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TIME DOMAIN SOLUT IONS FOR
ELECTROM~~NETIC COUPLING

Air Force Contract No. F3O602-77-C-0163
IITRI Project No. E64O5

26 Pugust 1977 - 26 March 1978
FiNAL REPORT

1.0 INTRODUCTION

Electromagnetic coupling and shielding problems have traditionally
been difficult to treat with analytical or numerical methods because of
the failure of these methods to adequately resol ve the effects of shield
apertures , curvatures , corners , and intern al contents. Usual ly , only
relatively simple geometries of shields and shield openings are studied
in an attempt to gain insight into the key coupling mechanisms , and to
allow a rough estimate of the cou pling fo’ more complicated and realistic

problems . A method for the direct modeling and solution of realistic
problems would eliminate the need for intuition in applying simple models ,

and would greatly increase the accuracy of the ultimate result.

This research program investigated the application of a new approach
for the direct modeling of electromagnetic interaction problems : the
finite-difference , time-domai n (FD-TD) solution of Maxwell ’s equations.
The FD-TD method treats the irradiation of a structure as an initial value
problem . At t = 0, a plane wave source of frequency , f, is assumed to be
turned on. The propagation of waves from this source is simulated by
solving a finite-difference anal og of the time-dependent Maxwell’ s equations
on a lattice of cells , including the structure . Time-stepping is continued
unti l the sinusoidal steady state is achieved at each cell. The field
envelope , or maximum absolute value , during the final half wave-cycle of

time-stepping is taken as the magnitude of the ph sor of the steady-state

field.

This method has two key advantages relative to available model ing
appro aches. First , it is simple to implement for complicated metal /
dielectric structures because arbitrary electrical parameters can be

2



assi gned to each lattice cel l using a data card deck. Second , its computer
memory and running time requirement is ri ot pr ohibitive for many complex
structures of interest.

This report first reviews available numerical techniques for the
solution of electromagnetic coupling/shielding problems . Then , the basic
elements of the FD-TD method are introduced , with detai led derivations
where appropriate , and with examples of prior computed results for
dielectric structures to est.~blish the expected level of accuracy for
general structures . The last section of this report will detail the com-
puted results for the metal geometries modeled in this program effort.
Full listings of computer programs employed in this research effort are
provided in the Appendix.

~
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2.0 REVIEW OF AVAILABLE NUMER IC,~.. TECHNIQUES

The coupling of electromagnetic fields to the interior of an arbitrary
conducting or dielectric structure has been approa ched using both frequen cy
domain and time domain numerical techniques. This section reviews pub-
lished work in this area and discusses the problems inherent in present
approaches.

2. 1 Frequency Domain Techniques

Frequency domain methods are based upon the assumption of an exp(j2~ft)
time dependence in the fundamenta l Maxwell’ s equations. In general , methpds
of this type derive a set of linear equations for eithe i- field variables or
field expansion coefficients , and then solve the linear system with a suit-
able matrix inversion scheme.

Almos t all frequency domain techniques can be placed in the fol lowing
three classes .

1. Electromagnetic field expansions, in terms of either

a. Norma l modes of the structure ,~
2b. An alytic continuation of free space modes ,

c. Normal modes of the structure matched to aperture fields
determined using a quasi-static approximation ,3

d. Norma l modes of the structu re matched to aperture fields
resulting from an exterior region expansion of free
space modes.4

Using these techniques , the solution ~s achieved by enforcing the boundary
conditions for the fields at a sufficient number of points to specify the
surfaces of the structure , and to obtain a set of simultaneous equations
for the modal coefficients .

2. Integral equation solutions , set up at either

a. Surfaces of the structure ,5

b. Internal vol umes of the structure ,6

c. Surfaces of a structure with aperture .7

4 
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Here , the so lution is achieved by enforcing the integral equation at a
sufficient number of points to specify the surfaces or vol ume of the stru c-
ture , using the method of moments8 to obtain a set of simultaneous equations
for the electromagneti c fields at each enforcement point.

3.  Variational solutions , en ip loy ing specifically the finite element
solution of the Helmholtz equation wi thin an unbounded region .9 Here , the
solution is obtained by enforcing the variational principal to obtain a set
of simultaneous equations for either field variables or expansi on coeffi-
cients .

In principle , the accuracy of frequency domain methods is excellent if
a sufficiently large set of simultaneous equations is solved. However , eac h

method may have one of two problems when complicated structures are co’i-
sidered. First , excessive computer storage may be required. Second , ar’
excessively complex derivation of the matrix elements may be required . We
n~ i consider these possibilities in the context of modeling the interior
fields of an arbitrary structure having dimensions on the order of one
wavelength.

To illustrate the problem of ex cessive computer storage requirements ,
consider the integral equation technique of Ref. 6. Using the authors ’
maximum al l owed solution point spacing of 1/4 wavelength , a tota l of about
3 x 4~ = 192 equations must be solved to determine the 3 rectangu lar com-
ponents of the electric field (or magnetic field) at each of the approxi-
mately 43 points of the struct re . For this case , a maximum of 1922

37,000 interaction coefficients must be stored in the computer to allow
inversion of the system matrix , assuming no matrix band lim iting. Yet , a
1/4 wavelength resolution might be much too coarse to resolve needed details
of the structure . If a solution point spacing of 1/8 wavelength is selected ,

the number , N , of simultaneous equations increases to 3 x 8~ 1536 , and a

total of N2 2.3 x 106 coefficients must be stored , a 64-fold increase over
the previou s case. It is seen that , for a fixed structure geometry , the

required computer storage varies approximatel y as the inverse of the sixth

power of the resolution. Conversely, for a fixed resolution , the required

storage varies as the sixth power of the structure ’s characteristic dimen-

sion . This extremely rapid rate of increase limits the ~pvJ ic atio n of5



many frequency domain techniques to either two-dimensional irradiation prob-

l ems (infinite ly long cylinders of constant cross section), or simple three-

dimensional problems (bodies of revolution , wi re grid models of conducting
surfaces), wh ich can be solved with relatively few simultaneocs equations.

To illustrate the problem of an excessively complex derivation of the
matrix elements , we consider the technique of Ref. 2. For each dielectr i c
medium of the arbitrary structure , we would have to assume two field expan-
sions : one inside the medium , and one outside the medium. Field matching
would be performed at enough points along the surface of each medium so that
its shape would be outlined . At each field matching point , an analyti c con-
tinuation of the interior and exterior fields would be formulated . Continua-
tion of the interior fields for some media would require multiple individual
cont i nuations , to account for elongated geometries , implying multiple sum-

mations of spherical Bessel functions. Any change of the structure geometry
would require a recalculation of virtually every matrix element involving
new analytic continuations. Al though the size of the matrix obtained with
this method is not excessive , the derivation of the matrix elements is com-
plica ted , wi th the complexity of the derivation a function of the inhomo-
geneities and geometry of the structure . This implies that a long program
development time is required for each new problem .

2.2 Previous Time Domain Techniques

Most previous time domain techniques can be placed in the following
four classes :

1. Inverse Fourier transforms of frequency domain solutions , either

a. Obtained from previously calculated frequency domain solutions 1

possibly via the fast Fourier transform ,’°
b. Derived in the form of a time convolution .’’

2. Transformed s-plane methods , for example using

a. Field expansions , matching at apertures , and the method of
moments 12

b. Singularity expansion methods . 13

6



3. Integral ~quation solutions , for example , of the magnetic f i eld ,
yielding the surface current density induced on bodies of revolu tion. 14

4. Transmission line models 15 and antenna mode ls 16 of induced currents
and coupling at apertures.

The first class of time domain techniques is seen to suffer the com-
puter storage problems inherent in frequency do imm ain methods , with the added
complexity of requiring Fourier transform computationa l processing. For the
second class , field expansion and solution via the method of moments leads
again to computer storage prob lems , while the singularity expansion method
is useful for determining the exterior surface current and scattered field ,
rather than the internal field distribution. The third class of techniques
requires computer storage of the surface current and its time derivative at
all surface points , for all times between the start of i rradiation and the
observat ion time . This again leads to computer storage problems , as did

method of moments techniques discussed before . The last group of techniques

is suitable principally for th in  d iameter , cylin der-like structures , and

cannot account for details of the interiors of the structures .

In summary , these four classes of time dunain techniques are probably
unsuited for application to shielding and coupling problems requiring a good
amount of detail of the interior of the structure of interest. Computer
stora ge is again a significant problem , as it was for the available fre-
quency domain techniques. The FD-TD method , discussed next , still has the
important advantage of allowing excellent resolution of the details of the
interior of a structure without exhausting the storage available in large ,

modern-day computers.

7



3.0 THE FD-TD METHOD

Th is section will discuss the following topics relevant to the use of

the FD-TD method : 1) a brief history of the development of the method ;

2) the basic ideas behind the method; 3) its advantages over the present

commonl y used approaches; 4) computational details; and 5) past usages and

results .

3.1 Development of the Method

The basic finite-difference lattice structure and time stepping algor-

ithm for the FD-TD metho d was p resente d by Yee i n a 1966 paper .17 Yee ,
however , was una ble to solve the problems of reflection of outgoing waves

at the latt ice truncations and the generation of a long pulse or continuous

wave wi thout elon gatin g the latt ice . There fore , hi s results were only of
l imited use for practical coupling and shielding problems .

The princ ip al invest igator of the p resen t contrac t performe d the basic
research needed to fully develop the FD-TD method as part of his doctoral

dissertation ’8 at Northwestern University (1975). The developments included

satisfactory approximations to the free space condition at the lattice

trunca t ions , and the simulation of a long duration pulse or continuous wave

incident on the structure of interest. The basic concepts of the FD-TD

metho d and the i nit ial descr ip tion of the practical , wave scattering algor-
ithm were presented in a paper in August ~975•~ 9 This paper app li ed the
method to solve for the standing wave pattern within circular dielectric

cylinde rs subjected to microwave irradiation . Additional problems of this

type , dealing with a square dielectric cylinder ~nd a dielectric sphere were

solve d using the FD-TD method as part of the dissertation . In each of these

cases , the availability of exact analytic solutions permitted comparison

with the results of the FD-TD method , and the determina ’,.ion of an error
bound.

Recognizing that the FD-TD method is ideal for modeling dielectric

structures of considerable complexity and inhom ogeneity , the principal

investigator applied the method to an imp ortant and previously i ncalcula b le
pro b lem , the solut ion of the electromagnetic fields and induced heating

potential within the human eye subjected to mi crowave irradiation . 
The8



FD-TD method permitted the modeling of the human eye and the variou s tissues
of the bony orbit surrounding the eye in great detail. The results of this

study were published in a paper in November 1975.20 Ex per imental work per-
formed by others usin g rabbits has tended to confi rm the predictions of the

FD-TD eye model .

3 .2 Basic Ideas

3.2.1 Wave Tracking

The FD-TD method achieves i ts flexibility by programming the two funda-

mental equations of classical electromagnetic theory; Maxwell ’s t ime depen-
dent curl equations. Using this method , we can model the propagat ion of an
arbitrary pulse d or continuous wave EM f i eld into a volume of space con-
taining either a dielectr ic or conducting structure . By time-stepping , i.e .,

repeatedly solving the finite-difference analog of the curl equations at

each po i nt of a space lattice conta i ni ng the structure of i nterest , we
actually track the incident wave as it first propagates to the structure ,

and then interacts with it in some way (surface current excitation , diffu s-

ion , penetration , etc.). Wave tracking is completed for pulsed irradiation

when the desired early or late time behavior is observed ; for sinusoidal

i rrad i ation , the end point is the attainment of the sinusoidal steady state.

Time-stepping for the FD-TD method is accomplished by what is termed an

explicit finite-difference procedure . Here , the value of an electromagnet i c
field component at the latest time step is computed using on ly field quan-

tities found during the previous time step , and stored in the computer

memory . For example , a part icular electric field component , 
~~ 

to be
evaluate d at point , P. of the finite-difference lattice , is computed using

the stored value of E
~ 

at P and the store d values of the magneti c fiel d com-
ponents , Fly and Hz~ at the lattice points immediately adjacent to P. In thi s
way , the unknown field quant ity is an explicit function of known field quan-

titles . Thus , no simu l taneous equations are needed to compute the fields at

the la test time step. Further , computation can proceed one lattice point at

a time , and the new fiel d value at each point can be placed immediate ly in

memory .

