
-~~ AO ’A056 53’i ILLINOIS UNIV AT URbANA—CHAMPAIGN COORDINATED SCIENCE LAB F/G 9/5
DESIGN OF DIGITAL SYSTEMS USING SELF—CHECKING ALTERNATING LOGIC——ETC (U)
Oct 77 S £ WOO DARO DAABO7— 72—C—0259

UNCLASSIFIED R 788 NI.
10F 2 ____

H

• a:

I.

II

_

I REPORT R-788 OCTOBER. 1977 UIL.U-ENG Th

i ~~ ~~~~~~COORD/NA TED SCIENCE LABORA

I. ~ tL~~
DESIGN OF DIGITAL SYSTEMS
USING SELF-CHECKING
ALTERNATING LOGIC

SCOTT EUGENE W000ARD

~~~~~~~~~~~~

C~) ~~~~~~

~
‘•1 ~~~ ~~___ Li... //( .*t ,8

I
I _ _ _ _ _ _ _ _ _ _ _

I

~~~

~~~~

• ~UNIVERSITY o~~ILy ISiôJR
~$~~ 

ILl



~ 1
UNCLASSIFIED

~SECURITY CLASS IFICATION OF THIS PAGE (IP1,~~ Dale Enl.r.d)

DEDADT r~n rIIu EIi TAYIn hi PACE 
-

~~ READ INSTRUCTION S
,~ ~~~ u ~ ‘~#~~~~m “i ‘~~‘ I~~ ’ BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSI I_ -*ui. r .U ~~1 SAT.. ..., $ 1W - —

~~~~~~~ 4 TITLE (and SubtiU.) .t iYP~

)
~~~ ESIGN 0F DIGITA~~~ YSTEMS~~~ ING f Technical Report

.~ ELF~~HEcKING~~LTERNATING LOGIC # \~ ~~ 
_______________L-rR~~rj~ s1f ) L ~~~~~~~~ E IIIIM~

c2.~ ~~
IScott Eu~ene~~ oodard

_/ ~~~~~ DAA~~~~ i 72_C~~~~~]

9. PERFORMING ORGANIZATION NAM E AND ADDRESS 10. PROGRAN ELEMENT, PROJECT . TASK
AREA I WORK UNIT NUMBERS

Coordinated Science Laboratory
University of Illinois at Urb an a— Champaign
Urbana,__Illinois__ 61801 ______________________________

- 1  II. CONTROLL INGOFFICE NAME AND ADDRESS m~~P-~JnI W A I L

~~ 3 T O
Joint Services Electronics Program TI HUMBE ROFP ~~~~~

_______________________________________ 115
II. M ITORING AGENCY NAME & ADORESS(II difl. t.nt from Controlling Office) IS. SECURITY CLASS. (of thi. report)

ISa . DECLAS5IF ICA T IO N/OOWPIGRADING

IS. DISTR~!UTION STA T EN (of this R.porf)

Approved for public release; distribution unlimited

17. DISTRIBUTION S T A T EMENT (of the abstract entered in Stock 20, if dilf.rant from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WOROS (Continu, on rav .ra. aid. II nsc..aazy and Identify by block number)

Self—Checking Alternating Logic
Combinational Logic
Sequential Logic

20. STRAC T (Continu, on r.v.rae aid. Il nec..aary an~d identify by block number)
‘~~This thesis presents’further~~nalysis of the 

application of alternating
logic to the design of self—checking systems. In particular, results are
presented in the areas of combinational logic, sequential logic, self—checking
alternating logic modules, self—checking alternating logic checker design , and
self—checking alternating logic system design.

• . The necessary and sufficient conditions for a self—dual combinational
network to be self—checking are developed. An analytic technique for evaluating
if any self—dual network is se — cking is given. A memory efficient approach

‘7 ~‘~1) 7 Et~~~ 
~~~~~~~~~~~~~~~T E ~~~~~~~~~~~~~

