTRACT (concluded)

LN acquisition personnel. The two methodologies (one by SRI and one by Honeywell, Inc.)
are described with examples. The assumed acquisition environment is described and
compared with the methodologies. The presentations to acquisition personnel are

described. Their views as well as those of Project 522M personnel on application of
the methodologies are discussed. /}\

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

ACKNOWLEDGMENTS

This report has been prepared by The MITRE Corporation under
Project 522M. The contract is sponsored by the Rome Air Development
Center, Griffis Air Force Base, New York, and the Electronic Systems
Division, Air Force Systems Command, Hanscom Air Force Base,
Massachusetts. X

The author of this report acknowledges and appreciates the efforts
of a number of people who contributed to the work described herein:

Jon Millen of MITRE D-75 for preparation for this project of
the example of the SRI methodology in Section III and for
discussions of the methodologies with the author.

Don Boyd and associates at Honeywell, Inc., for discussing and
answering many questions about the Honeywell methodology.

Karl Levitt and associates at SRI International for discussing
and answering many questions about the SRI methodology.

Harlan Mills, Andy Ferrentino, Max Wilson and associates at IBM
for several discussions of their work in software design
methodologies.

Personnel from ESD/MCV and MITRE D-74 for arranging and partici- i
pating in the SATIN IV discussions of the methodologies.

Personnel from ESD/DCO and MITRE D-71 for arranging and
participating in the TACC Automation discussions of the
methodologies.

John Glore of MITRE D-75 for a number of discussions of the Air
Force software acquisition environment.

Bill Rzepka of RADC, who monitored the work described in this
report, for a variety of contributions to the work.

Frazier Patrick of MITRE D-81 and Judy Shapiro of MITRE D-61
for discussions of the Air Force software acquisition environment.

Vg (1A S

|
Pete Veckery of ESD/MCI for discussion of the Air Force i
software acquisition environment and software design methodologies. E
3

|

B e s & e

YR R T W T P

Marlene Hazle of MITRE D-75 for many discussions of software
design methodologies, the Air Force software acquisition
environment, and this report.

Jane McCarthy of MITRE D-75 for her considerable effort and
care in typing this report and preparing most of its figures.

e v e

e e e

i

AR

SECTION I

SECTION II

SECTION III

TABLE OF CONTENTS

INTRODUCTION
ACTIVITIES
REPORT CONTENT

CHARACTERISTICS OF A SOFTWARE DESIGN
METHODOLOGY ,

STANFORD RESEARCH INSTITUTE METHODOLOGY
ABSTRACT MACHINES - BASIS FOR METHODOLOGY
A Single Abstract Machine
Hierarchy of Two Abstract Machines
Hierarchy of i+1 Abstract Machines
PRACTICAL CONSIDERATIONS
SPECIFICATION AND ASSERTION LANGUAGE
TOOLS

Present Tools
Future Tools

DESIGN AND IMPLEMENTATION METHODOLOGY

Stage 0 Design - Interface Definition

Stage 1 Design - Hierarchical
Decomposition

Stage 2 Design - Module Specification

Stage 3 Design - Mapping Functions

Stage 4 - Implementation

EXAMPLE

Design and Implementation
Verification

SECTION IV

SECTION V

SECTION VI

SECTION VII1

TABLE OF CONTENTS (Continued)

HONEYWELL METHODOLOGY
GENERAL CONCEPTS AND DESIGN DOCUMENTATION
SYSTEM STRUCTURE AND DESIGN PHASES
GENERAL DESIGN PHASE
Program Declarations
Data Declarations
Type Declarations
Levels of Abstraction
DETAILED DESIGN PHASE
Program Refinement
Program Variables
Program Requirements
Program Design Logic - Constructive Approach
Constructs and Transformational
Characteristics
TOOLS
EXAMPLE
MODEL ACQUISITION ENVIRONMENT
METHODOLOGY DEPLOYMENT CONCEPTS
ANALYS1IS PHASE
DESIGN PHASE
CODING PHASE
OTHER PHASES
INFORMATION GATHERING METHODS

PRESENTATION TO ACQUISITION PERSONNEL

48
48
51
53
53

55
57

57
61
62
62
62
64
69
72
81
87
89
92
95

95

96
97

N
k4

-
A

TABLE OF CONTENTS (Concluded)

PRI

% DISCUSSION SUBJECTS 103
: SECTION VIII ACQUISITION PERSONNEL FEEDBACK 105 !

TACC AUTO 105

SATIN IV 106

| PAVE PAWS 110

: JTIDS 110

i SECTION IX PROJECT PERSONNEL OPINIONS 1

' GENERAL 1

LANGUAGES 114

TOOLS 119

DOCUMENTATION AND EXAMPLES 119

REFERENCES 121

78 07 27 033

W e e e ——————————

LIST OF ILLUSTRATIONS AND TABLES

Figure Number Page
1 A Sequence of Abstract Machines (View A) 18
2 Hierarchical Set of Duplicated Modules (View B) 20 ;
3 Hierarchical Set of Non-Duplicated Modules (View C) 21
y SRI "Specification" Contents 23
5 SRI Tools 26
6 segment/page System 32
T Products of Stages 0 and 1 33
8 Specifications for gegment Module and page Module 35
9 segment/page Mappings and Supplement to 37
Specifications
10 Implementations 38
1 ILPL Implementation of Bottom-Level O-Functions 39
12 Analysis of rewrite Program 4y
13 Sample Proof for rewrite Program Analysis 45
14 Analysis of append Program 46
15 Sample Proof for append Program Analysis 47
16 Design Documentation Structure 50
17 Honeywell Modular Decomposition vs. Stepwise 52
Refinement
18 General Design 54
19 Some Array Variables and Operations 56
20 Honeywell Abstract Data Type Example 58
21 Detailed Design 60
22 P-Notation Constructs 65
23 Honeywell Example T4
24 Components of Honeywell Example 76
25 Assumed Acquisition Environment Software Hierarchy 82
26 Assumed Major Events Acquisition Model 83
27 Comparison of Methodologies and Acquisition 88 %
Environment %
28 Presentation Summary 98 |
29 Summary of Methodology Characteristics 99 @
30 Overview of SRI Methodology 101 : q
lable Number |
I Outline of Earlier WELLMADE Module Description 70 3
|
I1 Abbreviations 84 |
6

SECTION I

INTRODUCTION

This section discusses (1) the work performed during FY77 on
the Design Methodology Transfer subtask of the Formal Design
Methodologies task of Project 5220 and (2) the contents of the other
sections of this report. The subtask was performed in support of
RADC's software design methodology work.

ACTIVITIES

The general goals of the subtask were to study software design
methodologies, to consider the application of two specific ones to
the Air Force software acquisition environment, to hold discussions
with experienced acquisition personnel from ESD and MITRE about the
methodologies and their application to the Air Force environment,
and to report the opinions of acquisition personnel and personnel
from this project as to the advantages and disadvantages of the
methodologies and desirable changes to the methodologies and/or the
acquisition environment to allow their utilization. The general
emphasis was on steps RADC might take to foster the transfer of
technology on software design methodologies, primarily from the
private sector, to the Air Force software acquisition environment.

A short review of literature in the field of design
methodologies was conducted during the beginning of the contract
year based in part on citations and papers gathered during the
previous contract period by other people. Based on this review and
inputs from RADC, a set of six methodologies was selected for more
detailed study. The remainder of the first half of the contract
year was largely devoted to study of the six methodologies and to
characterizing and classifying the six methodologies for an interim
report, which was published at the end of this period as a MITRE
Working Paper.

It was found during this period that a number of the six
methodologies had not been documented very extensively, a particular
problem with regard to methodologies to be discussed with
acquisition personnel. Two of the six methodologies had been
selected by RADC early in the contract period for potential
application in the Air Force software acquisition environment.
However, based on the evolving nature of software design
methodologies and their relative lack of documentation, another of

the six was substituted for one of the two selected ones. The two
methodologies finally compared with the acquisition environment were
later and different versions (one considerably so) of those studied
during the first six months of the contract year. The two
methodologies compared with the acquisition environment were the
Hierarchical Design Methodology (HDM) of the Stanford Research
Institute (now SRI International) and a methodology being developed
as of March 1977 by Honeywell, Inc. for RADC, which has been called
the Rational Design Methodology (RDM).

A week was spent in early May in discussions with Honeywell and
SR1 personnel on their methodologies. Various telephone
conversations have been held since, primarily with Honeywell,
because of the very limited documentation and examples for the RDM
as yet. The HDM has been documented in a limited fashion, largely
as a by-product of operating system documentation. Based on the
discussions and available documentation, Sections III and IV of this
report were written to serve as a basis for discussions with
acquisition personnel. It is hoped that they represent relatively
accurate descriptions of the intentions and views of the developers
of the methodologies.

The model of the Air Force software acquisition environment was
developed based on study of various regulations, standards, and
MITRE reports, a number of conversations with MITRE personnel, and
some limited experience in the environment.

REPORT CONTENT

Section II of this report discusses characteristics of software
design methodologies, based largely on the six basic ones studied as
well as variations of some of these and others reviewed briefly.

The characteristics are intended to define the subject matter of
this report and the subtask rather than the essential attributes of
any software design methodology. Sections III and IV describe the
hDM and the RDM, respectively, with examples.

Section V presents and describes the assumed model acquisition
environment. Section VI describes the author's views regarding the
possible use of the HDM and of the RDM in the model acquisition
environment. Areas of possible change in the methodologies or in
the acquisition environment are discussed.

Section VII discusses the material presented to acquisition
personnel in discussions held with them at the end of August 1977.
Section VIII presents the views of the acquisition personnel

L P ——

concerning the methodologies as expressed in the discussions.

Section IX discusses primarily the author's views on the
methodologies.

SECTION II

CHARACTERISTICS OF A SOFTWARE DESIGN METHODOLOGY

Various efforts over the last 10 to 15 years have been aimed at
making computer software development more systematic, more of an
engineering discipline. Although the efforts earlier in this period
tended to relate to implementation, various contributions to
improved design were also made in the form of codification of good
practices and the proposal and/or development of new concepts.
Particularly in the last few years, these earlier practices and
concepts have been combined in various ways with recent concepts to
form more complete methodologies to be used in software development
including the design phase.

Since the development of software methodologies, as such, is a
rather recent phenomenon, public documentation of a number of them
tends to be somewhat rudimentary. Other reasons for the limited
documentation are that some of the methodologies are still evolving,
some need further development in some areas, and some are treated as
proprietary. For these reasons, a number of the methodologies have
had limited application, as yet, by a limited number of
organizations. However, in toto, a relatively large number of
individuals and organizations have done work in the field, and there
are some common characteristics in these efforts.

Much of the work accepts as a principle the application of
increased effort in the design phase with higher costs, to be more
than offset by savings in later phases of the life cycle. The
savings would result from: (1) fewer design changes due to errors
found during implementation or testing which would otherwise cause
iteration of the development steps for at least a portion of the
system and (2) less effort to make design changes. Reduced effort
for design changes is a principal goal of many methodologies. This
reduction affects not only changes due to errors but later software
maintenance changes during the operational phase.

A number of the design methodologies are intended to be useful
during other development phases as well as design; implementation is
frequently included. A much smaller number are related to
requirements analysis -- in fact, many methodologies seem almost to
ignore the quality and form of the basic requirements information
which form their input.

10

- B T TR

(o iaiim s iy s

Many methodologies rely upon computers to store the design as
it evolves, except for possibly those which use graphic techniques
such as HIPO (Hierarchy plus Input-Process-OQutput) charts and
SofTech's SADT (Structured Analysis and Design Technique). Even
these may be capable of being stored in a computer in the form of
text blocks, symbols to identify the type of block, and linkages
between blocks. Storage of the evolving design in a computer
generally means much readier and more frequent accessibility to the
design by the designers and possibly design monitors. Such design
documentation is probably more likely to be up-to-date and available
when needed than if treated as a separate effort.

Various methodologies call for the creation of formal design
specifications which are more mathematical in nature and more
precise than English text. Proofs of correctness at the design and
at the implementation levels are facilitated by such specifications
although such proofs may not be considered necessary or cost-
effective for non-critical software. Storage of such specifications
in a computer makes it possible to use the computer to make various
kinds of checks such as for consistency.

Many methodologies incorporate program design languages (PDL's)
for expressing the design. A PDL which is closely associated with a
methodology can reinforce its goals and restrain the designer from
following practices considered undesirable. The computer can be
used to perform the reinforcement and the restraint.

Tools to support a methodology vary considerably from one
methodology to another. A PDL may be considered one type of tool.
Automated tools to check the consistency of a design expressed in a
PDL and to enforce syntax rules exist. Text editors and data
management systems are used for storage and retrieval of designs.
Graphic aids are useful to portray the structure of a design. Tools
to support proof-of-correctness exist in some cases and represent

probably the most complex type of tool and, therefore, the most
helpful if proofs are needed.

The final area to be discussed is that of guidelines for use of
a methodology. One type of guideline offered by some methodologies
is that of considering software development as a series of steps or
stages. Each stage should be characterized in terms of the
activities performed, types of decisions to be made, and the
products and results to be produced.

Another type of guideline consists of recommendations for

handling the complexities of a large software system. The usual
guideline for handling complexity relates to modularization of the

1"

—p—— e e e

design, and hierarchical modularization is frequently suggested.
Modules generally should be as independent and self-contained as
possible to facilitate design changes. To reduce complexity and
improve understandability, modules should also be at least
relatively small. Such modules should probably aid in providing
traceability back to individual requirements.

A basis for modularization supported by both the methodologies
discussed in this paper as well as at least several others is that
of the abstract data type, which provides for centralized
responsibility within one module for all data objects of a given
type. That module contains detailed knowledge of the structure of
such objects and contains the only programs in the system for
manipulating such objects. Other modules in the system (at higher
levels) have only a very limited (abstract) view of such objects -
knowledge of the kinds of data obtainable from such objects and the i
operations available upon them. The programs of the responsible 3
module perform the operations, and that module delivers the data
requested. A relatively complex, abstract data type provided by one
module may be implemented in terms of one or more simpler, abstract
data types provided by other modules.

No attempt has been made above to list the characteristics that

a software design methodology ought to have. Clearly some of the
general goals of such methodologies are to produce better, more
reliable software, to reduce the time required to produce software
and also the associated costs. The general frame of reference is
that of large, complex software systems and not just small, simple
ones. The methodologies attempt to make software design a more
systematic process than in the past. Designs should be easier to
understand. Complexity is reduced in many cases by providing more
structure for a design. Tools, conceptual or otherwise, should be
suggested as well as rules for their use to achieve desired goals.
The use of computers as much as possible to design software for
computers seems quite reasonable.

e

12

SECTION III

STANFORD RESEARCH INSTITUTE METHODOLOGY

Development of software design methodologies at the Stanford
Research Institute (SRI) has been underway for at least four or five
years. References in the literature to what is now known as the
Hierarchical Design Methodology (HDM) appeared as early as 19T4.

The HDM is described as a formalization of the stepwise refinement
concept of Dijkstra (Dijk72). The abstract machines of the HDM are
represented as Parnas modules (Parn72a, Parn72b).

The principal developers of the HDM are P. G. Neumann, K. N.
Levitt, and L. Robinson, assisted by other people at various times.
Documentation of the HDM as a whole has suffered by virtue of its
treatment as one component of documentation of its largest
application. Thus, the most extensive documentation of the HDM
appears in several sections of Neum75. An extended and updated
version (Neum77) of that report describes more briefly a somewhat
modified form of the HDM. Several of the components of the HDM have
recently been documented (Robi77, Roub77, Boye76) separately from
their application. The basis for this report includes the 1976 and
1977 reports mentioned; personal communications with SRI personnel,
primarily K. N. Levitt; and, more informally, earlier SRI papers,
including Neum75, which had been reviewed previously.

1he largest application of the HDM to date is the design of a
Provably Secure Operating System (PSOS), the principal subject
discussed in Neum77, Neum75, and earlier papers. The PSOS
development has been carried out for the first three of the five
stages of the HDM. The HDM has been and is being applied by SRI to
other, smaller projects, whose results were not reviewed for this
report. The HDM is said to be in use at the University of Texas; a
similar methodology was developed concurrently at The MITRE
Corporation and applied in computer security work. The HDM has also
been examined in detail by at least one branch of a government
agency and at least one commercial organization, presumably with
regard to its possible application by them.

13

—

e < i

B A S R S s

ABSTRACT MACHINES - BASIS FOR METHODOLOGY
A Single Abstract Machipe

The basic concepts on which the SRI Hierarchical Design
Methodology (HDM) is based appear to be the following. As noted by
others, what SRI refers to as an abstract machine is a finite-state
machine (FSM). Assume for the moment that an FSM is a mechanism
which is composed of a collection of hardware and/or software whose
exact nature we are not concerned with now. This mechanism is
capable of performing a defined set of operations, each of which
produces a defined effect on the state of the mechanism. Given that
the mechanism is in state sk at time tk and that operation oj is
then performed, at the completion of the operation (at time tk+1)
the mechanism will be in state sk+1. The final state, sk+1, is
clearly dependent on the initial state, sk, and the operation
performed, oj. The state of the mechanism during the execution of
an operation is undefined. We are now concerned only with its state
before and after the execution of each operation, and at this point
we can only make statements about its state at such points in time.
(No assumptions are made as to the amount of time the mechanism
requires to execute each operation; tk and tk+1 are simply the
points in time prior to the execution of an operation and after
execution of it, respectively.)

SR1 defines the state of such a mechanism (at the points in
time at which state is definable) in terms of a set of state
variables, V1, ..., Vn. A given state can be characterized by an n-
tuple containing the value of each state variable, (Vi, V2, ...,
Vn). The state space of the mechanism consists of the Cartesian
product of the state variables, V1 x V2 x ... x Vn. (The number of
possible states for the mechanism is the product of the number of
possible values for each state variable.)

A specification for such a mechanism (FSM or abstract machine)
defines the mechanism in terms of the operations it can perform and
the operations in terms of the state changes they produce. As SRI
states, such specifications define everything a user of the
mechanism needs to know about it and everything he is allowed to
know, for purposes of the HDM. A specification for such a mechanism
defines its state variables and makes assertions as to the effect of
its operations on its state. The user of such a mechanism may only
change the state of the mechanism by requesting it to perform the
defined operations (one at a time) and may determine the state of
the mechanism (between operations) by requesting the current values
of the state variables.

14

Hierarchy of Iwo Abstract Machines

The scope of the discussion is now expanded to include two such
mechanisms or abstract machines. Each is defined by a separate
specification of the type discussed above. The purpose of
discussing two abstract machines is that we wish to consider
implementing one abstract machine, Mi, on (in terms of) a second
abstract machine, Mi-1. Thus, a two-level hierarchy of abstract
machines is created with Mi being at the higher level. In defining
(specifying) the higher-level mechanism, Mi, nothing has been said
to preclude its implementation on Mi-1. 1In particular, the
specification of Mi avoids such considerations so that Mi can be
implemented in any of various ways. Furthermore, the user of Mi is
not intended to rely on knowledge of any lower level mechanism on
which it may be based. (As a partial example, a general-purpose
computer can be instructed as to how to perform a computation in
several ways. The user of a high-order language (HOL) sees the
computer largely in terms of the specifications of the HOL. He does
not see the computer in terms of op-codes and registers except at
times when efficiency must be considered. Such features of the
computer are hidden from the user by the HOL. Furthermore, he is
largely not concerned with how his program is executed, whether his
HOL code is translated directly to machine code or whether assembler
code is produced as an intermediate form, or even whether a
conventional computer is used at all. This statement ignores
possible efficiency and cost considerations and assumes that the
environment offered to the user is not only adequate for him to
describe his problem but also for him to debug his program without
resorting to assembly listings or machine dumps.)

1f the upper-level abstract machine, Mi, is to be implemented
in terms of Mi-1, a method of relating the two machines is
necessary. First, a mapping (called a mapping function by SRI),
mfi, is needed to relate the state of Mi to that of Mi-1. If Mi is
to be implemented in terms of Mi-1, then the state space of Mi-1
must be at least as large (contain at least as many unique states)
as that of Mi and each state in Mi must correspond to at least one
unique state in Mi-1. Otherwise, it will not be possible to
implement Mi in terms of Mi-1. Verifying the existence of such
correspondence is part of the proof-of-correctness aspect of the
HDM. Since the state of an abstract machine is represented by the
values of its state variables, the mapping function, mfi, consists
of a set of relations expressing each state variable of Mi in terms
of the state variables of Mi-1.

As noted earlier, a finite-state machine is characterized by a
set of operations and the changes they produce on the state

15

variables of the FSM. 1In trying to relate two FSM's to one another,
we must relate their state variables and their operations.
Therefore, we must next relate the operations of Mi to those of
Mi-1. Since Mi is to be implemented in terms of Mi-1, the desired
relations are a set of programs, pi-1, which implement each
operation of Mi in terms of the operations of Mi-1.

The relationships between elements of the abstract machines in
the two-level hierarchy are, therefore, as shown below.

oi
s1i >

21 (Mi)

mfi

1
]
i
i
!
]

|
s1i-1- >
pi-1

s
|
i
| mfi
|
'
s

2i-1 (Mi-1)

Two independent gpecifications define the operations and state
variables of Mi and Mi-1. If Mi is in state s1i and operation oi is
performed, Mi will then be in state s2i. If Mi is to be implemented
in terms of Mi-1, then the mapping function, mfi, relates each
state, s1i and s2i, of Mi, to one or more states, s1i-1 and s2i-1,
of Mi-1. Each operation, oi, of Mi is related to the operation of
Mi-1 by a program, pi-1. More particularly, an operation, oi, of Mi
is implemented by a program, pi-1, which is executed by Mi-1. The

mapping function also indicates the manner in which the state of Mi
is derivable from the state of Mi-1.

