AD=-A056 608

UNCLASSIFIED
|or 2

AD

UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES DEPT 0==ETC F/G 20/6

THE EARLY YEARS OF VACUUM UV RADIATION PHYSICS AT USCr A 30TH A==ETC(U)

MAY 78 6 L WEISSLER NODO14=76=C=0103
USC=VAC=UV=200 NL







DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY i
PRACTICABLE. THE COPY FURNISHED |
TO DDC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.




P A

T R

AR Rl

JUSTIFICATION................

4

ACCERSION for

s Wits Sectin 308
o0¢ Wil Sctee O
UNANKOUNCED O

DISTRIBUTION /AVAILABILITY CODES

Dist.  AVAIL. and/or SPEGIAL

2% 7

ADAO56608

R TR
4

DDC FILE COPY

AD No.-

THIS DOCUMENT TS BEST QUALITY PRACTICABLE.
THE COPY FURNISHED T DDC CONTAINED A

SIORIPICANT NUMBER OF PAGES WEICH DO BOT
REFRODUCE LEGIBLY,

The Early Years of Vacuum UV

Radiation Physics at USC,

a 30th Anniversary

Final Report, 1 May 1978
by

Gerhard L. Weissler
Professor

Approved for Public release;
Distribution Unlimited




B e '*'Wr’-&;smvonnwm

IR A, B I TR

B . Ll
o g ad &

\ —————

I\ 5
Early Years of Vacuum UV Radiation Physics

at USC, a 3fth Anniversarys )

D %
\D 4/1 A Negh . FIN ) '“f;,-’-'"

3

FINAL REPORT

by| Gerhard L4’ﬁeissle( Professor
and Principal Investigator of various
ONR Contracts from 1947 to 1977

I 1 May @78 |

Department of the Navy
U. S. Office of Naval Research
Arlington, VA 22217
Attn: Physics Program (Code 421)

lf')

el
ONR Contract No.: | NgB®14-76-C-08103 /
(for the period from 1 July 72 to 31 Dec. 1976)

Department of Physics
University of Southern California
Los Angeles, CA 90007

(Approved for Public Release; Distribution Unlimited.)




3
$
B
>
5
¢
e
&
'Y

The findings of tin‘s Final Report are
not to be construed as an Official
Department of the Navy Position, un-
less so designated by other authorized

documents.




Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

2i.

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
T REPORT NUMBER Intery\al ReROPE No? 2 GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
USC VacUv-200
4. TITLE (and Subtitle) sF.i :‘;r]z E; ;;;:nf & PERIOD COVERED
The Early Years of Vacuum UV Radiation Physics 1947 to 31 Dec. 1976
at USC, a 30th Anniversary. S. PERFORMING ORG. REFORT NUMBER
7. AUTHOR(s) , % CONTRACT OR GRANT NUMBER(s)

Gerhard L. Weissler

g %
Professor of Physics NO014-76-C-010

9. PERFORMING ORGANIZATION NAME AND ADD?SS 10. ::gil.h E:NrTTNPURMoéEEC: TASK
Department of Physics
University of Southern California
Los Angeles, CA 90007
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
fice of Naval Research Branch Office 1 May 1978
1030 East Greet Street 3. NUMBER OF PAGES
Pasadena, California 150
"FTa. MONITORING AGENCY NAME & ADORESS(if different from Controlling Ollice) 1S. SECURITY CLASS. (of thia report)
Unclassified
[ 75s. DECLASSIFICATION/ DOWNGRADING
SCHEDULE NA

‘f16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited except for
availability of copies.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 ditferent from: Report)

18. SUPPLEMENTARY NOTES

The findings of this report are not to be construed as an official Department
of the Navy position, unless so designated by other authorized documents.

19. KEY WORDS (Continue on reverse aide If necessary and (dentily by block number)

Photoionization, Vacuum Ultraviolet Spectroscopy, Plasma Spectroscopy,
Photoelectric Yields, Optical Properties of Solids.

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

> This final report summarizes the general area of research done during the
30-year period from 1947 to 1977, and it gratefully acknowledges the
continuing sympathetic and f1nanc1a1 support of the Office of Naval Research
during this long period. Without this support, the research reviewed here
would have been severely limited. # The main body of the report is divided
into essentially two parts: *Photoionization in Gases® and *Optical and

Fomns 1473  €oiTion OF 1 NOV 68 1s ORSOLETE

1 JAN 7 bsdgrtfop B Unclassified

——————— e e e ———————————
SECURITY CLASSIF ZATION OF THIS PAGE (When Date Entered)



i o s 53

\

= VRS Lo A W e A s W o e

3.

Unclassified

<LLURLTY CLASSIFICATICN OF THIS PAGE(When Date Zntered)

20.

bstract (continued)

Photoelectric Effects in Solids.® While this material is generally in
the nature of a survey, ordered in historical sequence, the last few
years from 1972 to 1977 on "Plasma Research® are dealt with in some
‘detail in Section II h) in order to satisfy the formal requirements of
this Final Report. Two lists of references are appended, and a total
of about 200 individual references are listed.

Unclassified

e ML MMM AWML M ELiie MmN . M aee Paa..a

-




R ———— e — iyt

FOREWORD

For a report such as this, spanning a period of 30 years, a little

needs to be said about the quidelines used in its preparation. Since this

investigator came to the general area of the "Interactions of Vacuum Ultra-

Violet Radiation with Matter" via the broader area of "Gas Discharge Physics,"

it was obvious from this particular vantage point that there were two principal
areas of research: namely as presented in Chapter II: "Photon Interactions
with Gases," and in Chapter III: "Photon Interactions with Solids." In both
of these chapters, our researches are presented in overview only.

References quoted there will appear as numbers enclosed in square

brackets, [ ], if they may be found in Weissler's list of references at the end

of this report, or they may be numbers enclosed in curly brackets, { }, if found in

Professor Masaru Ogawa's 1ist of references, also placed at the end of this report.

(M. Ogawa was a close collaborator of the undersigned at USC He died on Dec.23, 1974.)
Certain areas of research are presented in somewhat greater detail than
the general overview nature:

In Chapter II, paragraph f) on "Bimolecular Ion-Molecule Reactions," a

large number of data are presented in form of both figures and tables, since
this material haé only appeared in dissertation form or in various conference
reports.

For the same reason, namely publication only in form of another disser-

tation, the material in Chapter III, paragraph d) on "Optical and Photoelectric

o
Properties of Au and A% in the XUV, down to 173 A," is also presented more

extensively.

More specifically, the research done in the last few years on "Vacuum UV




5i.

Interactions with stable Arc Plasmas" has been presented in complete detail in

Chapter II, paragraph h).

For reasons given, some researches have been written up in expanded form.
In contrast, advances made during this 30 year period by us and others in

Instrumentation has been totally omitted here, except for some quotation by

title in the appended lists of references. With the rapid development of
various technologies, it was felt that this otherwise very necessary phase of
investigation could be outdated at the time of this writing and would contribute
little to the thought processes leading the experimentalist from one problem
to the next.

Finally, it is hoped that while this is a survey of one laboratory's
experimental work only, the uninitiated reader will be able to glean an idea
as to how a field of research grew and how it branched out into new and

different directions.

.
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I. INTRODUCTION

This report covers the research activities of the undersigned and his
associates, as supported by the Office of Naval Research, for approximately
30 years from 1947 to 1977. The general title for these activities, namely
the "Interaction of Vacuum Ultraviolet Radiation with Gases and Solids," while
not specific is never-the-less indicative of the general scope. While we will
try to present our progress in historical sequence, we will start with the
“Interactions with Gases" first under the sub-heading of "PHOTOIONIZATION IN
GASES" and then "OPTICAL AND PHOTOELECTRIC EFFECTS IN SOLIDS" under a second
sub-heading.

Since the List of References at the end of this report lists in chron-
ological order the publications, dissertations, conference contributions, etc.,
many of which have been aided over these years by ONR contracts, the reader
will find reference numbers cited out of numerical sequence in the text. In
addition, it should be noted here that for purposes of avoiding distracting
details, the discussion of innovative instrumentation has been held to a
minimum, even though instrumentation references have been included in the final
list. In order to make this list more meaningful to the reader, the full titles
of these research reports are given as a further guide to their respective
contents, with Weissler's references in [ ] and Ogawa's in { } brackets.

Finally, it may not be inappropriate to point out that the initial
impetus of these researches was provided by a desire to increase our under-
standing of various types of electrical discharges through gases, such as
glow discharges, arcs, and sparks, and not least of all, of atmospheric

electrical phenomena, the orgin of ionospheric layers, and other astrophysical

problems. A1l of these involve to a greater or lesser degree the "Interaction

of Vacuum UV Radiation with Gases and Solids."[33:63]




I1. PHOTOIONIZATION IN GAsEs.[33:63:87]

a) Overview

In order to orient the reader, it is best to start off
with a summary of the various methods of measurement of photoionization

as presented in Fig. 1:

I. In the upper left-hand corner, we are measuring
Attenuation. This attenuation, measured by the total absorption co-
efficient k or cross section o, does not inquire into the details of

the atomic or molecular mechanism involved. It only measures a decrease
in intensity versus A.[8,9,13,17;20-22,24,25,36-38,55,61,74,75]

{11-13,15-21,23-26,28,32,35-38,42-49,52 ,55-57}

II. In Photoiqnization, we determine the number of ion

pairs produced by photoionization per photon absorbed, and we begin to

inquire into the mechanism.[]8’23’27'30’33’6]’63;

III. Fluorescence occurs when in the process of photoion-
ization a resonance transition leaves the ion in an excited state, which
may then decay to a lower one. Such fluorescence can then be measured
with a second monochromator, or with a filter and a photomultiplier, or

with some similar device. In this fashion, we obtain further information
[56,63.65,69,80,86,91,105]

about specific absorption mechanisms.
{30,41,51-54}
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IV. A combination of a monochromator with a mass spectrometer provides

information on cases where a photon of a given frequency, hQ, may either

produce a molecular ion by direct photoionization, or it may form by dissociative
photoionization an atomic ion and a neutral, either of which may be in an excited
or in the ground state.[39’40’44'50'52'54’63’64’66’8]’87’105’]06] {14}

V. A new method has been perfected during the last decade, which concerns
itself with energy analysis of ejected photoelectrons, the so-called ESCA method
(Electron Spectroscopy for Chemical Analysis).[63’87]

VI. An ion beam or a beam of neutrals may be used as the absbrbing medium
when light is traversing it. This allows the study of those particular species,
which can be most easily produced in beam form, for instance, atomic hydrogen.
But this would probably be the last to be so studied, because our theoretical
knowledge of hydrogen is more complete than that of any other atom. However, this
method seems most suitable for some metallic vapors of particular significance to
astrophysical problems. The difficulty with this approach is accuracy, because
one needs to know the precise geometry of and atom density in the beam which is
traversed by the radiation.[87]

VII. Finally, the last method shown in thke bottom right corner of Fig. 1

*
is plasma spectroscopy. The hot plasma, either in a low pressure shock tube or

in a high pressure arc, is utilized either as an emitting or absorbing medium.
High pressure means about one atmosphere, and the plasma is assumed to be in
thermodynamic equilibrium, or at least in L.T.E. (Local Thermodynamic Equil-
ibrium). If this is true, then we can utilize various laws, for instance
Kirchhoff's law, which states that the emissivity is proportional to the absorp-
tivity, and that the proportionality constant is the Planck functiona BA‘ By

measuring emission intensities, we thereby can obtain the absorption coefficient

or the photoionization cross section, provided that we measure first the Planck

*[68,84,85,96,101-104,108-125]
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function., Some very careful and beautiful work has been done on vacuum ultra-
violet plasma emission spectroscopy by the late Giinther Boldt in Munich, who
was unfortunately taken from us at a very early age.

