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I. INTRODUCTION

The focus of this paper is on image segmentation processes, collec-

tively referred to as a “low—level” vision system. The low—level processes

have been applied to various unconstrained image domains and function

to partition large amounts of sensory visual data into organized components

with associated attributes . This output forms the basis for further

(semantic) processing . Together, the low—level and high—level

processes form the VISIONS (Visual Integration by Semantic Interpretation

Of Natural Scenes) system [HAN74 ,HAN76 ,HAN78,R1S74,R1S77].

The programs which will be discussed here transform a large spatial

array of pixels (picture elements) into a more compact representation

through the exploitation of visual features, e.g., intensity , color,

texture , etc. The goal is to detect a relative feature invariance

across an area of the image and then to label all the pixels in any such

area as belonging to the same region. Regions can be detected through

global analyses which find interesting areas by ignoring the local

textural configurations of the data, in conjunction with local analyses

which act as a fine—tuning mechanism both to resolve global ambiguities

and to accurately delimit region boundaries.

1.1 Segmentation Evaluation

When evaluating the results of a segmentation algorithm , it is

important to ignore the semantic biases that enable humans to see

complex visual entities as single objects instead of seeing their component

elements. In general, the regions generated by the low—level system will

not correspond to objects or even parts of objects, but rather they will

correspond to relatively homogeneous visual surfaces or parts of surfaces.
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For example, a shadow which lies beneath the body of a car will be

detected as a region separate from the pavement upon which it is cast.

Further , the shadow region could conceivably merge with black tires or

any other adjacent dark object. The overall VISIONS system will hopefully

be able to recover the underlying object parts through predictive model

fitting. [n this example, the high—level processes might hypothesize

the presence of a car on the basis of other information in the segmentation.

The location of the tires may then be deducable even in the absence of

clear sensory information.

Boundary placement presents a further problem in the evaluation of

a segmentation. When two adjacent surfaces do not have a clearly

defined boundary , that is, if for example there is a slowly changing

gradient across them , then the placement of the boundary may be quite

arbitrary . Again , it may be possible to predict and accurately delimit

the location of the underlying object boundaries, based on, e.g., shape

and linearity assumptions. However , it may not be possible to precisely

determine——by machine or human——where the surface boundaries belong since

surfaces can have arbitrary (unpredictable) features.

Finally , since the level of segmentation detail necessary to satisfy

an interpretive system is in general ambiguous, the regions which comprise

the segmentation may have to be processed and structured in a hierarchical

graph, each layer representing a finer level of detail in the segmentation

of the parent region. In this manner , a recursive segmentation (which will

be addressed in Section VIII) is analogous to the process of describing

complex objects in terms of components and sub—components. 
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1.2 Local Spatial Region Growing

Initially researchers in scene analysis approached the problem

of segmentation with the development of local (nei ghborhood—oriented)

image transformations. A region grower [BRI7O] is an example of a local

operator through which adjacent pixels are associated with the same

symbolic region label if they are within a predefined threshold of

each other.

This operator will extract surfaces optimally if the minimum difference

in the feature value across any surface boundary is greater than the maximum

feature difference for a pair of adjacent pixels which are internal to any

surface in the image. Even if such a feature were found , the problem of

setting the difference—threshold (theta) remains: theta should be set

to that maximum internal feature difference. If it is set too low,

the resulting segmentation will be fragmented in undesirable ways. If

theta is set too high, regions will appear overmerged with respect

to the underlying surfaces.

Given that it is extremely unlikely to find a single threshold

which works correctly on all portions of the image, a variable—threshold

region grower can be developed. This operator might use locally measurable

pixel variation as a criterion for pixel merging. But even this improvement

will not necessarily facilitate discrimination of internal variations

(e.g., due to texture or lighting) from those variations which represent

the boundaries of adjacent surfaces. This results in arbitrary splitting

and merging of regions.
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1.3 Global Feature Analysis

An alternative approach to segmentation relies primarily on global

feature statistics, i.e., computations that ignore the spatial location

of pixels [NAG77,0HL75 ,PR177J . Prominent peaks in the probability

density function (histogram) of a feature indicate the most frequently

occurring values in the feature—image. The global analysis makes the

assumption that the peaks —— and the clusters of points that extend

from them —— correspond to distinct surfaces in the image.
The basic paradigm of this approach is to (1) identify the major

peaks in the distribution of a feature and (2) assign a symbolic label

to image pixels according to the cluster that they fall in. Adjacent

pixels that bear the same cluster label can then be grouped and relabelled

as belonging to the same region. This approach will work optimally

under the following conditions:

(1) There is a one—to—many correspondence between cluster and
surface.

(2) The distributions of individual surfaces do not overlap in
the overall histogram of the feature.

Violating the first condition is very difficult to remedy . Suppose

that the distribution of feature values of a single surface generates

two or more clusters. This can occur whenever a surface is textured

with distinct atomic elements (micro—texture elements) so that each

element belongs to a different cluster. In this case, a region labelling

process based on cluster affiliation will fragment the single surface

into many small pieces. This situation might be preventable by judicious

feature selection and preprocessing , such as smoothing textural variation ,

- — ___ _
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but there is no guarantee that this will be effective and a spatial

analysis of the texture elements may be necessary.

Problems can occur even when this condition is met. Suppose that

a cluster actually represents values from two visually distinguishable

surfaces. If these two surfaces are not adjacent in the image, that is

if they are separated by a surface whose feature values lie in another

cluster , then the final region labelling will be, fortuitously, successful .

However, if the two surfaces touch or if they touch another surface

whose feature values lie within the same cluster, they will be incorrectly

merged and labelled as the same region.

There is a partial solution to this problem, but it is costly.

The segmentation algorithm can be applied recursively to each region found

in the previous step for which there remain clusters in the histogram

of some feature. When all regions have unimodal histograms, the algorithm

terminates. This is, of course, an iterative, non—parallel process and

recursion should be minimized for real—time processing.

