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TIME DOMAIN SOLUTIONS FOR
ELECTROMAGNETIC COUPLING

Air Force Contract No. F30602-77-C-0163
IITRI Project No. E6405
26 August 1977 - 26 March 1978
FINAL REPORT

1.0 INTRODUCTION

Electromagnetic coupling and shielding problems have traditionally
been difficult to treat with analytical or numerical methods because of
the failure of these methods to adequately resolve the effects of shield
apertures, curvatures, corners, and internal contents. Usually, only
relatively simple geometries of shields and shield openings are studied
in an attempt to gain insight into the key coupling mechanisms, and to
allow a rough estimate of the coupling fo~ more complicated and realistic
prcblems. A method for the direct modeling and solution of realistic
problems would eliminate the need for intuition in applying simple models,
and would greatly increase the accuracy of the ultimate result.

This research program investigated the application of a new approach
for the direct modeling of electromagnetic interaction problems: the
finite-difference, time-domain (FD-TD) solution of Maxwell's equations.
The FD-TD method treats the irradiation of a structure as an initial value
problem. At t = 0, a plane wave source of frequency, f, is assumed to be
turned on. The propagation of waves from this source is simulated by

solving a finite-difference analog of the time-dependent Maxwell's equations
on a lattice of cells, including the structure. Time-stepping is continued

until the sinusoidal steady state is achieved at each cell. The field
envelope, or maximum absolute value, during the final half wave-cycle of
time-stepping is taken as the magnitude of the phasor of the steady-state
field.

This method has two key advantages relative to available modeling
approaches. First, it is simple to implement for complicated metal/
dielectric structures because arbitrary electrical parameters can be

Py
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assigned to each lattice cell using a data card deck. Second, its computer
memory and running time requirement is not prohibitive for many complex
structures of interest.

This report first reviews available numerical techniques for the
solution of electromagnetic coupling/shielding problems. Then, the basic
elements of the FD-TD method are introduced, with detailed derivations
where appropriate, and with examples of prior computed results for
dielectric structures to estzblish the expected level of accuracy for
general structures. The last section of this report will detail the com-
puted results for the metal geometries modeled in this program effort.
Full Tlistings of computer programs employed in this research effort are
provided in the Appendix.




2.0 REVIEW OF AVAILABLE NUMERICt. TECHNIQUES

The coupling of electromagnetic fields to the interior of an arbitrary
conducting or dielectric structure has been approached using both frequency
domain and time domain numerical techniques. This section reviews pub-
lished work in this area and discusses the problems inherent in present
approaches.

2.1 Frequency Domain Techniques

Frequency domain methods are based upon the assumption of an exp(j2wft)
time dependence in the fundamental Maxwell's equations. In general, methods
of this type derive a set of linear equations for either field variables or
field expansion coefficients, and then solve the linear system with a suit-
able matrix inversion scheme.

Almost all frequency domain techniques can be placed in the following
three classes.

% Electromagnetic field expansions, in terms of either

a. Normal modes of the structure,]
b. Analytic continuation of free space modes,2

c. Normal modes of the structure matched to aperture fields

determined using a quasi-static approximation,3

d. Normal modes of the structure matched to aperture fields
resulting from an exterior region expansion of free
space modes.4

Using these techniques, the solution is achieved by enforcing the boundary
conditions for the fields at a sufficient number of points to specify the
surfaces of the structure, and to obtain a set of simultaneous equations
for the modal coefficients.

Z. Integral equation solutions, set up at either

a. Surfaces of the structure,5
b. Internal volumes of the structure,6

c. Surfaces of a structure with aperture.7

4




Here, the solution’is achieved by enforcing the integral equation at a
sufficient number of points to specify the surfaces or volume of the struc-
ture, using the method of ma"nents8 to obtain a set of simultaneous equations
for the electromagnetic fields at each enforcement point.

3. Variational solutions, employing specifically the finite element

solution of the Helmholtz equation within an unbounded region.9 Here, the
solution is obtained by enforcing the variational principal to obtain a set
of simultaneous equations for either field variables or expansion coeffi-
cients.

In principle, the accuracy of frequency domain methods is excellent if
a sufficiently large set of simultaneous equations is solved. However K each
method may have one of two problems when complicated structures are con-
sidered. First, excessive computer storage may be required. Second, an
excessively complex derivation of the matrix elements may be required. We
now consider these possibilities in the context of modeling the interior
fields of an arbitrary structure having dimensions on the order of one
wavelength.

To illustrate the problem of excessive computer storage requirements,
consider the integral equation technique of Ref. 6. Using the authors'
maximum allowed solution point spacing of 1/4 wavelength, a total of about
3 x 43 = 192 equations must be solved to determine the 3 rectangular com-
ponents of the electric field (or magnetic field) at each of the approxi-
mately 43 points of the structure. For this case, a maximum of 1922 =
37,000 interaction coefficients must be stored in the computer to allow
inversion of the system matrix, assuming no matrix bandlimiting. VYet, a
1/4 wavelength resolution might be much too coarse to resolve needed details
of the structure. If a solution point spacing of 1/8 wavelength is selected,
the number, N, of simultaneous equations increases to 3 x 83 = 1536, and a
total of N2 2 2,3 % 106 coefficients must be stored, a 64-fold increase over
the previous case. It is seen that, for a fixed structure geometry, the
required computer storage varies approximately as the inverse of the sixth
power of the resolution. Conversely, for a fixed resolution, the required
storage varies as the sixth power of the structure's characteristic dimen-

sion. This extremely rapid rate of increase limits the application of
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many frequency domain techniques to either two-dimensional irradiation prob-
Tems (infinitely long cylinders of constant cross section), or simple three-
dimensional problems (bodies of revolution, wire grid models of conducting
surfaces), which can be solved with relatively few simultaneous equations.

To illustrate the problem of an excessively complex derivation of the
matrix elements, we consider the technique of Ref. 2. For each dielectric
medium of the arbitrary structure, we would have to assume two field expan-
sions: one inside the medium, and one outside the medium. Field matching
would be performed at enough points along the surface of each medium so that
its shape would be outlined. At each field matching point, an analytic con-
tinuation of the interior and exterior fields would be formulated. Continua-
tion of the interior fields for some media would require multiple individual
continuations, to account for elongated geometries, implying multiple sum-
mations of spherical Bessel functions. Any change of the structuré geometry
would require a recalculation of virtually every matrix element involving
new analytic continuations. Although the size of the matrix obtained with
this method is not excessive, the derivation of the matrix elements is com-
plicated, with the complexity of the derivation a function of the inhomo-
geneities and geometry of the structure. This implies that a long program
development time is required for each new problem.

2.2 Previous Time Domain Techniques

Most previous time domain techniques can be placed in the following
four classes:

1. Inverse Fourier transforms of frequency domain solutions, either

a. Obtained from previously calculated frequency domain solutions]

possibly via the fast Fourier transform,]o

b. Derived in the form of a time convo]ution.]]

2. Transformed s-plane methods, for example using

a. Field expansions, matching at apertures, and the method of

moments,]2

b. Singularity expansion methods.I3




3. Integral equation solutions, for example, of the magnetic field,
14

yielding the surface current density induced on bodies of revolution.

6

4. Transmission line mode]s]5 and antenna mode]s] of induced currents

and coupling at apertures.

The first class of time domain techniques is seen to suffer the com-
puter storage problems inherent in frequency domain methods, with the added
complexity of requiring Fourier transtorm computational processing. For the
second class, field expansion and solution via the method of moments leads
again to computer storage problems, while the singularity expansion method
is useful for determining the exterior surface current and scattered field,
rather than the internal field distribution. The third class of techniques
requires computer storage of the surface current and its time derivative at
all surface points, for all times between the start of irradiation and the
observation time. This again leads to computer storage problems, as did
method of moments techniques discussed before. The last group of techniques
is suitable principally for thin diameter, cylinder-like structures, and
cannot account for details of the interiors of the structures.

In summary, these four classes of time domain techniques are probably
unsuited for application to shielding and coupling problems requiring a good
amount of detail of the interior of the structure of interest. Computer
storage is again a significant problem, as it was for the available fre-
quency domain techniques. The FD-TD method, discussed next, still has the
important advantage of allowing excellent resolution of the details of the
interior of a structure without exhausting the storage available in large,

modern-day computers.



3.0 THE FD-TD METHOD

This section will discuss the following topics relevant to the use of
the FD-TD method: 1) a brief history of the development of the method;
2) the basic ideas behind the method; 3) its advantages over the present
commonly used approaches; 4) computational details; and 5) past usages and
results.

3.1 Development of the Method

The basic finite-difference lattice structure and time stepping algor-
ithm for the FD-TD method was presented by Yee in a 1966 paper.]7 Yee,
however, was unable to solve the problems of reflection of outgoing waves
at the lattice truncations and the generation of a long pulse or continuous
wave without elongating the lattice. Therefore, his results were only of

limited use for practical coupling and shielding problems.

The principal investigator of the present contract performed the basic
research needed to fully develop the FD-TD method as part of his doctoral

dissertation18

at Northwestern University (1975). The developments included
satisfactory approximations to the free space condition at the lattice
truncations, and the simulation of a long duration pulse or continuous wave
incident on the structure of interest. The basic concepts of the FD-TD
method and the initial description of the practical, wave scattering algor-

L This paper applied the

ithm were presented in a paper in August 1975.
method to solve for the standing wave pattern within circular dielectric
cylinders subjected to microwave irradiation. Additional problems of this
type, dealing with a square dielectric cylinder and a dielectric sphere were
solved using the FD-TD method as part of the dissertation. In each of these
cases, the availability of exact analytic solutions permitted comparison
with the results of the FD-TD method, and the determina®ion of an error

bound.

Recognizing that the FD-TD method is ideal for modeling dielectric
structures of considerable complexity and inhomogeneity, the principal
investigator applied the method to an important and previously incalculable
problem, the solution of the electromagnetic fields and induced heating
potential within the human eye subjected to microwave irradiation. The
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FD-TD method permitted the modeling of the human eye and the various tissues
of the bony orbit surrounding the eye in great detail. The results of this

20

study were published in a paper in November 1975. Experimental work per-

formed by others using rabbits has tended to confirm the predictions of the
FD-TD eye model.

3.2 Basic Ideas

3.2.1 Wave Tracking

The FD-TD method achieves its flexibility by programming the two funda-
mental equations of classical electromagnetic theory; Maxwell's time depen-
dent curl equations. Using this method, we can model the propagation of an
arbitrary pulsed or continuous wave EM field into a volume of space con-
taining either a dielectric or conducting structure. By time-stepping, i.e.,
repeatedly solving the finite-difference analog of the curl equations at
each point of a space lattice containing the structure of interest, we
actually track the incident wave as it first propagates to the structure,
and then interacts with it in some way (surface current excitation, diffus-
jon, penetration, etc.). Wave tracking is completed for pulsed irradiation
when the desired early or late time behavior is observed; for sinusoidal
irradiation, the end point is the attainment of the sinusoidal steady state.

Time~stepping for the FD-TD method is accomplished by what is termed an
explicit finite-difference procedure. Here, the value of an electromagnetic
field component at the latest time step is computed using only field quan-
tities found during the previous time step, and stored in the computer
memory. For example, a particular electric field component, Ex’ to be
evaluated at point, P, of the finite-difference lattice, is computed using
the stored value of EX at P and the stored values of the magnetic field com-
ponents , Hy and Hz’ at the lattice points immediately adjacent to P. In this
way, the unknown field quantity is an explicit function of known field quan-
tities. Thus, no simultaneous equations are needed to compute the fields at
the latest time step. Further, computation can proceed cne lattice point at
a time, and the new field value at each point can be placed immediateiy in

memory .




3.2.2 Modeling the Structure of Interest

The finite-difference formulation of the FD-TD method allows the simple
and straightforward modeling of arbitrary dielectric/conducting structures.
This is because the space containing the model of the structure is divided
up into discrete volumes, or unit cells. The simplest case is that of a
cubic unit cell, which results in a cubic lattice approximation of the
geometry. For this case, the structure of interest is mapped intu the space
lattice by first choosing the dimensions of the unit cell, and then assign-
ing appropriate values of electrical permittivity and conductivity to each
unit cell of the lattice. Thus, inhomogeneities or fine details of the
structure can be modeled with a maximum resolution of one unit cell; thin
surfaces can be modeled as infinitely thin, stepped-edge sheets. The com-
puter program is written so that only a set of data cards is required to
specify the complete geometry and dielectric characteristics of an arbitrary
structure. No special handling of electromagnetic boundary conditions at
media interfaces is required because the Maxwell curl equations generate
these conditions in a natural way by themselves. Therefore, the basic com-
puter program need not be modified to change from structure to structure,
assuming that the lattice volume used is sufficient to fully contain each
structure.

3.2.3 The Lattice Truncation Conditions

A basic problem with any finite-difference solution of Maxwell's equa-
tions in an unbounded region is the treatment of the field vector components
at the lattice truncation. Because of computer storage limitations, the
lattice must terminate close to the model structure in a region where the
nature of the scattered wave is not clearly known. Proper truncation of the
lattice requires that any outgoing wave disappears at the lattice boundary
without reflection during the continuous time stepping of the algorithm.
Improper truncation would cause error for all time steps after the spurious
wave reflections return to the vicinity of the model structure.

The FD-TD method achieves an excellent approximation of reflection-
free lattice truncations. This is accomplished by the introduction of a
small, anisotropic loss into the region external to the model structure and

10




a wave-field propagation condition at each truncation point. It can be
shown that the resulting error due to spurious wave reflections at the

lattice truncations is reduced to less than about five pekcent by using
this technique.