In Table I, I wish to make use of nitrogen and oxygen as examples of the
interactions of photons with different molecular electrons, as they accur in
the processos of light absorption. The first and 7th lines give the electron
configurations of the atoms and the second and 8th lines describe the corres-
ponding ground states of the molecules. The absorption giving rise to the
excitation of a neutral state as the upper state of the Schumann-Runge bands,
line, 9, occurs when a photon interacts with a (wu2p)-electron of 0,. In the
case of molecular ions, one of the (092p)-e1ectrons of N2 (line 3) or a
(ngp)-electron in 02 (1ine 10) is removed to infinity. For still higher lying
extited statas of the two tos, N; and Og (lines 4,5,6, and 11,12), more tightly
bound electrons are ejected.

This example may suffice to show the various possible interactions between
different molecular electrons and photons and to show the significance of study-
ing specific photon absorption transitions as a function of wavelength, to shorter
and shorter wavelengths down into the soft x-ray region.

Figure 2 represents some potential energy curves of a hypothetical mole-
cule. We consider first a phtoon of energy hv] slightly above the ionization
threshold, XM2+. In this particular case, we obtain primarily photcions of the
molecule in the ground state. I would like to remind the reader of one easily
overloquq/fact, namely that the various excited states of the molecular ion have
nehfrél Rydberg states converging towards each. The neutral Rydberg states are
schematically indicated by short, thick horizontal bars, sometimes marked "Ry".
One of these Rydberg states is shown in terms of its potential energy curve,

*

marked M2 on the right and "Ry" on the left. It is located between the X- and

the A-states of the molecular ion. The significance of the neutral states will
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Table 1. The electron configurations of some states of atomic and

molecular nitrogen and oxygen

o;*

o..-

ground state:
graund state:
ground state:
excited ion
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Fig. 2. Photon absorption transitions in a hypothetical molecule, M,.
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become apparent a little later. The three photons, hv]. hvz, and hv3, show the
general complexity of the various interactions with a simple diatomic molecule.

For instance, hv] may be absorbed by interacting with a (ogZP)-e]ectron
of the molecule, raising it to a continuum state above its ionization limit.
This electron will then be ejected with a kinetic energy, KE], leaving the
molecular ion in its ground electronic state and in a vibrational state, say
v'=0, as shown by the downward arrow.

If hv] happens to have jsut the right amount of energy, then this photon
may also interact with a more tightly bound electron, say (nu2p), and excite
it to the Rydberg state shown as a full curve MZ* in its v'=2 state. (This is
one of the Rydberg states converging toward the excited state of the molecular
ion, A Mz*). Since the Ry-state lies above the ionization limit, X M+, in other
words, since it is immersed in the ionization continuum above X MZ, therefore
configuration interaction between the Rydberg and the adjacent continuum states
may occur, giving rise to a more broadened or diffuse absorption band than in
the absence of neighboring continuum states. The electron may then make a
horizontal transition into the continuum, a pre-ionization process, which results
in its ejection, leaving behind as before a molecular ion, X M; (v'=0,1...}).

As the photon energy is increased, say to a value hvz, the choice of
absorption mechanisms increases. Not only are those processes mentioned for hv],
also possible for hv2, namely direct photoionization and perhaps pre-ionization,
leaving the molecular ion in various vibrational states of its ground state with
the emission of an electron of considerable energy (as shown by the three long
downward arrows on the extreme left, labelled KEZ)' In additon, a second direct
photoionization process may occur, when hv2 is absorbed by a (nu2p)-electron,
thereby raising it into one of its corresponding continuum states above the

*
A M; limit. When this electron is ejected, it may leave the ion in its A state,

V"O,],...,
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In this case, the three shorter downward arrows on the near left of
curve A indicate the magnitude of the energy of the photo-electrons, and the
three groups of downward arrows of three each illustrate the emission of the
associated fluorescence radiation marked th], provided that the transition
from A>X is allowed.

There is yet another photon interaction mechanism possible, which has
been illustrated for a photon of still greater energy, hv3. If this photon
is absorbed by a (UUZS)-electron, raising it to a continuum state above the
B M;* limit, then this electron may be ejected with an energy KE3. This may
leave the molecule in the excited state of the ion, B M;* in the vibrational
state v'=1. As a result, dissociative photoionization may occur, because a
repulsive potential curve, C, crosses B at v'-1. Therefore, we would observe
a photo-electron of energy KE3 (downward arrow to the near left) and two
atomic dissociation products, M* and M, of total kinetic energy ED (downward
double arrow to the right).

0f course, dissociation may not occur when a photo-electron of slightly
greater energy KE3 is observed (downward arrow on far left) leaving MZ in the
vibration state v'=0 of the B state, which in turn may decay by way of
fluorescence (three downward arrows, labelled hv'F]), if some transition to a

lower state is possible.

. *[87]
b) Photoelectron Energy Analysis

With a variety of different specific absorption transitions as illus-
trated in Fig. 2 in mind, it becomes immediately obvious that a specific cross
section for each absorption transition is needed, and this then requires a
brief review of the capabilities of some of thre measuring techniques. Therefore,
some examples will be quickly discussed as, for instance, the absorption of the
He resonance line at 584 R (hv=21.21 eV) by molecular hydrogen, as shown

schematically in Fig. 3 by the upward arrow.

*"Electron Spectroscopy", D.A. Shirley, ed.; North-Holland Publishing Co.,
Amsterdam 1972.
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Here, the incident photon raises an electron to a continuum state above
the ionization limit of 15.47 eV of the ground state of the molecular ion,
H; X 22;. From there, the electron is released with discrete amounts of energy,
downward arrows, leaving the ion in v'=0,1,...12,13. In Fig. 4 we present the
ESCA results of the Uppsala group v which shows these sharply defined groups
of electron energies. The assuracy of the electron energy determination is seen
to be about +0.010 eV, which is comparable to the resolution of a 1 meter normal
incidence spectrograph with a grating of 600 grooves per millimeter and with
entrance and exit slits of 20 to 100 micron width each. The relative peak
heights in Fig. 4 not only allows the assignment of the relative cross section
for a photon absorption transition, which leaves the ion in one specific vibra-
tional state, provided the total photoionization cross section to the X H;
state is known. In addition, the distribution of the peak heights allows con-
clusions as to the nature of the removad electron, bonding or anti-bonding,
since this distribution will indicate the position of the upper potential curve,
X H;, with respect to the lower one, X H2’ in Fig. 3: r'°>r°. therefore a
bonding electron has been removed; if in another molecule r'°<ro, as for instance,
for the states A or B MZ in Fig. 2, then an antibonding electron will have been
removed by an absorption transition involving either of these two states, and
a very different distribution of peak heights will be observed in electron
energy measurements. This is clearly related to the asymmetry of all potential
energy curves, which are very steep to the left of the minimum, for small
internuclear distances, and much shallower to the right, as shown more clearly
in Fig. 3.

The remarkable accuracy of the ESCA method illustrated in Fig. 4 was
achieved by the Uppsala group* by use of electrostatic deflectors in the
shape of concentric spherical surfaces. Alternate methods of photoelectron
energy analysis are concentric cylinder electrostatic deflectors (which have an
’”ESCA, ATOMIC, MOLECULAR AND SOLID STATE STRUCTURE etc.", K. Siegbahn et al.,

Nova Acta Regiae Soc. Sci. Upsaliensis, Series IV, Vol. 20, Uppsala 1967.
(Ref. is continued on next page.)
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advantage of very roughly 27 in electron collection efficiency over the

spherical analyzers), and the spherical grid retarding potential methods.

The last one is only capable of much lower accuracy than the first two (as
will become obvious when inspecting later Figs. 6 and 7), but it has the
advantage of collecting substantially all photoelactrons released by a given
photon. This, in turn, allows for a better assignment of specific photoion-
ization cross sections in terms of relative currents than is possible by the
first two methods, which rely on counting rates.

On the other hand, the spherical electrostatic analyzer is particularly
useful for the determination of the angular distribution of photoelectrons
which has a bearing on the bonding character of the concerned electron.
Since this instrument accepts only electrons from a relatively small solid
angle, this angle of electron emission with respect to the E-vector of a
polarized photon beam and with respect to the photon beam direction itself can
be varied. This is not true for the other two methods.

Figure 5 shows a select number of Gilmore's Franck-Condon curves for
N2 and N; and will be used to illustrate further what has been said before.
Here, the incident photon, hvi=21.21 eV, He I 584 R, is shown to be absorbed
by nitrogen in one of its continuum states, well above the first (X N;), second
(A N;), and third (B N;) ionization limits. As a consequence, three energy
groups of photoelectrons have been measured (the downward arrows to the
different vibrational states of the three electronic states marked X, A, and B),
depending on whether hvi interacted with one or the other of the molecular
electrons of N,: (oQZp), ("uZp)’ or (ouZS) as shown in Table I.

Figure 6 shows these three groups of photoelectrons measured with the
spherical grid retarding potential method. If the total photoionization

cross section is known, say from measurements with ion chambers (Fig. 1, II),

3 "ESCA Applied to Free Molecuies", K. Siegbahm et al., North-Holland Publ. Co.
Amsterdam 1969.
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then the specific cross section which leaved the ion in v'=0 of the B-state
is simply obtained from the measured current ratio, I]/IMAx.shown in Fig. 6.

The ESCA method represented in Fig. 7 measures those photoelectron
transitions which leave the ion in its A-state, and the high accuracy is self-
evident, when this _igure is compared to the central part of the retarding

. potential versus current curve of Fig. 6.

While the accuracy of the ESCA method is remarkable in terms of the
determination of energies of atomic and molecular states, conventional emission
and absorption spectroscopy using modern gratings and photographic emulsions
must still be regarded as one of the most accurate probes of atomic and
molecular physics.

As an example, Fig. 8 represents M. Ogawa's absorption spectrum of
N2 between 800 R and 1000 R, in the top-half with a reciprocal linear dispersion
of 2.85 K/mm in the first order. In the bottom-half of the figure, the region
A marked above, from 822 A to 834 A, is shown in the third order with 0.95 A/mm.
The significance of this becomes obvious, when one recognizes that the sharpness
of the fine rotational lines within the vibrational bands allows for analysis
of these rotational states, whichare not seen by any of the photoelectron energy
analyzers. Another way of saying this, is to compare the ESCA resolution of

1

about 0.01 eV, or about 80 cm ', with that in Fig. 8, bottom, of about 0.0002 eV

o o
to 0.001 eV at 800 A and 1000 A, respectively, or 1 to 10 cm'].

*
c¢) Fluorescence Produced in Photoionization Processes [58,63,65,69,80,81,91,105]

Of those photoionizing transitions in Fig. 5, which leave the molecule
in its B-state,some will spontaneously decay to the X-state of the molecular
ion (indicated in Fig. 5 by two groups of downward arrows and labelled as th]:
fluoresc. radiation). Such wavelength resolved fluorescence as a function of
the incident radiation can be observed, when a vacuum monochromator is coupled

* (30,41,51-54)
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to a second spectrometer which looks at the photoionization region, as
shown in Fig. 9.