The specification for a finite-state machine (abstract machine)
relates the state (values of state variables) of the machine prior
to execution of an operation to its state after execution, for each
operation. To prove the consistency of the mapping function, mfi,
with the gpecifications for Mi and Mi-1, mapped specifications are
produced for Mi. Since the mapping function, mfi, expresses each
state variable of Mi in terms of the state variables of Mi-1, these
expressions can be substituted in the specification for the
operations of Mi. The result is a mapped specification of the
operations of Mi in terms of the state variables of Mi-1 which
should be proved consistent with the operations of Mi-1 as defined
in the specification for Mi-1 (the operations for Mi-1 are already
defined in terms of the state variables of Mi-1 in the
specification).

16

oy VU ——

= TR P i - —

The program, pi-1, which implements each operation of Mi on
Mi-1 can be proved consistent with the specification of Mi and Mi-1
and with the mapping function mfi. Since the specification of an
operation of Mi relates the values of the state variables of Mi
before execution of the operation to those after execution, the
mapped specification of an operation of Mi expresses the same
relation but in terms of the state variables of Mi-1. Therefore,
such a mapped specification represents an assertion as to the
relation between the state variables of Mi-1 prior to execution of
an operation of Mi with such variables after execution. The
program, pi-1, for a given operation, is to be constructed so that
this assertion is true. Such a program is then analyzed as follows.
The mapped specification for Mi contains or implies any necessary
assumptions as to the values of the state variables, Vi-1, prior to
execution of the related pi-1. The program is examined to determine
the effect of each statement in it on the state variables. If
alternate paths exist in the program, the effect of each is
evaluated. Presumably any alternate paths in the program will
correspond to alternatives in the mapped specifications. At the
exit from the program, the values of the state variables should bear
the relation to their initial values described by the mapped
specification.

Hierarchy of i+1 Abstract Machines

Finally, an entire system is defined as a sequence of i+1
abstract machines. The specification for the topmost machine
defines the system for the user (a person or a program). He should
be able to use the system with no knowledge of the activities of the
lower i machines. The lowest-level machine is the hardware or the
view of the hardware seen in terms of a specific programming
language. The total system is represented by i+1 specifications, i
mapping functions to relate the state variables of each successive
pair of abstract machines, and i sets of programs to implement the
operations of each of the topmost i machines on the machine below
it. Proof-of-correctness should be able to be carried out for each
specification and for the mapping functions and programs relating
successive machines. SRI feels that even in the absence of the
proofs, the structured design and implementation should produce a
better and more reliable product than traditional methods. This
view of a system as a gequence of i+1 abstract machines might be
called View A and is shown in Figure 1.

PRACTICAL CONSIDERATIONS

Theoretical considerations as discussed above yield a sequence
of abstract machines, each of which implements that above it.

17

Figure 1. A Sequence of Abstract Machines (View A)

18

PINETITIN

However, each such machine may be rather complex and duplicate some
of the features of machines below it. Therefore, in practice, an
abstract machine is modularized. The features of machine i which
are different from those of all the machines below it are contained
in one or more modules. In addition, machine i may contain a module
corresponding to each module or portion of a module in machine i-1.
Thus, each abstract machine could consist of more modules than the
one on which it is implemented. However, it is also expected that
the further apart two machines are in a hierarchy, the less likely
it is that the features of the lower-level machine will be necessary
or of interest to the higher-level machine. Otherwise, the features
of the bottom-level programming language or hardware would still be
part of the specification of the topmost machine as would the
features of all the intermediate machines. This view of a system as
a hierarchical set of (possibly) duplicated modules might be called
View B and is shown in Figure 2. (In the figure it is assumed that
only one new module is added at each level and that each module is
visible throughout the hierarchy, that is, from its point of
definition to the top.) The union of all the modules (mij, 0 < j < i)
present at a given level in the hierarchy in View B corresponds to
an abstract machine (Mi) in View A.

A third view (View C) of a system is adopted which eliminates
the duplication of modules by naming or pointing to the lower-level
modules visible at a given higher level. This view is shown in
Figure 3, which is similar to Figure 2 except that the only module
shown at each level is that which contains features different from
those of all modules at lower levels. Lower-level modules visible
at higher levels are reflected as pointers. Since an abstract
machine is treated as a collection of modules in Views B and C and
since abstract machine Mi will be implemented on Mi-1, then Mi-1
must contain all the modules needed to implement Mi. Even though
machine Mi-1 may not utilize a given module, mpp, for jits
implementation, mpp must be part of Mi-2 as well as Mi-1 if it is
needed to implement Mi.

The principal basis suggested by the HDM for modularizing a
software system is a practical one, from the design viewpoint, at
least, whose various aspects have been given a variety of names.
SRI talks of a module's being a "manager" for a particular type of
object or system resource. It can be viewed as a collection of
objects and the operations available on them. Parnas talks of
"information hiding", whereby the design details of a particular
portion of the system are contained in one module and hidden from
other modules so that a design change is apt to affect a single
module rather than ripple through a number of modules. Another
pertinent term is "levels of abstraction" whereby a given module

19

M1 ml0 mll

Figure 2. Hierarchical Set of Duplicated Modules (View B)

Figure 3. HIERARCHICAL SET OF NON- DUPLICATED MODULES
(VIEW C)

' 21

sty Bd b 1o dati s st

provides a particular level of data abstraction and operational
abstraction. A lower-level module is less abstract, more concrete
and specific in its view of data and operations. The general intent
is to decompose a system into manageable modules, each of which is
relatively consistent as to the level of its knowledge and actions,
has sole responsibilities in a certain area, and supports higher-
level modules which have more abstract duties and knowledge. In a
message-handling system, one module might be responsible for byte
handling and be dependent on a lower-level module responsible for
bit handling. While this design basis is conceptually appealing,
SRI and Parnas agree that efficiency considerations may require
eventual implementation in a fashion which does not map directly
onto the design.

SPECIFICATION AND ASSERTION LANGUAGE

To provide for formal definitions (which facilitate proofs) of
module specifications and mappings, SRI has developed a non-
procedural Specification and Assertion Language (SPECIAL). The HDM
deals with a design largely at the module level. SPECIAL is used to
write module specifications as well as the mapping functions
relating modules. The several kinds of information which may appear
in a module specification (MODULE) and in a MAP (which includes the
mapping functions) are shown in order in Figure 4. Also shown is
the form of a PROGRAM MODULE which contains the program to implement
a module. Some work has been done by SRI with one version of an
implementation language called ILPL. The eventual intent is to be
able to compile machine code from programs written in an
implementation language such as ILPL. At the present, SPECIAL is
much further developed, with tools to support it (see below), than
ILPL.

As Figure U4 illustrates, a MODULE and a MAP (as well as a
PROGRAM MODULE) have various similarities. SPECIAL emphasizes its
ability to deal with a considerable variety of (data) types. The
TYPES paragraph (of a MODULE) contains definitions of the types used
to describe the objects managed by the module, for instance.
Variables of the module are declared and associated with a type
under DECLARATIONS. PARAMETERS are symbolic constants used to
specify capacities, for instance, and which are treated generally
like variables in the design stages but which will be associated
with specific values for a specific implementation. DEFINITIONS
contain string-substitution macros used elsewhere in a specification
to reduce the writing effort. EXTERNALREFS lists such things as
data types and operations which are defined in other modules but
referenced in this module. The ASSERTIONS paragraph seems to be

22

wUOTFIBOTITOads,, I¥S

SOMLddv
SINVINVAR]

SWOILINI42C
STLLBWIVL
SNOLIVEVION
S3dAL

¢ g

*y 2an3yg

§ oolae)

(eTlav)dmeuiown) ITRsel . (IejrRiv)eEmwncen; ItResae

../,Wl

SRO110a%d
SHO11¥TSSY
SIS
SWO11INT43G
SULLINVEVY
SHC1IVEVION
S

smeus "pom
TLAw

T adeig

ot
”i

*1
€
L
"

23

used rarely and is said to be used for placing constraints on the
parameters of the module.

The principal paragraph (FUNCTIONS) of a specification is used
to define several types of functions, which are closely related to
the concept of a module as a finite-state machine. A V-function
(VFUN) returns the current value of a single variable of the module.
If the V-function is a non-derived one, then an INITIALLY section
contains an assertion as to the initial value of the variable, and
the variable is one of the state variables of the module. A derived
V-function contains a DERIVATION section with an assertion as to the
relation between the (non-state) variable and other variables of the
module. A HIDDEN V-fun-tion is local to the module. If not hidden,
an EXCEPTIONS section must list any conditions under which it is
illegal to call the function. When a function is implemented, its
implementation must check the exception conditions, in the order
listed in the specification, before performing any other action. If
one of the conditions is satisfied (based on the (old) values of the
variables at entry time) an appropriate exception is returned and no
other action is taken. The implementation must also provide the
asserted initial condition or derive the value of the variable based
on the DERIVATION assertion. DEFINITIONS and ASSERTIONS sections
local to the function are allowable; ASSERTIONS describe conditions
similar to the EXCEPTIONS but which must be guaranteed by the
caller.

O-functions (OFUN) are used to define the operations of the
finite-state machine (module in this case). The EFFECTS section
defines the O-function in terms of its effect on the variables of
the module. More specifically, it contains assertions as to the
relations between the values of variables at exit and those at entry
which must be satisfied by the implementing program. A DELAY
section is intended to be used for specification of synchronization
requirements.

An OV-function generally has all the characteristics of an 0-
function except that it also returns an output value. 1Its principal
purpose is in the case of a multi-programming system, to avoid the
problem of a program's inability to read a variable after performing
an operation, before a second program can perform an operation and
cause further state change.

A MAP contains much of the same information as a module
specification. The INVARIANTS paragraph makes assertions about
relations among the variables of the lower-level modules, which the
implementing programs must preserve. The MAPPINGS paragraph

24

expresses the V-function mappings between a module and one or more
lower-level modules that implement it.

TOOLS

A set of tools to support the HDM has been developed in
INTERLISP under TENEX on a PDP-10 and is also being implemented
under Multics. The tools are said to support the first four stages
of the HDM although the emphasis appears to be on stage 2 (module
specification), stage 3 (mapping-function specification) and
specification of the modules comprising each level (called an
INTERFACE) and the levels in a hierarchy rather than on stage 0
(specification of the user interface) and stage 1 (hierarchical
decomposition). The existing tools are shown in Figure 5. These
tools perform syntactic checks, useful in themselves and also needed
in the proofs of correspondence between the desired properties and
the specifications.

Eresent Tools

Present tools operate on input files containing specifications
in source form and produce link files if no uncorrected errors are
found. Link files from some tools serve as additional input for
other tools. The four present tools are a module handler, a
mapping-function handler, an interface handler, and a hierarchy
handler.

The module handler (CHECKMODULE) expects for input a source
file containing the formal specifications for one module, written in
SPECIAL, as created in stage 2. CHECKMODULE first makes syntactic
checks of the specification and then semantic checks (enforcement of
type and scope rules and checks for well-formedness). Several
alternative features allow the interactive correction of errors as
they are detected, at least during the syntax checks. No inter-
module checks are done. The module handler also contains facilities
(REFORMAT or TTY) to produce a well-formatted print file of a module
specification.

The mapping-function handler is split into two pieces.
CHECKMAPSPEC expects for input a source file containing one map
between modules of two adjacent levels, written in SPECIAL, as
created in stage 3. Internal consistency checks are made as in the
case of the module handler. External consistency checks are made by
CHECKMAP which uses the link file from CHECKMAPSPEC for its primary
input. The checks are directed principally toward determining that
a map contains one and only one (proper) mapping-function expression

25

INPUT PROCESS OUTPUT

.SOURCE \ CHECKMODULE
SYNTAX CHECK ERRORS

SEMANTIC CHECK [————— .MLINK

TECO EDITOR

REFORMAT /TTY

ERRORS

.MAP CHECKMAPSPEC

CHECKMAP

CHECKINTERFACE

.INTERFACE LILINK

HIERARCHY ———————&{ CHECKHIERARCHY .HLINK

Figure 5. SRI Tools

26

for each primitive object (parameter, designator, or non-derived V-
function) of an upper-level module.

The interface handler (CHECKINTERFACE) expects for primary
input a source file containing one interface (level) specification
which names the interface and lists the modules comprising the
interface. The specification is written in an extension to SPECIAL
defined in BOYE76. Checks are made of the well-formedness of the
specification and that module specifications for the listed modules
exist and have been checked and that EXTERNALREFS for each module
reference only other modules in the list.

The hierarchy handler (CHECKHIERARCHY) expects for primary
input a source file containing one hierarchy specification. A
hierarchy, in conjunction with the previous files discussed, is
intended to describe a complete software system design or at least n
successive levels of such a design. A hierarchy relates successive
pairs of levels (interfaces), from lowest to highest (the lower
level implements the higher one of a pair), and names the maps
relating the modules of each upper level with those of the (next)
lower level. The hierarchy specification is written in another
extension to SPECIAL defined in BOYE76. Checks are made of the
well-formedness of the specification, that the interfaces and maps
listed exist and have been checked, and that the mapping-function
specifications are consistent with the interface specifications.

Future Tools

.

In addition to the current tools, a number of other tools are
planned, contemplated, or under development. These additional
tools, which support implementation and proofs, are:

1. A model consistency checker for designs involving semantic
dependencies in the proofs of correspondence between the
desired properties and the specifications. It performs
extrinsic syntactic checks and "generates logical formulas
whose validity is equivalent to the satisfaction of the
semantic conditions for consistency with the model". The
generation of the logical formulas is said to be
straightforward. The formulas would be proved by hand or
with machine assistance to reduce human error.

2. A program handler to check program syntax and syntactic
consistency of a program with the specifications and
mapping functions.

27

3. A development data-base manager to maintain a data base of

the specifications, programs, and proofs and to record
which modules have been specified, mapped, implemented, and
verified.

4. Other tools to support semi-automatic program verification
for use as appropriate:

a. Verification condition generator for implementation
programs.

b. Logical simplifiers.

c. Various program transformers (e.g., optimizers that
preserve program equivalence).

d. An implementation proof checker.

DESIGN AND IMPLEMENTATION METHODOLOGY

The HDM suggests that system development be done in five
approximately sequential stages. The proofs possible for most
stages are not discussed in this section. The five development
stages are as follows.

Stage 0 Desjign - Interface Definition

The top-level (user) interface is "defined", from the vantage
point of View A (Figure 1). For this stage, "defined" is
interpreted to mean that the state variables of the top-level
abstract machine and the operations available upon it are
determined, rather than formal definition. The jnterface is then
decomposed into a set of modules in the fashion of View B. Although
the interface is the top-level one and the modules will be top-level
ones in View B, they will not necessarily remain top-level ones in
View C after stage 1 is completed nor do they as yet comprise a
complete system. At this stage the modules included are those
implied by the user requirements. Each of these modules can be
considered a facility which manages objects of a particular type and
that is the basis for the decomposition of the interface. Available
at the completion of stage 0 is an gutline or sketch of (possibly
only parts of) some of the modules of the system.

28

Stage 1 Design - Hierarchical Decomposition

Additional modules which are necessary to support those visible
at the user interface but are hidden from the user interface are
sketched. ("Sketched" is intended to mean that the V-, 0-, and
OV-functions of each module are listed in function form, such as
create_object(t) -> c¢c. As indicated in Figure 4, any function
may have input arguments and V- and OV-functions have a result
argument.) In addition to this sketching of the principal parts of
each module, it is decided at which level (according to View C,
Figure 3) each module should be defined and at how many higher
levels each module or individual function of a module should be
visible. Thus, the modules of each level are determined, which
means that the modules at level i-1 upon which level i will be
implemented must be determined for the entire hierarchy (for all
values of 1i).

The modules sketched in stage 0 were based on the user
interface. If some of these modules are defined at levels below
(but available at) the user interface because they are part of the
basis for implementing higher-level, visible or non-visible modules,
they may need to be expanded to include further related functions
which are not visible at the user interface. It seems likely that
in most cases the steps of stage 1 will have to be performed
iteratively. In evaluating whether each level has an adequate
implementation base, modules may need to be moved up and down in the
hierarchy. For such modules, it might be necessary to combine,
split, or add new functions or delete ones no longer needed. Such
changes might also include adding new modules or deleting old ones.
1f such changes are necessary in stage 1, then it may also be
necessary to loop back to stage 1 from later stages since the later
stages provide formal or informal proof of the adequacy and goodness
of the design partitioning done in stage 1.

Available at the completion of stage 1 is at least an initial
outline of most or all of the modules of the system in addition to
at least an initial structuring of the system. The information is
available to construct the INTERFACE and HIERARCHY files discussed
under Tools although the use of the tools to check them is not
possible at this time.

Stage 2 Design - Module Specification
In this stage a formal specification is written in SPECIAL for

each module in the design. The format and content of a
specification are shown in the MODULE column of Figure 4. The

29

FOSCPRIY VN

A e

module handler discussed under Tools can be used to ¢heck and to
print the specifications.

A module is intended to have sharply defined responsibilities
which do not intersect those of other modules. A specification is
also intended to be independent of implementation decisions.
Although a specification for a module is intended to be independent
of those for other modules, SPECIAL provides the EXTERNALREFS
paragraph in a specification to indicate dependencies that exist.
The degree of dependence of a module on other modules is indicated

by the number of other modules and their objects listed in the
EXTERNALREFS paragraph.

Stage 3 Design - Mapping Functions

Although a MAP can contain a number of paragraphs similar to
those of a module specification (see Figure U4), the most important
one is MAPPINGS, which is used to relate the states of modules to
those of lower-level modules. In a specification, the state
variables correspond to the non-derived V-functions of the module,
and the state of the module corresponds to an n-tuple containing the
current value of each state variable. The mapping functions in a
MAP relate each state variable of the upper-level module to an
expression containing the state variables of lower-level modules.
Thus, the design assumptions made as to the relationships between

the state variables of modules at different levels are explicitly
recorded.

Stage 4 - Implementation

The intent is that programs written in stage 4 be directly
compiled into executable code. SRI speaks of a programming language
which fulfills the functions of an abstract programming language as
well as those of an implementation language.

The purpose of this stage is to implement the design specified
in the preceding four stages. Programs must be constructed which
implement the specifications from stage 2 and the mapping functions
from stage 3. The exception conditions listed in the specification
for each function need to be tested in the order listed. If an
exception condition is true, then the program must return an
exception to the higher-level program and return no value and
perform no effects. If a function has n exception conditions, then
its program will have n+1 exits.

If no exception conditions are true, the program for a V-
function must produce an output which satisfies the appropriate

30

mapping function. For an 0- or OV-function, the program must
guarantee that at exit the state variables bear the relationship to
their values at entry that is expressed in the EFFECTS section of
the specification. The result returned by an OV-function seems to
be specified also as part of the EFFECTS.

From the view of a sequence of finite-state machines, the above
steps implement (the state variables and operations of) machine Mi
in terms of the state variables and the operations of machine Mi-1.
The "abstract programming language" is used to write these programs.
The other step of implementation is to implement the primitive
functions of the bottom-level module(s) as well as the primitive
functions of the abstract programming language in the
"implementation language". The form of communication between levels
must also be determined, such as macro expansion or procedure calls.
SRI admits that in some cases efficiency considerations may require

that implementation not be based so closely on design as described
above.

EXAMPLE

The stages of the SRI methodology, as described in Neum77, are
carried out below for a simple example system. The principles of
the design and proof methodology will be illustrated, even though
all checking and proofs will be done manually. Acquaintance with
the fundamentals of the specification language is assumed below.

SRI uses mixed conventions to refer to the result produced by
execution of a V-function or OV-function. SRI defines a V-function
in the form "VFUN seg(loc)" -> data" and then references the result
as "data" or "seg(loc)", depending on context. In the following
example, a more consistent notation replaces the three SRI
references with "VFUN seg(loc)", "seg", or "seg(loc)", respectively.

Resign and Implementation

The example system (see Figure 6) is a random access storage
area called a gegmeut, whose current size is limited by a fixed
maximum. Stage O lists the functions in the user interface of this
system. The V-furction geg(loc) returns the item in location loc of
the segment. Locations range from zero to some implementation-
defined upper bound, but only locations less than the value of
another V-function gize are considered to be in the segment. There
are two O-functions: [rewrite(loc,data) to update a location in the
segment with a given data item, and append(data), to add a new item
at the end, increasing gize by one.

3

S

s IS i
loc 0 12 |
o R B
seg(loc) a d ! g
rewrite(2,d) lPlLll(d)
P“t(loztd)
;; k 1 2 npg = 3 .l-o_ _____ -
' page(k,1oc)| d (e s 3 ;
loc 012301...I'3-'|§'-).‘
¢
rem = 2 add get

Figure 6. segment/page System i

32

s s - povmre

Level pevel/Module

Number Name V~-function O-function
2 segment seg(loc) rewrite(loc,data)
stage 0
size append(data)
stage 1

1 page page(k,loc) put(k,loc,data)

ngp get

rem add

Note: In the example, stage 3 causes iteration of stages 1 and 2
to add two derived V-functions, pgn(loc) and dis(loc), to
the page module.

