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SOMINT: AN IMPROVED MODEL FOR
STUDYING CONDUCTING OBJECTS NEAR
LOSSY HALF-SPACES

i % ABSTRACT

This report summarizes the development of a moment-method numerical code to study
wire antennas near lossy earth. The computation time of this code is greatly reduced by two
new methods for evaluating the Sommerfeld integrals. In the evaluation of the integrals off
the earth, a bivariate interpolation scheme on a prestored grid is shown to give very quick
and accurate results. A new series solution is presented to evaluate the integral for values
near the interface. Test results of this program are given, along with extensive numerical
data on vertical half-rhombic and sloping V antennas.

INTRODUCTION

A problem that has traditionally resisted a genuinely practical solution despite considerable study is that
of modeling conducting structures (antennas or scatterers) located near a planar interface such as the earth’s
surface. Nearly 70 years ago Sommerfeld (1909) worked out the basis for its rigorous solution in terms of
Fourier integrals of cylindrical wave expansions. The Sommerfeld integrals have been extensively studied, and
numerous approximations have been developed for them for various combinations of the problem’s
parameters. | However, evaluation of the Sommerfeld integrals for the ranges of source and observation
points that typically must be covered for any self-consistent description of the structure’s current—an integral
equation for example—almost inevitably involves some parameter combinations to which such approxima-
tions do not apply. Consequently, the only feasible approach for obtaining a reliable solution in such cases has
been to numerically integrate the Sommerfeld integrals, a computationally inefficient process.

This situation has, until now, kept moment-method models of wire antennas based on internal-equation
formulations too expensive for routine use in treating the half-space problem. In this report we present a new
approach to the interface problem that is based on an old (interpolation) numerical procedure. Our interpola-
tion approach, which we refer to as SOMINT for convenience, is shown below to make computer modeling of
antennas near an interface now affordable. For example, relative to the free-space computation, the time
penalty for rigorous treatment of the interface-reflected fields will be ultimately a factor of only 5 to 10 vs the
former value of 100 to 1000. Consequently, a whole new range of problems becomes practicable, including, as
illustrated here, radiation-pattern control through ground-screen design.

The second section of this report provides analytical background for the interface problems and formula-
tion of the integral equations upon which our approach is based. The third section discusses the numerical
procedures employed, including the interpolation treatment that is the key contribution of this work.
Numerical results are given in the fourth section: first a series of test cases and preliminary calculation and
then the results of some parametric calculations performed for two Army antennas, the vertical half-rhombic
and sloping V. The final section presents our conclusions and recommendations for future work. Two appen-
dices contain representative plots of radiation patterns and current magnitude values for vertical half-rhombic
and sloping V antennas.

METHODS FOR STUDYING WIRE ANTENNAS

Preliminary Considerations

An integral equation for a wire structure can be derived in many ways. The basic procedure involves
writing Maxwell’s equations in integral form to express the scattered or secondary fields in terms of integrals
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over induced-source distributions. Expressing the secondary field over loci of points where the behavior of the
total field (incident or primary plus secondary) is known via boundary or continuity conditions yields an in-
tegral equation for the induced source in terms of the primary field. Two broad general classes of integral
equations result, depending on whether the forcing function (primary field) is electric or magnetic. An electric
forcing function gives rise to a Fredholm integral equation of the first kind (so called because the unknown ap-
pears only under the integral). A magnetic forcing field gives rise to a Fredholm integral equation of the
second kind (in which the unknown also appears outside the integral). While derivatives of the unknown may
occur as well, these equations are commonly termed integral equations, rather than integro-differential equa-
tions, as would be strictly correct.

Generally speaking, the magnetic-field type of integral equation has been found better suited for smooth,
closed surfaces than for thin-plate or shell geometries and wires. 2 The converse is generally true for the
electric-field type of integral equation, which, accordingly, is most commonly employed for treating wire
structures. Also involved in developing wire integral equations are three approximations:

® The circumferential current is negligible,

® The circumferential variation of the longitudinal current can be ignored; and

® The thin-wire or reduced kernel can be used in place of the actual surface integration.

Many analytically equivalent integral equations for wires based upon the electric field can be derived.
Three of the most commonly employed are the Hallen or vector potential type, 3 the scalar-vector (mixed)
potential version, 4 and the Pocklington integral equation. 5 All are solved within the framework of the mo-
ment (or matrix) method, but each exhibits distinctive characteristics that must be taken into account in its
numerical treatment. The Hallen equation, for example, can produce results using a pulse-current basis of ac-
curacy comparable to those obtained from the Pocklington equation solved with a three-term (constant, sine,
and cosine) basis for simple structures. ® The Hallen equation is not, however, readily extendable to the com-
plex geometries that the Pocklington equation can handle. ’

Although pulse-current 89 and linear-current !0 bases have been quite widely used, and can, under
suitable circumstances, be essentially equivalent, they are not as efficient for modeling traveling wave equa-
tion, as are sinusoidal bases that possess nonconstant derivatives and can closely resemble the actual current
solution. Sinusoidal bases have appeared in subsectional or subdomain form in both the three-term expansion
mentioned above and in the piecewise sinusoidal 5 or two-term form. Fourier series have also been studied as
complete-domain sinusoidal bases, but have not been widely adopted because they require more integration
effort than subsectional bases and can lead to ill-conditioned matrices. 8

The weight or test functions most often used have been delta functions, although Galerkin’s method with
both linear (two-term) '% and sinusoidal (two-term) 3 functions has also been quite widely applied. The term
*““point matching” refers to the use of delta-function weights. A comparison of numerical convergence rates for
several common methods applied to a straight-wire scatterer is shown in Fig. 1. !!

In addition to the problem of choosing basis and weight functions, other special aspects of the numerical
development must be considered when selecting a code for computer modeling. Three of these aspects are dis-
cussed below.

Junction Treatment

Any subsectional approach that employs either finite-difference operators in the integral equation or any
other basis than pulse-current requires special consideration of both simple (two wires) and multiple (three or
more wires) junctions. The problem essentially is to relate, in some physically and mathematically reasonable
way, the current basis of each subsection (segment) to those of its neighbors. When pulse bases are used in the
scalar-vector potential integral equation, the finite-difference operator spans two segments and thus leads to a
charge involving the two corresponding pulse-current samples. 4 For two- or three-term bases, the condition
of current arplitude and slope continuity at each simple juction leads to equations that permit all the con-
stants in the current expansion to be given in terms of current samples at the segment junctions or centers. ®
Yeh and Mei 2 developed a slightly different handling of the three-term basis in which the current is ex-
trapolated from a given segment to the adjacent segment centers, but which is otherwise basically the same.

For a multiple junction, the treatment can become considerably more involved. The pulse-basis approach
mentioned above has been extended to the multiple junction ? by dividing the total junction charge between
the junction segments according to the ratio of their individual areas to the total area on a logarithmic basis in
radius and linear in segment length. This approach has been found useful for the three-term expansion as
well. © The two-term expansions have been applied to multiple junctions by overlapping M - 1 of the bases a
pair at a time at an M-segment junction. '© Applications of the three-term expansion to the multiple junction
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Fig. 1. Convergence rate for several solution methods (Ref. 11).

has been accomplished by MBAssociates using the Yeh and Mei simple-junction procedure by incorporating a
composite segment having the averaged length and total current of the M - 1 connected segments. '3 A more
elaborate multiple-junction approach has been developed for the three-term expansion by Andreasen and
Harris. '* Their procedure apparently is the only one in which the junction geometry plays an explicit role in
establishing the current relationships at the junction. Although all of these approaches evidently can produce
satisfactory results, there is little or no direct evidence of their validity in terms of the junction current and
charge distributions. It should be noted that the numerical results have been found in some cases to be quite
sensitive to the junction treatment. 6 Further, the above list by no means exhausts all possible alternatives for
the junction treatment.