When experimental results, obtained in this fashion, are corrected for
detector and instrument response, then the fluorescent intensities in Fig. 10
appear as four pronounced peaks for the transitions from B, v'=0 to X, v"=0,1,
2,3 (1eft group of four downward arrows in Fig. 5) and as four subsidiary peaks
or shoulders for the much weaker fluorescence from B, v'=1 to X, v"=0,1,2,3.
The ratios of these band intensities are then proportional to the Franck-Condon
factors for these transitions.

It is obvious, that these fluorescence techniques ought to be extended
toward the observation of both shorter and longer wavelengths.

Furthermore, by studying the fluorescence radiation also as a function
of the time-delay, i.e., following the light-source spark which produces the
primary photons, hvi, it is possible to observe radiation characteristic of
species which are the result of collisions between photoions in known states
and neutrals.

Thus, from the analysis of photoelectron energies and currents and from
such fluorescence work just described, much more information can be obtained
not only about molecular states, but also about details of specific photo-
ionization transitions. In particular, the work so far reported is of such

promise that its extension into the shorter wavelength region is imperative

*
d) Mass Spectrometer Analysis of Photoionization Products

While referring to shorter wavelengths, it is obvious from Fig. 5 that
if the incident photon is of energy hvi3-24'5 eV, the minimum value to form
N+ + N, then it should be possible to observe atomic ions (also shown in Fig. 2
for the absorption of hv3). This requires that a mass spectrometer be coupled
to a vacuum monochromator as in Fig. 11. There, the photon beam from a

Seya-Namioka type instrument is allowed to pass through the ionization chamber

*[39,40,44,50,52-54,63,64,66,81,87,105,106] {14}
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23,

of a Nier-type mass spectrometer.

The results for N2 are shown in Fig. 12, where the intensity of ions
produced per unit photon flux is plotted against photon energy. The different
jonization limits for the formation of N;, the X-, A-, B-, and C-states, are
marked there with downward arrows. Of particular importance is the upper right
inset, which shows the appearance of the atomic ion, N+, at a value slightly
above the C-state limit, in agreement with the fact that the Franck-Condon
regime (indicated by 2 vertical lines in Fig. 5) intersects the C-state at
vl 1lor 2, i.e., above v'=0. It is worth noting that the intensity ordinate

of the inset is by a factor of 1/100 smaller than the ordinate on the main

Fig. 12.
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25.

e) lon-Molecule Reactions[46’50’63]

Ionization of a gas in a mass spectrometer is sometimes followed by an
ion-molecule reaction. When this process occurs the reaction is often described

by the equation

e - ez,

in which an electrically neutral gas molecule W and an ionized molecule X"
collide to form a product ion 'l plus a neutral Z. For such bimolecular re-
actions the intensities of the reactant and product ions are found to vary
directly and as the square of the gas pressure, respectively, and are usually
observed at pressures higher than those ordinarily used in a mass spectrometer.
Two quantities of interest in an ion-molecule reaction are the reaction rate

and cross section for the process. The cross section is defined in the usual
way as that area about the neutral molecule W through which the ionized molecule
X+ must pass for the reaction to occur, while the reaction rate constant is that
number which, when multiplied by the concentration of X+ and W, will equal the
time rate of increase of the concentration of the product ion Y+.

The usual method of ionizing the neutral molecule X is by electron
impact, but in this research, X+ has been produced by photoionization using
monoenergetic photons from a grating monochromator. Photoionization has been
found to possess several advantages over electron impact methods. First, the
temperature in the ionization chamber of the mass spectrometer was essentially
room temperature, while with an electron beam the heat of the filament causes
temperature gradients to exist, thereby making a precise determination of both
temperature and density of the gas in the ion chamber difficult. Furthermore,

heat from the filament causes the release of impurity molecules from surfaces,

making extreme cleanliness mandatory for this type of source. With a photo-




ionization source, no particular precautions were necessary to reduce background

peaks due to impurities; It was also possible to work at higher pressures
without taking special precautions to prevent the filament from evaporating and,
of course, no magnetic field was necessary to align the fonizing beam.

The primary aim of this research was to look for the occurance of ion-
molecule raactions and to determine their reaction rate and cross section,

The gases studied were hydrogen, methane, and a one-to-one mixture of hydrogen
and nitrogen, and the observed product ions detected were H3+, CH5+, and N2H+,
respectively. (For results, see fig's. 13 to 25 and Table II.)

O0f secondary interest were the appearance potentials of ions and the
dependence of ion intensities on photon energy. In many instances ion intensity
variations could be correlated with the onset of higher ionization potentials,
corresponding to an ion in an excited state, or with a dissociative ionization
process.

It is hoped that the results obtained will advance our knowledge of
chemical kinetics and contribute to our understanding of molecular structure

and the properties of matter when interacting with radiation of the vacuum

ultraviolet region.
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TABLE II

SUMMARY OF EXPERIMENTAL RESULTS

I. Photoionization Potentials

Molecule Energy ev Type
+ R —

Ha 15.4 T 0.3
CH, 13,3 % 0.3 IPy
CH4 18 IP2
II. Dissociative Ionization Processes

Ion Energy ev Reaction

ut 18.0 ¥ 0.5 H, + hv -—>32‘* —3 4+ H

+ + + +

IXII. Secondary Ion Appearance Potentials

a) Associations

Ion Energy ev Reaction
+ + + +
H) 15.4 X 0.3 H2 + 112 — H} + H
+ + + +
CHS 13.3 & 0.5 CH» + °H4 — 0}15 + (:H3

Nzl-l"' 15.3 * 0.3 na‘* +H, —> nzu* +H




TABLE II (Continued)

b) Dissociation from Collisions

Ion Energy ev Reaction
cn,t 13.3 * 0.3 _ S
cut 14.4 ¥ 0.4 ST
ct 14.4 * 0.4 ol

IV. Reaction Rate and Cross Sections

16 9 3 _ sl R -
Q x 10 k x 10° cm k aej:xmcm

Ion t
cma per molecule sec per molecule sec
+
B) 170 ; 3.9 2.1
4
035 130 1.6 1.3

nzn* 620 6.2 1.5




o
f) Dissociation into Neutrals and Other Absorption Processes Below 1000 A '

Now, we come to some speculation, as indicated at the beginning, Fig-
ure 26 shows in part (a) at the very top the total absorption coefficient in
02. measdred by two very well known and highly competent groups, namely by the
late Professor Ken'ichi Watanabe and his student Matsunaga at the University
of Hawaii (labelled M), and by Drs. Gilbert R. Cook and Masaru Ogawa
(identified by open circles). The curves in the middle, (b), by the same two
groups, represent measurements of the total photoionization by all possible
mechanisms. The differences in the coefficients in both (a) and (b) are
obvious. However, it is really astounding, when these differences, kd=k'ki’
in the observed values of these two groups are plotted, as in the bottom part,
(c), of Fig. 26. Not only is the difference coefficient, kd, very substantial
for each group, but the trends of kd versus A are the same for both, and both
groups differ drastically in the absolute value of this difference coefficient,
in some instances by as much as a factor of two or more.

These difference curves in (c), which extend over the wavelength region
of the ionization continuum in oxygen, are thought to represent a photo-
dissociation process. The plausibility of this if further supported by the
different dissociation limits of 02, D7 to 018’ indicated by vertical bars in
Fig. 26(c). While these absorption transitions have not been specifically
indicated earlier, say in Fig. 2, they clearly correspond to the lifting of an
electron to a neutral state, either Rydberg or non-Rydberg or repulsive, which
in this example of 02 lies in energy above the first ionization limit of 1040 R
(other ionization limits of 0, are shown as vertical bars IP, to IP; in Fig. 26
(b)).

As already mentioned, the differences in kd by two otherwise highly re-

garded experimental groups obviously are unacceptable and necessitate the

*[105,108] {50,55,56}
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development of new and better measurement techniques.

Again, in Fig. 27, Cook and Ogawa have plotted the difference coefficient,
kd=k-ki, for H2 in the upper half and for N2 in the lower half of the figure.
As before, ionization 1imits are labelled IP and dissociation by D. The reality
of kd is perhaps best born out by the fact that it goes to zero in H2 towards
shorter wavelengths.

In Table III, Professor M. Ogawa has compiled a list of electronic
states in N2 and their corresponding dissociation limits. It is interesting
to note there that the neutral products from D2 onward have either one or both
atoms in a metastable state. Thus, to continue our speculation, it seems quite
feasible to measure dissociation coefficients resulting in metastables by yet
another method than the one indicated above (kd=k'ki)’ namely by making use of
metastable detectors developed by Dr. Homer Hagstrum. In this case, a
metastable impinging on a surface may release an electron, if the work function
is lower than the energy of the metastable level.

By utilizing a repetitive low-pressure capillary spark source, which
provides vacuum ultraviolet radiation during a time interval of say 1 to 5
microseconds, it should be possible to collect all ions and electrons formed
by photoionization processes during and immediately following the light pulse.
Then one allows all neutrals, including metastables, to drift towards Hagstrum-
type detectors, where the resulting electron pulse is a direct measure of the
metastables produced. In addition, these electrons could be energy-analyzed,
and/or the Hagstrum detecting surfaces could be chosen to have different work
functions, say by cesiating. Either or both procedures would allow us to
differentiate between metastabie levels of different energies. In this way,

it should again be possible to obtain photodissociation cross sections for the

formation of specific metastable species.
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Table I1I. Electronic states and their dissociation limits, N,
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A third way of detecting atomic dissociation products has been suggested
by our colleague, Professor Darrell L. Judge at U.S.C. He proposes to make use
of the very strong absorption of resonance lines as a sensitive detector: for
instance, the absorption of Ly-a (1215 K) by atomic hydrocgen.

One might conclude this particular section by referring to absorption
measurements of atomic vapors by heating certain metals in King furnaces or
other electric ovens, or more recently by producing reasonably high density
atomic and ionic beams. When one extends this to ovens of very high temper-
atures, we make the transition to my last subject, namely the absorption and

emission properties of hot gaseous plasmas.

g) Plasma Spectroscopy [68,84,85,96,101-104,108-125]

The applications of hot gaseous plasmas to problems of photoionization
go back to Millikan's vacuum spark or Lyman's low-pressure capillary spark
as light sources in this field. I wish to limit this discussion to quantitative
emission and absorption properties of those specific plasmas, which can be
shown to be in Local Thermodynamic Equilibrium (L.T.E.). This condition of
L.T.E. is crucial, since the eventual calculation of number densities of certain
species (singly-and/or doubly ionized or neutral atoms or radicals) depends on
it. In particular, two types of highly ionized plasmas have been shown to be
in L.T.E., those produced in low-pressure shock tubggl-ssgnd in high-current
wall-stabilized arcs. (In addition, partial equilibrium has been shown to

exist in magnetically stabilized low pressure discharges, such as the Philips-

type d.c. discharge or the thetapinch impulse discharge.)




1) Shock Tube Plasmas [51,68]

Because of the fact that Tee-type or Cone-type shock tubes can be
driven by high voltage condenser discharges at relatively low neutral gas
pressure (of the order of 10-50 mm Hg), we guessed that it would be easier
to ‘couple such a low pressure shock tube to our vacuum spectrographs. Such
a mating, with appropriate differential pumping, would then allow us to
study the absorption properties of certain constituents present in calculable
number-densities in the high temperature shock tube plasma. Our experimental
arrangement is shown in Fig. 28, where the Tee-tube S is placed in front of
the primary slit of a normal incidence vaéuum spectrograph-monochromator.