The second condition is rarely, if ever, satisfied in natural scenes

and it is the reason why clustering algorithms are difficult to implement .

But even the best clustering algorithm, i.e., ~he one that best dis-

criminates the peaks in a distribution , can only minimize errors if there

is cluster overlap (see Figure 1).

_ _
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points 
+ =

(a) Distribution (b) Distribution (c) Distribution of 1
of surface 1 of surface 2 and 2. 0 is the

optimal threshold
for mislabelling.

Figure 1. Histogram Overlap Causes Errors.

In the one—dimensional case shown in Figure 1 it can be seen tt~ac

although it is perhaps easy to isolate the two clusters of the combined dictrL-

bution, the algorithm will clearly induce a small percentage of erroneously

labelled image pixels; the information is simply not available in this

representation to determine which points in the shaded area will cor-

respond to which surface in the Image. Further , in n—dimensional feature

space, the problem of Identifying and delimiting the clusters produced

by real data poses a non—trivial problem (Figure 2). One would like

to use higher dimensional feature spaces to locate clusters which are

hidden In the Individual features and which may be more recognizable

due to feature dependencies.

1.4 Summary of Global Analysis Problems

There are three major problems associated with the global feature

clustering method, the first two of which have been alluded to:

(1) Clustering is a non—trivial process which often Involves

making two difficult decisions:

- 
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— —~~~~~~~~~~~ 
- -—-

~~~~~~
-

~~~~~~~~ — —•---- - -  — - -  
—-



7

2—dimensional feature space for the image in Figure 4. The y—axis
shows the distribution of red—filtered intensity values . The x—axis
shows the distribution of black—white intensity values . The origin
is in the upper—left corner.

Figure 2. n—DimensIonal Feature Space.

n—dimensional feature space is di f f icul t  to cluster even when n is
small. It is dif f icul t  to determine (1) what constitutes a peak and
(2) what points in the “gray areas” belon g to what clus ters.

- -  —~~~~~~~~~~~~~ —-  - -
~~~~~~~



B

(a) identification of the major peaks of the dis tr ibut ion of
a featu re , and

(b) determination of the ful l  extent of the clusters.

(2 ) Even the best clustering algor it hm wil l lead to er roneous

labelling of pixels since the formation of clusters in feature

space does not take into consideration the spatial distribution

of pixels in the image which formed the clusters.

(3) The mapping of a single symbolic cluster label back to an

image pixel is only a gross representation of the information

available in feature space; this disregards the relationship

of each pixel to the cluster as a whole, and its relationship

to other clusters.

1.5 Relaxation Labelling in Image Space Using Feature Clusters

Our approach will take into account both the global information

in feature space and the spatial organization of this data in the

image space (see Figure 3). Instead of mapping a single cluster label

back to each image point, the probability that an image point belongs

to each of the clusters can be mapped back to the image [SCH77I. This

will be accomplished by extracting a representative center point for

each cluster and using the relative distance of the feature values of

the pixel to these clusters in feature space to determine the probability

for each cluster label. The effect is to map most of the information in

feature space back into the image where spatial information can be

utilized. A relaxation labelling process is now rather natural since

the probability that an image point belongs to each of N clusters is

available. Similar labels will support each other , while different

labels will compete over local neighborhoods in the image. In this

- .—_.-
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_ _ -
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—
~~~~~~_. ~~~~



Compute a set
of features.

Eliminate unimodal features.
Select one or two features

from the remaining set.

Form a histogram
and extract significant

cluster centers .

Ass ign to each pixel an
n—tuple of probabilities indicating
its distance to each cluster center.

Use these probabilities in a
relaxation labelling process.

Crow regions of adjacent
pixels on the basis of
identical cluster labels.

Apply the algorithm
recursively to selected regions

of the segmented image .

FiZure 3. Segmentation Algorithm Overview.
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manner , each of the three weaknesses in the process of mapping histogram

clustering labels back to the image will either be entirely circumvented

or else reduced.
S

The following sections will expand each of the steps listed in

Figure 3. Results will be interspersed throughout the text and will

serve to demonstrate the efficacy of the algorithm as well as to contrast

our techniques with others in the literature.

II. COMPUTATION OF COLOR FEATURES

In this section, we will argue for the use of an opponent—color

feature transformation as an enhancement of the original red, green,

and blue image data. The images used in our segmentation experiments

consist of a 256
2 
array of pixels, with each pixel having a triple of

six—bit numbers corresponding to the light intensity at a point in

the grid as scanned through red , green, and blue filters. The total

information content is therefore 256 x 256 x 3 ~ 6 1.2 megabits. Figure

4 shows the red, green, and blue intensity outputs for a typical image

in our library of images.

Color Feature Space

The segmentation techniques depend on the measurement of some

feature(s) of the image pixels, possibly including those originally

used to represent the scene. For color Images , the usual measurements

are the red, green, and blue components (RGB) of the light level at

each pixel in the scene. From this information, a variety of other

representations, such as normalized RGB, or hue, saturation , and

Intensity (HSI), may be derived (TEN74,R1S771 ; because many of these
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(a) Red (b) Green

(c) Blue

Figure 4. Typical Scene Showing RGB Intensity Data.

This is a 1282 portion of a picture which was digitized to 5122 resolution
and quantized to six bits/pixel.
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trans formations are nonlinear , t hey give rise to d ist r ibut ions  with

unavoidable singularities [KEN76].  The presence of these singularities

may severely complicate analysis of the resulting histogram . In order

to avoid these dif f icul ties , it has been suggested that  analysis be

restricted to linear transformations of RGB , such as the YIQ representation

used in the television industry.

More recently, Sloan and Bajcsy rsLo75] have argued for the use of

an opponent—color representation which has been proposed as underlying

the color mechanisms in human vision [COR7O]. Simply stated , the effect

of this transformation is to paraineterize the RGB color data into an

equivalent set of features which have particular complementary colors

at the extremes of their scales; for example, a feature whose opponents

are blue and yellow would provide information on the relative amounts

of blue and yellow present. The “zero” point in the scale, where equal

amounts of each hue are present , is white.