Source Models

Determination of quantities such as absolute gain, efficiency, radiated power, input power, etc., requires
not only the antenna current distribution but also the input characteristics, particularly the feedpoint im-
pedance (or admittance). The feedpoint admittance can be found in various ways, but using the integral-
equation approach ordinarily also involves defining it in terms of source-region current per unit of terminal
voltage. Calculation of this quantity requires a realistic source model that not only provides an appropriate
means for numerically exciting the antenna, but also permits ready evaluation or specification of the effective
terminal voltage. Thus if, as in a point-matching procedure, the excitation arises as a tangential field on the
source segment of length A, the driving voltage might be assumed to be -E 'A if E ! is constant on the source
segment and zero elsewhere. This assumption may be invalid, however, with the result that the actual voltage
can be obtained only by integrating the tangential field in the vicinity of the source segment. ® Somewhat less
ambiguity should arise from Galerkin-type approaches where the boundary conditions are integrated, so that
the classical delta-function source might be numerically approximated. An alternative source model for point-
matching is provided as a current-slope discontinuity, which also approximates a delta-function source field.
The current bases, junction treatment, and weight functions can all influence the usefulness of these alter-
native source models. In case of uncertainty, once the current distribution has been found, the impedance can
be computed from the classical emf method, although at the expense of the additional integration this entails.




Integration

Integration is understandably an essential part of the moment method; it is involved in applying the in-
tegral operator to the current bases and, in a Galerkin method, evaluating the inner product of these results
with the weight functions. For most wire programs, these operations, which lead to the generalized impedance
matrix, dominate the total solution time for numbers of unknowns less than ~200. It is thus important that
the integration time be minimized consistent with the overall accuracy requirements.

One way to approach this goal is to choose appropriate bases and weight functions. The two-term
sinusoidal current basis, for example, requires no numerical integration when the Pocklington integral equa-
tion is used together with point matching. This particular combination is not very accurate, however. '
Adding the constant term leads to much better results, with the slight additional expense of the numerical in-
tegration required to find the longitudinal field of this current term; the radial component can be analytically
expressed. Alternatively, use of a sinusoidal weight function 3 also gives much improved results and sur-
prisingly requires numerical integration, at most, of sine and cosine integrals. The piecewise linear basis used
with the scalar-vector potential equation cannot be analytically integrated, but good results are obtained with
four-point rectangular integration of both the operator and inner-product integrals. In addition, instead of ap-
plying a numerical integration of the self-term, a series expansion that gives a closed-form expression is
used. 'S When numerical integration is used, various adaptive routines and special techniques are available to
improve efficiency. !¢

Wire Antenna Analysis

Examining the many options available to the analyst concerning the integral equation to be selected and
its numerical treatment in developing a computer model for application to wire antennas would take this dis-
cussion beyond reasonable lengths. Accordingly our attention is primarily directed to an approach based on
the Pocklington integral equation solved using a three-term subsectional basis (constant, sine, and cosine) and
point-matching. Unless otherwise indicated, antenna sources are introduced as tangential electric fields, with
the Yeh and Mei !2 form of current extrapolation used for simple junctions and the Curtis method for multiple
junctions. Both the source model and junction (simple and multiple) treatment used in this code may exhibit
deficiencies, but when applied with care (e.g., equal segment lengths near sources and at multiple junctions)
the code has proven valid and reliable. A brief overview of the relevant equations and numerical treatment
used for free space and various interface theories and some special topics is given in this section. Numerical
results appear in a later section.

Infinite, Homogeneous, Isotropic Media

The Pocklington-type integral equation for a wire structure of contour C(T) can be expressed in the form

- E! (s) = o l(s')G0 (s,8") ds’; s e C(F) , 6))
C(T)

where

, s 4 ,
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where. as usual, k is the inifinite-medium wave member, the permeability and permittivity are denoted by u
and ¢, a(f) is the wire radius at ¥, and E ' is the incident electric field. ‘

Reduction of this equation to matrix form involves these seven steps:

(1) Approximating C(r) as a piecewise linear sequence of N segments of length A; (i = 1, ..., N), so that

N
@ ~ z I
=i

with gl the unit tangent vector to C(t) at T = T; (use of straight segments is not mandatory, but it is very con-
venient in simplifying the current integration);
(2) Introducing the subsectional bases

Ii(s") = A; + B;sink(s' - s))] + C; cos[k(s’ - ;)]

to represent the unknown current (the final unknowns will be the N sampled current values [; = A; + G [i = 1,
..., N] at the center of each of the N segments);

(3) A current interpolation procedure whereby the individual A;, B, and C; constants are expressed in
terms of the sampled current values; :

(4) Use of the N delta-function weights (s ~$,)( = 1, ..., N) to obtain an N "-order impedance matrix
of N independent field equations (note that the weight functions sample the field at the segment centers, and
are thus “‘collocated” with the current sample locations);

(5) Specification of the N incident or primary field vector components E; = E‘(sj) : 's\j G =1, .., N)
which are the tangential fields at the N segment centers;

(6) Matrix manipulation to obtain an admittance equivalent of the impendance matrix; and

(7) Computation of the current distribution and whatever field components, if any, are desired.

The total computer solution time is well approximated by AN 2 + BN 3, where A corresponds to step (4)
and B to sfp (6). For the code under consideration here and for a CDC 7600 computer, A = 4 X 10 “4sand B
22X 107°s,

Perfectly Conducting Half-Space

As written, Eq. (1) applies to wire structures excited as antennas or scatterers and located in infinite,
isotropic, homogeneous media of arbitrary (possibly lossy) permittivity and permeability. It can easily be ex-
tended to permit the modeling of magnetic or electric image planes. For example, the perfectly conducting
ground analog of Eq. (1) is, for an antenna elevated above a ground plane at z = 0,

4. Els) = ‘{’—"ﬂ f I(s') [Gy(s5) + Gy(ss)ds’ )
C(7)
where
e-ikR"
. S . a8
R* = | -7,




TH(xy.z2) = T(xy,-2) ,
A o VC(™*) '
IVC(E*)|

Similar forms can be written for a magnetic interface and for an interior right-angle corner. If the corner
angle is otherwise arbitrary but related to m as an integer multiple, a discrete spectrum of angular images is ob-
tained, but the essence of the integral equation form is preserved. Precisely the same line of approach can also
be usedl;"or interior problems where the wire structure is located between two parallel magnetic or electric
planes.

Imperfectly Conducting Half-Space

A problem that is not so computationally simple, but that is of perhaps greater practical interest, is that
of an antenna located (buried or elevated) near the ground-air interface. This is a topic of considerable
longevity in electromagnetics; a formal solution to the problem was given in 1909 by Sommerfeld. ! The
numerical complexity of evaluating the Sommerfeld integrals (which appear in the integral equation kernel)
for arbitrary source and observation-point locations and ground parameters, however, has prevented the
Sommerfeld theory from being routinely used for such problems. Consequently, while some progress has been
made in applying the Sommerfeld theory, alternative approaches to the antenna-ground problem have also
been pursued. These various methods are briefly discussed below.

The Sommerfeld Theory

Details of the steps in deriving the Sommerfeld integrals may be found elsewhere. !° Here we simply write
one version of Eq. (1) that accounts for the interface reflected field via the Sommerfeld theory; alternative
forms are also available, differing essentially in how the perfect-ground image terms are handled. It is

8- Els) = % [ I(5')s’ X 4G, (.8) + G (5.8™)
C()

LR e '
i <cos[3 + k—2 m) sing B cosf’ gy,

. : e
+ sing’ [smﬁ cos(a - a') + ;3- a—ﬁ] . 3)

— . . . — A . . . . .
where a = a(T) and 8 = ((7) are the direction angles of the wire at T, t' is the horizontal projection of 3'. J,is
the Bessel function of order n, and
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where kg and k; are the propagation constant above and below the interface, respectively.

The presence of the double integral in Eq. (3), particularly the Sommerfeld portion, makes it quite time-
consuming and sensitive to evaluate. In spite of that, the basic moment method can be used to solve it, but, in
addition to the usual constraints imposed on current sampling, it is necessary to take into account the source
distance from the interface.

Series Solution to Sommerfeld Integrals

In the study of antennas over lossy interfaces, the Sommerfeld integrals need a complex integral that has
an infinite path of integration. There are three methods to evaluate these integrals. The first procedure is the
asymptotic expansion of the integral developed by Norton. 20 In this expansion the fields are written in terms
of the inverse powers of the field-point-source-point distance. The asymptotic expansions are accurate only
for large field-point-source-point distances. The quasistatic method presented by Bafios ! is an approximation
that sets k; = 0 in the integrand; the modification integrals are then evaluated in closed form. This procedure
is supposed to work when the field points and source points are very close, but the accuracy of this method has
never been esieblished. The last method is the numerical integration of the Sommerfeld integrals. A numerical
code using this procedure has been developed by Lytle and Lager. 2! This procedure gives accurate results for
most values of field-point-source-point distance, but is is a very slow numerical procedure.

