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Poisson distribution has been used as a model in several statistical

1. Introduction

problems. As early as 1898, Bortkiewicz [1] u$ed it to fit the data pertaining
to the deaths by kicks from horses in a regiment. Poisson process is used as
a model in many applied probability problems, for example, for the waiting
time, for arrivals of calls at a telephone exchange, for arrivals of radioactive
particles at a Geiger counter, etc. :

In this paper our object'is to study the problem of comparing k Poisson
distributions. Not much work has been done on this problem. Moré specifically,

we consider the problem of selecting a subset of k Poisson populations including

. the best which is associated with the smallest value of the paramater. Gupta

and Huang [4] have considered the selection problem according to the largest
value of the parameter. However, a procedure of the type proposed by them does

not work for the problem of selection with respect to the smallest parameter.

Goel [3] has shown that the usual type of selection procedures do not exist

for some values of the probability P* of a correct selection. Moreover Leong

*This research was su'p'ported by the Office of Naval Research contract
N0CO14-75-C-0455 at Purdue University. Reproduction in whole or in part
is permitted for any purpose of the United Stales Governuent.
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and Wong [6] showed that the infimum of the probability of a correct selection
-1

when the location type of procedure is used in k In this paper, we propose

some procedures different from that of Gupta and Huang [4] for subset selection

whikh exist for all P*. The rules are based on a result of Chapman [2] who

-1
142
variance, where A], A, are expected values of two independent random variables

sthed that there is no unbiased estimator of the ratio A with finite
X], X2 with Poisson distributions, but that the estimator X (X +1) -1
“almost unbiased".

Let TysToseeesmy be k independent Poisson populations, i.e., s has a
Poisson distribution with unknown parameter Ai, i=1,2,...,k. Suppose that
we have equal sample size from each population. Without loss of generality,
one can assume the sample size to be one. Let x[]].i A[Z] 5"'5-A[k] be the
ordered values of the parameters; it is assumed that there is no a priori
information available aboﬁt the correct pairing of the ordered A[i] and the
k given populations from which observations are taken.

Given any P* (%—< P* < 1), we wish to seléét a nonempty (small) subset
of these k populations such that the subset contains the population corresponding
to the pararneter A[]] with probability at least P*, nc matter what the configura-
tion of S ELYTERRET is. We denote this notation by CS. Therefore we are

interested in defining a selection procedure R such that

(1.1) inf P, (CS|R) > P*
@ - .

where 2 is the set of all k-tuples ) = (A],AZ,...,Ak), A; > PR B N S 1S

Let x].xz,...,x denote the independent observatioﬁs from populations

. \

associated with )'(ﬂ’ of course A[ﬂ is unkrown.

“yaTave..aT o Tespect 1velj Let X, i) be that vaiue of X, X N which is

!

-
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In Section 2, we discuss a subset selection rule so as to satisfy the
basic probability requirement (1.1), and to find an‘upper bound for the
expected subset size. A conditional selection procedure based on the total
sum of the observations is considered in Section 3. A method for constructing
the conservative constants and an upper bound for the expected subset size
are derived for this conditional rule. Section 4 deals with a different
selection procedure of the type suggested by Seal for the normal mean problen.
We also discuss the Seal type procedure conditioning on the total sum of the
observation, in which case the selection constant can be determined precisely
s0 as to satisfy the basic probability requirement. An exact expression for
the expected subset size of the conditional Seal type procedure is given. An
application to a test of homogeneity is mentioned in Section 5. Tables related

to the selection procedures are given at the end of the paper.

2. The Unconditional Selection Procedure R]

Lol Thghgylg_R]“pnd Probability of Correct Selection

R,: Select the population s in the subset if and only if

(2.1) X min Xj t o

PER gk
where ¢ 2 1 is the smallest number to be chosen so ac to satisfy the basic
probability requirement (1.1).

For 1 = 1,2,..:5ks et "(4) denote the population associated with A[i]

and let pA(i) = PA(select population n(i)|R]).

Theorem 2.1. pA(i) is a decreasing function in A[i] when all other A's are

fixed and pA(i) is an increasing function in )[j]’ Jj # i, when all other i's

are fixed.




2 et A S < i fic)

Proof. Let <x> denote the smallest integer > x. Then

pé(i) = Pz\(x(i) < min Xy # c;)

1<j<k
X g,
(b ot B k w A A
2 R (41 131
Y e e Lo ) e o B
0 e it |
J#i <
Since Poisson distribution belongs to the stochastically increasing family
: £
k “Xp s Ars
and 11 { e (3] —£%J-} is increasing in X[j]’ J # 1 and decreasing
gebie s x :
j#i =< C]-]>

in x, so by a lemma on p. 112 Lehmann [5], the results follow.

Let 45 = {3 = (Ase.052): 2 > 0}

Corollary 2.1.

inf P, (CS|R,) = inf P (CS|R;)

€ - (S A
A& AAO

e X
inf J etdi 7 gthA
A>0 x=0

x

X
g=<— 1>
=

It should be pointed out that the infimum depends on the common unknown
~s A > 0. In Section 6, we discuss numerical methods to determine this
infimum and the constant for the selection rule.