Figure 5 illustrates a very simple linear computation of opponent

color features. Figure Sa is a standard way of depicting color informa-

tion on a triangle, where the most saturated possible values of R , G, and

B are associated with the vertices. A point interior to the triangle

represents a color which can be obtained by combining specific amounts

of the R , C, and B primaries; points on the perimeter a~e totally

saturated while interior points are less saturated (i.e., diluted by

white light). The interior point W , equidistant from the vertices,

represents white light composed of equal amounts of R, C, and B. It

- —- - 
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opponent— co lor
axis :
blue—yellow

(SLACX CRAY WHITE )

(a)
The color triangle. The axes passing through the
neutral gray point represent the opponent—color
features.

RED WRIT! CYAZ~i- 2 R — G — B  s_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  RED-C!&N
+ OPPONENT

GREEN WHITE H&GENTA
~~ - 2C- R-  B • • GREEN-HfiGENTA

+ 0 - OPPONENT

BLUE WRITE YELLOW1. 2B- H - c • • BLUE-YELLOW
+ 0 - OPPONENT

I — (R~4G+B) /3 3L~Ci 9TE INTENSIT!
O MAX OF SCALE (OR BRIGR11~ESS)

FOR RCI D&Vi

(b)

Opponent color features are computed as a linear
function of the RGB data. They provide a way for
assessing actual color as a scaler feature in a
more meaningful way.

Figure 5. Opponent—Color Features
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forms a neutral gray , including black and white. An axis representing

intensity would be perpendicular to the page passing through W.

The three axes shown in Figure 5a are uniquely determined by the

line from each vertex passing through W. Each of these represents

an opponent-color feature and is easily approximated from the original

RGB data as shown in Figure Sb. It will be convenient to add a constant

to each feature in order to slide the scale into the positive range.

Each opponent color feature has the effect of heightening color contrast

between particular types of colors. They will be referred to by R , G,

and B, but the reader should remember that the letter used only represents

one end to which the opponent color feature is anchored .

No attempt was made to determine an exact set of analytic equations

to compute these features and there are clear inadequacies in the current

formulation. For example, suppose that the original RGB data at a pixel

had intensity values of 10, 20, and 0. Then the R, G, B features would

be computed as 0, 30, and —30. Since R is 0 (=white), there should be

correspondingly equal amounts of red, green and blue in the original

data. This is of course not the case. We conclude by adding that in

informal experiments using a simple segmentation algorithm and one—

dimensional feature spaces, the R G B features consistently provided

more discrimination than the original RGB data. Figure 6 demonstrates

the transformation applied to the R, C, B data in Figure 4.

Ill. FEATURE SELECTION

Once the various features have been computed , there arises the

problem of selecting an appropriate subset to work with. In the discussion

that follows, it will be assumed that semantic guidance is not available.

— - 
— -—~~~~~~~~~~ 
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(a) R (b) G

_ 

(c) B (d) In tensity

Figure 6. Transformation of the R , G, B Data f rom Figure 4 into R , G , B , and
Intensity .
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Of course, in a full visual processing system, high—level , domain—specific

knowledge could be used to guide segmentation routines in the selection

of features previously found to be useful for particular problems.

111.1 Evaluation

Work has been done toward the development of a feature selection

rule which can rank feature histograms on the basis of their peak

structure . We postulate that a good histogram consists of many clearly

separated equal height peaks with low minima between them . These charac-

teristics are easily measured and a function has been developed that

ranks histograms in a desirable manner.

It is interesting to note though , that what may appear to be the

most promising histogram does not necessarily lead to the segmentation

that is closest to a manual segmentation. Clearly, there are properties

of a feature which are not represented in its histogram. This observation

has led us to a different strategy for feature selection (see section VlII.1).

For the current. discussion , feature selection reduces to an elimination

mechanism : a feature will be eliminated from the working set if its

histogram is nearly unimodal. Conversely, a feature will be acceptable

if its histogram has the following characteristics :

(1) the two largest maxima are nearly the same height; and

(2) the minima between them is relatively low.

111.2 Selection Rule

We propose the following measure of the “peak quality” of a histogram

of a feature :

j
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( P 2~~

M(f)

where: M(f): measure associated with feature f

P1 absolute maxima of f

next most prominent maxima

lowest minima between 
~l 

and P2

The numerator accounts for how well the two peaks are separated . The

higher its value, the greater the probability that histogram points can

be clearly distinguished as belonging to P
1 
or P2. The denominator

accounts for how many pixels can be distinguished by the two peaks.

Clearly , its optimal value is therefore 1. When M(f) is less than some

threshold , the histogram is considered to be unimodal and the feature

is therefore eliminated from the current segmentation step .

For simplicity , the segmentation results given in the following

sections are based on a single decomposition step using one or two

features. Since this is not the full recursive segmentation (demonstrated

In Section VIII.3), the set of regions obtained will vary depending on

on the sensitivities of the particular feature chosen. However, the

power of the overall algorithm is not degraded by alternate feature

choices within the working set.

IV. CLUSTERING

The previous section proposed a rule for evaluating the utility

of a feature on the basis of certain measurable properties of the

— 
-~~~~~~~ -~ ----~~~~~~~~~~~~~~~~~~~~~~~ -
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distribution in a histogram of that feature. Although it is a trivial

matter to identify local maxima and minima and equally easy to measure

certain parameters of the overall structure of the histogram , it is not

at all trivial to decide which maxima are true peaks. The decision

mechanism which identifies true peaks and discards subpeaks and noise

peaks is the major problem for our peak selection algorithm . However ,

standard clustering algorithms address themselves to a further and

perhaps more difficult problem; namely,  the assignment of cluster labels

to the points lying beyond the peaks or cluster cores. The next section

will review a few heuristic approaches that have been taken and is

included to give the reader a sense of the difficulty of the problem .