A general numerical procedure to evaluate the Sommerfeld integral for all values of field-point-source-
point distance is discussed in a later section of this report. In this section we present a new series solution that
is later used to evaluate the Sommerfeld integral when the source point and field point are near the interface.

The fields from a source point and field point on the free-space side of the interface can be written in terms of
two integrals:

1 T
— ¢ O JeN N, (4a)
h Yo TN

and
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An outline of the procedure to find the series expansion for the former integral is presented below.
Thz development of a new series representation begins by writing yo = (A 2k} + ¥) 1/2in

1

——

Yo * U
and

e
ghe o

where W = k{ - k§. Then these new terms are expanded by Taylor series in . The first Taylor series gives

o0
Iy 2 2™
m=0

’

when the first coefficient Gy = 1/2. The remaining G’s can be found by a recursion procedure. Let the n th
term be expressible as

n

G, =1 Y g (6)

m=1

then the n+ 1 term is

n+l
Gyuy = (D)1 z . (7
=1
where
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The first term in the above recursion is

0o | —

g =

The Taylor series for the exponential term gives
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,—702 _ 12 2 2\m
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)

where G = 1. The remaining &’s can be found by a recursion procedure. Let the n th term be expressed as

n

i
6, = z &, ,72m—p ’
p=1
then the n+1 ' term is
n+l
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The first term in the recursion is

ey
8]"2

(10)

(1n)

(12a)

(12b)

(12¢)

The Taylor series represented in Egs. (5) and (9) are then multiplied together to find a single expansion for the
term e Y0 7%/ vy + vq in the integrand of Eq. (4a). This new representation of the integrand is an infinite series.
When the series and integration are interchanged, the integral in Eq. (4a) can be expressed as
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2 2 m
z u[)m (k] - ko) - (13)
m=0
where
m+l
QDm = F DS] z L2m+2—p (m=0,1, ...) . (14)
p=1

The term L, in Eq. (14) is the integral

oo

e--712
2[ = T, p) AdX . (15)
0

To evaluate the series in Eq. (14), we must first find a method to evaluate the above integrals. To accomplish
this we now introduce an operator E

1
P ==
kl akl

When this operator is used on L; and L, it can be shown that

m ot g
2 m_ 2 m :
o = e .
Lm = z le’nZZ(p 1) [_[‘2 LZ] s Kglz2p 1 [{ 2 X L]] ; (163)
p=1 p=1
m m
2 m 2 m
m+1,2p=1 |p2 m+1 2(p=1) |p2 1P
Loyer = = Hp 4 r % z Kp s t = L; s (16b)
p=1 p=1

where m is an even integer. In the above expression, ¥ ™ means that the operator I' is applied m times to L, or
L.

Theintegral L, is
2,1/2

ikl(p2+z )

€
Ly = 2 e
1 0} + 222

(17)

By applying the ¥ ™ operator to L, we can show that
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ikl(p2+12)l/2 n+l

ntl = iRl St i i I . n+l
i LI 2(-1) T { 3.5 [2(r + 1) 3]} z Ip .
1 p=1

The I's in the above equation can be generated from a recursion relationship.

The first two I's are

I = (<)
and

= (i)Z [(klp)z il (klZ)ZJI/Z ;

The remaining term can be generated for

ln+| ="
l ’

n+l _ n

I =1L

I (O O Z)Z]”2 NECESVENCESS i
P 2@ + 1 - 3] 1 20+ 1) - 3] :

forn>3and p=3,4,..,n,

JUE (0 R0 0 L

n+l 2 + 1) - 3]

(18)

(19a)

(19b)

(19¢)

(19d)

Now that we have a method to evaluate the ¥ "L, we can turn our attention to the other terms that still need

evaluation.
The integral L, can be shown to be

Z ik

1 2 241/2

R (o IR . ; dz' + inH{" (k,p) .
(? + 2?) /

When the ¥ operator is applied to the above expression one finds

(20)




Z ik
1 2 241/2 mn
FML = —2pm [ e 2(P +’ Zl/’) dz' + i(=1)" % Hx(n“ (klp) . (21)
2 (2 + 222)\/2 k
0 1

The term H,{!) is the Hankel function of first kind in the order. To find the integer in Eq. (21) we expand the
integrand in terms of z' and then perform the integrand analytic. Then ¥ ™ operates on the new series
representation for the integral.

NUMERICAL METHODS

In this section we discuss the numerical method used to evaluate Sommerfeld integrals in this study. This
approach is unique in that, when the field point and source point are above an interface, all of the electrical
field from the Sommerfeld integrals can be written in terms of two-dimensional space. To prove this, we need
only look at the Sommerfeld integral

1 =vo(2*2")
——— € J AdA . (22
l — p(A0)

wherep = N(x-x)2+ (y - y)2 The points (x,y.z) and (x', y’, z') are the field point and source points,
respectively. All values of the above integral can be described in terms of two variables p and z + z'. We now
introduce a new two-dimensional space in p and z + z'; it is the solution space for Sommerfeld integrals. The
solution space is shown in Fig. 2.

In the framework of the solution space we must now evaluate the Sommerfeld integrals. When the point
in the solution space is described by 1.0 < p/Ag or 1.0 < z + z'/A( the asymptotic series developed by
Norton 20 is used to evaluate the fields. The asymptotic series is an expansion in inverse powers of the field-
point-source-point distance; therefore, it provides a good method to evaluate the integrals when the distances
are large. The asymptotic methods do not work well when the field point and source point are less than one
wavelength. Figure 2 depicts the region in the solution space where the asymptotic method is used to evaluate
the Sommerfeld integrals.

To gain some insight into the method used for evaluating the Sommerfeld integrals in other regions of the
solution space, we evaluated the various components of the electric field for the horizontal and vertical dipoles
in the solution space. The evaluation of the Sommerfeld integrals was obtained by using a code developed by
Lytle and Lager 2! that performs the integration numericaliy. A three-dimensional plot in the solution space of
the real-part of the electrical field produced by a vertical dipole is shown in Fig. 3, which plots the value of the
function in terms of p, z + z'. The observation that the electric field value plotted in Fig. 3 is rather well-
behaved, except near the origin, led us to a procedure known as the *‘bivariate interpolation of the electrical
fields.” This procedure begins with division of the solution space into a set of rectangular grids. The electrical
field for a given f, ¢,, and o is found at each grid point in the solution space prior to evaluating a given antenna.
When the moment-method code needs a field value not on the grid, a four-point bivariate interpolation is used
to evaluate the field from the four known field values at the corners of the grid. This procedure is outlined in
Fig. 4. To demonstrate the accuracy of this approach, we show in Fig. 5 a three-dimensional plot of the error
function when the bivariate interpolation is used to find the electrical field plotted in Fig. 3. In this test, a grid-
spacing of 0.5\ produced a 10% agreement. In general, smaller grid spacing produces better agreement.

The bivariate interpolation of the electrical fields provides good answers in the solution space for values
of p and z + 2’ in the two regions where [0.1 € p/A\g<1.0and0 <z + 2'/\y< 1]and [0 < p/A;< 0.1 and 0.1
<z + 2'/A\y < 1.0]. The size of the grids used in this calculation is shown in Fig. 6. Bivariate interpolation re-
quires a computation time of about 100 us on a CDC 7600 for a single set of field values, while the code that
numerically integrates the Sommerfeld integrals correspondingly requires 0.1 s. (Note that after the solution-
space grid has been evaluated for given f, ¢, and o, these values can be saved for future use; they are indepen-
dent of the type of antenna studied.) The electric field determined from the Sommerfeld integrals has
singularities when both p = 0 and z + z' = 0. The series representation of the Sommerfeld integrals discussed
earlier isolates these singularities. Therefore, the series representation is used to evaluate the field near the
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Fig. 2. Two-dimensional solution space used to evaluate the Som-
merfeld integrals. The various methods of evaluating the integrals
and their usable regions are also shown.
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Fig. 3. Three-dimensional aspect plot of Sommerfeld-integral
portion of radial electric field for vertical dipole. The real part of
the electric field is plotted on the vertical axis as a function of z +
z' and p. The electric parameters are f = 10 MHz, ¢, = 9.0, ¢ =
10 *mho/m, 0.1 A <p < 2.0\, and 0.1 A <(z + 2') < 2.0 \. The
maximum and minimum field values are also shown.
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A Table 1. Comparison of the magnitude of electric
fields evaluated by the series solution with those
evaluated by numerical integration of the integral;
f=MHz, ¢ =9, and 0 = 10~3 mho/m. The two
fields shown are the radial and z-components from
a vertical dipole.