Figure 7. Products of Stages 0 and 1

=

Figure 7 has been added to the Millen figures by the author of
this report to emphasize the assumed form and contents of the
products from stages O and 1. In a more complicated system, the
user interface from stage 1 might be different from stage 0 - it
might be split into several modules, some of which might be defined

at lower levels for use by intermediate levels as well as the user
interface.

In stage 1 a hierarchical design of the system is sketched. To
keep the example small, we have just two levels: the user interface
or segment level, level 2, and one lower level, called the page
level, level 1. See Figure 6. The lower level system allocates
storage in pages of fixed size. It has a page-read function
page(k,loc) indexed by page number and displacement, an update
function put (k,loc,data) for rewriting one location, and a function
get to obtain a new page.

The segment envisioned in the user interface is implemented by
several consecutively numbered pages, ending somewhere within the
last page. A function npg gives the length of the segment in pages.
A function rem is also needed to keep track of the size of the

fractional part of the segment within the last page, and a function
add is needed to update rem.

All the functions in the user interface level are put together
into one module, and all the page level functions are assigned to a
second module implementing the first. More than one module per
level is not needed in this example since there is only one data

structure at each level: the segment at level 2 and the page array
at level 1.

For stage 2 we provide a formal specification in Figure 8 for
the functions listed above. (The SRI convention is observed of
denoting new values of V-functions by preceding the V-function name
by a single quote symbol. Unquoted V-function names denote old
values.) These specifications illustrate some, but not all, of the
features of SPECIAL. To avoid cluttering the specifications, no
type specifications are shown. All parameters, arguments, and
values are assumed in this example to be the same type: non-
negative integers with some implementation-defined upper bound.

One of the resource parameters of the system is the desired
maximum segment size maxsize. The size bound is implemented in the

page level with two bounds: maxnpg, the upper bound for the number
of pages, and pgsize, the page size.

34

DRI

ey ko

MODULE segment
PARAMETERS
maxsize
FUNCTIONS
VFUN seg(loc)
VFUN size
OFUN rewrite(loc,data)

EXCEPTIONS
loc > size -1

EFFECT
'seg(loc) = data

OFUN append(data)

EXCEPTIONS
size = maxsize

EFFECT
'seg(size) = data
'size = size + 1

MODULE page
PARAMETERS
maxnpg
pgsize
FUNCTIONS
VFUN page(k,loc)
VFUN npg
VFUN rem
OFUN put(k,loc,data)

EXCEPTIONS
k > npg

k = npg AND loc > rem -1

EFFECTS
'page(k,loc)

OFUN get

EXCEPTIONS
npg = maxnpg

EFFECTS

'npg = npg +
‘rem = 1

OFUN add

EXCEPTIONS
rem = pgsize

EFFECT
'rem = rem +

= data

1

1

Figure 8. Specifications for segment Module and page Module

35

e

Stage 3 provides the mappings between consecutive levels. Each
V-function in the segment level is expressed as a function of page
level V-functions in Figure 9. In order to express the seg mapping,
it was convenient to introduce two derived V-functions to be added
to the page level: pgn, which gives the page number for a segment
location, and dis, giving its displacement within the page. The \
arithmetic expressions given are written, not in pure mathematical
notation, but in SPECIAL, whose expressions are upwardly compatible
with ILPL. Thus, the division (/) of two integers has an integer)
result, the integer part of the real quotient. 1

The implementation of each segment level O-function as an
"abstract" ILPL program calling page level O-functions, as shown in
Figure 10, is the product of stage 4. All V-functions other than
bottom level primitive V-functions must also be implemented with
programs. The programs implement derivations, in the case of
derived V-functions, or mappings, in *the case of higher level
primitive V-functions. Bottom level primitive V-functions end up as
program variables in the implementation.

Exception conditions arising from function calls are reported,
according to the semantics of SPECIAL, by setting a "meta" function
ERRORCODE() to the character string identifying the exception in
the specification. The ILPL user can identify which exception has
occurred, if any, as a result of the function call, by using the
DO...WITh construct. In this example there is no need to
distinguish between exceptions, so the DO...WITH, and also the ILPL
RETURN statement, which sets the higher level ERRORCODE, are not]
used.

Note that the implementation for rewrite does not do any
exception testing itself, but lets the call on put do the testing.
If an exception occurs, put has no effect, and hence neither will
rewrite. The program for gppend, on the other hand, does enough
testing to ensure that the called functions will not encounter any
error conditions.

Since the page level is the bottom level in our design, each of
its O-functions must either be a built-in function of ILPL, or have
an ILPL subroutine implementing it. Trivial subroutines for put,
get, and add are shown in Figure 11. Now all stages of the design
and implementation are complete.

Yerification

Stage 0' of the verification consists of stating the required
properties of the user interface. For this example we might want to

36

I EPES o o . I““

Wr}%’“w " ” —rrrrrr

{ MAP segment TO page "
[MAPPINGS |
E maxsize : maxnpg®pgsize
E size : (npg - 1)%pgsize + rem
‘ seg(loc) : page(pgn(loc),dis(loc)) §
|
VFUN pgn(loc) :
DERIVATION |
loc/pgsize + 1
’ VFUN dis(loc)]
| DERIVATION
MOD(loc,pgsize)
4
L‘
(1
|

Figure 9. segment/page Mappings and Supplement to Specifications

————————————————

37

A A v

OFUN_PROG rewrite(loc,data)
BEGIN
put (pgn(loc),dis(loc),data)
END

OFUN_PROG append(data)
BEGIN
IF rem < pgsize OR
npg < maxnpg
THEN
IF rem = pgsize
THEN get
ELSE add
FI;
put(npg,rem-1,data)
FI
END

VFUN_PROG dis(loc)
BEGIN
dis <- MOD(loc,pgsize)
END

VFUN_PROG pgn(loc)
BEGIN
pgn <- loc/pgsize + 1
END

VFUN_PROG seg(loc)
BEGIN
seg <- page(pgn(loc),dis(loc))
END

VFUN_PROG size
BEGIN
size <- (npg - 1)%*pgsize + rem
END .

Figure 10. Implementations

38

AT et e

OFUN_PROG put(k,loc,data)
BEGIN
IF k < npg OR (k = npg AND loc £ rem -1)
THEN page(k,loc) <- data
FI

END

OFUN_PRQG get
BEGIN
IF npg < maxnpg
THEN
npg <- npg + 1;
rem <- 1
FI
END

OFUN_PROG add
BEGIN
IF rem < pgsize
THEN rem <- rem + 1
FI
END

Figure 11. ILPL Implementations of Bottom-Level O-Functions

39

1
i
z

' ~
check a condition such as "a geg(loc) reference to a location :
modified in the past by rewrite(loc,data) or append(data) yields the
same data as long as any intervening rewrite calls refer to

different locations." A simpler condition, more suitable for a
short example, would be:

size < maxsize. (1

Stage 1' of the verification just checks that function names
are not duplicated in different modules and that the hierarchical
structure contains no loops - for example, the page module shéuld
not be implemented by the segment module.

At stage 2' the specifications of the functions in each module
are available, permitting internal checks within each module.
Having the user interface specification in particular, we can check
(1). This condition is a global assertion; it is proved inductively
by showing that the initial state satisfies it, and every O-function
preserves it.

; In our example we have not yet specified an initial state; that

q would be done when the system is finally put into operation. The
initial state will be required to satisfy all desired global
assertions, as well as any INITIAL conditions specified in V-functions.
To increase our confidence that the system will be of some use, we can
exhibit a possible initial state now; this will establish the

! logical consistency of the global assertion.

) The state
v maxsize = n

size = 0
seg(loc) = 0 for all loc !

satisfies (1), if n is an arbitrary non-negative integer in the
implementation range. 3

Every O-function preserves (1), since rewrite does not modify
s8ize, and append has no effect once gize reaches maxsize.

Other global assertions can be stated and proved for the page
module. One cannot tell what global assertions are needed at lower -
levels until the stage 4' verification of the implementation is in

progress. Looking ahead, we {ind that two global assertions will be
used: ;

Y

40

TSI TR R

Lo

B e

npg < maxnpg (2)
rem < pgsize (3)

They are obviously consistent and preserved by each of put, get, and
add.

At stage 3' we have the mappings and can check that they are
consistent. This is done by using them to map each upper level O-
function effect down to its lower level equivalent and showing that
the lower level effect is consistent. This check is essentially to
prevent independent state variables from being mapped down into the
same lower level state variable. For example, the mapping:

a:b
c:b

would be inconsistent if there were an upper level function that
changed a differently from c, say with the effect:

L]
-

‘a

‘e.=.0.
Then the mapped effect would be:

s |

'b =0
which is inconsistent.

The expressions tested for consistency in this step appear as
output assertions in the implementation programs. Hence, testing
for inconsistency this way is redundant, as SRI points out, since
the implementation proofs in stage 4' would fail in the presence of
any inconsistencies. The purpose of stage 3' is to save us the
trouble of attempting stage 4' when mapping mistakes doom it to
failure. Since it is tedious to do consistency checking manually,
let us, in this example, go on to stage 4'.

In stage 4' we verify the correctness of the programs. The V-
function programs are trivial, since they implement derivations or
mappings that have already been expressed in ILPL-compatible
notation.

41

There are two O-function programs, for rewrite and append.
Figure 12 shows the analysis of rewrite in the form of a flow chart
with assertions at points or "nodes" between the statement boxes.
This is not the way SRI does it; their approach is suited to
semiautomatic verification with their software tools. The proof
illustrations below employ a manual technique that is based,
however, on the Floyd method that also forms the basis for SRI's
system.

Our job is to show that if the exception condition holds, the
program has no effects; and if the exception condition does not
hold, the specified effects occur. Two paths are indicated through
the flow chart, corresponding to whether or not the exception
condition of the rewrite specification is true. Assertions in
parentheses are relations among upper level V-functions.

The first assertion, in parentheses, on node 0 of path 1, is
the upper level statement that the exception holds; it is an input
assertion. The same assertion then appears in its mapped down form.
The next two assertions on the same node are logical consequences of
the first. Their purpose is to establish that one of the exception
conditions holds in the following call of put. In general, the
starred assertions in the flow chart are those that are not just the
result of a substitution, and hence require proof. Only two such
proofs will be illustrated, one for each function,® because they are
easy in this example. They do, however, represent details that have
to be right, so it is worthwhile to have done the checking.

When put is called in path 1, it will have no effect, because
one of its exception conditions holds. This fact is written as an
output assertion on node 1 of path 1.

On node 0 of path 2, the consequences of the input assertion
imply that neither exception condition of put holds, and we may then
take the effect specified for put as an assertion for node 1, just
after the call. Checking the mapping for geg, we find that this
assertion is exactly the effect of rewrite, as desired.

The analysis of append is shown in Figure 14. The three paths
are distinguished by the tests in the program, but the final
assertion on path 1 shows that this path corresponds to the
exception condition of the append specification. In the other two
paths it is shown before each call that no exception conditions hold
for the lower level functions called, and hence their effects are

" In Figures 13 and 15.

taken as assertions after the call. For both paths 2 and 3 the

upper level effects specified for gppend are shown to hold at the
exit node, 6.

Note that the effect of append requires us to refer to both
initial and final values of aize. Since primes cannot be used
unambiguously to indicate new vs. old values in a program that may
call two or more O-functions, we have used the subscript 0 to
indicate initial or input values of certain V-functions where
necessary. In general, unsubscripted references simply refer to the
values at the node corresponding to the assertion, or to any
previous values that could not have been changed in the interim.

The verification of stage 4' stops at this point, although
there are really two jobs left to do: verify the ILPL compiler, and

check that the initial state, when it is chosen, satisfies the
desired conditions.

43

weaBoag 937amea jo sysATeuy - g1 2an814

uotixesseyIwd‘epou sSurrsqunu 03 Ley

A(w A
. |

" e Aagvrd.nwsawﬁwwuw ‘'zt _ | (%300338 ou) °1°1°1
| 1

(w3wp* (00T)wTp* (00T)uBM)30

T - w1 5 (o0T)sTp Ueyy
3du = (ooT)uBd FT °C°Z°0a

du S (o0T)udd °2°2°0«

|
I
T-wex4 |
J
c

3u = (ooT)udd JT *C°T°0s
8du < (ooT)uBd *Z°T°0s

.

T=-wex 4
5RM~ = 3du) < oot
T = 9318 < 20T) °T°T°0

“ T'= WX < (o0T)sTP uUsyly
!
|

03783dy(T - Mu) > oot
(T = o378 5 00T) °1°2%

4

44

LEMMA 0.1.2 (rewrite)
PROOQF
pgn(loc) = loc/pgsize + 1 (derivation)
2 npg - 1 + (rem-1)/pgsize + 1 (0.1.1)
But rem < pgsize (global assertion (3))
Hence (rem - 1)/pgsize = 0
Therefore pgn(loc) > npg.

(Note that "/" represents integer division)

Figure 13. Sample Proof for rewrite Program Analysis

45

= rea, AND npg = BPE,
AND(sise = lino)

1.(243)el, vea < pesize OR
Bpg < maxapg
#1,(2+3)e2 (sise < maxsise)

2,2,1, rem f pgsize Je3ele Trem = pgaize

l #3.3.2, npg < maxnpg
|
(
|
..
' 5¢3¢1. npg = npg, + 1
k2.1, i.‘ Y “.0+ & T ew, ---J ‘ 50302, rem = 1
: put(npg,rea=-1,data)
! HILE
‘ el
- o= -----.l
6.1.1, rem > pgsize AND | : : 6.(243)e1e n::i:nmrl)
npg > MAXNPE =
#6,1,2, (lilo = maxsise) : : : “60(203)020 (m(.mo) i “‘.)
(no offocu) ‘ ‘ ' %64(203)43¢ (sise = siseyt 1)
1 2 3

Key to numbering: node,path,assertion

Figure 14. Analysis of append Program

46

LEMMA 6.3.2 (append)
PROOF

pen(size) = size /pgsize + 1 (derivation)
0 0

npg - 1 + rem /pgsize + 1 (mapping)
0 0

npg + 1 (3.3.1)
0

dis(size) = MOD(size ,pgsize) (derivation)
0 0

= MOD((npg - 1)%pgsize + rem ,pgsize) (mapping)
0 0

MOD(rem ,pgsize)
0

o (3.3.1)

seg(size) = page(pgn(size ,dis(size)) (mapping)
0 0 0

= page(npg +1,0) (by the above)

0
= page(npg,rem-1) (5.3.1 and 5.3.2)
= data (6.3.1)

Figure 15. Sample Proof for append Program Analysis

47

SECTION IV

HONEYWELL METHODOLOGY

Several related efforts within Honeywell, Inc., have
contributed to the methodology discussed here. The initial efforts
were by a group of people including R. C. McGee and A. Pizzarello at
Honeywell Information Systems in Phoenix. A methodology was evolved
which has been referred to as a set of Rational Programming
Techniques. The methodology is based on work by E. W. Dijkstra and
C. A. R. Hoare (Dijk75, Dijk76, Hoar69, Hoar72b). As the
methodology was evolved, it was applied to development of a Virtual
Machine Monitor (VMM), which allows several operating systems to be
run concurrently on the same computer, as well as to other smaller
projects.

More recently the methodology from Phoenix has been referred to
as the WELLMADE methodology. It has been studied by D. L. Boyd and
others at Honeywell, Inc., in Bloomington, Minn. Boyd and G. J.
Gustafson have discussed their view of WELLMADE in Boyd76b.

At the present time, Boyd and Stanley Vestal are developing a
Rational Design Methodology (RDM) under Honeywell contract to RADC
(RADC contract number F30602-77-C-0043). The RDM generally consists
of a superset of the features of WELLMADE.

The Honeywell methodology discussed here is intended to be the
RDM; however, documentation of the RDM is rather minimal as yet.
Documentation of WELLMADE is somewhat more extensive, although the
only publicly available documentation found on any of the work
mentioned above is Boyd76. Consequently, this discussion is heavily
based on informal documentation of the Phoenix, WELLMADE, and RDM
efforts and on personal communications with Boyd and Vestal.

GENERAL CONCEPTS AND DESIGN DOCUMENTATION

The basic unit for software design in the RDM is the module.
As in the case of SRI, the module is viewed as an abstract machine
or finite-state machine which is characterized in terms of its data
structures (state variables) and programs (operations upon them).
Lower-level modules form a base for higher-level ones. In addition
to the modular hierarchy, each program within a module may be
decomposed in terms of internal program blocks which can also be

48

decomposed in terms of internal program blocks, etc., to the extent
desired.

The structure for documentation (including a language for
formal specification) of a design is specified for the RDM in BNF
(Backus-Naur form). The overall documentation structure is shown in
Figure 16. The line numbers in the column at the left and the block
numbers are not part of the BNF specification but have been added to
simplify this discussion. For further simplication in Figure 16 and
similar ones which follow, the leading portion of the block numbers
(1.2.2.2.) has been dropped for most blocks -- particularly those
within the two outlined areas. In most (but not all) cases, blocks
which are nodes but not leaves contain no information but simply
provide linkage. The intent is that the entire design documentation
(all of the contents of Figure 16) be stored in a computer as the
design is evolved.

Figure 16 represents the design for a complete software system.
Block 1.1 is an index of the modules of the system. The remainder
of the figure, starting with block 1.2, is repeated to the extent
necessary for each module in the system. Blocks of information are
delineated by the use of a number of reserved words (entered in the
computer in an underlined form and generally shown in that form in
this report), and other similar words are used within certain
blocks. The BNF not only specifies the design documentation
structure but also the syntax of a program design language (PDL).

Several of the blocks in Figure 16 are to contain unformatted
material denoted as "text". Such blocks in line 4 are used for
English-language descriptions of certain aspects of each module.
Based on WELLMADE documentation, these blocks have the following
uses. The "functional-description" block describes the function or
purpose of the module. The "usage-information" block tells a user
how to use the module and at least those for higher-level modules
are used to provide the basis for user's manuals. The "acceptance-
criteria" block describes resource utilization objectives such as
time (performance) or space. The "design-overview" block describes
how the module fulfills its function, the way it operates. The
purpose of the "notes" block on line 4 (and on lower lines) is
apparently to record design alternatives and the reasons for
selecting a particular one as well as limitations of the design
which may need to be taken into consideration at implementation
time.

49

e m s e eccn cen e cm--- -

lllllllllllllllllllllllllll

.ounu.o:uwm gﬂuuu_uuﬁsuon u8yseq °971 @2in8y3

|||||||||||||||||||||| -

llllllllllllllllllllllllllll

R b It LS

~wrisnany

cLreen

llllllllllllllllllllll

L)

F

o1

50

SYSTEM STRUCTURE AND DESIGN PHASES

Two design phases - general and detailed - are grossly
associated with different parts of the structure. A general design
phase involves specification of the design as a decomposition of
modules, also referred to as design by levels of abstraction.

Figure 17 illustrates the structure of a software system designed
using the RDM. The rectangles represent modules, and their
relations are intended to represent modular decomposition. Within a
module, the circles represent programs, and their relations are
intended to represent stepwise refinement, part of detailed design,
discussed below. General responsibilities of the modules are
decided upon, and the modules are arranged in a hierarchy. The
hierarchical relationship between two modules is expressed in a
"type definition" in the upper module which references the lower
one. (See below.) General design involves naming each module
(assumed here to be done in block 1.2.2.2 (line 4), of Figure 16,
although it possibly should be done at block 1.2 or 1.2.2.2.1) and
providing uata for the four left-most blocks of line 6 in Figure 16.
These blocks generally describe the data structures of the module
and list its programs (operations). In addition, some of the text
blocks discussed earlier are filled in as necessary for the lower-
level modules. Presumably, at least initial drafts of at least some
of these exist for the top-level module (the system) at the start of
general design.

A detailed design phase involves definition of the programs of
each module, those listed during general design, and supplying data
for the remaining text blocks. Detailed design involves supplying
data for the blocks within the outlined area starting at block 4 on
line 5 of Figure 16. A program may be refined by including lower-
level programs within it which are referenced by the higher-level
program. The lower outlined area starting at block U4.4.1 represents
a refinement of a portion of the program at block 4. Such a process
is referrred to as program refinement or stepwise refinement.

Although it is appealing to think of a general design process
followed, in time, by a detailed design process, Honeywell's current
thinking is that such a situation is not possible in all cases.
Detailed design of the upper-level modules may influence general
design of lower-level ones, so that an individual designer may need
to alternate activities between general design and detailed design.
The activities and products of general design and detailed design
are discussed further in the next two sections.

51

MODULE 3

MODULE 1

(")
ONO

Figure 17.

Honeywell Modular Decomposition Vs. Stepwise Refinement

52

MODULE 2

MODULE 4

GENERAL DESIGN PHASE

As modular decomposition is performed, new modules are defined.
Figure 18 includes the blocks of a module which are primarily
pertinent to general design. Several of the bloccks in line 4 are of
initial importance. The module must be named (block 1.2.2.2) and a
functional description of the module provided for block 1.2.1.1.
General and possibly detailed design for higher-level modules should
provide guidance. The "usage-information" block for a new module
needs to be filled in at least in parallel with detailed design of
higher-level users of the new module. The "acceptance-criteria"
block for the new module can be filled out as resource allocations
between modules are performed. The information is needed before
implementation of the new module and possibly by the start of
detailed design for the new module. Blocks 1.2.2.1 and 1.2.2.3 are
possibly more pertinent to detailed design.