9



3.2.2 Modeling the Structure of Interest

The finite-difference formulation of the FD-TD method allows the simple
and strai ghtforward modeling of arbitrary dielectric/conducting structures .
This is because the space containing the model of the structure is divided
up into discrete volumes , or unit cells. The simplest case is that of a
cubic unit cell , which results in a cubic lattice approximation of the
geometry . For this case , the structure of interest is mapped int~ the space
lattice by first choosing the dimensions of the unit cel l , and then assign-
ing appropriate values of electrical permittivity and conductivity to each
unit cell of the la ttice. Thus , inhomogene ities or fine details of the

structure can be modeled with a maximum resolution of one unit cell; thin

surfaces can be modeled as infinitely thin , stepped-edge sheets . The com-
puter program is written so that only a set of data cards is required to
specify the complete geometry and dielectric characteristics of an arbitrary
structure . No special handling of electromagnetic boundary conditions at
media interfaces is required because the Maxwell curl equations generate
these conditions in a natural way by themselves. Therefore , the basic com-
puter program need not be modified to change from structure to structure ,

assuming that the lattice volume used is sufficient to fully contain each
structure .

3.2.3 The Lattice Truncation Condition s

A basic prob l em with any finite-d i fference solution of Maxwell ‘s equa-
tions in an unbounded region is the treatment of the field vector components

at the la ttice truncation. Because of computer storage l imitations , the
lattice must terminate close to the model structure in a region where the
nature of the scattered wave is not clearly known . Proper truncation of the
lattice requires that any outgoing wave disappears at the lattice boundary
without reflection during the continuous time stepping of the algorithm.
Improper truncation would cause error for all time steps after the spurious
wave reflections return to the vicinity of the model structure .

The FD-TD method achieves an excellent approximation of reflection-
free lattice truncations. This is accomplished by the introduction of a

smal l , anisotropic loss into the region external to the model structure and

10



a wave-field propagation condition at each truncation point. It can be
shcMn that the result ing error due to spurious wave reflections at the

lattice truncations is reduced to less than about five percent by using

this techn ique .

3.2.4 The Plane Wave Source Condition

Another basic problem with any finite-difference solution of Maxwell’ s
equations in an unbounded reg ion is the generation of a long duration pulse
or a continuous sinusoidal wave . Although such a wave could be programmed

as an initial condition , this would result in a waste of computer storage
because the lattice would have to be elongated to initially contain the full
pulse or wave train. Another possibility would be to vary the elect,~ic
field at all points along one end face of the lattice in a pulsed or sinu-
soidal manner. This l attice plane would then radiate the desired plane
wave toward the model structure . However , such a specification of field
values at a lattice truncation plane , without consideration of the values of
any possible outgoing scattered waves , would cause undesired reflection of
such waves and significant error , as discussed in the previous topic.

The FD-TD method achieves an excellent simulation of a long durat i on
pulse or a continuous sinusoidal wave withou t requiring any additional com-
puter storage or causing any additional wave reflections. This is accom-
plished by using a program instruction which simulates the linear super-
position of an arbitrary incoming plane wave with the ambient scattered
fields at all points on a single , transverse lattice plane located between
the model structure and one of the lattice truncation planes . The desired
incident wave is generated at the superposition plane. But , most impor-

- tantly, any outgoing scattered wave can propagate right through the wave
source plane without reflection and reach the lattice truncation plane
beyond to be absorbed . This condition simulates an arbitrary plane wave
orig inating at infinity , and a scattered wave returning to infinit y , without
permitting any interaction between the two waves except at the model struc-
ture. it can be shown that the error resulting from this simulation is

negligible (less than one percent).

11 
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3.3 Advantages

The FD-TD method has the following advantages relative to available
frequency domain and time domain techniques for electromagnetic coupling
and shielding problems .

1. The required computer storage of the FD-TD method increases only
as the third-power of the ratio of overall structure size to
spatial resolution , regardless of the internal complexity of
the structure . Other computer techniques which require the

solut ion of simultaneous equations usually have a sixth-power

dependence on the size-to-resolution ratio for complex , i nhomo-
geneous structures. This is a fundamental dimensional advantage

for the ED-TO method which al lows it to model geometries not
solvable by any other procedure .

2. The ED-TO method can model the surfaces , apertures , and interiors
of complex structures in a straightforward manner on a finite-
difference lattice . Only a data card deck need be punched to
specify the geometry of an arbitrary scatterer or shield.

The maximum resolution is limited on ly by the size of the

basic lattice unit cell.

3. The FD-TO method can model structures with square corners in a
natural way if a cubic finite-difference lattice is used . This
avoids the problem of dealing with the current and field singu-

larities often found at corners , which lead to slow convergence
or erroneous results with other approaches .

4. The FD-TO method allows a natural and simple treatment of the
following cases which are difficult or impossible to handle in

any other way:

a. Dielectrics , conductors , and permeable media wh ich are

anisotropic and /or nonlinear;

b. Charged particles or other ionized media within the
structure , due possibly to system generated EMP;

12



c. Irradiation sources which are either continuous wave , pulsed ,
amp litude modulated , or frequency modulate d;

d. Irradiation source or-- material boundaries which are moving
at relat ivist ic speeds.

5. The ED-TO method allows a unified treatment of free space irradia-
tion problems , waveguide obstacle problems , or combinations of
the above , i.e. , waveguide applicators for diathermy or hyper-
thermia , waveguide antennas , etc.

3.4 Computational Details for a Uniform, Cubic Lattice

3.4.1 System of Finite-Difference Equations

Using the MKS system of units , and assuming that the dielectric param-

eters, ii , c, and a, are independent of time , the following system of scalar

equations is equivalent to Maxwell ’s equations in the rectangular coordinate

system (x, y, z):

= 
1 Z ) (la)

at ~ az ay

= i (~~~
_

~) (i b )
at p ax az

= 
i (~~ x~~~~5~.) ( lc )

at ~ ay ax

aE
~ = 

1 (_...L - ......1 - ~E ) (id)
c ay az x

= 1 
~~
—

~~
- - - aE ) (le)

at ~ az ax y

= 1 _~i - —~~~ - oE ) (if)
at ~ ax ay z

Yee 17 original ly introduced a set of fin ite-difference equations for the
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system of Equations ( la) - (lf). Following Yee ’s notation , we denote a
space point in a cubic lattice as

(i ,j,k )  = (iô ,jó ,k6) (2)

and any function of space and time as

Fn(~ ,~,k) = F (i6 ,j6,k6 ,n6t), (3)

where 6 = óx = 6y = 6z is the space increment , 6t is the time increment , and
i , j, k , and n are integers . Yee used centered finite-difference expressions

for the space and time derivatives that are both simply programmed and
second-order accurate in 6 and in 6t , respectively:

aFm
(i ,j, k) = ~~~~~~~~~ F’1(i-½,j ,k) + 0(62) (4)

n+½ n-½
aF~(i ,j ,k) = 

F(i ,j, k) - F(i ,j, k~ + o(6t 2 
(5)

To achieve the accuracy of Equation (4), and to realize all of the space

derivatives of Equations (la) - ( l f) ,  Yee positioned the components of ~
and ii about a unit cell of the lattice as shown in Figure 1. To achieve the

accuracy of Equation (5), he evaluated ~ and f[ at alternate half time steps.

The result of these assumptions is the following general system of finite-

difference equations for the system of Equations (la) - ( l f) :

fl+3~
H
~
(i ,j+3

~
,k+½) = H

~
(i ,j+

~
,k+½) +

ót rEY (i
~

J
~~

k+1 ) - E~(i i+½~k) +

~ 

(6a)

n n
[Ez(i~ i~

k+½) - E
~
(i ,j+1 ,k+½) ]

n-½
H~(i+~~i~k+½) = H~(i+½~i~k4¾) +

n Ii 1
E (i+l ,j,k+½) — E (i ,j,k+½) +

~ 
(6b)

2 Z

u(i+½,j ,k+½) 6 E
~

(i+½,j, k) - E (i+½ ,j,k+l )
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E
~

E
~

(i,j,k) E~

‘C 

:). y

Fig. 1 POSITIONS OF THE FIELD CC~1PONENT S
ABOUT A UNIT CELL OF THE YEE LATTICE
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n+~ n-~H2(i+½,j+½ ,k) = H2(i+½,j+~,k) +

I n nót E
~
(i+¾,j+l ,k) - E

~
(i+¾,J ,k) 

~1 (6c)

n n I
E~(i~i+½~k) 

— E~(i+l~i+½~k) j

n+l [1 — 
a(i+~,j ,k)6t ,

E (i+%,j,k) = 2c(i+½,j,k) ~ n
x [1 + cr(i+~i~~~k)6t] 

. E,~(i+~,j,k) +

2c(i+½,j,k)
- (6d)
r n

~½I H2(i+3~,j+~,k) - H2(i+½,j—½,k) +
6t . 1

c(i+~,j,k)6 + 
a(i+~,j,k)6t1 I n+½ n+~[1 2c(i+½,j,k) ~ LHy~~

k
~ 

- H~(i+½~i~k+~)

n+l 
— 

[1 — 
a(i~J+~~k)6t]

E~(i~i+¾~k) 
— 2c (i ,j+½,kJ 

n

[1 + o(i~i+½~k)6t] 
E~(i~i+~~k) +

2c(i ,j+½,k)
(6e)

r n+~ n+½I H~(i ,j+½,k+½) - Hx (i~~
+½
~
k_½ ) +

[1+ a(i~i+½~k)6t] I n+~ n+½
i5t 1

c(i ,j+½,k)o 
____________

2c(i ,j+½ ,k) [Hz (i~½~i+½~
k) - H

~
(i+½,j+½ ,k) j

n+l [1 - 
a(i ,j,k+%)6t

E (i ,j,k+½ ) = 2c(i ,j , k+½ ) n
z 

[1 + cY (i~~~k+~)ót] 
E2(i ,j,k+½) +

2~(i ,j ,k+½)
(6f)

_ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _  

I Hy(~+~i~~k+½) H~(i-~~i~k+½)ót . I
c(i ,j,k+J~)6 + o(i~i~k+½)6t] I n+~ n+½ I[1 2c(i ,j,k+¾ ) [H~

(i
~
i_½

~
k+½) — H( i ,j+½ ,k+½)
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With the system of Equat ions (6a) - (6 f ) ,  the new value of a field
vector component at any lattice point depends only on its previous value

and on the previous values of the components of the other field vector at
adjacent points . Therefore , at any given time step, the computat ion of a
field vector may proceed one point at a time .

Many electromagnet ic interaction problems invol ve nonpermeable media

and can be approached using a fixed time step and space increment. For such

problems (including the cylinder and nose cone geometries specified for this
research effort), the quantity 6t/p (i ,j,k)6 is constant for all (i ,j,k) of
the lattice , and the Yee system of Equations (6a) - (6f) can be simplified
to reduce computer running time in the following manner. We define the
cons tan ts :

R = 6t/2e 0 (7a)
a = St 1(6 p0e0) (7b)

Rb = cSt/p06 (7c )
1 - Ro(m)/c (m)

C (m) - r
a 1 + Ra (m)/er (m) (7d)

Cb(m) - 

~~~ +~~(m) (7e )

where m is an integer denoting a particular dielectric or conducting medium

~r1 the space to be modeled. We also define the proportional electric-field
vector

E = Rb E (8)

Using the definitions of Equations (7a) - (7 e ) and (8) ,  we rewrite Equations
(6a) - (6c) as:

rI+~ n-½ ~n
H
~
(i ,j+

~
,k+

~
) = Hx (1~~

+
~~

k+½) + ~~~~~~~~~~ - E~(i~i+½~k) +

(9a)

E2(i
,j,k4-~) — E2(i ,j-4- l ,k4¾)

17 

-.- -....-~~ —S - - - -~~~-. -



n-½ n
H~(i+½ .i~k+½) 

= Hy(l+½~~ k+~) + E2 (i+1 ,j ,k+½) - E2(i ,j,k4¾) +

(9b)n n
E
~
(i+

~
,j,k) - E~(i+¾,j ,k+l)

n-½ .~nH
~
(i+½,j+

~
,k) = H2(i+½,j+~,k) + E

~
(i+

~
,j+1 ,k) — E

~
(i+½,j,k) + (9c )

E~(i~i+~ 1k) — E~(i+1~i+~~k)

Th is modification eliminates the three mul tiplications needed by Yee in the
H part of the algorithm . Further , we rewrite Equations (6d) - (6f) as:

m = MEDIA(i+½,j,k)

~n+l ~n n+½
E
~
(i-f½,j,k) = Ca (m)E x(i+½,i ,k) + Cb(m)[H (i+½,j+¾ ,k) — H

~
(i+½,j_

~
,k) +

n-f½ n+½ (9d)
H~(i+~~i~k—½ ) 

— H~(i+~~i~k+½)]

m = MEDIA(i ,j+~,k)

~n+l , n n+½
E~(i~i-f½~k) 

= Ca (m)E y(i
~i+~~

k) + Cb(m)[HX (i ,i+½ ,k+½) 
- H (i ,j+½ ,k-½) +

n+% n+~ ( 9e)
H (i-~ ,j+½,k) — H2 (i+~ ,j+½,k)]

m = MEDIA(i ,j,k+~)

n+l ~n n+½
E
~
(i ,j,k+

~
) = Ca (m )E z(i ,j,k+½ ) + Cb (m) EHY (i+½~i~

k+½) — 

~~~~~~~~~~ +

n+½
H
~
(i ,J_

~
,k+½) - H

~
(i ,j+½ ,k+½)]

This modification eliminates the need for computer storage of separate ~ and
a arrays. Now , on ly a MEDIA array which specifies the type-integer of the
dielec tric or conducting medium at the location of each electric field
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component in the lattice need be stored . In addition , the c and a of each

medium can now, be changed without having to re-punch a large data card deck ,
if the basic structure geometry is unchanged . Such a change involves only

the recalculation of the few values of Ca (m) and Cb (m) .