Error in [Egyl, Error in [E, |,
0 z %
A
% 0 — 0.0099 0.0455
& SR S 100
~A-AR = Az = 0.005- 5 &
0.1K< ,ﬁ\\:\\ LS \\‘QQ =50 e 0.0944 0.0043
0.01 gL e o
0.010.1 0.3 1.0 T , ii
P 30 30 .16 A
A
G o . 4 - .3 A 0.162 6.60
Fig. 6. The grid sizes used in the solution space. The appropriate 15 0

grid sizes are shown in their usable regions as indicated.

origin in the solution space. In the numerical code used to evaluate this field, the first ten series terms are used.
Table 1 shows a comparison of electrical field magnitudes evaluated by the series method with those generated
by numerical integration. From Table 1, it is obvious that the series solution works only when 0 < p/A( < 0.01
and 0 < z + 2'/\( < 0.01. The CDC 7600 computer time required to evaluate the series is about 0.01 s while
the numerical integration requires 0.1 s. The region in the solution space occupied by the series solution is
shown in Fig. 2.

As Fig. 2 shows, a region exists where no reliable method is available to evaluate the Sommerfeld integral.
It lies between the regions where the bivariate interpolation on the electrical field works and where the series
solution works. In this region, some of the electric field may vary by two orders of magnitude. Therefore, a
straight bivariate interpolation on the electrical field is inappropriate. To overcome this difficulty we in-
troduce the quantity

R==22 (23)

where the E, and E, are the electrical fields from the numerical integration and series, respectively. The new
parameter R is a slowly varying function in the region under consideration. Since the quantity R is a well-
behaved function, we can use the four-point bivariate interpolation on R. This procedure consists of storing
the function R on a grid of points in the solution space. This grid of points is filled before any moment-method
code is used to study the antenna. When the moment-method code needs values of the electric field at a point
not on the grid points, a four-point bivariate interpolation is used to find the function R at this point. Then the
series representation of Eg, calculated at the point off the grid, is multiplied by the interpolated value of R to
obtain an interpolated value for E,. We call the procedure “bivariate interpolation on the parameter R.” The
CDC 7600 computer time required to evaluate method is about 0.01 s. The grid size used in this calculation is
shown in Fig. 6. (Note that, for a fixed f, ¢,, and o, the value of R is independent of the antenna’s geometry.
Once the values of R on the grid point for a fixed f, ¢,, and ¢ have been evaluated, they can be stored on
magnetic tape for future use. This saves the grid fill time in the study of other antennas.)

TEST CASES AND RESULTS

Three types of calculations are summarized in this section. The first type involves test cases to acsess
operation of the overall program:; it is intended to provide a check on numerical accuracy. The second, by con-
trast, is intended to obtain some preliminary results prior to performing parametric calculations on the an-
tennas of interest, which are covered in the third section.
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Test Cases

One of the greatest uncertainties associated with using a new computer model is validating its results.
Thus, much of our attention during the early stages of this work was focused on test calculations to check the
Sommerfeld-integral routine, the interpolation procedure, and the overall computation itself. Calculations
pertaining to the first two cases are reported in the previous section. Here we discuss results obtained in con-
nection with the overall computational accuracy.

Ideally, experimental results provide probably the best and most convincing data for use in validating a
computer model. Realistically, however, such data are neither extensive nor readily available; those that are
obtainable are of limited scope and uncertain applicability. Therefore, while our ultimate goal remains that of
validating the computer model using experimental data, the test cases presented here are, instead, of a
numerical nature.

Several kinds of numerical tests might be performed to check the computer model’s accuracy. One of the
more obvious is simply to examine the trend of the numerical results for obviously incorrect behavior as a
function of the various parameters. An example of this is shown in the preceding section, where the inter-
polated fields are found to exhibit anomalous behavior along the z + z' = 0 and p = 0 lines. This kind of test
may be regarded generally as a necessary, but not sufficient, condition to be met by a valid calculation. It can
be especially useful in the preliminary stages of code development or as a diagnostic when judgmentally in-
valid results are obtained as the overall computational output.

Another useful numerical test is to compare results from the new code with those obtained from the
earlier Lawrence Livermore Laboratory (LLL) Sommerfeld code, which did not use interpolation. This was
done for several cases, for example, horizontal dipole and Beverage antennas. SOMINT produced results that
generally are numerically indistinguishable from these alternate calculations at LLL, 2! as shown in Figs. 7-10.

Numerical tests can also be based on limiting cases of the associated parameters where the answers are
known analytically. For example, when the relative permittivity and conductivity of the ground approach
their free-space values, the antenna current should be independent of height above the interface. The
Sommerfeld-integral fields must then also exactly cancel the perfect-ground image fields, so that only the free-
space contributions remain. It is convenient to check this by examining the input impedance of an antenna as
it is lowered towards the now fictitious interface. Results obtained from this kind of calculation are shown in
Fig. 11. Such tests proved very useful in correcting numerical inconsistencies originally present in the
program, especially those that were important only where z + z' - 0.

Preliminary Results

Antennas operated in the HF range and located near the earth’s surface generally are excited and/or ter-
minated with respect to ground potential. This may be accomplished in several ways; for example, a ground
stake, counterpoise, ground screen, or ground-return wire may be used. The first two methods involve wires
that penetrate the interface, the treatment of which is somewhat uncertain. In addition, modeling them re-
quires computing the fields transmitted across the interface, to which the interpolation procedure developed
here does not directly apply.

Our approach has thus been to concentrate performing computations for antenna models whose wires lie
entirely on the free-space side of the interface. Given this constraint, we can model configurations which in-
corporate ground-return wires or ground screens so long as their height h above the ground equals or exceeds
that previously shown to be necessary (Fig. 11). As observed in connection with Fig. 11, the minimum height
for valid results (<3 X 10 ~*\) is small enough that, for practical purposes, the wires are at the interface.*

One other situation can also be modeled (albeit only approximately): the ground stake excitation /ter-
mination mode. In this case, the antenna wire is terminated at the interface and the effect of the ground stake
is approximated in two ways. First, the current at the end of the wire is constrained to have zero slope, a con-
dition rigorously correct only for a perfect ground, but a behavior approximately simulated by an actual
ground stake. Second, the fields due to the ground-stake current are ignored.

*Besides the limit imposed by Sommerfeld-field accuracy, there is also a minimum-height limit due to the thin-wire approximation. This
implies that for h < 10a, the problem must be reformulated if questionable results are to be avoided. Of course, if a bare wire is lowered to
h = a and thus comes into contact with a possibly lossy ground, still further reformulation is required to account for their ohmic contact.
These aspects of the problem are beyond the scope of the present work.
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Fig. 7. Three antennas used to compare the numerical performance of the interpolation approach with the orginial Sommerfeld mode: (a)
slanted dipole above interface; (b) horizontal wire 0.01 X above interface loaded near the end; (c) horizontal wire 0.05 ) above interface loaded
near the end. The current distributions are presented in the following figures. Small differences are observable between results obtained from
the two approaches, but the basic bekavior is the same.

We performed calculations pertaining to these issues for monopole and vertical half-rhombic antennas.
Some of the results are presented in Figs. 12-22. Based on the outcome of these preliminary calculations, we
chose the ground-stake approximation to model the grounded ends of the antennas selected for parametric
study. At this point of development in the program, it represents the least certain element in the calculations.

Parametric Results

We performed parametric calculations to evaluate ground-screen effects and to characterize two antenna
types, the slanted V and vertical half-rhombic. The results obtained are summarized below.