Program Declarations

The four left-most blocks on line 6 relate to global
declarations for the module. These blocks deal primarily with the
data of the module since the details of its gperations are the
principal subject of detaileq design. However, block (1.2.2.2.)3.4
declares the global operations of the module by listing the names
(only) of the top-level programs of the module (those whose design
will later be detailed at blocks 4, (1.2.2.2.)5, (1.2.2.2.)6, etec.).
The scope of an operation (program) is not explicitly declared. An
operation is intended to be referenced by higher-level modules. It
is unclear if an operation is intended to be able to reference other
operations within the same module.

Data Declarations

The first two blocks of line 6 are the principal ones related
to data during general design (data local to the programs of the
module are determined during detailed design). The global data of
the module are declared in the "data" block. The "scope" of the
data is explicitly declared. The apparent intent is that data in
this block can be declared global to the module but not available to
other modules (private) or it can also be global outside the module.
Scope also allows specification of whether a data object is fixed
(constant) or variable.

53

udgsaq Teisusy gy 2andy4

easee= -
cercmccmecvcaccad

.
[remcmemcnccmenmmmaa 1 e el R el e '
' ' '
" [)
' : 1 L
' '] '
. Sl oo = e F} '
: s e s 2 o e :
¢]
n | | =
X (] Wiy esedd e s0any oney o ‘
. '
L] \ 13 ceoreen ey —.:.-.k
i L]
: Y _
£ o sl SO R B - s S e s R S | - 4

e A . ~_ ﬁ an wn L
e - e | euagas-eseeerse e 1i0mseyey sBven | eoy 26y FE_ rvmDy s5eny | ’
e 1 veer l o e ey

|] |]

Ivpe Declarations

Data declarations also indicate the type (or class) of a data
object. The type of a data object not only determines the kind of
information it may contain but also the kinds of operations that may
be performed on the object. The PDL portion of the BNF definition
of the syntax of the RDM provides various primitive data types such
as integer, boolean, char, etc. Also provided are various
facilities for constructing additional types. Declarations of such
constructed types may include data components as well as operations
available upon them. If the data declaration of a data object
refers to a constructed type, then a type declaration for that
constructed type must appear in the "types" block of line 6 for the
same module, except in the case of arrays and sets, discussed next.

The PDL of the RDM includes type declarations for several
common constructed types: arrays and sets. If L is declared to be
of type array and the type of its elements is also declared, then
various data components and operations become defined for the array
L, some of which are shown in Figure 19. Some of the same kinds of
data components and operations are available for sets, the principal
difference between the two being that the elements of a set have no
ordering.

The RDM allows types to be constructed which are structures of
Juxtaposed (or concatenated), simpler types, referred to as a
Cartesian product of types. If date is declared to be a type
consisting of the product of the types month, day, and year (which
must also be declared as types), then a number of data objects could
be declared to be of type date and each would have month, day, and
year components. A type can be constructed which may be any one of
a declared list of types, referred to as a union of types. If type
number is declared to be the union of type integer or type real,
assuming real were defined to exclude jinteger, then a data object
declared to be of type number could contain either a real or an
Anteger. The sequences of data objects or types of WELLMADE are not
included in the RDM since arrays (present in both) provide adequate
facilities.

If a single "stack", for instance, is needed in a system and is
not referenced outside the module in which it is defined, it should
be possible to define it in the "data" block of the module. If
several different stacks with essentially the same kinds of
characteristics are needed, all in one module, "stack" might be
declared a type in the "types" block and the several stacks declared
to be of type "stack" in the "data" block or as variables local to
programs of the module.

55

et 7 ST\, W ¥ A N e TR

If L is an array
and Ei is an expression such as A+B
and X is an identifier such as A,

then L.hib gives the value of the index to the top of the array '
(high bound). i

L.1lob gives the value of the index to the bottom of the array
(low bound).

vl 2oLl EE S

L.dom gives the domain of the jindex
(L.dom = L.hib - L.lob + 1).

L.high gives the value of the element at the top of the array.
L.low gives the value of the element at the bottom of the array.
j L.(E1) gives the value of the element whose index is equal to E1.
; L:shift(E1) causes a shift in the index values used to reference
4 elements in the array without changing the size or

contents of the array.

L:swap(E1, E2) swaps the contents of the elements of the array
whose index values are E1 and E2.

L:loext(X) adds an element to the bottom of the array whose

value is that of X, if X is of the same type as the
elements of the array.

L:hiext(X) adds an element to the top of the array whose value

is that of X, if X is of the same type as the elements
of the array.

L:lorem removes the bottom element of the array (and reduces
L.dom by 1).

L:birem removes the top element of the array (and reduces L.dom
by 1).

Figure 19. Some Array Variables and Operations 4

56

Levels of Abstraction

If the concept of "stack" is to be treated as a facility so
that one or more stacks are to be referenced by more than one
module, then "stack" is treated as a so-called abstract data type.
(Lind76 is a particularly good discussion of abstract data types and
the advantages of their use). One lower-level module (named
"stack") would provide the "stack" facility. That module would
further define the data components of stacks and its programs would
implement stack operations. The higher-level modules which use
stacks would declare "stack" (including its data components and
operations) as a type in the "types" block. Some portion of this
type declaration, such as that used to declare the type of data to
be stored in an object of type "stack", might be declared to be of
type abstract, meaning that it will be declared more specifically
elsewhere. In the "data" block of the same module, a particular
data object could be declared to be of type "stack", the elements of
which, rather than of type abstract, might be declared of type
integer (or some other primitive or constructed type).

Abstract data types allow modular decomposition by levels of
abstraction. When "stack" is treated as an abstract data type, the
module which implements the stacks is at a lower level of
abstraction than those which use them. Figure 20 briefly sketches
some of the components which might appear in a lower-level module
called stack which implements a stack facility and a higher-level
module called upper which uses the stack facility. The example is
based on material supplied by Boyd.

When it is felt that general design of a module is complete
(except for possible effects on it of detailed design of higher-
level modules), it may be possible to add more information to some
of the text blocks of line 4. Detailed design for the present
module might start at this point or be postponed pending further
definition of higher-level modules.

DETAILED DESIGN PHASE

As noted earlier, detailed design involves the detailed
definition of the programs of each module. Detailed design of some
of the higher-level modules may need to be done before general
design of some of the lower-level modules can be completed. In
addition, some of the remaining text blocks need to be completed.

Figure 21 includes the areas pertinent during detailed design.
Although most of the blocks are shown for reference purposes, the

57

Module upper

tzges

type stack : (type element : abstract;
maxsize : integer;
stacksize : integer;
error : boolean;
push : (stack@error)fun (in : e : element);
pop : (stack @error)fun ;
top : (element @error)fun;
empty : boolean fun;
full : boolean fun;
init : stack fun (in : maxsize))

data
A : stack
A.element : integer
rograms
stackint

program stackint :

variables
x : integer

text [prc;gram logic)

A:init (dn : 10) [initializes the stack A with ten elements]

A:pt.xsh (in : 29) [puts integer 29 on top of stack A or sets

: A.error true]
X := A.top [readc element at top of A or sets A.error true]
A‘P?P [relovu and throws away element at top of
. A or sets A.error trueﬁ
end upper

Figure 20. Honeywell Abstract Data Type Example

58

Module stack
data

element : abstract array
maxsize : integer
stacksize : integer
error : boolean

programs

push
pop
top
empty
full
init

program init :

are unclear, and some may not yet have been decided by Honeywell.
The function init has an integer input parameter, maxsize, and

a result parameter which specifies an object of type stagk. The
parameters are said to be passed by declaring them, in the stack
module, as variables of the module or of a program within the
module. Presumably the parameters should also be associated
with the function either under programs or program but the
current BNF does not allow it. The linkages for the resulting
stack are further complicated by the necessity to associate

the data declarations for the upper module with the call to

init. At any rate, the intent here is for the stack module to !
create the object A with space to store 10 integers plus its
three parameters: maxsize, stacksize, and error. For A,
maxsize is set to 10, stacksize to 0, and error to FALSE.

[Some acpects of the intended linkages between the two modules }
:

end stack

Figure 20. Honeywell Abstract Data Type Example (Concluded)

59

u8ysaqg parye3asd °1¢ InsTI

ones of principal importance are the blocks within the two outlined
areas and those on line 4, particularly those near the right end.

At the start of detailed design of a module, the three left-most
blocks should be complete or at least the information to complete
them should be available. If the resource restrictions for the
modules are not relatively clearly reflected in block 1.2.1.3 at
this time for some reason, then alternative design strategies should
be considered rather carefully to determine if any of them appear to
require significantly greater amounts of one or more resources than
others. Assuming that at least trend information is available as to
which resources are or are apt to be most critical, design
alternatives requiring the lesser amounts of these resources can be
favored. Alternatives considered and reasons for choosing one as
well as such things as assumptions made regarding implementation
which relate to the whole module can be documented in the "notes"
block of line 4. When a design alternative has been chosen and the
design relatively well established, the "design-overview"” block can
be completed.

The top-level programs of the module which correspond to its
operations were listed in block (1.2.2.2.)3.4 of line 6 during
general design. The parameters used by these programs should be
given in the "usage-information" block of line 4. The programs are
now to be defined by supplying information for blocks such as those
within the upper outlined area starting with block 4 of Figure 21.
If the module contains more than one top-level program, then other
"outlined" areas are assumed to start at blocks (1.2.2.2.)5,
(1.2.2.2.)6, etec.

Program Refinement

The other kind of hierarchical decomposition mentioned earlier
is that of program refinement. Stepwise refinement of a program
within a module can be accomplished so as to delay lower-level
decisions to points lower in the program hierarchy. Program blocks
internal to other blocks are permitted by the RDM to the extent
desired. The lower outlined area starting at block U4.4.1 represents
a program block within the upper program. Each program block may
contain zero or more other program blocks and each contains the same
type of information, regardless of the level in the hierarchy, as

indicated by the shape and contents of the two outlined areas in the
figure.

The upper outlined area starting at block 4 will be used as a
basis to discuss the manner of defining programs. Block U4 contains
the program name. Block 4.5 can be used for notes pertaining to the
design or implementation of the program. Block 4.2 is used to name

61

any lower-level program blocks contained within the program, such as
one in the lower outlined area starting at block 4.4.1. Such lower-
level programs might be expanded in-line by a macro processor or
called as subprograms when implemented.

Blocks 4.3 and 4.3.1 are linkage blocks. Block 4.3.2 can be
used for a text description of the performance requirements
(specifications) of the program. The RDM, like most methodologies,
currently contains no guidelines for assuring that the program to be
defined will meet the performance requirements. The remaining
blocks ("variables", "input-state", "output-state", and "design-
logic") are the principal ones used for definition of the program.

Program Varjables

Block 4.1 contains declarations of variables local to the
program and possibly declarations relating to variables of its
ancestor programs and the data of the module. 1In general, the rules
which apply to the "data" block (1.2.2.2.3.2), as discussed under
General Design, including scope rules, apply to block 4.1 also. If
some portions of a local data structure are to be declared in a
lower-level program block, those portions would be declared of type
abstract in the declaration for the current program.

Program Requirements

Blocks 4.3.1.1 and 4.3.1.2 are used to make assertions
regarding the state of the module at entry to the program (input
state) and at exit from the program (output state). These states
are usually described in terms of values of the state variables of
the module. (If the module is viewed as implementing an abstract
data type, then the state variables correspond toc the data items of
the data type, i.e., not the operations.) Output states may be
contingent on input states. The only state variables that need be
considered are those which relate to the actions of the program, all
others being assumed to be unaltered by execution of the program.

Program Design Logic - Constructive Approach

The last major step of detailed program definition is to supply
a description of the "design-logic" for the program for block 4.4.
This description is to be constructed (using techniques referred to
as Dijkstra's constructive approach) so that the design-logic
accomplishes its intended functions and satisfies the input and
output assertions. The approach is amenable to formal proof-of-
correctness but even used in the absence of formal proofs, it is

62

expected to reduce design errors since proof considerations are to
be a part of the construction process.

The general rationale of the constructive approach is as
follows. The "output-state" assertions specify the set of
acceptable states of the module at exit from the program. Since the
purpose of the program is to surrender control with the module in
one of these acceptable states, assume that the state of the module
at exit is described by the "output-state" assertions. The design
logic is to describe a program which will transform the state of the
module from one of the expected "input-states" to one of the
acceptable "output-states". The design logic is to be constructed
using a set of well-defined building blocks or constructs which have
known state transformation characteristics and whose effects are
localized (no branches, for instance) so that the transformation
produced by a set of steps can be determined by looking at the
transformation produced by each step. More particularly, knowing
the transformation effects of each construct, one can work
backwards, stepwise, from the assumed, final "output-state" for
each path through the design logic. At each step, one can determine
the set of input states which, transformed by the construct
currently being examined, will result in the set of output states
already determined. In this manner, one can determine the set of
all initial input states (at entry to the program) which, when acted
upon by the program, will result in the set of output states assumed
at exit from the program. This set of input states is thus derived
from the output set based on the transformation characteristics of
the design logic specified for the program. If the expected set of
input states described in block 4.3.1.1 is a subset of the derived
set, then it has been demonstrated that the design logic will
transform the module from au expected input state to an acceptable
output state. In deriving a set of input states from the output
states, it will be necessary to demonstrate that any loops in the
program terminate successfully. Specifically, the "constructive
approach" is intended to imply that programs are constructed by
allowing the set of output states to suggest the program, by
applying the constructs while considering their transformational
characteristics so that the set of all possible input states
includes the set of expected input states.

Note: In the terminology of Boyd and others, the relationships,
such as x < 5, used to describe the expected input states and the
acceptable output states are "predicates". Thus, when a program or
a construct is viewed as a transformer, it is called a "predicate
transformer". An output state relationship is also referred to as
the "post-condition" and an input state relationship as a "pre-
condition". The derived input state relationship based on a known

63

"predicate-transformer" and a known "post-condition" is referred to
as the "weakest pre-condition", which encompasses the largest set of
input states with the appropriate characteristics. End of Note.

Note that proof-of-correctness, as described above and as
applied in other methodologies, does not prove that a program "does
what it is supposed to do", in a general sense. The program is
viewed as a transformer to transform the state of the module from
any of the expected input states to an acceptable output state, and
that is the operational definition of "what the program is supposed
to do". It seems unclear that it is possible in all cases to draw
the input assertions and output assertions so finely that it can be
proved that the proper output state results for each expected input
state, other than by examining all states individually which is not
the intent.

Constructs and Transformational Characteristics

The last aspect of the constructive approach to examine is that
of the transformational characteristics of the individual constructs
used in specifying the design logic for a program. These constructs
include several of a functional form and the so-called P-Notation
constructs of Dijkstra. The constructs of a functional form are
generally separately constructed, subject to separate proofs, and
their transformational characteristics are specifically stated. The
array and set functions provided by the PDL would presumably be
implemented and proved once. The operations of lower-level abstract
machines are their programs which are constructed and proved like
other programs. Lower-level program blocks are handled separately
in the same way. The linkages between thes: abstractions must also
be known to be correct.

The P-Notation constructs are described in Figure 22. Each of
these has transformational effects which seem intuitively clear
except for the last. In each case we need to describe the set of
input states which must exist if the construct as a transformer is
to produce a given set of output states. In the case of the null or
Skip construct, the derived set of input states is identical with
the output set since gskip performs no state changes. For abort,
there is no input state which will produce any output state since
abort never reaches output (the input set is the false or null set).

For the assignment construct, the input set is derived by
substituting the assigned expression into the output assertion. If
the output assertion is y < 10 and the assignment is y := 2x, then
the input assertion is 2x < 10 or x < 5. The derived input set for
a sequence (concatentation) of two constructs (S1; S2) is determined

64

AR o

NAME GENERAL FORM EXAMPLE

1. NULL skip skip

Discussion: No action occurs and the next statement in sequence is
executed. Not intended to be used by itself but in conjunction with
the conditional statement types, selection and iteration, discussed
below.

2. Abort abort abort

Discussion: No further execution takes place in the abstract
machine in which it is encountered. Not intended to be used by
itself but in conjunction with the conditional statement types,
selection and iteration, discussed below.

3. Assignment Nt V2 00 oy Vs X, ¥y := x+5, 2x
E1, E2, ..., En

Discussion: The value of the variable Vi is replaced by the value
of the corresponding expression Ei. Shown is the multiple or
simultaneous assignment statement. Dijkstra's intent (and
presumably Honeywell's) is that in the case of the multiple
assignment, all assignments take place simultaneously, in multiple
processors, for instance. The values of all variables appearing in
expressions on the right-hand side are the old values as of the
start of execution of the statement (the old values are all captured
at the start of execution). If the multiple assignment is executed
by a single processor, then no sequence of the individual
assignments should be assumed since sequence of execution has no
effect on the results. In the example above, if it is intended that
the new value of y be based upon x+5, the new value of x, then two
single assignment statements must be used.

Figure 22. P-Notation Constructs

65

T T R T s e e

NAME GENERAL FORM EXAMPLE

4. Concatenation S1; S2 X = x+5; y := 2x

Discussion: First execute S1, then execute S2. A sequence of
statements separated by sermicolons is executed.

5. Selection if G1 => S1 if x < 0 => agbort
| G2 -> 82 ® (0 <x)and (x <1) =>
: y := sqrt (x)
: @ (1< x)and (x < 1024) =>
s y := x ® sgrt (x)
B Gn -> Sn fi
fi

Discussion: The Gi are Boolean expressions called guarding heads or
guards. If none of the Gi evaluates true, then the selection
statement is equivalent to abort (in the example, this will occur if
x 2 1024). If one or more of the guards is true, then the statement
Si (which may be a concatenation of statements), associated with a
single arbitrarily selected, true guard is executed once. In the
example, if x = 1, then both the second and third guards are true.
But in this case, the associated statements, S2 and S3, both produce
a value of 1 for y, so that it is immaterial which one is executed,
except for efficiency. This type of situation in which several
guards are true but the statement associated with each produces the
same result is one mentioned in particular by Dijkstra. It is an
unneeded distraction to have to ponder which set the boundary value
does or should be placed in, in such cases, and it is really better
to specify non-determinacy. The intent is less clear when two or
more guards are non-disjoint but their associated statements produce
different results. Honeywell has also mentioned the option of
restricting such statements to the determinate case in which the
sequence of appearance of the true guards affects the selection of
the associated statement to be executed. (The first guard and its
associated statement illustrate explicit use of the gbort statement.
In this example, the effect would be the same if they were
omitted.).

Figure 22. P-Notation Constructs (Continued)

66

NAME GENERAL FORM EXAMPLE
6. Iteration do G1 -> Si do A(1) > A(2) =>
A:swap (1,2)
@ G2 -> S2 B A(2) > A(3) =
. A:swap (2,3)
s @ A(3) > A(4) =>
. A:swap (3,4)
@ Gn -> Sn od
od

Discussion: If all the guards are false initially, the iteration
statement is equivalent to gkip; otherwise, statements associated
with true guards are repeatedly executed until all guards are false
at which point gkip occurs. As in the case of the selection
statement, all guards are evaluated and the statement(s) associated
with an arbitrarily selected, true guard are executed; the guards
are then re-evaluated to determine if the process is ended or if
another true guard is to be arbitrarily selected. The assertion is
made that there exists a class of tasks which can be performed by
the execution of n steps, possibly repeatedly, and that the end
result is the same regardless of the order of execution of the
steps. For such tasks, specifying an execution sequence is an over-
specification and an undesirable activity. If sequence of execution
of the steps is of importance, then the construct must be made
determinate or used only in a determinate manner. Honeywell's
intent is not clear in its documentation. The example of the
construct given above, which is clearly not generally applicable,
does an in-place sort of the values in a small array, A, by repeated
comparison of adjacent values and swapping them if the one in the
upper position does not have the higher value. When all adjacent
pairs have the proper relationship, the process is ended. (A more
practical example of in-place sorting is the bubble sort used in
Figure 23 to illustrate the Honeywell methodology.)

Figure 22. P-Notation Constructs (Concluded)

67

e .

as stated previously, by examining each separately. The input set
for S2 is determined based solely on S2 as a separate transformer.
The derived input set for S2 is the output set for S1 so that the
input set for S1 can be derived by considering only S1 as a
transfcrmer. The derived input set for S1 determined in that manner
is also the derived input set for S1; S2.

The derived input set for the selection or if construct is
determined sceparately for each possible path and the results
expressed as the ORed combination. The effect of the guards must
also be considered. If the construct is:

if G < 1000 => T := .1%G.
@G> 1000 ->T := .2%
P 9

and the output assertion is T < 500, then the derived input set for
the first assignment is .1%*G < 500 or G < 5000. But since the first
assignment has no effect unless G < 1000, then the derived input set
for the first path is G < 1C00. The derived input set for the
second assignment is .2%G < 500 or G < 2500. Combining this effect
with that of the guard gives a derived input set for the second path
of 1000 £ G < 2500. Thne combined derived input set is G < 1000 or
1000 £ G < 2500 which is equivalent to G < 2500.

In the case of the last construct, iteration or the do loop,
the formal definition of the transformation is not intuitively
useful for constructing programs. Therefore, an invariance theorem
is used to suggest the proper method for loop construction. The
output assertions specify the required relationships between the
state variables of the module at exit from the loop construct.