5 M o F THIS PAGE (M~.n D a e~~~~~~~~

r

UNCLASSIFIED
SECURITY CL. AUIPICATION OP THIS PASE(U~~~ D~~a ~~~~~~~

20. ABSTRACT (continued)

for the design of self—checking alternating logic sequential machines is
presented. Various techniques of checker design for self—checking
alternating logic are discussed. The requirements of the hardcore
portion of general self—checking systems is given. Minority modules
are shown to be sufficient to convert any NAND or NOR network to a
self—checking alternating logic network.~~

~~~ ~~~~~~~~~~~

-

,

“
~~ ‘~ ~~~~~~ ...~.—._

~

-----
-.\

.,
—,....-

~~CLASSIFIED
SICURI?Y CI.ASSIPICA?ION OP THIS PAGI(W9I.n Date inu red)



___ ~~~~ - .~~~~~~~~~ 

_ 
- ~~—..---.-- .- -~ -

- 4 ~~~~~~
- -  _ _ _ _ _

~ I
I j
~

UILU—ENG 77—2235

- •  DESIGN OF DIGITAL SYSTEMS USING
SELF-CHECKING ALTERNATING LOGIC

by

Sco tt Eugene Woodard

[ This work was supported in part by the Joint Services Electronics

- Program (U.S. Army , U.S. Navy and U.S. Air Force) under Contract DAAB—07-

72—C—0259.

Reproduction in whole or in part is permitted for any purpose of
- 

the United States Government.

Approved for public release. Distribution unlimited.

_ _ _

____ 4



~~~~~~
- __—

~~~~~~~~~- ----.
——

-

~ I ~

DESIGN OF DIGITAL SYSTEMS USING
SELF—CHECKING ALTERNATING LOGIC

I [

BY

SCOTT EUGENE WOODARD

B.S., Universit y of Ill inois , 1973
M.S., University of Illinois, 1975

THESrS

Submitted in partial fulfillment of’ the requirements
for the degree of Doctor of’ Philosophy in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana—Champaign , 1977

Thesis Adviser: Professor Gernot Netze

Urbana, Illino is 

_- 

_

~~~~~~~

-

~~~~~

_ - .-.-_-

~~~

-

_ _ _ _ ._.__ . . .~~~~_.~~_ L _ _ _ _ ___________

DESIGN OF DIGITAL SYSTEMS USING

SELF—CHECKING ALTERNATING LOGIC

Scott Eugene Woodard , Ph.D.
Coordinated Science Laboratory and
Department of Electrical Engineering

University of Illinois at Urbana—Champaign , 1977

This thes is presents further analys is of the appl icat ion of altern at ing

logic to the design of self—checking systems. In particular , results are

presented in the areas of combinational logic , seauential logic , self—checking

al ternat ing log ic modules , self—checking alternating logic checker design, and

self-checking alternating logic system design .

The necessary and sufficient conditions for a self—dual combinational

network to be self—checking are developed. An analytic technique for

evaluating if any self—dual network is self—checking is given. A memory

efficient approach for the design of self—checking alternating logic

sequential machines is presented . Various techniques of checker design for

self—checking alternating logic are discussed. The requirements of the

hardcore portion of general self—checking systems is given. Minority modules

are shown to be sufficient to convert any NAND or NOR network to a

self—checking alternating logic network.

~

- - _--.- -

~

_

~

-_ ..

~

~-~~~~ - - -~~~_ - - ~~~~~~~ _:;
~~~~~~~



H L
iii

ACKNOWLEDG MENT

The author would like to express his sincere gratitude for the guidance

• of his thesis advisor , Professor Gernot Metze. The assistance given by Margit

Livingston and Jean Dussault in the production of the thesis is greatly

appreciated .

The author dedicates his thesis to his family: parents Ralph and Betty

and siblings Keith , Daryl , Mark , Paul , and Nancy.

1
~ i

t

.

I 
~~~ _ __ _  _ _  _ _  _ _ _ _ _


r -

_

~ ! I
iv

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

1.1 Improving Digital Systems’ Reliability 1
1.2 Failure Modeling 1
1.3 General Reliability Improvement Techniques 2
1.14 Previous Work in Self—Checking Alternating Logic (SCAL) 14

2. BASIC CONCEPTS OF SELF—CHECKING ALTERNATING LOGIC (SCAL) 6

2.1 Introduction 6
2.2 Definitions 6
2.3 Theorems on SCAL 10
2.14 Merits of SCAL 11

• 3. COMBINATIONAL SCAL 114

3.1 Introduction 114
3.2 General Self—Checking Requirements 114
3.3 Sufficient Self—Checking Conditions 23
3.U Multiple Output Combin!ational SCAL 28
3.5 Self—Checking Design and Analysis Algorithm 33
3.6 Example of Self—Checking Analysis 314

14~ SEQUENTIAL SCAL 1414

14.1 Introduction 1411
14.2 Dual Flip—Flop Implementation 1411
14 .3 Code Convers ion Techn ique 146
11.14 Direct Implementation 57
11.5 Comparative Example of Techniques Presented 62

