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This thesis presents further analysis of the application of alternating
logic to the design of self-checking systems. 1In particular, results are
presented in the areas of combinational logic, sequential logic, self-checking
alternating logic modules, self-checking alternating logic checker design, and
self-checking alternating logic system design.

The necessary and sufficient conditions for a self-dual combinational
network to be self-checking are developed. An analytic technique for
evaluating if any self-dual network is self-checking is given. A memory
efficient approach for the design of self-checking alternating logic
sequential machines is presented. Various techniques of checker design for
self-checking alternating 1logic are discussed. The requirements of the
hardcore portion of general self-checking systems is given. Minority modules

are shown to be sufficient to convert any NAND or NOR network to a

self-checking alternating logic network.
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1. INTRODUCTION

1.1. Improving Djgital Systems' Reliability

As the use of digital systems has increased, a need for systems with
improved reliability has arisen. Although physical device reliability has
improved remarkably, much improvement is needed in developing system level
design approaches. This thesis will consider a method using time redundancy

to detect system failure dynamically.

1.2. Failure Modeling

To develop a method of design to improve a system's reliability, it is
necessary to determine how the system may fail. If the design method is to be
valid, it must use a mcdel of the possible failure modes which is sufficiently
close to the actual physical failure modes. Some previously developed models
are the single stuck-at fault model, the multiple stuck-at fault model, the
unidirectional fault model [ANDE1] and the pin-fault model [KETE].

The single stuck-at fault model is valid when a high percentage of the
physical failures in the system is manifested as logical failures on a single
line during a limited time period. The failure may be permanent or transient,
but must not affect more than one line's logical value. A second failure is
presumed not to occur before the first one has been recognized. These
assumptions are well accepted and have received considerable experimental and

theoretical [BREU,SHED1] support. Consequently, it is appropriate that the

single fault model be used in this thesis.




1.3. General Reliability Improvement Technigues

From Figure 1.1 the relationship of alternating logic to reliability

improvement is apparent. Since some areas may overlap, the classification
scheme is not precise. However, it does provide a perspective to the role of
alternating logic.

Fault tolerance is used in systems to remain operable for a restricted
time period after initial failure has occurred. Fault diagnosis is used in
systems to locate the internal source of an observed system failure. Fault
detection is used in systems to determine whether a failure has occurred; if
failure has been detected, appropriate removal or repair of the failed module
may be done.

For classification, fault detection may be considered as either static or
dynamic. Static fault detection is done while the system is not performing
its normal function; i.e., it requires the system be dedicated to the testing
procedure while it is checked. For example, when programs are run to check
whether certain system modules are operating properly, a static test is being
performed. If the fault detection is accomplished while the system is
performing its normal operation, then dynamic testing is being done.

The dynamic test may be done in software or hardware. To perform
software dynamic fault detection, a check can be made on the intermediate
results of a program to determine whether the answer is correct. For example,
a program which finds the solution to the unknowns in a set of equations may
be checked in software by substituting the results back into the equations and
checking whether the equations are true. Hardware dynamic fault detection

requires the use of redundant hardware. The signals representing the




Reliability Improvement
I. Tolerance
I.. Diagnosis
III. Detection
A. Static
B. Dynamic
1. Software
2. Hardware
a. Space Encoding

b. Time Encoding: Alternating Logic

Figure 1.1. Position of alternating logic in realm of reliability improvement

techniques




information are encoded in a manner reauiring more signals than the minimum
required to just represent the information. The number of additional signals
required varies depending on the type of failures against which the systems is
to be protected.

Dynamic fault detection with hardware is generally referred to as
self-checking. The hardware redundancy may be done in space or in time.
Space encoding involves a physical increase in the amount of hardware so that
the redundant signals used to check the operation are processed at the same
time as the information signals. This is the most commonly examined type of
self-checking and several results are available [DUSS1,0ZGU,PITT,WAKE1,WAKE2].

Alternating logic is a method of hardware fault detection using time
redundancy. The principal characteristic is that the additional code signals
used to check the system operation are obtained using essentially the same
hardware as in an unchecked system, but with additional time reguired to
generate the code signals. Such systems are useful when a slight surplus of
time is available and it is desired to minimize the hardware costs to protect

a system from undetected failures.

1.4. Previous Work in Self-Checking Alternating Logic (SCAL)

The first work relating to alternating logic was done by Rark and Kinne
[BARK] at Raytheon in 1956. To realize combinational alternating logic, they
proposed using self-dual functions (a function for which the normal output is
the complement of the output when the inputs are complemented). Yamamoto,
Watanabe, and Urano [YAMA] independently developed alternating logic and did

some original work on its single error detection properties.

PP - W



The earliest research specifically on formal design of self-checking
networks was done in 1968 by Carter and Schneider [CART]. 1In 1971, the model
was improved and the theory of self-checking was developed by Anderson and
Metze [ANDE1,ANDE2]. Reynolds and Metze [REYN1] extended the work in
alternating 1logic and developed a formal description of self-checking
alternating logic. Reynolds [REYN2,REYN3] also proposed an approach for
sequential network design and establishzd conditions for alternating logic

primitives to form a complete gate set.




2. BASIC CONCEPTS OF SELF-CHECKING ALTERNATING LOGIC (SCAL)

2.1. Introductjon

In order to understand the exposition of the results in SCAL discussed in
later chapters, a knowledge of the basic concepts in SCAL is necessary. This
chapter will present some important definitions and theorems about SCAL and
will discuss the merits of SCAL. A discussion of many of these topics is also
given by Reynolds [REYN1]. The abbreviations, conventions, and nomenclature
used throughout the thesis are given in Appendix 1. The word "function" will
be used to reter to the logical operation being performed. A network is an

implementation of a function, and a system is a combination of networks.

2.2. Definitjons

In designing a self-checking system, it is necessary to specify the types
of physical failures against which the system is to be protected. The most
common model of failures is one which assumes a single fault in a network's
logic operation. This model assumes that only one failure in the system
occurs and that the failure causes the logic value of one line to be stuck-at
0 (s/0) or stuck-at 1 (s/1). Field experience has shown this model to be a
good one if the test for the failure is applied reasonably soon after the
failure so that a second failure is unlikely. In addition, it is assumed that
the network is free of faults when it is initially used.

For most of this thesis, the single fault model will be used. 1In
analyzing a network logic diagram it will be helpful to use a formal

definition.

' 3
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Definitior 2.1. A single fault is a network condition in which one line is

s/C or s/1.

The line may be stuck either permanently or temporarily; i.e., transient
failures are included. The transient failure may or may not be nbservable.
If the fault dces not affect tne output for the input(s) during whien the
transient failure occurs, then no fault would be observed. If tne single
fault is permanent, and if the lire is nct redundant, then some input tc the
network exists such that the fault is observable. A recundant line is defined
here as a iline which may be rezsved frcm thne netwerk without affecting its
operation. Tne complicatiorns of multiple line redundancies are deferred to
previcus work by Smith and Metze [SMIT1].

Cther fault mcdels include the unidirectional fault mndel and the
rmultiple fault model. The unidirectionzl fault model is used extensively in
cther work on self-checking networks [ANDE1,SMIT2]. The multiple fault model

is cften used in static netwecrk diasnosis [CHAJ.

Pefinition 2.2. A unidirectional fault is a condition in which any number of

lines is stuck at one value.

PCefiniticn 2.3. & multiple fault is 2 condition in which more than one line

is stuck.

A single fault is a degenerats example of 2 unidirectional fault and a

unidirectional fault is a dezenerate example of 2 multiple fault. Examples of

tne representation of these faults are given in Figure 2.1.
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Figure 2.1a. Single fault: line 5 stuck-at value s, s €(0,1)
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Figure 2.1b. Unidirectional fault: lines 4 and 5 stuck-at value s, s €(0,1)
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Figure 2.1c. Multiple fault: line 5 stuck-at value s and line 6 stuck-at value

s, 36(0,1)




Sl e

A network which is dynamically checked for failures is referred to as

self-checking. For this thesis, self-checking will be defined using the
single fault model. Although the system is also self-checking for many
nultiple faults, the fault coverage is complete only for single faults. In
the definition of self-checking, let f represent the single fault, X the
network input vector, F(X) the normal network output, and Fe(X) the network
outout when fault f occurs. It is assumed F(X) is a single output network,

although the analysis is easily extended to multiple outputs.

Definition 2.4. A self-checking network is a network which satisfies the two
constraints (with input X different from input Y):

(a) Vg, 3XIF(X) # F.(X)
(b) #£5 {4[X € {code inputs} & YE {code inputs}]> [Fe(X) = F(D1}

Condition (a) will be referred tec as the self-testing requirement and
condition (b) will be referred to as the fault-secure requirement. The
definition of self-testing normally requires that Ff(X) ¢ {all F(X)}. However,
Smith [SMIT2] has shown that this standard definition overlaps with the
fault-secure definition. Therefore, the revised definition of self-testing
used in part (a) of Definition 2.4 will be used.

Alternating logic is the most well known and probably the simplest form
of time redundancy used in hardware dynamic fault detection. An alternating

network is used to implement alternating logic.

Definition 2.5. An alternating network is a network which for an input

sequence (X,X) generates an output sequence (F(X),F(X)) such that F(X)=F(X).

oo
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It may be useful in digital controllers to have an alternating signal
output, but primary use of the alternating logic is probably in building
self-checking systems. The network used to implement these types of systems

is called a SCAL network. Self-checking alternating logic may now be formally

defined.
Definition 2.6. A SCAL network 1is an alternating network which is
self-checking.

In order to satisfy the requirements for a network to implement
alternating 1logic, certain requirements are placed on the function being

realized. First it is necessary to define a self-dual function.

Definition 2.7. A self-dual function is a function such that F(X)=F(X).

Using the definitions given, it is now possible to present some of the

basic theorems in SCAL.

2.3. Theorems on SCAL

Reynolds [REYN1] presented the following theorem to describe the

requirements for an alternating network to realize a function.

Theorem 2.1. A network realizing a function F is an alternating network iff F
is a self-dual function.
Proof: 1If F is self-dual then F(X)=F(X) for every X and any network realizing

F must therefore be an alternating network. Conversely, if a network is an

alternating network, then F(X)=F(X) and F is self-dual. Q.E.D.




1

It has been shown [YAMA) that any network can be made self-dual with the
addition of only one input. The additional input is the period clock which is
0 in the first period when the true input is applied and 1 in the second
period when the complemented input is applied. The period clock will be
represented by ¢ . The requirements for an alternating network to be a SCAL

network may be determined using the previous definitions and theorem.

Theorem 2.2. An alternating network is a SCAL networik iff the function
realized satisfies two conditions (with input sequence (Y,Y) different from
input sequence (X,X)):

(2) VEEXD (F@),FE) # (F(X),F )

(b) > {E[x,5) & (L,D]3 [(F ), F X)) = FW,FANI]
Proof: The conditions of Theorem 2.2 are both necessary and sufficient for
alternating logic to satisfy the constraints of Definition 2.4. (F(X),F(X))
is the normal output sequence for input sequence (X,X) and (Fp(X),Fe(X)) is
the output sequence under fault f. Therefore condition (a) of the theorem is
the alternating logic representation of part (a) of Definition 2.4. Also,
(X,X) and (Y,Y) are alternating logic code inputs, so condition (b) of the
theorem is the alternating logic representation of part (b) of Definition 2.4.

Q.E.D.

2.4, Merits of SCAL

SCAL has a limited range of applications for which it is desirable. 1Its
primary advantages are: (1) some basic functions are already self-dual and
involve no hardware cost to implement as SCAL (for example, see the optimal

adder [LIU] in Figure 2.2), (2) in many other cases it requires less hardware
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Figure 2.2. Self-dual adder
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than other designs currently available for self-checking systems [REYN1], (3)
it provides self-checking for single faults, and (4) since the redundancy is
in time instead of space, no additional connections are required for the
alternating logic modules. The primary disadvantages of SCAL are: (1) it
requires twice as much time to perform the operation--this is not significant
in systems with spare time, (2) it requires more hardware than networks which
are not self-checking, and (3) not all failures are covered. In summary, if
it is desirable to have a self-checking system and time is available at low

system cost, then alternating logic is a good method of design.
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3. COMBINATIONAL SCAL

i 3.1. Introduction
k To design SCAL networks it is helpful to have design rules. Theorem 2.1
? states that for a network to be an alternating network it must'implement a
self-dual function. Theorem 2.2 gives the requirements for the alternating
i. network to be a SCAL network. To determine whether a combinational network
satisfies the requirements of Theorem 2.2 some analysis procedures will be
i . presented in this chapter. In the first three sections the networks will be
assumed to have a single output. Section 3.4 will consider multiple output
networks. Section 3.5 will presént an algorithm for analyzing combinational
networks to determine whether they are SCAL networks. An example of the

application of the algorithm will be given in Section 3.6.