These output assertions are separated into two sets of assertions
such that the simultaneous satisfaction of both sets is equivalent
to the satisfantion of the output assertions. One set of assertions
represents an invariant which is to be satisfied by the state
variable values at every point within the loop except while the
guarded statement(s) associated with one true guard are being
executed. In particular the invariant must be satisfied (possibly
vacuously) prior to the first pass through the loop and after the
last pass. The other set of assertions that, together with the
invariant, make up the output assertions, represents the termination
condition for the loop. The termination assertions are false
everywhere within the loop except following the last pass. Thus,
after the last pass the two components of the output assertions, the
invariant and the termination condition, will both be satisfied and,
therefore, the output assertions are satisfied.

68

T

The guard(s) of the loop perform the termination tests. When
all guards are false, the termination conditions have been satisfied
and exit from the loop will occur. The guarded statements
characterize or perform the function of the loop. The guarded
statements must systematically step toward termination as well as
maintaining the truth of the invariant everywhere within the loop
except while they are actually being executed. Prior to entry to
the loop, the state variables must be initialized, if necessary, so
that the invariant is true at the beginning of the loop and the
termination condition is false (except for those cases in which the
output assertions are already true at the beginning of the loop).
If all of the above conditions are satisfied then the loop will
correctly perform its function and will terminate properly. The
example given below may help to clarify the application of the
invariance theorem to proper loop construction.

TOOLS

The RDM has no tools, as yet. Tools for syntax checking to
support verification of general and detaijled design specifications
are being investigated. It is hoped that those existing WELLMADE
tools which support general design can be adapted for use in the
RDM. (Such tools would need to be modified to account for
differences in such things as design structure and document
formats.) Consequently, it is pertinent to discuss briefly the
WELLMADE tools. However, it seems possible that the greater
complexity of the RDM than that of WELLMADE may further complicate
the conversion of WELLMADE tools.

The earlier versions of WELLMADE viewed a system as a
relatively pure hierarchy of modules. The top-most module would
represent a relatively abstract view of the entire system.
Proceeding downward, each level would utilize the modules of the
next lower level of the hierarchy. Each level was to represent an
increasingly detailed set of capabilities. Although it was noted
that a module and its occurrence in the tree structure might differ
from the physical manifestation (design structure different from
implementation structure), the discussion below depends rather
heavily on the concept of a relatively pure hierarchy of homogeneous
elements (modules). It appears that the WELLMADE "modules" were
primarily programs - procedures, subroutines, and coroutines.

Table I outlines a design description for one module, based on
Boyd76. The description is divided into two categories, each of
which is subdivided into various subjects. Multics is used to
maintain the WELLMADE documentation. Material for each subject for

69

Table I

OQutline of Earlier WELLMADE Module Description

Mission Description

Functional Description
Usage Information
Acceptance Criteria

Design Documentation

Design Overview J
#*Variables
*Input States
#Qutput States

Function List

*Program Description and Proof
Notes on Design

Notes to Implementor

Test Plan

Implementation Plan

b Most significant sections, which contain the formalized design
description.

70

each module (a documentation element) is separately identified for
purposes of creation, updating, retrieval, etc. An official
directory is used to reference elements of the documentation that
are complete and accepted. A scratch directory references
documentation elements while in preparation. For dissemination of
information, any project member can read anything referenced by
either directory. Only those responsible for a documentation
element may update it through the scratch directory, and only the
librarian (and project manager) can update through the official
directory. Progress is assessed based on the status of the
documentation. One can determine if a documentation element has not
been started, is in progress, or has been accepted. The status of
the documentation elements for a given module gives an indication of
the degree of completion of work on the module. Modification dates
for documentation elements indicate when various stages of a module
were completed or last worked on.

The above facilities are generally provided by Multics and
general support packages. A specialized support package (doca) is
used to output documents, providing standardized formats, page
numbering, and tables of contents. The directories identify the
documentation elements for different subjects and modules, and, for
each module, the so-called Function List identifies "submodules".
Documents can be prepared for any category and/or subject(s), for
the system or any subtree, starting with any module and proceeding
downward any specified number of levels. Another specialized
support package (P-Notate) simplifies entry and formatting of
material using P-Notation constructs. V-=Notate is used to create a
data base of variables and information about their use.

Not shown in Boyd's version of a WELLMADE module description
(Table I), is a third category of information relating to the
implementation of a module, including subjects such as a code
listing, test plans, and test report. To the extent that there is
not a one-to-one correspondence between design and implementation,
the hierarchy is less pure.

Recently WELLMADE has added a fourth category for planning and
tracking whose subjects include a development plan and tracking of
actual progress, as well as design and implementation inspection
reports. WELLMADE is also being embodied in a handbook of
procedures which include various elements similar to those of the
Air Force acquisition environment, such as several levels of reviews
and various types of boards.

7

t.....w...«.__‘..._.

EXAMPLE

Figure 23 is a short example of use of the RDM. The numbers at
the left of the figure are not part of the methodology but, as
before, correspond to the block numbers in Figure 24. Figure 24 is
similar to Figure 16 but with the blocks highlighted that correspond
to the design documentation segments which appear in the example.

The example was provided by Don Boyd and Stan Vestal of
Honeywell and is the only one available as yet of use of the RDM.
(Several partial examples of WELLMADE are available in non-public
documentation plus one in BOYD76. All complete examples of WELLMADE

are for currently-operational software and are considered
proprietary by Honeywell.)

The example represents only part of one module and, therefore,
illustrates modular decomposition (the use of an abstract data type)
only very superficially: the module can be considered a lower-level
one providing a facility for use by higher-level ones which are not
shown. The example does illustrate refinement of a portion of a
top-level program by a second-level program.

The RDM specifies the use of braces (curly brackets) to set off
comments or unrestricted blocks of text. Such material is not
intended for processing by computer other than for storage and
printing of it. Because of type-font differences, braces have been
shown in Figure 23 as (square) brackets. Note that the input and
output requirements in both programs are, therefore, treated as

text. Although they are important to the designer, they are only
for human use at present.

The module is named BUBBLE and is intended to perform an
ascending bubble sort of an array of integers, L (an in-place
rearrangement of the contents of L so that L.jJ < L.j+1 for L.lob < J
< L.hib). (For notation, see Figure 19.) The first page of the
example contains global declarations for the data and top-level
programs of the module as well as the top-level program, sort,
itself. The second page contains the second-level program, insert,
which is contained within sort, and also sketches the existence of
the two other top-level programs, load and print.

In the first page of the example, L is declared to be an array
of integers at the "data" block, (1.2.2.2.)3.2. No scope is shown
for L so presumably some unspecified default applies. L is used by
all the programs of the module so it has to be global to the module
(has to be included at the "data" block rather than as a program

72

variable). Since its contents are to be rearranged, if necessary,
it must be a variable rather than a constant.

The "programs" block, (1.2.2.2.)3.4, lists the three top-level
programs of the module: sort, load, and print. Sort is the only
one specified in the example and is discussed below. All we know
about the load and print programs is contained in the comments
beside them at the "programs" block: load initializes L and print
prints L. With regard to further clarification of what the scope of
L should be, these programs provide operations for use by higher-
level modules to put unsorted data into L and remove sorted data via
a printer. If no higher-level module needs any other access to L
than these, then L can be private to BUBBLE. The only other
sensible kind of access to L within the known constraints of BUBBLE
is that one or more higher-level modules may need to access the
sorted L for further processing of its contents. In this case, L
must be global outside the module. (It is not suggested that the
designer of a module normally has to guess the uses to which it will
be put. In a given system, enough should be known about the higher-
level users of BUBBLE to determine what the scope of L should be.
The purpose of the discussion is to illustrate further the scope
concept.)

The rationale of the program sort is simply to make one pass
over the array L, starting at its bottom (L.lob), and to determine
if it is already in ascending sequence, by comparing the contents of
each location with that of the next lower location. If sort finds a
location whose contents is less than that of the previous one, then
it calls upon its lower-level program, insert, to re-establish the
ascending order. Although the designer must have reasonable
confidence that he can design a program called insert to perform its
intended function, he is generally intended to ignore other aspects
of insert while designing sort.

The program sort has one local variable, i, whose type is
integer, to be used for indexing the locations of the array L.
Since i is declared within sort, it is local to sort (and possibly
to lower-level program blocks within it). 1Its scope is, therefore,
private and, since it has to be used to access each location of L,
variable rather than constant. The program insert is named at block
4.2 as an internal program block of the program sort.

Since L has been declared to be an agrray, the array data
components and functions described in Figure 19 are provided by the
PDL for referencing and manipulating the array. In essence, array
can be treated as though it were the name of an abstract data type,
but one which is built-in to the PDL and methodology so that an

73

{) pedeTdaz omey[] :e30N oTdwexy [TomAoUoH ‘g7 danBrg

{Peys1IqE3IS? uaaq sey Juamaaynbai Indino ay3)

[PRYsTIqelIsa21 uaaq sey JUBTIBAUT Y3]

{uoT3ITPUOD uOFIEUTWII]
§*1< T pu® JUETIBAUL 943l ST
>qo1°1 203 (T+()1 > () 11}

ay3 st qF

___®dusrq
qQry*1>% > €

[3sTT
pPa310s e ojuy 19833UT ue 3I3suy 03 JujInol e)

[T 3STT 3y3 jo xapuy]
[1 s3urad yorym weiload e]

[T s2zFTeT3ITuUT YyoTym meidoad e]

[sa2823ur jo 1apio Suypuasse
0o3juT 7 safueiieal YdTym 3108 3Tqqnq e}

[P23308 3q 03 38T}

{

T+F = T

-ul

319sUT— (147) "1 < (¥)°1
dps—(1+1)1 5 (1)1 7%
— QIY*I>T Op

‘qoT"T =: T

[21801 uBysap] Ixa3 PR
[pe¥1ddns aq 03] 3duewaoyaad Al 28 4
(a1 >F >9q01°1
203 (1+§)*1 > (F)-1] Indano ey &
[1 < wop-1] Induy 1°1°gy)
‘suswaaTnbax £y
E
3Jassuy
‘swexBoad ALl
ad T3Fa3ur :7 N
SOTqQETAEA 1'%
:3108 weidoad ”
Jugad
peoy

3108
swe1go1d 9 XTTTn
Xeaze 1389307 :1q

{
e3ep AL I AR AR AN ¢
:F'199NY TNPOR Ty

(pepnTouo)) aTdwexy [TomAduoy ‘g7 2an3Tg

Figdnd pue

:3uyad weadoad

{)} paverdax aaey [] :330N ”
:peot mm.wa
Pus
Po
1-F =: €
¢ (1-F*f)dems:
—(-0Hr1>O1
pue qor*1< [op
[voraypuos

uor3euTWIal 3yl st (1-F) 1< (F)*1 10 Qo1 1>f
pue juerzeaut ay3 ST F>A>F 303 (I+1)*15(1) 1) 147 =2 [
{51801 uBysap] Ixa3
[po11ddns aq 03] aourmI0jaad
I>%3>9011
103 (T41)°1 5 (%) 1] Indano
[(@oT1=7
103 (I+4¥) 1< (¥) 1)
30 (PI11<F
103 ‘(1+1)"1<(¥)"1
Pue 1>%3>901°1
103 (14%)*13> (1) *1)] Induy
sjuemeaynbax

[p23aasur aq 03 JudWATd Y3 Xapuy] 28 19893UT :T
[1 3sTT 243 103 xopuy] ad 39893ur : [
Sa1qeTaeA

: 339suy Weigoad
urdaq

9°z°T°T°1

LI AR A §

75

L AR 8 A8 J
(A0 20 S8 A /

[AR S 20 O AN J

1°1°e°ryy
i

1°1°9°y
°yv(rzrzeem

n3t1g
2x
‘%2
dwoy

0 sjuauo

3

H

uo

.V.C)

11

P

a1due

array module need not be designed for each system it is to be part
of. The data and operations of the array module are defined by the
PDL rather than by a type declaration at the "types" block.

i The "input requirements" (block 4.3.1.1) for sort specify the

] ; expected state of the module at the time sort is entered. The

1 statement says that L is expected to consist of at least one element
L at entry to sort and it implies that sort is not expected to behave
% properly if L is empty but that if L consists of at least one

i element, sort is expected to perform its intended function and
terminate properly. Notice here at least a weak example of the
vagueness of English and the greater precision and conciseness of
the "input requirements" statement. The verbal description of the
rationale of sort several paragraphs back is phrased in terms of
making comparisons between the contents of successive locations, but
f the more formal requirement is that sort must not only behave and
terminate properly with two or more elements but also with only one.
‘ It is granted that the textual description and the formal

' requirement may be made to agree, either by extending the textual

i description by a moderate number of words and/or by changing the
formal requirements to disallow the case of a single element. If a
higher-level module can perform jits intended function with only one
element to be "sorted", then it is probably preferable to allow sort
to handle the case of a single element, treating that case as a
"lower-level decision". At any rate, it can be seen below that sort
terminates properly when L consists of a single element.

The "output requirements" (block 4.3.1.2) for sort specify the
required state of the module BUBBLE at exit from sort, assuming that
the "input requirements" were satisfied at entry. The "output
requirements" specify the ascending sequence of values in L at exit,
that for every pair of successive locations in L, the lower location
_ may not have a greater value than the higher location. It might be
| argued that the "output" assertion should be extended by "or L.dom =
i ‘ 1" since the assertion given does not seem to apply with a single
element in L.

The "design-logic" (text) at block 4.4 contains the formal
definition of the actions to be taken by sort. The design logic
1 consists of an assignment construct to initialize the applicable
: state variable, of the program in this case, prior to a do loop.
The do construct contains one guard (i < L.hib). A sequence of two
constructs comprises the guarded statement associated with the
single guard of the do construct. These two are: (1) an if
construct, itself with two guards, each of which is associated with
a single guarded statement, and (2) another assignment construct.
The discussion which follows is primarily related to use of the

77

invariance theorem to construct a proper loop statement; in the

process, the other statements are explained since they are all
related to the loop.

In the output requirements assertion (block 4.3.1.2), j is a
dummy variable (not a state variable) which can take on any value in
the indicated range. The output assertion is a statement which must
be satisfied by the state variables at exit from sort. The first
comment to the right of the program logic specifies (1) the
invariant condition which is to be true before, during (except while
guarded statements are executed), and after the loop, and (2) the
termination condition which is only true following the last pass.
The variable j is again a dummy variable. It should be clear later
that at termination, the program variable i will be equal to L.hib
and not greater. If this value of i from the termination condition
is substituted for i in the invariant, the result is an assertion
about the values of the state variables at exit from the loop which
is also the exit from the program. The resulting assertion is
equivalent to the output requirements assertion, as noted in the
earlier discussion of the invariance theorem. Constraining i to be
less than or equal to L.hib in the invariant is not necessary at
termination but for previous, intermediate passes through the loop.

The first assignment statement in the program logic sets the
program variable i to the bottom element of the array. It also
(trivially) establishes the termination condition false unless L.lob
= L.hib (the array contains only one element). If L contains one
element, then the output assertion is already true at the beginning
of the loop and the do loop should perform no state changes, which
will be found to be the case shortly.

The single guard in the do loop (i < L.hib) performs the test
for termination. When that guard is false, the do loop will
terminate. 1In particular, with one element in L, then i = L.hib,
the guard is false, and the do loop terminates without performing
any state changes since the guarded statements are never executed.

With more than one element in L, the guarded statements are
executed at least once. The jif statement indicates that if the
contents of location i of L is less than or equal to that of
location i+1, no action is taken by the if statement (gkip is
executed which corresponds to no action). However, if the lower
location of L contains a greater value than the higher location,
then insert, the lower-level program within sort, is invoked to
restore the ascending order within the first i + 1 locations of L.
In the case of this if statement, the two guards specify non-
intersecting sets of states, but the union of both sets is the

78

universal set, so that one of the two guarded statements must be
executed on every pass through the if statement and gbort cannot
occur. At the end of the jif statement, the invariant is still true
or is again true (reestablished, in the words of the comment).

After the if statement, the second assignment statement steps
the index to L by 1 and also steps toward satisfaction of the
termination condition. At this point, the guard is again tested to
determine if another pass through the do loop is called for. The
program variable i was originally set to L.lob. By definition,
L.lob <L.hib if L.dom > 1. Therefore, since both the index bounds
in L are integers and i is stepped by 1 for each complete pass
through the do loop, then at exit, i = L.hib so that the
simultaneous truth of the invariant and the termination condition at
exit from the do loop is equivalent to the output assertion for the
program, which has the same exit point as the do loop.

The number of complete passes made through the do loop is
L.dom-1 and the guard is tested L.dom times. The array L has been
sorted by virtue of the fact that at the end of the ith complete
pass, the first i+1 locations of L contain values in ascending
sequence (as the invariant states).

The program insert which is internal to sort is discussed next
but in considerably less detail than sort. The program insert is
invoked by sort when sort has found two consecutive loecations
containing descending values. When insert is invoked, the local
variable i of sort points to location i in L, whose contents is
greater than that of location i+1. The program insert works by
moving the value in locaticn i+1 toward the bottom of L, one
location at a time, until the ascending order of the first i+1
locations of L has been reestablished. The original contents of
location i+1 is swapped with the contents of each preceding location
until it is no longer less than the contents of the preceding
location or until the bottom of L is reached.

The program insert uses the local variable i of sort as a
global constant. A variable, j, local to insert, is used to mark
the current position in L of the value originally at position i+1.
Consequently, j is initially set to i+1 and then decremented by 1
for each pass through the do loop.

The input requirements state that on entry to insert, the first
i locations of L contain ascending values but the contents of
location i+1 is less than that of location i, if i is greater than
L.Agk. If 1 = L.lob, then only the second of the two assertions is
t rue The variable k is a dummy variable. The output requirements

79

state that on exit from insert, the first i+1 locations of L are
again in ascending sequence.

As noted, j is decremented from an initial value of i+1 toward
a value of L.lob. The invariant for the do loop states that the
portion of L between locations j and i+1, inclusive, is in ascending
sequence throughout the loop. Termination occurs when the bottom of
L is reached or when the value in location j of L (formerly in
location i+1) is greater than or equal to the value in location J=1.

The program logic initializes j to i+1. Then the if statement
is used to swap the contents of locations j and j-1 in L and to
decrement j by 1, until the termination condition is true. At least
one pass through the do loop is necessary since insert is not called

unless the value in location i+1 needs to be moved down one or more
locations in L.

80

SECTION V

l MODEL ACQUISITION ENVIRONMENT

The model of the Air Force software acquisition environment
used for the work described in this report is based upon some prior
experience, some experience on the SATIN IV project obtained
Y concurrently with this work, discussions with various MITRE

personnel, and study of some of the Software Acquisition Management i
E Guidebooks (primarily Glor77, Scho76, and Haga75), a MITRE Working 1 1
Paper by Bruce Feldmeyer of MITRE D-71, and DoD and USAF standards
and regulations (primarily MS490, MS483, and AFR14-2). The assumed
model is illustrated in Figures 25 and 26. Abbreviations (acronyms)
used in this and following sections are defined in Table II.

The acquisition model is intended to emphasize principal
software acquisition events and is not claimed to be exhaustive.
Since various people have different views and opinions of the
acquisition environment and various standards and regulations seem
to disagree at times, there may be a variety of opinions as to
events which should be added, deleted, or changed in the model. A
few items not shown in Figure 26 are noted later.

; Figure 25 shows the software hierarchy assumed for the present
& acquisition environment and its relationship to the three pertinent
L types of specifications. The figure is intended to illustrate five

; (or six) different representations of the same software. Since all

g levels represent the same software, the figure is basically a

rectangle rather than a triangle. Each level in the figure is a

subdivision of the next higher level into a larger number of smaller
cells. In general, the total amount of detail available increases
as the number of cells increases. In addition, the emphasis shifts
from software requirements at level 5a to software design at level
5b.

A System Specification, possibly supplemented by two or more
Segment Specifications, all of type A, are used to describe software
(and hardware) requirements at up to 3 or 4 levels. Subdivision of
the system into segments is frequently not done. If not done, then
the System Specification divides the system into functional areas
(usually) and each functional area into CPCI's (and hardware CI's).
If segments are included, then the System Specification may
primarily relate to levels 1 and 2 with a separate Segment
Specification for each segment dealing with levels 2, 3, and 4.