3.2.4 The Plane Wave Source Condition

Another basic problem with any finite-difference solution of Maxwell's
equations in an unbounded region is the generation of a long duration pulse
or a continuous sinusoidal wave. Although such a wave could be programmed
as an initial condition, this would result in a waste of computer storage
because the lattice would have to be elongated to initially contain the full
pulse or wave train. Another possibility would be to vary the electric
field at all points along one end face of the lattice in a pulsed or sinu-
soidal manner. This lattice plane would then radiate the desired plane
wave toward the model structure. However, such a specification of field
values at a lattice truncation plane, without consideration of the values of
any possible outgaing scattered waves, would cause undesired reflection of
such waves and significant error, as discussed in the previous topic.

The FD-TD method achieves an excellent simulation of a long duration
pulse or a continuous sinusoidal wave without requiring any additional com-
puter storage or causing any additional wave reflections. This is accom-
plished by using a program instruction which simulates the Tinear super-
position of an arbitrary incoming plane wave with the ambient scattered
fields at all points on a single, transverse lattice plane located between
the model structure and one of the lattice truncation planes. The desired
incident wave is generated at the superposition plane. But, most impor-
tantly, any outgoing scattered wave can propagate right through the wave
source plane without reflection and reach the lattice truncation plane
beyond to be absorbed. This condition simulates an arbitrary plane wave
originating at infinity, and a scattered wave returning to infinity, without
permitting any interaction between the two waves except at the model struc-
ture. It can be shown that the error resulting from this simulation is
negligible (less than one percent).

N




3.3 Advantages

The FD-TD method has the following advantages relative to available
frequency domain and time domain techniques for electromagnetic coupling
and shielding problems.

1. The required computer storage of the FD-TD method increases only
as the third-power of the ratio of overall structure size to
spatial resolution, regardless of the internal complexity of
the structure. Other computer techniques which require the
solution of simultaneous equations usually have a sixth-power
dependence on the size-to-resolution ratio for complex, inhomo-
geneous structures. This is a fundamental dimensional advantage
for the FD-TD method which allows it to model geometries not
solvable by any other procedure.

2. The FD-TD method can model the surfaces, apertures, and interiors
of complex structures in a straightforward manner on a finite-
difference lattice. Only a data card deck need be punched to
specify the geometry of an arbitrary scatterer or shield.

The maximum resolution is limited only by the size of the
basic lattice unit cell.

3. The FD-TD method can model structures with square corners in a
natural way if a cubic finite-difference lattice is used. This
avoids the problem of dealing with the current and field singu-
larities often found at corners, which lead to slow convergence
or erroneous results with other approaches.

4. The FD-TD method allows a natural and simple treatment of the
following cases which are difficult or impossible to handle in
any other way:

a. Dielectrics, conductors, and permeable media which are
anisotropic and/or nonlinear;

b. Charged particles or other ionized media within the
structure, due possibly to system generated EMP;

12




c. Irradiation sources which are either continuous wave, pulsed,
amplitude modulated, or frequency modulated;

d. Irradiation source or-material boundaries which are moving
at relativistic speeds.

w

The FD-TD method allows a unified treatment of free space irradia-
tion problems, waveguide obstacle problems, or combinations of

the above, i.e., waveguide applicators for diathermy or hyper-
thermia, waveguide antennas, etc.

3.4 Computational Details for a Uniform, Cubic Lattice

3.4.1 System of Finite-Difference Equations

Using the MKS system of units, and assuming that the dielectric param-
eters, u, €, and o, are independent of time, the following system of scalar
equations is equivalent to Maxwell's equations in the rectangular coordinate
system (x, y, z):

3

L (a)
ot u 9z oy

o W e O (1b)
ot B oX 9z

i YRR BN e (1c)
ot U oy X

R T o (a)
ot g ' oy 9z X

oF oH o

P A e s LI, By L (le)
ot > ( z ax UEy)

oE oH oH

b g B ke OP R N (1)
at S dim s Ryl

Yee]7 originally introduced.a set of finite-difference equations for the
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system of Equations (la) - (1f). Following Yee's notation, we denote a
space point in a cubic lattice as

(i.d.k) = (i6,j6,ks) (2)
and any function of space and time as
F(i,3,k) = F(i6,38,ks,nét), (3)

where § = 8x = 8y = 8z is the space increment, St is the time increment, and
i, J, k, and n are integers. Yee used centered finite-difference expressions
for the space and time derivatives that are both simply programmed and
second-order accurate in § and in St, respectively:

Nes o n,. S n i o
oF (;;J’k) = F (1+}2’Jyk) g F ('l %L’J’kl +0(52) (4)
(1,50 . FUIK) - Flak) 2
9 i,j,k e Figja = i!j’
ot & st + 0(st%) (5)

To achieve the accuracy of Equation (4), and to realize all of the space
derivatives of Equations (la) - (1f), Yee positioned the components of E
and H about a unit cell of the lattice as shown in Figure 1. To achieve the
accuracy of Equation (5), he evaluated E and H at alternate half time steps.
The result of these assumptions is the following general system of finite-
difference equations for the system of Equations (la) - (1f):

n+% n-%
H (1,34%,k+s) = H (1,5+%,k+%) +
L e 3
st By (1,3+5,k+1) - E (1,545,k) + (6a)
u(i,3+%,k+%s)6 "
Ez(i’j’k+%) - E(1,341,k+3) J
n+3 n-%
Hy(i+%,j,k+%) — Hy(i+%.J,k+%) ¥
n n
E (1+.l !j 9k+%) P (193,k+%) +| (Gb)
St 2 . 4 \
- - n
u(i+y,J,k+%)6 E, (1+3,5,K) - E, (i+5,3,k+1) |
-
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Fig. 1

POSITIONS OF THE FIELD COMPONENTS
ABOUT A UNIT CELL OF THE YEE LATTICE
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n+% n-%
Hy(45,545,K) = H(+k,5+5,k) +
n n
St Ex(i*'%,j"’],k) = Ex(i+%9j9k) + (6C)
MEEE A I .
Ey(]93+%sk) 5 Ey(1+] rj'HE:k)
e [ - oli*s,j.k)et 2
: ; = 2e(i+%,]3,k . -
Ex(1+%’.]:k) [_] 7 agli+ "’k St = EX(1+%9Jak) +
' 2e(i+%,],k
(6d)
n+%s n+:
H (i+%’j+35’k) = i ('H'%,j-%,k) +
st 1 : =
e(1+%,7,k)8 [1+89 i+%,3,K 8t n+x n+y
2e 1+%a\]9k Hy(i"-%,jsk-%) g Hy(i+%,\]9k+}2')
n+l £t - E(i(z,ii_}ii)ét] n
R = 2¢ 1’J+%sk_)_ 5§
E Jt:s,k) = au® E Sjti.k) +
y(123%%:K) 0+ o, 3tkeE y(1:3+5:k)
2e(1,J+%,k
(6e)
n+% n+%
H (i9j+3§9k+%) -~ H (iaj'HEak"lE) +
&t ] : .
E(.i’j"'%ak)d [1+ Ugi,!i"'ﬁ,k}&t] n+% n+%
2e(1,)+%,k Hz(i’%$j+3§’k) o Hz(i"'%’j"'%’k)
i,),.k+%)6t
n+l [1 - Silpde ] n
£, (i,3,k+) = Ll (1,5,k) 4
SRR
(6f)
n+% n+%
H ('i‘*'%,j,k"’%) - H (i'%,j,k"’%) +
st ) Y y
5(1 ij’k+m [-I + g i,’,k"‘ (St] n+§ ¢ n+3§ !
2¢(1,3 k4% H (1,3-%,kes) = H(1,3+,kes)
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With the system of Equations (6a) - (6f), the new value of a field
vector component at any lattice point depends only on its previous value
and on the previous values of the components of the other field vector at
adjacent points. Therefore, at any given time step, the computation of a
field vector may proceed one point at a time.

Many electromagnetic interaction problems involve nonpermeable media
and can be approached using a fixed time step and space increment. For such
problems (including the cylinder and nose cone geometries specified for this
research effort), the quantity S§t/u(i,j,k)s is constant for all (i,j,k) of
the lattice, and the Yee system of Equations (6a) - (6f) can be simplified
to reduce computer running time in the following manner. We define the

constants:

R = 6t/2€0 (72)

R. = st2/(s%u )
a 00 (7b)
Rb = 6t/u06 (7¢)

1 - Ro(m)/er(m)

Ca(m) = Ro(m)/erﬁﬁf (7d)

Ra
B = W Rotm (7e)

where m is an integer denoting a particular dielectric or conducting medium
in the space to be modeled. We also define the proportional electric-field
vector

E = Rb€ (8)

Using the definitions of Equations (7a) - (7e) and (8), we rewrite Equations
(6a) - (6¢c) as:

n+%x n-% _n o
Hx(i,j+%,k+%) - Hx(i,J+%,k+%) )3 Ey(i,5+%,k+1) - Ey(1,J+%,k) +
7 (9a)
N N
Ez(i’j9k+%) ¥ Ez(i»j+]9k+%)
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n+3 n-% n .n
Hy(1'+35.j.k+35) = Hy(1’+»’s,j,k+%) + Ez(iﬂ »Joktk) - Ez(i,j,k+%) +
(9b)
_n _n
E (i+5,3,k) - E (i+5,5,k+1)
n+% n-% .n N
Hy(43,34%,k) = H (i+5,3+5,k) + E (1+45,5+41,k) - E (i+5,3,k) +
(9¢c)
.n .n
Ey(iaj+%:k) i3 Ey(i+]sj+%’k)

This modification eliminates the three multiplications needed by Yee in the
H part of the algorithm. Further, we rewrite Equations (6d) - (6f) as:

m = MEDIA(i+%,j,k)

n+l ~Nn n+x n+:
Ex(i+%1jsk) = Ca(m)Ex(i+%,j9k) + Cb(m)[Hz(1+%aj+%’k) = Hz(i+%’j'%ak) +
n+3 n+s (9d)
H (i+%!jsk'%) - H (i+%:j:k+%)]
Yy Yy
m = MEDIA(i,j+%,k)
_n+l _n nt% ntk
E(1,5%%5,k) = C (ME (1,5+5,k) + Cpm)[H, (T,5+5,k+y) - H (7,5+5,k-5) +
n+% n+% (9e)
Hz(i'%9j+%:k) =y Hz(i+%’j+%sk)}
m = MEDIA(i,j,k+%)
_n+l _n n+3 n+x
E,(1,3,k#%) = Co(mE,(3,3,k+%) + € (m)[H, (+5,3,k+%) - H (1-%,5,k+) +
(9f)

n+x n+%
Hx(i!j'%’k+%) £y Hx(iaj+%’k+%)]

This modification eliminates the need for computer storage of separate & and
o arrays. Now, only a MEDIA array which specifies the type-integer of the
dielectric or conducting medium at the location of each electric field
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component in the lattice need be stored. In addition, the € and o of each
medium can now be changed without having to re-punch a large data card deck,
if the basic structure geometry is unchanged. Such a change involves only
the recalculation of the few values of Ca(m) and Cb(m).

3.4.2 Choice of Space and Time Increments

The choice of § and &t is motivated by the reasons of accuracy and
algorithm stability, respectively. To insure the accuracy of the computed
spatial derivatives of the electromagnetic fields, § must be small compared
to a wavelength (usually < A/10). Further, to insure that the cubic lattice
approximation to the surfaces of the structure modeled is not too coarse, §
must be small compared to the overall dimensions of the structure.

To insure the stability of the time-stepping algorithm of Equations
(9a) - (9f), &t is chosen to satisfy-the inequality

X\

1 1 1 -1
§t < (— + — + —5) ¢
- 6x2 6y2 612 max
(10)
< o F (for a cubic lattice)
[
max

where € i is the maximum wave phase velocity within the model. The corres-
ponding stability criterion set forth by Yee in Equations (7) and (8) of his
paper is incorrect. The derivation of tquation (10) is outlined as fol lows.

Derivation of the Stability Criterion

For convenience, we consider a normalized region of space with u = 1,
e=1,0=0,and c = 1. Letting j = /-1, we rewrite Maxwell's equations as

Vv x (H+3JE) = 3(H + JEY/ot, (Ma)
or more simply as
juyxV = 3¥/st, where V = H + jL. (11b)

The stability of a particular numerical representation of Equation (11b) can
be examined simply by considering the fol lowing pair of eigenvalue problems:




33t nimerical? AV (12a)

Jv ,numerical Y= 3 (12b)

Using the numerical time derivative given by Equation (5), Equation (12a)
gives

ntks n-% n

(v - ¥ Yet = W . (13)
_n+yx n-%
Defining a solution growth factor q =V /V , and substituting into

Equation (13), we solve for q:
q = Ast/2 + /1 + (Ast/2)2. (14)

Algorithm stability requires that [q| < 1 for all possible spatial modes in
the lattice. For this to occur,

Re A = 0; |Im x| < 2/8t. (15)
We now let
V(2,m,n) = Voexp[J(kxzéx + kyméy + kznéz)] (16)

represent an arbitrary lattice spatial mode. Using the numerical space
derivation formulation of Equation (4), Equation (12b) yields

sin(%kxéx) sin(%kyéy) sin(%kzéz)

-2[ ox s 5y 5 o 1 x V(%2,m,n) = AV(&,m,n). (17)

After performing the cross product and writing the x, y, and z component
equations, the resulting system is solved for AZ:

2 sinz(%kXSX) sinz(%k 8y) sinz(%kzdz)
A" = 4] 2 ¥ 2)’ > 2 ] (18)
8X Sy 8§z
For all possible kx’ ky, kz,
1 1 18
Re X = 0; |Im )\| < 2(_“2' + 7 + '—'2—) 3 (]9)
6x Sy 8z

To satisfy the stability condition of Equation (15) for the arbitrary lattice
spatial mode, we set



1 1 1,%
Sx Sy S8z
The algorithm stability condition follows immediately from Equation (20).
In an inhomogeneous region of space, it is difficult to determine a spectrum
of A, analogous to Equation (19), for all possible lattice spatial modes.
For absolute algorithm stability, Equation (10) suffices because it repre-
sents a "worst case" choice of d&t.