Two 1 mm diameter holes were drilled into the quartz envelope of the shock
tube, alligned with the optic axis (dashed 1ine), and a light source could
shine radiation through the shock plasma (if both were properly triggered by
the photomultipliers PM1 and PM3). We used Xenon gas for the convenience
of the experimentalist: The thresholds of the photoionization continua of
the neutral and the ion can both be probed conveniently with a normal incid-
ence vacuum spectrograph since

o IP, = 12.127 eV

+ - 1 o
(1) Xe+hv->Xe +e N = 1022 A
and
o IP, = 21.2 eV
2) xet +nvs xetee 2 3
A, = 584 A

The photoionization cross section o of neutral Xenon was measured in
the cold gas, using the arrangement in Fig. 28, and the results are shown in

Fig. 29. '(The rapid variation of o in the autoionization region between the
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2p3/2- and the 2p]/2- limits due to broad autoionization lines has not been
shown there.)

If then the shock tube is activated and a high temperature Xenon plasma
is generated on the optic axis (Fig. 28), then one would expect the two wave-
lengths emitted by the 1ight source, namely A] = 760 R and Ay = 555 R, to be
attenuated differently by the cold gas and by the hot Xenon plasma, as inspec-
tion of Fig. 30 will show.

In this manner, it was possible to obtain values for the cross section
o' in the above eq. (2), and its magnitude is also shown in Fig. 30. The large
error limit on these data permit us to neglect any serious falsification due
to transitions from metastable states into the corresponding continuum:

M
X: + hv 3 xet + e,
and
+M

+M - i e

Xe +hv-> Xe +e .

While such shock tube plasmas could be made to serve some of our pur-
poses, their plasmas variability in time suggested to us that the time-inde-
pendent, stable high-current arcs would be more suitable to our plasma absorption

and emission work.
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2) High Current DC Arc Plasmas [84,101,102,106,108-125]

The principal equations which govern a plasma in L.T.E. are, for
instance in the case of a pure argon arc, given by the conditions that

the net charge in such a plasma is zero:

"Xr = n_ , (charge neutrality)

e

A T T R R - P AR S
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that the partial pressures are additive:
+ =
Par ¥ Mapr * Ne = P/KT, (Dalton's law)

and that the condition of L.T.E. justifies the Saha-Boltzmann-type of particle

distribution as a function of the temperature S(T): :
+ - - 04,
("Ar + "e)/"Ar = SAr(T)' (Saha equation)

In addition, one can make use of the fact that most plasmas contain
trace elements of hydrogen, and therefore it is possible to measure the width
of the Stark-broadened Balmer line, say H-B, and determine from this the

electron density, n;:

3/2

n; = g(A)) {Stark broadening) electron density, n;:

Finally, measurements of intensity ratios of spectré] lines provide alternate

ways of determining the temperature.

Betwren all of these equations, the temperature and the density of each
of the particles present can be obtained.

If such an arc is used with its axis coincident with the optical axis of
a spectrograph, then the arc plasma emission intensity, IA(x), with x along

the direction of observation, is
dll(x)/dx N TAIA(X),

where the emissivity €y is proportional to the absorptivity Ty and the Planck

function BA is the proporticnality constant, as required by Kirchhoff's law
€y = Ber.

BA is the intensity of blackbody radiation, given by

B, = [2hc?/A%[exp(he/akT) - 117,
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Thus
dIA(x)/dx = TA[BA - Ix(x)].

After integration,

IA(I) =B, + (IoA - BA) exp ('TA])'

If there is no external light source to the plasma, then Iok=0’ and for an arc

of length 1:

IA(]) = BA[]-exp(-rxl)].
The optically thin case is obtained for small vaiues of (le):

I

e

Atxz'

For large (Tkl)’ the plasma is optically thick:

From these additional equations, one can then obtain values for Bx for varicus
lines which are optically thick (t2>>1), together with intensity values of, say
a recombination spectrum (the reverse of photoionization) which is optically
thin (t2>>1) and which then finally allows the determination of Ty» the

- : 2
], or the cross section o, in cm .

absorption coefficient, in units of cm_
If one employs an external light source, say a vacuum uv low-pressure
capillary spark or, for that matter, a second wall-stabilized arc, then one
can.shine light from this second source through the plasma of the first arc
and obtain the number density of one species, say neutral argon in the ground
state, from the attenuation of the source radiation at, say, 780 R. For this
wavelength, the absorption coefficient of argon is accurately known. Thus, if

the first arc were operated in an atmosphere of helium, which is transparent

down to about 500 A, and if this arc were seeded with a small amount of argon,




Then the number density of argon could be checked in this way with an external
light source. This value can then be compared with the one obtained by using #
the emission intensities of one arc only, together with the equations given
above for a plasma in L.T.E.

Figure 31 shows an experimental arrangement in the author's laboratory,

which has been used to measure the photoionization cross section, Ois of

atomic carbon.

(os)

i
C+hv = 0 2.

If an argon arc, Fig. 32, was seeded with CO2 in its central region, then at a

temperature of 12,500°K the arc contained only atoms and atomic ions as its

sole constituents. As a consequence, ¢* could recombine with free electrons

in the plasma with the emission of a photon, and the reverse of the above

absorption or photoionization equation could be seen in emission:

(1,)
+ -
C +e + C + hv.
Thus, the optically thin intensity of this recombination spectrum was measured
as a function of A, and the corresponding o5 values obtained by these methods
compared well with independent theoretically calculated carbon photoionization

cross sections, Fig.'s 33 and 34.
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Their water cooling is not shown.
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h) Recent Plasma Research, 1972 to 1977, [108-125]

1) f-Values of Nine Argon-II Lines [114,124]

ABSTRACT

Oscillator strengths of nine ArIl lines in the vuv have been measured
using a wall stabilized arc operating in a helium-argon mixture. These lines,
740 A, 730 A, 725 A, 723 A, 718 A, 679 A, 664 A, and 661 A, are seen super-
imposed over the argon resonance continuum whose photoionization cross sections
are accurately known. The f-values, so obtained, are 0.013, 0.033, 0.059,
0.024, 0.028, 0.047, 0.024, and 0.044 respectively. From various data, the
experimental spread was found to be within + 10%. However, the estimated
plus experimental error is within + 20%. These f-values have been used to
calculate the emission transition probabilities and 1ife times of the excited

states which are compared with the theoretical values of Statz et al.

INTRODUCTION

Ar II lines in the vacuum ultraviolet (vuv) region arising from the
states of 3p44s and 3p43d to those of 3p5 configuration are used as wavelength
standards and were recommended by the commission 14 of the International
Astronomical Union in 1962. A determination of their transition probabilities
or oscillator strengths not only extends their application to the field of
quantitative spectroscopy but also provides a check for the theoretical modeis

used for calculating them. The experimental f-values of these lines are not

known,
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ANALYSIS AND METHOD

A Maecker] type wall stabilized arc was operated in helium and argon
mixture. These gases were flown into the arc in such a way that helium
provided a window up to about 510 R where its ionization began and the
radiation emitted by the argon atoms entered unabsorbed into a two meter
grazing incidence spectrometer via a differential pumping system required for
the vuv spectroscopy. The details of the wall stabilized arc and the experi-
mental arrangement have been reported ear]ier.2

Between 800 R and 510 R the emitted radiation consisted of Ar II
multiplets which were superimposed over argon resonance continuum. A typical
spectrum, recorded photoelectrically, is shown in Fig. 35. Only nine Ar II
lines (740 A, 730 A, 725 A, 723 A, 679 A, 666 A, 664 A, and 661 A) could be
fully resolved.

The method of measuring the oscillator strengths of the above lines
employed a comparison of intensity of an Ar II line with the intensity of the
underlying neutral argon resonance continuum. It has been shown previous]y3
that in a mixture of argon and helium plasma argon atoms can be described in
LTE (Local Thermal Equilibrium) and the intensity, IA’ of radiation emitted by
the argon atoms is given by a modification of Kirchoff's law of emissivity
being proportional to absorptivity, namely

_TAR'
I, = B,(T) [1-e "], (1)

1
2
3

H. Maecker, Z. Naturforsch. 11a, 457 (1956).
W. Hofmann and G. L. Weissler, J. Opt. Soc. Am. 61, 223 (1971).

G. L. Weissler and S. K. Srivastava, Contributed paper to the "IX Inter-
national Commission on Optics Conference," October 10-13, 1972; Santa

Monica, California; see also "Space Optics" Proceed. IX. Int'l. Congress of the
Int'1. Commission for Optics, B.J. Thompsocn and R.R. Shannon, Editors; National

Academy of Sciences, Washington, D.C. 1974, page 772.




*auae JAy=-3H 30

sixe ay3 buole pajjiwd
Y2€6 Pu® Y059 usamiaq
© wnnutjuBo adueuosas
[ Jy pue sautl II 4Y

30 wna3oads |edtdAy y *ge "bHL4

y 008 0S. oo» 0S9
l |
yovL il .<|\|\
VOEL 114V
: V6.9 113V
Y S2L 114V Y 999 1V
ysiziiiv V199 114V

Kjisuaju| onumaa




where BA(T) is the Planck function and Ty is the absorption coefficient of
the plasma of length 2 at the wavelength A. If TA<<] the above relation
reduces to

.IA/B)‘ =T, (2)

and the radiation at the wavelength A is called optically thin. The intensity,

IA’ of an optically thin resonance continuum is obtained from Eq. (2)

1,/B, = Noy2 » (3)

where Ng is the number density of neutral argon atoms in the ground state, )
the photoionization cross section at the wavelength A, and 2 is the length of
the emitting plasma. For an optically thin spectral 1line the intensity is

given by its profile and from Eq. (2) it is written as
+
[ledx/ax]" = (melim ) (42 €8 W, (a)

where [IIAdA/BA]+ is the total intensity emitted by the spectral line at the
wavelength A;, f;n its absorption oscillator strength for a transition from a
lower energy level m to the upper level n, N; the density of atoms in the

: energy level m, and 2 is again the length of the emitting plasma. '+' sign

indicates a spectral line from the singly ionized atom.