81

éﬁf . = : =

E Ayo1e1aTH 21eM3IJOS JUSWUOITAUF UOTIFSInboy pamnssy *GZ @an8yg3

3just0odmo) wei8013 193ndEO) = JHAD)
®93] uwopIvanSjjuc) weiSoig 193INdmO) = DD

82

34 dan ®C UoyIdUNy

(2 ouuu._w <g 2dL])

dadg
3onpox
poig Taasg
1240 v
9. PUOFIOUN,
e e $ (v 2dky)
' ! ' J9dg waisis
JusaBag . ! . : ¥
I A .

waIsks 1

9z 2an8yy

T9POK s3uaAg uof3IFsInboy 1ofe)y paunssy

o O O woyIEpITN, OB
oo o o o» 090 9 O onaw O% L3 o a0 O£ 0SC O oot O ooe okt Oom ot aet otr (ot 001 0z o1 0 UOITPIIVA WIlA
sWI2 SajIeley
% uojavalasu] 9 sy anowoeuy 9 uBiseq syedyeny | — sysdeny — S9apyy “19ABQ SIwAljO5
ToE = i
= =
m.l 13— Rupase] ﬂ
. . .
= i o - B SIPY 9 saetany
(11 31%3) §) Mh}——————————————— e 1O
Ty e e i
\
— e (1 %) $§ M | 39 ‘ededs
'
| e |
[k ' *Twnuey
'
11 % 1
= :
\ Buyaesy
- ! . e
e wnopary ¥
was . s :
4
Z i T S R
v . 58 *
A0S/ ddn T e
e ageap [s5wome] [o9
#3uj04 WOFSTORQ
ai:.-uue .l«urv.ic: wOTIWIT TNy =ioig
Jusmbordag | woyaonpory | Jusedoraasq a1ess-11n4 1 SoyIwpIIeA |8 soeryg

83

Table II
Abbreviations
auth authenticated
CDR Critical Design Review
CI Configuration Item
ceC Computer Program Component
CPCI Computer Program Configuration Item
CPDS Computer Program Development Specification (Type B5 or Part I)
CPM Computer Programming Manual
CPPS Computer Program Product Specification (Type C5 or Part II)
DID Data Item Description
FCA Functional Configuration Audit
FQR Formal Qualification Review
FQT Formal Qualification Test
ICD Interface Control Drawing
init initial
PCA Physical Configuration Audit
PDR Preliminary Design Review
PH Positional Handbook
PQT Preliminary Qualification Test
RFP Request for Proposal
SDR System Design Review
SOw Statement of Work
SRR System Requirements Review
SS System Specification
UM

User'g Manual

84

The two other types of specifications deal with levels 4 and 5.
For each Configuration Item (software or hardware), a Development
(or Part 1) Specification and a Product (or Part II) Specification
are required. For computer program CI's, the corresponding
specifications are called the Computer Program Development (or Type
B5) Specification and the Computer Program Product (or Type C5)
Specification. A B5 specification subdivides a CPCI into functions
and describes the requirements of the CPCI and of each function
(level 5a in Figure 25). A C5 specification subdivides a CPCI into
CPC's and describes the design of the CPCI and of each CPC (level
5b). A function in a BS specification need not correspond to a CPC
in the corresponding C5 specification although it frequently does.
The combination of a B5 specification and a C5 specification is
intended to describe what a CPCI does and how it does it,
respectively.

Subdivision of a system into segments, of segments into
functional areas, and of functional areas into CPCI's is normally,
but not necessarily, based on criteria such as development by
different contractors and execution on different hardware.
Subdivision of CPCI's, first into functions and then into CPC's, is
based essentially on software analysis and design, since an entire
CPCI is normally provided by one contractor and executes on one set
of hardware.

Figure 26 shows the principal events in the assumed acquisition
model. The upper half of the figure relates to system events or
events which are usually concerned with two or more CPCI's jointly.
The lower half of the figure contains events which generally occur
or are performed separately for each CPCI. The relative times shown
at the bottom of the figure have been added purely for reference
purposes to indicate the sequence in which events are assumed to
occur. No significance is to be attached to differences in relative
times or to the lengths of the periods shown in the figure. The
dashed line and the lower set of relative times are intended to
indicate that if shortcutting of the validation phase is attempted,
then essentially all of the validation phase events (including
possibly the authentication of the system specification) are assumed
to occur in the full-scale development phase following selection of
the development contractor, thereby lengthening the full-scale
development phase.

Several relatively significant events and types of events are
not shown in Figure 26, primarily to avoid more clutter in the
figure. If a validation phase contractor is to be employed, he is
Selected early in the validation phase, in the vicinity of relative
time 105. The RFP and SOW shown at relative times 150 and 210

85

|
|
|
| |

pertain to the full-scale development contractor, who is selected
following relative time 210. Not shown in the figure are the
acquisition phase test and evaluation periods (development, initial
operational, and operational) or the preparation of Categories I and
II test plans, procedures, and reports.

The model assumes that ICD's are used to specify interfaces
between CPCI's and not within an individual CPCI. Therefore, ICD's
are treated in the figure as system products and not as a separate
product for each CPCI.

The period between relative times 300 and 410 is a relatively
busy and important one, even more so if the validation-phase events
are postponed till then. The relative sequencing of the Types BS
and C5 specifications and the PDR and CDR are shown in the figure as
called for by the various authorities cited earlier in this section.
The authenticated B5 and parts of the C5 specifications are supposed
to be available for review in advance of the PDR, and a draft C5
specification, complete except for program listings or equivalent
material, is supposed to be available for review prior to CDR.
Because of tight time constraints imposed in some cases by the
appropriate regulations or for a particular acquisition, this ideal
often seems to be difficult to achieve. The result may be some
slippage of the schedules for the reviews and/or reduction of the
amount of material available to support the reviews or possibly an
inadequate period of time to review material before reviews.

The PQT shown at relative time 500 is only performed for
critical portions of a CPCI. The system testing (Category II) shown
at time 650 has been called system-level FQT by some people.

There are differences of opinion as to when initial drafts of
User's Manuals (UM), Computer Programming Manuals (CPM), and
Positional Handbooks (PH) are to be prepared. These are shown in
Figure 26 at relative times 630 and 660, although there are at least
suggestions in some of the authorities that at least one of these
should be available for the CDR. A particular problem seems to be
that a CPM is either intended to be used for several different
purposes or different authorities make different assumptions as to
its purpose. The authority which calls for it to be available prior
to CDR, expects it to describe the language to be used for
implementation of the CPCI. Other authorities refer to its use to
describe the language implemented by the CPCI or during operational
maintenance for any type of CPCI. In the latter case, it is not
clear what function the CPM would serve that the combination of the
B5 and C5 specifications is not intended to fulfill. In any case,
the DID defining the CPC seems to need clarification or possibly
separation into several DID's.

SECTION VI

METHODOLOGY DEPLOYMENT CONCEPTS

This section presents a proposed manner of deploying the SRI
HDM and tnhe Honeywell RDM in the Air Force software acquisition
environment by comparing each methodology with the acquisition
environment and, hence, with each other. Figure 27 summarizes the
comparison. The remainder of this section cori 'sts of a few general
observations about the deployment concepts and .he figure. These
observations are followed by a more detailed discussion which
generally flows from top to bottom in the figure.

It is assumed that the principal contribution of a software
design methodology is at the CPCI level, or, more specifically, that
a methodology relates primarily, but not completely, to the lower
half of the full-scale development phase in Figure 26. It is
assumed that the basis for delineating CPCI's consists of relatively
broad considerations such as development by different contractors or
execution on different computers so that the software portions of
the system specification are generated prior to application of
either methodology. The contents of the ICD's are generally also
independent of application of a methodology although it should be
noted that the interface for a CPCI will generally also be described
as the top-level "user" interface for use by a methodology.

The passage of time corresponds to downward progression in
Figure 27. The comparison is based primarily on such things as
events, products, and activities taking place in each software
development phase (a block-by-block comparison rather than a line-
by-line comparison in the figure). While the central column
generally implies performance of each activity once for a given
CPCI, the activities of the methodologies are performed for each
abstract machine or module in the CPCI.

For the SRI HDM, each stage is related in the figure to the
software development phases. Noted for each stage are the
applicable portions of the PDL diagram (Figure U4), of the tool
diagram (Figure 5), and of the example given in Figures 7 through
11. The SRI stages are grouped in three groups for comparison with
three software development phases.

The two Honeywell RDM design phases (general and detailed) are

compared with the same three software development phases. Noted for
each RDM phase are the applicable portions of the design diagram

L

Acquisition
SRI HDM Environment Phases Honeywell RDM
Stage 0 (User Interface) Validation Anslysis General Design
Stage 1 (Modularization) Figure 17 - squares .
Figure 4 - MODULE Column, FSD Analysis
lines 1, 1.7.1 Figure 18 - structure, line 4
Authenticated BS Spec. except 1.2.2.1 and 1.2.2.3, line 6
Figure 5 - enter JINTERFACE
files and part of .HIERARCHY | Partial C5 Spec. Figure 20 - both pages, thru k p
file programs
PDR
Figure 7 - example Figure 23 - to line (1.2.2.2.)4
Stage 2 (Module Specs) Design Detailed Design
Figure 4 - remainder of Figure 17 - circles 3
MODULE Column Draft C5 Spec :
Figure 21 - outlined areas and
Figure 5 - enter .SOURCE CDR blocks 1.2.2.1 and 1.2.2.3
files and execute
CHECKMODULE Figure 20 - program stackint.,
program init
Figure 8 - example
Figure 23 - remainder
Stage 3 (Mappings) Code
Figure 4 - MAP column
Figure 5 - enter .MAP files
and execute CHECKMAPSPEC
and CHECKMAP, execute]
CHECKINTERFACE, complete
.HIERARCHY file and execute
CHECKHIERARCHY
Figure 9 - example
Stage 4 (Implementation)
Figure 4 - PROGRAM MODULE
Column
Figure 5 - no capability y
yet
Figures 10&11 - example ;
Further non-specific Checkout Further non-specific contributions 3
contributions by above by above products
products Test and Integration
Installation
Operational/Support i

Figure 27. Comparison of Methodologies and Acquisition Environment

(Figure 17), of the design documentation diagram (Figures 18 and
21), and of the two examples given in Figures 20 and 23.

In Figure 27, the dashed line near the top of the acquisition
environment indicates possible contributions by both methodologies
to the analysis phases of both the validation and full-scale
development phases. The dashed line near the bottom of the
acquisition environment indicates contributions of the methodologies
primarily to the coding portion of the code and checkout phase. For
checkout and the last 3 phases of the acquisition environment, the
methodologies provide no new activities or products; the products
produced in the earlier phases are used to supply information to
support these later phases in a general way.

ANALYSIS PHASE

The analysis phase of software development is assumed to be
split into two components - one performed during the validation
phase of system acquisition and the other during the full-scale
development (FSD) phase. It is quite possible for these two
analytical efforts to be performed by different organizations - the
validation effort by a contractor or by PO personnel and the FSD
effort by a second contractor. A principal product of the
validation phase is a preliminary version of the B5 specification
for a CPCI, produced by one organization. The B5 specification is
autheuticated in the FSD phase, which implies, among other things,
that the second organization approves it for use as a guidance
document.

A B5 specification is claimed to be a requirements document and
not a design document; it should specify what a CPCI is to do and
not how it is to do it. However, a B5 specification segments a CPCI
into "functions", each of which is described in terms of its inputs,
processing, and outputs. Therefore, a function seems to have the
characteristics of a structural element of a CPCI rather than being
Just a convenient way to group a set of related requirements. While
a CPC of a C5 specification need not coincide with a function of the
corresponding B5 specification, it seems reasonable to assume that
the delineation of functions will frequently have a significant
influence on the later delineation of CPC's. Therefore, it is
assumed that, regardless of what else it is, a B5 specification
represents a preliminary, general design for a CPCI, which is
further detailed, possibly with changes, in a C5 specification. It
is also assumed that if a BS specification is a design document and
if a design methodology is to be used to design the CPCI, then the

methodology should provide the basis for, and as much of the content
as possible of, a BS specification.

A dilemma must then be resolved. Essentially everyone is
agreed that it is undesirable, if not illegal, to require a
contractor to use a particular methodology (see Section VIII, in
particular). If a methodology is chosen by the first organization
for the validation effort, then this methodology should affect the
B5 specification which is to be authenticated by the second
organization during full-scale development. Cost-effectiveness
considerations suggest that this methodology be used for the
remainder of software development. Resolving this dilemma is not
within the scope of this effort. The larger issue, which should be
addressed in the future, is to determine how benefits of design
methodologies can be achieved and still provide for easy transition
from one contractor to another, preservation of competition, and
cost effective development.

With the present regulations, it is assumed that a function in
a B5 specification will correspond to a module and that the early
stages/phases of a methodology will provide the basis for the design
aspects of the BS specification. For the (SRI) HDM, a B5
specification should contain a listing of the modules comprising
each abstract machine and the hierarchy of abstract machines. Such
a listing is similar to a set of INTERFACEs and one HIERARCHY as
described under Tools in Section III except that the counterpart of
an INTERFACE should define only the design aspects of an abstract
machine (and no implementation aspects) and the counterpart of the
HIERARCHY would not include the mappings. For the (Honeywell) RDM,
one might want to list the inter-module relationships although these
relationships are contained in the formal products from the general
design phase (the abstract data types in the "types" block of Figure
18).

The remainder of the information that the methodologies can
provide for a B5 specification is organized (by the methodologies)
on a module basis. In a B5 specification, all of Section 3.2,
Detailed Functional Requirements, except for 3.2.n, Special
Requirements, is organized on a function basis. Each function is
described generally and then it is defined in terms of its inputs,
processing, and outputs. Since a function is assumed to be a
module, the characteristics of a module which have been identified
during the "general design phase" should be used to describe/define
a function.

For the HDM, the “general design phase®™ consists of stages 0
and ' of “design and isplementat ion®, vielding produets such as

R

shown in Figure 7. In addition to the INTERFACEs and HIERARCHY
discussed above, these products define the formats and names of V-,
0-, and OV-functions and their input arguments and result arguments.
It is pnssible to perform a trivial mapping between Figure 7 and a
subsection of Section 3.2 of a B5 specification by logically ORing
all input arguments and treating them as inputs, by treating the
collection of O- and OV-functions as processing requirements, and by
treating the collection of result arguments as outputs. Such an
exercise seems undesirable from several viewpoints, however. The
representation of a module in terms of its state variables and
operations and the input arguments of each seems to have a greater
information content than if this representation is artificially
dismembered into inputs, processing, and outputs. Furthermore, it
appears that stages 0 and 1 of the HDM are not intended to yield
much more information than that contained in Figure 7 plus
information which can be gleaned from the choice of pames for
functions and parameters plus a relatively short comment associated
with each HDM function plus diagrams such as Figure 6. Further
fleshing out of this information involves stage 2 and detailed
design. Therefore, under the HDM, Section 3.2 of a B5 specification
should probably be organized differently and contain more highly
distilled information content than at present.

The general design phase of the (Honeywell) RDM has some
advantages and some disadvantages over the HDM, at the module level.
The RDM seems to develop somewhat less information at the operation
or program level. Each program is named and can be described by
comment in the "programs" block on line 6 of Figure 18. Parameters
of the programs at present are not defined directly, only in
comments or in an abstract data type declaration of a higher-level
module which uses the lower-level one. General design also defines
data which are potentially global to the module as well as
relationships with lower-level modules by means of abstract data
type declarations. Data invariants, if any, are defined.
Dismembering a module into inputs, processing, and outputs is
probably again inappropriate. The top-level data of the module are
relatively well developed, but lower-level data and all operations
are defined further in the detailed design phase. The "functional-
description" block for each module on line 4 of Figure 18 should
provide a general description of each module for inclusion in
Section 3.2 of a B5 specification.

The remainder of a B5 specification (except for the first
subsections of 31.2) is at the CPCl level rather than at the function
level. Neither methodology provides any significant collected
information at the software aystes level (corresonding to the COPC]
ieve) The user interface for the top-level sadules oF abstrast

r—

machine corresponds to the CPCI external interface (Section 3.1.1 of
a B5 specification) but this interface is an input to a methodology
rather than a product of it.

The general structure for design documentation and various text
blocks for the RDM shown in Figure 18 can provide information for a
B5 specification. Note that except for line 1 and the "module-
index" on line 2, all blocks pertain to a single module. To obtain
information at the CPCI level, the blocks for the top-level module
would have to be used to describe the entire software system rather
than the top-level module, or information would have to be collected
from corresponding blocks of all modules and blended together. Each
alternative has drawbacks. Since the basic framework has been
defined, a preferable alternative may be to define additional blocks
at the software system level. The "acceptance-criteria" block for
each module on line 4 of Figure 18 should supply information for
Section 4, Quality Assurance Provisions, of a B5 specification.
Other blocks should contribute to a C5 specification and a User's
Manual, discussed below.

One aspect of the RDM could require modification of the
acquisition environment. 1If, as suggested by Honeywell, it is
necessary to do detailed design of some of the higher-level modules
before completing general design of all the lower-level modules,
then detailed design would have to start prior to assembling all
necessary information for the B5 specification for an entire CPCI
and prior to holding a PDR for the entire CPCI. Either the B5
specification and the PDR would have to be done in several
increments or they would both have to follow the beginning of
detailed design.

DESIGN PHASE

One of the most significant products which is intended to
result from the design phase of the acquisition environment is the
C5 specification. In a C5 specification, Section 3.2, Functional
Deacription, is used to detail each CPC and the remaining sections
pertain primarily to the CPCI as a whole. The methodologies make
varying contributions to a C5 specification. To the extent that a
module corresponds to a function in a BS specification and to a CPC
in a CS specification, the effort to produce Section 3.1, Functionmal
Allocation Description, of a C% specifioation is minimiszed.

The detalied denigr phase Tor the HDM s conaidered in this
repurt e comsiat of stase | which produces & specifioation for each
snduie saek as 'hase In Pigure B T seems somewhat ashivalent as

'AD-AD56 771 MITRE CORP BEDFORD MASS F/6 9/2
SOFTWARE DESIGN METHODOLOGIES AND AIR FORCE SOFTWARE ACQUISITIO--ETC(U) .
JUN 78 D L JAMES F19628=77=C-0001

UNCLASSIFIED MTR=3508 _ ESD=TR=78=147 NL
= IIIIIIIIIIIIIIIIIIlIIII\IIIII\lIIIII|IIII||IIIII|IIIII

568771
END
DATE
FILMED

g 8

TSR

to whether they consider stage 3, which produces mappings, to be a
design or an implementation activity. It seems preferable to
consider mappings part of implementation since they really relate to
the representation of abstract machine Mi in terms of machine Mi-1.

The intent and the world view of a C5 specification seem to
differ from those of the methodologies in at least several respects.
One of the more significant differences relates to Section 3.3.1,
Data Base Characteristics, of a C5 specification. The intent of
this section is to describe in detail all of the data base of the
CPCI which is not specific to a single CPC and to include such
things as a set-used matrix to indicate which CPC's access which
data elements. Some of this information would not be supplied until
after implementation in the acquisition environment. On the other
hand, AFR14-2 calls for availability of the "structure and
organization of the data base" portion of Section 3.3.1 of a C5
specification prior to PDR.

The general view of the HDM and the RDM (as well as other
methodologies) is essentially that there is no CPCI (software
system) data base. The data base is spread over the modules. A
module is responsible for a specific portion of it and is the only
module which may access that portion directly. Furthermore, other
modules and their designers and implementors should know only the
minimum, necessary details about that portion of the data base.
Other modules are to read that portion of the data base and modify
it only by a means such as making procedure calls to the responsible
module which will fetch and deliver a data value or execute an
operation. While it would be possible, after implementation, to
extract all the data base details from all the modules and
consolidate them in a Section 3.3.1, it seems undesirable to do so.
With easy, central access to all the details of the data base, a
designer or programmer doing program maintenance during the
operational phase could introduce intermodule dependencies, which
were carefully avoided during the design phase, by making the design
of one module dependent on the current implementation of another
module, for instance. If a particular mode of operation and level
of information are deemed desirable during the design phase, then it
is probably desirable to preserve them during the operational phase
as well.

The desired, more abstract view of the data base could be
extracted from the modules and put in Section 3.3.1, but it would
probably merely duplicate much of the contents of Section 3.2.

It is quite possible that there are some practical, data-
related problems not addressed by the methodologies. Regardless of

93

e,

how neatly compartmented a design is, for a large system it may be
difficult to remember or locate responsible modules and names and
formats for procedure calls so that some form of cross-referencing
between modules and data may be desirable. Cross references to
indicate who calls each procedure are probably also desirable. The
RDM feature of allowing data to be declared of type abstract
(meaning that its specific type is declared elsewhere) might create
problems of implementation as well as later understanding.

Section 3.2.1.3, Interfaces, of a C5 specification, also calls
for a set-used matrix to relate each CPC to the CPCI data base and
to other CPC's. Such information appears to duplicate at least
partially that for Section 3.3.1; the comments above apply to
Section 3.2.1.3 as well.

Flow charts are called for at the CPCI level in Section 3.4,
Computer Program Functional Flow Diagram, and at the CPC level in
Section 3.2.1.2, Flow Chart, of the C5 specification. Flow charts
are in relative disfavor because of the amount of effort to produce
them and the likelihood of their becoming out of date. With the
expected small size of modules, flow charts are less useful. With
software designed using the HDM or the RDM, a flow chart is apt to
reflect primarily a portion of the hierarchy chart relating the
modules. Such a chart was discussed as part of the B5S
specification.

An important part of detailed design for both methodologies is
the specification of the formal requirements for each operation
(program). These requirements should probably be included in the C5
specification since they are developed after the B5 is done. The
EFFECTS section of an O- or OV-function of the HDM specifies what
action the function is to perform in terms of the changes it
produces on the state variables. For the RDM, the "input-
requirements" and "output-requirements" blocks for a program specify
the set of expected states of the module at entry to the program and
the set of required states at exit, respectively.

For the RDM, the "design-overview" block (for a module) on line
4 of Figure 21 should provide information for Section 3.2.1.1,
Description (of a CPC). Section 3.2.1.4, Data Organization, of a CS5
specification is to describe the internal data of a CPC. The
detailed design phase of the RDM provides for detailed definition of
the program of a module. In the process, program refinement is used
to define internal program blocks and possibly further internal data
variables. It is probably better to document such variables with
the program blocks rather than collect them into one section such as

94

3.2.1.4. (Section 3.2.1 and the six subsections it contains are to
be "repeated" for each CPC.)