Section IV.2 will give a more detailed discussion of the peak selection

algorithm that we currently use.

IV.l Examples of Clustering Algorithms

Let us briefly review several alternatives for cluster extraction.

We wish to point out that a variety of clustering algorithms appear in

the pattern recognition literature. In pattern recognition applications ,

clustering algorithms are often applied only once to produce a charac-

terization of the underlying data; in the application discussed here ,

clustering is one of many steps in region formation and must be repeated

many times during the course of segmenting an image . In this case, computa-

tional cost is an important factor in the selection of a clustering method .

Ohiander [011L75) has defined a set of rules for cluster detection

based on analysis of local peaks and valleys, and their relative dis—

tances in one—dimensional histograms. In two dimensions, the problem

-~~ ~~~~~~~ _ -  - -
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is more difficult because it appears to involve a search in two—space

for the highest valley between two clusters. If the minimum value

on each possible path between clusters represents the degree to which

that path is considered to be a valley, then the limiting valley is

that path which maximizes across all paths the minimum value on the

path. This implies that an examination of all connected paths between

the clusters is necessary——a computationally expensive process which is

even worse in higher dimensions.

Another approach is to use a “conservative clustering algorithm” in

an attempt to define cluster cores [HAN7S ,NAG77]. The two—dimensional

histogram is treated as a pseudo—Image; it is two—dimensionally averaged

by reducing spatial resolution, and then weak values are thresholded .

The effect is to spatially collapse relatively high values of the histogram

which are in close spatial proximity into a connected cluster region,

while deleting the valleys. A region growing process is then used to

label the cluster cores in this reduced resolution histogram. This process

is reasonably effective, although the criteria by which the threshold

is determined as a function of the reduced values must be carefully 
—

studied for reliability .

One mechanism that we have used to compute the threshold involves

an examination of a l—D histogram of the magnitudes of the 2—D feature

space histogram . This technique, as shown in Figure 7, reduces the 2—D

problem to a simpler l—D problem . The new histogram tends to have a

characteristic inverse sigmoid shape —— assuming that the original histogram

has a relatively normal peak structure. A threshold placed at the left 

_____________________
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(a) Compute 2—n histogram.
x—axis is red.
y—axis is blue.

(b) Compute a l—D histogram
of the 2—D histogram 

_____________values.
•

~~1~

(c) Threshold (b) at its
maximum slope. Points

ii points Ito the right of 0 may
be peaks or lie near
peaks in the 2—n
distribution. 0

(d) Turn on points in the
2—D distribution which
> 9. Label these as
unique cluster centers.

(e) A region grower can now
be used to associate
the remaining points
with the nearest
cluater center. - -

~~ gure 7. 2—0 Histogram Clustering Algorithm.

~~~~~~~L L ~~~~~~~~~~~~~~~~~ — ~ 
_________________ _____



21

edge of the tail of the l—D distribution effectively devides the 2—D

space Into two components . Points in the 2—D space which lie below the

threshold (“type 1”) have a high frequei~cy of occurrence and therefore

will most likely correspond to valleys in the distribution . Similarly ,

points lying above the threshold (“type 2”) are low—frequency and therefore

tI~~y 
;~re most likely peaks (cluster centers). Our concern is with the

type 2 points. Once these have been identified across the 2—D histogram ,

a region labelling process can be applied to distinguish isolated groups:

adjacent type 2 points should be merged (0—difference merge) and then

relabelled as unique cluster centers. These points can serve as the

“seeds” for a minimum—distance classifier (or region grower) which will

label the remaining points.

An iterative peak enhancement process has been described by Rosenfeld

[R0S77] . On every iteration, each histogram bucket is compared pairwise

to each bucket over some predefined neighborhood . The central bucket

is increased or decreased as a function of the values in the neighborhood ;

the amount is directly proportional to the difference in bucket values

and inversely proportional to their distance apart. This algorithm can

be applied in parallel to all buckets, causing clusters to dynamically

organize themselves. It appears quite appealing in that thresholds

are not necessary , but it is sensitive (hopefully weakly) to the choice

of neighborhood size.

- .— 
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IV.2 Identification of Cluster Centers in Feature Space

For our purposes, the cluster identification problem reduces to

t he selection of a sing le representative prototype point for the center

of each cluster in the histogram. The algorithm need not be sensitive to relatively

small misplacements of the center unless cluster centers are very close.

The limits of each cluster no longer have to be determined——the

probabil i ty of belonging to a cluster will automatically decrease with

distance from the cluster center. A simple algorithm for extracting the

representative center points involves pruning a sorted list of the maxima

of the distribution of some feature(s). A maxima will remain active on

the list if it is a preset distanc~ from any maxima already on the list.

In this manner , only the largest most isolated peaks will be selected

to represent the feature space. Figure 8 shows the result of the

algorithm applied to various histograms.

The algorithm is clearly crude and could easily generate arbitrary

errors. For instance, areas of the histogram that lack significant

maxima (i.e., plateaus) may be completely missed . Conversely, “noise

maxima” might be identified which will lead to clusters that may or may

not be meaningful (see Section VII.3). As It turns out , our experlmon is

lead us to believe that the overall segmentation is relatively unaffected

by these problems .

V. LINKING FEATURE SPACE TO THE IMAGE

The global analysis phase involves using the histogram representation

to determine a small set of feature values around which the rest of the

- —r—~~~~~~~~~~ J1 _
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(a) Red (b) Green (c) Blue

2,

l-~~~~~~~~~~~~~

(d) x—axis = green (e) x—axis = blue (f) x—axis = green
y—axis = red y—axis = red y—axis = blue

Figure 8. Examples of One— and Two—Dimensional Histograms.

Indicated cluster centers were deteiniined automatically.
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data tend s to concentrate . After identifying these peaks , the next step

is to link this information with the individual pixels. We want to

recode each pixel so that it reflects its location in feature space

relative to the peaks. In this manner , groups of pixels which are

near each other both in feature space and in image space can be merged

and labelled as belonging to the same region.

The linking process will use neighborhood information to update

the probabilities associated with each pixel. Thus, local inconsistencies

introduced by the global analysis can be resolved . This iterative process

is referred to as a relaxation labelling process and will be defined

formally in Section VI.

The relaxation labelling process assumes that given a set of N

possible labels, X1,... ,X~ , each point in the image has associated

probabilities p(A
1),.. .,p(AN

) that the labels are correct. In the

current formulation , the labels will correspond to the cluster center

representatives and the probabilities reflect the confidence that the

image point is a member of that cluster. In the remainder of this

section, we will discuss some of the properties of the initial proba—

bility labelling scheme.

V.1 Assigning Initial Probabilities of Cluster Labels to Image Pixels

The probabilities of the labels for some pixel should be a function

of the distance of its position X from each cluster center in feature

space. Figure 9 illustrates the situation in the two—dimensional case.

Our choice among several possibilities for computing the initial proba-

bilities is:

—
. 

---
~
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C2

.

~~ f i

Figure 9. Initial Probabilities of Cluster
Labels. The initial probability that histogram
point X belongs to cluster Cj will be a function
of distance di relative to the set of dj ,  j  � I.
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l/d
1

1 N

~ l/d
i=l

This choice has the property that the probability is a monotonically

decreasing function of the Euclidean distance of the point X from the

cluster center. The denominator represents a normalization to a

true probability .

V.2 Initial Probabilities Form a Partial Segmentation

It is possible to terminate the overall algorithm at this point

simply by selecting the highest probability label at each pixel. Note

that this is equivalent to a minimum distance classifier in global

feature space. Figure 10 demonstrates each step thus far discussed .

Figure lOc shows the initial probability labelling for the feature

selected. Each pixel is encoded in such a way as to show the p robab i l i ty

of being associated with a particular peak in the feature. Brightness

is displayed in proportion to probability . Figure lOd was obtained by

selecting the highest probability label at each pixel and then displaying

each label as a distinct gray label. A region grower can be applied

across the label—image in such a way as to merge adjacent pIx ls if tiu- v

bear the same label (i.e., theta = 0). The final result (lOc) is displayed

as region boundaries superimposed over the original intensity data.

By comparison, Figure 11 shows the result of slicing the feature

distribution Into buckets at the minima around the same peaks that

were identified in Figure lOa. The pixels in 11 have been labelled as

— 
— w ’ ~~~~~~~~~~~~~ 
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R G B Intensity
(a) Identify peaks in the feature—histograms .

(b) Eliminate ~ since it is nearly unimodal. Select intensity.

S ;~~

.

_
_ 

-

(c) Compute initial probabilities for each of the 3 peaks selected .
Probability is displyaed as a gray level (0 = black).

(d) Pick highest probability label at each pixel. Display the 3 labels
as 3 gray levels.

(e) Determine where edges lie between labels and superimpose these over
the original intensity data. t

Figure 10. Partial Segmentation Based on Probabilistic Labelling Technique.