For any ) = (A],...,Ak) € ¢, the joint conditional distribution of

k
XpsXos.ousX, given ) X, =t is a multinomial distribution with parameters
i=1
" L B
t and (6y,...,8,) where o, = a;(x+...+ )77, 0 = 1,00,k
Let
s ot 15¢
(2-2) A(k,t,C](t)) T 2 x]!"‘xk! (k)
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where the summation is over all k-tuples of nonnegative integers (x],...,xk)

such that x; < c](t) min x + c](t) and Xpteootx, = t.
2<j<k

Theorem 2.2. For given P*, any t, t > 0, let < (t) be the smallest number

such that A(k,t,c](t)) > PR, If ¢y = sup{c](t)] then
t>0

p*.

|V

inf P, (CS[R;)
\q l

Proof. For A ¢ g

PA(CSIR]) = P&(X(]) < min X(.) + c])

2<j<k
® k k
= | = V ==
tZO Pé(x(]) <€ 2T32k X( el é X; t)Pi(iélxi t)
© k
> P (x < Cabt) min - X, . e, (t)] t)P ( X.=t)
o tz (]) A ziJik (J) 1 'IZ = 1%]

0 k
I Aty (€D, (1 Ki=t)

P

jv

This proves the theorem.
2.2. An_Upper Bound on the Expected Subset Size Associated with R,.

Let S denote the size of the selected subset, then S is a random variable
taking value 1,2,...,k. Let us consider the expectedvalues of S under the
slippage configuration A[]] = 8), A[Z] =,..= x[k] = Ayl ezl e Ag < A

We denote the space of all configurations of this type by {4 - Then

Th 2.3 E (S|Ry) < k- inf {g(t,8)+(k-1)g(t ])}}]+6>k°-—lj— i ~Yd
Theorem 2.3.  sup Ry) < k- int {g(t,8)+(k-1)a(t,¢ ; - § e “dy
A&, A t>[cy ]+ 0 Ly ]!

where




+6

1
gle.s) = ) {1 )(116) (]‘S )t i and [x] denote the integral part of x.
0 .

i=

Proof. For ) €&y,

Eé(S{R]) = PA(X(l) ]ZT:gk X(1)+c]) + (k-])PA(X(Z):F] ]TISkX(i)+C])
i

§_P5(X(]) 5_c]x(2)+ c])+(k-1)P5(X(2) j_C]X(])+C])

o0

el U e N T

t=[c{]+1
C]|X(])+X(2)=t)}Pé(X(])+X(2)=t)
t-c t-c
1 1
o L—H—C]] By vi [Hc]] £ 1 4k
= 1 9 N o) 1 =1
% k—t=£c§]+1 120 (G35 G5 +k-1) 1£ (e
-(+e)a((1+8)0) "
t!
ke AHE Ctabb.eplkeTiglt ])}}Hm fEeR L o
< K= n 56 7 Oy e
T taleIn g oy :
(1+5) [c,]
: 1 0 il 12 =y
< k- f . k-1)g(t, — dy.
= tz[é?]+1{g(t 8)+(k-1)g( é)é tE;]T'y e “dy

This completes the proof.

3. The Conditional Procedure R2

R .

% Select the population ms in the subset if and only if

k
(3.1) X. < c,(t) min X.+c,(t), given ) X. =1
o e T T j= |




where t > 0 and cz(t) > 1 is the smallest value chosen to satisfy the

basic probability requirement (1.1).

3.1. Monotonicity property for the rule R2

As before, let pA(i) denote the probability of selecting population

(1) using rule R2.

Theorem 3.1. For A ¢ qand i < j, p,(i) > p, ().
Proof:
pﬁ(i) = Pé(select population n(i)le)
k
= P (Xpay < i in X + VelaXe i =
ﬁ( (i) >-C2( )’:;:‘ (1) Cz(t)[y,{:'] (%) )
) e
= ) )(__..___
- & e () (X tx.+1) % p1+pJ
HpsoneahyseraKaseonaky oo o 2 B
i-= 1+c2(13_—
X.<C,(t)min x +c;(t)
)x]+xj X,
Py vi¥e o Apo*p kg
(—~i5~) A e (e
s ke 2=1
L
L#J
: A
SPEIL 1! SRR "
where P * k £ 8 k and X5
i
*/,')3] Le] .U,z‘] A“'}
Fal
LEd

denote that X, is deleted. Note that when X, and xj are interchanged, the

second part in the above summand remains unchanged, and Binomial distribution

belongs to the stochastically increasing family. So the result follows.

deis




3.2. The Probability of a Correct Selection for R,
Lemma 3.1. For k = 2,

inf P_(CS|R,) = inf P (CS|R,).
At L CTRE e 4R

Proof. For A €4,
PiiGuRa) = Pallngis falellipay et M) ™D

[cz(t)(m)]

T+c,(t)

: C2 t)( )‘J_]J X m—)t-X.
e

A
; ! ; 1 A 5
For fixed X[Z]’ A[]]+A[2] increases with A[]] to 7 this implies that
jnf PA(CSIRZ) = inf PA(CSIRZ)‘
Ak - )\QSZO -

Theorem 3.2. For a given P*, %—< P* <1, k= 2 and any t > 0, let c,(t) be
the smallest value such that

) (t) (14¢)
£ = *
P“O(X] = ~—71EETTT_ |X]+X2 t) > Px,

Then inf PA(CS|R2) S,
AN -

The result follows immediately from Lemma 3.1.
For k > 3, we need the following definitions in order to discuss the

least favorable configuration of PA(CSIRZ).

Lefinition 3.1. If a[]] 2 a[2] < B alm]. and bIII . b|7] iy 2 blm] denote

the ordered values of the compunent, of a and b, respectively, ond such that




il b i el i SN

r r ] 1]

]Z] aLm_i+]] _>_, 1%] b[m_,i+]]s for r s ]p29-..sm']g and ,‘Z‘]a[]] = 12] bl_1]’

then a is said to majorize b, written a » b or equivalently b <a.