3.4.3 Lattice Truncation Conditions

A basic consideration with the FD-TD lattice is the treatment of the
field vector components at the lattice truncation planes. Inspection of
Equations (9a) - (9f) indicates that the values of such components cannot be
determined from the system of finite-difference equations because of the
centered nature of the spatial derivatives. Therefore, these values must be
computed using an auxiliary truncation condition. However, great care must
be taken because this condition must not cause the spurious reflection of
waves scattered outward from the structure modeied, as observed by Yee. The
goal of formulating the truncation condition is to make the Tlattice trunca-
tion planes invisible to all possible waves propagating within the Tlattice,
as shown in Figure 2.

A desirable truncation condition relates in a simple way the values of
the field components at the truncation planes to field component values at
points one or more § within the lattice. We now consider examples of such
a truncation for cases of FD-TD lattices in one and three dimensions.

One-Dimensional Case

For simplicity, we consider waves having only the Ez and Hx components
and propagating in the +y directions. The one-dimensional FD-TD lattice is
simply a y-directed line of points having the Ez and Hx components inter-
leaved and separated from each other by 0.5 8y. The lattice is assumed to
extend from an Ez component at point y = 0 to another Ez component at point
y = J8y. A time step of 8§t = 8y/c is used; a value which is the maximum
allowed by the stability condition of Equation (10) for this lattice (&x
§z = o),
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Subject to these assumptions, the truncation condition at point y = 0,

n _n-1

EZ (0) = E (1) (21a)

simulates the free space propagation of the magnitude of Ez from the point
1" to the truncation point "0" in one time step (the free-space propagation
delay implied by the time-step relation). This is an exact truncation for
this Tattice in that all possible -y-directed waves are absorbed at 0 with-
out reflection. If we wish to simulate the truncation of the lattice at
point y = J§, the truncation condition

n n-1
Ba (0 = EZ (J-1) (21b)

is exact for all possible +y-directed waves at this point.

Three-Dimensional Case

Here, we consider waves having all six field components and propagating
in all possible directions. The lattice is assumed to extend from:

H and HZ components at x

y %8 to

Hy and H, components at x = (1 + %)8;
Ex and Ez components at y = 0 to

EX and Ez components at y = J§;

Ex and Ey components at z = 0 to

Ex and Ey components at z = K§.

A time step of &t = &/2c is used, a value which is about 13% lower than the
maximum allowed (8t = §/V/3 c) by the stability condition of Equation (10) for
this Tattice (6x = 8y = 8z = §).

No simple, exact truncation condition, analogous to Equations (21a) and
(21b), is apparent for this three-dimensional space lattice. This is because
we cannot assume the outgoing waves to be plane and normally incident on one
lattice boundary. At any truncation point, the local angle of incidence of
these waves relative to the truncation plane is unknown. Further, several
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different waves having different local angles of incidence may arrive at the
same time. No simple truncation condition can account for all of these
possibilities. Therefore, we can arrive at only an approximate condition
that reduces the effective lattice boundary reflection coefficient to an

: acceptable level.

A set of simple, approximate truncation conditions that can be used
with good results is as follows.

At x = §:

n n-2 n-2 n-2 (22a)
Hy(%,j,k+%) = [Hy (3/2,3,k-%) + Hy (3/2,3,k+%) + Hy (3/2,3,k+3/2)1/3

n n-2 n-2 n-2 (22b)
HZ(%.3+%.k) = [Hz (3/2,j+%,k-1) + HZ (3/2,3+%,k) + Hz (3/2,j+%{k+1)]/3

At x = (I + %) &:

n n-2 n-2 n-2 (22c)
Hy(1+%n]sk+%) o [Hy (I'%sj9k'%) + Hy (I'%oj’k"'%) + H_Y (I'%9Jak+3/2)]/3
n n-2 : n-2 n-2 (22d)
HZ(I+%,3+%,k) = [Hz (I-%,j+5,k-1) + H, (I-%,i+%,k) + H, (I-%,j+%,k+1)]/3
At y = 0:
h n-2
E(it2.00k) = B (4%, 1.k) (23a)
X X
n n-2
£7(i,0,k+%) = EZ (1,1,k+%) (23b)
- At y = J 6:
n n-2
Fx(i*%.d,k) = E_ (i+%,d-1,k) (¢3¢)
X
n N=-2
f7(i.J,k+%) s EZ (i,0-1,k+%) (23d)
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At z = 0:

n ~n=2 =2 n-2 (242)
E (i+%5,3,0) = [E (i-%3§,1) + E (i+53,1) + E (i43/2,5,1)1/3
.n n-2 -2 n-2 (24b)
E (i,j+%,0) = [E, (i-1,3+%,1) + E (i,3+%,1) + E (i+1,5+%,1)]1/3

Y y Y y

At z = K §: e
_n _n-2 _n=2 n-2 (24c)
Ex(i"’%ajsl() = [EX (i"%sjsK']) + EX (i"%’j’K"]) + EX (1+3/2’33K'])]/3
N “n-2 n-2 -2 (24d)
Ey(i:J‘F%’K) = [Ey (1'.I aJ+%9K']) + E)’ (1 9J+%’K']) + Ey (i"'.l ’J+%vK'])]/3

Equations (22) - (24) allow the field value at any truncation point to
rise to approach the field value of any outgoing wave, thus lowering the
effective truncation plane reflection coefficient. This is done by modeling
the propagation of an outgoing wave from the lattice plane adjacent to the
truncation, to the lattice plane at the truncation, in two time steps (the
free-space propagation delay implied by the time-step relation). The aver-
aging process is used to take into account the possible local angles of
incidence of the outgoing wave at the truncatfon and possible multiple
incidences.

Truncation conditions (22) - (24) are useful for an assumed +y-directed
incident plane wave with field components EZ and Hx‘ For such a wave, Equa-
tion (23) represents exact truncations similar to Equation (21). In addi-
tion, Equations (22) and (24) have no effect on the propagation of such a
wave, which lacks Hy, Hz’ Ex’ and Ey. Thus, this set of truncation condi-
tions effectively makes the lattice boundary planes invisible to a +y-
directed incident plane wave.

Use of Exterior-Region Anisotropy

One way of reducing spurious reflections at the lattice truncations is
to introduce an anisotropic lossy medium outside of the modeled structure.
Properly constituted, the medium would attenuate field components present
only in the scattered wave, leaving the incident plane wave unaffected.
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For the three-dimensional case, this can be easily done by specifying an
anisotropic conductivity, Oicp? in the free-space region exterior to the
structure. Equation (9f), the finite-difference equation for Ez’ requires
ot ™ 0 to insure that the incident wave is not attenuated. However, we

may assume a small value ?f Oext~f°r Equations (9d) and (9c), the finite-
difference equations for Ex and Ey, without affecting the propagation of the
incident wave or the penetrating wave within the structure. This assumption
results in attenuation of the Ex and Ey components of the exterior diffracted
wave, and thus, reduces z-directed wave reflections at the lattice trunca-
tions.

Effect on Algorithm Stability

The stability condition of Equation (10) is valid for the Yee, or null
choice, of lattice truncation conditions. This is because Yee's set of trun-
cation conditions causes total reflection of all lattice wave modes at the
surface planes of the lattice, and thus, introduces no new wave modes.
However, introduction of Equations (22) - (24) to the three-dimensional
algorithm is found to increase the strictness of the stability condition.

For the three-dimensional case, some case must be taken to avoid algorithm
instability.

The nature of the instability of the three-dimensional algorithm is of
importance. First, it is late in appearance, requiring more than five-
hundred time steps for a 2 x 104 - cell lattice, and more than one-thousand
time steps for a 6 x 104

delayed by either increasing the size of the lattice, or by increasing the

- cell lattice. Second, its initial visibility is

losses of the dielectric media of the lattice. This suggests the importance
of wave propagation effects in the growth of the instability.

There are two likely solutions to the problem of algorithm instability.
First, 8t can be reduced. This, however, would complicate the programming
of the truncation conditions because a wave would no longer propagate across
a free-space unit cell of the lattice in an integral number of time steps.

The second solution is much simpler since it does not require pro-
gramming for interpolating field values at the truncation planes between

time steps. This solution is merely to set a lower bound of about 105 cells
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on the size of the FD-TD lattice used, thus delaying the onset of the insta-
bility for several thousand time steps. In most cases, such a delay would
be sufficient for the computed solution to reach the sinusoidal steady state.
For many problems, the use of a 105 - cell lattice is not at all extravagant
and allows the problem of algorithm instability to be essentially forgotten.
The computer runs in the present research program for the cylinder and the
missile nose cone employ this solution. They use, respectively, 94,000
cells--800 time steps and 58,000 cells--900 time steps, without any apparent

instability of the computed solution.

3.4.4 Plane Wave Source Condition

Another basic consideration with the FD-TD method is the simulation of
the continuous, sinusoidal, incident plane wave. Yee specified the shape and
direction of propagation of an incident wave pulse by inserting all of its
field values as initial conditions over a portion of the lattice. However,
the Yee approach is clearly inadequate for a continuous wave train because a
very elongated lattice would be needed to contain the wave as an initial
condition, wasting much computer storage.

In this section, we discuss the simulation of an incident, +y-directed
plane wave using a source condition localized at only one lattice plane, and
invisible to all scattered waves propagating within the lattice. This
allows a compact lattice and maximum utilization of the available computer
storage.

The most simple approach to this problem is to vary the electric field
at all points along lattice plane y = 0 in a sinusoidal manner. This plane
would then radiate the desired plane wave. However, such a specification of
field values at a lattice truncation plane, without consideration of the
values of the fields of any possible outgoing, scattered waves, would cause
undesired wave reflections.

A more desirable plane wave source condition would take into account
the scattered fields at the source plane. For the three-dimensional case, a
useful wave source condition at plane y = J55 (near y = 0) is as follows:

"’n ~N T
E,(1,3g.k+]) « Ry sin(2nfnét) + Ez(1,JS,k+%) (25)
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where f is the irradiation frequency and Rb is defined by Equation (7c).
Equation (25) is a modification of the Maxwell's equations algorithm for all
points on the lattice plane y = jsa. At each point on this source plane,
the computer first calculates Eg in the normal manner of the algorithm, and
stores the value in memory. Then, the value of the sinusoid is calculated
and added to the stored value of E;. Finally, this modified value of Eg is
stored in memory. In effect, Equation (25) simulates the linear superposi-
tion of a +y-directed plane wave and the ambient field along the source
plane. This condition permits any scattered, outgoing wave to propagate
right through the wave source plane without reflection, and reach the lat-
tice truncation at y = 0 to be absorbed.

3.4.5 Symmetry Conditions

An important savings of computer memory and program execution time
results if even symmetry of the modeled structure about one or two lattice
planes can be assumed. In this section, we discuss the programming of this
symmetry for the three-dimensional case.

For the three-dimensional case, the modeled structure is assumed to be
evenly symmetric about lattice planes x = (T + %)8 and z = K&:

€90’(I+}2'+h9jak) = E,O'(T"'%'h,j,k), H= uO (263)

E,U(i,j ,K+h) > an(inj ;K'h) (26b)

The incident radiation is assumed to be a +y-directed plane wave, with the
field components Ez and Hx naturally having even symmetry about any 1Ettice
plane x = constant or z = constant. Therefore, we conclude that the EZ and
Hx components of the total field possess even symmetry about the lattice
planes x = (I+%)8 and z = Ké:

n n

E,(THsth,j,k+k) = E (Te-h,j,key) (27a)
n+s n+3

Hy (T4gth,j4k,kel) = H o (T+k-h, 4%, k) (27b)
n L= n

E,(1.3,k+h) = E (i,5,K-h) (27¢)
n+% u n+%

He (F.3+g,k+h) = H - (§,5+%,K-h) (27d)
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To develop a convenient set of symmetry conditions, we follow a procedure
detailed below. This results in

0+ n+ n+s_

Ex (I+%,j,k) = Hy (I+%,j,k+%) = Hz (I+%,j+%,k) = 0 for all n; (28a)
nt+s oy .n o n *

Hy (15,545,K) = E(i+5,3.K) = E(1,j+5.K) = 0 for all n.  (28b)

Equations (28a) and (28b) are sufficient to truncate the FD-TD lattice at
planes x = (T+%)8 and z = K8, respectively, by permitting the calculation of
the complete set of field components, with full specification of the assumed
even symmetry.