- ~~~~~~~~~~
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1 2 ~ 3

(a) Slice intensity histogram at the minima around the peaks selected
in Figure lOa.

(b) Encode image pixels as belonging to cluster 1, 2 , or 3.

(c) Determine where edges lie between labels and superimpose these
over the original intensity data.

Figure 11. Partial Segmentation Based on Histogram Slicing.

I
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belonging to either cluster 1, 2, or 3. The final transformation in Figure

lic shows the region boundaries over the intensity data.

V.3 Comparative Evaluation of Two Segmentation Techniques

How can one compare Figure lO~ to Figure 11 c? Although the two

outputs are similar, Figure ile is actually a slightly better represen—

tation of the global feature information . In the distribution shown in

Figure 12, consider the labelling in the image of a p ixel whose feature

value is X. By the probabilistic—labelling technique , any such pixel

will be best labelled as belonging to P1, since it is “globally” closer

to P1 than to P 2 . This is unfor tunate  since X appears to belong to P 2

and would be labelled as such by the histogram—slicing method .

p~ i~~ s

P2 feature~

Figure 12. Error Associated with Probabilistic Labelling Technique.

X is closer to P1 
but seems to belong to P2.

It is important to realize though , that the decision as to whether

X belongs to P1 
or P2 is tenuous anyway, 

since there is no way of knowing

in this representation whether pixels with feature value X will be

contained in regions that are mostly composed of pixels in the cluster

around P1 
or in the cluster around 

~~ 
Figure 13 illustrates this

point .

We now arrive at the most important aspect of the probabilistic

labelling technique: it brings back to the image the relationship of

each pixel to the distribution as a whole . The next step of the overall

- - - - ~~~~
—‘‘~~~~~~~~~ 

— 
- —..—

~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - -
~~
_-_ .- 

~~
— -



30

Histogram Image

points

- 
feature~ 

Rc x’

Figure 13. Histograms, Feature Space, and Image Space. The projection
of histogram cluster labels back to the image provides only a weak map-
ping of information between feature space and image space. Consider
some point x in the histogramof feature f,where its affiliation to
cluster C1 or C2 is ambiguous. Now assume that and are regions
produced by the clusters Cj and C2, respectively. A pixel contributing
to histogram point x may have an image location x’ or x”, or in fact
lie anywhere else in the image. The problem is more complex since
this uncertainty exists even if x is in the cluster core of Cl or
C2. Decisions regarding the region association of x should be a function
of the information in both feature space and image space.

- -~~~~~--- 
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segmentation algorithm will resolve the errors introduced by the ambi-

guities inherent in the global representation and will produce a more

accu rate segmentation than presented in either Figure lOe or ile.

To summarize , we note that in its crudest form , th e algor i thm we

have presented so far is only slightly worse than the histogram slicing

algorithm . This is because the former does not take into account the

actual shape and extent  of t he feature clusters. It should be pointed

out though , that the probabilistic—labelling technique relies solely on

pea k selection , a technique which is computationally faster , easier ,

and be t te r defined that cluster analysis. This is especially true with

n—di mensional feature spaces and in fact , as shown in the data given in

Figure 8, this simpler approach makes analysis of pairs of features quite

reasonable and effective .