Definition 3.2. If a function ¢ satisfies the property that

“x) < oly) (lx) > «(y)) whenever x >y, then ¢ is called a Schur-concave
(Schur-convex) function.

The following lemma is due to Rinott [7], and is stated without proof.

Lemma_3.2. Let X = (X],...,Xk) have the multinomial distribution

N X &
P(X = x) = ( g
= = X-l..-xk i=1 1
K k
when x = (Xy,...,%, ), ) x.=Nand J 6. =1. Let ¢(x) be a Schur function.
el S - =1 ] .

Then EO¢(§) is a Schur-function.

i

Let 05 = {A=(Xy5.005n )i 0 < A1] T T Afk-1] ¢ A[k]}.

Theoren 3.3.

inf p,(CS|R,) = inf P (CS|R,).
A& x 2 A&, A &

Praof. " For A € @

i

k
p (CSiRZ) PA(X(]) < cz(t) Zngk X(j)+c2(t)lizlxi=t)

Y t-y; i R T
oy (1-p;) - X( oh
) 1 1 ) Youru¥y j=2 1 P

sk
1Ay
y]=0
k
where p, = A[i](.E]A[j]) ,1=1,...,k and the second summation is over the
j=

set of all (k-1)-tuples of nonnegative integers (y2""’yk) such that

k! y]'cz(t) v k
v ”‘Eé(iﬁ"’ J = 2yueesk and jZZ ¥y = t-y]. Let




. yy-cy(t)
) oA yj :'—”EZ t

¢yl(y2’°"’yk) &

) 0 otherwice.

(E (N e
: (¢Y] 5

where (Y],...,Yk) is a multinomial random vector with parameters t and

It is easy to see that PA(CS(RZ) can be written as EY

(pPys...5p,). Since for fixed y,, ¢ (¥,5...,y,) is a Schur-concave function
] k pE Byt k

in <y2""’yk)’ hence by Lemma 3.1, PA(CS!Rz) is Schur-concave in

P
T-h-) when py is kept fixed. This implies that P, (CS[Ry) is
1 4
minimized when p; =...= p,_y, P = 1-(k-1)p], or when A[]] =...= ALk-]] < AKT
Thus the proof is completed.

linder the parameter space iy the joint distribution of X],...,Xk given

k
) X. =t, is a multinomial distribution with parameters t and (p],...,pk)

j=1 |
= = SR A = = __L,__.. S M
where pl B S pk_] (k-l)X+K‘ Ps Pk zk-l)X+Xl g, p < (.

Thecren 3.4.

inf P (CS[Ry) = inf
DT O<x<h’ xlgpz(t)min X.+cC
AT
X o U5 BXLEE
iz i

Proof. For i ¢ £y

k
Pé(CS\RZ) - Pé(x(]) 5_c2(t)?;? X(j)+c2(t)|iz] Xi=t)
k-1

B

X

t k

X;<C,(t)min x.+c,(t) (xl"'xk
1_' 2 j#] J 2
xi:O, ).X_i"t

)((;:T%;;;Tﬁ (ZE:T%{I;T)

theorem follows from Theorem 3.3 after simplification.
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Theorem 3.5. For k > 3, and for any P*, let PE = 1- T B < tydet

cz(r) be the smallest value such that

_c2(r)(]+r)
L 1+czlr§ ]
() 527
i=0 2

I ¢.(t) = max{c {r): 0 < r < th;thaniinf P.(CSIR,) > P¥,
2 2 I

Proof. For A €,

13
PA(CS|R2) = Pé(x(])'i c2(t) min X(j) + Cz(t)lizlx(i)zt)

2<j=k
; K K
." ; ]-jZZ (1-P, Xy = CZ(t)X(j)+C2(t)IiZ’1X(i):t)}
: ] e i
- e e ;—- 322 lr‘EOPA(X(” pz(t)X(j)+c2(t),X(])+K(j)—r,
! Pk(iz X(4)=t)
!
i i;]X(1)=t—r,
itJ
2-k ) E 5 (x ()X (£) X, 114X, 1=r)
2k S : LTI T e S
ey =2 r=0 2
ST
Pl(i;l X(i)=t-r)
ifr
i 1 -
P R L O U T )

Pﬁ‘*<x>+X<j>=“>Pa‘i§,*<i>=t-r>
i#]




1

= 2-k =
: P {EX(4)"t) jZZ i iZO

> 2-k+ K

_oy J=2 r=0 i=0
Pé(iz]x(i)_t)

> 2-k+(k-1)P}

= px,

Thus we have the result.

Hence, for each k and P*,

12

Co(t)(r+1)
t S rem )
(M) (—E (s L4l e,
YR [11**LJJ

B S k)

i
¢,(t) (1+r)
e 1+c2 t Eoa
R R T U
it]

Theorem 3.5. guarantees the existence of
k

c2(t) and gives a method to find cz(t) for given ) X =t such that

i=1

P;(CS|R2) > P* for any ) € q.

3.3 An Upper Bound on the Expected Subset Size for R2

For any fixed values of k and P*, the expected size of the selected

subset by using procedure R2 is a function of the true configuration

A o (A]’"'OAk)’
of the type A[]] =

this space by 23

Theorem 3.6.