3.2. General Self-Checking Requirements

To simplify the presentation of results, the following symbolism will be
used:

X represents an arbitrary input vector.

G(X) represents the value of an arbitrary line g for input X

F(X,G(X)) represents the network output for input X, with line g having
value G(X).

F(X,s) represents the network output for input X, with line g stuck-at s,
se(0,1) .

For correct operation, the alternating output is represented by:

. (F(X,G(X)),F(X,6(X))) = (F(X,6(X)),F(X,6(X)))
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In order to determine whether a network is self-checking, by Definition
2.4 it is necessary for the network to be self-testing and fault secure. To
provide a procedure to determine whether a network satisfies these conditions,
it will be helpful to know whether a given line causes the network to violate

one of the conditions.

Theorem 3.1. An alternating logic network will generate an incorrect
alternating output iff there exists a line g such that:
[F(X,6(X)) # F(X,s)] & [F(X,C(X)) # F(X,8)] =1

Proof: When X is the input and line g is stuck-at s then the equation above
means that the output is the opposite of what it should be in the first time
period. Also, when X is applied, the output of the faulty network is the
opposite of what it should be in the second time period. Let Y be the value
of F(X,G(X)). Then F(X,s) # F(X,G(X)) ® F(X,s8) = Y and
F,6(X) = F(X,6(X) = ¥ , 80 F(X,s) # F(X,6(X)) @ F(X,s) = Y
Therefore, the output is (Y,Y) an incorrect alternating output, since the

output should be (Y,Y).

Conversely, if F(X,G(X)) # F(X,s) i but
F(X,G6(X)) = F(X,s) , then F(X,G(X)) = Y = F(X,s) = Y and the output would
be (Y,Y) which is a noﬁalternating output. Similarly  when
F(X,6(X)) # F(X,s) , but F(X,G(X)) = F(X,s) , then the output would be a

nonalternating (Y,Y). Therefore only if the conditions given exist will an

incorrect alternating output be generated. Q.E.D.

Using Theorem 3.1 tests can be derived to detect stuck-at faults on line

g. The analysis proceeds as follows:




o

Let:
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A = F(X,0) ®F (X,6(X))

B = F(X,0) eF(i,c('i)v)

C = F(X,1) ®F (X,G(X))

D = F(X,1) ®F(X,6(X))
E=AG&B

F=C&D

Theorem 3.2. Using the above symbol definitions, iff E=0 can line g be tested

for stuck-at 0 faults and iff F=0 can line g be tested for stuck-at 1 faults.

If E=0 then [A V B] are tests for stuck-at 0 faults. If F=0 then [C V D] are

tests for stuck-at 1 faults.

Proof: Let E =0

then A & B =0
and A &B=1
and AVB=1
and  [F(X,0) ®F(X,G(X)) = 0] V [F(X,0) ®F(X,6(X)) = 0] = 1

and

[F(X,0) = F(X,6(X))] V [F(X,0) = F(X,6(X))] =1

Letting F(X,6(X)) =Y = F(X,6(X)) =Y .

This implies [F(X,0) = Y] V [F(X,0) = Y] = 1.

So the output when g is stuck-at 0 for input (X,X) should be (Y,¥) and

when E=0 it is (Y,Y) or (Y,Y) or (Y,Y). If it is required that [A V B =1],

then:
AVB=1
and  [F(X,0) ®F (X,G(X)) = 1] V [F(X,0) ®F(X,6(X))= 1] = 1
and [F(X,0) # F(X,6(X))] V [F(X,0) # F(X,6(X))] = 1.
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Again letting [F(X,G(X)) = Y] = [F(X,6(X)) = Y] .

This implies [F(X,0) = Y] V [F(X,0) =¥] =1.

So the output for g stuck-at O for input (X,X) when [A V B = 1] is (Y,Y)
or (Y,Y) or (Y,Y). Combining the results, when E=0 and inputs are applied so
that [A VB = 1], then the output for g stuck-at 0 is (Y,Y) or (Y,Y). These
are non-alternating outputs. This is detected and thus the fault is detected.

Conversely, assume by wéy of contradiction that E=1. Then the proof is:

g E=1
then A & B =1
and [F(X,0) # F(X,6(X))] & [F(X,0) # FX,6(X))] = 1

Letting F(X,G(X)) = Y = F(X,6(X)) =Y and [F(X,0) # Y] & [F(X,0) # Y] = 1.

This implies [F(X,0) = Y] & [F(X,0) =Y] = 1.
So for input (X,X) the output should be (Y,Y) but when E=1, the output is
[ (Y,Y), an incorrect alternating output. Since the output alternates, the

fault cannot be detected. Therefore only if E=0 can the fault be detected.

The proof for the case of F=0 is similar. Q.E.D.

This is readily observed in the following example illustrated in Karnaugh

map form in Figure 3.1, where

GX) & X4 v x1x2x3 \Y X, XX, \Y X XX,

F(X,6(X))

and  G(X) = X X,x3 V X X,x, V X X X3%, .

An algebraic analysis of A,B, and E gives:

A = F(X,0)®F(X,6(X))

1%0%3 Y X, XX, \% x1x3x4)$

OV x

(G(X) & X3 \ X %XyXq \' Xy XX, \% X XX,

G(X) & X4 = X XpXqX, \ X Xy XgX,




Xy Xp Xy X2 X1 X2 Xy X

X3Xq 00 Ol 11 10 Xy Xq 00 01 11 10 XyXq 00 O1 11 10 XyXq 00 O1 11 10 j
00 1 0o] 1 1]1 oo] 1 111 00
(1 1 o1fl|1l]1 oijlf|1]1 o1 ‘
11 1 11 1 11 11 1 |
- 10 1 10 1 10 10 1
i

Figure 3.1a. G(X)

Figure 3.1b. F(X,G(X)) Figure 3.1c. F(X,0) Figure 3.1d. A

Xy X Xy X X X2 X1 X2
; ‘ X3Xq 00 01 N1 10 X3 Xq ©0 01 11 10 X3 Xq 00 01 11 10 X3Xq 00 01 11 10 2'
! 00 1 00 1 00 00 1 4
i o1 1 o1 1 o1 ol 1
i { 11 1 1ny1f1y1 1mj1|1]1 11
10 1 10] 1 Ll 10]1 1]1 10
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1 Figure 3.1e. G(X) Figure 3.1f. F(X,6(X)) Figure 3.1g. F(X,0) Figure 3.1h. B
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F(X,0) @ F(X,6(X))

OV x%x3 V x%3%, V X;%3%,) @

(GX) & X3 \% X XyXq % Xy XqX, v x1x3x4)

]

G(X) & ;3 & ;1x2;3;4 v x1§2§3x4
AV B= x3(x1;c—2x4 v ;lxz;a) v ;3(;1x2;4 v x1;2x4)
E=A&B=0

Ey Tneorem 2.2, since E=0, then inputs for [A V E] ere test fcr line g
stuck-at J. The tests 2re: 1011, C11C, 0100, 1001. It is not necessary to
know the correct output values for these inputs sirce treir complement is zlso
applied as input. Wher the irput and its complement is applied, the output
will zlterrate If there is no fault and will not alternate if line g is
stuck-at 0. As for 2ll self-checking retworks, the checker determines if tre
cutput is cerrect. For testing purposes, whichever input of the inout pair is
applied first is irrelevarnt. The pairs are: (1011,010C) and (8117,12C1).

Elthcugh anzlysis of this particular case is lengthy, the algorithm
provides a structured approach for computer computation. Similarly, the case
cf g stuck-at i can be anzlyzed.

£ method hes been given to cetermine whether particular inputs check
whether the network is self-checkire for faults on specific lines. It may
turn out that trere does not exist an input which checks for certain feaults.

When this happens the network is determined to not be self-checkine.

Thecrem 2.2, Using the previcus symbol definitions, if for any lire &g,

[4X,3E = 0] or [#X,5F = 0] , then the network is not

self-checking.
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Proof: From Definition 2.4, to be self-checking it is required that there be
a test for every potential fault. Each line may fail and so become stuck-at 0
or stuck-at 1. Theorem 3.2 specifies that the condition E=0 must be Satisfied
for line g stuck-at 0 to be tested, and the condition F=0 must be satisfied
for line g stuck-at 1 to be tested. If there is no input Xy such that the
condition required for a fault on line g to be tested is satisfied, then the
network is not self-checking with respect to that line. Therefore the network

is not self-checking. Q.E.D.

Furthermore, if a line in the network cannot be tested for either a
stuck-at 0 or a stuck-at 1 fault, then the network is independent of the logic

value of the line.

Theorem 3.4. Using the previous symbol definitions, for a given line g, if
[AVC=0], then the line is redundant.

Proof: Let [AVC=o0]. This implies A=0 and C=0. A=0 implies
F(X;,0)=F(X{,G(X4{)) for all Xy and C=0 implies F(X;,1)=F(X;,G(X;)) for all Xj.
So, [A V C =0] requires that the nstwork output have the same value for either
value of the line g for all inputs. Therefore the value of the line has no

effect on the output and so is redundant. Q.E.D.

In addition, if a line can be tested for a fault in only one direction,
say s, then the subnetwork generating the line value may be removed and
replaced by a constant input of s. In further analysis it will be assumed
that all such replacements have been done. The fault model for the line

includes only stuck-at s faults, since stuck-at 8 is the correct operation of

the line.
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It is necessary to consider the problem of a multiple line redundancy,
where a combination of several lines together are redundant, but any one is
not redundant by itself. Smith and Metze [SMIT1] discuss this problem, but
for the discussion here it is assumed that all the redundancies are single
line redundancies. The redundancies will also be asssumed to be
unintentional, i.e., not intended for such purposes as protecting from

sequential logic hazard conditions.

Theorem 3.5. 1If a self-dual network is irredundant, then it is self-testing.

Proof: If the network is irreduncant, then there does not exist any line in
the network which satisfies the equation [A V C = 0] of Theorem 3.4. Since
E = A&B, then A=0 implies Ez0. Similarly C=0 implies F=0. So by Theorem 3.2
any line can be tested. Assuming all inputs are applied at some time, the

network is self-testing. Q.E.D.

In further analysis it will be assumed the networks are irredundant, all
inputs are applied, and hence the networks are self-testing. Therefore to
satisfy the conditions of Definition 2.4 for a network to be self-checking, it
will only be necessary to consider whether it is fault-secure.

To determine whether a network line prevents the network from being
self-checking, the equation in Theorem 3.1 is evaluated. To simplify the
analysis, a corollary to Theorem 3.1 can be derived.

The equation in Theorem 3.1 is:

[F(X,6(X)) # F(X,8)] & [F(X,6(X)) # F(X,s)] = 1

By algebra, this translates to:

[F(X,6(X)) & F(X,8) V F(X,G(X)) & F(X,s)]
& [F(X,6(X)) & F(X,8) V FX,G(X)) &F(X,s)] = 1 .




Since alternating logic is used, by Definition 2.5,

F(X) = F(X) or F(X,6(X)) = F(X,G(X))

Using this relation, the above equation changes to:
[F(X,G(X)) & F(X,s) V F(X,G(X) & F(X,s)]
& [F(X,6(X)) & F(X,s) V F(X,6(X)) & F(X,s)] = 1

By algebra, this reduces to:

F(X,6(X)) & F(X,8) & F(X,8) V F(X,G(X)) & F(X,8) & F(X,s) = 1 .

Since alternating logic is used, whenever Xy is applied, 'Yi is also
applied in the alternating pair (Xi,Yi). So if for some alternating pair
(Xi,X4) for input Xy,

F(%;,6(X;)) =1 and F(X;,s) =1 and F(X,8) =1
then for another alternating pair (XJ,YJ) with XJ=Xi and 73=Xi

F(Xj,G(Xj)) =F®X G(Xj)) =1 and F(Xj,s) =1 and F(Xj,s) =1

j’
Sc if all input pairs are applied, then if for some X
F(X,6(X)) & F(X,s) & F(X,s) = 1
then also for another X
F(X,G(X)) & F(X,s) & F(X,s) = 1.
So only one of the above products needs to be checked to determine the
self-checking characteristics. To analyze for both stuck-at 0 and stuck-at 1
faults, s is replaced by the appropriate value as the following corollary of

Theorem 3.1 states.