3.4.2 Choice of Space and Time Increments

The choice of 6 and 6t is motivated by the reasons of accura cy and

al gorithm stability , respectively. To insure the accuracy of the computed

spatial derivatives of the electromagnetic fields , 6 mus t be smal l com pare d
to a wavelen gth (usually A/lO). Further , to in su re  tha t the cu bi c la t ti ce
approximation to the surfaces of the structure modeled is not too coarse , 6

must be small compared to the overall dimensions of the structure .

To insure the stability of the time-stepping algorithm of Equations

(9a) - (9f), 6t is chosen to sa ti sfy the i nequa l ity

-3ç

6t < (_]__ + + ~~~ c~- 

6x2 6y2 6z2 max

(10)

6 (for a cu bic lattice )

max

where Cmax is the max imum wave phase velocity within the model. The corres-

ponding stability criterion set forth by Yee in Equations (7) ami d (8) of his

paper is incorrect. The derivation of Equation (10) is outlined as follows .

Derivation of the Stability Criterion

For convenience , we cons id er a n ormm mal i zed reg ion of s pa ce w i th ~i 
= 1

= 1, a = 0, and c = 1. Letting j = ,/ 1 , we rewrite Maxwell ’ s equations as

.1 s x (‘14 + j~) = ~(i4’ + j~ )/at , (ila)

or immu re simply as

j V x V = ~V/~~t , where V = H + jL. (lib )

The stab ility of a particular numerical representation of Equatio n (llb) ca im

be exam ined simply by considering the fol lowing pair of eigenvalue problems :
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a/atlnumerical v = xV (12a)

j V (numerical X V = AV. (l2b)

U s i n g  the numerical time derivative given by Equation (5), Equation (l2a)
gives

n+½ n-~ n
(V - V )/6t = . (13)

n+3~ n-~Defining a solution growth factor q = V /V , and substituting into
Equation (13), we solve for q:

q = X6t/2 + /T~+ (A6t/2)2. (14)

Algorithm stability requires that q J < 1 for all possible spatial modes in
the lattice. For this to occur ,

Re X 0; u r n  X I < 2/6t. (15)

We now let

V (L,m ,n) = Voexp [j(kx~
6x + k~m6y + k

~
n6z)] (16)

represent an arbitrary lattice spatial mode . Using the numerical space
derivation formulation of Equation (4), Equation (l2b) yields

sin( ½k 6x) sin( ½k csy) si n(~k 6z) 
——2 [ 

6x
x - 

6
~ z ] x V (9~,m ,n) XV(2~,mn ,n). (17)

After performing the cross product and writing the x , y, and z component
equations , the resulting system is solved for X2:

sin 2 (~k 5x) sin2 (½k 6y) sin 2 (~ k 6z)
= 4[ X + + 

Z (18)
6x 6y 6z

For all possible k
~
, ~~ ~~

1 ½
Re A = 0; lIm X I  < 2(—~- + —

~~
- + —~-) . (19)

6x óy 6z

To satisfy the stability condition of Equation (15) for the arbitrary lattice
spatial mode, we set

20



½
(20)

6x 6y 6z

The algorithm stabilit y condition fol lows immediately from Equation (20).

In an inhomogeneous region of space , i t  i s di f f i c u l t  to determ i ne a spectrum
of A , analo gous to Equation (19), for all possible latt i ce s patial modes .
For absolute algorithm stability , Equation (10) suffices because it repre-
sents a “worst case” choice of dt.

3 .4. 3 Lattice Truncation Cond i t i ons

A basic consideration with the FO-TO lattice is the treatment of the

field vector components at the lattice truncation planes. Inspection of
Equations (9a) - (9f) indicates that the values of such components cannot be

determined from the system of finite-difference equations because of the
centered nature of the spatial derivatives. Therefore , these values must be
computed using an auxiliary truncation condition. However , great care must
be taken because this condition must not cause the spur i ous ref lect i on of
waves scattered outward from the structure modeled , as observed by Yee. The

go al of formulatin g the truncat ion cond i t ion is to make the la tti ce trunca-
ti on planes inv i si b le to all possible waves propagating within the l attice ,

as shown in Figure 2.

A desira ble truncation condition relates in a simple way the values of

the field components at the truncation planes to field component values at
points one or more 6 within the l attice . We now consider examples of such
a truncation for cases of ED-TO lattices in one and three di mens i ons .

One-Dimensiona l Case

For simplicity , we consider waves having on ly the and H
~ 

comp onents

and p ropagat i ng in the +y directions. The one-dimensional FD-TD lattice is

simply a y-directed line of points having the and Hx components inter-

leaved and separated from each other by 0.5 6y. The lattice is assumed to

extend from an Ez comp onent at point y 
= 0 to another Ez component at point

y = J6y . A time step of 6t = 6y/c is used ; a value which is the maximum

allowed by the stability condition of Equation (10) for this lattice (6x =

6z = cc ).

21



La ttice truncation p lane
(invisible to all waves)

=

Sca ttered
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\
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= 0

x =
~~~ c5 x (I+ .~)5

Fig. 2 IDEA L FD-TD LATTICE T RUNCATION CONDITIONS
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Subj ect to these assumptions , the truncation condition at point y = 0,

n n-l
E (0) = E

~ 
(1) (2la)

simulates the free space propagation of the magnit ude of from the point
.“l” to the truncation point “0” in one time step (the free-space propag ation
delay implied by the time-step relation). This is an exact truncation for
this l attice in that all possible -y-directed waves are absorbed at 0 with-
out reflection. If we wish to simulate the truncation of the lattice at
point y = .16 , the truncation condition

n n-l
E2 (J) 

= E
~ 

(J-l) (21 b)

is exact for all possible +y-directed waves at this point.

Three-Dimension al Case

Here , we consider waves having all six field components and propagating
in all possible directions. The lattice is assumed to extend from:

and H
~ 

components at x = ½6 to

Hy and Hz components at x = (I +

and E components at y = 0 to

Ex and Ez components at y = J6;

and Ey components at z = 0 to

and Ey components at z = K6.

A time step of 6t = 6/2c is used , a value which is about 13% lower than the
max imum al lowed (cS t = 6/~

/
~ c) by the stability condition of Equation (10) for

this lattice (ox = Oy = Oz = 6).

No simple , exact truncation condition , anal ogous to Equations (2la) and

(2lb), is apparent for this three-dimensional space lattice . This is because
we cannot assume the outgoing waves to be plane and normal ly incident on one
lattice boundary . At any trun cation point , the local angle of incidence of

these waves relative to the truncation plane is unknown . Further. severa l

23
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different waves having different local angles of incidence may arrive at the
same time . No simple truncation condition can account for all of these
possibil i t ies. Therefore , we can arrive at only an approximate condition
that reduces the effective lattice boundary reflection coefficient to an

acceptable level .

A set of simple , approximate truncation conditions that can be used

with good results is as fol l ows.

Atx ½ 6 :n n—2 n-.2 n-2 (22a)
H~(½~i~k+½) = [FI

r 
(3/2 , j , k— ~ ) + (3/2,j,k+¾) + Fl~ (3/2,j,k+3/2)]/3

n n—2 n—2 n-2 (22b)
H2(¾,j+~,k) = [H

2 (3/2,j+¾ ,k-1) + H2 (3/2,j+~,k) + H2 (3/2,j+%,k+l)]/3

At x = (I + )~ iS:

n n-2 n-2 n—2 (22c)
H~(I+½1i~k+½) = [Fl

u 
( I - ) ~, j , k-3~) + H~ (I-~ ,j,k+~ ) + H~ (I—~ ,j,k+3/2)]/3

n n-2 n-2 n-2 (22d)
H
~
(I+½,j+

~
,k ) = [H2 (I_½ ,j+2~,k—1 ) + H2 ( I — ¾ ,j+~~, k) + H2 (I— ~ ,j+½ ,k+1)J/3

At~~~~~U:
II n-2

= E (i+½ ,l ,k) (23~)

n
= E

~ 
(i ,i,k+½) (23 b)

Aty J o :
fl n-2

= E
~ 

(i+½,J-1 ,k) ( 3c )

II n-2
i ,.J ,k+½ ) - [

7 (i ,J—1 ,k+½ ) (23d )

24



At z = 0:

n ...n—2 _ n-? .~n-2 (24a)

= [E
~ 

(i-½,j ,1) + E
~ 

(i+%,j ,1) + E
~ 

(i+3/2 ,j,1)]/3

n n—2 ~.i-2 ~n-2 (24b)

E~ (i ,j~%,0) = (i—i ,j+¾ ,1) + E~, ( 1 ,j+½,1) + E~ (i+1 ,j+½ ,1 )]/3

At z = K 6:
n n—2 n—2 n-2 

(24c)
= [E

~ 
(i—¾,j ,K-1) + E

~ 
(i+%,j,K— l) + 

~~ 
(i+3/2 ,j,K-l fl/3

(24d)

E~(i ,j+½ ,K) = {E~ (i—i ,j+%,K—1) + E~ (i ,j+~,K— 1) + (~+1 ,j+~,K—1 )]/3

Equations (22) — (24) allow the field value at any truncation point to
rise to approach the field value of any outgoing wave , thus lowering the
effective truncation pl ane reflection coefficient . This is done by modeling

the propagation of an outgoing wave from the lattice plane adjacent to the
truncation , to the l attice plane at the truncation , in two time steps (the

free-space propagation delay implied by the time-step relation). The aver-
aging process is used to take into account the possible local ang les of
inc idence of the outgoing wave at the truncation and possib le multiple

incidences.

Truncation conditions (22) - (24) are usefu l for an assumed +y-directed

incident plane wave with field components E
~ 

and Hx~ 
For such a wave , Equa-

tion (23) represents exact truncation s similar to Equation (21). In addi-
tion , Equations (22) and (24) have no effect on the propagation of such a

• wave , which lacks Hy~ H2, E~
, and E~. Thus , this set of truncation condi-

tion s effectively makes the lattice baindary planes invisible to a +y-

directed incident plane wave.

Use of Exterior-Region Anisotropy

One way of reducing spurious reflections at the l attice truncations is
to introduce an anisotropic lossy medium outside of the modeled structure .

Properly constituted , the medium would attenuate field components present

on ly in the scattered wave , leaving the incident plane wave unaffected .
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For the three-dimension al case , this can be easily done by specifying an
anisotropic conductivity , °ext ’ in the free-space region exterior to the
structure . Equation (9f), the finite-difference equation for 

~~~~
‘ 
requires

°ext = 0 to insure that the incident wave is not attenuated. However , we
may assume a small value of Gext for Equations (9d) and (9c), the finite-
difference equation s for and E~,,, without affecting the propagation of the
incident wave or the penetrating wave within the structure . This assumption
results in at tenuation of the 

~x 
and 

~y 
components of the exterior diffracted

wave , and thus , reduces z-directed wave reflections at the lattice trunca-
tions.

Effect on Algorithm Stability

The stability condition of Equation (10) is valid for the ‘lee , or null
choice , of lattice truncation conditions . This is because ‘lee ’s set of trun-
cation conditions causes total reflection of all lattice wave modes at the
surface planes of the lattice , and thus , introduces no new wave modes.
However , introduction of Equations (22) - (24) to the three-dimensional
algorithm is found to increase the strictness of the stability condition .
For the three-dimensional case , some case must be taken to avoid algorithm
instability .