For an Ar II line at the wavelength A; which is superimposed over

argon resonance continuum at the same wavelength, both being emitted from a

plasma of length %, division of Eq. (4) by Eq. (3) gives
[(1L,dN) /1,0 = (reP/mec?) 092 (£ /o)) (N/N,) (5)
A A e o mn’ “X Nn . [

Equation (5) was used in calculating the oscillator strengths, f;n, of Ar II
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lines. The intensity, (JIAdA)+, of the lines was measured in terms of the areas
enclosed by them by the usual methods of planimetry and the intensity of the
argon resonance continuum was obtained from its height. It was assumed that
the intensity, IA, of the continuum remained the same over the entire width

of an Ar II line. Under these conditions the ratio [(IXdA)+/IA] gave the

equivalent width of the line which was converted into wavelength units and
substituted in Eq. (5). Temperature of the plasma was measured by the ratio
of the Ar I line at 4300 A to the Ar II line at 4806 A in the visible. The
electron density of the plasma was determined from the half width of the Stark
broadened H-8 line. These lines were recorded by a Seya-Namioka spectrcmeter
and the radidation emitted by the plasma along its axis was focussed onto its

entrance slit. The theoretical details of this measurement are given by

Stuck and wende.4 The photoionization cross sections gy of argon resonance
continuum have been measured previously by Samson5 and were used in the Eq. (5).
In Eq. (5) the ratio, (N;/Ng), of the population densities of Ar II atoms
in the energy level m and of neutral argon atoms in the ground state is needed.
This can be obtained by the use of Saha equation.6 But due to an error of about
; + 2% in the measurement of the temperature of the plasma the error in the cal-
culated ratio (N;/Ng) becomes high. Therefore, this quantity was obtained

from the measured ratio of the intensities of the Ar II line at 4806 R and the

Ar I line at 4300 R. These intensities are directly proportional to the
population densities in the upper levels of transitions which can be used to
find the ratio (N;/Ng) by applying the Boltzman relation. As will be discussed
later, this method gives a better accuracy for the ratio (N;/Ng). This ratio

is given by
(N NI =T/ 1) (/") (A /) (99 (97/9 JexpL(EG-E ) /KT], (6)

3
5

D. Stiick and B. Wende, J. Opt. Soc. Am. 62, 96 (1972).
J.A.R. Samson, J. Opt. Soc. Am. 54, 420 (1964).
6M. N. Saha, Phil. Mag. J. Sci. 41, 267 (1921).
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where I+, A+, A+, g: and E; are the intensity, transition probability, wave-
length, statistical weight and the energy of the upper level of transition
respectively for the Ar II line at 4806 A and I, A, A, g, and E, are the
corresponding quantities respectively for the Ar I line at 4300 R. g; and
g_ are the statistical weights of the level m of the Ar II atom and ground

g
state of the Ar I atom respectively.

RESULTS AND ERROR ANALYSIS

The absorption oscillator strengths, transition probabilities and the
life times for these lines are presented in the Table I. Along with our
experimental values we have presented the theoretical Tifetime data based on
the intermediate coupling calculations of Statz gg_glz while writing this the

o
44szP (725 A) was reported by Livingston gg_gl.g It has also

lifetime for 3p
been included in the Table I.

From Eq. (5) it is seen that the errors in the measured values of f;n
are contributed by the uncertainties in the determination of the ratio
(N;/Ng) and the reported5 values of gy - The ratio (N;/Ng) depends on the
accuracy of the measured temperature T and the ratio (A/A+) of the transition
probabilities. Our temperature measurements are accurate only to within 2%,
contributing an error of about * 12% to the ratio (N;/Ng). This explains the
experimental spread of + 10% in our results. The values of the individual
transition probabilities A and A+ have been determined by several authors. It

is found8 that these values differ by about + 30%. However, there is a close

7H. Statz, F. A. Horrigan, S. H. Koozekenani, C. L. Tang, and G. F. Koster,

J. Appl. Phys. 36, 2278 (1965); and G. F. Koster, H. Statz, and C. L. Tang,
J. Appl. Phys. 39, 4045 (1968).

8

W. L. Wiese, M. W. Smith, and B. M. Miles, "Atomic Transition Probabilities,"
Vol. II, Natl. Bur. Std. (U.S.) NSRDS-NBS 22 (U.S. Govt. Printing Office, Wash-
ington, D.C.).
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agreement of the ratio (A/A+) between many authors. This agreement is within

I+

5%. Thus, the error in the measured value of the ratio (N;/Ng) is within

15%.

-+

5

The values of the photoionization cross section o, are known” with an |

A
accuracy of * 5%. The total error in the values of f;n reported here is thus
+ 20%.

From Table I we find that there is a large difference between our 1life-
time values and the theoretical values of Statz 33_21.7 The lifetime values |
of this experiment have been calculated from the transition probabilities and ;

are thus accurate to within #40%. Within this limit of accuracy our results

agree with the lifetime value for 3p4452p reported by Livingston gg_gl.g

. . Livingston, D. J. G. Irwin, and E. H. Pinnington, !
J. Opt. Soc. Am. 62, 1303 (1972). 3




2) Measurements of Lyman-alpha and -beta Line

Profiles in an Argon Arc. [122,125]

Introduction

At sufficiently high pressures, the shape of a spectral line, emitted
from a hot gas, is mainly due to interactions between the light emitting
particle and other electrons, ions and atoms of the plasma. Therefore, the

profile of the line carries information about the physical condition at the

place of emission and can serve as a diagnostic tool in determining for
instance particle densities. Because of this application, there has been
strong interest in the theoretical and experimental treatment of line pro-
files by astro and plasma physicists in the last decades.

The effects of electric fields due to ions and electrons in a plasma
are important over a rather wide range of plasma parameters as a result of
the long range of Coulomb forces. For a survey of theoretical and experi-

mental work in the field of spectral line broadening we refer to Griem's book.]

The Stark profiles of Hydrogen require the least theoretical effort since
exact wave functions are known. Consequently the different ca]cu]ationsz’3
show rather similar results. In general, there is good agreément between the
experimental and theoretical profiles (except for the inner line core). This
is particularly true for the Balmer lines, especially H-beta.

In the case of Lyman-alpha and -beta the situation is not so cenvincing.

Ly-a is of special importance in comparison to the other Hydrogen lines. The

1
2

Griem, Hans R., Spectral Line Broadening by Plasmas, Academic Press, N.Y. (1974).
Kepple, P. and Griem, H. R., Report #831, University of Maryland (1968).

3Vidal, C. R., Cooper, J., and Smith, E. W., The Astrophys. J. Suppiement,
series 25, 37 (1973).
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upper level of Ly-a is composed of only three Stark levels, and except for the
very line center, there is no overlapping of different Stark levels. This,
and the absence of any Stark splitting of the ground state, leads to great
simplifications in the theoretical treatment and makes a comparison between
calculated and measured profiles a highly sensitive test for the quality of
1ine broadening theories.

4 in a pulsed shock tube

Relative wing measurements by Elton and Griem
experiment agreed quite well with theory. In contrast, the measurements by
Boldt and Cooper5 with a wall stabilized arc deviated considerably from theory,
even though their experiment was obviously carried out with great care. Fussman
has repeated the measurements of Boldt and Cooper with much improved accuracy
and found very good agreement between his experimental data and the theoret-
ical values of Vidal et a1.3 He attempted to explain discrepancies with the
older measurements in terms of diffusion processed in the arc, which was
operated in a mixture of Argon and Hydrogen. To avoid these difficulties,
Behringer and Ott7 measured the profile of Ly-a using a wall stabilized arc
in pure Hydrogen, and they find excellent agreement with theory.

However, all these experimentally determined line profiles of Ly-a show
more or less pronounced asymmetries, and in a recently published paper,

Voslamber8 predicts an assymmetry and, for lower temperatures, even a sattelite

on the red wing of Ly-a due to proton interaction.

%1ton, R. C. and Griem, H. R., Phys. Rev. 135, A1550 (1964).

5Boldt, G. and Cooper, W. S., Z. Naturforsch. 19a, 968.

6Fussmann, G., Phys. Lett. 41A, 155-6 (1972).
Europhysics Study Conference on Spectral Line Broadening and Related
Topics, Meudon, France (1973).

7Behringer, K. and Ott, W. R., Europhysics Study Conference on Spectral Line
Broadening and Related Topics, Meudon, France (1973). Ott, W. R., and Gieres,
G., Critical Analysis of the Lyman Alpha Stark Profile Measured with a Pure
Hydrogen Arc, National Bureau of Standards, Washington, D.C.
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Voslamber8 predicts an assymmetry and, for lower temperatures, even a sattelite

on the red wing of Ly-a due to proton interaction.

We therefore decided to repeat the Ly-a measurements and to look for
this sattelite. Similar to the Boldt experiment, a wall stabilized arc of the
Maecker type9 was used as a light source, and the arc was operated in argon
with different lTow percentage admixtures of Hydrogen. Temperature and electron
density were kept constant by checking the Argon continuum in the visible
region. No attempt has been made to measure the profile absolutely, but we
fitted the experimental data to the theoretical values in the far wing of the
line. The relative agreement with the calculations of Vidal et a1.3 was found

to be very good in the case of Ly-a and only fairly good for Ly-8.

Apparatus and Experimental Procedure

A high current cascade arc of the Maecker type9 was used to generate a
steady state plasma and Fig.s 31 and 32 show the arc configuration used here.
A detailed description of the experimental arrangement can be found e1sewhere.]0
The arc consisted of 18 water-cooled copper plates, each of which had a hole of
6 mm diameter in the center, forming the arc channel. The total lengths between

cathode and anode was 13 cm, and the copper plates were separated by teflon

8Vostamber, D. Phys. Lett. 40A, 266-8 (1972).
LeQuang Rang and Voslamber, D., Europhysics Study Conference on Spectral Line
Broadening and Related Topics, Meudon, France (1973).
———0n the Interference Term in the Unified Theory IInd Int. Conf. on
Spectral Lines, Eugene, Oregon (1974).

IMaecher, H., Z. Naturforsch. lla, 457 (1956).
10

Hofman, W., Measurement of the Photoionization Cross Section in the Resonance
Continuum of Carbon-I Using a Wall-Stabilized Arc (1970).
Tech. Report No.: USC-Vac UV-121.
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gaskets which provided a gas tight seal and electrical insulation between the
plates. The electrodes were round plates of Tungsten, screwed into water
cooled copper plates, and both had holes in the center for end-on observation.
Each copper plate has a gas inlet and two openings for cooling water. Power
was provided by two Harnishfeger Corﬁ. Welding Power Supplies, and the arc was
usually operated between 80 and 100 Amps. With a 1 Ohm water cooled resistor
limiting the current.

In order to start the arc, it was evacuated and then filled with 5-6
Torr of Argon. The power supply was turned on and a glow discharge was initiated
by discharging a 0.1 uF, 3000 volt capacitor between anode and cathode. As
soon as the low pressure discharge was burning, the pressure in the arc was
increased to 1 atm, Finally, a 20 Ohm resistor originally connected in series
to the water-cooled 1 Ohm resistor was bridged and the high-current arc was
operative.

A schematic diagram of the optical arrangement is shown in Fig. 31. The
anode side of the arc is directly connected to the differential pumping system
of a 2 m grazing incidence vacuum uv spectrograph and monochromator combin-
ation. The instrument had been designed by Weissler'| and built in the USC
Physics Department machine shop. It is equipped with an uncoated lightly ruled
glass grating with 690 lines per mm. A carriage can move along the Rowland
circle carrying the exit slit, and behind it a layer of sodium salicilate for
he conversion of VUV radiation to the visible, together with a glass-enclosed
photomultiplier (PM) tube, EMI type 9514 B. The anode current of the PM was

amplified by a Keithly electrometer and displayed on an x-y recorder. A

p | 11

Blackweli, H. E., Bajwa, G. S., Shipp, G. S., and Weissler, G. L.,
J. Wuant. Spectry. Radiative Transfer 4, 249 (1964).

cxtisiaakin L
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5 kOhm potentiometer was mounted on the gear, which is driving the PM carriage,
M»ﬂ_‘__”_.___._thuo—prev+d*ﬂg'!'VETf5§E'proportfonal to the wavelength position of the

carriage, which was fed into the x-input of the x-y recorder. The linearity

of the Potentiometer was better than 0.1%. By this means, any backlash,

caused by additional gears could be eliminated, a precaution which is of

significance for line profile measurements.