Corollary 3.1. The network is self-checking with respect to a line g iff line

g is in an irredundant self-dual network and satisfies

F(X,G(X)) & [F(X,0) & F(X,0) V F(X,1) & F(X,1)] =0 .
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Corollary 3.1 may be broken down to consider separately stuck-at 0 and
stuck-at 1 faults in line g. The network is self-checking with respect to
stuck-at 0 faults in line g iff

F(X,6(X)) & F(X,0) & F(X,0) =0 .

The network is self-checking with respect to stuck-at 1 faults in line g

iff
F(X,G(X)) & F(X,1) & *(X,1) = 0 .
The equation in the corollary may also be written in different forms
taking advantage of the equivalences stated before. These revised equations
are:
F(X,G(X)) & F(X,0) & F(X,0) V F(X,6(X)) & F(X,1) & F(X,1) = 0
F(X,6(X)) & F(X,0) & F(X,0) V F(X,6(X)) & F(X,1) & F(X,1) = 0
F(X,6(X)) & [F(X,0) & F(X,0) V F(X,1) & F(X,1)] = 0

In some cases it may be simpler to evaluate these equations rather than the

one given in Corollary 3.1.

3.3. Sufficient Self-Checking Copditions

Rather than having to examine every line in a network to determine
whether the conditions of Corollary 3.1 hold, it is possible to determine and
use some general rules for deciding whéther certain types of lines always

satisfy the conditions of Corollary 2.1.

Theorem 3.6. If VX,G(X) # G(X), then the network is self-checking with
respect to line g.
Proof: Consider an input X; with G(xi) = 4, d€(0,1). Then by the assumption

in Theorem 3.6, G(Yi)=3. So F(Yi,G(Xi))zF(Xi,d) and F(Ii,G(Yi))=F(Yi,H). Now
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let F(X;,d)=Y and F(X;,d)=Y. If g is stuck-at s, then G(X;)=s and G(Xy)=s.
By Theorem 3.1, the network will not be self-checking iff

[F(X,6(X)) # F(X,8)] & [F(X,6(X)) # F(X,8)] = 1
By substitution of the values above, the equation changes to
[Y# F(X,s)] & [Y# F(X,8)] = 1. . GEither s=d or s=d; without loss of
generality, let s=d. So, F(X,s)=F(X,d)=Y and the equation of Theorem 3.1 is
not satisfied. Therefore, an irredundant self-dual network is self-checking

with respect to line g. Q.E.D.

By this theorem, a network is self-checking with respect to all lines
which alternate in the two time periods of alternating logic. Using Theorem
3.6, the result presented by Reynolds [REYN1] that a network is self-checking
with respect to all input 1lines can be easily proven since all input lines
have alternating values.

If a line does not fan out, then the analysis to determine if the network

is self-checking with respect to the line is simpler than if it did fan out.

Theorem 3.7. If a line g in a self-dual network does not fan out in its path
to the output and the gates in the path are all unate, then the network is
self-checking with respect to line g.

Proof: For some input Xy the line g must be sensitized if the network is
irredundant. This will force the output to be the opposite of what it would
otherwise be, F(xi,s)=F(X1,G(Xi)). Since the network elements on the path
from line g to the output are all monotonic and there is only one such path to
the output, g can only affect the output in one direction when it is stuck-at

s. Therefore, line g is not sensitized when Yi is applied. If line g is not
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sensitized, then the output would be unchanged and a nonalternating output

pair (F(xisG(Xi)),F(ii,G(ii))) » (F(xi,G(xi)),F(xi,c(xi))) is obtained.

Therefore, the failure is detected and the network is self-checking with

respect to line g. Q.E.D.

If network elements that were not monotonic were allowed on the path from
line g to the output, then Theorem 3.7 would not apply. For example, consider
Figure 2.2 where an exclusive-or gate is on the path from line g to the
output. If the output of g for (X;,X;) is (0,0), then when g is stuck-at 1
the output of g changes to (1,1). If the output of Q for input (X;,%X;) is
(0,1), then normally the output of f is (0,1). However when g is stuck-at 1,
then the output is (1,0) and the failure of line g is undetected. 1In this
case the network is not self-checking with respect to line g stuck-at 1.

From Theorem 3.7 the result of Yamamoto, Watanabe, and Urano [YAMA] that
two-level self-dual networks with monotonic gates are self-checking can be
easily proven. Since none of the non-input lines fan out ig the single output
network, the conditions of Theorem 3.7 are satisfied by the non-input lines.
The input lines alternate and so the network is self-checking with respect to
all the lines in a two level network. A level of inverters on the inputs
preserves this property since their outputs alternate. Furthermore, the
analysis can be applied to each output of a multiple output network. If each
output is checked for alternation, then the multiple output network is
self-checking.

The following result is based on the work of Reynolds [REYN1].




f

g:s/0
(0,1)—(1,0)

g(x)

g:s/1
(0, 00— (1, 1)
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Figure 3.2. Incorrect alternation
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Definition 3.1. Path parity from line g to the network output is the modulo 2

number of inversions on the path.

Theorem 3.8. If all paths from line g to the network output have the same

parity, then the network is self-checking with respect to line g.

In multiple level networks the input is often fed to a level other than
the first. This enhances the self-checking properties of an irredundant
network as the following theorem proves. This theorem applies to a restricted

set of gate types defined as follows:

Definition 3.2. A standard gate is a NOT,NAND,AND,NOR, or OR gate.

Theorem 3.9. In an irredundant network, if a line g is the input to the same
standard gate as an alternating line, then the network is self-checking with
respect to line g.

Proof: Since the network is irredundant and all inputs are presumed to be
applied, then the network is self-testing with respect to all the lines,
including line g, by Theorem 3.5. Now consider the fault secure property. In
a standard gate one input value dominates by forecing the output to a specific
value when the dominant input valve is applied. This is observed by
considering their truth tables. The dominant input valuves are 0 for NAND and
AND, and 1 for NOR and OR. Since an alternating value is applied to one input
line of the standard gate, then for the time period the dominant alternating
input is applied, the output value is independent of the other inputs to the
gate. Even if one of the other inputs is stuck-at s, the output of the gate

will be correct. Therefore, the network output will be correct for that time

S ~— - -
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period. During the other time period, if the network output is correct, then
the fault does not affect the output. If the network output is incorrect,
then it is nonalternating and the fault is detected. Either way, the network
is fault secure. Since the network is both fault secure and self-testing, by

Definition 2.4 it is self-checking. Q.E.D.

Note that Theorem 3.9 would not apply to a gate which is not a standard
gate, such as the XOR gate or majority gate since these do not exhibit the
dominance property.

Using the results presented it is now possible to follow a procedure to
determine whether a self-dual combinational single-output network is a SCAL
network. If a line passes any of the following tests, then an irredundant
self-aual network is self-checking with respect to that line:

1. It alternates in value for all Xy

2. It does not fan out and its path to the output is through unate

gates.

3. Path parity is the same for all paths from the line to the network
output.
4, It is the input to the same standard gate as an alternating line.

5. Conditions of Corollary 3.1 are met.

3.4. Multiple Qutput Combinational SCAL
So far only single output networks have been considered. 1In this section
a procedure is presented for determining whether a multiple output network is

self-checking with respect to a line in the network.
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In general, multiple output networks may be classified as being of two
types: separable (Figure 3.3a) and nonseparable (Figure 3.3b). As is implied
by the names, the two types differ according to whether the combinational
logic generating the outputs from the alternating inputs may be entirely
separated or not. If the combinational logic may be separated, then the
analysis of preceding sections may be applied to the logic generating each
output individually to determine whether the network is self-checking.
Similarly when the outputs are not independent but a portion of their logic

’ is, then the methods of preceding sections may be applied to the portion of
the logic that is independent and thus its effect on the self-checking
property of the network may be assessed.

However, when some logic is shared to generate a line common to more than
one output (as line g in Figure 3.3b is), then the analysis procedure must be

changed.

Definition 3.3. A multiple output network is self-checking with respect to a
line shared commonly between more than one output iff for any input Xy for
which an output alternates incorrectly, some other output does not alternate

for that input.

To evaluate whether a line commonly shared between more than one output
satisfies the self-checking requirements, a determination of the specific
requirements on the line is useful. The symbol definitions used in the
previous sections will be used with a subscript added to indicate a specific

output line.

Theorem 3.10. For a 1line g stuck-at s, if an input Xy causes
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3
FJ(X1,8)=FJ(X1,G(X1)) and FJ(Y ,s)=FJ(Xi,G(Xi)) then some output F, must

satisfy F, (X;,s)=F,(X;,s) for the network to be self-checking.

Proof: By Definition 3.3 an incorrect alternating output on one network
output, Fj , must be accompanied by a nonalternating output on another network
output, F, ., if the network is to be self-checking with respect to a fault on

line g. Q.E.D.

If the network is shown by Theorem 3.10 to be self-checking with respect
to line g, it may still not be self-checking with respect to lines p or q of
Figure 3.3b. These two lines must be checked as all other lines are checked
which are used to generate only one network output.

From Theorem 3.10, it is observed that the requirements for lines which
feed more than one network output are less strict than for other network lines
which feed only one network output. In the example in Section 3.6 this will
be observed. Also, for line L of the adder in Figure 2.2, it was necessary
that only the reduced requirements for multiple output networks be satisfied.
Otherwise, the adder would not be self-checking.

In the analysis, all lines in the combinational logic block generating g
in Figure 3.3 are checked under the reduced requirements for multiple outputs.
To evaluate whether the network is self-checkine with respect to a line g
shared by more than one output, first a single output is checked to determine
whether it is self-checking with respect to line g. If all outputs which use
line g are self-checking with respect to line g, then the network is
self-checking with respect to line g by Definition 3.3. However, if one
output is not self-checking with respect to line g, the network may still be

self-checking with respect to line g according to Theorem 3.10. To provide a
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specific analysis procedure to check if this is so, Corollary 3.2 is derived.

Consider a stuck-at fault, s, on line g, which causes an incorrect

alternating output on output Fi. The equation of Corollary 3.1 is then
F, (X,G(X)) & F; (X,8) & F; (X,8) # 0

If another output, Fy, has a nonalternating output for this fault then
F (X,8) = F (X,8) or [F (X,8) & F (X,e) V F (X,8) & F, (X,8)] = 1 .

If the value(s) of X; for which the incorrect alternating output is
generated on Fl are included among the outputs of Fk which are nonalternating,
then by Theorem 3.10 the network is self-checking with respect to g.
Furthermore, if there are several outputs which share line g, then all the
inputs for which they are nonalternating are protected from not being

self-checking on output 1. This is stated more precisely in Corollary 3.2:

Corollary 3.2. If F;(X,6(X)) & Fl(X,S) & Fl(i,s) #0 for some output,

but

n - e— — — -
[kzl F (K,8) & F (X,8) V F, (X,8) & F, &,8] & F (X,6(0) & F(X,8) & F ®,8) = 0

then the n-output irredundant self-dual network is self-checking with respect
to line g by checking all the outputs.

In the analysis of networks to determine whether they are self-checking
with respect to a line g shared commonly by more than one output, the single
output analysis summarized in Section 3.3 will be done first since it is
simplest. However if g does not satisfy at least one of these conditions,

then it will be examined to determine whether it passes the more relaxed

requirements for multiple output network lines.




3.5. Self-Checking Design and Analysis Algorithm

The results of previous sections now provide a complete algorithm for
determining whether an irredundant self-dual single or multiple-output network

is self-checking. The algorithm proceeeds as follows:

Algorithm 3.1.
1. Each network output will be regarded as independent of the others.
Each line which is used to generate an output will be examined to determine
whether it satisfies at least one of the following conditions:
It alternates for every input pair (X;,X;).