The HDM PDL, SPECIAL, is a non-procedural PDL. However, the
RDM PDL is procedural in nature. As Figure 27 indicates, the RDM
detailed design phase includes most of the effort of implementation
as well as design. Therefore, it would not be possible to complete
the C5 specification and hold a CDR before implementation starts.
In conjunction with the comments under the Analysis Phase, the RDM
could result in implementation of the higher-level modules of a CPCI
being essentially complete before a PDR is held for the entire CPCI.

CODING PHASE

Stages 3 and 4 of the HDM are assumed to correspond to the
coding phase of software development. The products of these stages
would furnish the implementation portions of the C5 specification.
Other relevant comments were made previously.

OTHER PHASES

In general, the methodologies are not intended to provide any
specific, new products to benefit these later phases. The products
from the earlier phases and the organization of the design are
expected to contribute generally to reduced effort in program debug
and test and system test as well as later operational maintenance
activities. For the RDM, the collection of "usage-information"
blocks for all modules in line 4 of Figure 18 should contribute to
production of a User's Manual for the CPCI in the test and
integration phase.

SECTION VII

INFORMATION GATHERING METHODS

The activities of this subtask that were of prime importance to
RADC were to hold discussions with experienced software acquisition
personnel (from ESD and MITRE) of the SRI HDM, the Honeywell RDM,
and the possible application of such methodologies to the Air Force
software acquisition environment, to obtain feedback from the
personnel about the application of methodologies, and to record the
feedback in this report. The emphasis was to be on the effects on
Program Office activities of the use of methodologies (rather than
on contractor activities) and on necessary or desirable changes to
the methodologies and/or to the acquisition environment to provide a
better match between the two. The other activities of this subtask
were performed to support those listed above.

It had originally been hoped that the discussions could elicit
feedback on the opinions of acquisition personnel as to the
advantages and disadvantages of individual features of one
methodology versus the other. It was felt that it would be
presumptuous to attempt to involve any individual from the
acquisition environment in such discussions for more than
approximately half a day and that a relatively large portion of that
period would probably have to be devoted to discussion of the
methodologies per se. Background material was distributed to the
two groups of discussion participants approximately a week or more
before the discussions were held so that as much time as possible
might be devoted to discussions of the application of methodologies
in the Air Force environment. This background material consisted
essentially of Sections II, III, and IV of this report and reference
Lind76. (The purpose of the discussions had been outlined
previously by memo.) However, it was recognized that the complexity
of the methodologies, the lack of very extensive advanced
publicizing of the methodologies by their proponents (particularly
true for the Honeywell RDM), and the assumed length of a discussion
would make it extremely difficult to explore many individual
features of one methodology versus the other in the discussions. 1In
fact the outline for the discussions of the methodologies per se had
to be shortened several times to allow reasonable time for
discussion of their application in the Air Force environment.

Two discussions were held, each with a separate group, near the

end of August 1977. The two groups consisted of ESD and MITRE
personnel from the TACC Automation project and from the SATIN IV

96

S

project. The discussions were each approximately three hours long,
with approximately half of each devoted to a presentation of
methodologies and the other half to group discussions of their
application. The TACC Automation discussion was held first. With
limited discussion it was possible to present the SRI HDM and an
example of it before the group discussion began. Consequently, for
the SATIN IV discussion, the presentation was shortened even further
so that the characteristics of the methodologies were presented
primarily in terms of the examples, with greater attention paid to
the Honeywell RDM than to the SRI HDM.

The feedback from discussion participants on the methodologies
and their application in the Air Force software acquisition
environment is given in Section VIII. Shorter discussions of the
acquisition environment only were held with several MITRE people
near the end of May 1977, and several comments from these
discussions are also included in Section VIII. Section IX contains
primarily comments of the author of this report on various
individual features of the two methodologies.

PRESENTATION TO ACQUISITION PERSONNEL

The following material summarizes the full presentation
prepared for the discussions with acquisition personnel. As noted
above, different versions were used for the two groups.

Figure 28:

Summarize project subtask.
Summarize purpose of meeting.

Figure 29: Summarize characteristics of software design
methodologies.
Finite-state machine (FSM):

e Current state = current values of state variables

e Y-function returns current value of a state variable

e QOperation changes certain state variable values:
O-function

e Effect of O-function defined only in terms of state
changes it produces

e V-function returns no value, O-function causes no state

97

——

Aiewumg uoyjejU’E’dId °8Z7 In3Tg

NOISSNJSIa QNV
INJWNOYIANI NOILISINDOV NI S319070Q0HLAW 40 3SN
INJWNOYIANI NOILISINDOV QaIWNSSY
STIdWYX3 TI3MAINOH
TdWYX3 1S
SIdAL Viva LOovilsay
S31901000HIIW N91S30 FYYMII0S 40 SIILSI¥ILOVIVHD
ONIL33W SIHL 30 3S04¥Nd
WSvians 103ro¥d 40 3S0dind

AJYWWNS

98

TP TR o e oo » Lttt & » 4

$2731STI93dvIRYy) LBoTOpOoyIsy JjOo Axewmng gz 2Indyz

SINIT3AIND
M | $700L
(10d) 3IVNONVT NOISIA INIWWWYIO0Y¥d 40 3Sn

SNOILYO14133dS NIISIa@ TvWNOA

99

NOIS3d 40 3IOVHOLS UILNAWOD

SISVHd INIW4O13AI0
140443 NOIS3a Q3SVIINI

NOI1vVJ11ddY

e

NOI1VINIWNJ0Q

S31907000HLIW 40 SOILSIYILOVYHVHI

change if exception condition is true
V-function or O-function can have parameters

An F3M should have exclusive control and knowledge
of a kind of data and the operations available on it

Lower-level FSM's implement a higher one (or help
to implement it) (serve as implementation base)

The visible jinterface (variables and operations)
of an FSM defines an gbstract data type

An abstract data type defines and implements gobjects
(which occur at a higher-level and are used at that
level) as well as operations upon them

An FSM is composed of one or more modules

SRI methodology largely formal, to support proofs.
Each abstract machine provides base for implementation
of next higher one.

Figure 1

Figure

2

Define V-, 0O-, and OV~-functions.

Figure
Figure
Figure
Figure
Figure
Figure

Figure

30
6: Define the segment.
T7: Stage 0 - user interface.

6 (again): Define page array, page pool.
7 (again): Stage 1 - modularization.
8: Stage 2 - module specifications for each module.

9: Stage 3 - data (variables, PARAMETERS) mappings

between modules.

Figure

11: Stage 4 - implementation of bottom-level O-functions on

computer. V-function names reference storage locations.

100

e ar————————————

SN e siidias = s

A80TOpPoYyaIcsK I¥YS JO MATAILAQ °(Qf 9an8Tg

I-1W
INIHOVW NO W 3INIHOVW 40 NOILVINIWTIdWI - ¢
viva I-!W 3INIHOVW 40

]
(32}

SWYIL NI VIVG W INIHOVW 40 ONIddVW
SNOILVOI4193dS TINGOW

]
N

NOLLVZIYVINAOW - |

101

JOVJYIINI ¥3Sn - 0 39vIS

1-7d :
(1-T) 1-728 & T-¥1

T3 e

(W) TI8€ 13 L
Fo

AJ0T0QOHIIW 1¥S

Figure 10: Stage 4 - implement higher-level abstract machine on
lower-level one.

Figure 4: Brief discussion of SPECIAL.

Figure 5: Brief discussion of SRI tools - inputs, handlers,
errors, consistency. INTERFACE is related to an abstract
machine.

Figure 17: Honeywell methodology provides modular decomposition
and program refinement.

Figure 16: Textual as well as formal information. Text blocks
and framework for other blocks.
General design - data mostly. Program declarations.
Data declarations.

Figure 20: Type declarations. Abstract data types are basis for
modular decomposition.
Detailed design.

Figure 23: BUBBLE sort example. Program refinement.
Program variables.

Figure 19: Array variables and operations. Similar to a
built-in abstract data type.
Program requirements.
Program design logic. Constructive approach. Functional forms.

Figure 23 (again): Constructs - define with BUBBLE.
Guarded statements. For do, decompose output
requirements into invariant and termination condition.
Transformation characteristics of constructs.
Tools: None yet for RDM, hope to adapt those of WELLMADE
which provide limited support, investigating tools for syntax
checks.

Figure 25: Assumed acquisition environment.

Figure 26: Major events. Software events (one CPCI) separated
from system events (two or more CPCI's jointly). Dashed
line - apparent effect of limited validation phase.
Methodologies primarily affect lower half of FSD phase.

Discuss operational concept for use of methodologies in

102

acquisition environment (compare methodologies with environment,
as in Figure 27). Elicit feedback from participants with
questions.

DISCUSSION SUBJECTS

Questions were formulated to use in the discussions following
the presentations to acquisition personnel in an attempt to elicit
their opinions of the methodologies and application of them in the

i acquisition environment. The subject areas included:

| 1)
2)
3)
4)

5)
i 6)

7

8)

9)

10)

1)

12)

sub jects

PO organization changes needed for use of methodologies,
Education and training needed by PO personnel,
Experience needed by PO personnel,

Desirability and effect of increased design efforts called
for by methodologies,

Extent of design monitoring desirable and feasible,

Extent to which methodologies support design monitoring by
an organization separate from the designers,

Views on computer storage of a design and continuous
monitoring of such a design,

Understandability of requirements expressed in terms of
state variables and of products of methodologies,
particularly to those with approval responsibility,

Ease of transfer of a partial design developed using a
methodology from one organization to another,

Desirable form and extent of definition of a methodology,

Desirable changes to a methodology or the acquisition
environment, and

Acceptable trade-offs between system software testing and
performance of proofs-of-correctness of software.

In general, it was not possible to discuss all of these

and others not listed with acquisition personnel, primarily

due to limitations in their time which precluded more detailed

103

presentat .on of background material and more extensive discussion
use of methodologies in the acquisition environment. Sections VI
and IX attempt to cover the opinions of Project 522M personnel in
such areas. In particular, several subject areas which had been
Suggested previously were not explored with acquisition personnel.
Proof-of-correctness was not explored since it would have required
much more time than available to present and discuss due to its
complexity. Utility of and possible changes to tools to support
methodologies were not explored largely for the same reason,
although tools are less complex than proofs. Adequacy of present
documentation of the methodologies and kinds of improvements
desirable were not covered since these subjects seemed less

important than others and ones which Project 522M personnel could
evaluate.

104

of

- o oo dages

it Ml 4 oS by

SECTION VIII

ACQUISITION PERSONNEL FEEDBACK

The following represent the principal opinions expressed by ESD
Program Office and MITRE personnel, pertinent to the use of software
design methodologies in the Air Force software acquisitior
environment. Although these opinions have been discussed and
expressed here by RADC and Project 522M personnel, we have attempted
to avoid coloring the opinions of others by our opinions or by our
manner of expressing them. Our comments, if any, in parentheses,
follow each opinion.

The TACC AUTO and SATIN IV feedback are based on relatively
lengthy group discussions of the SRI and Honeywell methodologies and
the acquisition environment held on August 29, 1977 and September 1,
1977, respectively. The PAVE PAWS and JTIDS feedback are based on
shorter, individual discussions of only the acquisition environment
held on May 26, 1977, and June 1, 1977.

IACC AUTO

® If a particular methodology is intended to be adopted as an Air
Force standard, contractor resistance as well as Air Force
resistance should be expected on the grounds of stifling of
competition.

(It was pointed out that the selection of a particular
methodology as an Air Force standard is not the intent.)

@ It is not the Air Force's business to require that a contractor
use a software design methodology. If a particular bidder
believes that a particular methodology will help him, he should
and will propose its use in his proposal.

(The emphasis here is on requiring the use of some methodology,
not a particular one. Requiring that a contractor use some
systematic method of designing software may not be inconsistent
with the other requirements levied upon him by the acquisition
environment. Source selection policies which favor low bidders
for software development may discourage or effectively
eliminate proposals which increase the developer's design costs
even though the increase may be offset by later savings in
software maintenance by the user. Therefore, if one wants to

105

Alagl - e aan o

i o e Y

g
i
B
.\

ensure the use of a methodology, it may be necessary to require
it and expect that design costs will increase.)

Due to time, manpower, and budget limitations, the PO should
concentrate on understanding the requirements and the process
to be used to produce a design, rather than on the design

itself, i.e., audit the design process rather than the design,
to save manpower.

(This view may be predicated on the assumption that another
organization such as MITRE is involved in an acquisition and is
responsible for understanding and evaluating the design.)

The PO needs data indicating the effect of the use of a
methodology on project costs and schedule.

It must be proved at a technical level that a methodology works
on real problems. A demonstration, a New York Times-type
project is needed.

(The emphasis on a New York Times-type project may imply more
than simply a contracted demonstration. A spontaneous model
project proposed or adopted by a contractor, is probably far
more likely to convince a PO to use a methodology than is a
directed demonstration in which a contractor is simply paid
to use particular methods.)

The usual type of PO member with a BS in engineering may have
an inadequate background in software design for large systems
and, therefore, may not be able to understand the use of a
methodology such as SRI or Honeywell and the formal designs
they produce. A degree in computer science may be necessary.

(If an engineer does understand software design, programming,
and the use of higher-order programming languages, however, he
may only need further training and experience in the use of
design methodologies rather than further formal education.
With proper documentation and good examples to study as well,

such people may achieve adequate understanding of proof methods
as well.)

SATIN IV

being too specific in requiring a successful bidder to use a
software design methodology may stifle competition. 1In
addition, such specificity may result in the choice of a

106

T —

B

methodology which is inappropriate for the system to be
acquired.

If a contractor is convinced that the use of a particular
methodology will benefit him, you won't be able to prevent him
from using it. On the other hand, if a contractor believes the
use of a methodology will increase his risk, it will be
difficult to convince him to use it. A contractor may expect
to be paid to train his people to use a new methodology. If a
project is not completed or runs out of money, a methodology
associated with it may acquire a negative image.

With regard to willingness to accept the increased design
efforts suggested by many methodologies, some of those present
expressed willingness if a better system would result. Others
emphasized willingness to accept higher costs in return for
increased scheduling accuracy, reduction of risk, earlier
identification of potential schedule slippage, etc.

Initial use of a methodology may be hard to sell. Early use of
a methodology on small projects may be helpful; however, in
applying past experience to a new project, similarities in type
and size of system are important. People may be willing to
accept techniques which were successful on a previous project
for use on a new project which is three times the size of the
previous one but require more evidence of applicability if the
new project is ten times the size of the previous one.

Structured programming (SP) was chosen for use on their project
because of (1) belief that SP had relatively widespread
acceptance, (2) belief that use of SP would contribute to
proving the correctness of code for multi-level security
control, and (3) statements in an RADC paper that programmers
yoluntarily adopted the use of SP as a result of association
with other programmers who were required to use SP.

There is disagreement between individuals and between PO's as
to the extent of design monitoring desirable. The number of
CPCI's involved may preclude detailed monitoring. Monitoring
of the process by which a design is produced and of the top-
level design may be preferable to monitoring the complete
design. One purpose of holding reviews is to determine the
contractor's understanding of the requirements and his apparent
assurance as to the adequacy of his design. Design monitoring
may be compared with the activities of a financial auditor who
is not attempting to find small discrepancies but procedures
which allow systematic discrepancies to go undetected.

107

With regard to the use of a terminal by a PO to monitor a
design stored in a computer, their contractor proposed their
use of one. If used, it should be used only to obtain top-
level management and status reports, not for following day-to-
day progress or for browsing through the design data base. The
contractor is getting paid to do the management and monitoring
of the detailed work. The PO understanding of the design and
of work progress should be based on formally submitted reports
and not on information obtained by other means. It is usually
undesirable for a PO to know more about the design than the
contractor management. The PO may make incorrect assumptions
based on incomplete or temporary data in a design data base.

Tight timing constraints, particularly shortly after contract
award, can result in products such as the authenticated System
Specification and the Computer Program Development Plan failing
to satisfy their intended purpose and/or attempting to satisfy
the purpose of other documents.

(The application of increased effort in the early stages of use
of a methodology could further exacerbate such problems unless
timing constraints are relaxed.)

The highly condensed form of the early products from some
design methodologies does not necessarily represent a change
from present practice. Contractors at times supply little if
anything more than the names of software components.

It can be difficult in current-day Air Force specifications to
trace requirements (locate the response in a specification to a
known requirement) and to trace data flow (determine from a
specification all the processing a particular input is subject
to).

(TRW's SREM - Software Requirements Engineering Methodology -
specifically aims to provide solutions to these two problems.
The SRI and Honeywell methodologies provide less specific help
in these areas although a design which is modularized by
clustering the processing around each kind of data object and
by limiting access to each kind of data object should make it
easier to trace requirements and locate the processing for a
particular input.)

SATIN 1V changed the normal documentation requirements with DID
backup sheets to do such things as incorporate HIPO diagrams
and PDL representations in specifications and remove interface
specifications to separate documents.

108

(This route could be used to tailor/change contractor-product
requirements in consonance with a particular class of

methodologies or a specific methodology, for a demonstration
project or pilot project, for instance.)

Timing constraints and insufficient knowledge on the part of
the person responsible for software documentation can result in
inadequate documentation at present.

(The software design methodologies are intended to produce
software documentation as an integral part of the design
process rather than as a separate effort after the fact, so
that documentation should be prepared by knowledgeable people,
at the time when it is freshest in their minds and should be
up-to-date. If a methodology produces a better-organized
design, the documentation of the design should be more
comprehensible also.)

Contractors sometimes have trouble in determining which design
decisions need to be made and which of these are most critical.
The recording and communicating of critical decisions can also
be a problem, particularly when parallel efforts are in
progress and for design areas which affect or overlay several
others, such as system control, error recording and reporting,
and interrupt handling. Changes in management practices may
reduce but probably not eliminate such problems.

(Some methodologies claim to facilitate or foster the recording
of critical design decisions. Elaboration of such claims and
the provision of guidelines seem to be lacking at present.
However, any aspect of a design recorded in a computerized data
base is potentially communicatable to other interested parties;
automated tools to trigger appropriate reports when changes to 1
such a data base are sensed could be useful, if available.)

e

1f the use of a methodology places greater reliance on formal
specifications which may require specialized knowledge to
understand, it may be desirable to reduce the distribution of
copies for review. A reduced distribution would not eliminate .
useful feedback in the case of those external agencies which
currently fail to respond to requests for review of
specifications.

A methodology which provides guidelines to contractor and PO
personnel as to the content and structure of the top-level
design for presentation at a PDR, for instance, would be
beneficial.

T —— it S i e

109

(A number of methodologies address this problem, alﬁhough
further design guidelines and increased content of
specifications seem desirable in some cases.)

) The SRI and Honeywell methodologies don't start early enough.

(They don't address requirements analysis and requirements
traceability. Even SREM seems more oriented toward recording
results in these areas than in providing guidelines.)

PAYE Pl¥3

° The present Air Force software acquisition process seems
reasonable and can produce good systems. Where problems arise,
they can frequently be traced to attempts to bypass steps in
the acquisition process; in particular, shortcutting the
validation phase can cause troubles.

JTIDS

® The present Air Force software acquisition environment might be
improved by providing for more continuing review of contractor
efforts by the PO, in particular between CDR and FCA, for
instance.

(Presumably this problem will seem worse for long projects than
for short ones. The problem is worsened if there is a tendency
to produce skimpy B5 specifications and not produce draft C5
specifications until coding or even testing is relatively
complete. Various authorities differ as to how early in the
software development cycle the C5 specifications should be
available, some calling for early sections in time for PDR, and
the completeness of draft C5 specifications for CDR. If
problems in meeting schedules occur, there seems to be a
tendency for reviews and draft specifications to be more
perfunctory than intended. If a staged methodology, such as
the SRI one, is used, more frequent reviews could be required
based on the product from each stage.)

110

TR

e ——— o

SECTION IX

PROJECT PERSONNEL OPINIONS

This section presents opinions of project personnel, primarily
the author of this report, on various aspects and features of the
HDM and the RDM. Since Section VI and the parenthesized comments of
Section VIII tend to reflect our views on the suitability of the two
methodologies for use in the Air Force software acquisition
environment, this section concentrates more on their general
characteristics, with possibly greater attention to the HDM, since
documentation of it is more extensive.

GENERAL

Methodologies need guidelines for their use. Presumably
further guidelines will evolve with greater use of the
methodologies. Guidelines for starting a design seem relatively
weak. The form, content, and organization of the input to the
design process are generally ignored. Examples of use of a
methodology tend to emphasize the resulting design with minimal
attention to the requirements which dictated that design. Both the
HDM and the RDM produce formal requirements in the detajled design
phase in terms of state variable values. Such requirements are
highly distilled and structured and presumably are not just
extracted from a requirements document such as a typical Type A
specification. Because of the design orientation of the formal
requirements, it can't be argued that their preparation is a part of
requirements analysis, and, therefore, not properly a part of a
design methodology.

Guidelines which suggest a staged/phased development need to
avoid suggesting that the stages/phases are relatively independent
of one another. Both the HDM and the RDM produce in general design
a modularization and a hierarchy, a set of potentigl dependencies
between modules and functions of modules. Only in detailed design
and implementation are the actual dependencies specifically stated.
To minimize the looping back from detailed design and implementation
to make general design changes, one probably has to consider some
aspects of detailed design and implementation while doing general
design. The RDM suggests that some of the detailed design and
implementation may need to be performed before general design can be
completed. It may be that for a complex software system additional
tools may be needed to record the existence of relationships and

m

promG

dependencies between software elements, to look for conflicts and to
form hierarchies. Existing and planned tools will record
relationships and detect conflicts as by-products of detailed work
in later stages but earlier assistance may also be necessary.