8xs & < 1y A[z] =

Now consider the space of all slippage configurations

A > 0. Let us denote

e

r-cz(t)
t —Tlczltf] !
sup E (S|R,) < k- § A IR (T }(t)‘“ Zl———
A&y - = s=0 (k-1+5)"

(])=t-r)

Al




Mot i

Proof. For any A € g,

k
EA(SIRZ) = Pé(X(]) Z(t) ZT;Bk X(J)+c2(t)liZ]Xi = t)

+ (k-1)P_ (X c.lt) min X, .1¥c,(t) x =t)
§8ga) < Bal8) BRL G2 '5

:k-Pé(X(])>C2(t)X( )+c2(t)|1§ X.=t)- (k-l)Pé(X(z)/cz(t)X(])mz(t)J j
k ¥
Y oXx,=t ?
f=r X :
r-c,(t)
[1+c2 !
< k ...___]..__..__{ E { 22 (r)(__]__ S(_ki»_)r-s
- k & & g R T
z X t) r=0 s=0
'r—cz(t)
LTIEE(ETJ']
ot ) () m) P, (X(q)*X()=r)
S:
k
Pé(g X(i)—t r)]
r cz(t)
¢ 1+c'_(—)_
= k= ) 2 () (8" S (k=1)8%) (146) ")y ey
r=0 s=0 (s+(k- ]))

After simplifying, we have the result.

4. Other Selction Procedures

4.1. The Selection Procedure R3

In this section we consider a selection procedure of the type suggested

‘O_\ Seal LS] .




R3: Select population m; if and only if
£
(4.1) X_i < ¢ + E:T.jgi Xj

where C3 > 1 is the smallest constant to be chosen so as to satisfy the
basic probability requirement (1.1).

By using an analogous argument as in the proof of Theorem 2.1, we
have the following theorem.

Theorem 4.1. inf P (CS|R3) = inf P (CS|R,).

Ak - ARy, -

Moreover, it is easy to prove the following result.

Theorem 4.2. For any P*, any t, t > 0, let c3(t) be the smallest value such that

r(k-])c3(t)+tc3(t)

L k-T+c,(t)
ty, i, k=1 t-i
.Z (i)(E) ) » e,
i=0
If cg = suplcy(t): t > 0}, then 12: P.(CSIR;) > P*.
- 2 =
Consider the special configuration Mg S SAy 8 < 13 Age Teeh g T

A > Ag 0. Using the same notation as in Section 2, the space of all such
slippage configuration is denoted by 2. In the following theorem, we give an

upper bound for the expected subset size when the rule R3 is used.

: —(k-]*é)AO
Theorem 4.3. sup EA(S|R3) < sup h(r)+(k-sup h(r))(]+(k-]+6)xo)e
r&Q - r>2 r>2

where

c,(r+k-1)

]

c3+k-1 ; ; ’ : : :

h(r) = ) (:){(E:%;g)T(l- E:%:g)r 1+(k-l)(E:1;E)1(l— -;T;g)r }

i=0




Proof. For any A € 295

k-1
EZ‘(SIR3) = Pé(xﬂ) eyt { X ))+(k -1)P (x(k) 7 X(w)

¢5 k
V‘ZO{P_(X“)<C3+ 'k—] z X(J)I z X, =r)+(k-1)P (x(k)<c3 4

c k-1 k k

2 LN ] L xerie L xen).

c3(r+k-1) k
r—o{Pé(x(‘ )= qu(.T“l izlx"erk-] P Xy <5

‘c3(r+k—1)
T . |
I GG Mg U

'(k']+5)*(1+(k 1+8)2) +sup h(r

r>2 i

< k{e

E -(k-1+5)2
=2

-(k-1+a)x0
< sup h(r)+(k-sup h(r))e (1+(k-T+8),) -
r>2 r>2

The proof is completed.

4.2. A Conditional Selection Procedure R4

We consider a conditional procedure as follows:
Select the population L if and only if

- (t) 3 ; k x
cylt) + —-:T- j;i X; given ) X;=t.

4

i=}

MU -




We know that the conditional distribution of (X],...,Xk) given

k
Z X =t is a multinomial distribution with parameters t and

Theorem 4.4. inf P ( CS|R4) 1nf P (CS|R :

Proof. For ) € gq,

c4(t) k k
R LA TEL L P AT

cg(t)(tHk-1)
T "“Y$7IR Tl LA
c4(t)(t+k-])

[ c4lt§+k-] ] A X
I (hegHhia. A

i=0
LR
J
The right hand member of (4.3) will be minimized when A[]}=-.-=A[k]=A-

In this case

4(t)(t+k 1)

S R
inf P (CS|R,) = inf P (CS|R,) = ) (f)(l)‘(kil)t".
A - Mg = =0

Note the infimum of the probability of a correct selection is independent
of the common value ) and c4(t) is the smallest constant determined from
the following inequality.

c4(t)(t+k 1)
c (fflk 1 )
I hen®t s

i=0




T TR e
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Theorem 4.5. For any ) € 21>

(o(t)] . . : ;
Eiakgye g (Pt 0 i) kD) 0 g™

c4(t)(t+k-1)
where D(t) = —c—‘(—t—m—_-rl——.
4

Proof. For A € u],

‘ ¢ (t) k k
Eé(SIR4)=Pé(X(])§p4(t)+ ——:T—-izzx(i)liZ]Xi=t)+(k-])Pé(x(k)i;4(t)+
e i ¥ g=t)
kb oty ) ey
k k
x PA(X(])gp(t)liZ]X1=t)+(k-1)PA(X(k)gp(t)liZ]Xi=t).

The theorem follows easily.

5. Applications to a Test of Homogeneity for A TeeeT A

In some practical situations one wishes to know whether Ay are
significantly different or not. This is the problem of the test of homogeneity
of the Poisson populations. In order to test the homogeneity of k populations,
i.e. to test HO: . e AZ =T A T A against the alternative HA: not A, we

propose the following rule 9 and ¢2(T).

cX < ¢ where c

(1) The procedure 0 H0 is accepted if, and only if X in S

max_
is some constant depending on k, X0 and the level of significance a.