VI. RELAXATION

The next stage of the segmentation algorithm resolves pixel—label

ambiguities that were introduced by the global feature analysis by

concentrating on the spatial organization of the data. A relaxation

labelling process is used to defer the final labelling until a local

concensus has been reached: a pixel whose feature value is globally

close to one cluster yet which is spatially adjacent to a group of

pixels whose feature values tend to lie in another cluster, can be

labelled according to the local contextual information available.

VI.l Formal Definition

Let us provide a brief review of the key ideas of relaxation processes;

for a more complete discussion, see [ROS76 ,ZUC76,R1S771. The general

—- . 
- —5 — - iS ,  ~~~~~~~ -~~~~~,. .-. - — - — - 
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idea is to compute some probability updatin g contr ibution ~ for the

central pixel as a function of the probability of the neighboring

pixels. It is assumed that each pixel location has a set of N possible

labels {A 1,... , A } which can be associated with it. We will use

Pi (A k) to denote the probability of label k at the ~th  pixel location ,

LOC1. Furthermore , it is assumed that there is some means for computing

a reasonable initial probability for each label at each pixel location .

Then each label at each LOC~ contained in the neighborhood N1 of LOC1

will be used to update P
i

(X
k), k = 1,... ,n. Pi(Ak) will be increased

(decreased) by label A at LOC~ if the labels are compatible (incompatible)

where the effect of this change is weighted by P (A ).

Compatibility is defined in terms of a function r ..:

rjj(A k,A )  > 0 if A
k 

and A are compatible,

< 0 if Ak and A are incompatible ,

0 if A and A are independent.k m

Then, i~~k~ 
= 

j EN 1 
d
11 m~l 

rI.(A k~
A) P

~
( A )

~ 
where d1. is a weighting of the

influence of LOC~ upon LOC1 and keeps AP1 in the interval from —l to +1.

Denoting the probability of label A
k after the ~

th 
Iteration as P I

(A
k),

it will be updated as follows:

(A ) I 1+ Au ~ (A
-, — 

I k I’ k
I k’ - 

n
~ 

[p t (A ) ( l+AP t (A )1.

Note that the denominator is a normalizing factor computed across the

new probabilities of the n labels, so that the new values for P~~
’

will sum to one.

- -.--—~~~~~
.
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In practice it is useful  to keep the probabilities of all labels

non—zero. Once a label has probability zero it will remain there

during relaxation because the updating of probabilities involves a

mul t iplicative function. Therefore , points with d . = 0 (i.e., which

arc zero distance f rom the 1t1~ cluster center) are treated as a special

case; for these points, the ~
th 

label will have probability approaching

one while other labels are assigned small (but non—zero) values so

that they sum to one; thus, all labels will have non—zero probabilities.

This will allow the probabilities of other labels to grow if the context

so demands , even for image points associated with a cluster center.

VI.2 The Compatibility Coefficients  and Updat ing Probabi l i t ies

The compatibility coefficient between each pair of labels defines

whethe r labels of neighboring pixels support each other or compete

w i t h  each other .  The coefficient Is positive for identical labels and

negative for differing labels. The simplest choice is to have

I~~ 
-~~ t \  — 1 4~~ 

‘
~

~ 
, , —

(1) r
~ j (X

~
A ’ ) _ l if A ~ A ’

Notice that the linear summation across labels implies that the updating

contribution f rom pixel j to Ap i (A
K
) will be zero if the probability of

A K at location j is equal to .5 and will be negative if the probability

is less than .5. However , even if all labels have total contributions

whic h ar e negative , the probability of that label whose Ap1 is least

negative will increase, relative to the other labels.

_ _ _
_

- ~— ~~~~~~~~~~~~~~ 
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This simple specification of compatibil ity coeffli~1cnts works

reasonably well, but it can be improved by introducing relative weights

on the coefficients which reflect the confidence that the two clusters

really are distinct in feature space. This effect is incorporated for

labels A and A ’ simply by scalin g its negative contribution by the

ratio of the distance between clusters A and A ’ to the maximum distance

between any pair of clusters. Let dMAX 
= MAXEd AA~

l; then
A , A’

d
(2) rj4 (A , A ’ ) _

d~~ 
fo r A ~ A’ .

MAX

This slows down the changes in label probabilities induced by the relaxa-

tion process in ambiguous cases where clusters are close together , and

is relatively faster in clear cases where clusters are far apart. Note

that the most distant pair of clusters will have an ~~ —1.
13

There is one additional problem in the definition of the neighborhood

of a region . If an 8—nei ghborhood is employed, right angle corners o f ten

cannot survive as probabilities converge to one. Figure 14 shows a pixel

with label A 2 at the corner of a region . In its 8—neighborhood , there

are only three similar labels of A 2 and five dissimilar labels . This

causes the central pixel at the corner to change affiliation from A 2

to A 1 which then produces a stable situation . Use of a 4—neighborhood

removes this difficulty, and any particular diagonal element still will

have an influence upon the central pixel indirectly via two intermediate

neighbors.