5. CHECKER DESIGN 68

5.1 Introduction 68
5.2 Dual—Rail Checkers 68
5.3 Independent Line Checker 69
5.14 Mixed Checker Design 71
5.5 Hardcore Elements in SCAL 79

6. SCAL ~~DULES IN NETIVORK DESIGN 87

6.1 Introduction 87
6.2 Design With Minority Modules 89

‘ ~~~~~~

— •
~
-
~~~ Wtl_ ~~ -~~~~---- 

— — —-- ~~ -
~~

-- - —- - - - -



-- • •  •~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~r - ~~~ - - - - ~~ • •
~~~~~~~ 

• —
- - -

7. SCAL COMPUTER DESIGN • 95

7.1 Introduction 95
7.2 System Encoding Considerations 95
7.3 Self—Dual Modules 99
7.14 Large System Design With SCAL 99

- 8. CONCLUSION 1011

8.1 Summary 1014
8.2 Current SCAL Research 105

• 8.3 Recommendations For Further Research 108

REFERENCES 1 10

• - APPENDIX : AB EREVIATIONS , CONVENTIONS , AND GLOSSARY 113

• VITA 115

• Ti

1
L.

•

.

r
• _ _ _ __ _ _ _

_ _ _ _ _ _ _ _

1. INTRODUCTION

.L1~. Im
proving

~igi~~.1 ~~~~~~~~ Reliability

As the use of digital system s has increased , a need for systems with

improved reliability has arisen . Although physical device reliability has

improve d remarka b ly, much improvement is needed in developing system level

design approaches. This thesis will consider a method using time redundancy

to detect system failure dynamically.

LL. Failure Nodeling

To develo p a metho d of des ign to improve a syste m ’s reliability , it is

necessary to determine how the system may fail. If the design method is to be

valid , it must use a model of the possible failure modes which is sufficiently

close to the actual physical failure modes. Some previously developed models

are the single stuck—at fault model , the multiple stuck—at fault model , the

unidirectional fault model [ANDE1] and the pin—fault model [KETE].

The single stuck—at fault model is valid when a high percentage of the

physical failures in the system is manifested as logical failures on a single

line during a limited time period. The failure may be permanent or transient ,

• but must not affect more than one line’s logical value. A second failure is

presumed not to occur before the first one has been recognized . These

assumptions are well accepted and have received considerable experimental arId

theoretical [BREU ,SHED1) support . Consequently, it is appro priate that the

single fault model be used in this thesis.

2

1.3.,. General Reliability Improvement Techniques

From Figure 1.1 the relationship of alternating logic to reliability

improvement is apparent. Since some areas may overlap , the classif icat ion

scheme is not precise. However , it does provide a perspective to the role of

• alternating logic .

Fault tolerance is used in systems to remain operable for a restricted

time period after initial failure has occurred . Fault diagnosis is used in

systems to locate the internal source of an observed system failure. Fault

detection is used in systems to determine whether a failure has occurred ; if’

fa ilure has been detecte d , appro priate removal or repair of t he failed module

may be done.

For class if icat ion , fault detect ion may be cons idered as eit her stat ic or

dynamic . Static fault detection is done while the system is not performing

its normal function ; i.e., it requires the system be dedicated to the test ing

procedure while it is checked . For example , when programs are run to check

whether certain system modules are operating properly, a static test is being

performed . If the fault detection is accomplished while the system is

performing its normal operation , then dynamic testing is being done.

The dynamic test may be done in software or hardware. To perform

software dynam ic fault detection , a check can be made on the inte rmediate

results of a program to determine whether the answer is correct. For example ,

a program which finds the solution to the unknowns in a set of equations may

be checked in software by substituting the results back into the equations and

checking whether the equations are true. Hardware dynamic fault detection

requires the use of redundant hardware. The signals representing the

- - •

- _ .~~~~~~~ - -_--~~~-—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~

3

Reliability Improvement

I. Tolerance

L.. Diagnosis

III. Detection

A. Static

B. Dynamic

• - 1. Software

2. Hardware

a. Space Encoding

b. Time Encoding : Alternating Logic

Figure 1.1. Position of alternating logic in realm of reliability improvement

techniques

—• ~~~~~~~~~ -

~ - -~~~~~~~~ —~~ - - • -- - • - - ~--—~~~~

14

information are encoded in a manner reauiring more signals than the minimum

required to Just represent the information . The number of’ additional signals

required varies depending on the type of failures against which the systems is

to be protected .