It does not fan out and its path to the output is through unate

Path parity is the same for all paths from the line to the network

It is the input to the same standard gate (NAND, NOR, OR, AND, or
NOT) as an alternating line.
E. It meets the condition
F(X,6(X)) & (F(X,0) & F(X,0) V F(X,1) & F(X,1)) =0 .
2. If any line from a subnetwork used by more than one output fails to

meet one of these conditions for an output 1, then it is checked to see if

n— -— -— — —
[kEIFk(x’S) & F, (%,8) V F (X,8) & Fk(x,s)] & Fy(X,6(0) & Fj(X,s ) & Fy,8)

3. If the line does not meet at least one of the above conditions, then
the network is not self-checking.

A detailed example is presented in Section 3.6.
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From the presentation of determining whether a network is self-checking,
a few design recommendations surface: (1) minimize fan out, particularly of
unequal parity to the output, (2) use two levels (plus an inverter level) to
automatically achieve self-checking, and (3) share logic between as many
outputs as possible, since this reduces the requirements on the lines for the

network to be self-checking.

3.6. Example of Self-Checking Analysis

To illustrate the application of the analysis procedure summarized in
Section 3.5, an example of its operation will be given. The example 1s based
on the multiple output network of Figure 3.4. The example is contrived to
best demonstrate the algorithm's operation. The self-dual functions

implemented are:
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The first step involves considering each output network separately and
determining whether the network output is self.checking with respect to the
lines used in generating it. First consider output F.|:

Te The 1lines wused by F1 are shown in Figure 3.5a. They are:
1,2,3,4,5,6,8,9,10,11,12,13,18,19,24,28,29,33,38.

2. Equivalent pairs of lines are: (3,24), (8,10), (9,13), and (19,28).
So the reduced set of lines to analyze i83

1,2,3,“,5,6,8,9,11,12’18,19,29,33’38.
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Figure 3.4. Multiple output network example
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3. Lines satisfying condition A of the algorithm are:
1,2,3,4,5,6,8,11,12,29,38. This leaves lines: 9,18,19,33.

4. Lines satisfying condition B of the algorithm are: 9,18,19,33. No
lines remain which do not satisfy at least one of the conditions for the
network to be self-checking. Therefore, the network is self-checking for
output F1.

Now consider output F3:

1. The 1lines used by F3 are shown in Figure 3.5c. They are:
1,2,3,4,5,6,7,8,9,16,17,21,32,36,37,40.

2. Equivalent lines are: (3,32), (8,16), and (9,37). So the reduced
set of lines to analyze are: 1,2,3,4,5,6,7,8,9,17,21,36,40.

3 Lines satisfying condition A of the algorithm are:
1,2,3,4,5,6,7,8,17,40. This leaves lines: 9,21,36.

4, Lines satisfying condition B of the algorithm are: 9,21,36. There
are no lines remaining which do not satisfy at least one of the conditions for
the network to be self-checking. Therefore, the network is self-checking for
output F2.

Finally, consider the more complicated subnetwork which generates F2:

j The 1lines used by F2 are cshown in Figure 3.5b. They are:
1,2,3,4,5,9,12,13,14,15,19,20,22,23,24,25,26,27,30,31,34,35,39.

2. There are no equivalent lines, so all the lines need to be analyzed.

3. Lines satisfying condition A of the algorithm are:

1,2,3,4,5,12,15,24,27,31,39. The 1lines remaining to be analyzed are:

9,13,14,19,20,22,23,25,26,30,34,35.




4. Lines satisfying condition B of the algorithm
22,23,25,26,30,34,35. This leaves: 9,13,14,19,20.

5. o lines satisfy condition C of the algorithm.

6. Lines satisfying condition D of the algorithm are: 13,14. This
leaves lines: 9,19,20.

7. Now evaluate each line to determine if condition E of the algorithm

is satisfied: Fp(X,9(X)) =9 & (ACV BC)V I &CVABC
F,(X,0) = C; F(X,0) = C; F(X,0) =¢C
F,(X,1) =ACV BC VABC
F,(X,1) =ACcV BCVABC

F,(X,1) =ACV BCVABC
F,(X,9(X)) & F,(X,0) & F,(X,0) = ABC V ABC
Fp (X,9(X)) & F,(X,1) & Fy(X,1) = 0
So the condition E is not met by line 9 because the stuck-at 0 fault

causes an incorrect alternating output when the input is KEC or AEC.
F,(X,19(X)) =19&C& (AVB)V 19&CVABC

F,(X,0) = C; F,(X,0) = C; F,(X,0) = ¢

F,(X,1) =ACV BCVABC
F,(X,1) =AC VBCVABC
F,(X,1) =AC VBC VABC
F,(X,19(X)) & Fz(i,O) & 'fz(x,O) =ABC V ABC

F, (X,19(X)) & on‘m) & Fz(x,l) - 4
So the condition E is not met by line 19 because the stuck-at 0 fault

causes an incorrect alternating output when the input is ABC or AEC.
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F5(X,20(X)) =20 & C & (AVB) V20 & C VABC
F,(X,0) = C; F(X,0) = C; F(X,0) = C

F,(X,1) =ACV BC VABC

F,(X,1) =ACV BCVABC

F,(X,1) =ACV BCV ABC

F) (X,20(X)) & F,(¥,0) & F,(X,0) =ABCV ABC

F, (X,20(X)) & F,(X,0) & F,(X,0) =0

Again the condition E is not met by line 20 due to the stuck-at 0 fault
causing an incorrect alternating output when the input is AEC or ABC.

8. The lines 9,19,20 did not meet any of the conditions for a single
output network to be self-checking; however, since 9 and 19 each go to more
than one output, they may satisfy the more relaxed multiple output condition.
They will each be separately analyzed to determine whether they satisfy the
condition in Corollary 3.2.

First consider line 9 for the stuck-at 0 case. The output F1 is also
dependent on line 9:

Fp(X,9(X)) =ABVACVIC

The output F3 is also dependent on line 9:

F,(X,9(X)) =ACV BCV 9

So the summation term in Corollary 3.2 is:

3 — — —
T Fk(x,s) & Fk(x,s) Vv Fk(X,s) & Fk(x,s)

k=1
=(AC\/§C)&(KEVBE)V(EVKB)&(CVAB)VO &0V1&l

=0V ABCVABC) VOV 1 =1 f
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The whole equation in Corollary 3.2 is:
1& (ABCVABC) =0
Therefore the multiple output network is self-checking with respect tc
line 9. Now consider line 19 for the stuck-at 0 case. The only other output
also dependent on 19 is output Fqe
F,(X,19(0) = 19&CVAB
So the summation term in Corollary 3.2 is:

F (X,0) & F (X,0) VF (X,0) & F1(K,0) . 4 vEys AVE)VABGAS

= ABVAB)V O =ABVAB

The whole equation in Corollary 3.2 becomes:

(ABVAB)& ABC V ABC) = (AB VAB) &(ABCVABC) g

Therefore the multiple output network is self-checking with respect to
liﬁe 19.

Line 20 does not go to any other output, so the network is not
self-checking with respect to line 20 stuck-at 0. The network has been shown
to be self-checking for all other lines in this example. Some lines and their
outputs for each input pair are shown in Figure 3.6. An X after the output
pair means that the fault is detected by a nonalternating pair. Every output
dependent on the line must exhibit this property for one input pair, since the
network is irredundant and hence self-testing for alternating inputs. An ¥
after the output pair means that an incorrect alternating pair is generated.
For line 9, whenever this occurs on F2 there is always a nonalternating output
on F1 or F3. However for 1line 20 the incorrect alternating pair is not

accompanied by a nonalternating pair on another output and so, as was shown

earlier, the network is not self-checking with respect to line 20.
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|
| i Line Stuck-at Output Input Pairs:
| | /Normal (000,111) (001,110) (010,101) (011,100)
|
t ! 38 Normal F, 0,1 1,0 1,0 1,0
| ; 39 Normal  F, 0,1 1,0 1,0 0,1
b %  Normal  Fy 0,1 0,1 0,1 1,0
& ! ; 1 s/0 F, 0,0X 1,1X 1,1X 0,0X
F w 1 s/1 F, 1,1X 0,0X 0,0X 1,1X
% 13 s/0 F, 0,1 1,0 1,1X 0,0
L | 13 s/1 F, 0,0X 1,1X 1,0 0,1
‘ 22 s/0 Fy 1,1X 1,1X 1,0 0,1
22 s/1 F, 0,1 1,0 1,0 0,0X
9 s/0 F, 0,1 1,0 1,1X 1,0
5 9 s/1 F, 0,0X 1,0 1,0 1,0
| | 9 s/0 Fy 0,1 1,0 0,1% 1,0%
% 9 s/1 F, 0,0 1,1X 1,0 0,1
9 s/0 Fs 1,1X 1,1X 1,1X 1,1X
9 s/1 Fs 0,1 0,0X 0,1 1,0
20 s/0 Fy 0,1 1,0 1,0 1,0
; 20 s/1 F 0,1 1,0 1,0 1,0
E 20 s/0 Fy 1,0% 0,1% 1,0 0,1
| 20 s/1 F, 0,1 1,0 0,0X 1,1X
20 s/0 Fs 0,1 0,1 0,1 1,0
20 s/1 Fy 0,1 0,1 0,1 1,0
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To make the network self-checking, it is only necessary to modify the
subnetwork which generates line 20. Specifically, lines 14 and 15 could be
fed into a separate NAND gate so that line 20 no longer fans out. This is
shown in Figure 3.7. Since the analysis of the network still applies for all
other lines and the network has been shown self-checking with respect to those
lines, only the part of the network modified will be considered, i.e., lines
2,9,14,15,20,23,25,*1,%2, and ¥3. Using Algorithm 3.1 and analyzing the only
output affected by the change, output F2:

1. Equivalent lines are (20,23) and (25,%#3). So the reduced set of
lines to analyze is: 2,9,14,15,25,%1,%2,

2. Lines satisfying condition A of the algorithm are: 2,15,%1. This
leaves lines: 9,14,25,%2,%3,

3. Lines satisfying condition B of the algorithm are: 14,20,%2,%3,
Only line 9 remains.

4. Line 9 satisfies the multiple output condition of the algorithm as
before and so the network is completely self-checking.

In this example of seventeen gates and three inputs a simulation may be
about as fast as the analytic approach used. However, for larger networks
considerable calculation can be saved by using the analytic approach. It may
be desirable to combine the analytic approach and a simulation to analyze the
lines used by more than one output. The analytic approach has the added

advantage of giving more insight into what needs to be done to make the

network self-checking.
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4, SEQUENTIAL SCAL

4.1. Introduction

Only combinational networks have been considered in previous chapters.
However, most systems used in the world are sequential in nature. Reynolds
[REYN1] has presented a design technique for sequential machines which will be
briefly summarized in Section 4.2 for background. A memory-efficient approach
to sequential machine design is presented in Section 4.3. This utilizes the
technique of code conversion. In Section 4.4 a technique for direct
implementation of sequential machines from the state table is presented.
Finally, in Section 4.5 an example of the methods of Sections 4.2 and 4.3 will
be given for comparative purposes.

In the discussion the standard sequential machine model in Figure 4.1a
will be used. It is modified for alternating logic as shown in Figure 4.1b.
The asterisk indicates that the values are encoded in some manner,
specifically including signal alternation. The objective of this chapter is
to develop SCAL sequential machines which are simple to design and/or at

minimal cost.

4,2, Dual Flip-Flop Implementation

Reynolds [REYN1] has discussed at length the details of the dual
flip-flop implementation approach. Only a brief summary will be presented
here.

Only two steps are needed to convert a sequential machine, as the one in

Figure 4.1, to an alternating 1logic sequential machine. First, the




Figure Y4.1a. Standard sequential machine model

Figure 4.1b. Alternating logic sequential machine model
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combinational network should implement a self-dual function. At most, this
requires the addition of one extra variable--specifically the clock line.
Second, in the dual flip-flop implementation, the number of delays in the
feedback path is doubled. As the inputs alternate in value, the output and
feedback variables alternate. This is shown in Figure 4.2a.

The value of y is two time units delayed from the value of Y. 1In a
standard sequential machine the inputs to the combinational network are Xt and
Yiq and the outputs are Zt and Y,. In the alternating logic implementation
in Figure 4.2a the inputs to the combinational logic are X¢ and Y; _» in the

first time period and X¢,q and Yi_1 in the second time period, where Yt-2=Yt-1

and Xy =X;,,. The outputs are (Z,,2y,q) and (Y.,Y; ) with Z;=Z, , and

Yt =Y£+1 in a correctly operating alternating logic network. An example of a
sample data stream is shown in Figure 4.2b.