The nature of the instability of the three-dimensional algorithm is of
importance . First , it is l ate in appearance , requiring more than five—
hundred time steps for a 2 x lO~ - cell lattice , and more than one-thousand
time steps for a 6 x l0~ - cell lattice. Second , its initial visibility is
delayed by either increasing the size of the lattice , or by increasing the

losses of the dielectric media of the lattice . This suggests the importance

of wave propagation effects in the growth of the instability .

There are two likely solutions to the prob lem of algorithm instability.
First , Ot can be reduced. This , however , would complicate the programming
of the truncation conditions because a wave would no longer propagate across
a free-space unit cell of the lattice in an integral number of time steps .

The second solution is much simpler since it does not require pro-
gramming for interpolating field values at the truncation planes between

time steps. This solution is mere ly to set a l ower bound of about lO~ ce l ls
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on the size of the FO-TO lattice used , thus delay ing cne onset of the insta-
b i l i ty for several thousand time steps. In most cases , such a delay would
be sufficient for the computed solution to reach the sinusoidal steady state.

For many problems , the use of a l0~ - cell lattice is not at all extravagant
and allows the problem of algorithm instabilit y to be essentially forgotten .
The computer runs in the present research program for the cylinder and the
missile nose cone emp loy this solution . They use , respectively , 94,000
cells--800 time steps and 58,000 cells--900 time steps , without any apparent
instability of the computed solution.

3.4.4 Plane Wave Source Condition

Another basic consideration with the FO-TO method is the simulation of
the continuou s , sinusoidal , inc i dent plane wave. Yee specified the shape and

direction of propagation of an incident wave pulse by inserting all of its
field values as ini tial conditions over a portion of the lattice. However ,

the ‘lee approach is clearly inadequate for a continuous wave train because a

very elongated lattice would be needed to contain the wave as an initial
condition , wasting much computer storage .

In this section , we discuss the simulation of an incident , +y-directed
plane wave using a source condition localized at only one lattice plane , and

invisible to all scattered waves propagating within the lattice. This
allows a compact lattice and maximum utilization of the available computer

storage.

The most simple approach to this problem is to vary the electric field

at all points along lattice plane y = 0 in a sinuso idal manner. This plane

woul d then radiate the desired plane wave. However , such a spec i f i ca t ion  of
field val ues at a lattice truncation plane , without consideration of the

values of the fields of any possible outgoing , scattered waves , would cause
undesired wave reflections.

A more desirable plane wave source condition wou ld take into account

the scattered fields at the source plane . For the three-dimensional case , a

usefu l wave source condition at plane 
~‘ 

= J
~

iS (near y = 0) is as follows :

÷ Rb sin(2irfniSt) + E
~
(i ,j5 i k+½) (25)
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where f is the i rradiation frequency and Rb is defined by Equation (7c).
Equation (25) is a modification of the Maxwell’ s equations algorithm for all
points on the lattice plane y j56. At each point on this source plane ,
the computer first calculates in the norma l manner of the algorithm , and
stores the value in memory . Then , the value of the sinusoid is calculated
and added to the stored value of E~. Finally, this modified value of E~ is
stored in memory . In effect , Equation (25) simulates the linear superpos i-
tion of a +y-directed plane wave and the ambient field along the source
plane . This condition permits any scattered , outgoing wave to propagate
right through the wave source plane without reflection , and reach the lat-
tice truncation at y 0 to be absorbed .

3.4.5 Symmetry Conditions

An important savings of computer memory and program execution time
results if even symmetry of the modeled structure about one or two lattice
planes can be assumed . In this section , we discuss the programming of this
symmetry for the three-dimensional case.

For the three-dimensional case, the modeled structure is assumed to be
evenly symmetric about lattice planes x = (T + ½)6 and z (iS :

c,a(I+½+h ,j,k) e,cy(T+~-h ,j,k), ~ 
= (26a)

c,a(i ,j,i~+h) = c,a(i,jJ~—h) (26b)

The incident radiation is assumed to be a +y-directed plane wave , with the
field components E

~ 
and H

~ 
naturally having even symmetry about any lattice

plane x = constant or z = constant. Therefore, we conclude that the E
~ 

and

H
~ 

components of the total field possess even symmetry abou t the lattice
planes x = (T+½)6 and z = 6:

n
E 2 (T+~+h,j ,k+½) = 

~2(T+½ h,j,k+½ ) (27a)

fl+½ n+½
H
~ 

(I+½+ h ,j+~,k+½ ) = H
~ 

(T+½—h ,j+~,k+~) (27b)

E
2
(i ,j,

’
~+h) = E 2 ( i ,j , i~—h)  (27c )

n+½
H
~ 

(i,j+~,K+h) = H
~ 

(i,j+½ ,i~-h) (27d)
28 ~~~~~~~~~~~~~~~~~ 
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To develop a convenient set of symmetry conditions , we fol low a p rocedure
detailed below . This results in

n+l n+½ n+½

~ 
(T+~,j,k) = H~ (T+½,j,k+½) = H

~ 
(I+½,j+½,k) = U for all n; (28a)

n+½ — n n
H2 

(i-m-~ ,j-i-~ ,K) = E (i+½,j,K) = E~(i~i+½~T~) = 0 for all n. (28b)

Equations (28a ) and (28b) are sufficient to truncate the FO-TO lattice at
planes x = (T+½)6 and z = KO , respectively, by perm i tting the calculation of
the complete set of field components , with full specification of the assumed
even symmetry.

Derivation of the Symmetry Conditions

A. Plane x = (T÷½)6

The symmetry conditions for the 
~~ ~~ 

and H
~ 

field comp onents at
lattice plane x = (I+½)iS are derived from time-stepping algorithm Equations
(9a) - (9d) and symmetry assumptions (26a), (27a), and (27b). The first
step of the derivation involves the determination of the type of symmetry
exhibited by E~ about plane x = (T+½)6. To beg in , we write Equation (9a)
for i = I and for i = T+l :

n-2~ .~nH
~ 

(I,j+½ ,k+~) = H
~ 

(I,j+½ ,k+½ ) + E~(T~i+½~k+l ) 
— E~(T~J+½~k) +

n (29a)
- E2(T ,j+l ,k+½)

n-½ ~n n
H
~ 

(I+l ,j+½,k+½) = H
~ 

(I+l ,j+½ ,k+½ ) + E~(I+l~i+½~k+l ) 
— E~(I+ l 1J+½~k) +

.n (2gb )
E2 (T+l ,j, k+½) - E2(T+l ,j+l ,k+½)

Using the symmetry conditions of (27a) and (27b) for the case h = ½~ we
subtract Equation (2gb) from (29a) and simplify :

~~(I,j+~,k+l ) - ~~(T+l ,j+½,k+l) = 
~~(T~i+½~k) - ~~(T+l~i+½~k) (30)

Equation (30) is in the form f(j+~,k+l) = f(j+½,k). This implies a solution

29
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of the type f(j+~,k) = Cj+½~ 
where Cj+½ is a constant. We thus have

- 

~~(T+l~i+½~k) 
= Cj+½ . (31a)

We argue that the symmetry of the problem precludes the possibility of a con-
stant step discontinuity of across the plane of symmetry . Therefore,
Cj+½ must equal zero and

= 
~~~~~~~~~~ (31b)

Equation (3lb) is a statement of the even symmetry of Ey about plane x =

(T
~½) 6.

Now , we may derive the symmetry conditions for Ex~ 
H
3~,. 

and H2 at plane
x = (T+½)iS. Using symmetry condition (27a) for the case h = ½~ we write
Equation (9b) for i = I:

n n
Hy (I+~,j,k+~) = H (T+~, j, k+~) + E (T+½,j,k) - E

~
(T+½,j,k+l ) (32a)

Using the derived symmetry condition of Equation (3lb), we write Equation
(9c) for i =

n+~ n-½ ~nHz ~~~~~ 
= H

~ 
(T+½,j+~,k) + E (T+½,jhi ,k) - E (T+½,j,k) (32b)

From Equations (32a) and (32b), we see that H~ and H2 at the symmetry plane
can depart from their zero initial conditions only if E~(T+½ ~j~k) assumes
some non-zero values. Yet , from Equation (9d), 

~ 
at the symmetry plane is

seen to remain at zero if Hy(T+½~J~k+½ ) and H~(T+½,j.F½ ,k) are zero. There-
fore, using an inductive argument , we conclude that these three field com-
ponents must remain at zero for all time steps. Equation (28a) is a state-
ment of this behavior.

B. Pl ane z = 1(6

The symmetry conditions for the E
)(~ Es,, and H2 field components at

lattice plane z = 
~6 are derived from time-stepping algorithm Equations (9c)

- (9f) and symmetry assumptions (26b), (27c), and (27d). The first step of

30
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the derivation involves the determination of the type of symmetry exhibited

by H~ about plane z = (6. To begin , we write Equation (9f) for k = k’-l and
for k = K:

= MEDIA( i ,j,~
’-~)

E2(i ,j,
’
~-~) = Ca(m1)Ez(i,j,~

_
~
) + Cb(ml)[H

Y (i+¾~~
R
~4) - ~~~~~~~~~~ +

n~½ n+½ (33a)

H
~
(i ,i_½ ,K_½ ) - H

~
(i ,j+½ ,R_½)]

m2 = MEDIA( i,j,i~+½) -
n+l — .~.n n+½
E2(i , j ,K+½) = Ca(m2)Ez(l,jJ~

i+½) + Cb (m2)[H (i+½,j ,~+½) - H~(i-½~i~K+½) +

n+½ n+½ (33b)
H
~
(i ,j_½ ,K+

~
) - H

~
(i ,j+½ ,

~
+½)]

Using the symmetry conditions of Equations (26b), (27c), and (27d) for the
case h = ½~ we subtract Equation (33b) from (33a) and simplify :

n+½ n+½ n+½ n+½
H~(i+~~J~i-½) 

- 

~~~~~~~~~~ = H~(i-½~i~K-%) 
- H~(i-~~i~K+½) (34)

Equation (34) is in the form f(i+½,j) = f( i-~~,j). This implies a solution
of the type f(i+½,j) = C

3
, where C~ is a constant. We thus have

n+½ n+½
Hy (i+½,i,K-½) - Fl~ (i+½,i ,K+½) = C~. (35a)

We argue that the symmetry of the problem precludes the possibility of a con-

stant step discontinuity of H~ across the plane of symmetry . Therefore , C~
must equal zero and

n+½ 
—

Hy (i-i-~,j,i~
_
~) = H~ (i+½,j,K+½). (35b)

Equation (35b) is a statement of the even symmetry of Hy about plane z 
= Ko .
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Now , we may derive the symmetry con di t i ons for 
~~ 

E~ . and H
~ 

at p l ane
z = K S . Using the derived symmetry condition of Equation (35b), we write
Equation (9d) for k = K:

m MEDIA (i -+-~ ,j,i~)

E( i+½,j,~) = Ca (m)E x (i+½,j ,K) + C~(m)[H 2 (i+½,j+½ ,~ ) -

(36a )
H2(i-I-~,j_~ ,K)]

Using symmetry condition (27d) for the case h ½~ 
we write Equation (9e) for

k = K:

m = MEDIA(i ,j+½ ,’i~)

~n+l .-n n+½
E~(i~i+¾ J~) 

= Ca(m)Ey(i x3+½~
Z) + Cb(m)[Hz(i_½ ,J+½~

K) -

n+½ 
— 

(36b)

H2(i+~,j+½ ,K)]

From Equations (36a) and (36b), we see that E
~ 

and Ey at the symmetry plane
can depart from their zero initial conditions only if l-l

~
(i+½,j+½ ,K) assumes

some non-zero values . Yet , from Equation (9c), H
~ 

at the symmetry plane is
seen to remain at zero if Ex (i+½ ~i~

i
~
) amid Ey(l~J+½~K) are zero. Therefore ,

using an inductive argument , we conclude that these three field components
must remain at zero for all time steps . Equation (28b) is a statement of
this behavior.

3.5 Review of Past Usages and Results

In this section , we review past usages and results of the FD-TD method
for simple two and three-dimensional dielectric geometries , with an objective
of establishing the level of accuracy of the method . Three sources of error
have been considered : the approximation of the space and time derivatives of
Maxwell’ s equations by finite-difference expressions; the residual wave
reflections at the lattice truncations; and the stepped-surface approximation
of the shape of a curved scatterer. The computed results used in this dis-
cussion were obtained by the principal investigator during his Ph.D. disser-
tation work in 1974 and 1975.
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3.5.1 Irradiation of a Plane Dielectric Slab

First considered as a source of error was the approximation of the space

and time derivatives of Maxwell’ s equations by finite -diffe rence expressions.
To isolate this error source , a scattering problem had to be formulated that
eliminated error due to the approximations of the shape of the scatterer or
of the lattice truncations. Such a problem was the steady plane -wave i rradi-
ation (at normal incidence ) of a flat dielectric slab , because the boundaries
of the slab could be defined exactly by two parallel lattice planes. Further ,
for a +y-directed incident wave , all scattered waves had to propagate in
either the +y or -y directions; a situation where the lattice truncation con-
ditions were exact. Therefore , any observed error in the results could be
attributed to the finite-difference approximations of the derivatives.