Ground-Screen Effects

Ground screens can provide a terminal against which to drive or terminate an antenna. More impor-
tantly, they can provide impedance and pattern control. Impedance is controlled -vhen variations due to
changes in local ground conditions can be reduced or eliminated, permitting the feedpoint current to become a
function of the screen parameters. Pattern control is possible because the ground-screen currents add their
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exact solution. The electrical parameters are f = 10 MHz, ¢ =
10 * mho/m, and ¢, = 9. Note that the two solutions are in-
distinguishable. In order to demonstrate the effect of the ground the
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Fig. 12. Vertical half-rhombic used to study the effect of ground returns. (The input impedance behavior over a perfect ground with and
without a ground return are shown in the following figures, ground return wire on interface.) The impedance variations are much greater for
the antenna having the ground-return wire. This is evidently due to return wire and its image acting as a transmission line to transform the open
circuit (with respect to ground) at the termination end to a frequency-dependent load at the input. It might be expected that over a lossy
ground, this effect would be much reduced. We have not been able to examine that possibility in this study, but it is a topic that should be pur-
sued further, because of the practical implications and to establish more definitively the limitations of the numerical model.
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Fig. 16. Input resistance of the antenna shown in Fig. 15 in free
space.

Fig. 15. Several sets of calculations were performed at 13 MHz
for a monopole antenna having various ground arrangements. The
antenna and four wire grounds are shown above. The input im-
pedance of the antenna was studied as a function of frequency in
free space and as a function of height over a perfect ground. These 0 | | | |
results are shown in the following figures. Its resistance is seen to 0 0.1 1.0 10 100
vary smoothly with height between a free-space value of about 1.55 y x

(2 and asymptotic value near ground of 3.20 (2. For comparison, the
resistance of the same monopole without ¢ poise wires and
driven against ground is 3.14 Q. H/A=1
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Fig. 18. Input resi e of the shown in Fig. 15 as a
function of the height above a perfect ground.
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Fig. 20. Monopole antenna with (a) three-wire and (b) two-wire
counterpoise. The inputs for the four-, three-, and two-wire coun-
terpoise are plotted as a function of height above the perfect ground
in the following figures. The increase in resistance with decreasing
height relative to the perfect ground case with a four-wire system is
indicative of increasing loss as the ground is approached. No ex-
planation for the bump at ~2 ft in the resistance curve has been
found. The resistance decrease below ~0.3 ft is apparently due to
numerical limitations.

own radiation to that from the antenna itself, and can be especially important in influencing low-elevation-
angle coverage.

Some results pertaining to the impedance effects of a radial ground screen and a vertical monopole are in-
cluded in the previous section. Here we present some examples of pattern-control calculations. The antenna is
again a vertical monopole, with tiie ground-screen wires. The system was driven at the points between the an-
tenna and screen. Calculations were performed with two-wire ground systems as a function of ground-wire
length and angles between the ground wires. Note that the presence of the ground wires greatly enhances the
radiation in a direction away from the ground wire (see Figs. 23-25).

This problem in particular was explored to demonstrate the feasibility of using our approach to evaluate
ground screen influence on pattern behavior, and not as an extensive parametric excerise per se. (It should be
noted that a computational capability to do this has not heretofore existed.) While recognizing that more
aspects of pattern behavior deserve attention (e.g., although we present here only azimuthal pattern results,
the elevation behavior is at least of equal importance), we believe those results are indicative both that the
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Fig. 21. Input reistance as a function of height above a conducting ground for the antennas in Figs. 15 and 20. The electrical parameters are f
= 13MHz,0 =107 mho/m, and ¢ . = 9.0. The data for a monopole on a perfectly conducting ground are also shown.
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Fig. 24. Azimuthal radiation patterns at 45° elevation angle for the antenna shown in Fig. 23, when the screen-wire length is 3 m. These data
are the theta component of the electric field and the angle « is a parameter as shown.

computation can indeed be performed and that it provides invaluable guidance for antenna design. For exam-
ple, given a tactical communications requirement, an approach like this could optimize performance subject
to constraints on the numbers, layout and total ground-wire length, antenna height and geometry, etc.

Vertical Half-Rhombic Parametric Results

The vertical half-rhombic (also known as the lambda antenna) includes as a special case (when it is of
constant height) the Beverage antenna. It is essentially a broadband, traveling-wave structure, of relatively low
efficiency (10%). Together with the Beverage, it exhibits reasonably good forward directivity and, with ap-
propriate design parameters, can provide a low take-off angle.

Calculation parameters and representative results are summarized in Figs. 26-28. (See also Table 2.)
More complete results are given in Appendix A.

Sloping V Parametric Results

The sloping V antenna may actually be viewed as a modification of the vertical half-rhombic. It is
derivable from the latter by rotating one arm of the antenna towards the other and feeding the resultant con-
figuration at its apex rather than at one ground connection.

Calculation parameters and representative results for the sloping V are summarized in Figs. 29-35, with
more complete data presented in Appendix B. (See also Table 3.)

A thorough comparison of the sloping V and vertical half-rhombic antennas is impractical with the
limited amount of data available from these calculations. We can observe, however, that for equal wire lengths
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Fig. 25. Azimuthal radiation patterns at 45° elevation angle for antennas in Fig. 23, when the angle be:ween the two ground wires is 60°.
These data are the theta component of the electric field with the length of the ground wires a parameter.

and frequencies the vertical half-rhombic produces a maximum field strength roughly twice that of the sloping
V. The location of their elevation pattern maxima are relatively similar. Furthermore, the vertical half-
rhombic typically has a lower input resistance.
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Fig. 26. Vertical half-rhombic antenna above a lossy interface represented by the x-y plane. The antenna is excited at a height H _ and
loaded at height H ; above the interface. The total length of the wire in the antenna is L. A total of 33 cases run for this antenna are sum-
marized in Table 2. Representative results are shown on the following figures, while the complete data are given in Appendix A. The
tabulated results lead to three observations:
@ Increasing the length or height of the antenna generally increases the maximum field strength.

@ The maximum of the elevation pattern lowers in angle as frequency and antenna length increase.
o The input impedances are generally insensitive to height and decreasing reactance with increasing frequency.
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Fig. 27. Comparison of current magnitude on the vertical half-
rhombic antenna shown in Fig. 26, when H; =2.0m =H, R, =

300 2, L = 100 m,f = 10 MHz, o = 10 mho/m, and ¢, = 4.0 for
1-W input. The height H | is marked by each curve.
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Fig. 28. Plot of the radiation pattern in the plane containing the antenna for the same antenna and electrical parameters used in Fig. 27. The

height H  is marked by each curve.
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Table 2. Results for vertical half-rhombic shown in Figure 26; ¢
Hg = H =20 m.

=4, 0 = 1073 mho/m, R; = 300 Q,

For 1 W input
Power in space wave - Eleraton
n Voltage Max field angle
Frequency, L, H, Rp, R 1, at 1 W, 9, O, Total, (RIEI), of max,

MHz m m 0 Q Q v w w w v deg
10 100 2 300 386  -121 29.1 14 x 1074 33
10 100 5 300 389  -125 29.3 164 x 107 36
10 100 10 300 384 -129 29.2 1.88 x 10°¢ 37
10 100 15 300 374 -126 289 190 x 107 37
6 100 2 300 317 -240 316 104 x 10¢ 57
6 100 5 300 3Is - 242 33 121 x 10°¢ 57
6 100 10 300 316 -244 31.8 140 x 10 59
6 100 15 300 313 -247 319 145 x 10 60
2 100 5 300 277 -1320 115 9.85 x 104 546 x 10 1.53 x 10 66 x 107° 55
2 100 10 300 276 -1340 116 134 x 1073 626 x 10¢ 197 x 102 739 x 10° 49
4 100 5 300 194 -566  60.7 103 x 1072 127 x 1072 231 x 1072 3 x 10° 82
4 100 10 300 195 -571 61.0 133 x 1002 167 x 102 3x 102 342x 10° 83
8 100 5 300 361 -167 29.6 142 x 1071 0.0s5 0.197 146 x 10 44
8 100 10 300 360 -165  29.5 0.196 0.101 0.297 169 x 107 4s
10 50 2 300 336 -93 269 108 x 10°¢ 50
10 50 5 300 337 -96 27.0 131 x 10°¢ 53
10 50 10 300 424 83 297 124 x 1074 a2
10 50 15 300 466  -156 322 121 x 107 37
6 50 2 300 150 -359 45 481 x 1005 79
6 50 5 300 152 -359 4.7 574 x 107 81
6 50 10 300 526 -291 37.1 891 x 107  s6
6 50 15 300 418 -334 370 9.14 x 10° 52
10 200 2 300 84 113 289 183 x 10¢ 30
10 200 5 300 387  -113 29.0 223 x 107¢ 31
10 200 10 300 390 -116 29.1 255 x 10°% 31
10 200 15 300 389 -119 29.2 261 x 10°¢ 31
6 200 2 300 326 -238 316 129 x 107 55
6 200 5 300 325 -239 316 152 x 107 55
6 200 10 300 328 -244 319 176 x 10 55
6 200 15 300 329 -6 320 184 x 104 55
10 50 5 100 390 -145  29.8 0.153 0.087 0.24 131 x 10°% 52
10 50 5 200 358 -115  28.1 0.145 0.082 0.227 131 x 10 52
10 50 5 300 337 962 21.0 = < = 131 x 10¢ 53
10 50 5 400 323 -830 26.2 0.142 0.081 0.223 131 x 104 52
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Fig. 29. Sloping V antenna over a lossy interface represented by the x-y plane. The antenna is excited and terminated at a height Hy and
H | above the interface, respectively. The elements of the antenna are separated by an angle . The total length of the antenna is L. A total
of 22 cases were run for the sloping V antenna, as summarized in Table 3. Representative results are shown on the following figures, with
more complete data given in Appendix B. The tabulated data prompt three observations:

o Increasing the wire length, the frequency, and the included angle (up to ~70°) increases the maximum field strength.

o The maximum in the elevation pattern lowers with increasing frequency, included angle and height.

o Input impedance tends to be primarily resistive, except at the lower frequencies.
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Fig. 30. Comparison of current magnitude on the sloping V an- Fig. 31. Comparison of current magnitude on the sloping V an-
tenna shown in Fig. 29, when f = 10 MHz, o = 10 mho/m, € = tenna shown in Fig. 29, when f = 10 MHz, o = 10 mho/m, ¢ =
4.0,L = 1000m, H | = 2.0 m, « = 60° and R| = 300.0 2 for 1- 40,L=200m H;=10m, Hy =2m,and R| =300 Qfor I-W

W input. The H . of each antenna is shown by the curves. input. The angle « of each antenna is shown by each curve.

0.14

Field strength — mV/m

Fig. 32. Radiation pattern for the antenna shown in Fig. 29, when f = 10 MHz, ¢ = 10° mho/m, ¢, =4, L =100m, H; =2m, a =60°
and R | = 300 (2 for 1-W input. The height H ;. of each antenna is shown by each curve.
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Fig. 33. Radiation pattern for the antenna shown in Fig. 29, when f = 10 MHz, 0 = 10° mho/m, ¢, =4.0,H; =10m,H; =2m, a = 60°

and R | = 300 © for 1-W input. The length L is shown by each curve.
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Fig. 34. Plot of the total power in the far field as a_function of
angle « for the antenna shown in Fig. 29, when ¢ = 107 mho/m, ¢,
=4,L.=200m,H, =2mH,=10m,and R, =300 for I-W
input. The frequencies are shown by each curve.
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Fig. 35. Plot of total power in the far field as a fn‘:ﬂm of fre-
quency for the antenna shown in Fig. 29, when o = 10~ mho/m, ¢,
=4,L=10m H;=2mH;=10m, R, = 300, and o = 60°
for 1-W input.




Table 3. Results for sloping V antenna, shown in Fig. 29; €= 4.0, 0 = 1073 mho/m, R, = 300.0 €2,
and Hp =2 m.

Power in space wave for 1-W input

Elevation

Z Voltage, Max field, angle
Angle,  Frequency, L, Hg R™, 1, at 1 W, 0, @, Total, (RIEI) of max,
deg MHz m m Q Q ' w w w v deg
60 2 100 10 583 -2110 1236 6.07 x 1072 844 x 1072 145 x 107" 7.06 x 10 90
60 4 100 10 396 691 156 0.089 0.229 0318 1.0s x 10°% 80
60 6 100 10 414 A7 . M 0.042 0.139 0.182 943 x 107 50
60 8 100 10 569 -178 353 0.48 0.093 0.141 107 x 107 37
60 10 100 10 659 163 374 0.044 0.090 0.135 124 x 107 30
60 10 100 2 686 ~110.. 375 0.050 0.023 0.073 6.36 x 1075 33
60 10 100 5 671 -129 3713 0.047 0.038 0.085 832 x 10 31
60 10 100 15 645 “144 368 0.033 0.116 6.149 145 x 1074 27
10 10 200 10 692 Sl e 6.24 x 107 0.015 0.021 298 x 1075 31
30 10 200 10 723 -128 386 0.023 0.049 0.072 73 x 107° 31
50 10 200 10 737 -166 394 0.034 0.068 0.102 105 x 10°¢ 30
70 10 200 10 750 -186 399  0.041 0.082 0.123 12x 104 28
90 10 200 10 786 -118  40.1 0.037 0.068 0.105 9.58 x 107 25
10 6 200 10 408 296 353 = 44 x 1070 217 x 1072 261 x 1072 226 x 1075 53
30 6 200 10 419 -249 337 0.017 0.069 0.0858 528 x 107 50
50 6 200 10 466 ~282 - 359 0.031 0.104 0.135 771 x 107 50
70 6 200 10 500 -296 368  0.043 0.118 0.161 9.65 x 1075 47
90 6 200 10 907 971 428 0.047 0.654 0.113 861 x 107 39
60 6 50 10 781 468 46.1 7.92 x 1073 368 x 1072 449 x 1072 433 x 107 52
60 10 50 10 795 -246 417 0.022 0.0478 0.0694 6.88 x 107 35
60 6 200 10 455 161 320 0119 0.206 0.325 151 x 104 46
60 10 200 10 690 -151 380  0.095 0.128 0.223 1.88 x 107 24

CONCLUSIONS AND RECOMMENDATIONS

The work described in this report has led to development of a simple, but highly effective numerical
method for modeling conducting objects located near an interface. The procedure is based on interpolating a
“solution space™ (z + z', p space) between Sommerfeld-integral values calculated from straightforward
numerical quadrature or a series solution, to obtain the field values required in an integral-equation formula-
tion. Because interpolation is a simple numerical operation relative to direct evaluation of the Sommerfeld in-
tegrals, a significant computer-time savings can result, the amount depending on the problem. For example,
using this approach for modeling various types of antennas, we have found a decrease in computer time of up
to a factor of 60 compared with our former method. The interpolation grid of course must itself be set up prior
to the integral-equation solution, and this involves an additional computer-time investment, but once ob-
tained, it can be used for any antenna configuration that fits within its boundaries. Thus, it represents a fixed
expense whose relative cost per antenna calculation decreases in proportion to the number of times it is used.

An additional advantage of the interpolation procedure is the reduced probability that unnoticed
numerical errors will invalidate a calculation; this is because the number of calls to the Sommerfeld-integral
subroutines is greatly decreased. Furthermore, after the interpolated field is plotted as a surface in a three-
dimensional space, remaining errors can be easily seen, as demonstrated above. We emphasize that, while no
known errors remain in the Sommerfeld-integral portion of this program (at least for z + z' 2 10 -4 )\), these
computations are too complex to guarantee that uniformly good accuracy can always be achieved.

Another significant development in this work has been extending and improving our numerical
procedures to permit locating objects within 10 -3 X (or even less) of the interface. This feature allows us to
model such closely coupled conductors as the wires in a ground screen, without resorting to the approxima-
tions usually employed.
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We have demonstrated the capabilities of the new program, SOMINT, by performing some limited
parametric calculations for several antennas. These initial applications are by no means intended to be con-
clusive or complete, but rather to illustrate the kinds of information that are derivable and the kinds of
problems that can be handled with the programs. It should be recognized that antennas located near the earth
may experience perturbations due to a laterally and vertically inhomogeneous and undulating ground that the
idealized model employed here (a flat, uniform half-space) does not include. Whether such features can ever
be, or even should be, modeled is not obvious. In any case, the current capability should allow antenna
designers to optimize antenna performance while including the dominant ground effect (i.e., direct reflection
from the interface) in a way heretofore neither analytically nor experimentally possible.

Most of the effort in this program has been directed towards implementing the basic numerical
procedures. Much remains to be done to improve the program and expand its applicability. Some possibilities
for improvement and various applications are discussed below.