All input and output signals alternate in unison with the period timing
clock. To verify correct operation, it is necessary to monitor not only the Z
outputs, but also the Y outputs to ascertain that the correct state
information is fed back to the network. The method of checking the lines is
critical to the operation of a SCAL system and will be discussed in the next

chapter.

4,3, Code Conversion Technigue

In detecting faults of a given fault class in a system, different
encodings of the data may be used for different parts of the system as long as
the required code space distance is maintained in the codes. This requires

code conversion between parts of the system. In the case of SCAL, single
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(X,X) ——| SELF- |——(2,2)
DUAL
NETWORK (v,¥)

Dz ’-Dl ‘_'

Figure 4.2a. Dual flip-flop sequential machine

(xl’il)xz’RZ)"') 3 SELF' (21,2)l22,22,...)
DUAL

i T’ NET WORK _ i

(Y9 ¥ Y50 %) & A A
D. ‘J'Dz

FP-5658

rigure 4.2b. Sample data input stream
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fault detection requires a code space distance of two. Therefore in the space
domain a single parity bit provides sufficient code space distance to maintain
detection of a single fault.

This conversion characteristic is useful to match the failure mode of a
particular subsystem with an appropriate code for detecting the most likely
faults. For example, one approach to storing alternating signals is to double
the size of memory, as was shown in the previous section. During successive
time periods the alternating signals are obtained for use by the processor.
For an n-bit word of a normal system this would require 2n bits for storing
the word. This method is inefficient in using memory since only n+1 bits are
required to provide the necessary code distance for single fault detection.
Therefore, an approach which translates the coded information to and from a
more efficient encoding in memory is desirable.

Figure 4.3 shows a system level representation of an approach using
translation between time and space encoding for data storage. The feedback
variables from the conventional logic (Y,Y) are translated to a code T which
is stored and retrieved later as code t. This is converted to give the same
(y,y) input to the combinational logic as the dual flip-flop approach required
for alternating logic. 1In this manner an efficient match of the qualities of
alternating logic for reduced processor costs is combined with an efficient
match of parity encoding to minimize memory costs. Without 1loss of
generality, an even word size, n, and even parity will be used in further
analysis.

A system wide clock will be used to contrcl in which of the two time

periods the alternating logic system is operating. It will be represented as

i b e L o

M L ek S S ace
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(X,X) > Alternating — (2.7) ';
.| Logic rasens
»| CPU
(y,y) (v,Y)
U

Parity to : Alternatin
: Parity . 9
ﬁggeircnotmg Encoded (—— lﬁ?:?:fyto

Translator t [Memory | T | fonslator

FP-5659

Figure 4.3. System representation of code translation
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(¢,5) and will have the alternating value pair of (0,1). The normal system
clock operates at twice the frequency of (¢,5) and is used to generate (¢;5).
Positive edge-triggerred D-type flip-flops will be used, so that data are
latched on the 0 to 1 transition of their inputs. The period clock could be
used as an additional input, when it is necessary to convert an odd word size
to even word size or to change the parity.
b As can be seen in Figures 4.4a and 4.4b, the translators are simple and
inexpensive. The alternating logic to parity translator will be referred to
as ALPT and the parity to alternating logic translator will be referred to as
PALT.
The complete system is shown in Figure 4.5. The n outputs of the
combinational network (Y,Y) are input to the ALPT where the Y value is latched
/ on the 0 to 1 transition of ¢ and the parity of E:§i is latchedon the 1 to 0 j

transition of ¢ . These n+1 values are stored in memory and when retrieved an

XOR with (¢,8) or (0,1) is taken with each 1line to form (y,y). The
complemented parity of all the y outputs is latched on the 0 to 1 transition
of ¢ . It is output with the 2?1 parity calculated earlier to give a
1-out-of-2 code to provide the self-checking property of the system. If the
feedback is thru only one level of memory, then no additional latches would be
required for memory, since the ALPT stores one time period of information in
its latches.

If random access memory is used, then the address selection of memory
must be self-checking. This is accomplished as discussed by Dussault [DUSS1]

by including the parity of the address with the parity of the data stored in

the ALPT. Upon retrieval the same is done in the PALT and, if correct, a

RERERI
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1-out-of-2 code is generated. For example, if the parity of the data is odd
and the parity of the address is even, then the output parity line of the ALPT
will be odd. Similarly, when the data are retrieved, the parity of the data
out of memory and the parity of the address are combined to give odd parity.
The PALT will then output a 1-out-of-2 code. However, if a failure occurred
on either write or read so one line of address is incorrect, then a 1-out-of-2
code would not be generated. The system can be shown to be self-checking
[Duss2].

For the system to remain self-checking, all the units in the feedback
path must be self-checking. The determination of why the translators work and
why they are self-checking will now be presented.

The feedback outputs must be checked along with the external outputs of
the combinational logic by a self-checking checker. If the feedback variables
were not checked, a single fault in the 1logic generating the feedback
variables could go unnoticed while causing several outputs to be invalid.
This violates the fault secure property required in a self-checking system.
Further analysis is given in Chapter 5.

Therefore, a single fault on one of the combinational 1logic feedback
output lines can be assumed independent of a failure on any other line.

Furthermore, except for X each output 1line of the ALPT is separately

n+1?
generated from only one feedback line and so a single fault there also affects

only one line. Now consider the self-checking characteristic of the ALPT.

Theorem 4.1. The ALPT is self-checking if the parity of its output is

checked.
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Prcof': Fach class of 1lines will be —considered separatelv, using
representatives of the classes as in Figure 4 4a,

1. A stuck-at s fault on lines b,c,e,f, or i will be detected whenever
the valve of the line is s, since the parity of the output will be incorrect.
Each such irput is a test and no input gererates an irncorrect parity output.
Therefore, the ALPT is self-checking with respect to b,c,e,f, znd i.

2. A fault on line d will be detected whenever the values of the lines o
and g change since the value of line ¢ will not be changed to the new value cf
line b as it should when the clock cnanges. Each such input is a test and no
input generates an incorrect ©parity outgut. Therefcre, the ALPT is
self-checking with restect tc line d.

3. & fault on lines n or j will be detezted whenever the value =f tn
lines f a2nd g change since the value of line i will not be changed to the new
value of line f as it should when tae zlock changes. Ezch such input is 2
test and no input generates an incorrect parity output. Therefore, trnes ALET
is self-checking with respect tc lines h and j.

L, A stuck-at s fault on line 2 when a should be (E,s) will cause output

X1 to be the opposite of what it should be. Fowever, X will be the sanme

n+1?
as it would obe without the fault since it is determined in the second time
reriod when a should have beern s. tlternatively, if a2 should be (s,s) , then
output X1 will oe correct but Xn+1 will be incorrect. 1In either case, ths

parity will be iricorrect and the failure detected. All inputs will cause the

parity to be incorrect znd sc the ALPT is self-checking with respect tc line

a.
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5. If g is stuck, then the latches will retain a constant output which
may not be correct, but the parity will remain correct. If this happens, the
network is not fault secure. However, if it is assumed that all fan out of
the clock ¢ is from a common node, then only one clock input line or all
clock lines must fail, i.e., not some subset of clock lines. The case of one
clock line failing has been considered in steps‘z and 3 above. If all clock
lines fail, then the system will stop and no output, correct or incorrect,
will be generated. Thus it is fault secure. Any input which is applied while
¢ has failed will cause this and so it is self-testing if the system
shut-down is ragarded as a noncode state. So the network is self-checking
with respect to g.

Since the network is self-checking with respect to all 1lines in the

network, the network is self-checking. Q.E.D.

Three conditions for the network to be self-checking were assumed in the
proof: (1) all fan out of clock line ¢ is from a common node, (2) stopping
the system is regarded as a valid self-checking operation in event of failure
(this will be discussed further in Chapter 5), and (3) the output parity must

be checked.

Theorem 4.2. The memory is self-checking if its output parity is checked.

Proof: 1In the memory all outputs are independent of each other and so any
single fault affects at most one output line. If the output 1line is
sensitized, then the fault is detected. Some input will sensitize the memory
line or the memory unit is unnecessary and may be removed. Since the memory

is self-testing and fault secure for any fault, it is

e
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self-checking. QE.D.

The only remaining unit to be considered in the code translation process

is the PALT.

Theorem 4.3. The PALT is self-checking if its 1-out-of-2 code output is
checked.
Proof: The analysis will be done on classes of lines labeled in Figure 4.4b.

1. A fault on lines e,f,g, or h is detected by the 1-out-of-2 code
checker used. These are fault secure and self-tested when sensitized and so
the network is self-checking with respect to e,f,g, and h.

2. A fault on line b causes b not to alternate which is detected when
sensitized in the combinational unit receiving the non-alternating value. It
is fault secure and self-tested when sensitized and so the network is
self-checking with respect to b.

3. If line a is stuck-at s and is sensitized, then b will be (s,s) when
it should be (s,s); 4i.e., it alternates incorrectly. However, the parity on
line f would be the opposite of what it should be and so f and h would be
opposite and g and h would be the same. This would be a noncode word and
would be detected. So the network is fault secure. Since any input which has
line a at s is a test, the network is self-checking with respect to line a.

4., A fault on lines ¢ or d would cause b not to alternate and the
analysis of step 2 applies to show the network self-checking with respect to ¢
and d. Since the network is self-checking with respect to all lines in the

network, the network is self-checking. Q.E.D.
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Theorem 4.4, Combining an ALPT, memory, and a PALT provides a self-checking
feedback.

Proof: By Theorems 4.1, 4.2, and 4.3 each subunit is self-checking, provided
the conditions of the Theorems are all met. These are (1) the 1-out-of-2 code
of the PALT must be fed to the system checker, and (2) the parity of the ALPT
output data lines must be checked. Condition 1 is automatically satisfied in
any self-checking system which must have a self-checking checker and
appropriate hardware, discussed in Chapter 5. Condition 2 is satisfied since
the parity is checked in the PALT by (1) determining the complement of the
parity of the data lines and (2) feeding that with the parity calculated by
the ALPT (line X, ,) to a checker. Therefore, the conditions are sufficient

for the feedback system to be self-checking. Q.E.D.

Thus a simple method is provided to build a sequential SCAL at minimal
memory cost.

An alternative self-checking feedback network which provides the code
space distance necessary is shown in Figure 4.6. This combination also
provides a reduced checker cost for the system since the first checker used
could be the same as the one required to monitor the feedback variables. The
second checker would not require the logic used only in the generation of the
f output. The translators are the same as before except that the parity

generator and checking circuitry are not used.

4.4, Direct Implementation

The two previous sections have considered methods of converting an

arbitrary sequential system., This section will discuss methods of directly
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implementing a sequential SCAL system from the logic description. As such, it

will not have the fixed structural properties of the previous methods and so

will be more difficult to design, but may be less expensive in hardware.

!} The possible approaches to designing the feedback logic for a SCAL system

| are enumerated in Figure 4.7. A checker is normally used on the feedback

variablesi If it were not used and if a fault occurred which changed the
value of one of the feedback variables, then the input to thé combinational
logic would receive a noncode input two time periods later. If the fault
forces one of the system outputs to a noncode value, then the fault is
detected. However, if the fault only affects the feedback variable which
originally had the fault, it could allow the feedback variable to generate an
incorrect code word. This would cause the system to be in the wrong state and
would violate the fault secure condition of self-checking systems.

{ & Another possibility is that the noncode feedback causes another unchecked

7 feedback variable to generate a noncode output. With more than one feedback

variable generating noncode outputs fed back into the combinational logic, it

would appear as a multiple fault to the combinational logic. This is not

included in the self-checking fault coverage and, consequently, the system

would not be self-checking.

Appropriate analysis of the network could be made or design strategies
developed which would insure the fault was detected before it incorrectly
affected the output. These would be fairly complex and the additional

hardware logic cost would probably be greater than the excess checker cost.

Analysis of the logic could save some of the checker cost if certain feedback

outputs did not need to be checked. However, in further analysis it will be
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Figure 4.7. Feedback logic design in SCAL
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assumed that an output checker is used.

Case U4, alternating input and alternating output, was discussed in
Sections 4.2 and 4.3. The other cases use a combination of space and time
redundancy directly and are candidates for direct implementation from the
logic descriptions. Although parity code will be discussed, any space
redundant code could be considered. Other codes may have lower system cost by
reducing the cost of combinational hardware. However, the standard approach
to sequential machine design has been to assume a high memory cost. So
overall cost is lowest if memory cost is lowest. Since parity only requires
one extra feedback variable, and some redundancy is required to provide
self-checking, it is the least expensive approach.