For ease in understanding the results , the slab was assumed to be loss-
less and one-half wavelength thick. These conditions were fulfilled by a 3
cm thick slab , wi th relative permittivity equal to 4, irradiated at 2.5 GHz.
The geometry of this slab relative to the problem lattice is detailed in
Fi gure 3a for two lattice resolutions: 6 = 0.3 cm = A~!20; and 6 = 0.6 cm =

A
d
/i0 .

n
Figure 3b graphs the maximum absolute value , or envelo pe , of E~(j) com-

puted during the wave half-cycle preceding the termination of the algorithm

at n . n was chosen l arge enough to allow all values of E within themax max z
lattice to reach the sinusoidal steady state . For the coarse-lattice case ,

= 10 psec and the envelope was observed for 130 < n < 150. For the fine-

lattice case , Ot = 5 psec and the envelope was observed for 250 < n < 300.

Each case represented an algorithm time of 1 500 psec , or 3.75 wave cyc1~ s at

2.5 GHz , required to reach the steady state .

For the fine-lattice case , the envelope was virtuall y indistinguishable

from the exact solution calculated from bas ic microwave theory . In front of

the slab , a standing wave ratio of about 1.04 was observed . Within the slab ,

the envelope decreased to exactl y one-half the incident field ri agnitude . In

back of the slab , the envelope was constant and had the sanie value as the

incident field magnitude. These results were in excellent agreement with the
exact solution obtained either by viewing the slab as a 1:1 impedance

- .  . .. i
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transformer between its two faces , or by using an infinite series approach.
The maximum error was about +2%. For the coarse-lattice case , error was
evident in the computation of the envelope in front of the slab. Here , a
standing wave ratio of about 1.13 was observed . The maximum error was esti-
mated to be about +7%.

To insure that the uncertainty caused by the finite-difference approxi-
mations of the field derivatives is significantly less than +10%, it was seen
that a lattice resolution of 6 < A/20 must be m ;intained . For inhomogeneous
scat terers, A of this criterion should be taken as the minimum value expected
within the lattice .

3 .5 .2 Irradiat i on of a Square Dielectric Cyl i nder

Next consi dered as a source of error was the presence of residual wave

reflections due to imperfect latt ice truncations. To isolate this error

source , a scatter i ng problem had to be formulated that generated a roughly
radiall y-propagating diffracted wave (to test the truncation conditions at

non-normal incidence ) without having additional error due to any stepped-edge
approximation of a curved boundary of the scatterer. Such a problem was the

TM i rradiation of an infinitely-long , rectangular , d ie lec t r i c c y l i n der , w i th
the incident wave propagating normally to one cylinder face . Here , the
boundary of the cylinder could be defined exactly by intersecting lattice
p lanes; yet , the desired diffracted wave would be generated . Any error in

the results in excess of that observed for the plane dielectric slab problem
could thus be directly attributed to spurious wave reflections at the lattice
truncation planes.

For ease in understanding the results , the cylinder scattering problem

was assumed to have the geometry analyzed by Tong21 with a surface integral
equation approach. Tong ’s cylinder was composed of lossless dielectric with

= 3.84, and had a square cross section wi th diameter d = A0/-T. This con-

dition was fulfilled by a 3.82 cm diameter square cylinder , irradiated at

2.5 GHz. The geometry of this scatterer relative to the problem lattice is
detailed in Figure 4a for two lattice resolutions: 6 = 0.095 cm =

for cylinder perimeter ABCD; and 6 = 0.191 cm = A d!32, for cylinder perimeter

A ’ B ’ C ’ D ’ .
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Figure 4b graphs the computed results for the envelope of the cylinder ’s
surface electric field , E’i(s), along perimeters ABCD and A’B’C ’D’ , as well
as Tong ’s solution . (Here, s represents a normalized position along the
perimeter.) For the ABCD solution , iSt = 1.59 psec and the envelope was
observed for 630 < n < 756. For th e A’B’C’ D ’ solution , Ot = 3.18 psec and
the envelope was observed for 315 < n < 378. Each case represented an algor-
ithm time of 1200 psec , or 3.0 wave cycles at 2.5 GHz, required to reach the
steady state.

Since the lattice resolutions for both cases of Figure 4 were finer than
that of the slab problem of Figure 3, it was inferred that the error due to
the finite-difference approximations of the der iva t ives  was less than ±2%
for each case. Any error above this limit was assumed due to residual wave
reflections at the lattice truncations. Over most of the surface of the -

cylinder , the error level of each FD-TD solution was comparable and limited
to about +10%. The principal disagreement between the FD-TD solutions , and
the largest error of the ABCD case , occurred at the electric field minimum .
Evidently , the interaction of the cylinder and the lattice truncations was
so weak that it could influence the computed results only a field minima .
It was concluded that the FD-TD lattice truncation conditions lead to an
error level of less than ±10% at most points , even for smal l spacings
between the structure modeled and the lattice truncations.

3.5.3 Irradiation of a Circular Dielectric Cylinder

The stepped-surface , or lattice , approximation of the shape of a curved

scatterer was next considered as a source of error. To estimate this error

S 
source , the TM irradiation of an infinitely-long, circular dielectric
cylinder was modeled . Here , in addition to error due to imperfect lattice
truncations , modeling error was introduced because the cylinder surface
could not be exactly defined by combinations of intersecting lattice planes .
In effect, spurious wave diffraction effects were caused at each intersec-
tion of two planes . The magnitude of this additional error could be esti-
mated by comparing the accuracy of the circular cylinder model to that of
the square cylinder model of Figure 4.
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The geometry of the circular cylinder model relative to the problem
lattice is detailed in Figure 5a. The lattice coordinates internal to the
cylinder , determined by [(i-24.5)2 + j-25)

2
]~ < 20, were ass i gned the die leL-

tric parameters Er = 4.0 and a = 0. An irradiation frequency of 2.5 GHz was
assumed , with 6 = 0.3 cm = A d!20 , iSt = 5 psec , and the envelope of E~
observed for 460 < n < 500 (a maximum algorithm time of 2500 psec , or 6.25
wave cycles). The cylinder thus had a diameter of 1 free-space wavelength.

Figures 5b and 5c detail the computed values of E2(24,j)I/E2. and

IE (l5 ,j)I/E2. , respectively. These fi gures also present the exact solu-
tion calculated using the summed-mode series technique of Jones . As seen
in  the figures , the FD-TD solution located the positions of the peaks and
nulls of the electric field with a maximum error of +6, or about +3~:~ of the
diameter of the cylinder. The magnitude of each peak was determined with a
maximum error of ±10%. Error in excess of 10%. appeared in the computation

of the magnitude of several of the field minima . Overall , the uncertainty
of this solution was found to be comparable to that of the square cylinder
solution . Evidently , the error caused by the stepped--surface approximation
of the circular cylinder was smal l in comparison with that caused by the

lattice truncation conditions.

3.5.4 Irradiation of a Dielectric Sphere

To further investigate the error introduced by the lattice approximation
of a curved scatterer , the plane -wave i rradiation of a dielectric sphere was
modeled. Unlike the circular cylinder , the sphere has a surface which must
be approximated in three dimension s. The magnitude of any additional error
caused by this approximation could be estimated by a simple comparison of
the sphere results with those of the circular cylinder.

The geometry of the sphere model relative to the problem lattice is
depicted in Figure 6 at the two lattice symmetry planes . The lattice coor-
dinates internal to the sphere were determined by [(i-l9.5)2 + (j-20)2 +

(k—l9 )2]~ < 15. To allow a close comparison with the circular cylinder
results , all of the dielectric and program parameters of that run were
repeated , namely: E

r 
= 4.0; a = 0; f = 2.5 GHz ; 6 = 0.3 cm = Ad!2O; iSt 

= 5

psec ; and envelope observation for 460 < n < 500. The sphere thus had a
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diameter of 0.75 free-space wavelength. To reduce spur i ous reflections at
the lattice truncations (as discussed in Section 3.4.3), a value of °ext
equal to 0.1 mho/m was assumed .

Fi gures 7a and 7b detail the computed , normalize d values of two electr i c
field components near the sphere i rradiation axis: ~~~~~~~~~~~~~~~~
and IE~(l9 ,j,l8.5)I~/E zi . These figures also p resent the exact solution
calculated using the summed-mode series technique of Stratton .23 As seen in
the figures , the FD-TD solution located the positions of the peaks and nulls

of the electric fiel d with a maximum error of ±6, or abou t 
~ 

of the diam-
eter of the sphere. The magnitude of each peak was deterniined with a maximum

error of ±10%. Overall , the uncertainty of this solution was found to be
comparable to that of the square and circular cylinder solutions. Evidentl y,
the error caused by the stepped approximation of the surface of the sphere

in three dimensions was small in comparison with that caused by the lattice
truncation conditions. It was , therefore , concluded that the three dimen-
sional FD-TD program allows solutions wi th a level of accuracy comparable to

that of the two dimension al prugraiil .
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4 .0 DESCRIPTION OF TH E PRESENT RESEARCH PROGRAM

4 .1 In t roduct ion -
Electromagnetic coupling and shielding problems have traditi onally been

difficult to treat with analy tical or numerical methods because of the fail-
ure of these methods to adequately resolve the effects of the apertures ,
curvatures , corners , and internal contents of structures . A practical
numerical method has been desired to allow the direct modeling and solution
of complex realistic coupling problems. The purpose of this research program
was to evaluate the su itability of the finite-difference time-domain (FD-ID)

solu tion method for Maxwell ’s equa ti ons to determ i ne the amount of elec tro-
ma gne ti c coupl i ng thr ough an aper ture in to  an enclose d con duct in g con ta iner .

The FD—TD method allows , i n pr inc i p le , the com puta t i on of the i nternal
fiel ds of complex conducting geometries. However , before the present
research program , this method had not been utilized and evaluatc~ for any
conducting geometries. To build up confidence in the ED-ID method for

fu ture  app l i c a t i ons , i t  was des i red to evalua te  the usa ge of the metho d for
certain sim p le , generic metal structures.

Dur i ng the present research pro gram , two specific metal structures were

used in this evaluation: the first , an a l u m i num cyl i nde r wi th one open en d ;
the second , the nose cone section of a missile. Each structure was modeled

us ing the FD-TD method to compute the internal EM fields generated by an

inci dent plane wave propagating along the structure axis. The results of

the cylin der model were then compared to available theoretica l and experi-

mental data . Final evaluation of the nose cone results will be possible

when relia ble experimental data for this geometry is obtained in a future

research program .

The following section describes each coupling-analysis problem con-
sidered and summarizes the steps taken to solve each problem . Detailed
descriptions of the results follow in succeeding sections.
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4.2 Description of Coupling -Analys is Problems Considered

4.2.1 Task 1: Prediction of the Coupling Into
an Open-En ded Cylinder 

_____________

The FD-TD technique was employed to solve the following electromagnetic
coupl ing  p roblem :

Interacting structure - Circ ular (19.0 cm diameter), 68.5 cm long ,

open-ended aluminum cylinder , as shown in Figure 8;

Incident wave - 300 MHz plane wave propagating down the cylinder

ax is toward its open end;

Desired fields - Each component of total E and tota l H in the axial

cross-section plane of the cylinder down to 40 cm from the open en d.
First , with the cross-section plane parallel to the incident E, and

again with the plane parallel to the incident iT;

Resolut ion - 0.5 cm uniformly throughou t the mapping planes;

Plotted values - In decibels relative to an incident E of 1 voltI

meter and an incident -I of 1/377 ampere/meter.