Derivation of the Symmetry Conditions

A. Plane x = (I+%)6

The symmetry cghditions for the Ex’ Hy, and HZ field components at
lattice plane x = (I+%)8 are derived from time-stepping algorithm Equations
(9a) - (9d) and symmetry assumptions (26a), (27a), and (27b). The first
step of the derivation involves the determination of the type of symmetry
exhibited by Ey about plane x = (I+%)8. To begin, we write Equation (9a)
for i = I and for i = I+1:

n+% n-% R oW

He (Tivkakek) = H (T.i#hke) + E(T,4,ke1) - E(T.i+5.k) +
o n (29a)
Ez(lsjsk"'%) o EZ(T’j+] sk+%)

n+% n-% . b

Hy (I41,5+%,k+%) = Hx (I41,5+%,k+%) + Ey(1+1,j+%,k+1) - Ey(I+1.j+%,k) +

a (29b)

~ ey “'n_
E,(TH,5,kek) - E,(TH1,541,ke)

Using the symmetry conditions of (27a) and (27b) for the case h = %, we

subtract Equation (29b) from (29a) and simplify:

.n n oV g
Ey(T}J+%,k+1) - Ey(T41,J+%,k+1) = Ey(I.J+%,k) - Ey(1+1.3+%,k) (30)
Equation (30) is in the form f(j+%,k+1) = f(j+%,k). This implies a solution
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of the t f(j+x,k) = C. ..., 4 i :
e type f(j+%,k) CJ+% where CJ+JE is a constant. We thus have

n

-~ pom— ~n_
Ey(l,j+%,k) - B (I41,545,k) = C (31a)

ity
We argue that the symmetry of the problem precludes the possibility of a con-
stant step discontinuity of Ey across the plane of symmetry. Therefore,

Cj+% must equal zero and

Ey(I,j+%,k) = Ey(I+1,j+%,k). (31b)
Equation (31b) is a statement of the even symmetry of Ey about plane x =

(T+x)s.

Now, we may derive the symmetry conditions for Ex’ Hy, and HZ at plane

x = (T+%)8. Using symmetry condition (27a) for the case h = %, we write

Equation (9b) for i = T:

n+3_ n-%_ " e
Hy (T+%,],k+%) Hy (T+k,5,k+%) + EX(I+%,J,k) = EX(I+%,j,k+1) (32a)

Using the derived symmetry condition of Equation (31b), we write Equation
(9¢c) for i = T:

n+ n-

% N n
H, I+%,j+%,k) = H, (T+s,j+%,k) + EX(T4%,J+1,k) - EX(T4%,J,k) (32b)

From Equations (32a) and (32b), we see that Hy and Hz ft the symmetry plane
can depart from their zero initial conditions only if EX(T4%,j,k) assumes
some non-zero values. Yet, from Equation (9d), Ex at the symmetry plane is
seen to remain at zero if Hy(T#%,j,k+%) and HZ(T4%,j+%,k) are zero. There-
fore, using an inductive argument, we conclude that these three field com-
ponents must remain at zero for all time steps. Equation (28a) is a state-
ment of this behavior.

B. Plane z = K§

The symmetry conditions for the Ex’ E , and HZ field components at

- 4
lattice plane z = K§ are derived from time-stepping algorithm Equations (9c)

- (9f) and symmetry assumptions (26b), (27c), and (27d). The first step of
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E

the derivation involves the determination of the type of symmetry exhibited
by Hy about plane z = K§. To begin, we write Equation (9f) for k = K-1 and
for k = K:

m = MEDIA(1,j ,K-%)

e n & n+y o n+ #3
Ez(i’j ’K'%) = Ca(m-I)Ez(iajsK'%) + Cb(m])[Hy(1+%9J’K'%) A Hy(1'%’3 $K'%) +

e * n+k g (33a)
HX(1 sj'%,K'%) P HX(1 sj+%9K'3§)]
m, = MEDIA(i,j,K+%) , |
U e .n ES n+x o n+i - :
E,(1.3.k+%) = € (m)E,(i,5,Ke%) + Cplm))[H (i+5,3,Kek) - H (i-%,3,K+5) + {
n+%x n+% (33b) 4

HX(1 sj'%rr"’%) 5 HX(1 ’j+%,T(—+}2')]

Using the symmetry conditions of Equations (26b), (27c), and (27d) for the
case h = %, we subtract Equation (33b) from (33a) and simplify:

n+%x L nt% = n+% 5 n+x i
Hy(1+%~\] ’K'%) pw: Hy(1+%aJaK+35) Hy(.l-%"] 9K'35) o Hy(I’%yJ’K'HE) (34) :

Equation (34) is in the form f(i+%,j) = f(i-%,j). This implies a solution
of the type f(i+%,j) = Cj’ where Cj is a constant. We thus have

n+% B nt+% o
Hy (i+;2'aj,K';'2) i Hy ('i+}2',\].,K+}2‘) = CJ. (356)

We argue that the symmetry of the problem precludes the possibility of a con-
stant step discontinuity of Hy across the plane of symmetry. Therefore, Cj
must equal zero and

n+% n+k

Hy (i95,3,K-%) = Ky (i45,5,K0%). (35b)

Equation (35b) is a statement of the even symmetry of Hy about plane z = KS&.
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Now, we may derive the symmetry conditions for Ex, Ey, and H_ at plane
&

z = K§. Using the derived symmetry condition of Equation (35b), we write
Equation (9d) for k = K:

m = MEDIA(i+%,j,K)
~N+] = -n 3 n+%
E(145,3,K) = € (mE, (i+5,3,K) +  (m)[H (1+5,5+%.K) -

N+ (36a)
Hz(i+%9j'}'2sT(—)]

Using symmetry condition (27d) for the case h = %, we write Equation (9e) for
k = K:

m = MEDIA(1,j+%,K)

N+l i ~Nn = n+x i3
Ey(i,j+%,K) = Ca(m)Ey(i,j+%,K) * Cb(m)[Hz(i-z,j+%,K) ¥
N+ ¥ (36b)
H, (i+%,3+5,K)]

From Equations (36a) and (36b), we see that Ex and Ey at the symmetry plane
can depart from their zero initial conditions only if HZ(1+%,j+%,K) assumes
some non-zero values. Yet, from Equation (Yc), HZ at the symmetry plane is
seen to remain at zero if Ex(i+z,j,K) and Ey(i,j+%,?) are zero. Therefore,
using an inductive argument, we conclude that these three field components
must remain at zero for all time steps. Equation (28b) is a statement of
this behavior.

3.5 Review of Past Usages and Results

In this section, we review past usages and results of the FD-TD method
for simple two and three-dimensional dielectric geometries, with an objective
of establishing the level of accuracy of the method. Three sources of error
have been considered: the approximation of the space and time derivatives of
Maxwell's equations by finite-difference expressions; the residual wave
reflections at the Tattice truncations; and the stepped-surface approximation
of the shape of a curved scatterer. The computed results used in this dis-
cussion were obtained by the principal investigator during his Ph.D. disser-
tation work in 1974 and 1975.
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3.5.1 Irradiation of a Plane Dielectric Slab

First considered as a source of error was the approximation of the space
and time derivatives of Maxwell's equations by finite-difference expressions.
To isolate this error source, a scattering problem had to be formulated that
eliminated error due to the approximations of the shape of the scatterer or
of the lattice truncations. Such a problem was the steady plane-wave irradi-
ation (at normal incidence) of a flat dielectric slab, because the boundaries
of the slab could be defined exactly by two parallel lattice planes. Further,
for a +y-directed incident wave, all scattered waves had to propagate in
either the +y or -y directions; a situation where the lattice truncation con-
ditions were exact. Therefore, any observed error in the results could be
attributed to the finite-difference approximations of the derivatives.

For ease in understanding the results, the slab was assumed to be loss-
less and one-half wavelength thick. These conditions were fulfilled by a 3
cm thick slab, with relative permittivity equal to 4, irradiated at 2.5 GHz.
The geometry of this slab relative to the problem lattice is detailed in
Figure 3a for two lattice resolutions: & = 0.3 cm = xd/zo; and § = 0.6 cm =

Figure 3b graphs the maximum absolute value, or envelope, of Ez(j) com-

puted during the wave half-cycle preceding the termination of the algorithm

at n was chosen large enough to allow all values of EZ within the

3
1att?§g to Tg;ch the sinusoidal steady state. For the coarse-lattice case,
§t = 10 psec and the envelope was observed for 130 < n < 150. For the fine-
lattice case, 6t = 5 psec and the envelope was observed for 250 < n < 300.
Each case represented an algorithm time of 1500 psec, or 3.75 wave cycles at

2.5 GHz, required to reach the steady state.

For the fine-lattice case, the envelope was virtually indistinguishable
from the exact solution calculated from basic microwave theory. In front of
the slab, a standing wave ratio of about 1.04 was observed. Within the slab,
the envelope decreased to exactly one-half the incident field magnitude. In
back of the slab, the envelope was constant and had the same value as the
incident field magnitude. These results were in excellent agreement with the
exact solution obtained either by viewing the slab as a 1:1 impedance
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transformer between its two faces, or by using an infinite series approach.
The maximum error was about +2%. For the coarse-lattice case, error was
evident in the computation of the envelope in front of the slab. Here, a
standing wave ratio of about 1.13 was observed. The maximum error was esti-
mated to be about +7%.

To insure that the uncertainty caused by the finite-difference approxi-
mations of the field derivatives is significantly less than +10%, it was seen
that a lattice resolution of 6§ < A\/20 must be maintained. For inhomogeneous
scatterers, A of this criterion should be taken as the minimum value expected
within the lattice.

3.5.2 Irradiation of a Square Dielectric Cylinder

Next considered as a source of error was the presence of residual wave
reflections due to imperfect lattice truncations. To isolate this error
source, a scattering problem had to be formulated that generated a roughly
radially-propagating diffracted wave (to test the truncation conditions at
non-normal incidence) without having additional error due to any stepped-edge
approximation of a curved boundary of the scatterer. Such a problem was the
TM irradiation of an infinitely-long, rectangular, dielectric cylinder, with
the incident wave propagating normally to one cylinder face. Here, the
boundary of the cylinder could be defined exactly by intersecting lattice
planes; yet, the desired diffracted wave would be generated. Any error in
the results in excess of that observed for the plane dielectric slab probiem
could thus be directly attributed to spurious wave reflections at the lattice
truncation planes.

For ease in understanding the results, the cylinder scattering problem

£l with a surface integral

was assumed to have the geometry analyzed by Tong
equation approach. Tong's cylinder was composed of lossless dielectric with
En ™ 3.84, and had a square cross section with diameter d = xo/n. This con-
dition was fulfilled by a 3.82 cm diameter square cylinder, irradiated at

2.5 GHz. The geometry of this scatterer relative to the problem lattice is
detailed in Figure 4a for two lattice resolutions: & = 0.095 cm = Ad/64,

for cylinder perimeter ABCD; and 6 = 0.191 cm = Ad/32, for cylinder perimeter

A'B'C'D".
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Figure 4b graphs the computed results for the envelope of the cylinder's
surface electric field, Eg(s), along perimeters ABCD and A'B'C'D', as well
as Tong's solution. (Here, s represents a normalized position along the
perimeter.) For the ABCD solution, &t = 1.59 psec and the envelope was
observed for 630 < n < 756. For the A'B'C'D' solution, &t = 3.18 psec and
the envelope was observed for 315 < n < 378. Each case represented an algor-
ithm time of 1200 psec, or 3.0 wave cycles at 2.5 GHz, required to reach the
steady state.

Since the lattice resolutions for both cases of Figure 4 were finer than
that of the slab problem of Figure 3, it was inferred that the error due to
the finite-difference approximations of the derivatives was less than +27%
for each case. Any error above this 1imit was assumed due to residual wave
reflections at the lattice truncations. Over most of the surface of the
cylinder, the error level of each FD-TD solution was comparable and 1limited
to about +10%. The principal disagreement between the FD-TD solutions, and
the Targest error of the ABCD case, occurred at the electric field minimum.
Evidently, the interaction of the cylinder and the lattice truncations was
so weak that it could influence the computed results only a field minima.
It was concluded that the FD-TD lattice truncation conditions lead to an
error level of less than +10% at most points, even for small spacings
between the structure modeled and the lattice truncations.

3.5.3 Irradiation of a Circular Dielectric Cylinder

The stepped-surface, or lattice, approximation of the shape of a curved
scatterer was next considered as a source of error. To estimate this error
source, the TM irradiation of an infinitely-long, circular dielectric
cylinder was modeled. Here, in addition to error due to imperfect lattice
truncations, modeling error was introduced because the cylinder surface
could not be exactly defined by combinations of intersecting lattice planes.
In effect, spurious wave diffraction effects were caused at each intersec-
tion of two planes. The magnitude of this additional error could be esti-
mated by comparing the accuracy of the circular cylinder model to that of
the square cylinder model of Figure 4.
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The geometry of the circular cylinder model relative to the problem
lattice is detailed in Figure 5a. The lattice coordinates internal to the
cylinder, determined by [(1’-24.5)2 + ‘]'—25)2]1/2 < 20, were assigned the dielec-
tric parameters fe 4.0 and 0 = 0. An irradiation frequency of 2.5 GHz was
assumed, with § = 0.3 cm = Ad/20, 8t = 5 psec, and the envelope of Eg
observed for 460 < n < 500 (a maximum algorithm time of 2500 psec, or 6.25

wave cycles). The cylinder thus had a diameter of 1 free-space wavelength.

Figures 5b and 5c detail the computed values of |E2(24,j)|/E and

tion calculated using the summed-mode series technique of Jones.

z:
, respectively. These figures also present the exézg solu-
22 As seen
in the figures, the FD-TD solution located the positions of the peaks and
nulls of the electric field with a maximum error of +§, or about +3% of the
diameter of the cylinder. The magnitude of each peak was determined with a
maximum error of +10%. Error in excess of 10% appeared in the computation
of the magnitude of several of the field minima. Overall, the uncertainty
of this solution was found to be comparable to that of the square cylinder
solution. Evidently, the error caused by the stepped-surface approximation
of the circular cylinder was small in comparison with that caused by the

lattice truncation conditions.