Case 1, parity input and parity output, is effectively what is used for
feedback in the code conversion technique if the ALPT and PALT are regarded as
part of the combinational logic. However, if the parity is used by the
combinational logic dii‘ectly as input and generated directly for the output,
the costs of the ALPT and PALT could be saved. This completely loses the
advantage of alternating logic. Although it may be used in space redundancy
approaches, it will not be considered further here since it has the cost of
double time requirements of SCAL without any compensating value.

Case 2, parity input and alternating output, may be implemented by using
the ALPT to convert the alternating feedback to parity. There is little
reason to use this approach since it loses the advantages of alternating logic
in combinational logic without reducing memory costs.

Case 3, alternating input and parity output, may be implemented by having

the combinational logic generate a parity code output and using a PALT module.

PO Y T
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To generate the parity code either the combinational outputs during the first
or second time period could be used. Whichever outputs are used, the parity
code must be generated independently of the other outputs so that a fault to
an output will not also change the parity. Similarly, using a parity code
requires that an even number of outputs not be changed at the same time so
logic sharing is greatly restricted. However, if two outputs are latched
during opposite periods, then they may share logic. A simple example of this
was the ALPT which took the parity of the outputs in the opposite time period
in which they were latched. The ALPT is also the least expensive way of
generating the parity.

Cases 1,2, and 3, which directly use parity code in the combinational
logic, -show little promise in application to alternating logic. The code
translation approach of Section 4.3 is easier to design, more structured, and
almost always less expensive. Therefore, techniques of directly implementing

sequential SCAL through modified sequential machine design techniques will not

be worthwhile.

4,5, Comparative Example of Technjques Presented

An example of the implementation of a sequential machine using the
techniques of Sections 4.2 and 4.3 will be given to compare their merits. The
direct implementation techniques of the last section are not effective and no
example will be given of them.

To enhance the comparison an example from previous work by Kohavi [KOHA]
and then Reynolds [REYN1] will be used. It is of a 0101 sequence detector.

The original sequential machine of Kohavi is in Figure 4.8. The version
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Figure 4.8. Kohavi's 0101 sequence detector
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developed by Reynolds is in Figure 4.9 (with ¢A a clock operating at twice

the frequency of ¢ ). The translator implementation is in Figure 4.10. The
comparative costs are in Table 4.1, with n and m defined as the Kohavi number
of flip-flops and gates, respectively.

As is observed, to achieve self-checking extra logic is required in addition
to the double time requirement of SCAL. Assuming flip-flops have a high cost,
the cost is least if the translation method is used in implementing sequential
machines, and this cost effectiveness becomes even more apparent the larger
the machine is. 1In particular for computers the total memory cost is doubled
in the dual flip-flop approach, but is increased very little in the translator
approach.

The system-wide checker cost should be divided among each unit in the
system; thus the amount of cost to be apportioned for the particular subunit
depends on the system size. It is not included in the costs given since
checker cost would be a small part of the total system cost. The number of
gate inputs and the number of gate delays may also be cost factors to
consider.

The general case is also given. It uses the 1.8 cost factor, determined
by Reynolds [REYN1], as an approximate cost of converting normal logic to
SCAL. Cost factors vary widely from one for an adder to multiples for some
logic. The key point is that in the comparison between the dual flip-flop
approach of Reynolds and the translator, gate cost is about the same, but

flip-flop cost is much less for the translator approach.
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Table 4.1. Comparative costs of sequence detector

Kohavi example
Reynolds example

Translator example

Kohavi general

Reynolds general

Translator general

Flip-Flops

2

m

2n

n+1

Gates
12
19
23

m
1.8m

1.8m+n+2
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5. CHECKER DESIGN

5.1. Introduction

This chapter will cover (1) the design of SCAL checkers us. . the
conventional assumption of interdependent outputs, (2) the design of SCAL
checkers for independent outputs, (3) the design of SCAL checkers for networks
which have some dependent and some independent outputs, and (4) the
integration of the checker into the complete SCAL system. In evaluating the
checkers it will be assumed there are a multiple number of inputs to the
checker (from the network outputs). It is also assumed that a minimum number
of checker outputs are desired so that the hardware requirements of the system
are minimized. This assumption is substantiated in the last section of this

chapter.

5.2. Dual-Rail Checkers

The conventional approach to designing checkers has allowed the inputs to
be interdependent; i.e., the outputs may utilize some of the same logic in
their generation. In the space domain with the classic assumption of
unidirectional faults, the network is usually constructed with inverter-free
logic beyond the input level. In this case the interdependency does not imply
any extra constraints on the checker design.

In the time‘domain, Reynolds [REYN1] proposed using a set of flip-flops
to record the network output in the first time period and feeding these
delayed outputs and the second time period outputs into a dual-rail totally

self-checking checker (TSCC) [ANDE1]. This entire checker of Reynolds will be
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If the module is assumed to not have a fault within it, then the internal
state of (e¢,f,g) would never reach (1,1,1) in the analysis above. As was
shown before, the connections to the module allow the system to be
self-checking if the module is assumed fault-free,.

Theorem 5.2 means that no completely self-checking system can be built
with the normal logic gates available. There must be some nonstandard unit
which is used as the hardcore for the system, or the module that 1is not
self-checking must be replicated to obtain the desired reliability. This does
not consider some other mode of operation such as transition oriented logic or
pulse-mode logic which probably have other untestable faults.

One other possibility for providing self-checking capability in the
system is to feed back the checker outputs so they may be latched during the
next clock period, as showan in Figure 5.7. Once a faulty output is signalled
by the checker it will then remain at that noncode word, (0,0) or (1,1).
Presumably this status is displayed and the fault recognized by the operator.
All operations since the last time the checker output was checked may be in
error.

System-wide all the checkers in the system can be fed to one final

checker without 1loss of the self-checking characteristic. Only this one

checker needs to be monitored in assuring self-checking operation.
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referred to as a dual-rail checker and is shown in Figure 5.1a. This checker
can use the first stage of the dual flip-flops used in the dual flip-flop
sequential logic design as the flip-flops for the feedback lines being
checked. This is shown in Figure 5.1b.

The dual-rail checker requires two outputs, which have been shown by
Anderson [ANDE1] to be the minimum required of a system checked during only
one time period. However, since two time periods are used in the remainder of
the alternating system, it may be useful to ccnvert these dual outputs to a
single alternating output, as depicted in Figure 5.1c. The output q changes
at the rate of the time period clock ¢ , (0,1), and q should be (1,0) if the
network is operating properly. It will be (0,1) or constant if there is a

fault in the network.

5.3. Independent Line Checker
If the checker inputs are independent, then the requirements of the
checker design are reduced. Reynolds [REYN1] proposed using an exclusive-OR

(XOR) gate network as a checker.

Theorem 5.1. An XOR network is a self-checking single output checker for SCAL
if each XOR gate has an odd number of inputs.

Proof: If an odd number of inputs feed each XOR gate and each input
alternates in value with the period clock, then the output will also alternate
in value. This applies to all of the XOR gates in the network, so all the
lines alternate. By Theorem 3.6, a network is self-checking with respect to

the alternating 1lines in the network. Therefore, the network is
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self-checking. Q.E.D.

An example of an XOR self-checking checker is given in Figure 5.2a. Note
that the alternating period clock is added to the last XOR gate so that all
the XOR gates have an odd number of inputs.

The gate cost can be made minimal by proper ccnstruction of the XOR tree.
One output is the minimum possible so the network provides the minimum cost
checker. To get a two-rail output, it is only necessary to add a flip-flop on
the output for the first time period, as in Figure 5.2b. The checker output
is monitored in the second time period. It is also possible to build a
self-checking checker network with even input XOR gates as shown in Figure
5.2c. In this case, only the output pair (0,1) is a code word and all other
output pairs are noncode words. This type of checker is less cost-effective

than the checker composed of odd input XOR gates.

5.4, Mixed Checker Designs

As was stated before, the requirement for a network to be able to use an
XOR checker is that its outputs be independent. This restriction may be
relaxed provided the outputs satisfy certain constraints similar to those
tested in Chapter 3 for the network to be self-checking.

Specifically, if an even number of the network outputs brought into the
checker are stuck, then the parity would be unchanged and so the checker would
incorrectly give a code word output. However, if an odd number of the network
outputs are stuck, then even if another network output should alternate
incorrectly the fault would be detected. A summary is provided in Table 5.1

of the conditions for up to three network output faults in which the XOR

b e
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Table 5.1. Conditions where XOR checker suffices

4 Number Number Inputs Checker
i Inputs Stuck Alternating Incorrectly Result Operation Proper i
Ai 0 0 Proper Operation Yes ﬁ
‘: 0 1 Fault Not Detected* Yes
| 1 0 Fault Detected Yes ;
Bl 0 2 Fault Not Detected® Yes :
; .l : 1 1 Fault Detected Yes
% 2 0 Fault Not Detected No :
l 0 3 Fault Not Detected# Yes 3
1 2 Fault Detected Yes %
2 1 Fault Not Detected No J

! 3 0 Fault Detected Yes
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checker will suffice. A self-checking network will not output an incorrect
alternating word without at least one output not alternating. Therefore, the
checker does not need to check for this failure. These cases are marked by an
asterisk in Table 5.1.

Using the fact that the XOR checker will fail only when an even number of
the network outputs being checked have failed to a constant value, conditions
similar to those in Chapter 3 for determining whether a combinational network
is self-checking can be developed to determine whether the XOR checker is
self-checking. All lines which have a fan out path to more than one output
must be considered. This includes the inputs. Where there is a large amount
of multiple use of some logic it is fairly likely that the network will not
satisfy this condition. Since the inputs feed more than one output network,
the way in which the function is implemented may require drastic alteration in
order not to allow generation of any pair of nonalternating outputs in the
event of failure. 1In order to modify the network so that it would satisfy
this condition, there is a high probability that more logic would be required
than adding the additional 1logic to the checker which allows the checker
inputs to be interrelated. So, this is not a useful approach to pursue
further.

However, in many networks some of the outputs may use common logic while
others do not. Furthermore, it is possible to partition the network according
to the subnetworks used by groups of outputs. In this case, a checker design

utilizing the mix of dependent and independent variables is appropriate.

Algorithm 5.1:
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1. Put all variables which are independent of all other variables in
partition A. The remainder are in partition B,

2. Further divide the outputs in B into subpartitions By so that the
outputs form groups in which each output in the group is not dependent on
logic used by any output outside the group.

3. Among each Bi, one of the outputs may be placed in the A partition as
long as it does not alternate incorrectly for any fault. A network
modification 1like those discussed previously could change the way the
partition is made and hence reduce the checker cost by placing more of the
outputs in the A partition.

4., All the outputs in the A partition may be checked with the XOR
networks. All the outputs remaining in a B partition must be checked by the

dual-rail input checker for dependent inputs.

Notice that in the example in Figure 3.7, all the outputs would initially
be in the same B partition. Further, they would all be in the same Bi’
partition B1. Either output F1 or F3 could then be put into the A partition.
However, they could not be both in the A partition. F2 must remain in the B1
partition since it does alternate incorrectly for faults on lines 9, 19, and
20 in the network.

Consider also the following example. Suppose there are nine output lines
from a function. Outputs 1, 2, 2 are independent of any other output. The
groups of outputs which share logic are (4, 5, 6), (6,7). amd (8,9). Outputs
5 and 8 generate an incorrect alternating output for a line they share with

other outputs in their groups. The dual-rail checker implementation is in

Figure 5.3a. The algorithm proceeds as follows:

W N DT T I e T ey Loy preey
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1. A=[1,2,3]; B=[4,5,6,7,8,9]

2. By=[4,5,6,7]; B2=[8,9]

3. #=[1,2,3,4,9]; B,=[5,6,71; B,=[8]

4. Outputs 1,2,3,4,9 are checked by an XOR checker. Outputs 5,6,7,8 are
checked by the dual-rail checker. The implementation is shown in Figure 5.3b.