Since the arc is rather long (13 cm) and because of the gradient of
both the temperature and the electron density from the center of the arc
column to the wall, therefore it was necessary to limit the aperture, allowing
only light from the very center of the arc to enter the spectrograph. This
was accomplished by 1imiting the height of the entrance slit and by using a
rather small bore of 0.6 mm diameter between the arc and the differential
pumping system.

Radiation leaving the arc end-on on the cathode side was focussed by
means of an achromatic lens on the entrance slit of a Seya-Namioka mono-
chromator which was used for diagnostic purposes of the arc plasma in the
visible region. This monochromator was equipped with a grating blazed for

o
4000 A in the first order of the spectrum and with an EMI Photomultiplier

type 9-01 b with an S 11 cathode. The current of the PM is amplified by a
Keithly electrometer madel 610 C, and the signal is recorded with a Leeds
and Northrup recorder.

As previously mentioned, the arc was operated in a mixture of Argon
and Hydrogen, and Fig.32 shows the gas inlets and outlets. Under normal
conditions of temperature and pressure the following flow rates were used:
70 cm3/sec of Argon through the cathode, 60 cm3/sec through the anode, and
about 15 cm3/sec of Helium through the anode plate most of which was pumped

away in the first stage of the differential pumping system. The gas outlet




was at Plate #2 measured from the anode, open to the room, thus equalizing
the pressure in the arc to 1 atm. Hydrogen was fed in small amounts of 0.14
to 4.0 cm3/sec into the arc at plate #15. From the position of the different
gas inlets and outlets it follows that there was an overall Argon flow in the
main part of the arc from the cathode to plate #2 of 70 cm3/sec. The Argon
flow from the anode to this outlet was too strong to allow any back-diffusion
of Hydrogen into the anode region. Furthermore, the cold gas layers between
the anode and the VUV spectrograph were kept clear by a flow of Helium in the
end part. Helium and Hydrogen gases were purified by cooling them to liguid
Nitrogen temperatures, thus freezing out N2 and water. Argon was flowed
through a bath of dry ice and Alcohol to freeze out water contaminations. In
all cases, ultra pure gases from Airco were used. However their quality was

not guaranteed and could not be checked.

Spectroscopic and Plasma Parameters

The intensity IA of a spectral line, emitted from a homogeneous plasma

in LTE is given by:

—
n

A = By (T) [1-exp(-«+2)] (1)

and

0% P (a7) , (2)

;..2
Ky, ('ne/mc)Ngf

gk

where BA(T) is the Planck function of the source at a temperature T, Ky the
absorption coefficient of the plasma at a wavelength 2, Ng the number density

of atoms in the state g, 2 the length of the emitting plasma layer, f_, the

gk
absorption oscillator strength for the transition from the level g to the level

k, P(Ax) the normalized line shape and AA=(A°-A), where Ao is the central
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wavelength of the line. If k+2>>1, then IA BA and the radiation is said
to be emitted from an optically thick layer. In this experiment, the peak
intensities of the Ly-a and Ly-B lines correspond to this condition.

According to the old Holtsmark theory, which, as more recent theoretical
and experimental investigations show, holds quite well for the line wing, the

profile of the lines can be described by a rather simple relation:

C
H i £ -9 2/3
572 ° where o AA/Fo and Fo 1.248 10 e .

Pyla) =

e

CH is the so-called Holtsmark constant, F0 the local electric field, and ne

the electron density. Furthermore, we have, because of the normalization,
P(A)) = P(a)/Fo.

It is often more convenient to express theoretical results in form of a

correction factor to the old Holtsmark expression, i.e.

Cy
P(a) = 557 ° R(a)

a

for R(a) is without dimension, of the order of unity, and shows with considerable
sensitivity the deviations between the different theories and experimantal
results. We then get

R(AX) = P(AX) e
- % Fo

Substitution of eq. (2) yields

1 mclz 1 L &
372
Fo e Ng fgk o

5/2

R(AX) = o kel

Cy

and eq. (1) in the form

K==1/2 ¢ zn[l'IA/BA]
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gives ) 2 ; ] ”
- mc 5
R(A)) = iy T Sy 3 AX zn[l-IA/BA] :

0 g gk Ao

If particle densities and temperature are kept constant, we finally obtain

B/2

R(AX) = Const. AX . zn[l-IA/BA] :

If one assumes that wavelengths can be measured without appreciable errors,
there only remain the errors in b and I, at least as far as relative measure-
ments are concerned. Assuming rather small errors of AB = 2% and AI=0.0] Imax’
the errors in R exceeds 10% if IA is either below 15% or above 85% of the peak
intensity. Thus, the wavelengths range over which measurements could be
carried out with fairly good accuracy was rather small. We therefore decided
to follow 3 method formerly used by Boldt et al.: the profiles of Ly-a and
Ly-B are recorded for a number of different Hydrogen concentrations (in steps
of a factor of about 2), while temperature and electron density are kept
constant. To check this condition we used the visible region spectrograph to
measure, in conjunction with the profile of H-B, the Argon continuum at

A = 46900 R. This continuum, under the experimental conditions of T=12 5000 K

and Ne= 10]7 cm'3 is emitted from an optically thin layer and

2
Ic a n e E .

(The remaining weak dependance on T is negligible.) Assuming LTE we can apply

the Saha equation for the first Argon ionization step and get:

“? Ui 2mm kt\3/2 _-x/kT
( ) 2

n 2 2
;?T' e Uy hZ
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Because the Hydrogen admixtures were rather small (< 4%) in all experiments

we have n? = Ng and obtain
: 3/2 -xi
2_ A , Y% 2mkt 'kt
ne = no 2 ‘G;( : s

where xi is the ionization energy of Argon. It follows that
-xi/kt dIc i
- - EE Xy 4r
lalrk *5 A
and with T=12 500 K,

dI
= = J5ls S

Lo

One sees easily that the continuous intensity is very sensitive to temperature
variations.

In addition to this check, the profile of H-B was measured several
times for the different Hydrogen admixtures and used to determine the electron
density by the following method: A straight line was drawn, which connected
the two peaks of H-B, and the value at 4861 R is taken as the peak intensity
of the line. Taking into account the underlying continuum, the full, half,
quarter, and eighth widths are read from the recorded profile. We then use
the experimentally found relations between AA]/Z’ AA]/4 and AA]/B and the

12

electron density, as determined by Wiese et al. In our work these values

of the electron density deviate by less than 5%. In experiments with higher
Hydrogen concentrations (but less than 3%) the electron density is obtained

12

with an accuracy ~ of about 6%. The different Ly-a and Ly-B recordings for

the different Hydrogen concentrations were at first treated separately.

12

Wiese, W. L., Kelleher, D. E., and Paguette, D. R.,
Phys. Rev. A6, 1132 (1972).




The amplitudes A of the profiles (an example is shown in Fig. 37) were evalu-

ated point-by-point according to

Ac - AAS/Z zn[l-IA/Bk] = const. R(AA). Because T and ne were kept

constant, the constant C should only contain the different Hydrogen densities

as a variable. We therefore fitted profiies, i.e. AC values in the range
between 20 and 60% of Imaxof the 1ine wing, and finally normalized these

values in the far wing {(between 4.5 10'2 and 7.5 10'2 in the case of Ly-a to

the calculated value of Vidal, Cooper and Smith.3 The different Ly-a and Ly-B
recordings (for the different Hydrogen concentrations) were first treated
separately. A typical plot is shown in Fig. 36. Inspite of the rinsing the

end part of the arc with purified Helium, there still remained a remarkable
amount of self-absorption in the center of Ly-a, caused by cold boundary layers
that could not be avoided. The NI impurity lines at 1199.6, 1200.7, and 1243.33,
respectivey, were used, in conjunction with the self-absorption dip of Ly-a, to
calibrate the wavelength scale, Fig. 37. The peak intensity of Ly-a was taken
to be the relative Black Body Value BA and the profiles were evaluated according
to:

5/2

R(AA) = C; M tn[1-1,/8, 1.

Because T and ng were kept constant, which was checked by measuring the Argon
continuum in the visible part of the spectrum, the constant C should depend
on the different Hydrogen concentrations only. We therefore fitted the
different profile amplitudes in the wing in the range between 20 and 60% of
the peak intensity Imax and finally constructed an average profile from
several overlapping profiles, in the far blue wing of the l1ine (in the case
of Ly-a between 4.5 10'2 <a< 7.5 10'2) to the calculated value of Vidal

et al./3/. These results are shown in Fig. 38 and Fig. 39 for the blue and
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red wing of Ly-a, respectively. The profile is plotted in asymptotic
Holtsmark units versus a = AA/FO. The solid curve represents the calcu-
lations of Vidal for the same electron density. Besides the fitting and
normalization of the measured values, no other smoothing procedures have
been applied. Therefore our measurements are rough data. We also did

not account for the finite resolution of the spectrograph (no decon-
volution). As Figs. 38 and 39 show, there is quite good agreement between
theory and experiment as far as the blue wing of Ly-a is concerned, while

in the red wing (for a>2 10'2) the measured values are higher than predicted
by theory, a result which is in accordance with Boldt's experiments. (The
red wing could not be evaluated for the highest Hydrogen concentrations
because of a disturbance during the experiment, thus the limit 1<0.02 I_.
is already reached at o = 4x10'2.) Unfortunately, it can not be decided
whether the asymmetry is a true effect or caused by some other disturbance.
This is because of two reasons: When large amount of Nitrogen were added to (Fig.37)
the Argon-Hydrogen mixture, rather strong NI lines at 1225 and 1228 R could
be observed. These lines, although about a factor of ten weaker than the
impurity line at 1243 R, may have some effect, even if the arc is operated
with a pure Argon-Hydrogen mixture.

The apparatus function of the spectrograph has not been measured;
though unlikely, it could by asymmetric because of the rather astigmatic
mounting. |

The sattelite or asymmetry, due to proton interaction predicted by
Voslamber should 1ie about 18 R to the red from the line center of Ly-a.
Assuming an electron density of 8.4 1016 cm'3, this sould correspond to a
value of a = 7.5 10'2 which is outside the range of accuracy of this experi-

ment. It was not possible to increase the intensity of Ly-a by adding more
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Hydrogen to the Argon because the arc could not be stabilized for concentrations ;
above 5%.

The blue wing of Ly-B is shown in Fig. 40, where the same kind of evalu-
ation procedure has been applied as for Ly-a. Its red wing could not be measured
at all because of very strong Nitrogen lines. The agreement with theory is
rather poor, but the appartus profile has not been taken into account. The over=-
all signal was small, so that wide slits had to be used at the entrance and exit
of the spectrograph.

It should be pointed out here that after this report was finished, some

13

new information has been published by Hans R. Griem ~ on the broadening of Ly-a 1

in dense plasmas. Here he compares the various theoretical treatments with the

14 3

most recently published data’ ° of Ly-a line broadening at electron densities of

ne=2 to 4x10]7 cm-3. Our data presented here in Fig.s 38 and 39 at ne=8.4x]016

cm'3 can be fitted easily to the lower theoretical curve (see Fig. 41) of ref-
erence 13, for which no experimental points were then available.