3.5.4 Irradiation of a Dielectric Sphere

To further investigate the error introduced by the lattice approximation
of a curved scatterer, the plane-wave irradiation of a dielectric sphere was
modeled. Unlike the circular cylinder, the sphere has a surface which must
be approximated in three dimensions. The magnitude of any additional error
caused by this approximation could be estimated by a simple comparison of
the sphere results with those of the circular cylinder.

The geometry of the sphere model relative to the problem lattice is
depicted in Figure 6 at the two lattice symmetry planes. The lattice coor-
2+ (j-20)% +
(k-19)2]% < 15. To allow a close comparison with the circular cylinder

dinates internal to the sphere were determined by [(i-19.5)
results, all of the dielectric and program parameters of that run were

repeated, namely: €y * 4.0; 0 =0; f=2.5GHz; § = 0.3 cm = xd/zo; §t =5
psec; and envelope observation for 460 < n < 500. The sphere thus had a
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diameter of 0.75 free-space wavelength. To reduce spurious reflections at
the lattice truncations (as discussed in Section 3.4.3), a value of -
equal to 0.1 mho/m was assumed.

Figures 7a and 7b detail the computed, normalized values of two electric

field components near the sphere irradiation axis: |Ey(]9.5,j,18)|/E

Zinc
and |Ez(]9’j’]8'5)l/Ezinc‘ These figures also present the exact solution
calculated using the summed-mode series technique of Stratton.23 As seen in

the figures, the FD-TD solution located the positions of the peaks and nulls
of the electric field with a maximum error of +§, or about +3% of the diam-
eter of the sphere. The magnitude of each peak was determined with a maximum
error of +10%. Overall, the uncertainty of this solution was found to be
comparable to that of the square and circular cylinder solutions. Evidently,
the error caused by the stepped approximation of the surface of the sphere

in three dimensions was small in comparison with that caused by the lattice
truncation conditions. It was, therefore, concluded that the three dimen-
sional FD-TD program allows sclutions with a level of accuracy comparable to
that of the two dimensional program.
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4.0 DESCRIPTION OF THE PRESENT RESEARCH PROGRAM

4.1 Introduction

Electromagnetic coupling and shielding problems have traditionally been
difficult to treat with analytical or numerical methods because of the fail-
ure of these methods to adequately resolve the effects of the apertures,
curvatures, corners, and internal contents of structures. A practical
numerical method has been desired to allow the direct modeling and solution
of complex realistic coupling problems. The purpose of this research program
was to evaluate the suitability of the finite-difference time-domain (FD-TD)
solution method for Maxwell's equations to determine the amount of electro-
magnetic coupling through an aperture into an enclosed conducting container.

The FD-TD method allows, in principle, the computation of the internal
fields of complex conducting geometries. However, before the present
research program, this method had not been utilized and evaluatcd for any
conducting geometries. To build up confidence in the FD-TD method for
future applications, it was desired to evaluate the usage of the method for
certain simple, generic metal structures.

During the present research program, two specific metal structures were
used in this evaluation: the first, an aluminum cylinder with one open end;
the second, the nose cone section of a missile. Each structure was modeled
using the FD-TD method to compute the internal EM fields generated by an
incident plane wave propagating along the structure axis. The results of
the cylinder model were then compared to available theoretical and experi-
mental data. Final evaluation of the nose cone results will be possible
when reliable experimental data for this geometry is obtained in a future
research program.

The following section describes each coupling-analysis problem con-
sidered and summarizes the steps taken to solve each problem. Detailed
descriptions of the results follow in succeeding sections.
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4.2 Description of Coupling-Analysis Problems Considered

4.2.1 Task 1: Prediction of the Coupling Into
an _Open-Ended Cylinder

The FD-TD technique was employed to solve the following electromagnetic
coupling problem:

Interacting structure - Circular (19.0 cm diameter), 68.5 cm long,

open-ended aluminum cylinder, as shown in Figure 8;

Incident wave - 300 MHz plane wave propagating down the cylinder

axis toward its open end;

Desired fields - Each component of total E and total H in the axial

cross-section plane of the cylinder down to 40 cm from the open end.
First, with the cross-section plane parallel to the incident E, and
again with the plane parallel to the incident H;

Resolution - 0.5 cm uniformly throughout the mapping planes;

Plotted values - In decibels relative to an incident E of 1 volt/

meter and an incident d of 1/377 ampere/meter.

To solve this coupling problem, an existing FD-TD computer code was
suitably modified to model the cylinder of Figure 8. The following steps
were taken:

a. The existing FD-TD computer code was modified for the Control
Data STAR-100 computer. A 24 x 163 x 24 - cell lattice was
programmed, with even symmetry of the incident fields and
cylinder assumed about lattice planes x = 24.58 and z = 246.

b. The cylinder geometry of Figure 8 was mapped into the new
finite-difference lattice for a unit cell diameter of 6§ = 0.5 cm.

c. The FD-TD program was run for this geometry for 800 time steps
(equivalent to 2.0 cycles of the incident wave) assuming loss-

6

less air within the cylinder. 10  words of memory and 3.5

minutes of central processor time were required on the STAR-100.
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d. The computed results for E and H along the cylinder axis were
plotted at intervals of 200 time steps (0.5 cycle of the inci-
dent wave). Slow convergence of the results to the sinusoidal
steady state was observed.

e. The FD-TD program was re-run, this time assuming a slight
Sk 0.01 mho/m) for the air with-
in the cylinder to increase the rate of convergence to the

amount of isotropic loss (o

steady state. Again, 800 time steps were completed.

t. Plotting of E and H along the cylinder axis for the second run
indicated a much more rapid convergence to the steady state.
The final computed results for the fields were then reduced to
contour maps along the symmetry planes, and to simple graphs
at selected cuts through the symmetry planes.

4.2.2 Task 2: Prediction of the Coupling Into
a Missile Nose Cone

The FD-TD technique was employed to solve the following electromagnetic
coupling problem:

Interacting structure ~ Aluminum nose cone, shown in Figure 9, with

two apertures: a circular one in the nose, and a sleeve fitting
located 23-1/3 cm aft. Missile body geometry beyond sleeve fitting
assumed to continue to infinity with constant cross-section shape.
Aperture cases investigated:

Trial 1 - Sleeve fitting open, nose aperture closed,
Trial 2 - Both apertures open;

Incident wave - 300 MHz plane wave propagating down the axis of the

structure toward its nose aperture;

Desired fields - Each component of total E and total H in the axial

cross-section plane of the nose cone. First, with the cross-section
plane parallel to the incident E, and again with the plane parallel
to the incident H;
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Resolution - 1/3 cm uniformly throughout the mapping planes;

Plotted values - In decibels relative to an incident E of 1 volt/
meter and an incident H of 1/377 ampere/meter.

To solve this coupling problem, the following steps were taken:

a. The 24 x 163 x 24 - cell lattice of the aluminum cylinder pro-
gram was truncated to 24 x 100 x 24 cells.

b. The geometry of Figure 9 was mapped into the new finite-difference
lattice for a unit cell diameter of 6 = 1/3 cm.

c. The FD-TD program was run for the aperture case of Trial 1 for
900 time steps (equivalent to 1.5 cycles of the incident wave),

= 0.025 mho/m)
5

assuming a slight amount of isotropic loss (Oint
within the cylinder to speed the rate of convergence. 6 x 10
words of memory and 2.8 minutes of central processor time were

required.

d. The FD-TD program was run for the aperture case of Trial 2 for

900 time steps, assuming the same interior loss, Cings

e. For each trial, the final computed results for E and H were
reduced to contour maps along the symmetry planes.

4.3 Details and Results of Task 1:
Coupling Into an Open-Ended Cylinder

4.3.1 Cylinder Model

Figures 10 and 11 depict the geometry of the cylinder model used for
Task 1. Figure 10 shows the stepped-surface model of the cylinder wall used
for lattice planes j = 14 through j = 150. This model was specified by set-
ting the conductivity, o, equal to that of aluminum (3.7 x 107 mho/m) for
individual Ex’ Ey’ and EZ components nearest the desired circular locus.
This resulted in the modeling of the cylinder wall as an aluminum sheet
having virtually zero thickness. Figure 11 shows the positioning of the
cylinder relative to the front and back planes of the lattice. As shown in
this figure, the cylinder aperture was located at plane jJ = 14, and the
cylinder back-plane was located at plane j = 151. To the front and rear of
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the cylinder lay regions of air. In the front air region, the simulated 300
MHz incident wave was generated at plane j - 3 with the field components EZ
and Hx‘

For all lattice cells exterior to the model cylinder, the anisotropic
conductivity, Ooxt? equal to 0.01 mho/m was assumed to help improve the
lattice truncation conditions, as discussed in Section 3.4.3. This value of
A caused the exponential decay of Ex and Ey fields in the exterior region
with an effective skin depth of about 110 lattice cells.

Using the computer program listed in Appendix A, the cylinder model was
completely specified by punching 3 groups of 24 cards, giving a total of 72
cards. Card group 1 specified the air medium of the lattice in front and
back of the cylinder (planes j = 0 through j = 13 and planes j = 152 through
Jj = 163). Card group 2 specified the stepped-surface model of the cylinder
(planes j = 14 through j = 150). Finally, card group 3 specified the
cylinder backplane (plane j = 151). The format of the data cards is dis-
cussed in Appendix A.

4.3.2 Convergence of the Computer Fields

Two 800 time-step programs (each equivalent to 2.0 cycles of the inci-
dent wave) were run during Task 1 in order to investigate the rate of con-
vergence of the computed fields to the sinusoidal steady state. The first
program assumed lossless air within the cylinder; the second program assumed
a small isotropic conductivity, Oint? equal to 0.01 mho/m within the cylinder.
The purpose of modeling the slightly lossy air was to cause the reactive
fields within the cylinder to converge more rapidly to the expected beyond-
cutoff condition.

Figures 12 and 13 are graphs of the computed total electric field,
QEZ/EZinCl (in decibels) along the axis of the cylinder for the cases of
Oint = 0 and Oint = 0.01 mho/m, respectively. In Figure 12, curves are
plotted for the cases n = 400 and n = 800 time steps; in Figu e 13, cu.ves
are plotted for n = 200, n = 400, n = 600, and n = 800 time steps. Each
curve gives the computed field envelope during the 200 time-steps period
(0.5 cycle of the incident wave) before the specified value of n. In Figure

13, it should be noted that, at 200 time steps, the incident wave penetrated
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only about 45 cm into the cylinder, causing the sharp downward break of the
n = 200 curve. For all other curves, the incident wave penetrated fully to
the cylinder backplane.

Comparing Figures 12 and 13, it is seen that the use of %int caused the
linear decibel slope at the cylinder aperture to lengthen from a maximum
depth of 12.5 cm to more than 25 cm after 800 time steps. Further, the ulti-
mate computed field attenuation increased frcm about 30 dB to almost 55 dB.
This improvement in the convergence of the cylinder's internal fields to the
expected cutoff condition was much more than the 11 dB of field decay that
Cint would cause for a wave propagating the full length of the cylinder.
Evidently, the transient internal fields were highly reactive (carried little
real power flow) and quickly dissipated when forced to supply energy to main-

tain an electric field distribution across a slightly lossy medium.

Figure 13 also indicates the rate of field convergence to the steady

state under the condition of finite o. Once the wave fields were estab-

lished throughout the cylinder (curve;nz = 400, 600, and 800), the principal
effect of an added 200 program time steps was the lengthening of the linear
decibel slope extending from the aperture, and a consequent deepending of
the field null within the cylinder. Noting the break points of the curves
from the linear decibel slope, each 200 time-step increase is seen to have
lengthened the slope by about 10 cm and decreased the residual internal

fields by about 10 dB.

4.3.3 Comparison With Available Data

Electric Field Along the Cylinder Axis

Using results of the FD-TD program, Figure 14 graphs the computed
lEZ/EZincl along the cylinder axis as a solid curve. The FD-TD results are

= 0.01 mho/m (the n = 800 curve of Figure 13).
24

after 800 time steps with Oint

For comparison, experimental results®  are shown as circled points, and com-

24

puted results using the BOR-3 body of revolution code™ " are graphed as a

dashed curve.

From Figure 14, it is seen that the FD-TD curve lies between the BOR-3
theory and the experimental results. The FD-TD and BOR-3 curves have nearly
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the same slope down to about -55 dB, where the FD-TD curve levels off.
However, the experimental results level out at only -30 dB. A previous

study of the experimental procedure has shown that this saturation was due

to inadequate suppression of radiated power at the third harmonic of the
nominal test frequency, which excited an above-cutoff mode in the cyh‘nder.25
This study has also indicated that the experimental results were consistently
1-2 dB above the likely actual values due to problems in the design and

mounting of the test probe.25 Consideration of these experimental uncer-

tainties improves the correlation between the test data and the FD-TD results.

Overall, the FD-TD method is seen to yield results for IEZ/EZincl along
the cylinder axis which agree well with available .oretical and experi-
mental results in terms of both relative decay rate and absolute magnitudes.
Next, comparison of data will be made for the electric field along vertical
and horizontal radial lines of the cylinder.