The kinds of information which the HDM and the RDM record, the
form of those recordings, and the kinds of information not recorded
seem to be tailored to use by a relatively fixed group of people who
are more or less in continuous contact with the development process.
Such information may be inadequate for software monitors who have
only periodic contact with parts of the process and the design or to
a new group of people which takes the place of the old group as a
result of a new contract for the next acquisition phase, for
instance. Although the RDM provides for specific types of text
blocks and the HDM only for comments, both methodologies provide BNF
representations of their design documentation. The BNF could be
extended to allow specific text blocks to be included in the design
documentation which are more specifically oriented toward the Air
Force acquisition environment. Tools could be changed or added
which would signal the absence of such text blocks.

It may be desirable to alter the content and makeup of the B5
and C5 specifications, which seem somewhat more oriented to hardware
than software. A product specification for hardware presumably is
more often used to allow a new contractor to be selected who will
produce hundreds or thousands of copies of a product or to assure
that in the case of multiple-sourcing, each contractor's product is
interchangeable with another's. A "product" specification for
software is at least partially oriented toward after-the-fact
documentation of the content of a single "prototype" (which can be
mass produced by a trivial copying process) and toward documentation
to facilitate future changes. The BS specification might be split
into a requirements document with little design-oriented structure
and a general design document which structures the requirements and
represents initial design. The first piece would be input to a
methodology and the second piece would be produced with the aid of
the methodology.

The C5 specification might be split into one which documents
the detailed design and another which documents implementation. The
possibility of doing some detailed design and implementation before
completion of general design also needs to be taken into account as
does the possibility of concurrent detailed design and
implementation with some methodologies such as the RDM. If the
software specifications are split into more pieces, the orientation
should clearly be toward forming a complete document as the sum of

112

the pieces rather than increasing the effort required by attempting
to make each piece self-explanatory.

The HDM and the RDM both suggest that some attention has been
given to design of systems involving such concepts as shared data,
concurrency, parallelism, multi-processing, etc. The ability to
deal with such systems is certainly needed. Such capabilities
appear to require further development for both methodologies or at
least need to be better publicized if already fully developed.
Dijkstra's guarded commands which form a part of the RDM seem to be
oriented toward possible execution in parallel, although the actual
intent does not seem to be enunciated.

hMost methodologies, including the HDM and the RDM, are
primarily oriented toward producing designs which satisfy functional
requirements rather than performance requirements. A few
methodologies suggest that they can be used to produce good designs
that are independent of the exact placement of the interface between
hardware and software, that it should be possible to convert
hardware functions to software functions or vice versa, particularly
in the vicinity of the interface, without changing the design.
Whether such statements can presently be substantiated or not, the
availability of inexpensive yet powerful microprocessors and the
tendency to interface multiple processors of various sizes in the
same system seem to suggest an increased number of design
alternatives. When each CPU costs a million dollars, a few hardware
configurations may be considered and then a large amount of effort
may be spent in designing the software to run efficiently on a
single CPU or each of several. If a variety of CPU's is available
for widely varying prices and if the use of more CPU's with a lower
average price is considered advantageous, more alternatives must be
considered. Methods suited for determining whether one or possibly
two or three larger CPU's are needed are probably unsuitable when a
microprocessor can replace fixed logic and smaller CPU's can be used
in series and/or parallel to replace larger ones. Hardware/software
trade-offs become more important and more numerous. Selection or
design of hardware and software architectures become more closely
related. The hardware needed for a system can be more closely
fitted to the requirements, with reduced expense for idle
capability. If a "software design methodology"” can only be used
after requirements have been allocated to hardware, then the utility
and need for such a methodology will be reduced as the set of
requirements is apportioned over a larger number of smaller CPU's.
The method of apportioning, timing, interfaces, paths between CPU's
become more important and the efficiency of utilization of an
individual CPU less important. Design methodologies may need to
emphasize solutions to problems such as these in the future.

113

The effect on the acquisition environment of more CPU's with
Smaller programs in each must be considered. Holding separate
reviews and writing separate specifications for the software in each
CPU could increase costs with little increased benefit.

For the HDM, the characteristics of an OV-function need clearer
delineation. Current documentation of the HDM tends to make
statements about V-functions or O-functions while failing to clarify
whether the statements also apply to OV-functions, and if not, what
statements can be made about OV-functions. In particular, it is not
clear if the result returned by an OV-function can, cannot, or may
be a state variable.

Robi77 states that the differences between specification and
implementation are often so great that the specifications cannot be
construed in any way as a guide to efficient implementation and
separate information must be supplied. Proof of the implementation
would seem to be impeded or prevented in such cases. The elegance
of the methodology is reduced, and traceability from code to
requirements hindered. If hardware efficiency considerations become
less important for less expensive CPU's, then less need would be
felt for departing from the design in implementation.

LANGUAGES

The following comments relate to the PDL's (of the HDM and the
RDM), definition of their syntax by BNF, and their use. Note that
the BNF definitions in both cases include the design structure and
design documentation as well as the PDL so that the exact boundaries
of the PDL may be debatable. Some of the comments also apply to the
SRI implementation language, ILPL, which incorporates elements of
SPECIAL by reference.

One problem with these languages is that they are defined
primarily by use of BNF - concentration on syntax to the detriment
of semantics. The semantics of much of the SRI PDL (SPECIAL) have
been formally documented in Roub77 and Robi77, but SPECIAL is a
rather extensive language and the meanings of some of its more
esoteric features are still unclear. The interpretations of some of
the uses of several special characters are not clear. As a result,
at least a few very lengthy statements (15 to 20 1lines) in Neum77
are virtually incomprehensible. ILPL is defined gniy in BNF. The
semantics of the RDM PDL are largely undefined as yet.

The BNF for each of the three languages tends to treat a long
list of constructs as alternatives of the syntactic element

14

<expression> and then relies implicitly on type checking to prevent
invalid combinations of them with one another and with various
operators. Any feasible subsetting of expressions and operators by
type would probably make the BNF definitions more meaningful even
though more syntactic elements would result.

For certain applications (such as this project, infrequent
references, language comparisons), the BNF definitions by themselves
appear to be time consuming to use. Numbering the definitions and
providing a directory of syntactic element definitions, of reserved
words, and possibly of references to syntactic elements could be
helpful. Defining a syntactic element whose name is the plural of
another emphasizes the relationship between the two but also
requires any reference to either to be examined closely enough to
avoid mistaking one for the other. Failure to include BNF
definitions for the more basic elements of a language can cause
fruitless searches until their absence is recognized.

AL o e b 0 it i

The Honeywell RDM PDL is relatively difficult to understand in
the area of type declarations, particularly in the area of abstract
data types, illustrated by the declaration f~r stack at the top of
Figure 20. To identify the kinds of syntactic elements involved,
one can look for the reserved word types in the BNF syntax
definitions. It seems to appear only once. The element following
the word types leads one (through an intermediate definition) to the
definition for a type declaration which starts with "type <id>:".

To verify that the 10 lines in parentheses which follow the ":" are
an object type, one generally has to follow through five more
definitions. Some of these definitions consist of 6 and 8
alternatives each. The alternatives are reserved words, synonyms
for reserved words, and other syntactic elements. Separation of the
10 1lines by semicolons indicates that the 10 components are a |
product list - that stack consists of all 10 components - rather
than a union 1ist. The outer parentheses are optional. The first
line is another type declaration (within a type declaration). If
the reserved word type in front of "element" is omitted, the meaning |
: is unchanged but the first line is no longer a type declaration, but
. the concatenation of three syntactic elements, including the ":" as
one. A third alternative for the first line is to use only an
object type, of which gbstract is an example. This alternative is
not helpful here since there would be no way to reference the
unnamed object type. The next three lines are concatenations of
three elements, since type is absent, but with a primitive data type
stated for each.

Lines 5 and 8 ("push" and "empty") contain object types which
are functions. The BNF definition for a function indicates an

115 3

optional object type preceeding fun. One has to surmise or be told
that this object type represents the result returned by the
function. One can possibly by now determine that boolean in line 8
is an object type. For line 5, one has to reexamine the same 5 or 6
definitions to determine that the parenthesized pair is an
optionally parenthesized object type consisting of the union of two
object types, each of which is represented solely by an identifier
since the optional word type has been omitted in both cases. The
BNF uses the same convention to indicate that the word type is
optional and that not all functions have input parameters and
produce results.

The SPECIAL reference manual (Roub77) improves understanding of
SPECIAL considerably but the large number of specialized constructs
is at least a partial offset. Due to lack of cross-indexing,
finding the text in Roub77 which may explain a portion of the BNF
definitions can also be a problem. The concept of "type" and
"object" need further clarification in SPECIAL, particularly in
light of some of the statements made about them, such as (1) there
is a distinction made between the objects manipulated by a module
and those manipulated by SPECIAL, cne being a subset of the other,
and (2) it is sufficient to consider a type as a set of possible
values. Part of the problem seems to be failure to clearly
distinguish between a thing and the name of a thing.

Roub77 confounds the above problems by careless use of plurals.
A "designator type" is a particularly important kind of type which
is probably equivalent or related to an abstract data type. The
principal definition states the "Designator types form a class of
objects - designators - that are tokens for objects manipulated by
the system being specified." The word "designator" seems to be used
primarily to refer to a unique identifier for an object, but it also
seems to be used at times to refer to the object itself or to the
type of the object. The reference to two sets of objects in the
definition is confusing, and it is not clear if the "class" consists
of all kinds of designators or a single kind (or type).

SPECIAL and ILPL seem to involve the user in considerable
duplication of effort in some cases. Note that in Figure 4 the
first six paragraph headings at the top of each of the three columns
are identical or nearly so. The example of the Provably Secure
Operating System (PSOS) in Neum77 indicates that while the last
paragraph in each column (FUNCTIONS, MAPPINGS, and IMPLEMENTATIONS)
are frequently rather lengthy, the first six paragraphs can rather
easily consume two pages per module in a (MODULE) specification, a
MAP, or a PROGRAM MODULE. Much of the material contained in one is
contained in the others. A desirable goal would seem to be to enter

116

the material once and reference applicable portions elsewhere with
minimal effort without also referencing that which is improper.

More cross-file referencing than seems to be indicated in Boye76 may
be desirable.

This condition seems particularly noticeable in the
EXTERNALREFS paragraph of a MAP. If module A is to be mapped to
modules B, C, and D, then the MAP statement states that the mapping
is from "A TO B, C, D". Nevertheless, the EXTERNALREFS paragraph
must include declarations for all the primitive objects which appear
in the mapping functions, not only primitive objects of B, C, and D
but A as well. If two or more different primitive objects with the
same name could exist (in different modules), then it would be
necessary to identify which object was intended in EXTERNALREFS.
However, it seems desirable to avoid such duplicate names and the
SRI interface handler requires a unique name for each object in an
interface. Therefore, it should be possible to eliminate the
EXTERNALREFS paragraph for a MAP, thereby reducing the effort and
the volume of product from the methodology. The MAP handler tool
would need to access the module source files to do its "internal"
consistency check, but this is already done to check external
consistency.

In the practical application of the SRI HDM, several features
or tendencies can obscure the design and the theoretical basis for
the methodology. The first such tendency pertains to the volume of
product produced. The HDM de-emphasizes text in its design
documentation except for comments. Neum77 describes the design of a
Provably Secure Operating System (PSOS) and some applications of it.
The design consists of 14 levels. Appendix B contains module
specifications (the output from stage 2) for the 11 lower levels (20
modules). The specs are a total of 75 pages long. Although PSOS is
probably a relatively large system, 75 pages of material such as
that in Figure 8 will probably obscure some of the design details.
Although a textual description of such a system would run to many
more pages, the reader is much less dependent on each character and
word of what he reads for understanding. But the 75 pages is not
the end of the products.

PSOS is not carried past stage 2 in Neum77; however, Appendix C
takes a small portion of PSOS in a somewhat modified form and
proceeds further. The sample problem in Appendix C consists of 3
levels (5 modules). The module specifications (stage 2) total 10
pages. There are 4 MAP's (stage 3) which total 8 pages. One reason
there are 4 MAP's is that there are 2 copies of one module in the
system which differ from one another slightly but have essentially
the same names (more obscuring of the design). Only 2 modules are

"7

SR

T R W N I B g O T T e NI

. implemented (stage 4) but these total 15 pages. Finally the

| implementation proof (stage 4) is given for one V-function of one

| short implementation. The proof is 8 pages long although it
includes material copied from earlier stages for convenience and is
undoubtedly longer than most proofs since it is intended for use as
an example. The sheer volume needed to describe the design and
implementation of a system has some obscuring effect.

% A goal of the SRI HDM is that a module spec (from stage 2)

? should be independent of other module specifications, to "abolish
the intermodule assumptions at the specification level" in the words
of Roub77. Roub77 also notes that since this independence is not
always possible, the EXTERNALREFS paragraph is provided in a module
specification to "describe these intermodule assumptions." This
dependence between modules complicates the design process and the
design itself and also makes understanding of the design (by a
contract monitor, for instance) more difficult.

A i

To determine whether this lack of independence is only a rare

| problem, one might examine PSOS, the only available, sizable sample
! of the use of the HDM. As noted above, the lower 11 levels of the
design contain 20 modules. (Two or more versions of four of the 20
: are included in the 11 levels, but it is not evident from the module
' specifications what the nature of the differences in the versions

i is.) Of the 20 modules, 19 of them all make external reference to

! the 20th. Since this 20th (bottom) module is so basic to the

3 security properties of PSOS, it is not unreasonable to assume that

] someone wishing to understand any of the other 19 modules should

| need to understand the 20th module also. However, it was also found
4 that 13 of the 19 make external reference to one or more other

P modules in addition to the 20th. (EXTERNALREFS are to lower
modules; cycles presumably must be avoided.) Thus, the lack of !
module independence at the specification level is more than just a

rare occurrence, in the sample.

A module was selected more-or-less randomly but near the top of
the 11 levels. It is part of level 9 (the topmost level of the 11
is level 10). This module specification is four pages long and
contains specifications for 9 functions. The specification has
EXTERNALREFS to 14 functions, 12 PARAMETERS, and a DESIGNATOR
contained in four other modules, one of which is the bottom one. If
the names of these external functions and PARAMETERS and the short
comments for some of them which are included in the level-9 module
are not adequate for understanding, then the lower-level module
specifications need to be examined also. If the comments in a
lower-level specification are still not adequate, then the
specifications for the functions and PARAMETERS need to be examined.

118 :

The functions will frequently be defined in terms of other
functions, PARAMETERS, etc., of the lower-level module, which may
have to be examined. A lower-level function may also be defined in
terms of EXTERNALREFS of that module which may involve yet other
modules.

TOOLS

The SRI tools deal with modules and INTERFACES and a HIERARCHY
of INTERFACES. An INTERFACE is not an abstract machine. It has
some of the characteristics of an abstract machine but appears to
have been influenced by implementation considerations in that it
must include a closed set of modules with regard to the EXTERNALREFS
paragraph of each MODULE specification. A HIERARCHY of INTERFACE's
may frequently give a distorted view of the corresponding hierarchy
of abstract machines. It does not seem clear whether the distortion
will hinder use of the HDM or not, but it seems esthetically
disturbing at least.

As noted elsewhere, PSOS contains several examples of modules
which exist in different versions at different levels (in different
INTERFACE's). Differences between these versions do not seem well
delineated. It is not even made clear at which stages of the HDM
the differences appear. However, Boye76 states that a gingle
interface may contain several instances (versions) of the same
module specification (although object names must be different). The
effects of such practices need explanation for the methodology and
the use of them in a design needs to be clearly defined to avoid
confusion.

The specifications for PSOS in Appendix B of Neum77 indicate
that either the specifications, the tools or the BNF for SPECIAL
have some defects. At least one of the MODULE specifications
contains EXTERNALREFS to hidden V-functions in specifications for
other MODULE's. At least one instance was also noted of a function
with a supposedly invalid section, such as a DERIVATION section for
an OV-function, for instance.

DOCUMENTATION AND EXAMPLES

For wider application of software design methodologies, the
documentation of them needs considerable improvement. It should be
more extensive and of higher quality in the case of some
methodologies (with reference to more than just the two examined in
this report). Standardization of terminology will help but in the

19

Ty — o—— . e . -

absence of such standardization, greater use of glossaries and more
careful choice of wording is needed.

Many more examples of the use of methodologies are needed.
Short, informal, homely examples such as some in Lind76 can help to
relate a methodology to past and present experience and practice.
Larger, more formal examples are also needed to illustrate the use
of a methodology. The problem should be easily explainable and
understandable and should be explicitly defined. Sample designs
should be without error which implies that they should probably be
implemented and tested. Even more useful for one or several such
examples would be statistics such as effort required, elapsed time,
costs, and numbers and kinds of errors discovered.

120

e e L R T s e el b

TNy

AFR14-2

Boyd76

Boye76

Dahl72

Dijk72

Di k75

D1 jk76

Glor77

Haga75

Hoaré69

Hoar72b

REFERENCES

Air Force Regulation: Acquisition Management: Acquisition
and Support Procedures for Computer Resources in Systems,
AFR-800-14-II (Volume II), USAF, 26 September 1975, 45 pp.

Boyd, D. L. and G. J. Gustafson, The Design
Methodology WELLMADE and its Relationship to the
Software Generation Process: An Overview,

Report HR-76-131:13-53, Corporate Research Center,
Honeywell, Inc., Bloomington, Minn., October 1976.
39 pp.

Boyer, R., and O. Roubine, The Hierarchy Specification
Environment, an appendage to Roub77, 12 pp.

Dahl, O. J., E. W. Dijkstra, and C. A. R. Hoare,
Structured Programming, Academic Press, USA
(1972).

Dijkstra, E. W., Notes on Structured Programming,
pp. 1-82 of reference DahlT72.

Dijkstra, E. W., Guarded Commands, Non-Determinacy,
and Formal Derivation of Programs, CACM, Vol. 18,
No. 8, August 1975, pp. 453-457.

Dijkstra, E. W., A Discipline of Programming,
Prentice Hall, Englewood Cliffs, NJ, 1976, 217 pp.

Glore, J. B., Software Acquisition Management Guidebook:
Life Cycle Events (S.A.M. Guidebook #17), ESD-TR-77-22,
Electronic Systems Division, AFSC, Hanscom AF Base,
Mass., February 1977, 69 pp. (ADA037115).

Hagan, S. R., and C. W. Knight, An Air Force Guide for
Monitoring and Repofting Software Development Status
(Software Acquisition Management Guidebook #4), ESD-TR-
75-85, Electronic Systems Division, AFSC, Hanscom AF Base,
Mass., September 1975, 98 pp. (ADA016488) NTIS.

Hoare, C. A. R., An Axiomatic Basis for Computer
Programming, CACM, Vol. 12, No. 10, October 1969,
pp.576-583.

Hoare, C. A. R., Notes on Data Structuring, pp. 83-1T4
of reference Dahl 72.

121

Lind76

MS483

MS490

Neum75

Neum7 7

Parn72a

Parn72b

Robi77

Linden, T. A., The Use of Abstract Data Types to
Simplify Program Modifications, Proceedings of
Conference on Data: Abstraction, Definition, and
Structure (Salt Lake City, Utah, March 22-24, 1976),
ACM SIGPLAN Notices, Vol. 11, 1976 Special Issue,
pp. 12-23.

Military Standard: Configuration Management Practices
for Systems, Equipment, Munitions, and Computer Programs;
MIL-STD-483 (USAF); USAF; 31 December 1970; 119 pp.

Military Standard: Specification Practices, MIL-STD-490,
Dept. of Defense, 30 October 1968, 76 pp.

Neumann, P. G., L. Robinson, K. N. Levitt, R. S. Boyer,
A. R. Saxena, A Provably Secure Operating System, SRI
Project 2581, Stanford Research Institute, Menlo Park,
Cal., 13 June 1975, 319 pp.

Neumann, P. G., R. S. Boyer, R. J. Feiertag,

K. N. Levitt, and L. Robinson, A Provably Secure
Operating System: The System, Its Application, and
Proofs, SRI Project 4332, Stanford Research Inst.,
Menlo Park, Cal., 11 Feb. 1977, 481 pp.

Parnas, D. L., A Technique for Software Module Specification
with Examples, CACM, Vol. 15, No. 5, May 1972, pp. 330-336.

Parnas, D. L., On the Criteria to be Used in Decomposing
Systems into Modules, CACM, Vol. 15, No. 12, Dec. 1972,
pp. 1053-1058.

Robinson, L., and 0. Roubine, SPECIAL - A Specification
and Assertion Language, Technical Report CSL-46,
Stanford Research Inst., Menlo Park, Cal., January 1977,
40 pp.

Roubine, 0., and L. Robinson, SPECIAL Reference Manual,
Technical Report CSG-45, Stanford Research Inst.,
Menlo Park, Cal., Jan. 1977, 60 pp. (including reference

122

Scho76 Schoeffel, W. L., An Air Force Guide to Software |
Documentation Requirements (Software Acquisition
Management Guidebook #9), ESD-TR-76~159, Electronic
Systems Division, AFSC, Hanscom AF Base, Mass.,
June 1976, 179 pp. (ADA027051) NTIS.

123