—5—---— ,- --,—- - -~ 
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D D J D
producef

~~~~~IL 1 E~

El_A 1
Figure 14. An 8—adjacency Neighborhood Causes
Problems at Corners. As the label probabilities
converge, the label A2 of the corner pixel will
have competition from the high probability labels
A1 at five neighboring pixels, and support from
high probability labels A2 at only three neighbor-
ing pixels. As the neighborhood of labels con-
verge, the corner pixel will switch affiliation
from A2 to A1. The use of a 4—adjacency neighbor-
hood removes this difficulty.

VII. RESULTS AND VARIATIONS OF THE BASIC ALGORITHM

We will now demonstrate the effects of the relaxation operator

applied to the initial probability images. Unless otherwise specified ,

the following conditions apply to the relaxation operator :

(1) pixels are updated by looking at their 4—adjacent neighborhoods

and

(2) the compatibil i ty function is as defined in Section VI .2 ,

namely:
d A A ,

r 1 . ( A , A ’ )  — 
~~
— for A ~ A ’.

J MAX

- -~~~-~~ - - --  . - - - -
- 
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Figure 15 shows the -results obtained from relaxing on the data

shown in Figure lOc . Brightness is proportional to probability with

black being 0. Each row indicates the result of updating the probabi-

lities from the previous iteration . The last column Is an image formed

by selecting the maximum probability cluster label for each pixel and then

displaying each label as a distinct gray level.

Notice that there is not very much change of label affiliation after

about the tenth iteration . This effect has been observed in every image

that we have tested . In the interest of saving computational time , we

usually arbitrarily terminate the updating process after a few iterations.

Although this is clearly not a true convergence , it seems suf f ic ien t  fo r

our purposes .

Figure 15b enables one to judge the accuracy of the segmentation at

this stage. This figure was obtained by superimposing the boundary image

formed from the max imum probability image after 25 iterations , over the

original Intensity data.

VI1 .l Variations of the A1~orithm

Figure 16 shows relaxation results applied to a sub—Image of the

Intensity feature of Figure 6. Onl y the max imum p rob ability 1ab~ E—lrn ;i,y~

are shown. Each row represents a further iteration as indicated . The

first column shows the result of the updating rule using 4—neighborhood

adjacency and r
1~ as defined in equation 2, Section VI.2. By comparison ,

column 2 shows the effect of 8—neighborhood updating. As predicted , cornors

are eventually destroyed , giving a notched appearance after 25 Iterations .

Finally , in column 3, the effect of the simpler compatibility function

— — -.— -5- .—. -—-5.- -. —
~-rLR5~ -~~~ ~~~~~ 
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Highest Pr~ : l i t v
Label /11 L~ F e l ~2 Label /~3 Labe l

iteration #1

i t e ra t ion #3

i te ra t ion #5 ~~~~~~~~~~~~~~~

iteration #10 
-

iteration #25

Figure 15a. Relaxation Applied to the Initial Probablifties Shown in Figure lOc .

S.
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,

~

~~gure 15b. Hi ghest Probability Label—Image A f t e r  25 I terations.

Display shows label—ed ges superimposed over the ri ginal intensi ty  data.

____________________________ ________________________ ________________ -5---—--
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(equa tion 1, Section V l .2)  is demonstrated. The e f f e c t  of this  is to

speed convergence——although the final result is very similar to the final

results with the more .sensitive function.

The relaxation labelling process is apparently very robust and

insensitive to the variations shown above . However , since the 8-

neighbor updating and “—1 compatibility function” have , in theory.

inherent weaknesses, they will not be used in fur ther  experiments.

VII.2 Two—Dimensional Feature Analysis

Figure 17 shows the steps of the algorithm using two—dimensional

feature analysis; in this case, R and intensity . The two—dimensional

space provides a view of the data that is lacking in either of the

one—dimensional features selected. Clusters which are hidden in l—D

are sometimes revealed in this representation. This of course leads to

finer discrimination of regions. Notice that the final 2—D result (17c)

provIde~ discrimination of the bushes from the shrubs, but it also

fragments the bushes into two pieces (highlighted crown and shadowed base).

There is no easy way to decide whether the fragmentation that occurs is

desirable or not. The joint distribution of the spectral characteristics

of the pair of features indicates that the bush is composed of two visual

features. Yet the grosser analysis of a single feature might segment the

bush into one (type of) region. However, this is fortuitous , and the

highlights of the crowns which are visible in this image could be a

semantically important entity in another image. Thus, we conclude

that this algorithm really is operating in a desirable fashion.

- _- — - ----5-— -5 — 
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Iteration (a) 4—neighbor (b) 8—neighbor (c) simple compatibility
updating updating functior.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3 

_ _  _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

25

Figure 16. Variations of the Relaxation Algorithm.
Only the maximum probability labels are shown (see text).
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(a) Form the 2—D histogram and
isolate the six cluster
centers as shown . 2
x—axis = intensity
y— axis = R - 

- . ~~~~~~~~~~~~~~~~~~~~~~~~

iteration 0 iteration 1 iteration 3

_  -

iteration 5 i terat ion 10 itera t ion 25
(b) Form the initial probabilities for each label and then apply relaxa-

tion. For each iteration, only the highest probability label at
each pixel is shown.

R intensity

(c) After 25 iterations label—edges are located and displayed over the
original data.

Figure 17. Two—Dimensional Analysis of the Image.

- - 5 -
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VII .3  Varying the Number of Cluster Centers

The cluster center selection algorithm may make errors in detecting

peaks. Several potential problems must therefore be kept in mind.

Since the goal is to eventually obtain regions which are in close

correspondence to the sur fa ces appear ing in the scene , the al gor i thm

should minimize the chances of arbitrarily splitting regions due to

misidentification of cluster centers. This can occur in two ways:

if a cluster is missed or if a cluster is mistaken to be two clusters.

If the clustering algorithm misses an obvious cluster in feature

space (and consequently no label for this cluster is defined), the image

points comprising this cluster will gravitate towards the clusters which

are nearest in feature space. If there is only one, then the net effect

will be to absorb the missing cluster into one which has been labelled.

This type of error is not serious since recursive application of the region

formation process will probably recover it later. On the other hand , if

the cluster which is missed happens to lie between two or more clusters,

then some of the feature points of the missing cluster may lie closer

to one of the identified clusters, while others may be near a different

cluster. This can be a more difficult error from which to recover. A region

in image space which cotresponds to the missing cluster could be split and

absorbed into other nearby regions, if these nearby regions also happen to be associated

with the clusters competing for the affiliation of the points in the missing

cluster. It is much more difficult to recover from this kind of splitting

since local evidence of similarity no longer exists —— the characteris-

tics of the split region can be swamped by each of the regions which

absorbed the pieces. 