The checker outputs of the two checkers need to be combined in order to;
provide a minimum number of checker outputs. There are two approaches: (1)
if a single alternating output is desired, then another XOR checker is used
with the previous checker outputs as its inputs; (2) if a dual-rail output is
desired, then a dual-rail totally self-checking checker is used. These two
implementations are chosen for the previous example in Figures 5.4a and S.Mbk

respectively. In either case, the outputs of the first stage checker which is |

different from the second stage checker may be incorporated directly into the

first stage checker which is the same as the second stage checker; i.e., it
is not necessary to have the separate stages.

The cost of using the dual-rail checker only as in Figure 5.3a for an

n-line input checker is n flip-flops and (n-1)6 two-input gates for Anderson's
[ANDE1] dual-rail TSCC. The case given has nine inputs, so forty-eight gates
and nine flip-flops are required. Using the reduced cost checker described,
depending on the output checker, either (1) three triple-input XOR gates,
eighteen two-input gates and four flip-flops are required or (2) two
triple-input XOR gates, twenty-four two-input gates, and four flip-flops are
required. Either way, the cost is about one-half of the dual-rail checker's
cost for this example. The cost formula for this revised 1mp1ementation3

depends on how many outputs are in the A partition. The number of latches in
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a dual-rail implementation may be reduced in either approach if the lines are

also used for feedback outputs.

2.5. Hardcore Elements in SCAL

In order for the checker to have any value for the system, it is
necessary to use its outputs to control whether the network continues to
operate. Generally, this portion of the network is referred to as the
hardcore since it is the part that is assumed not to fail even within the
fault model. One approach to hardcore is to physically make the module have a
failure rate significantly below the other system componeats so that it wmay be
regarded as relatively fault-free. Another approach is to redundantly
implement the module so that a low probability of all the modules failing is
achieved. This first approach is beyond the scope of material covered here;
only the second approach will be examined.

In a self-checking system it is desired to terminate operation once a
fault occurs which causes an illegal output. It is also desirable to retain
the state where the failure occurred. Therefore, turning off power is not
acceptable. Either the inputs must stop arriving or, in the synchronous case,
the clock must stop. For alternating logic it is assumed a clock is used for
syacaronization, aanl so disabling of the cloek will be used. Disabling of the
input lines (as would be used in an asynchronous system) would be very
similar. Particular implementation would vary depending on the network given.

Since the checker output stages have been demonstrated to be convertible,
an implementation using either form of checker output is acceptable, although

one may cost less. Considered here is the dual output of the latching
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checker. To enable the clock only when the output is correct (opposite
values), the truth table in Table 5.2 must be implemented. This is
implemented using the network module in Figure 5.5a. Regarding the network
elements separately, a fault on the XOR gate output to stuck-at 1 will be
undetected. Therefore, if the fault occurs, there will be no way of knowing
when another fault occurs in the systea.

However, if the module 1is itself regarded as a single zate, then aay
failure to one of its input or output lines is Jetected: if f or g is
stuck-at 1 or 0, then (f,g) will eventually be (1,1) or (0,0), respectively,
forcing the XOR gate output to 0 and turning the clock off; if the clock into
or out of the module is stuck-at 1 or 0, then the system will also stop. The
failure is detected the moment it is observable, i.e., before any wrong code
word is sent out. The fault can then be easily isolated.

Alternatively, if the individual gate faults are to be modeled, then the
module can be replicated as ian ¥Figure 5.5b. This will decrease the
probability of a failure in the hardcore unit being undetected. Waenever 2
system failure is detected, this unit should be checked or replaced to retain
its relatively high reliability. For a probability of failure p and n
replications, the probability of hardcore failure becomes p"”. It can be made
arbitrarily small for p<1.

There is still the question of whether there is any way to build this

hardcore unit so that it is self-checking.

Theorem 5.2. There does not exist a self-checking network consisting of
normal logic gates (NAND, AND, OR, NOR, XNR, INOR, or NOT gates or flip-flops)

which can disable the clock once a fault has been detected.
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Table 5.2. Hardcore clock disable truth table

Clock In
0

0

f

0

g

0

Clock Out
0

0
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Proof: Let the 3-tuple (c,f,g) represent the network's inputs: the clock
line and f and g from a dual-rail self-checking checker. The 4-tuple
(c,f,g,0) includes the output clock generated. A model of this is shown in
Figure 5.6a. The normal traunsition sequences are shown in Figure 5.6b. This
assunmes a single input line change at aany instant in time. Under correct
operation, c¢ should only change when f#g . By inspection all the transition
sequences during normal operation can be observed to be included in Figure
5.6b. Some of the possible sequences upon the occurrence of a fault are shown
in Figure 5.6c. The outputs are unspecified, and so are marked as X. Now
consider what the value of X must be. It will be shown that no value of X
will allow the type of network specified in the theorem to be self-checking.

when the values of f and g indicate a noncode word, the clock output
should not change. If it changed values, it would trigger an operation within
the system; i.e., the system would not be fault secure. To detect a noncode
checker input, it is required that the output remain 0 when (c,f,g) go from
(0,1,1) to (1,1,1).

When f fails and (c,f,g) go from (1,1,0) to (1,1,1), the output must
remain at 1 to avoid triggering the network to a new state. When c goes to 0
and (c,f,g) go from (1,1,1) to (0,1,1), the output must remain unchanged at 1.
However, this now requires that the output for (0,1,1) be 0 when the network
operates properly and 1 after a fault occurs. Therefore, the fault state must
be maintained in some manner within the module. However, there is no way to
reach and test this fault state in normal operation. Since the network is not

testable, it cannot be made self-checking. Q.E.D.
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If the module is assumed to not have a fault within it, then the internal
state of (c¢,f,g) would never reach (1,1,1) in the analysis above. As was
shown before, the connections to the module allow the system to be
self-checking if the module is assumed fault-free,

Theorem 5.2 means that no completely self-checking system can be built
with the normal logic gates available. There must be some nonstandard unit
which is used as the hardcore for the system, or the module that is not
self-checking must be replicated to obtain the desired reliability. This does
not consider some other mode of operation such as transition oriented logic or
pulse-mode logic which probably have other untestable faults.

One other possibility for providing self-checking capability in the
system is to feed back the checker outputs so they may be latched during the
next clock period, as showa in Figure 5.7. Once a faulty output is signalled
by the checker it will then remain at that noncode word, (0,0) or (1,1).
Presumably this status is displayed and the fault recognized by the operator.
All operations since the last time the checker output was checked may be in
error.,

System-wide all the checkers in the system can be fed to one final
checker without loss of the self-checking characteristic. Only this one

checker needs to be monitored in assuring self-checking operation.
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6. SCAL MODULES IN NETWORK DESIGN

6.1. Introduction

Recently a multi-valued logic gate was reported developed by industry
[ELEC]. Through the years many such special types of gates have been studied
both in theory and to a lesser extent in application. Among these special
types of gates are the type known as threshold gates. And among threshnold
gates are gates known as majority gates and minority gates. These types of
gates are particularly well suited for SCAL. The discussion here will be of
the theoretical properties, with the realization that physical construction of
them may be economical someday.

The minority module is represented as shown in Figure 6.1a. The truth
table implemented is also shown. The majority module is similarly presented
in Figure 6.1b. Two minority modules may be used to implement a majority
module as shown in Figure 6.1c. The minority module has been shown to be a

complete gate set by Reynolds [REYN1].

Theorem 6.1. The minority module is a complete gate set.

Proof: The 2-input NAND gate is well known to be a complete gate set [POST].
As shown in Figure 6.1d, a 2-input NAND gate can be implemented by the
minority module. Therefore the aminority module 1is a complete gate

set. Q.E.D.

A further discussion about strong and weak completeness is given by
Reynolds [REYN1]. The majority module is not a complete gate set since

complementation cannot be done. Therefore, emphasis will be primarily on

1
|
|
|
|
|
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minority modules in this discussion.

For alternating 1logic, when the inputs alternate, the outputs must
alternate. Assuming a period clock with successive values (0,1), a network
composed of 2-input NANDS can be made an alternating network using minority
modules. Let m(xl,xz,(b) represent the output of the minority module with
inputs X1,X2, and period clock

EE)LF@) = @) ,X,,8) mE)5X,,9)
o (m(xlaxz »,0) :m(k-lsiz ’ 1)’

= (XX,» X1x2)
= (NAND(Xl,xz), AND (xl,xz))
Similarly a network of 2-input NOR gates can be made an alternating

circuit by using the coaplemeant of the nseriod aloek (1,0).
(F(),F(X)) = m(X},X,,8),m(X,,X,,8))

(m(xl:xz ’ 1) ’m(il :iz »0))

= \Y
(X, VXy,Xy xz)

(NOR(X;5X,)> OR (X;,X,))
This provides the output value of the original network in the first time

period. In the second time perioﬁ the complemented value is output to provide
the desired alternation. Since all lines in and out of the module alternate,

by Theorem 3.6 the network is self-checking with respect to the gate.

6.2, Design With Minority Modules
Most networks require more tunaa 2-input zates. For this reason it is

necessary to consider whether a aetwork with multiple input NAND gates can be

directly transformed with minority modules into an alternating logic network.
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In the analysis these symbolic definitions will be used:

AL is an L input vector to a logic gate

W(A ) is the number of 1's in A}

m;(A) is the ainority function with an I input vecotr A

It is assumed that there is an odd number of inputs to the minority
module. The minority function with input vector A is 1 if and only if
W(AL) <L/2. A NAND gate with input A is 1 if and only {if WCAL) < (L-1)2and an
AND gate with input A is 1 if and only if W(AL) =1 . A few more symbol
definitions are required:

Cy is an all 0 vector with k elements

Ck is an all 1 vector with k elements

(Cx»Cy) is a clock input, with k elements

A “ Bis the concatenation of two vectors

So w(a || B) = w(@A) + W(B).

Theorem 6.2. For all NAND gates with N input vectors, X, there exist my such
that for all (X,X):
C X = AND (X
@ 1T m &Il cp)) = NAND(X),AND(X))
with K=N-1 and I=N+K=2N-1

Proof:

wex |l Cp) = W) +W(C) = W(X)

m_ (X I EK) =1 1iff W(X) <1/2
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since I = 2N-1 this is rewritten as

W(X) < (2N-1)/2 or W(X) <N-1/2 or W(X) €N-1
o m (X HEK) =1 iff W(X) SN-1

w(x | €)= W) + w(e) = WEX) + K

mI(ilch) =1 iff WX) +K<1/2

this can be rewritten as W(X) < (2N-1)/2 - K

or W(X) < (N-1/2) - (N-1) or W(X) < 1/2 or W) =0

The conditions for NAND(X) and AND(X) are the same as those for the

minority gate in the two time periods. Q.E.D.

Similarly a minority module implementation can be made from a NOR gate

network.

Theorem 6.3. For all (X,X),

mp(x lcp)ym (X 1C,)) = (NOR(X), OR(X)) with Ka-1 and I=NeK=2*N-1
Proof: The proof is similar to the proof of Theorea 6.2.

To clarify the application of the above theorems, an example will be
given. A network of NAND gates and its truth table is given in Figure 6.2a.
This is converted directly into minority modules using Theorem 6.2 as shown in

Figure 6.2b. However, a more efficient implementation is shown in Figure

6.2c.
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From the the contrived example it is clear that some functions may be
very inexpensive to implement with minority modules. In this case the
function to be implemented is a 3-input minority function. This is a
self-dual function. When it is implemented with NAND gates, four NAND gates
are required with nine total inputs. 1If each NAND is directly converted to
minority logzic by the mnethod in Theorem 6.2 , then four minority modules are
required with fourteen total inputs. However, a single minority module with
three total inputs is all that is actually required. A technique to implement
the function with ainority modules directly from the truth table is useful.
An appropriate weighting should be made for the cost of inputs also. The
minority modules in general would have (N-1) -clock inputs in the
implementation of an n-input NAND gate. The design should try to ninimize
overall the number of such iaputs. A branch and bound procedure such as tnat
by Davidson [DAVI ] would be appropriate. A detailed discassion of the
implementation of functions using majority gates is given by Muroga [MURO].
The implementation with minority modules is similar and will not be presented
here.

The minority modules of any size are self-checking if implemented in the
nanner presented in Theorems 6.2 and 6.3. This is because they all have
alternating inputs and outputs for all input vectors. By Theorem 3.6 this
means that each line is self-checking.

The implementation of a function using alternating logic and minority
modules is a very straightforward approach to achieving self-checking. It
relies upon the inexpensive availability of minority modules and a relatively

small cost assigned to extra time required to achieve self-checking. 1In

o

i




94

instances where normal speed is desired and self-checking not required, the
system could be easily switched to a nonalternating mode and conld provide the

desired operation.