Ground-Screen Models

Ground screens (or counterpoises) are used either to control antenna impedance or pattern. Of necessity,
their analysis has been approximate and based primarily upon using an effective surface impedance. The most
obvious limitations of this approach are its failure to handle screens containing few or widely spaced wires, its
inapplicability to predict low-angle radiation, and its inability to account for the finite extent of the screen on
the antenna’s current distribution. The surface-impedance approximation, furthermore, does not lend itself to
inclusion in an otherwise rigorous Sommerfeld-based approach.

A really useful and realistic analysis of ground screens and counterpoises requires, instead, that the
currents in the ground-screen wires be found in a self-consistent fashion. This approach could not have been
seriously considered without the means to evaluate Sommerfeld integrals efficiently and accurately. But the
techniques developed in the current work make this not only feasible, but practicable. We therefore recom-
mend that SOMINT be extended specifically to handle problems involving antennas that interact with sparse
systems of wires near (0.001 A) the interface, and to which they may be attached. The use of ground screens
below tactical antennas could provide a significant improvement in their performance. With the new method
described above, it is now feasible to study antennas currently in use to see how ground screens might best be
used or whether present designs can be replaced by newer antennas with ground screens.

Dielectric Sheaths

A recurring problem, especially with respect to buried conductors, is how a dielectric or insulating sheath
changes the behavior of a metallic object. This is especially important in conducting media where a sheath pre-
vents the direct flow of conduction current between the object and the medium. It is thus necessary to include
the dielectric coating in the model if realistic results are to be obtained. Particular attention should also be
paid to the end conditions where the conduction current on the wire may not vanish as it does in free space.
Several approaches are worth considering here, with perhaps the most promising one based on a displacement
current model for the sheath.

Two-Half-Space Problem

The current work deals with wire objects located wholly on one side or the other of the interface, so that
the Sommerfeld integrals are functions only of z' (source height) + z (observation height), and p (radial
separation). Many applications occur where two objects are on opposite sides of the interface. The self-fields
of these objects can be handled efficiently with the present code. However, interaction of these objects across
the interface involves Sommerfeld integrals of the three space variables, z’, z and p. Using an interpolation
scheme for this problem may not be practicable because it would then involve three dimensions. Thus,
schemes other than interpolation should be considered, including the transmission-coefficient approximation
and various asymptotic expansions. These and the interpolation technique could then be compared to find the
approach best suited to this problem in terms of efficiency and accuracy.
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Effect of Nonuniferm Currents

Associated with the development of ground-screen models above is the validity of the thin-wire approx-
imation as the wire approaches the interface. Specifically, we must assess the degree of validity of the assump-
tion that the current is uniformly distributed around the wire’s circumference as the wire approaches the inter-
face. Within a few wire radii of the ground, this assumption appears questionable, and its effect on the ac-
curacy of the ground-screen model is uncertain. We might expect that whether a thin wire is lying on the
ground or a few radii above, the difference would be small in any case. That however, should be studied to
validate the model.

Penetrating Wires

A logical extension to the two-half-space problem above is the case where the object(s) is cut by the inter-
face. This occurs, for example, when an antenna is driven against a ground rod that serves as a counterpoise.

Many smail mobile antennas used by the Army currently employ ground stakes for connecting the
transmitter to one end of the antenna and sometimes for termination as well. Although ground stakes must
obviously affect the input impedance and radiation patterns of the antenna, their placement and design have
never been studied rigorously. Computer modeling of this problem would permit studying the effects of
ground-staked antennas with the goals of improving the present performance achievable with mobile
antennas.

In this case, we must be concerned not only with the field evaluation but also with determining what
special current conditions, if any, are needed at the interface. For example, the reflection of a plane wave from
a half-space requires continuity of tangential fields that can result in discontinuities in their derivatives. On a
penetrating conductor, continuous tangential fields (tangential H and normal E to the wire) at the interface
could result only if the charge density is discontinuous. This suggests the need for deriving a current-slope con-
dition different from that used at junctions in free space.

Antenna Efficiency

Previous work done at LLL has demonstrated that the efficiency of antennas like the Beverage and
horizontal dipole can be significantly improved by arraying them. Efficiency increases of 300% and more ap-
pear readily achievable, without the use of ground screens. This increased efficiency has been studied com-
putationally and found to occur because the multiple elements in an array increase the rate at which the an-
tenna current radiates, thus reducing the power loss into the ground. Increasing the size of the antenna wires
has a similar effect. Thus, antennas like the Beverage, heretofore considered too inefficient for tactical com-
munications, might be made competitive in this respect with the vertical half-rhombic and slanted V, for ex-
ample. This may mean that ease of deployment and efficiency are not necessarily incompatible. In this ap-
plication of the SOMINT code, existing antennas as well as alterriate designs could be evaluated to determine
the extent to which multi-element arrays would be effective in increasing efficiency, and thus reducing power
requirements of portable communications systems.

Frequency Domain Interpolation

Although the SOMINT code operates nearly as fast as Antenna Modeling Program (AMP), which uses
the reflection-coefficient approximation, the cost of filling the solution-space interpolation matrix is not small.
Therefore, in evaluating the frequency depengdence of an antenna, it is desirable to minimize the number of fre-
quencies at which the matrix is needed. One method is to interpolate between the frequencies at which the
matrix is calculated. This leads, in essence, to a three-dimensional interpolation scheme whose storage require-
ments could be prohibitive. However, if a linear interpolation in frequency is used, only the two solution-space
interpolation matrices that lie on either side of the desired frequency need be used. A solution-space matrix at
the intermediate frequency can then be obtained from them; following that, the procedure is identical to that
now used. This new matrix could, of course, be saved for subsequent reuse, further reducing the required com-
puter time. It is worth noting that a similar approach could be used for varying the permittivity and conduc-
tivity.
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Nonwire Integral Equations

The SOMINT code is currently implemented in an electric-field, thin-wide, integral-equation code. But
many objects of interest are surfaces rather than wires. While they may be modeled with a measure of success
using wire grids, they can be more efficiently and accurately handled with an integral equation applicable to
surfaces. The same interpolation procedure for obtaining the Sommerfeld integrals applies irrespective of the
form of the integral equation, so that the improvements now available in SOMINT could also be realized for
surfaces.

User-Oriented Improvements

The Numerical Electromagnetics Code (NEC) is probably the most user-oriented and thoroughly
documented code available for modeling wire, surface, and hybrid objects. It would thus be very desirable to
add to it the newly developed Sommerfeld-integral capability now included only in SOMINT, and to provide
the necessary documentation. At the same time, it would be worthwhile to incorporate further needed im-
provements into NEC that have been identified as a result of our ongoing interaction with the AMP-NEC user
community. These should include, but not be limited to, improvement of the input data generation routine to
minimize user errors; modification of the appropriate routines to eliminate the small-argument errors that oc-
cur when segment sizes less than 0.001 A\ are used; and development of a routine to more accurately assess
impedance-loss effects by integrating the loss term. Actually, this should be a modest continuing effort to re-
spond to problems as they arise and to provide the information to the user community.

User-Experience Data Base

One problem that often occurs, especially when either new users first attempt to employ a code such as
NEC, or even when experienced NEC users apply it to a significantly different problem, is that several itera-
tions are required before physically realistic results are obtained. It would be extremely beneficial, by reducing
wasted effort and providing more timely results, to concisely document these learning experiences. If a
description; a given antenna type; the approach taken; results obtained; problems encountered; etc., were writ-
ten in a common format and made available to those involved in antenna modeling, greater efficiency would
surely follow. As it evolves, this user-experience data base would provide guidance for modeling a growing
variety of applications and thus reduce the difficulties mentioned above. It would also provide guidance con-

" cerning problem areas needing attention concerning computer code improvements.
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APPENDIX A. RESULTS FOR A VERTICAL
HALF-RHOMBIC ANTENNA

The vertical half-rhombic antenna is shown in Fig. Al. All data shown in this appendix are for o = 103
mho/m, ¢ = 4, R| = 300 Q, Hy = 2 m. Figures A2-A35 contain plots of the radiation pattern (at a distance of
10° meters) in a vertical plane that contains the antenna and the magnitude of the current on the antenna.