(2) The procedure ¢2(T): H0 is accepted if, and only if

X, =%,

i=1 !

ne—-1x

Xmax-c(t)xmin < c(t), given T =

For the procedure ¢,, if we choose ¢ = supic(t): t > 0}, where for
1 -

any t, t » 0 c(t) is the smallest constant such that
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A(k,t,C(t)) _>_ 1- % )
then under HO’

PA(xmax'cxmin < c)

= 1-P ( ma X X >.c. min- L)
& ]<1<k 1<j<k

k 3
> 1-3)P L (X5 > ¢ min %.4c)
i=1 = J

k
1-k+ § P (X, < c min X.*c)
-

J
k k
= 1-k + k 2 p (X < cmin X.+c| ) X; t)P Y X,=t)
t=0 2<j<k I it i=1 !
a
1-k+k(1- "()
= l-a.

Hence PH (Reject H) < a.
0 A

Similarly, the probability of the error of the first kind for ¢2(T) is

then given by

k
P( max X.-c(t) min X, > c(t)l.z]xi=t)
1:

Tl o 1<j<k
k
= P (X.-c(t) min X, > c(t) for some i| ) Xi=t)
- L, 1<j<k 9 §a
k
< ) P (X; >c(t) min X, +c(t)| ) X;=t) -
j=1 2 1<j<k 9 i=1

k{l-PA(X < c(t) min X +c(t)| E X; =t)}
2 2( <] i=1

k(1-Alk,thc(t)))
k(1-(1- )

1A

- e
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7. Explanations of the Tables

(1) Tables I and II list the infimum of the probability of a correct
selection (approximate value) for the rules R] and R3. It should be
pointed out that the probability of a correct selection for these rules
is decreasing when A is small and then it is increasing again with »
Hence, the approximate infimum can be determined numerically by computing
the probability as a function of X, for fixed values of c. For given k
and P*, the selection constants (approximately) can be found from these
tables. For example, for P* = .8504 and k = 4, the approximate value of
c associated with R] ¥s 2.4,

(2) In tables IIIA, IIIB, IIIC and IIID, the first entry denotes the probability
of selecting the best population, the second entry denotes the probability
of selecting a non-best population and the third entry is the expected
proportion, all under the slippage configuration x[]3 = 3hy § < 13
A[Z] =.,.= ALk] = X, when the rule R] is used. The three entries in
Table IVA, IVB, IVC, IVD define the same quantities for the rule R3.

For example, from Table IIIC, we find that for the rule R] if x = 2.00
and ¢ = 1.50 (k = 5 and 6 = 0.3), the probability of a correct selection
is .9447, the probability of selecting a non-best population is .5399 and

the expected proportion of populations in the selected subset is .6208.

8. Some Remarks on the Comparison of R, and R3

We define a rule R to be better. than another rule R' if the expected
proportion for R is smaller than the expected proportion for R'. We compare
the performance of the rules R] and R3 in this aspect. For example, when

k = 5, P* = 0.92, we obtain the approximate values of selection constants for

R] and R3

as ¢y = Sy c3 = 1.6 from Table I and Table Il respectively. Ftor this
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constants Tables III, IV show that if & is kept fixed, R3 seems to be
better than R, when ) is small, while R] performs better than R3 for large

values of A.
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Table I

Table of inf P(CSIR]) (Approximate) using the Rule R] :
\C %
k\ 1.6 1.8 2.0 2.4 2.8 50 35 4.0 &5 oA,

9 L Y =R 86

2 |0.8577 0.6762  0.9353  0.9391  0.9517 0.9771 0.9792 0.9902 0.9906 _ 0.9956

E 3 10.7627 0.7895  0.8845 0.8904  0.9118  0.9566 0.9604 0.9811 0.9817 0.9913
E' 4 ]0.6936  0.7246  0.8431  0.8504 0.8784 0.9380 0.9433 0.9724  0.9733  0.9872
| 5 10.6394 0.6740 0.8076  0.815]1 0.8484 0.9209 0.9277 __ 0.9643 0.9654  0.983%
6_10.5963 0.6313 0.7769 0.7845 0.8212 0.9053 0.9135 0.9566  0.9578  0.9793
6_|0.5322 _ 0.5644  0.7263 0.7341 0.7750 0.8774 0.8881 _ 0.9425 0.9439 0.9720
10 |0.4807  0.5144 0.6858  0.6943  0.7374  0.8532 0.864]1 0.9289 0.9314  0.9651

For given k and c, this table represents the minimum value (approximately) of

i ‘
g MITAERE SR g

P.[X, =c min Tl BUEE A o

1<j<k-1 J i

I~ 8

dfee =i

where X],...,X are i.i.d. Poisson variables with parameter \.

k




B Table II
] Table of inf P(CS|R3) (Approximate) using the Rule R3
-
g_:%'m_];j{ e A8 2.0 2.4 2.8 3.0 3.5 4.0 4.5 8.0
|
2{0.8577  0.8762 _0.9353 0.9391 0.9517 0.9771 0.9792 0.9902 0.9906  0.9956
'310.8996_ 0.9407_0.9575 0.9772 0.9887  0.9950 0.9965 0.9989 0.9990  0.9996
4.40.9201 _ 0.9452  0.9730 0.9826  0.9937 0.9953 0.9985 0.9995  0.9997  0.9999
5]0.9260  0.9573  0.9733  0.9889  0.9955 0.9979 0.9993  0.9995 0.9998  0.9999
6.10.9389  0.9611  0.9796  0.9911  0.9964 0.9982 0.9993 0.9998  0.9999  0.9999
j{410.9453 0.9676 0.9828 0.9938 0.9973 0.9987 0.9995 0.9999 0.9999 0:9999
10 10.9465 0.9678 0.9845 0.9940 0.9981 0.9987 0.9997 0.9999 0.9999 ‘0.999Q
For given k and c3» this table represents the minimum value (approximately) of
S T A . Akt [hefinid, - 2o 3
P.LX, <755 ¥ X.4c,] = J e "5 ) e ALy = Y e S
ASTK = R=] =1 3 e il Jit i20 17
j=<(k=1)(— -1)>
3
(k1) <(k=1)(z= -1)>-1
{f ] ; e Vdy)
0