Electric Field Along Vertical Radial Lines

Using results of the FD-TD program, Figure 15 graphs the computed
]EZ/Ezincl along vertical, radial lines of the cylinder (parallel to Ezinc)'
Separate solid curves are plotted for radial lines at distances, d, of 0 cm,
10 cm, 20 cm, and 35 cm from the aperture. Again, the FD-TD results are
after 800 time steps with Byae = 0.01 mho/m. For comparison, experimental
results are shown as circled points for the cases d = 0 cm and d = 10 cm.
(Experimental results at greater depths are not shown because of their rapid

saturation at -30 dB due to the third-harmonic test problem.)

From Figure 15, it is seen that the experimental results at d = 0 cm
and d = 10 cm are all within 2 dB of the FD-TD results. This correlation is
very good; yet it might be improved upon consideration of the likely 1-2 dB
"high" readings reported for the test probe.

Electric Field Along Horizontal Radial Lines

Figure 16 is similar to Figure 15 except that [EZ/Ezinc[ is graphed
along several horizontal radial lines of the cylinder (parallel to Hxinc)'
The experimental results are seen to be within 3 dB of the FD-TD results
over most of the range of the results.
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4.3.4 Computed Field Maps

Using results of the FD-TD program (800 time steps, Ol = 0.01 mho/m),
Figures 17 and 18 graph contour maps of the computed field components at the
cylinder's vertical and horizontal symmetry planes, respectively. All com-

Xinc! ~ [inncl/j77’
and are given as decibel numbers. Contours are plotied at exact 6 dB inter-

ponent magnitudes are normalized to either ‘Ezincl or |H

vals by using a linear interpolation method to determine each contour's
position between adjacent field envelope points. Although the lattice cell
diameter, &, equals 0.5 cm, this interpolation method allows the generation

of smooth curves in most cases without a 0.5 cm-period stair-case effect.

It should be noted that only three field components are non-zero at
each symmetry plane: Ez’ Hy, and Ey at the vertical plane; and Ez’ Hx’ and
H, at the horizontal plane. This tact was devived in Section 3.4.5 of tiis

report.
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4.4 Details and Results of Task 2:
Coupling Into a Missile Nose Cone

4.4.1 Nose Cone Model

Figures 19 and 20 depict the geometry of the nose cone model used for
Task 2. Figure 19 shows the stepped-surface model of the nose cone wall
used at the front circular aperture and at the rear sleeve-fitting aperture.
A value of o equal to 3.7 x 107 mho/m (aluminum) was assigned to the field
components at the wall. Figure 20 shows the positioning of the nose cone
relative to the front and back planes of the lattice. As shown in this
figure, the nose aperture was located at plane j = 11, and the sleeve fitting
was located at planes j = 74 - 32. To the front of the nose cone lay a
region of air; to the rear of the nose cone, the missile body was assumed
to extend to infinity with a constant circular cross section. Based upon
the FD-TD results of the cylinder problem of Task 1, this infinitely-long-
missile assumption was not expected to cause significant error. (In fact,
very little wave reflection had been computed at the cylinder backplane at
intermediate time steps.) In the front air region, the simulated 300 MHz
incident wave was generated at plane j = 3 with the field components EZ and
Hx'

For all lattice cells exterior to the model nose cone, the anisotropic
conductivity, Oaxt® equaT to 0.025 mho/m was assumed to help improve the
lattice truncation conditions, as discussed in Section 3.4.3. This value of
Text
with an effective skin depth of about 65 lattice cells. To speed convergence
of the interior fields, as discussed in Section 4.3.2, the isotropic con-
ductivity, Oint? equal to 0.025 mho/m was selected for the cylinder interior.

caused the exponential decay of EX and Ey fields in the exterior region

Using the computer program listed in Appendix A, the nose cone
geometries for both Trial 1 (sleeve-fitting open, nose aperture closed) and
Trial 2 (both apertures open) were specified by a total of 464 data cards.
Only 16 cards had to be re-punched to change from Trial 1 to Trial 2.
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4.4.2 Computed Field Maps

Trial 1 -- Only Sleeve-Fitting Open

Using results of the FD-TD program (900 time steps, Dion 0.025 mho/m),
Figures 21 and 22 graph contour maps of the computed field components at

the nose cone vertical and horizontal symmetry planes, respectively, for
Trial 1. Contours are plotted at exact 10 dB intervals using linear inter-
polation. The intersections of the darker grid lines (spaced by 5 minor
divisions, a total of § = 1/3 cm) denotes the location of the field vector
components in the lattice symmetry planes. Because of the staggered posi-
tions of the field components around a lattice unit cell, these darker grid
Tines may vary in position relative to the fixed nose cone walls by +°/2 =

+1/6 cm, or 2.5 minor divisions.

It should be noted that the stepped-surface approximation of the smooth,
tapered nose cone wall introduces cusp-like distortions in several of the
field contours. However, these distortions are only manifested within about
1 cm of the point of each surface step. Very likely, the exact field contour
here can be found simply by drawing a smooth curve connecting the adjacent
undisturbed contour sections.

Trial 2 -- Both Apertures Open

Again, the FD-TD program was run for 900 time steps with Oint = 0.025
mho/m. Figures 23 and 24 graph contour maps analogous to those of Figures
21 and 22. Comparing the corresponding maps for Trial 1 and Trial 2, it is
seen that opening the nose aperture had very little effect upon the field
contours near the sleeve fitting. Coupling between the two apertures
occurred only at field levels lower than -40 dB. For this reason, it was
decided not to run a Trial 3 (only nose aperture open) because the resulting
field contours near the nose would almost certainly be the same as for Trial

L
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5.0 DISCUSSION AND CONCLUSIONS

This research program demonstrated that the FD-TD method can be
successfully applied to axial-incidence, electromagnetic coupling problems
involving highly conducting structures with hole and sleeve-type apertures.
Accuracy of the FD-TD results was very good relative to the uncertainties of
available experimental and numerical-theory approaches. Convergence of the
EM fields to the sinusoidal steady state occurred within about 2 cycles of

the incident wave when a slight Oint Was assigned to the structure interior.

nt
This resulted in program running times of 3.5 minutes or less on the

CDC STAR-100 for 10° - cell lattices.

The FD-TD method appears to have great promise for applications involv-
ing conducting structures at arbitrary angles of incidence, and combination
conducting - dielectric structures. Its ability to achieve finely-detailed
models of the interiors of such structures could be utilized to determine the
internal fields of many practical objects. The incorporation of potential
computer program accelerators, such as variable cell size, could result in

even more cost-effective results.

70




REFERENCES

]Harrison, C. W., Jr., "Transient Electromagnetic Field Propagation
Through Infinite Sheets, Into Spherical Shells, and Into Hollow Cylinder,"
IEEE Trans. Antennas Prop., Vol. AP-12, pp. 319-334, May 1964.

2Wilton, D. R. and R. Mittra, "A New Numerical Approach to the Calcu-
lation of Electromagnetic Scattering Properties of Two-Dimensional Bodies
of Arbitrary Cross Section," IEEE Trans. Antennas Prop., Vol. AP-20,
pp. 310-317, May 1972.

3Crow, T. T., Y. P. Liu, and C. D. Taylor, "Penetration of Electro-
magnetic Fields Through a Small Aperture Into a Cavity," Air Force Weapons
Laboratory, Kirtland Air Force Base, New Mexico, Interaction Notes, No. 40,
November 1968.

4Senior, T. B. and G. A. Desdardins, "Electromagnetic Field Penetra-
tion Into a Spherical Cavity," IEEE Trans. Electromagn. Compat., Vol. EMC-16,
pp. 205-208, November 1974.

SWU, T. K. and L. L. Tsai, "Numerical Analysis of Electromagnetic
Fields in Biological Tissues," Proc. IEEE (Lett.), Vol. 62, pp. 1167-1168,
August 1974.

6Livesay, D. E. and K. M. Chen, "Electromagnetic Fields Induced
Inside Arbitrarily Shaped Biological Bodies," IEEE Trans. Microwave Theory
Tech., Vol. MTT-22, pp. 1273-1280, December 1974.

7Senior, T. B., "Electromagnetic Field Penetration Into a Cylindrical
Cavity," IEEE Trans. Electromagn. Compat., Vol. EMC-18, pp. 71-73, May 1976.

8Harrington, R. F., Field Computation by Moment Methods. New York:
Macmillan, 1968.

9McDona]d, B. H. and A. Wexler, "Finite-Element Solution of Unbounded
Field Problems," IEEE Trans. Microwave Theory Tech., Vol. MTT-20, pp. 841-
847, December 1972.

]oMittra, R., Editor, Computer Techniques for Electromaanstics.
New York: Pergamon, 1973, Chapter 7.

]]Baum, C. E., "Emerging Technology for Transient and Broadband
Analysis and Synthesis of Antennas and Scatterers," Proc. IEEE, Vol. 64,
pp. 1598-1616, November 1976.

71

Y

A4




REFERENCES (Continued)

]ZCheng, D. K. and C. A. Chen, "On Transient Electromagnetic Excita-
tion of a Rectangular Cavity Through an Aperture," Air Force Weapons
Laboratory, Kirtland Air Force Base, New Mexico, Final Report No. AFWL-TR-
75-91 on Contract No. F29601-74-C-0010, June 197€.

]3Baum, C. E., "The Singularity Expansion Method," Ch. 3 in Transient

Electromagnetic Fields, L. B. Felsen, Ed., New York: Springer-Verlag, 1975.

]4Pera1a, R. A., "Integral Equation Solution for Induced Surface
Currents on Bodies of Revolution," IEEE Trans. Electromagn. Compat., Vol.
EMC-16, pp. 172-177, August 1974.

]STay1or, C. D. and C. W. Harrison, Jr., "On the Excitation of a
Coaxial Line by an Incident Field Propagating Through a Small Aperture in
the Sheath," IEEE Trans. Electromagn. Compat., Vol. EMC-15, pp. 127-131,
August 1973.

léBurton, R. W. and R. W. King, “Induced Currents and Charges on Thin

Cylinders in a Time-Varying Electromagnetic Field," IEEE Trans. Electromagn.

Compat., Vol. EMC-17, pp. 149-155, August 1975.

]7Yee, K. S., "Numerical Solution of Initial Boundary Value Problems
Involving Maxwell's Equations in Isotropic Media," IEEE Trans. Antennas
Prop., Vol. AP-14, pp. 302-307, May 1966.

]8Taf]ove, A., Computation of the Electromagnetic Fields and Induced
Temperatures Within a Model of the Microwave-Irradiated Human Eye. Ph.D.
Dissertation, Northwestern University, Evanston, I11., 1975.

]gTaflove, A. and M. E. Brodwin, "Numerical Solution of Stead-State
Electromagnetic Scattering Problems Using the Time-Dependent Maxwell's
Equations," IEEE Trans. Microwave Theory Tech., Vol. MTT-23, pp. 623-630,
August 1975.

20Taf]ove, A. and M. E. Brodwin, "Computation of the Electromagnetic
Fields and Induced Temperatures Within a Model of the Microwave-Irradiated
Human Eye," IEEE Trans. Microwave Theory Tech., Vol. MTT-23, pp. 888-896,
November 1975.

Z]Tong, T. C., "Scattering by a Dielectric Rectangular Cylinder,"
Proc. 1973 IEEE G-AP Symp., Boulder, Colorado, pp. 79-82, August 1973.

72

Dl 5




REFERENCES (Continued)

2
2“Jones, D. S., The Theory of Electromagnetism. New York: Macmillan,
pp. 450-452, 1964.

23Stratton, J. A., Electromagnetic Theory. New York: McGraw Hill,
pp. 563-573, 1941.

24Schuman, H. K. and D. E. Warren, "“Coupling Through Rotationally
Symmetric Apertures in Cavities of Revulution," Document No. RADC-TR-77-214,
Griffiss Air Force Base, New York.

25Private communication with D. Warren, Engineer, Compatibility Branch,
Rome Air Development Center, RADC/RBCT, Griffiss Air Force Base, New York.

26Amer‘ican National Standards Institute (ANSI) X3.9 - 1966.

27STAR Fortran Language Version 2 Reference Manual. Control Data
Caorporation, Sunnyvale, California, 1977.

73

B




APPENDIX A
FD-TD COMPUTER PROGRAMS

A.1  INTRODUCTION

This appendix documents the computer programs written during the present
research effort. Included are 1listings of the programs for the cylinder
problem and the nose cone probiem and a description of the data card format
employed. All computer programs were written using STAR Fortran Version 2.1
for processing by the Control Data STAR-100 computer system under its 1.2
operating system. This Fortran version contains certain extensions to stan-
dard Fortran26 that permit usage of the vector processing capabilities of
the STAR-100. The reader is referred to the STAR Fortran Manual for

detailed discussion of these features.27

A.2 PROGRAM LISTING FOR TASK 1: COUPLING INTO AN OPEN-ENDED CYLINDER

The following 9 pages list the computer program for the 24 x 163 x 24
cell -- 800 time step run of the cylinder problem {Task 1). In the Tisted
problem parameters, FREQ = 3.0 E + 8 denotes the operating frequency, f =
300 MHz; DX = 0.005 denotes the lattice cell diameter, & = 0.005 m; MPR
denotes the total number of media within the model, equal to 3 (lossless
air, aluminum, slightly lossy air); DATA EPS and DATA SIG give the assumed
relative dielectric constant and conductivity (mhos/m) of each medium; and
MINDT and MAXDT give the number of the first and last time step of the
algorithm.