At least some of the difficulties just mentioned could be overcome by using ?
a photon counting system instead of taking DC measurements. The overall sensitiv- i
ity of the system could be increased and smaller slits could be used which would
enhance the spectral resolution. A photon counting system would also eliminate
any shift of the zero line due to changes in the amplification system. Thus it

should be possible to measure the line profiles in the far wing with higher accuracy.

In addition, the apparatus profile of the spectrograph could be measured

using a special light source, e.g. a spark, to produce narrow lines. In the eval-
uation procedure one could then apply a deconvolution procedure and take account
of the inherent apparatus profile. Furthermore, if the resolution of the spec-

trograph could be increased, it would be possible to use optically thick lines

o o
(saturated centers) of Krl 1165A and 1236A and several NI lines in the neighborhood

of Ly-a and Ly-B for an absolute calibration, thus determining the line profiles
absolutely.

13
14

H. R. Griem, Phys. Rev. A17, 214 (Jan. 1978).
K. Gritzmacher and B. Wende, Phys. Rev. Al6, 243 (1977).
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Fig. 41. comparison of measured Lyman-a profiles

10°

nl

(solld dots, from Ref. 4) with calculated profiles not

accounting for electron-produced low~frequency fluctua-
tions (solld lines, from Ref. 8) and with profiles calcu-
lated as described In the present paper (dashed lines).
The profiles are normalized as in Ref. 4, except that the
areas are normalized to 0.1 and 0.01 for the lower-den-

sity cases.
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111, OPTICAL AND PHOTOELECTRIC EFFECTS IN SOLIDS [33,63]

[18,19,26,31,33-35,41,43,45,47,56,57,62,63,67,70,76,77]
[79,82,83,92,95,97-100,103,104]

a) Photoelectric Yields of Surfaces. [18,19,26,31,33-35,41,43,45]

Interest in the interaction of vacuum u.v. photons with solids at U.S.C.
arose out of the problem of understanding fundamental cathode phenomena in gas
discharges. For this reason, the first study undertaken was the measurement
of absolute photoelectric yields from a variety of polycrystalline materials
subject to various surface treatments. Measurements were made on Ni, Cu, Pt,
Au, W, Mo, Ag and Pd over the spectral range 473-1400 R corresponding to
photon energies from 25-8 eV. The samples used were normally commercial foils
with thicknesses ranging from 0<5-5 mils and were measured in a vacuum of
approximately 10°° mm Hg.

Photoyields were measured first on foils cleaned with organic solvents;
these were followed by measurements on surfaces heat treated in vacuum
(5 x 10'5 mm Hg) for varying intervals of time. A few metals were tested after
exposure to 02, H2' and air at various pressures, both at room temperature and
above. Yields were also obtained for several metals while they were maintained
at temperatures between 500°C and 1000°C. Later as more interest developed in
the basic mechanism of the vacuum u.v. photoeffect, photoyield measurements

were made on a variety of evaporated films prepared in situ at 3 x 10'5

mm Hg.
Films of Al, In, Sn, Bi, Au, Ag, and Cd were studied.

Typical photoyield data are shown in Figs. 42-44, Figs. 43 & 44 contain
data on simultaneous reflection and transmission measurements on the same
materials. These optical data will be discussed later. The photoyield curves

illustrate the several novel features observed for the far ultra-violet photo-
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effect. First, the yields are 10-100 times larger (values of 1-10 per cent
are typical) than those characteristic of the visible region. Second, the
yields are less strongly influenced by surface treatment than are those at
longer wavelengths. A decrease in yield of only a factor of ten is obtained
in going from an untreated surface to as clean a surface as could be obtained
under the existing vacuum conditions. Third, in all cases where the measure-
ments extended far enough the yields show a sharp rise in the vicinity of
1400-1000 R indicating a 'threshold' for the large yield effect between 9
and 12 eV. This threshold is particularly well defined in Ni, Pt, Al, Sn,
and Bi. One final feature of the photoyield behavior in the vacuum u.v.
which is of some practical importance is the relative constancy of the yields
of several metals in the region 1000-500 R. Gold for example when heat
treated in vacuum gives reproducible yields which remain between 3-4 percent
over the above region. Pt, Pd, and W show similar behavior to a lesser
extent.

The above features of the photoyield behavior were interpreted on the
basis of the onset of a 'volume' photoeffect near 10 eV. In order to investi-
gate the influence of the 'volume effect' on the nature of the emission,
electron energy distributions were measured on Au for several photon energies
in the range 10-20 eV. These data are shown in Fig. 45. The ordinate is the
number of electrons, in percent, emitted with energies between E and E+dE
per incident photon divided by the photoelectric yield. A striking feature
of these curves is the large proportion of low energy electrons emitted for
photon energies several eV larger than the Fermi band width. The vertical
arrows indicate the Towest electron energy expected from the 14+9 and 176 eV
photons on the basis of the surface photoeffect model. A reasonable interpre-

tation of this behavior is that the electrons are emitted from the volume of
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Fig. 45. Photoelectron energy distributions from Au. Incident
photon energies were 10.2, 14.9, and 17.6 eV. The vertical
arrows indicate the lowest electron energy expected for the
surface effect. A work function of 4 eV was estimated from
the current saturation curve.




93.

the metal and undergo multiple electron-electron scattering before emérging.
In each case the mechanism of electron-electron scattering seems to offer a
plausible explanation. It is possible to exploit this effect to study
electron-electron collisions in metals and semiconductors by making careful
electron distribution measurements at several photon energies in the region
of the volume effect. The rati& of low to high energy electrons as a func-
tion of photon energy should peak near the energy corresponding to the

maximum cross section.




b) Optical Properties of Surfaces. [43,45,47,56,57,62,63,67,70,76,77,79,

82,83,92,95,97-100,103,104]

In 1956 a new series of experiments was begun aimed at making simul-
taneous measurements of optical and photoelectric properties of single crystals
and evaporated films of a wide range of materials in the spectral region from
1500-500 R. Aside from the value of these measurements in elucidating the
volume photoeffect they are significant from several other points of view.
Thin film optical transmission data correlate optical behavior and electron
energy loss information in a variety of materials. In this case the deter-
mination of the onset of plasma transmission predicted by both the Drude theory
and the more modern Bohm-Pines theory is sought. Reflectivity data at normal
incidence, analyzed by the Kramer's-Kronig dispersion relation, yield values
for the optical constants n and k of the material. Since very little data on
optical constants were available for the spectral region below 1500 R, these
experiments revealed a wealth of new and exciting results. Mecasurements were
made of optical transmission of unbacked evaporated films of Al, In, Sn, Bi,
and Ti and of Sb, Te, and Ge evaporated onto a fluorescent substrate. Simul-
taneous measurements of reflectivity and photoyields were made on films of
Al, In, Sn, Bi, Au, Ag, and Cd. The reflectivity spectrum of a single crystal
of Ge was measured at several angles of incidence and the optical constants
calculated by applying the Kramer's-Kroniz relation. Examples of the results
obtained are shown in Figs. 43, 44, 46 and 47.

Perhaps the most interesting result is the onset of transmission be-
ginning in the region 12-18 eV and its sudden drop for some materials at
energies of a few eV from the ouset. In addition to the materials shown, this
behavior was observed in In, Bi, Te, and Ti. The Drude free electron model

predicts such an onset at the frequency wp = (4wn0e2/m)5 where "o is the free
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Fig. 46. Optical data for evaporated Sb films. Reflectivity (R)
of a glass backed film, 860 A thick, evaporated in situ. Trans-
missivity (T) of a stilbene-backed film 1330 A thick, evaporated
in an external chamber. Arrow down denotes the free electron
plasma.  frequency and arrow up the onset of optical transmission.
Vertical lines marked e~ denote electron eigenlosses.
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Fig. 47. Optical data and the results of a dispersion relation
calculation of n and k for Ge. Reflectivity (R) of a single
crystal of Ge at various angles of incidence. Transmissivity
(T) of an evaporated film 800 A thick.




electron density, and e and m have the usual meaning for electrons. The

position of the onset is considered carefully in the Bohm-Pines theory

which modifies the simple picture by introducing plasma modes, the electron
effective mass, and the possibility of interband transitions. In many mater-
ials values close to the free electron plasma frequency are predicted.
Reference to Figs. 43,44,46 show that this is true to a good approximation in
several materials. The general shift of the transmission onset to values a
few tenths of an eV lower than the observed eigenlosses corresponding to
plasma excitations has been explained by Mendlowitz as due to the different
dependence of the two phenomena on the real and imaginary parts of the complex
dielectric constant. The sharp drop in transmission at higher energies can be
identified with d»s,p band transitions and gives for the position of this
transition the following values: Sn(24.3eV), In(16.8 eV), and Bi(24 eV).
Correlations of the reflectivity, transmissivity, and photoyields from these
data show definitely that an absorption mechanism (volume photoeffect) sets in
at about 8-10 eV for most of these materials. Additional structure in the
transmission curves of Al, Sn, and Sb seems to coincide with prominent electron
eigenloss values but as yet no definite conclusions can be drawn from the
optical data regarding the mechanism involved.

Figure 47 shows reflectivity data and the results of the dispersion
analysis for a single crystal of Ge. This analysis was carried out by combining
the reflectivity measurements of Rustgi at U.S.C. between 7.6-18 eV with those
of Phillip and Taft of G.E. between 0-10 eV. A comparison of n and k with the
transmission curve is interesting for Ge since the difference between the free
electron plasma frequency Wps which for 4 electrons per atom corresponds to
16 eV, and the transmission onset given by n=k is significant. The condition

n=k yields a value near 9 eV for the plasma frequency compared to 16 eV for wp-




Prominent energy losses are found near each of these values. The transmission
curve for a Ge film evaporated onto a fluorescing substrate indicates a weak
transmission onset at an energy lower than 16 eV together with an apparent
stronger transmission beginning at 16 eV,

An investigation of the absorption band of X-irradiated LiF in the long
wavelength tail of the exciton absorption edge is also underway. Figures 48 and 49
show some of the early results of this work. The reflection spectrum of a
cleaved Harshaw crystal was obtained at room temperature at an angle of
incidence of 20°. The structure observed agrees substantially with that
obtained in absorption by Milgram and Givens and clearly shows the large exciton
peak near 970 R. Peaks seen at shorter wavelengths can be associated with
electronic transitions on the F~ ion. Transmission data on a thin cleaved LiF
crystal which was irradiated for 2 hr at room temperature with 35 keV X-rays
from a Cu target are shown in Fig. 49. The measurements were made by comparing
the transmission of the X-irradiated sample to that of a control sample. Trans-
mission through both samples was measured before irradiation. X-irradiation
increased the absorption over the entire region measured, however, there is
clear evidence of a new absorption band centered néar 1130 R. This band can

be bleached slightly by LiF F-light (2536 K) and thus behaves similarly to the

B band observed in other alkali halides.