r(<(k-1)(2—3 )

where X],...,Xk are i.i.d. Poisson variables with paraneter X.
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Table ITIA
Using the rule R] and under the configuration (8X,x,...,Ax), this tables gives in order
the triple (a) the probability of selecting a best population, (b) the probability of
selecting any non-best popula}ion and (c) the expected proportion of the selected

populations ([(a)+(k-1)(b)]/k). . i

ko2 3, =03

NG 1
AN 1.5 2.0 2.5 3.0 3.5 4.0 e u T
1.0 | 0.9777  0.9978  0.9978  0.9998  0.9998  0.9999  0.9999  0.9999

' 0.7761  0.9322  0.9327  0.9841  0.9841  0.9969  0.9969  0.9995 ;

0.8433  0.9541  0.9544  0.9893  0.9893  0.9979  0.9979  0.9996
2.0 0.9678  0.9940  0.9941  0.9991  0.9991  0.9999  0.9999  0.9999
0.5889  0.7857  0.7974  0.9114  0.9125  0.9678  0.9678  0.9898
0.7152  0.8551  0.8630  0.9406  0.9413  0.9785  0.9785  0.9932
3.0 0.9736  0.9932  0.9938  0.9986  0.9986  0.9997  0.9997  0.9999
0.4880  0.6729  0.7146  0.8332  0.8415  0.9179  0.9190  0.9632
0.6499  0.7797  0.8077  0.8883  0.8939  0.9452  0.9459  0.9755
4.0 0.9811  0.9944  0.9954  0.9987  0.9987  0.9997  0.9997  0.9999
0.4111  0.5945  0.6680  0.7783  0.8020  0.8752  0.8803  0.9314
= 0.6011  0.7278  0.7771  0.8518  0.8676  0.9167  0.9201  0.9542
5.0 0.9866  0.9960  0.9971  0.9990  0.9991  0.9997  0.9997  0.9999
0.3481  0.5360  0.6307  0.7411  0.7822  0.8480  0.8609  0.9075
0.5609  0.6893  0.7528  0.8271  0.8545  0.8986  0.9072  0.9383
6.0 0.9904  0.9973  0.9983  0.9993  0.9994  0.9998  0.9998  0.9999
0.2980  0.4892  0.5961  0.7134  0.7679  0.8313  0.8537  0.8940
0.5288  0.6586  0.7302  0.8087  0.8451  0.8874  0.9024  0.9293

Aopiei cdlineace o i et ol
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Table IIIB
Using the rule R] and under the configuration (6A,%,...,A), this tables gives
in order the triple (a) the probability of selecting a best population, (b) the
probability of selecting any non-best population and (c) the expected proportion

of the selected populations ([(a)+(k-1)(b)]/k).

k=3,6=0.5

c
Ak 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1.0 | 0.9452  0.9913  0.9913  0.9989  0.9989  0.9998  0.9998  0.9999
0.7871  0.9388  0.9395  0.9857  0.9857  0.9972  0.9972  0.9995
0.8465  0.9563  0.9568  0.9901  0.9901  0.9981  0.9981  0.9996
2.0 | 0.9249  0.9782  0.9794  0.9951  0.9952  0.9990  0.9990  0.9998
0.6679  0.8322  0.8467  0.9334  0.9347  0.9760  0.9761  0.9924
0.7536  0.8809  0.8910  0.9540  0.9549  0.9837  0.9837  0.9949
3.0 | 0.9339  0.9762  0.9802  0.9933  0.9935  0.9981  0.9981  0.9995
| 0.6066  0.7695  0.8138  0.8945  0.9029  0.9501  0.9512  0.9779
| 0.7157 0.838%  0.8692  0.9274  0.9331  0.9661  0.9668  0.9851
« 4.0 | 0.9443  0.9798  0.9857  0.9941  0.9946  0.9980  0.9980  0.9993
| 0.5570  0.7338  0.8028  0.8777  0.8977  0.9372  0.9413  0.9666
' 0.6861  0.8158  0.8638  0.9165  0.9300  0.9574  0.9602  0.9775
5.0 | 0.953  0.9882  0.9904  0.9957  0.9964  0.9984  0.9985  0.9994
©0.5187  0.7108  0.7940  0.8714  0.9007  0.9345  0.9431  0.9629
| 0.6636  0.8019  0.8594  0.9128  0.9326  0.9558  0.9616  0.975]
6.0 | 0.9617  0.9881  0.9936  0.9971  0.9978  0.9989  0.9990  0.9995
| 0.4897  0.6943  0.7871  0.8695  0.9037  0.9359  0.9483  0.964]
0.6470  0.7923  0.8559  0.9120  0.9351  0.9569  0.9652  0.9759




Table IIIC

Using the rule R] and under the configuration (8A,A,...,A), this table gives in

order the triple (a) the probability of selecting a best pcpulation, (b) the

probability of selecting any non-best population and (c) the expected proportion

of the selected populations ([(a)+(k-1)(b)]/k).