— PROGRAM FDTO (INPUT,0UTPUT,TAPERO=INPUTY —

C

C RON A= STERDY J00 MHZ TEW [IRRADIATIUON OF A [9.0 CM DTAME -
C TERS 68.5 CM LONG, OPEN~ENNED CONDUCTING CYLINDER
c
€

INCIDENT WAVE HAS TRE CUOMPONSNTS EZ AND HXy AN IS DIRECTE
ALONG THE CYLINDER AXYIS INTO ITS OPEN END
C 2% X 163 X 24 CECL CUBTIC CATYICE IS USED e

€ UNIT CELL DIAMETER = DX = 0.5 CM = WAVELENGTH/200
C EVEN SYMMETRY ABOUT CLATTICE PLANES X = Z4.5%0K AND 7 = 2&%
C #0X IS ASSUMED
C SOUF T TEM WAVE SOURCE CUNDITION AT PLCANE Y = J.0%0X IS USEC
€ SOFT LATTICE TRUNCATIONS ARE USED
C— —PROGRAM IS OPTIMIZED FOR THE COCU STAR=I(0 e
€ 3

REAT MURSs ™UZ } e (i =

DIMENSION A(973504)-Z(5936)9bl(600);A2(600)0AAA(600)0
I AA(25), NUZSTSOD(24Ts0ETZGTsCATITCBIITSEPSTIT+SIG 3T

COMMON A
Y025 033 09505 NF I3 BV BW s BXIBY 3 AT XS AZXTATY s A2Y

1 AR1Zya27
BIT BV.BBB(600) +BW+BBW (600) +3XsB3X(600) «BYRBY (24)
ASSIGN AIXSAT(273573) &
ASSIGN A2XsA2(273573)
ASSIGW AIYSAI(ZHB3574])
ASSIGN A2YsA2(263574)
ASSIGN ATZSAT(I3S997
ASSIGN A2Z+A2(13599)
ASSIGN BW,.BBW(135600)
ASSIGN BX+BBX(135600)
ASSIGN BYsBBY(I32RT
ASSIGN D4sDD(1324)
ASSIGN DS»DET(TI2E)
Tl = SECONDI(CP)
PRINT IS0y T1
150 FORMAT (F20.5)

Lom
[ eeeseseole PROBLEM PARAMETERSecese
FREG = 3.0E+*B
ox = 0.005
MPR = 3 3
DAIA EPS / 1009 100' l.O /
DATA 516G 7/ D.00 Jell*iy 0.01 r
MINOT = 1
MAXDT = 800
C
[ essselle BASIU AND DERIVED TONSTANTSeecee

PI = 3.14159265

WUZ = 4.0 ¥ PI ¥ [, 0E=7
EPSZ = B.854E-12

DT = DX / 6.0E+8

MHALF = 0.5 7/ FREQ /7 OT




R =0T /7 2.0 /7 EPSZ
DT®e2 / Dx®®2 /s MUZ / EOSZ

0T /7 DX /7 MUZ
2.0 = PI & FREQ * DT

I=T+25
=1

GV YD
Q0 @ »
=m0 iU

1 N(I

Aj(13600) = 0.

= Ue
CA(139) = 0.

CBUI39r =10
BW = Q8VMKO(1+2538wW)

= ) 'y85X7
DO 2 I=14MPR

<

————— =R SI6 (T EPS Y S

CA(I) = (1.0-EAF) / (1.0+EAF)

.2 CB(t’ b RA 7 EPS(i"’ ‘IOO'EAFT

C
o r 33 +—AAD AT AN o
C seseellile CLURD VEOULUTUR UlDOUCeeees

.....ZERO IN‘TIAL FIELDQ.....

———ZtI$5936r—=0%
A(135936) = 0.

T A(9675693 =03

€

C seses tIPE OF WtUiUH.-oo.

C .Q.OOPLANES 2 .- 138 152 = 163 (ANTSOO

ATR) evee

——— READ Gy (ZtI)ysI=13600)
4 FORMAT (75F1.0)
—READ 4y tZtDs1=2601%3200)
READ 49 (Z2(I)sI=1301+1900)

00 S I=2713
IDEL = (I-1) # 5936

S ATIDEL®I#S936) = 21359367
DO 6 I=152+163

T IDEL = (IS17 " 5935
6 A(IDEL+135936) = Z(135936)

a0

READ G¢ (Z2tD)rsI=ts600)r—
HEAD o (Z2(1)e1=2601+3200)

ooooopLA~ES l“ e 150 (UVIFOQM CIRCULAR CYLINDER)....o

RFAD G (ZTIYST=T130T51900)
W) T [=214+4150

T T T v S99y —
P ACTORE L= 115908 = [1]1859)3s)

() 51 (CYLINDEQ JACKPLANE) coees

A ARY L A
S IR Ll L
. 9 . R AR A .
“e%e

A_a

s a




PRINT IS0 T2

(o]

C cesseslVse TIMESSTEPPING LUUPccese
DO 200 J=MINDTMAXDT
TERM = SIN(FCOART(JIT*RO) R
MCAL = 3 ¢ IFIX(FLOAT(J)/6.0)
MCALL = 5%
IF(MCALLTS4)MCALL=MCAL

o
C eeoeee TRANSVERSE PLANE Zlececee
E esocesel Xy £EZ TRUNUATIUNS ;ec e
A(626362S5) = A(131625)
ATIIBZS)T = ATBS623V6725]
A(322638625) = A(26013625)
— A (26013625 = A(9162i62S)"
(o
C ceeseLY ITERATION e
ASSIGN OlseDYNS74
—— ASSIGN DZs.0YN.S57%
ASSIGN DJ’.DYN.S74
ATI926T = 0.5 ® (A(Z2SSTI+AT25527)7
A(1927322) = 0333 # (A(2551322)+A(2552:22)+A(2553322))
T RUI949Y = 0.333333 ¥ (A(2573) ¢ 2.0%A(2574))
A(2551326) = A(1951324) '
DY = CA(3) ¥ ATISSIIST4)
D2 A(39263574) = A(33013574) + A(S2763574) - A(S27731574)
D3 e8I % U2
A(19513574) DI ¢« D3
A(I9Z267600) QGBVCTRLC(D.0sBX¥A(ISZEYBO0YY

FREE
{59
(2> eeoeoes TRANSVERSE PLANES o Ee 163cecee
T D0 BZ JY=T»MCALL
JOEL = (JY-1) ® 17808
C =
C seoesebEX ITERATION:ocos

ASS‘GN DIeseUYNSSTI
ASSIGN D29.DYN.S73
— ASSIGN D3+.0YN.S73
ASSIGN NFDy«DYN.S573
ASSIGN BV,,8B8(13573)

C
DO 30 MA=T,3
M = JUDEL ¢ 5936%(MA=-1)
C
c eseeeSOFT LATTICE TRUNCATIONeesees
T ATBSEI¥MY T 0.5 ¥ (ATTIBB*MI +ATTIBIY+MY)
A(6564+M32]1) = 0,333 * (A(T188+M32]1)+A(T7189+¢M321)+A(T7190+M
I 121))
T RATRSBS MY = UL.5 ¥ (ATTZU9NT GATTZTIO+HT Y

A(T1B8BeMIZ2]) = A(65RB*MI23)
- - —




R Y e e X T,

C eeeesMAIN EX LOOPSeceee
T NFD = A(S96I+MIST73) '
D0 22 JJ=19MPR
BV = NFD.EWJJ
AlX = QBVCTRL(CA(JJ)sBVIALX)
dg AZX = WBVUIRLICTB(JJT »BVIAZX)
D1 AlX * A(6588+M3573)
D2 A(TIZ2I3*MIS T3 =A(S2T7+*M3S T3V *A(I0SI3+MIS7TIV=A(I0SIB+N
I TSTIT
D3 A2x * D2
JU A(65BB8+MIS73T = DI + D3
FREE

el

eceeefY ITERATIONeeooeo
ASSIGN DIsUYN.S57%
ASSIGN D29+.DYN.S574
ASSIGN D3y UYNST74
ASSIGN NFDy+DYN.S574
ASSIGN BV,BBB({13574)

DO 40 MA=1,+3
M = JDEL + 5936%(MA-1)

C

C easeeSOFT LATTICE TRUNCATIONesoow

T ATBEZFMT = 0.5 ¥ (AtBGBTEMIFAIBUSBIEMY ) o
A(T7863+M322) = 0.333 ® (A(B48T7+M322)+A(B4RB+MI22)+A(B4BI*M

A(86870Mo2ﬁ) = A(7887+M324)

C
C eeseeMAIN EY LOOPSeccee

NFD = A t7262*M1STS)

DO 32 JJ=19MPR

BV =" NFOEQTIT

AlY = QBVCTRL(CA(JJ)sBVIALY)
32 A2Y = Q8VCTRU(CB(II»BVIA2Y)r —

D1 = AlY ® A(7887+Mi1574)
“___*02”"iT?86?*ﬂTST¢T“IT98377H7’7¢T7I1TTZTZOH*ST&T*K(rT2T3T"’

| sST4Y

D3 = A2y * D2
T ATTIBBT7IMISTGr = 01+ 03

(o

L3 s e es s LY ENVELOPE COMPUTATIONG oo =e=T:
D4 = QB8VCMPRS(A(7861+M3600) +3X30%)

D05 = VvABS (D4 DS X i
BY = 05.GT.A(8512+M324)

O ATBS I M 2% ) = QBVCTRETDSBY VA (BSIZ3™i2a )
FREE

‘F —— e e ———— — S— S— — e e e

c seseseebEl ITERATION ceoos

o lS'itGN DIsDYN.S99




ASSIGN D29+ «DYN.599
—ASSIOND3vOYNIS9S

ASSIGN NFDsDYN.599
—ASSTION-BVyBBB (1599

€

— Do S0 MA=1y3 =
M = JUDEL ¢ 5936% (MA-1)

c

C eeeeeMAIN EZ LOOPSeceese

T NFD = AT8S3ITFMIS99)
DO 42 JJ=1sMPR
BV = NFDEQ-JT —
. Al1Z = QBVCTRL(CA(JJ)sBV3A1Z)
T @2 RAZZ = UBVCTIRCI(CBUJJIV »BVIAZZT
D1 AlZ * A(9162+M3599) °
T D2 E ATIOSIIYMISYI T AT RS I 2* VTS99 A TITH [+ MISITT=A(GRIT+MT
! S99T
D3 = A2Z *# D2
AT9I62*M¥IS99) = DI + 03I

C

T eesssetZ SOFT TEM WAVE SHURCE CONDITIONeese..
IF(JUYeGEe2eOReMALE.2)GO TO 47

T AR{Z2I0343¥S99F = TERM % A(Z2ZIU3435997T e

C

C eeceebZ ENVELOPE COMPUTATIONc .o
Q7 D4 = VABS(A(9737+M324)3D4)

T 7 TBY = UDG.GIATITIBT*EMIZE]

A(97B7+M324) = QBVCTRL(D4sBYSA(ITBTeME24))
e e OBV CMPRS TR IS TE OISO S BT e

DS = VABS(D4305)
T BY = U5.GTAI98IZ2*MI2%])
C‘”So A(9B12+M324) = QBVCTRL(DSsBY1A(9B12+M124))
C eseeeHX ITERATIONeeesoo
D0 60 MA=1,3
M = JUDEL + 5936%(MA-])
o
C oooo.“AIN HX LOOPS.....
DI = AT 390 T+ MTS99)
D2 = A(1951+4M43S99) -A(1926*M3599) ¢+A(3226+M3599) -A(9162+M}$
f 599)
T A(390I+M¥S99) = DI + 02
(of
E eeseeHX ENVELOPE COMPUTATIUN. ¢ .o

D4 = VABS(A(44T76+4M324) 3D4)

T BY = 04.0TJATRSZRFMTZG) i
A(4S26+M324) = QBVCTRL(D4sBYSA(4S26+M324))

T D4 = QBVCMPRSTAT3IJ00*MYB00) s IXI0DG) S
DS = VABS(D4310DS)

T BY T US,.GT.ATASST+NTZE)

60 A(6S5]1+MI264) = QAVCTRLIDS+BYIA(GSS)eMI24))

FRFE




C eeseeHY [TERATIUNgeoee
ASSIGN Dls.DYN.598
ASSIGN DZs .UYN.S598

C
T 00 70 MA=T,.3
M = JUDEL + S5936%(MA-])
C
(o eeeeeSOFT LATTICE TRUNCATIONe.aoo
RATIT = U. * 1B
AA(23822) = 0333 * (A(11137+4322)+A(11138¢M322)+A(11139+M3
! 22))
T AAT2%)T = 0333 CATTIITISO*M) & 2. 0%ACTIT60 M)

AAA(13600) = QB8VXPND(AA(1324)+3WSAAA(]13600))
ATITI37+M324T = GBVCMPRSTATIOSIIFMYG00) BWIATITII7*NI24T)

C
ci ...o."'“IN HY LOUPS...OO

D1 = A(10513+M3598)
———— D7 = ATYTE3I*HISIBT=ATIT6ZSMISIBT FATESEIsMISYBT=ATE5BB+MY
' S987
A(10513eM3598) = D] + D2
C .
A(10S12+M3600) = QBVCTRL(AAA(13600) +BW3A(10512+M3600))
l(lUSIZ‘HUGUU’ - UBVC'QCIU.U.BX!!(|U512¢H¥600))
Cc
C eeceserl ENVELUOPE CTUMPUTATION:cece o
D4 = VABS(A(11087+M324)3D4)
BY = D4.GT.ATITI6EZ*NT2%]
70 A(11162eM324) = QBVCTRL(D4+sBYSA(11162+M324))
FREE
(o
C eceeeHlZ TTERATION:eocos
ASSIGN DleeDYN.S73
ASSIGN DZ2+.UYN.573
C
DO 80 MA=]1,3
M = JUDEL + 5936% (MA-]) &
(o]
€ eseeeSOFT LATTICE TRUNCATIONceeeoe
AA(2) = 0.5 ¥ [ATSBY7+*M) ¢A(Sa79+M))
AA(3321) = 0333 ¢ (A(5877°M32[)0&(98780M‘21)‘A(587Q°“'21n
ST MY —
AAA(13600) = QBVXPND(AA(]1324)+3WSAAA(]13500))
- ) *
C
v s e s s s MAIN HZ LOOPSe e
D1 = A(S277+M3573)
T D2 T AESBBTMISTI S A (ES2FMIS T FACTIOSIFVIST I =a(19S2FMIS T
A(S277+M3iS573) = D]l + D2
c——« —— - - —_— -— ——— —_———— — e _—