?
t
!
!
¢
i
£
|
|
_E
E
|



B s S i o e, At o i B A A S Al NN 30 20 A, i O, Pl 50 O . b < 05 et A

B T A A T P R A g = R A, TR

"”
§ 970k
.- l‘z...v LiF
-
el £
b |
(-] 5 H
14
4 :
[} %
[ ] o %
1 )
Ll i
i i
2F ¥
- ]
o L 1 | 1 L 1 1 L 1 1 sy
400 600 800 1000 1200 1400
4 A

Fig. 48. Extreme u.v. reflection spectrum
of LiF. Measurements made at room tem-
perature at an angle of incidence of 20°,
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Fig. 49. Incremental absorption of X-irradiated LiF. Data
from a cleaved Harshaw crystal, irradiated for 2 hr at
35 kV and 20 mA with X-rays from a Cu target tube. Samples
placed 8 cm from the beryllium exit window of the X-ray
tube were uniformly colored by this treatment. The ordin-
ate represents the difference between the absorption

coefficients of the irradiated sample and an unirradiated
control sample.
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c) Optical Constants under Ultrahigh Vacuum Conditions. [82,97-100]

The optical properties of evaporated barium films have been investigated
3 o

1 in the wavelength range from 1500 to 3000 A. The complex index of refraction
is n' = n-ik, where n is the real part and k is the extinction coefficient., If

t ; we define here the complex dielectric constant

£ = (n2 - kz) - 2ink, Z\

2nk/ (n? - Kk%)2

then Im(1/¢)

and Im(1/(e41)} = 2nk/{(n? - k2 + 1)% + an%k%).

Reflectance measurements were made at angles of incidence of 17.5° and 72.5°
( Figure 50 ) and the complex index of refraction obtained from graphical

solutions of the Fresnel reflection equations (Fig's. 51-53). The films were

e ot e AT e A P N Pk Al I
- SN e

;I prepared in an ultrahigh-vacuum reflectometer (Fig. 54) having a base pressure
of about 5 x 10']0 torr. Radiation from a hydrogen glow-discharge source was
dispersed by a normal-incidence vacuum monochromator which was optically
connected to the ultrahigh-vacuum system by means of a sapphire window (Fig. 55).
The energy-loss function Im(1/¢), as computed from the optical constants, is
compared with published characteristic electron-loss (CEL) data. The complex
index of refraction was fitted to a Drude model for which the plasma energy

165ec. (Fig. 56). |1

was fixed at 7.4 eV and the damping at 1.6 x 10~
Using the same apparatus as for the barium work described above,

Zirconium films were investigated. The reflectance for both parallel and

perpendicularly polarized 1ight was measured near the plasma frequency of Zr,

* and the ratio of RP/RS exhibited a peak at 790 A (15.7 eV), while a character-

istic energy loss of 15.6 eV was experimentally determined by Lynch and Swan,

Austral. J. Phys. 21, 811 (1968), compared to a theoretical prediction of 15.4eV
(Fig. 57).
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Reflectance data for Barium.

Fig. 50.
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Fig. 51. Optical constants of Barium. The solid curves represent the
present data. The dashed curves were obtained from Maurer. The
flags indicate the effects of an assumed 10% polarization of the

incident radiation.
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Fig. 52. Energy-loss functions for Barium. The upper curve is the bulk
loss and the lower curve the surface loss. The arrow labeled e- is
at 6.5 eV, the energy 1oss reported by Robins and Best, and the one
labeled D at 7.4 eV corresponds to the plasma energy obtained for the
curve fitting shown in Fig. 6
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Fig. 53. The experimental data fitted to a Drude model having a plasma
energy of 7.4 eV and a relaxation time of 1.6x107'® sec. The solid
curves are the experimental data, and the circles and dots represent
points on the Drude curves.
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Fig. 56. The energy dependent relaxation time corresponding to
curve fitting shown in the previous figure.
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d) Optical and Photoelectric Properties of Gold and Aluminum in the Extreme

Ultraviolet Wavelength Region, to 173 A. [92,95]

Continuing the type of research described on the previous pages, the
optical and photoelectric properties of thin films of gold and aluminum have
been investigated in the spectral region of 100 to 1000 R. (See Fig. 58)
Particular attention has been paid to the effects of polarization (Fig. 59)
and angle of incidence on the total yield and energy distribution of the
photoelectrons, Fig. 60. The reflectance, Fig.'s 61-64, which was measured
as an essentially continuous function of the angle of incidence in order to
obtain yields per absorbed photon, was also used in conjunction with the
Fresnel relations to calcuiate the optical constants and polarization of the
incident beam. To check these results, the polarization was measured
directly, and in addition, the reflectance was measured at several angles of
incidence with the plane of incidence rotated 90°. The calculated optical
constants and the complementary polarization data were then used to predict
the original reflectance curves. A spherical retarding potential system was
employed to obtain data providing total yields, while an electron multiplier

with a retarding grid system measured the photoelectron energy distribution,

Fig. 60. It was found that the variation of photoelectric yield, Fig.'s 65-68,

with angle of incidence depends promarily on the absorption depth of the

photons, Fig.'s 69 & 70. The effect of the direction of polarization relative

to the plane of incidence was small and could only be seen in terms of the

yield of low energy phctoelectrons, Fig.'s 71 & 72.
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Fig. 59, The Polarizer-Apralyzer System. The
polarizer and analyzer are shown in one of the two
crossed positions. By measuring the transmitted intensity
in the four possible orientations, the polarization of
the impinging beam can be determined assuming the
polarizer and analyzer are identical. The two different
crossed positions should have the same transmittance and
hence scrve as a check on the required equality of the
polarizing efficiency of the two scctions.
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Fig. 60, The Scarning Electron Multiplier-
Retarding Potential System. The electron multiplier and
retarding system can be positioned so as to observe either
ultraviolet photons, or photoelectrons coming from the
sample in a continuouc range of solid angles. The altitude
and azimuth of the electron multiplier (c), relative to
the sample (e) are varied by the rotations indicated
at (a) and (b), respectively.
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Fig. 61 . Measured Reflectance of an Evaporated 1

Gold Film. The curves are labeled by the wavelength of
the incident photons, measured in angstroms, The dotted
curves are for the plane of incidence perpendicular to
the plane of incidence of the monochromator and are
correspondingly labeled by the | symbol after the
wavelenzth. For all other curves, the two planes of
incidence arc identical.
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i Fig. 62 . Measured Reflectance of an Evaporated
é , and Oxidized Aluminum Film. The curves are labeled as
‘ in the previous figure. The film ha3d been oxidized by :
several days' exposure to the atmosphere. 1
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Fig. 63. Reflectance and Computed Optical
Constants of Gold and Aluminum., The curves in (a) give
the reflectances of the two films at 60° and 75°. The
points plotted in (b) show the values of n and k necessary
to produce the reflectance curves shown in Figs. 14 and
15. The solid and dashed curves show respectively the
variation of n and k for gold and aluminum as reported
by Hunterl9 and by Canfield, Hass and Hunter.20
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Fig. 64. Polarization Measurements and
Calculations. In (a) are shown the results of the
polarizer-analyzer measurements of the polarization of
the incident beam. The top curve is for freshly-cleaned
glass Siegbahn grating, while the lower one is for the
same surface about six months after cleaning. The effect
of grating contamination is then only moderately
noticeable in terms of scattered light background below
about 250A. In (b) is shown several of the reflectance
curves seen previously in conjunction with computed
reflectance curves based on the caiculated values of
n and kX in Fig. 16. It was fcund that these curves are
very insensitive to polarization when both n z2nd k can
be adjusted to optimize the fit.
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Fig. 65. Photoelectric Yield of Gold as a Function
of the Angle of Incidence. The solid curves show the
yleld per incident photon as directly measured, whiie the
dashed sections give the yield per absorbed photoa.
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Fig. 66. Photoclectric Yield of Aluminum as a
Function of The Aangle of Incidence. The solid curves
show the yield per incident photon while the dashed
sections give the yield per abscrbed photon. The effect
of polarization in the yield per absorbed photon is smzll,
but seews significant.
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Fig. 67, The Yield of Photoelectrons with Energics
Greater than-a Few eV. The effects of polarization seen
to have nezrly vanished.
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Fig. 68 . The Photoelectric Yield per Incident
Photon of a Thin Aluminum Film. The structure is due to
interference of the light reflected from the front and
back surfaces. The spacing of the interference maxima
and minima can be used to calculate both the index of
refraction and the film thickness.
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Fig. 69. Typical Processes in Photon Absorption
and Phctozmission. The incident photon is reflected or
refracted at (a). At (b), the photon is absorbed
producing an intcrnal photoclectron whose initial direction
may decpend on both the local lattice oricntation, and the
polarization of the photon. The elcctron is scattered
elastically at (c) and at (d) makes 2 dircct transition to
2 lovier energy band. At (e) the electron is inelastically
scattered torvard the surface with an angle of incidence
greater than the maxinum escape angle 6, and at (i) is
totally reflectcd. At (g) it is scattered to within the
escape cone, and «t (h) escapes from the solid, aiter being
refrocicc evay frowm the normal,
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Fig. 70. The rffect of Absorption Depth on
Photoeclectric Yield. The curves in (a) give the m2an
absorption depth d, relative to the photon mzan free

i path 4, as a function of the angle of incidence for
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Fig. 71 . Energy Distribution of Photoelectric
from Gold. In most cases curves are given for both normal
incidence and the angle of incidence giving the peak
yield per incident photon, identified by N and P,
respectively. In order to compare the shape aud energy
loss of the higher ensrgy electrons, the abscissa shows
the energy difference between the photoelectron and the
incident photon.
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Fig. 72. Energy Distribution of Photoclectrons
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e) The Efficiency of Concave Gratings in the Extreme Ultraviolet Region, to 150A.

Using the same instrumentation as in d) above, Fig.'s 46-48, the
efficiency of five blazed and two Siegbahn type gratings has been measured
in the wavelength range of 150 K to 1000 R. In particular, data are presented
for angles of incidence varying in 5° increments from normal to 80° for the
four wavelengths, 150, 248, 555 and 923 angstrom units. Three of these
gratings were replicas of the same master, having different surface coatings,
Pt, Au, and Al, in order to allow particular attention to be paid to the
effect of material on grating efficiency. The results are shown to be consist-
ent with a simple model giving the overall efficiency as the product of the
reflectance and a geometrical efficiency depending only on the structure of
the grating surface. It is also concluded that light reflected from the grooves
of the Siegbahn type gratings contributes substantially to the performance of

these gratings.

*[90]




IV. CONCLUDING REMARKS

For those readers of this report, which in a general way characterizes
the types of thinking of this era, it should be pointed out in all fairness
that a new wave of research, a rejuvenation if you please, was started in the
mid-sixties, couriously enough with the advent of a new light source for
vacuum uv, soft and hard X-rays, namely synchrotron radiation, first proposed
by the late Professor D. H. Tomboulian of Cornell University and first trans-
lated into an effective research group at the

Deutsche Elektronen-Synchrotron (DESY)
in Hamburg under the leadership of Prof. R. Haensel.

This was follcwed rapidly by other such user groups being established
at NBS, the University of Wisconsin, and Stanford in the late sixties and
early seventies in the USA, at Daresbury in England, in Tokyo, at Orsay in
France, in Bonn and most recently in West-Berlin, and in other places. (Un-
fortunately, this writer is not sufficiently well informed about similar
efforts in the Soviet Union.)

Such local users groups, each made up of investigators from many
different institutions and universities, have developed because of close contact
and cross-fertilization of ideas into effective nuclei of expanding research
horizons. It must be sufficient to mention at this point only two new and ex-
citing directions, namely aspects of surface physics and macromolecular invest-
igations in biological systems.

The reader who is interested in more detailed surveys of these synchro-
tron radiation research activities should try to obtain the readily available
programs of the various user group meetings and/or the published proceedings
of the IVth (in Hamburg in 1974) and Vth (in Montpellier in 1977) International
Conference on Vacuum UV Radiation Physics.
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