Fig. Al. Vertical half-rhombic antenna above a lossy interface represented by the x-y plane. The antenna is excited by a 1-W source at
height H ¢ lozded at height H | , both above the interface. The total length of wire in the antenna is L.
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Fig. A2. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L. = 100 m;
H, =2m;freq= 10 MHz; R, ,,, = 300 Q.
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Fig. A3. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L. = 100 m;
H,=5m;freq = 10 MHz; R, ,,, = 300 .
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Fig. A4. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L = 100 m;
H, = 10 m; freq = 10 MHz; R, (|, = 300 €.
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Fig. AS. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L. = 100 m;
H, = 15m;freq = 10MHz; R, ,,,, = 300 Q.
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Fig. A6. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L. = 100 m;

H, =2m;freq = 6 MEz; R, ,, = 300 Q.
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Fig. A7. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L. = 100 m;

‘H, =5m;freq = 6 MHz; R, ,,, = 300 €.
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Fig. A9. Results from the vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L. = 100 m:
H, = 15m;freq = 6 MHz; R, = 300 (.
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Fig. A10. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L = 100 m;

H, = Sm;freq = 2MHz; R, ,,, = 300 2.
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Fig. A11. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L = 100 m;
H, = 10m; freq = 2 MHz; R ., = 300 €.
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Fig. A12. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) maguitude of the current on the antenna. L = 100 m;
H, = 5m;freq =4 MHz; R, [, = 300 (.

46

A



Current magnitude — A

0.11

0.10

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

(a)

1 1 1 1 1

1
0 0.01 0.02 0.03 0.04
Field strength — mV/m

T T v T Ll Ll | ]

(b)

L /| A 1 1 /| 1 -

10

20 30 40 50

Segment No.

Fig. A13. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L. = 100 m;

H, = 10m; freq = 4 MHz; R ,,, = 300 Q2.
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Fig. A14. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L. = 100 m;

H, =5m;freq = 8 MHz; R, ,,, = 300 .
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Fig. A15. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L. = 100 m;
H, = 10 m; freq = 8 MHz; R, ., = 300 2.
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Fig. A16. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L. = 50 m;
H, =2m;freq = 10 MHz; R (,,, = 300 .
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Fig. A17. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L = 50 m;

H, =5m;freq = 10 MHz; R ,,, = 300
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Fig. A18. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L. = 50 m;
H, = 10m; freq = 10MHz; R, ., = 300 Q.
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Fig. A19. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L. = S0 m;
H, = 15m;freq = 10 MHz; R, = 300 (0.
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Fig. A20. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L = 50 m;
H, =2m;freq = 6 MHz; R ,,, = 300 2.
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Fig. A21. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L = 50 m;

H, =5m;freq = 6 MHz; R, ., = 300 .
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Fig. A22. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L = 50 m;

H, = 10m; freq = 6 MHz; R, ,, = 300 .
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Fig. A23. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) maynitude of the current on the antenna. L = 50 m;
H, = 15m;freq = 6 MHz; R, ,,, = 300 .
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Fig. A24. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L. = 200 m;

H, =2m;freq =10 MHz; R, ,,,, = 300 (.
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Fig. A25. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L. = 200 m;
H, = 5m;freq = 10 MHz; R, ,,, = 300 Q2.
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Fig. A26. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L. = 200 m;
H, = 10m;freq = 10 MHz; R, ., = 300 .
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Fig. A27. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L. = 200 m;

H, = 15m;freq = 10 MHz; R, ., = 300 €.
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Fig. A28. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L. = 200 m;
H, =2m;freq =6 MHz;R,,,,, = 300 Q.
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Fig. A29. Results from a vertical half-rhombic antenna: (a) radistion pattern; (b) magnitude of the current on the antenna. L. = 200 m;

H, =5m;freq =6 MHz;R, ., = 300 Q2.
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Fig. A30. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L. = 200 m;

H, = 10 m; freq = 6 MHz; R, ,,, = 300 .
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Fig. A31. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L. = 200 m;
H, = 15m; freq = 6 MHz: R, ;) = 300 0.




Current magnitude — A

L 1 1 1 |

(a)

0 0.04 0.08 0.12
Field strength — mV/m
i T || L L] T 1 T Ll T L i i 1 (b) d
0.07[ ]
0.06 - 7
0.05 + 7]
0.04 §
0.03 7
L L {5 /| ) 2 L 1 | V3 A L
0 4 12 16 20 24 28
Segment No.

Fig. A32. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L = 50 m;

H, = 5m;freq = 10 MHz; R, ,,,, = 100 Q.
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Fig. A33. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L = S0 m;
b, =5m;freq = 10 MHz; R, = 200 Q2.
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Fig. A34. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L. = 50 m;
H, =5m;freq = 10 MHz; R, ,,, = 300 .
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Fig. A35. Results from a vertical half-rhombic antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L = 50 m;

H, =5m; freq = 10 MHz; R, ,, |, = 400 (.
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APPENDIX B. RESULTS FOR A SLOPING V ANTENNA

The sloping V antenna is shown in Fig. B1. All data shown in this appendix are for ¢ = 10 = mho/m, ¢, =
4, Ry =300, and H; = Hg = 2 m. Figures B2-B23 contain plots of radiation patterns (at a distance of 10°
meters) in a vertical plane that bisects the two halves of the antenna and the magnitude of the current on the
antenna.

Fig. B1. Sloping V antenna over a lossy interface. The interface is represented by the x-y plane. The antenna is excited by a 1-W source
at height H  and terminated at height H | above the interface. The elements of the antenna are separated by an angle a. The total length of
the antenna is L.
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Fig. B2. Resuits from a sloping V antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L = 100 m; H; = 10 m;
freq = 2 MHz; a = 60°. Note that here and in the following figures, the current is shown on both arms of the antenna with the source in the
middle of the diagram.
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Fig. B3. Results from a sloping V antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L = 100 m; H; = 10 m;

freq =4 MHz; a = 60°; R, ,,, = 300 Q.
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Fig. B4. Results from u sloping V antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L. = 100 m: H, = 10m;

freq = 6 MHz; a = 60°; R (, ., = 300 2.
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Fig. BS. Results from a sloping V antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L. = 100 m; H; = 10 m;
freq = 8MHz;a = 60°; R ,,p = 300 Q2.
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Fig. B6. Results from a sloping V antenna: (a) radiation pattern: (b) magnitude of the current on the antenna. L = 100 m; H; = 10 m:
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Fig. B7 Results from a sloping V antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L = 100 m; H . = 2 m;
freq = 10 MHz; o = 60°; R 4 p = 300 L.

76




Current magnitude — A

1

1

(a)

|

0 0.02 0.04 0.06 0.08
Field strength — mV/m

0.056 S T T T Li 1 T T 1
(b) 4
0.052 o
0.048 ]
0.044 =
0.040 s
0.036 .

0.032 ' : . - - g ‘ e
0 10 20 30 40 50 60

Segment No.

Fig. B8 Results from a sloping V antenna: (a) radiation pattern; (b) magnitude of the current on the antenna. L. = 100 m; H_ = S m;

freq = 10MHz; a = 60°; R (,,(, = 300 Q.
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Fig. B10.  Results from a sloping V antenna: (2 ) radiation pattern: (b) magnitude of the current on the antenna. | = 200m: H, = 10m;

freq = WO MMz o = W07 R, =~ W00




(a)

{ 1 1 1 1 1

0 002 004 006 0.08
Field strength — mV/m

0054 ] T L] s ] T ] ] ] Ll v |
r (b) -
0.050 | .
L r
< | -
|
o 0.046 5
©
2 = o
=
& = 4
E 4
$ 0.042 -
5
(&) - o
0.038F -
0.034 1 L L v 3 1 1 A L L I 1
0 20 40 60 80 100
Segment No.

Fig. Bl1. Results from a sloping V antenna: (a) radiation pattern: (b) magnitude of the current on the antesns. |. = 200m: H, = 0 m:

freq = 10 MHz: o = W° R, . = 000
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Fig. BI2. Results from a sloping V antenna: (2 ) radiation pattern; (b) magnitude of the current on the antenna. | = 200m: H, = 0 m;
froq = 1OMMz o = S0°: R, ..~ W01
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Fig. B23. Results fror
freq = 10MHz; a = 6l
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Fig. B23. Results from a sloping V antenna: (a) radistion pattern; (b) magnitude of the current on the antenna. L. = 200m; H, = 10m;
freq = 10MHz; a = 60°; R, . p = 300 L.
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