To solve this coupling problem , an existin g FD-TD computer code was

suita bly modified to model the cylinder of Figure 8~ The follow ing steps

were taken :

a. The existing FD-TD computer code was modified for the Control

Data STAR-100 computer. A 24 x 163 x 24 - cell lattice was

pro grammed , with even symmetry of the incident fields and

cy l i nder assume d abou t l a t t i ce p lanes x = 24.5 6 and z = 246.

b. The cylinder geometry of Figure 8 was mapped into the new

finite-d i fference lattice for a unit cell diameter of 6 = 0.5 cm.

c. The FD-TD program was run for this geometry for 800 time steps

(equivalent to 2.0 cycles of the incident wave) assuming loss-
less air within the cylinder. 106 words of memory and 3.5
minutes of central processor time were required on the STAR-100.
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d. The compute d results  for E an d iT along the cylinder axis were
plotted at intervals of 200 time steps (0.5 cycle of the m ci-

dent wave). Slow convergence of the results to the sinusoidal
steady state was observed .

e. The FD-TD program was re-run , this time assuming a sli ght
amount of isotropic loss 

~°jnt 
= 0.01 mho/m) for the air with-

in the cylinder to increase the rate of convergence to the

steady state . Again , 800 time ste ps were completed .

f. Plo tti ng of ~ an d H a long the cy l in der ax i s for the secon d run
i n di cated a much more ra p i d conver gence to the stea dy state .

The final computed results for the fields were then reduced to

contour maps alon g the symmetry planes , and to sim ple graphs

at selected cuts through the symmetry planes.

4.2.2 Task 2: Prediction of the Coupling Into
a Missile Nose Cone

The FD-TD technique was employed to solve the fol l owing electromagnetic
coupl in g problem :

Interacting structure - Aluminum nose cone , shown in Figure 9, with

two apertures: a circular one in the nose , and a sleeve fitting

located 23-1/3 cm aft. Miss ile body geometry beyond sleeve fitting
assumed to continue to infinity with constant cross-section shape .

Aperture cases investigated :

Trial 1 - Sleeve fitting open , nose aperture closed ,

Tr i al 2 - Both apertures open;

Incident wave - 300 MHz plane wave propagating down the axis of the

structure toward its nose aperture ,

Desired fields - Each componen t of total ~ and total H in the axial

cross-section plane of the nose cone. F i rst , with the cross-section

plane parallel to the incident E , and again with the plane parallel

to the incident iT;
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Resolution - 1/3 cm uniformly throughout the mapping planes ;

Plotted values - In decibels relative to an incident £ of 1 volt !

meter and an incident H of 1/377 ampere/meter.

To solve this coupling problem , the follow i ng ste ps were taken :

a. The 24 x 163 x 24 - cell lattice of the aluminum cylinder pro-

gram was truncated to 24 x 100 x 24 cells .

b. The geometry of Figure 9 was mapped into the new finite-difference

latt ice for a unit cell diameter of 6 = 1/3 cm.

c. The FD-TD program was run for the aperture case of Trial 1 for

900 time steps (equivalent to 1.5 cycles of the incident wave),
assuming a sli ght amount of isotropic loss (a. = 0.025 mho/m )

with in the cylinder to speed the rate of convergence. 6 x 10

words of memory and 2.8 minutes of central processor time were

required .

d. The ED-ID program was run for the aperture case of Trial 2 for

900 time steps , assuming the same interior loss ,

e. For each trial , the final computed results for E and H were

reduced to contou r maps along the symmetry planes .

4.3 Details and Results of Task 1:
Coupl ing Into an Open-Ended Cylinder

4 .3 .1 Cylin der Model

Figures 10 and 11 depict the geometry of the cylinder model used for

Task 1 . Figure 10 shows the stepped-surface model of the cylinder wall used

for lat tice planes j = 14 through j - 150. This model was specified by set-

ting the conduc tivit y, a, equal to that of aluminum (3.7 x l0~ mho /m) for

i nd iv i dual E
~
, ~~ and E

~ 
components nearest the desired circular locus.

This resulted in the modeling of the cylinder wall as an aluminum sheet
having virtually zero thickness. Figure 11 shows the positioning of the
cylinder relative to the front and back planes of the lattice. As shown in

this figure , the cylinder aperture was located at plane ,j 14 , and the
cylinder back- plane was located at plane j = 151 . To the front and rear of
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the cyl i nder lay regions of a i r. In the front air region , the s imulate d 300
MHz incident wave was generated at plane j 3 with the field components Ez
and H . -x

For all lattice cells exte rior to the model cy li nder , the anisotropic
conduc tivity , °ext’ equal to 0.01 mho/ni was assumed to help improve the
lattice truncation conditions , as discussed in Section 3.4.3. This value of

°ext caused the exponential decay of Ex and Ey fields in the exterior region
with an effective skin depth of about 110 lattice cells.

Using the computer program listed in App endix A , the cy linder model was
completely specified by punching 3 groups of 24 car d s , giving a total of 72

cards. Card grou p 1 specified the air medi um of the lattice in front and

back of the cylinder (planes j = 0 through j = 13 and planes j = 152 through
j = 163). Card group 2 specified the stepped-surface model of the cylinder
(planes j = 14 through j = 150). Finally, card group 3 specified the

cylin der backplane (plane j 151). The format of the data cards is dis-

cussed in Appendix A.

4 .3 .2 Convergence of the Computer Fields

Two 800 time-step programs (each equivalent to 2.0 cycles of the inci-

dent wave) were run durin g Task 1 in order to investigate the rate of con-

vergence of the computed fields to the sinusoidal steady state . The first
program assumed lossless air wi thin the cylinder; the second program assumed

a small isotropic conductivity , Gjnt~ 
equal to 0 .01 mho/m within the cylinder.

The purpose of modeling the slightly lossy air was to cause the reactive

fiel ds within the cylinder to converge more rapidly to the expected beyond-

cutoff condition.

Figures 12 and 13 are graphs of the computed total electric field ,

IE z/E zi t (in decibels) along the axis of the cylinder for the cases of
0i nt  = 0 and °int 

= 0.01 mho/m , respectively. In Figure 12 , curves are
p lotte d for the cases n = 400 and n = 800 time ste ps ; in Fi gu 2 13, C L . V t ~

are plotted for n = 200 , n = 400, n = 600, and n = 800 time steps . Each
curve gives the computed field envelo pe during the 200 time-ste ps period

(0.5 cycle of the incident wave) before the spec ified value of n. In Figure

13 , it should be noted that , at 200 time steps , the incident wave penetrdted
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only about 45 cm i nto the cylinder , causin g the sharp downward break of the

n = 200 curve. For all other curves , the incident wave penetrated fully to
the cylinder backplane.

Comparing Figures 12 and 13, it is seen that the use of °in t  caused the
linear decibel slope at the cylinder aperture to lengthen from a maximum
depth of 12.5 cm to more than 25 cm after 800 time steps. Further , the ulti-
mate computed field attenuation increased frcm about 30 dB to almost 55 dB.
This improvement in the convergence of the cylinder ’s in ternal fields to the

expected cutoff condition was much more than the 11 dB of field decay that

°int would cause for a wave propagating the full length of the cylinder.

Ev idently , the transient internal fields were highly reactive (carried little

real power flow ) and quickly dissipated when forced to supply energy to main-
tain an electric field distribution across a slightly lossy medium.

Figure 13 also in dicates the rate of field convergence to the steady

state under the condition of finite 0int~ 
Once the wave fields were estab-

lished throughout the cylinder (curves ri = 400 , 600, and 800), the pr incipal
effect of an added 200 program time steps was the lengthening of the linear
decibel slope extending from the aperture , and a consequent deepending of

the field null within the cylinder. Noting the break points of the curves

from the linear decibel slope , each 200 time-step increase is seen to have
lengthened the slope by about 10 cm and decreased the res idual internal
fields by about 10 dB.

4.3.3 Comparison With Available Data

Electric Field Along the Cylinder Axis

Using results of the FD-TD program , Figure 14 graphs the computed

Ez/EZ i I  along the cylinder axis as a solid curve. The ED-ID results are

after 800 time steps with °in t  = 0.01 mho/m (the n = 800 curve of Figure 13).

For comparison , experimental results 24 are shown as circled points , and com-
puted results using the BOR-3 body of revolution code24 are graphed as a
dashed curve .

From Figure 14, it is seen that the ED-ID curve lies between the BOR-3

theory and the experimental results . The ED-ID and BOR-3 curves have nearly
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the same slope down to about -55 dB , where the ED-ID curve levels off.
However , the experimental results level out at only -30 dB . A previous
study of the experimental procedure has shown that this saturation was due
to ina dequate suppression of radiated power at the third harmonic of the
nominal test frequency , which excited an above-cutoff mode in the cylinder .’~

5

This study has also indicated that the experimental results were consistently
1-2 dB above the likely actual values due to problems in the design and

mounting of the test probe.25 Consi deration of these experimental uncer-

tainties improves the correlation between the test data and the FD-TD results .

Overall , the ED-ID method is seen to yield ricults for 
~z~~~inc

1 along
the cylinder axis which agree well with availabl e .oretical and ex peri-
mental results in terms of both relative decay rate and absolute magnitudes .

Next , comparison of data will be made for the electric field along vertical
and horizontal radial lines of the cylinder.

Electric Field Along Vertical Radial Lines

Using results of the FD-TD program , Fi gure 15 graphs the computed
Ez/Ez i I  along vertical , radial lines of the cylinder (parallel to Ezi c ).

Separate soli d curves are p lotted for ra di al li nes at di stances , d , of 0 cm ,

10 cm , 20 cm , and 35 cm from the aperture. Again , the FD-TD results are
after 800 time steps with aint 

= 0.01 mho/m . For comparison , experimental
results are shown as circled points for the cases d = 0 cm and d = 10 cm.
(Experimental results at greater depths are not shown because of their rapid
saturation at -30 dB due to the third -harmonic test problem.)

From Figure 15 , it is seen that the experimental results at d = 0 cm
and d = 10 cm are all within 2 dB of the FD-ID results. This correlation is
very good ; yet it might be improved upon consideration of the likely 1-2 dB
“high” readings reported for the test probe .

Electr i c Fiel d Al ong Horizontal Rad ial Li nes

Figure 16 is s imilar to Figure 15 except that IE ~~ zi is graphed
along several horizontal radial lines of the cylinder (parallel to Hxinc ).
The experimental results are seen to be within 3 dB of the ED-ID results

over most of the range of the results .
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4 .3.4 Compu ted Field Maps

Using results of the FD-TD program (800 time steps , °int 
= 0.01 mho/m),

Figures 17 and 18 graph contour maps of the computed field components at the

cylinder ’ s ver ti cal and hor i zontal symmetry p lanes , res pec t ivel y. All com-
ponent magn it udes are normal i zed to ei ther I~Z I 

~
1 or !H x i nc~ 

=

and are given as decibel numbers . Contours are plotted at exact 6 dB inter-

vals by using a linear interpolation method to determine each contour ’s

posi ti on between adjacent f i el d envelo pe po i nts . Althou gh the latt i ce cell
diameter , 6, equals 0.5 cm , th i s inter pol ati on metho d al lows the generation
of smooth curves in most cases without a 0.5 ciii-period stair—case effect.

It should be noted that only three field components are non-zero at

each symme try plane: E
~ . 

H , and E~ at the vertical p lane; and E
~
. Hx~ 

and

H at the horizontal plane. This tact was de i ved in Section 3.4.5 of t ;i s
Sy

report.
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4.4 Details and Results of Task 2:
Coupling Into a Mis sile Nose Cone

4.4.1 Nose Cone Model

Figures 19 and 20 depict the geometry of the nose cone mode l used for
Task 2. Figure 19 shows the stepped-surface niodel of the nose cone wal l
used at the front circular aperture and at the rear sleeve-fitting aperture .

A value of o equal to 3.7 x l0~ mho/m (aluminum ) was assigned to the field

components at the wall. Figure 20 shows the positioning of the nose cone
relat ive to the front and back planes of the lattice. As shown in this
figure , the nose aperture was located at plane j = 11 , and the sleeve fitting
was located at planes j = 74 - ~2. To the front of the nose cone lay a
region of air; to the rear of the nose cone , the missile body was assumed
to extend to infinity with a constant circular cross section . Based upon
the FD-TD results of the cylinder problem of Task 1 , this infinitely-lon g--

missile assumption was not expected to cause significant error. (In fact ,
very little wave reflection had been computed at the cylinder backplane at
intermediate time steps.) In the front air reg ion , the simulated 300 MHz

inci dent wave was generated at plane j = 3 with the field components E
~ 

and

H .x
For all lattice cells exterior to the model nose cone , the anisotropic

conductivity , 0ext’ equal to 0.025 mho/m was assumed to help improve the

lattice truncation conditions , as discussed in  Section 3.4.3. This value of

0ext caused the exponential decay of E
~ 

and fields in the exterior reg ion
with an effective skin depth of about 65 lattice cells. To speed convergence
of the interior fiel ds , as discussed in Section 4.3.2, the isotropic con-
ductiv ity , °int ’ equal to 0 .025 mho/m was selected for the cylinder interior.