A(S5251+M1600) = QBVCTRL(AAA(]11500) «BWIA(S525]1+M2600))
TR0 ATSZSTINISNDY T NEVC TR IOTIN TR IS2STYMIAOYYYTT




———— - v -

FREE
— 82 CONTINUE
IF (MCALL.LE.S3)GO TO 9¢

1=

c eeee o TRANSVERSE PLANE Z164scess

WIS S0Ns ;
c

€ eeeeeEXv EZ TRUNCATIONS oo e

A(6S62+M3625) = A(5937+M362S)

—A(S9ITTMIE2S)I = A tT23T+Mi62S) =
A(T7237+M3625) = A(626+M}3625)

T AI(IIEZ2IMIBEZ2ST T A(BSITIFMIEZS)
A(8537+M3625) = A(9837eM3625)

T T A{YB3ITEMIBZS) = A(3226+MI625)

(o}
C sesesellX TIERATIONG v s T =
ASSIGN Dle+«DYN.S99
ASSTIGN D23 .0YN.S99
Dl = A(3901+M3599)
D2 = A tI9S5 I *Mi599 )= t1926* M S99 )+ A(3I226+MIS99)=A(GIH2+M3
| 599y
A(3901+M3599) = D1 + D2
D4 = VABS(A(GGTEFMI2E ) 30%) e
BY = D4.GT.A(4526+M324)
ATGS26+Ms 24 ) = QB8VCTRCTOG BYTA(GSCHEFMIZE) T
D4 = QBVCMPRS(A(3900+M3600) ¢+3X3D4)
DS = VABST(04%3I0DS) G
BY = DS.GT.A(455]1+M324) Y
A(4S51*M324) = QUBVCTRU (DS sBYTATASST+M3IZLT) R
. FREE
[
(of ecoseHZ ITERATIONsceoes
ASSIGN D1Is.DYN.S73
ASSIGN D2sDYN.S73
RATZ) = 0.5 % (A(SB7T*MIFA(SY7E+M))
AA(3321) = 0333 ® (A(S5B77+M321)+A(5878+M32]1)+A(5879+M321))
ARATZ24T = Ue5 ¥ (A(SBIBFM] ¥ A(S5BII+MI)
AAA(13600) = QBVXPND(AA(]1324)+8WiAAA(13600))
BTSBTE+MI24G) = QBVCMPRSTATSZSZ*MIBU0T oBWSAISBTAR+MIZ2ET)
D] = A(S2T7T+M3573)
D7 = AT6ESBE® = . ¢ -
A(S277+M3573) = D1 + D2
T A(52S51+MIB0U0T = UBVCTRUTARATIIS00) «BWYA(SZST+MIRUTT)
A(5251+M3600) = QBVCTRL(0,0¢3X3A(5251+M2600))
FREE
94 T3 = SECONDI(CP)
=== PRINTY ISU% '
C
c. = Oco.orlELD ENVFLOOE QOUYIVF.....

DO 100 L=MHALF MAXDT oM4ALF
IFrJ.fQ.L150 To 101
100 CONT I NK




IFTJ.EQ.MAXDTIGUO TO 10T

Go TO 199
C b
C esecaAT HORIZONTAL SYMMETRY PLANEc,eoe
10T PRINT 102 [t
102 FORMAT (1H]1+52X+27HEZ ENVELOPE FOR TIME STEP =415,
1 /77+62Xy ISHPLANE 7 = 24%DXs//92XsTHJe/)

CALL ENV(3850s1.0E+4/RB)
PRINT 103, IN(LI)HsLT=1,24) &
103 FORMAT(//+8X+241592X91HI)

PRINT 104y J

’ ’ ‘ E 7 E STEP =I5y
1 //962X s 1SHPLANE Z = 24%DXy//92Xe1HJI/)
CALL ENVI(G525+3.TTESH)
PRINT 103s (N(LI)oLI=1,424)

G
PRINT 105, J
I0US FORMATUIHI 52K 27HHY ENVECUOP®E FUR TIME STEFP =43150

1 //+62X9 1SHPLANE Z = 24%DXe//92Xe1HJe/)
T CALLU ENVI(S22S5+3.7TE+E)
PRINT 103y (N(LI)sLI=1,24)
C
c eeeesAT VERTICAL SYMMETRY PLANEeea.e

PRINT 106, J
106 FORMAT (1H1952X+27HEZ ENVELOPE FOR TIME STEP =415,
i 1 77362Xs TTHPLANE X = 24eS5%0DXe77 72X IRI /7T 3
CALL ENV(3B75¢1.0E+4/RR)
T PRINT 107, (NTLIISUI=T2%7) R TS D R
107 FORMAT(//+BX9241S92X 9 1HK)
o R
PRINT 108s J
’ ’ X - S = ’
1 . /7 962Xy 1THPLANE X = 24e5%DX¢//92X91HJs/)
CALL ENVU4S5S0s3.77E+6])
PRINT 107s (N(LI)sLI=1424)

C
PRINT 109y J

T I09 FORMATUIRISZXKs27HEY ENVELUPE FOR TIME STEP =315
1 //962X9 1 THPLANE X = 2445%0X¢//+2X91HJs/)
CALL ENVI(Z575s1.0E%47RT]
PRINT 107+ (N(LI)sLI=1,424)

C
199 CONTINUE
200 CTONTINUE
Ta = SECOND(CP)
T PRINT ISUs T% < s RRNTLS
STOP
END™ il




T SUBROUTINE ENVITCOCSTSCALE)
DIMENSION IPR(25)+A(973504)

COMMON A
DO 2 LA=1s162

B = 163 = CR
LC = LB ¢ 1

— O T EB*S936 % L0C
IPR(1324) = SCALE * A(LD+1324)

ATCD®I¥2%) = 0.
2 PRINT 3¢ LCe (IPR(LF)9LF=1924)

T 3 FORMAT(IXSI3+5Xs 25157
RETURN

END

N W R

plee INENL. L A



A.3 PROGRAM LISTING FOR TASK 2: COUPLING INTO THE NOSE
CONE OF A MISSILE

Most of the Fortran statements of the nose cone program are identical
to those of the cylinder program of the preceding appendix section. The
necessary changes involve only the reduction of the length of the main
data storage vector, A, and new data-read cards. Therefore, in this section
we list only the modifications of the cylinder progran.




PROGRAM FDTD (INPUT,OUTPUT,,TAPERO=INPIT)

RUN B- STEADY 300 MHZ TEM IRRADIATION OF A 12.3 CM

DIAMFTERe ALUMINUM NOSE CONE

TRIAL 2- BOTH SLEEVE FITTING AND NOSE APERTIIRES ARE OPEN

INCIDENT WAVE HAS THE COMPONENTS EZ AND HXes AND IS DIRECTFE
ALONG THE NOSE CONE AXIS

24 X 100 X 24 CELL CuBIC LATTICE IS USED

UNIT CELL DIAMETER = DX = 0.33 CM = WAVELENGTH/300

OO O O

e s ee

DIMENSION A(S99536) 4Z(5936) +sA1(600) +A2(600) sAAA(6ND) «
1] AA(2S)e+ N(25)+0D(24) +DE(24) 3CA(9) «CB(9) «EPS(3)+STG(3I)

c eseeele PROBLEM PARAMETERSeeses
FRFQ = 3.,0E+8
DX = 0.01/3.0

MPR = 3
DATA EPS / 1.0, .10y 1.0 /
DATA SIG / 0.0 J.7F+7 0.028 /
MINDT =

= 1
MAXDT = 900

eseseellle LOAD VECTOR Aceeses
eeeeeZERO INITIAL FIELNSecess
Z(1355936) = 0.
A(135936) = 0. :
A(59360135936) = 0. J

(R}

S HE

eeeee TYPE OF MEDIUMeooos l

READ 449 (Z2(1)elI=1+600) 1
4 FORMAT (75F1.90)

READ 49 (Z(I1)s[=2601+3200)

RFAD 49 (Z(I1)sI=1301+1900)

NO § I=2.10

INEL = (I=1) ® §936
S A(IDEL*11S938) = 2()115914)

DN & 1Azl )77

SEAR s LZfLialristge!

A ., 2R R L. TINTT




READ 44 (Z(I1)eI=1301+1900)

IDEL = (IA-1) # 5Q33¢
A(IDEL+135936) = Z(135936)

READ 49 (Z(I)9I=1+600)
READ 6y (Z(I)41=2601+3200)

00 6 1IB=1+6
IDEL = (IA+IB-1) ® s$93¢

A(IDEL*135936) = Z2(135936)
DO 7 1=89,100

IDEL = (I-1) # 5936
A(IDEL+135936) = 2(]135936)

(@]

READ 49 (Z(I)eI=1+600)

READ 49 (2(])91=26019320))
READ 4y (Z2(1)e1=130191942)

DO 8 1=74.80
IDEL = (]-1) # 5936

8 A(IDEL+135936) = 2(1355936)

Do 9 1=83,.,87

IDEL = (I-1) # 5936

9 A(IDEL+135936) = Z2(135936)

(@]

RFAND 44 (Z(I)eI=13011900)

I = Bl
IDFL = (I-1) # S936

A(IDEL+135936) = Z(135936)

READ 49 (Z(I)el=19600)
READ Ga (7(]1)e1=260)+3200)

READ 4e¢ (Z(1)4I=1301+1900)
I = 82

IDEL = (I-1) ® 5936
A(IDEL*135936) = 2(135936)

(@]

READ 44 (Z(I)eI=19600)

READ 4y (Z(1)41=2601+3200)
READ 49 (Z(I1)eI=1301+1900)

I = 88
INFL = (I-1) # S936

(]

A(IDEL*+135936) = 2(135936)

s DAL 158 32,

f 2 (@]

Tz = SECOND(CP)

JAMLIML Il“i-SIEPpIMG LOOP anaaa

D0 200 J=MINDT MAXDT

TFEM = SINI(FLOAT (J)ewRD) e OR
MCALL = 3 ¢ [FIX(FLOAT (U Z78.0)
I1F (MCALLAGTD)) MCALL*))




82

CONTINUE
IF (MCALL.LE«32)GO TO 94 -

eeeee TRANSVERSE PLANE =10leec,e

M = 99 # 5936

END

SUBROUTINE ENV(LOC,»SCALE)
DIMENSION IPR(25)9+A(599536)

COMMON A
DO 2 LA=]+99

LR 100 - LA
LE LB + 1

LD LB#5936 + (0OC
IPR(1524) = SCALE * A(|D+]1324)

A(LD+1324) = 0.
PRINT 34 LCs (JPR(LF)sLF=1424)

FORMAT (1X9sI3¢5X92415)
RETURN

END




A.4 DATA CARD FORMAT

The data cards specify the type of medium at each location of an elec-
tric field component. Up to 9 distinct media can be specified within a
lattice.

Using the Fortran statement 4 FORMAT (75F1.0) a medium-type integer
1, 2,..., 9 can be assigned to the 600 locations of an electric field com-
ponent in one plane j = constant with only 8 data cards. The 600 locations
ire ordered as shown in Figure A-1. With the 75F1.0 format, we have
Assigns Type Integer to

Lol Consecutive Locations
1 A S
& 26 = 150
3 I5) - 225
4 226, - 300
5 301 -~ 375
6 376 - 450
7 45T = 528
8 526 -~ 600

In a1l data cards, column 25, column 50, and columns 75 - 80 are left blank




k k k
p T
23 | 23% | 23 576 577 578 598 599 600
224 20% | 27 551 552 553 573 574 575
2y | 21% | 21 526 527 528 548 549 550
2 2% .2 51 52 53 73 74 75
] 1% 1 26 27 28 48 49 50
0 L1 0 1 2 3 23 24 25
\ % R 22 23y 245 — g
: 1 2 3 23 268 g,
by R R L A e R R e
1 Z 3 23 24 25 — g
\\ y

FIGURE A-1 ORDERING OF THE ELECTRIC FIELD COMPONENT LOCATIONS

IN THE LATTICE PLANE j
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ita for each field component are read into the program
. at a time, beginning with plane j = 1 and ending
I the following order:

Field Number of
Component Data Cards
E
X
Ez
E
y 8
Ex 8
Ez 8
E
y 8
E 8
X
E 8
z
E
y

groups can be used if the system geometry is inde-
iber of lattice planes. For example, see Fortran
DO 5, DO 6, and DO 7 of the cylinder program (Run A)
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MISSION
of
Rome Air Development Center

RADC plans and conducts research, exploratory and advanced
development programs in command, control, and cosmunications
(c3) activities, and in the ¢’ areas of information sciences
and intelligence. The principal technical mission areas

are communications, electromagnetic guidance and control, s ‘

surveillance of ground and aerospace objects, intelligence
data collection and handling, information system technology.
ioncspheric propsgation, solid state sciences, microwave
physics and electronic reliability, maintainability and

compatibility.
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