k=5, 6=0.3
1

A 1.5 2.0 2& 3.0 3.5
1.0 0.9689  0.9969  0.9969  0.9997  0.9997
0.7518  0.9247  0.9249  0.9822  0.9822
0.7952  0.9391  0.9393  0.9857  0.9857
2.0 0.9447  0.9896  0.9897  0.9985  0.9985
0.5399  0.7568  0.7665 0.8975  0.8985
0.6208  0.8034  0.8112  0.9177  0.9185
3.0 0.9518  0.9874  0.9882  0.9975  0.9975
0.4487  0.6408  0.6827  0.8135  0.8221
0.5493  0.7101  0.7438  0.8503  0.8572

E 4.0 0.9648  0.9894  0.9910  0.9975  0.9975
0.3812 0.5671  0.6437 0.7612  0.7865
0.4980  0.6516  0.7132  0.8084  0.8287

5.0 0.9748  0.9923  0.9943  0.9981  0.9982
0.3242  0.5139°  0.6122  0.7278  0.7715
0.4542 0.6096  0.6886  0.7819  0.8168
6.0 0.9813  0.9948  0.9966  0.9987  0.9988
0.2794  0.4718  0.5817  0.7034  0.7603
0.4199  0.5764  0.6647  0.7624  0.8080

oo
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Table IIID

Using the rule R] and under the configuration (6A,\,...,A), this table gives in
order the tripl (a) the probability of selecting a best population, (b) the probability
of selecting any non-best population and (c) the expected proportion of the selected

populations ([(a)+(k-1)(b)]/k).

k=5, 6=0.5

‘c

e RN £ i s oA AR Y S s s % B

1.0 0.9239 0.9878 0.9878 0.9985 0.9985 0.9998 0.9998 0.9999
0.7601 0.9273 0.9276 0.9829 0.9828 0.9967 0.9967 0.9994
0.7929 0.9394 0.9396 0.9860 0.9860 0.9973 0.9973 0.9995

2.0 0.8748 0.9629 0.9643 0.9915 0.9916 0.9983 0.9983 0.9997
0.5954 0.7899 0.8029 0.9139 0.9151 0.9687 0.9688 0.9902
0.6513 0.8245 0.8351 0.9294 0.9304 G.9747 0.9747 0.9921

3.0 0.8861 0.9569 0.9628 0.9875 0.9878 0.9965 0.9965 0.9991
0.5415 0.7199 0.7684 0.8674 0.8770 0.9367 0.9379 0.9718
0.6104 0.7673 0.8073 0.8914 0.8992 0.9486 0.9496 0.9773

4.0 0.9030 0.9623 0.9724 0.9886 0.9895 0.9961 -0.9962 0.9988
0.4971 0.6869 0.7654 0.8531 0.8769 0.9244 0.9294 0.9598
0.5783 0.7420 0.8068 0.8802 0.8995 0.9387 0.9427 0.9676
0. 0. 0. 0. 0. 0. 0.9970 0.9988
0. 0. 0. 0. 0. 0. 0.934Y 0.9576
0. 0. 0. 0. 0. 0. 0.9473 0.9659
0 0. 0. 0. 0. 0. 0.9981 0.9991
0. 0. 0. 0. 0. 0. 0.9429 0.9605
(9% 0. 0. 0. 0. 0. 0.9539 0.9682
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Table IVA
Using the rule R3 and under the configuration (6A,A,...,A), this tables gives in
order the triple (a) the probability of selecting a best population, (b) the
probability of selecting any non-best population and (c) the expected proportion

of the selected populations ([(a)+(k-1)(b)]1/k).

¢ k=3, 6=0.3
.‘3

) 1.5 2.0 2.5 3.0 3.5 ST A B TR o

1.0 .9939 .9994 .9995 .9999 .9999 .9999 . .9999 .9999

.8931 .9701 .9766 .9945 .9947 .9989 .9990 .9998

.9267 .9799  .9842 .9963 .9965 .9993 .9993 .9998

2.0 .9948 .9991 .9995 .9999 .9999 .9999 .9999 .9999

.8176 .9227 .9605 .9848 .9881 .9958 .9960 .9987

.8766 .5482 .9735 .9898 .9921 .9972 .9973 .9991

3.0 .9963 .9993 .9997 .9999 .9999 .9999 .9999 .9999

- .7590 .8828 .9511 .9784 .9875 .9945 .9957 .9981

.8381 .9216 .9673 .9856 .9916 .9963 .9971 .9987

4.0 .9975 .9995 .9999 .9999 .9999 .9999 .9999 .9999

.7235 .8599 .9419 .9739 .9865 .9937 .9966 .9983

| .8149 .9064 .9612 .9826 .9910 .9958 .9977 .9988

5.0 | .9985 .9997 .9999 .9999 .9999 .9999 .9999 .9999

L .7006 .8503 .9365 .9724 .9857 .9931 .9970 .9985

.7999 .9001 .9577 .9816 .9905 .9954 .9980 .9990

6.0 | .9991 .9998 .9999 .9999 .9999 .9999 .9999 .9999

| 6818 .8471 .9363 .9734 .9864 .9933 .9972 .9986

.7876 .8980 9675 .9822 .9909 9955 .9981 .9990
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Table IVB ,
Using the rule R3 and under the configuration (8i,A,...,A), this table gives in ;
order the triple (a) the probability of selecting a best population, (b) the
probability of selecting any non-best population and (c) the expected proportion

of the selected populations ([(a)+(k-1)(b)]/k).