Using the computer program listed in Appendix A , the nose cone
geometries for both Trial 1 (sleeve-fitting open , nose aperture closed ) and
Trial 2 (both apertures open ) were specified by a total of 464 data cards.
Only 16 cards h~d to be re-punched to change from Trial 1 to Trial 2.
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4.4.2 Computed Field Ma_pa

Trial 1 -- Only Sleeve-Fitting _ Open

Using results of the FD-TD program (900 time steps , = 0.025 mho/m) ,

Figures 21 and 22 graph contour ma ps of the computed fiel d components at
the nose cone vertical and horizontal syninetry planes , respectively, for
Trial 1 . Contours are plotted at exact 10 dB intervals us i ng li nea r i nter-
polation. The intersections of the darker grid lines (spaced by 5 minor
divisions , a total of 6 = 1/3 cm) denotes the location of the field vector
components in the lattice symetry planes . Because of the stagqered posi-
tions of the field components around a lattice unit cell , these darker grid

lines may vary in position relative to the tixed nose cone walls by ~~~ =
4-1/6 cm , or 2.5 minor divisions.

It should be noted that the stepped-surface approximation of the smooth ,

tapered nose cone wall introduces cusp-like distorticn ~; in svvL ~ ~ th~
field contours . However , these distortions are only manifested wi thin about

1 cm of the point of each surface step. Very likely, the exact field contour
here can be found simply by drawing a smooth curve connecting the adjacent
undisturbed contou r sections.

Trial 2 - -  Both Apertures Open

Again , the FD—TD program was run for 900 time steps with °int 
= 0.025

mho/m. Figures 23 and 24 graph contour maps analogous to those of Figures
21 and 22. Comparing the corresponding maps for Trial 1 and Trial 2, it is

seen that opening the nose aperture had very little effect upon the field
contours near the sleeve fitting. Coupling between the two apertures

S occurred only at field levels l ower than -40 dB. For th i s reason , it was
decided not to run a Trial 3 (only nose aperture open) because the resultir -

field contours near the nose would almost certainly be the same as for Trial
2.
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/
5.0 DISCUSSION AND CONCLUSIONS

This research program demonstrated that the FD-TD method can be
successfully applied to axial -incidence , electromagnetic coupling problems
involving hi ghly conducting structures with hole and sleeve-type apertures.
Accuracy of the FD-TD results was very good relative to the uncertainties of
avail able experimental and numerical-theory approaches . Convergence of the

EM fields to the sinusoidal steady state occurred within about 2 cycles of

the incident wave when a slight aint was assigned to the structure interior.
Th is resulted in program running times of 3.5 minutes or less on the
CDC STAR-l0O for lO~ - cell lattices.

The FD-TD method appears to have great pr~iiise for applications involv-

ing conducting structures at arbitrary angles of incidence , and comb ination
conductin g - dielectric structures . Its ability to achieve finely-detailed

models of the interiors of such structures could be utilized to determine the
internal fields of many prac tical objects. The incorporation of potential

computer p rog ram accelerators , such as varia b le cell s ize , could result in

even more cost-effective results .
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APPENDIX A
FD-TD CclIPUTER PROGRAMS

A .1 INTRODUCT ION

Th is appendix documents the computer programs written during the present

research effort . Included are listings of the programs for the cylinder

prob lem and the nose cone prob lem and a descr i ption of the data car d forma t

employed . All computer programs were written using STAR Fortran Version 2.1

for processing by the Control Data STAR-lOO computer system under its 1.2

operating system . This Fortran version contains certain extensions to stan-

dar d Fo rt ran 26 that permit usage of the vector processing capabilities of

the STAR-lOU . The reader is referred to the STAR Fortran Manual for

detailed discussion of these features .27

A .2 PROGRAM LISTING FOR TASK 1: COUPLING INTO AN OPEN-ENDED CYLINDER

The follow ing 9 pages list the computer program for the 24 x 163 x 24

cell -- 800 time step run of the cylinder problem (Task 1). In the listed

pro b lem p arameters , FREQ = 3.0 E + 8 denotes the operating frequency , f =

300 MHz ; DX = 0.005 denotes the lattice cell diameter , ~S = 0.005 m; MPR

denotes the total number of iii edi a within the tiiodel , equa ’ to 3 (lossless

a i r , a l u m i num , sli ghtly lossy air); DATA EPS and DATA SIG g ive  the assume d

rela tive dielectric constant and conductivity (mhos/m) of each medium ; and

MINDT and MAXDT give the number of the first and last time step of the

algorithm.
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C ALONG TP4E CY LU’~OER A X I S  IN TO ITS OPEN END
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= OT / 2.0 / EPSZ
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PRINT 150’ 12
C

..... IV. I IME — s TE Jp ~’1NG 1_ quid .....
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.....EZ ENv tLOi~’E COMPu TA ~~ION. ....

~7 04 = VA 8S (A (9737 .M 24) 04)
5SY =
A ( 9787.M ;24) = Q 8VCTRL O4 ,BY;A (9787 .M;24)
04 = OSVCMPRS I A  (91b1 .r4~ 6U0 ) .~~x D ’ +)
D5 = VA8 S (D4 105)
By = O5 .GT.A (9ju2~ M ;24 ;

50 A (9812 .M 24)_ = QBVCT M L (D 5 ,B Y IA (9812 ,M $2 4 ))
C~~~~~ 

_ _ _ _ _ _ _ _ _ _ _ _

C .....i-IX I T E R A T I O N . . . . .
- 

~~~~60 WA~T~ 3P4 = JOEL • 593~~~ ( M A - J )
C —

C .....‘IA IN HX LOOPS.....
D T =  A (J901 .P4~ 599)
D2 = A (1 95l• 599)-A (1926 .M ;59fl .A 3226 .M;599)—A (9162 .M ;

599)
T~gOr~1415g9T

-
~~rJ1T. 02

C
C .....)IA tNV tLU )~E COMidU TAT1U’W~....

D4 = VABS (A (4476.P4 2’4) D4)
BY 4~~~1 Tc52b•MTZ4 J —

A( 4526.P4 24) = OSVCTRL (D 4 ,BY $A (4526 .M 24))
O~~~~QBVLMPRSTA Ls’up .P4;&UuJ,~ x;u4, 

— ____

OS = VABS (’)4*O5) -
3 D5~ liT. At ST ~l

60 A (4551’H 24) z QMV C T Il L I OS.B Y $A (4SS I .M$?~~~)

C
A. I-



C .....ifY LTt 5~A T I UN .....
A SSIGN Di. .DYN.598
A SSJbN D2 ,.UYN.5913

C ________________________
DO (U MA I,3
P4 JDEL • 5936’ (MA—l )

C- -—_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

C .....SOFT LATTICE TRUNCATION.....
A A I I J  U .5 W ( A l 1L 1 J ( + P I ) . A l l I 1 J S + M ) J
AA (2 22) = 0.333 • (A (11137.4122).A(111384-M$22).A(11139.M;

22))

A A t 2 4) = 0.333 • (A i11 159 •M) • ? . OW A ( l l i6 0 .M) )
AA A (1 ;600) = QBvx PNO (Aa (I ;24 ,3W $AAA (1 ;600))
A( 11137 .M 241 = p 8ycMP T s ( A I I p s L J . M ; b O u ,  , B w ; A I 1 1 1 3 1 * M ; 2 4 , r

C
C .....MAIN MY LOW’S.....

Dl = A (10513 .M 598)
A(91b3 .M ;598)—A (9162eM; 598J .A(6Sb3.M ;59131—A (bSTTS .M;

* 5~ 8T
A (10513+M 598) = Dl • 02

A (10512 .M 600) = QBVCT R L (AA A (1 600) ,BW ;a(10512 .14 ;600))
A (1U5L ~~4M 6 U U 1  U 5 V L S R L ( U . I J , 5 A*( i p 5I ~~~~.M b pU J )

C
.....ii ’r ENV [LOI’€ CUM idU IAJIU PJ. ....

04 = VAB S (A(11087•M ;24I;04)
O4.UJ.A( 1IIb g~+MJ~ 4i

70 A(11162 .M 24) = Q8VCTRLID4,By$A (1114S2 .M;24))
F REE

C
C ...,.MZ ITERATION .....

A SSIGN DI..DYN.573
A SSiGN D2,.L)YN.573

C
DO 80 MA 1,3
P4 = JOEL • 5936~~(P4A—l ,) -k

C
C .....SOF T LATTICE TRUNCATIO N.....

AA (2 ) = 0.5 • (A(5~~77+H)•A(5q73 .M))
AA (3 21 ) = 0.333 • (A(5877 .M ;21).A (5878 .M 21 .)•A(5879 .M I2I))
AA( 24 ) = 0 .5  * (4 (5 p9~~.J4 ) • 4(~~fl99.M))

A A A ( 1 600) = Q 8vX PND (AA (1 24),3W A A A (1 ; ’,00))
A~~~876.M 24) = Q6~ICkPRS (A (525.~~ 6Uu ),Bw 1#(~~87P,. M2 4)) —

C
C .....MA IN HZ LOOPS.....

Di A ( 5 2 7 7 . M ; 5 7 3 )
— 

~ Z t ~5~8’Mt5T31 -* t~52~1’!15 7
’~t ‘A t  t95 t’ ~ t57’Tr-Ari 95?-I~M 157 

-

A (5277 .M 573) = Dl • 02
C—- -- - _ - - -  - - 

~~~~~~~~~~~

A (5251 .M $600) z Q8VCTRL (AAA ()$S00 ).RW SA (S2SI .M I~~0O))_*0 aTS t’t~~V~~ ‘ 1,W Vr IWt n~.~ r x-t* ~~~~~ r~ v,-’rrr -



FR EE
&2 CONTtNt ~f 

--_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

I F ( M C A L L .L E . 5 3 ) G O  TO 94

C . . . . . T RA N S V E RS E  PLAN E E164 .... .
H = l ~ 2 S936

C
— -----———.-....Ex, (2 TRuNCATIONS..... — 

—__________
A ( 6 5 6 2 . P 4 625) = A (5937•P4 ;625)
A (5937’PU825) = A (7?37 .H 6~S) 

— —

A (7237 .M 625 ) = A (62 6+P4 625)
A( 91b2•M4625 1 A (5537 .M ;625)
A( 8537 •M 625) = A (9837 .M ;625
A (9M T~MTb25) At3~2ô+MT625)

C 
______________ _______ _________________ _____

.....TrrIE RA TION ...~~ —- 5— — —  — -

A SSIG N D1 ,.DYN.599
A 5SIGN D2..01r4.599
Dl = A ( 3 9 0 1 .M 599)
02 = A (195 1 .14;599) —A ( 192o~ M ;s99 ‘A ~

-
~-2-26+M;59g -A t9162’M ;

I 5-99-r
A ( 3 9 0 1•M 599) = Dl • 02
04 = V A B S ( A ( 4 4 7 6 • M 1 2 4 ) 4 D 4 )
BY = D 4 . G T .A (4 5 2 6 • P U 2 4 )
P l 4 5 2 6~ 1’~;?4 )  = Q~ VCTkL lD ’ . ,BY ;A (4 S2b .M i2c.) )
04 = Q 8VC M P R S (A ( 3900 + P4 6 0 0 ) , 9X D4)
05 = v A B S ( 0 4 D 5) —— —______ — —