T S — .
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T. SCAL COMPUTER DESIGN

7.1. Introduction
One of the primary applications for alternating logic is in computer
systems where improved reliability is desired. In many instances the use of ]
alternating logic could be the most cost-effective solution.
.t Section 7.2 will apply to computers some of the code translation design ;
| approacnes discussed 1in Chapter 4. An analysis of the use of self-dual |
modules ia computer system design will be done in Section T7.3. Finally, in i
Section 7.4 a discussion of SCAL use in large systems to achieve fault

tolerance will be presented.

7.2. System Encedinz Considerations

- —————

As was discussed in Chapter 4, it is desirable in system designs to match

the code used to the failure mode of particular elements. For exanple, when

|
E |
f . all output lines of an element are independent and the cost of each additional
{ output line 1is the same, a parity code is appropriate. A single-bit parity
; f code is also appropriate for single line faults on busses or in the wmemory.
f However, in the central processing unit (CPU) generating a parity bit output
E. | is almost as costly as building an entire CPU. In this case an m-out-of-n
code or Berger code is useful in space domain self-checking. Alternating

logic has been shown to be effective as a time-domain approach. Therefore,

the most cost-effective self-checking computer system should use a combination

of codes dependent on the performance characteristics desired.
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A model of a computer system is presented in Figure 7.1. Each element of
the system has a greatly improved reliability if it is protected from
undetected single faults. For many applications protection from single faults
would be the most cost-effective mode of operation. An economic justification
can be briefly given. Assume that functions exist which can describe: (1) a
degree of fault protection in relation to the various faults protected
against, (2) a measure of improved reliability for the system owner, (3) a
cost for various designs which optimally achieve the reliability desired, and
(4) a cost~benefit utility of reliability improvements (derived from functions
2 and 3). Typical plots of these last three functions relative to the first
are shown in Figure 7.2. The functions have values only for certain discrete
degrees of fault protection. For the types of costs and values shown in
Figure 7.2, the peak utility is reached wnhen single fault protection is ased.
The type of coding and design which can provide the minimum cost used in the
Zraph can be analyzed. 1In a typical design process, a minimum cost for each
type of fault protection desired would need to be determined Dbdefore the
utilities could be derived. 1In this case, assume the cost is known and it is
desired to determine how it can be achieved.

The CPU could use alternating logic to provide the minimum hardware cost
for single Ffault protection. The memory could use a parity code requiring
only one bit per word. The translators discassed in Chapter 4 could he used
by the CPU to comnunicate with the bus. A totally self-checking checker could
be used to report to the outside world whether the system is operating
properly. A code reply signal could be used with the peripheral devices on

the input-output data paths. The reply signals would provide assurance that
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the correct data transfer had been made. Therefore the entire system would be
protected from single faults. The resulting computer system is shown in

Figure 7.3.

1.3. Self-Dual Modules

In designing the CPU it is often useful to combine certain function.
Among these are arithmetic operations, the shift operation, and status
determination. As was discussed earlier in Chapter 2, the adder is inherently
self-dval. Similarly, the shift operation is self-dual. It can be easily
implemented, as shown in Figure T7.4a, by using two flip-flops instead of the
usual one. The status conditions can also be stored in two flip-flops as
opposed to the usual one to achieve self-dual operation, as shown in Figure
7.4b. Alternatively, one of the encoding techniques for sequential machines
could be used, as discussed in Chapter 4. By using these and other self-dual
modules a SCAL CPU can be designed. The specific set of modules required
would depend on the operations to be done by the CPU. The study of the design
of an alternating logic CPU to replace a particular CPU would be useful in

further research.

1.4. Large System Design With SCAL

Shedletsky [SHED2] has proposed the use of alternating logic in a system
he refers to as an alternate data retry (ADR) system. The alternating
capability of the system is utilized only upon occurrence of a fault. When
the system detects a fault, the complemented signals are used and the correct

values determined. This provides a method of achieving fault tolerance. It
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requires a check of the data during normal operation to determine whether the
system is in error. To do this a space domain self-checking procedure was
recommended. Howrnver, Shedletsky's approach requires double the amount of
logic required in a self-checking system to achieve fault tolerance.

Let the cost of a normal system be N. Let the cost increase factor to
convert a normal system to a space domain self-checking systen be S and the
cost increase factor to convert a given system to an alternating logic system
be A. To convert a normal system to a space and time domain self-checking
system, the cost is A ° S °N, if the conversions are independently done.
There 1is the possibility that a space domain self-checking system may be
inherently self-dual, in which case the cost could be as low as S °N.
However, it is more likely that the space domain self-checking CPU is not
self-dual. Assuming the space domain self-checking CPU is not self-dual, then
A and S are approximately two. Thus the cost of building the ADR CPU is four
times the normal CPU cost. This is prﬁbably worse than a triple modular
redundant (TMR) CPU which has similar performance.

A SCAL CPU design which is more competitive with the TMR design is shown
in Figure 7.5. In this case a normal CPU and a SCAL CPU are used in parallel
to obtain space domain self-checking. In order to operate at the same speed
as the normal CPU, the SCAL CPU uses only the first time period of the two
time periods normally used in SCAL. When a fault is detected in either CPU,
then the system operates at half-speed. The two time periods of operation of
SCAL can be used with the normal CPU to generate three sets of output. A vote

could be taken or the faulty member removed. This is comparable with TMR and

may cost less than TMR if the value of A is less than two.
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8. CONCLUSION

8.1. Summary

|
1
|
!
|

Analysis of the application of alternating 1logic to the design of

self-checking systems has been done. In particular, results have been

obtained in the areas of combinational logic, sequential machine design, SCAL
checkers, SCAL modules, and SCAL system design. These will be briefly
summarized.

Rules to evaluate whether a network is self-checking were presented. An
alternating logic network is not self-checking if any line in the network does
not satisfy at least one of the following criteria:

(1) It alternates for alternating inputs.

(2) It does not fanout and its path to the output is through unate gates.

(3) Path parity is the same for all paths from the line to the network |
output.

(4) It is an input to the same standard gate (NAND, NOR, AND, OR, or NOT)

as an alternating line.

FEPSIIREETS e WO P OSNRVEo

(5) Using the definition of line G and function F used in the thesis, it

meets the condition

PR

F(X,6(X)) & (F(X,0) & F(X,0) VF(X,1) & F(X,1)) # 0
(6) If any line from a subnetwork used by more than one output fails to

meet one of these conditions for an output, 1, then it is checked to see if:

n - — _— —
[k§1 F, (X,8) & F, (X,8) V F, (X,8) & Fk(x,s)] & Fy (X,6(X)) & Fy(X,8) & F;(X,s) = 0 -
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A memory-efficient approach for the design of SCAL sequential machines
was presented. In the design of large systems this approach is particularly
valuable. A less practical approach to the design of SCAL sequential machines
by direct implementation was also presented. This may sometimes have cost
savings, but does not in general appear to be a desirable approach.

Two types of SCAL checkers were discussed. The implementation
requirements for dependent input checkers were specified. Techniques of
combining dependent and independent input checkers were presented. These
achieve a minimal cost implementation of checking required for SCAL systems.
In addition an analysis was given of the hardware requirements and the
implications of alternative designs.

Minority modules were shown to be sufficient to implement in SCAL any
NAND or NOR network. The code translation approach was shown applicable to
system level design. In addition an effective use can be made of certain

alternating logic modules in designing systems with improved reliability.

8.2. Current SCAL Research

The position of this thesis with respect to all the work done in this
area is illustrated in Figure 8.1. From the figure it is evident that many of
the aspects of logic design have been considered in their application to SCAL.

Considerable work remains to be done.

Sihaanme L b o L e
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I. Conceptual
Definition of Alternating Logic: Bark and Kinne [BAFRK]
Theory on Fault Detection of SCAL: Yamamoto, Watanabe, and Urano [YAMA]
Theory on Self-Checking: Anderson and Metze [ANDE1]
Theory on SCAL: Reynolds and Metze [REYN1]

Code Conversion in SCAL: this thesis

II. Combinational Logic
Initial Discussion: Bark and Kinne [BARK]
Two-Level Network's Fault Detection Properties: Yamamoto, et.al. [YAMA]
Costs of SCAL: Reynolds and Metze [REYN1]
Classes of Multiple Level Networks are SCAL: Reynolds and Metze [REYN1]
General Self-Checking Analysis: this thesis

Improve Design Techniques: for future research

III. Sequential Logic
Initial Discussion: Reynolds and Metze [REYN1]
Dual Flip-Flop Implementation: Reynolds and Metze [REYN1]
Code Conversion Technique: this thesis

Direct Implementation Approach: this thesis

IV. Self-Checking Checkers
Initial Discussion: Reynolds and Metze [REYN1]
General Designs: Reynolds and Metze [REYN1]
Dependent Line Checker Requirements: this thesis

Minimal Cost Checker Design: this thesis

Figure 8.1. Summary of current SCAL related work
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Hardcore Logic Requirements: this thesis

E V. Modules in SCAL
Initial Discussion: 1Ibuki, Naemura, and Nozaki [IBUK]

Uses in SCAL: Reynolds and Metze [REYN1]

E | Multiple Input Modules: this thesis

VI. Systems

Alternate Data Retry: Shedletsky [SHED]
{ System Design: this thesis

SCAL Functions: this thesis

TRy e

Figure 8.1. Finished
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8.3. Recommendatjons For Further Research

Some of the areas where future research may prove fruitful are evident
f from Figure 8.1. Specifically these include:

1. Constructive design procedures for combinational logic. The tools
for analyzing whether a network is self-checking have been provided. It may
now be possible to show techniques of designing SCAL.

2. Design techniques for sequential machines which do not require a
checker on feedback variables. The complexity of this problem was presented
in Chapter 4.

3. Further study of implementation of the direct conversion technique
for SCAL sequential machines. This (ld not appear promising, but some new
study may turn up worthwhile results.

4., More general application of hardcore analysis. The clock line was

SR —

assumed to be the line to be used in controlling the system. A more general

proof is probably possible. In addition, the application to space redundant

self-checking systems should be straightforward.

5. Consideration of multiple faults in minority modules. Using
additional redundancy of the minority modules, it should be possible to
achieve self-checking for multiple faults.

6. System design using SCAL. Work similar to the space domain work of
Ho and Metze [HO1,H02] in the area of SCAL would be interesting.

In addition, work could be done on asynchronous implementation and
different time encodings. However, the additional hardware cost does not

. present a promising opportunity for research in the use of different time
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encodings.

One final note should be made of the merits of SCAL. This was discussed
in detail in Chapter 2 and will be summarized. SCAL is not a universal
solution to improving the reliability of digital systems. However, in
applications where the cost of the additional time required for SCAL operation
is not significant, SCAL can provide savings in hardware. Savings can also be

realized in the physical pin count of the large scale integration devices in

which SCAL is used.
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A.3.

APPENDIX: ABBREVIATIONS, CCNVENTIONS, AND GLOSSARY

Abbreviations

ALPT: Alternating Logic to Parity Translator
iff: If and only if

PALT: Parity to Alternating Logic Translator

SCAL: Self-Checking Alternating Logic

Glossary

Failure: Physical device malfunction
Fault: Logic representation of a failure
Function: Logic operation performed
Network: Implementation of a function
System: Combination of Networks

Translator: Network which transforms data from one code to another

Conventions
f: Fault
#*

f : Self-dual function (Reynold's notation)

(f,g): Outputs of checker (Anderson's notation)

F: Function

F(X): Output from network implementing F when X is applied
F(X): Output from network implementing F when X is applied

F(X): Complemented output from network implementing F when X is applied
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F(X,X): Alternating output from network implementing F when (X,X) is

applied

Ff(X): Output from network implementing F when X is applied and fault f
oceurs

F(X,G(X)): Output from network implementing F, with value G(X) on line
g, for input X

F(X,<): Output from network implementing F, with value s on line g, for
input X

F;: Output of the i-th function

G(X): Value of line g in the network for input X

s: Logical value a faulty line is stuck-at (0 or 1)

X: Input vector

(X,X): Alternating input sequence

(Y,Y): Alternating sequence

(#,8): Period clock alternating with time period of system, (0,1)

(,9): Complement of period clock, (1,0)
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