k=3,6=0.5
- C
s N 2.0 2.5 3.0 3.5 N s 5.0
¥
1.0 | .9830  .9975  .9980  .9997  .9997  .9999  .9999 .9999
.9068  .9743  .9806  .9955  .9957  .999] .999] .9998
.9322  .9820  .9864  .9969  .9970  .9994  .9994 .9999
2.0 | .9819  .9958  .9981 .9995  .9996  .9999  .9999 .9999
AT 90The0s 9N .9891 9919 .9971 9973 .9991
.8921 .9571 .9801 19926 .9944 . .9980  .998] .9994
3.0 | .9837  .9957  .9989  .9997  .9998  .9999  .9999  .9999
.8059  .9111 .9663  .9858  .9923  .9967  .9976 .9989
1 .8652  .9393  .9771 .9904  .9948  .9978  .9983  .9993
i
4.0 | .9873  .9966  .9993  .9998  .9999  .9999  .9999  .9999
, 860 - 8005 u» 8625, 99021 1" 9903 .. 9965, . .9983.. . .999]
; .8531 .9325  .9746  .9894  .9948  .9977  .9988  .9994
:
| 5.0 | .9908  .9978  .9995  .9998  .9999  .9999 .9999  .9999
7743 .8996  .9617  .9849  .9926  .9966  .9986 .9993
.8464  .9323  .9743  .9899  .9950  .9977  .9990 .9995
6.0 | .993  .9986  .9997  .9999  .9999  .9999 .9999 .9999
.7655  .9023  .9645  .9867  .9937  .9970  .9988  .9994
8414  .9344  .9762  .991 .9958  .9980  .9992  .9996




Table IVC

Using the rule R3 and under the configuration (éA,x,...,A), this table gives in

order the triple (a) the probability of selecting a best population, (b) the

probability of selecting any non-best population and (c) the expected proportion

of the selected popul=“ions ([(a)+(k-1)(b)]/k).

5’6

C
a3 15 2.0 2.5 3.0 35 4.0 4.5 5.0
1.0 .9977 .9990 .9998 .9999 .9999 .9999 .9999 .9999
19394 -9655 -9899 .9979 19990 -9996 .9998 19999
19510 9722 -9919 .9983 -9992 .9997 -9998 -9999
2.0 .9979 .9994 .9999 .9999 .9999 .9999 .9999 .9999
-3871 -9526 -9849 .9953 .9985 -9989 .9996 -9999
-9092 .9620 9579 .9962 -9988 -999] -9997 19999
3.0 .9987 .9998 .9999 .9999 .9999 .9999 .9999 .9999
.8597 19499 9845 .9953 19983 .9991 19997 -9999
.8875 -9599 .9876 .9962 .9986 -9993 .9998 -9999
4.0 .9993 .8999 .9999 .9999 .9999 .9999 .9999 .0000
-8508 19519 -9865 .9963 -9987 -9994 19998 -9999
-8805 9615 19892 .9970 -9989 .9995 19999 -9999
5.0 .9997 .9999 .9999 .9999 .9999 .9999 .0000 .0000
8462 .9555 .9892 .9973 .9992 .9997 -9999 -9999
-8769 -9644 9914 .9979 .9993 .9997 -9999 -9999
6.0 .9998 .9999 .9999 .9999 .0000 .0000 .0000 .0000
.8437 .9596 9914 -9981 -9995 -9998 -9999 -9999
.8750 9677 .9931 .9985 19996 .9998 .9999 -9999
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Table IVD
Using the rule R3 and under the configuration (8x,A,...,A), this tables gives in
order the triple (a) the probability of selecting a best population, (b) the probability
of selecting any non-best population and (c) the expected proportion of the selected

population ([(a)+(k-1)(b)]/k).

i
g
:
|
8
%
%
é
|
f
i
|
E
§
!
}
:
?
{
gg
§
:

k=5,8=0.5
s
i~ 1.8 2.0 2.5 3.0 3.5 4.0 4.5 5.0
S F

1.01 .9915 .9961 .9993 .9999 .9999 .9999 .9999 .9999
.9435 .9686 .9910 .9982 .9992 .9996 .9998 .9999
.9531 .9741 .9927 .9985 .9993 .9997 .9998 .9999

2.0 .9398 .9972 .9995 .9999 .9999 .9999 .9999 .9999
.8985 .9596 .9876 .9962 .9988 .9991 .9997 .9999
.9168 .9672 .9900 .9970 .9990 .9993 .9998 .9999

3.0 .9917 .9985 .9997 .9999 .9999 .9999 .9999 .9999
.8781 .9592 .9881 .9965 .9938 .9994 .9998 .9999
.9009 .9671 .9904 .9972 .9990 .9995 .9995 .9999

4.0 .9945 .9992 .9999 .9999 .9999 .9999 .9999 .9999
.8740 .9625 .9903 .9975 .9991 .9996 .9999 .9999
.8981 .9698 .9922 .9980 .9993 .9997 .9999 .9999

5.0 .9964 .9996 .9999 .9999 .9999 .9999 .9999 .9999
.8726 .9666 .9927 .9983 .9995 .9998 .9999 .9999
.8974 .9732 .9941 .9986 .9996 .9998 .9999 .9999

6.0 .9976 .9998 .9999 .9999 .9999 9999  1.0000  1.0000
.8733 .9708 .9944 .9989 .9997 .9999 .9999 .9999
.3982 .9766 .9955 .9991 .9998 .9999 .9999 .9999
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numerical computations have also been provided which shed light on the
performance of the selection rule in terms of the probability of selecting
a non-best population, the probability of a correct selection and the
expected proportion in the selected subset. It should be pointed out that
the problem treated here is not solvable byManalogous methods for the
problem of the maximum which was studied earlier by Gupta and Huang (1975).
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