- ~~~~~~~~~~~~~~~~~~ ~~~~ 
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Arbitrary split t ing also occurs if a single cluster is identified

as two distinct clusters. The result is split regions which also could

lead to the problems described above. However , in some cases two

adjacent regions could be merged afterwards based upon similarity of

their region characteristics.

Figure 18 shows the relaxation results (maximum probability label—

images only) after purposely adding an extra cluster label as indicated

in the 2—D histogram. Notice that the extra label has been added at

a particularly dramatic location , namely at the centroid of the three

largest and most closely spaced clusters. As expected , there is a

degradation in the quality of the segmentation . A few of the regions

seem to be arbitrarily fragmented and arbitrarily merged to adjacent

regions. It is curious though, that the effect of altering the number

of g lobal ref erence points is not as drastic as might be expected and

the correct regions can possibly be recovered (see Section VIII.2).

The explanation for this is not fully understood but must be a function

of the high degree of spatial organization inherent in the data.

VIII. HIERARCHICAL DECOMPOSITION OF THE IMAGE

We have pointed out that any given scene depicted in an image

admits to various levels of description; for example as an outdoor

scene; or house, trees, sky , and grass; or windows, doors, roof ,

leaves, blue sky, clo ids, blades of grass, etc. We are examining

a multi—level description of the scene based on region properties.

I
,.
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(a) 2—D histogram of i*Intensity
showing location of the 

-
extra cluster. - -

5 

~- : - ~ _
iteration 0 - iteration 1 iteration 3

_ L 
-~~~~~~~~~

iteration 5 iteration 10 iteration 25

(b) Relaxation results. Only the highest probability label at each
pixel is shown.

t,~~~~~~~~~~~~~~~~ .

(c) Label edges over Intensity.

Figure 18. Adding an Extra Cluster Label.
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The results of this analysis could be stored hierarchically [FRE76],

in which relationships between ancestors and descendants represent

descriptive properties of the structure of the visual elements.

VIII.l Recursion

Our recur sive segmentation algori thm will be desi gned so as

to enable recovery from two kinds of region mislabelling errors :

fragmentation and overmerging. We define the segmentation at step n

to be a PLAN [KEL71 ,PR177 ,NAG77] to be refined at step n+l. The

p roposed structure of the PLAN will consist of a set of parallel

segmentations , each one reflecting the application of a different

feature transformation. Therefore, there will be no need for feature

selection/ranking; it will be sufficient only to eliminate unimodal

feature—histograms.

VIII.2 Fragmentation and Overmergin,g

It is expected that small regions are likely victims of fragmenta-

tion and thus the regions in each PLAN segmentation can be readied for

refinement by first merging all small regions into nearby large regions.

The merging criteria should be a function of nearness both in space

and in average feature difference.

Each of the surviving PLAN regions —— hopefully few in number ——

can then be checked for overmerging. The criteria here is simply

the detection of a multi—modal histogram in any of the features of

a PLAN region. The process of PLAN and REFINE will be repeated for 
—

each such region.

—5—--—- - - --.5- 5-—
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Hopefull y, this process will not be overwhelming in terms of

computation time and storage requirements. Fortunately , it has

been observed that regions rarely require more than two or three

recursive decomposition steps. Further, in the complete VISIONS

system, regions will be decomposed selectively (i.e., in terms of

their semantic interest) and with a small set of hypothesized

features.

VIII.3 Recursion Results

The idea of a recursive decomposition is demonstrated in

Figure 19. Here, the roof/tree region is somewhat better partitioned

by a recursive pass restricted to that portion of the image. The

house roof, garage roof, and the tree with bare branches all have

very similar features. When the 2D histogram is confined to only the

overmerged roof region, the subtle visual differences in these areas

appear as a major cluster ~ th a nearby minor cluster which did not

show up in the original histogram.

IX. CONCLUSION: A GLOBAL VIEW OF RELAXATION

The presentations thus far have shown the results of the segmen-

tation algorithm solely in the spatial domain. However, a simple

inverse mapping of pixels as a function of the cluster label to

which they are ultimately linked can show the effects of the

processing from a global perspective. Figure 20 is based on the

final two—feature segmentation shown in Figure llc . It consists

of six 2—D histograms obtained by plotting, as separate 2—D histograms,

-- ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ -
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1

3. 
_______________ 

2

(a) 2—D histogram of roof/tree region from Figure l5a, iteration 25. 

iteration 0 iteration I iteration .3

iteration 5 iteration 10
(b) Relaxation results restricted to the single region, only the highest

probability label at each pixel is shown.

Figure 19. Recursive Segmentation on a Single Region. 
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(a) Cluste r 1 (b) Cluster 2 (c) Cluste - 3

d) Cluste r 4 (e) Cluster 5 (f) CLister 6

ii -

.

-

(g) overall histogram

Figure 20. A Global View of the Effects of Relaxation.

Histograms (a)-(f) show the location of the converged pixels in each
cluster after 25 iterations. The overall histogram (x—axis = intensity;
y—axis R) is shown in (g). The black lines indicate the location of
the minimum distance decision Rurface.
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the original R and intensi ty feature values of the conve rged pixels

in each of the six labels. Had this mapp ing be en done at i t e ra t ion

0 (initial probabilities), each histogram would merely contain a
unique point corresponding to the frequency of occurrence of pixels

whose feature values corresponded to the cluster center location

for that label. However, after 25 iterations of relaxation , this

mapping reveals the manner in which the original data was distributed

around the representative cluster center points. By comparing these

a poste riori histograms to the initial overall histogram , the extent

of cluster overlap can be appreciated . That this overlap can be

succ.~ssfully detected is an indication of the power and necessity

of app ly ing a spatial organizing process beyond the global analysis

to disambiguate the global information.

- ~~~~~~~~~~~~~~~~~~~~~~~~ ----~~~~~~~~~~~~~~~~~~~ --- -~~ 
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