BY = D5 .GT.A(4551-’M 24) -
A(4 55I+M *24 ) = OsiVCr R L (O5 ,8Y;AI4 I.4;~~4YI

• FREE
C
C .....MZ ITERATION.....

~~~~~~~ pl,.DrN .573
A SSIGN 02,.OYN.573
A A(2 ) = 0.5 • (A(58 ,7•M )4A (5M7B ~ ’*,5
AA(3 ;21 ) = 0.333 • (A (5877 .M ;21)+A(5878.M 21)+A(S879+M 21))
A A (I c ~4I  = U.~ ~ IA (55’~~~+M) •
A A A (l 600) = Q 8VX PND (AA (U 24 ) ,~~W ;A A A (1 ;60O))
A (557b .PU241 0p~iy CMPpt 5lA~~,~~~~ .M u , p p ; ,~3 w ; A I 5 87P ’, e M ; 2 4 p ;
Dl = A (5277 •P4;573)
02 = A ( 8 5~~~~4 M 4 5 ( J ) — A I b 5 2 . M i 5 7 3 )  +A( 1951 + 5 (3 5 - A 1 1 9 5 2 + M 5(.3)
A (5277 •M 573) = Dl • 02

= U1J V CU (L (AAAI1 ;~~oo ) ,B W ;A(’,~ 51 .M;F,U Ol )
A (5251 .M 600) = Q 8VCTR L (0.0 ,RX A (5251 .M 1600))

_____________________  ____________________________________________

94 13 = SECOND (CP) 
______________________________________

5~’RIN1 150, 13 — - - -

C 
__________ _____C- — .....~~JE LD ~V rLOP~ QnUTT’~~..- ..

)() 100 ~~~~~~~~~~~~~~~~~~~~~~~~
! - -  -

10~) C ‘~ 4 1 1~~$’I

L —  ____ _____________ —



IF ( J .LQ .MAAD T ,GU Tu lO j
GO T O 199

C

C .....AT )~ORI ZONTA L 5yM M~~TRy PLANE .....
1 0 l PPTNT I~~Z. J
1 02 FORMA T (LH 1 ,52X ,27HEZ ENVELOP E FOR TIME STEP = .1 5.

1 //,62X,ISHPLANE Z = ~4 DX ,/ / , 2 X , 1H J ,/ )
_____  

CA LL E N V( 3 8 5 0 , i . O E- ’ 4 / R B )  
_____________

PPIN T 103, (N (L I),L I 1,~~4) 
-—

103 FORMAT ( / , . 8 X,2 4 1 5,2x ,  1MI )

PR INT 104 , J
104 Fp PMA T (1HI ,5~ X ,~~THMX ENV EL OPE ~OM TIME S1E~ ,15,

1 //,62X ,15HPLAN E Z = 24 DX ,//,2X ,1HJ ,/)
CALL
PRINT 103, ( N ( L I ) , L I= 1 ,2 4 )

PR INT 105, J
1 05 FORMA 1 (1H1 ,5~~A, c~(HHY ENV EL Up~~ ~~~ T IME ~~it.P ,15.

I // ,62X, 15HPLANE Z = 24 DX ,// ,2X ,lMJ ,/~
CALL ENV (5225.3.I7E.b)
PRINT 103’ ( N ( L I ) , L 1 1,24 )

C
C .....AT VERTICAL SY MMETR Y PLANE... ..

PRINT 106. ~J
106 FO R MAT ( 1 H 1 ,52X , 27 P- I EZ  ENVELOPE FOR TIME çTE° =~~I5,f,,~~ZX~~L7dPCANETX = 74 .5* D X .,/ ,? X f l H J~~/ )

CALL ENV (3875 ,1.0E .4/R~~)
id R I N I  107.  (~~~LiYd T~T .24,  — 

107 F O P M A T ( / / , RX , 2 4 1 5 , 2 X ,  1HK )
C

P R I N T  l 08~ J
108 FORMA T (1H 1 ,52X ,27HHX ENVELOP E ~OM TIME STEP ,T 5.

1 - //,62X ,17)-$PLANE x = 24.5 DX ,//,2X ,1 HJ,,)
CALL ENV (4550 ,3.77E .61
PR INT 1 07, (N (L I),L 1 l ,24) -

C
PRINT 10 9~ J

i~~~~ F O H M A E ( 1 p 1 l , 5 2 A , 2 7r1Ey ENVELOPE ~ UR T I ME  STEP = ,~~~~
‘,,

1 //,62X ,17HPLANE X = ?4 .5*DX ,//,2X ,1HJ,/)
CALL ENV (~~575,I.UE’4,R~jJ
PR INT 107, (N (L I) ,LI I,24)

C
1 99 CONTINUE 

___________________

~O0 CONT INUE
= SECOND (CP )

~‘PINT 150. 14 - -

STOP
INTl 

- — -  - 



Sq~ ROU TjNE E~~((LOC ,sCA LE ,
D IMENSIO N IPR ( 2 5 ) .A ( 9 7 3 5 o 4 )
COMMON A
DO 2 LA 1,162
Ui = — LA

LC = L.B • I
LU = LBw5936~~~ LOC
IPR (1 24) = SCAL E * A ( LD . 1 24 )
A LD •1l2’.)~~~ 0.

2 PRINT 3. LCe (IPR (LF),LF=l,24) 
___________

3 FOKMATILA ,13 ,SA ,2’ .I5)
RETU RN 

________

ENp ~~~ _ _ _ _ _ _



A .3 PROGRAM LISTING FOR TAS K 2: COUPLING INTO THE NOSE
CONE OF A MISSILE

Most of the Fortran statements of the nose cone program are identical

to those of the cylinder program of the preceding appendix section . The

necessary changes involve on ly the reduction of the length of the main

data storage vector , A , and new data-read cards . Therefore , in this section
we list only the modifications of the cylinder program .



PROG RAM FOTO (IN PUT ,OUT PUT ,TA PE6O=TNP ,,T)
C
C PUN B— STEADY 31) 0 MHZ TEM I R RA D IA T I O N  OF A ~~~~ CM
C D I A M F T E P .  ALU MINUM NOSE CONE ——

C TRIAL 2— BOTH SLEEVE F ITTING AND NOSE A PEP TtJPE S APE OPEN

C INCIDENT W A V E  HAS THE COM PONENLS E7 AND MX , AND IS DIPECTE
C ALONG THE NO SE CONE A X I S
0 24 x 1 00 x 24 CELL CUBIC LATTI CE Is USED
C U NIT CELL DIAMETE R = Dx = 0.33 CM = WA V E LEN ( TH/ 00

DI MENSION A (599536),Z (5936),Al (600) ,A 2 (600),AAA (f ,00).
1 AA (2 5 ) , N (25),DD (?4) ,DF (~~4),C 4 (g) ,CB (g),(p5 (3) ,5TG(3)

C .....I. PROBLEM PARAMETERS.....
FRED = 3.0E+8
DX = 0.01/3.0
M PR = 1

DATA EPS / 1.0, .1.0. 1.0 /
D A T A  SIC’ / 0 .0 .  3 .7E•7 .  0 .O?c  /
MINDT = 1
MAX O T = 900

C . . . . .I I I.  LOAD VE CTOR A . . . . .
.....ZE RO I N I T IA L  F IEL DS . . . . .

l c I ;5 9 36 )  = 0.
A U 5 936) = 0. - 

—

A (593601;59315) = 0.

o . .. . .TYPE OF MEDIIJP4 .. . . .
PEAD 4, (Z ( I ) . I= 1 ,6 f l 0 )

4 FORMAT (75F1.0) 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _R E AD 4.  (Z (I) .I=2601 ,3?OO )

PFAD 4,_ (l (I), 1 1 301 ,1Q 00 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1)fl s i = ? , I n
—~~~~ m E L  .~ ( I — I )  •

c ~~~~~~~~~~~~~~~~~~ • / ( % * 5 Q ).~~) 
- - ___________________

‘Sin 0~ ~~~ ~~~~~~~~~ ~ 
- - -

~~. ~1~ 1 • 1 - 
~~~~~~~~~ - —5-- - — - -  -

Ji li  - ~ ‘ •~~~



P F A O 4,_ ( Z ( I ) , 1 1 3 0 1 , l 9 0 0 )  
_ _ _ _

10(1 = (IA—I ) • 5936
AUOEL .I ;S936 = Z(l;5q36)
RE4O 4. (Z (I),I 1,600)
READ_4,_ (Z ( I ) , I = 2 6 0 1 , 3 ? 0 0 )  _________________
00 6 i8 1,6
IDEL = (IA + IB - 1 ) * 593~ - ______  _____

6 A ( I D E L + 1 5936) = Zcl ;5936 )
DO 7 1 R9 ,100 

-—

10(1 = ( I — i )  • 59 36
7 A( IDEL .1 5936) = Z (1 5936)

RE AD 4, (Z (I),1 1’600)
READ 4, (Z (I),I=2601 ,320-) )
RE AD 4, (flI) ,I 1301 ,19u~- )
DO 8 1 74,80
JOEL = ( I — I )  * 5936

8 AUDEL+l ;5936 = Z (I;5936)
00 9_ 1 83,87 

_____________________

IDEL = (I—I; • S936
9 A (1OEL .1 ;5~~3~ =_ Z ( 1;5 9 3 6)  

____ ________

PFAD 4.  c z c 1 ) , r = I 3 o 1 . I g p o )
I =
IDFE = 1 1— 1 )  • 5936 ——

A -UDEL .I ;5936 = Z (1 5936)

READ 4, (Z (I), I 1 .6n0) 
— _ _ _ _ _ _ _ _

RFA.D_4._ (Zt1 ) .T= ?6fl~~,3~~fl n) ___________

RE AD 4. (Z (I ),I= 13 01 ,1900 )
t = B 2  

_ _ _ _ _ _  -

IDEL = (1—1 ) * 5936
A( [DEL .1;5936) Zc1 ;5936

PFAD 4, (Z (I) ,I 1s600) 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

REAl) 4- ,  (Z (I ) ,I 2601.3?00)
P F A O 4,  (Z (I),I=130 1 ,l900)
I 88
IDEL = (1— 1 ) • ~936

• A( IDEL .1 5936; = Z (I;5936)
-5

12 = SECOND (CP )
____- -

.... Iv .  T IME—STLP PINI [flOP.1.. .. .
DO ?Oo J~~M1P401, M~~*DT

* ‘~~~~~LO*T (J)~~~I) • ~~~ ____ - -

L a • II I i~~ % . n A T  i

I r t ~~ *Lt.. .u’.))) ~‘C~ L L ’3



R2 CONTINUE
IF (MCALL .LE.32 )GO TO 94 - 

—C
C .....TRANSVERSE PLANE ~ 1 Ol...,. -

M = 99 * 5936

END

SUBROUT INE E N V ( L O C , S C A L E )
D IM E N S I O N_ IPR (25) ,A (599536) 

______

COMMON A
00 2 LA=],99 

— --

LB = 100 — LA
LC_ =_ LB_ •__I ______________________________________

LI) = L8*5936 • LOC
IPPU;24 = SCALE * A (LD .1 ?4) 

__________

A ( L D . l ; 2 4 ) = 0.
2 PRINT 3, LC. (IPR (LF),LF=1,24)
3 FO RMAT ( 1X ,I3 ,5x ,24I’-~)

RFTURN _______________________________________

END



A.4 DAT A CAR D FORMAT

The data car d s s pec i fy the ty pe of me d ium a t each loca t ion  of an el ec-
tric fiel d component. Up to 9 distinct media can be specified within a
lattice.

Us ing the Fortran statement 4 FORMAT (75F1.O) a medium-type integer
1 , 2,..., 9 can be assigne d to the 600 locat i ons of an electr i c fiel d com-
ponent in one plane j = constant with only 8 data cards. The 600 locations

~tre ordered as shown in Fi gure A- l . With the 75Fl.O format , we have

0 t C d Assi gns Type Integer toa a ar 
Consecut ive Locations

1 I - 75
2 75 - 150

3 151 - 225

4 226 - 300
5 301 - 375
6 376 - 450
7 45~I - 525

8 52s - 600

In all data car d s , column 25 . column 50, arid columns 75 - 80 are left b 1~ ii~



kE 
k
E 

k
E

t~ 1
z 

I
x

23 23~ 23 576 577 578 ... 598 599 600

22 22½ 22 551 552 553 . . . 573 574 575

21 21½ 21 526 527 528 . .. 548 549 550

2 2½ 2 51 52 53 . . . 73 74 75

1 1½ 1 26 27 28 . . .  48 49 50

22½
~~~~
3L24

~

FIGURE A- l ORDERING OF THE ELECTRIC FIELD COMPONENT LOCATIONS

IN THE LATTICE PLANE j = CONSTANT
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The media-ty~
one plane I con5
with plane j =

I
i Coordinate
Field CompoflE

Card
Group

- 1

2Card
Group 2p

‘S Card
Group J-l
J-l (

Fewer than (J—l) cI 0 ~ pendent of j for a
_____ ‘~ L 

~fJ 2.2 statements READ 4L 
of this appendix.l~ jJJjJ2.OI. I

Jill! .8
11111h25 llh(1~ ~~

MICROCOPy RESOLUtION lEST CHART
NAPAP ~4AL ~PI)~~ AU fl IA  I PCI 196P A



tta for each field component are read into the program
at time , beginning with plane ,j = 1 and ending

i the fol l owing order:

Field Number of 
Component Data Cards

E
~ 

8
E
~ 

8
8

E 8x
8

8

E 8x
E
~ 

8
E~ 8

groups can be used if the system geometry is inde-
iber of lattice planes. For example , see Fortran
DO 5, DO 6, and DO 7 of the cylinder program (Run A)

A- 17
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