Dynamic fault detection with hardware is generally referred to as

self—checking. The hardware redundancy may be done in space or in time.

Space encoding involves a physical increase in the amount of hardware so that

the redundant signals used to check the operation are processed at the same

• • time as the information signals. This is the most commonly examined type of

self—checking and several results are available [DUSS1 ,OZGU ,PITT ,WA KE 1 ,WAKE2].

Alternating logic is a method of hardware fault detection using time

redundancy. The principal characteristic is that the additional code signals

used to check the system operation are obtained using essentially the same

hardware as in an unch9cked system , but with additional time required to

generate the code signals. Such system s are useful when a slight surplus of

time is available and it is desired to minimize the hardware costs to protect

a system from undetected failures.

LJL Previous Work
~~

Self—Checking Alternating Logic (SCAL)

The first work relating to alternating logic was done by Bark and Kinne

[BARK] at Raytheon in 1956. To realize combinational alternating logic , they

• proposed using self— dual functions (a function for which the normal output is

• the complement of the output when the inputs are complemented). Yamamoto ,

Watanabe, and Urano [YAMA] independently developed alternating logic and did

some original work on its single error detection properties.

-— ~~~~~~~~~~~~~~~~~~~~~~~~~~

-~~~
P—,- -

~-- ~~~ “~~
- • -_ - ---~~-• - - - -~ --‘-.-

_- •—• —~-.‘~~ -- _ --- _ • - ~~ •- _ —- -- • _ -

5

The earliest research specifically on formal design of self—checking

• networks was done in 1968 by Carter and Schneider [CART]. In 1971 , the model

was improved and the theory of self—checking was developed by Anderson and

Metze [ANDE1 ,ANDE2J. Reynolds and Metze [REYN13 extended the work in

alternating logic and developed a formal description of self—checking

alternating logic. Reynolds [REYN2 ,REYN3] also proposed an approach for

sequential network design and establishad conditions for alternating logic

•
primitives to form a complete gate set.

6

2. BASIC CONCEPTS OF SELF—CHECKI NG ALTERNAT ING LOGIC (SCAL)

2 . 1. Introduction

In order to understand the exposition of the results in SCAL discussed in

later chapters, a knowledge of the basic concepts in SCAL is necessary. This

chapter will present some important definitions and theorems about SCAL and

will discuss the merits of SCAL . A discussion of many of these topics is also

given by Reynolds [REYN1] . The abbreviations, conventions , and nomenclature

used throughout the thesis are given in Appendix 1. The word “function” will

be used to refer to the logical operation being performed . A network is an

implementa tion of a function, and a system is a combination of networks.

2~2. Definitions

In designing a self—checking system , it is necessary to specify the types

of physical failures against which the system is to be protected . The most

common model of fai1.ures is one which assumes a single fault in a network’s

logic operation. This model assumes that only one failure in the system

occurs and that the failure causes the logic value of one line to be stuck—at

O (sb) or stuck—at 1 (s/i). Field experience has shown this model to be a

good one if the test for the failure is applied reasonably soon after the

failure so that a second failure is unlikely. In addition , it is assumed that

the network is free of faults when it is initially used.

For most of this thesis , the single fault model will be used. In

analyzing a network logic diagram it will be helpful to use a formal

definition .

~~~~~~~~~~
_

•

- • ~~~~~~~_ • • -_ - ~-_ •• ~ •-_ ~-1-_ -_ -~~ -~~_ --



ThIS PAGE IS BEST QUALITY FRACTICA.~I2
~~~~~~~~~ DOPY FJI~~ISH~~ 1’O DDC ~~~~~~~~ —

7

Definitior. 2.1. A single fault is a network condition in which one line is

s/C or s/i.

The line may be stuck either permanently or temporarily; I.e., trans ient

fa ilures are inolu~ed. The transIent failure may or may not be observable.

If the fault does not affect the output for the input(s) during whicn tne

- • trans ient fa ilure occurs , then no fault would be observed . If the single

fault is permanen t, and if the line i~ nct redundant , then some input to tne

• r.et~ork exists such that the fault is observable. A reOur.dant lIne is definec

here as a iine which may be removed from tr~e network without affectIng Its

operation . m e complicatior.s of multiple line redundancies are deferred to

previous work by Smitn a~d ~‘e~ze [St.~iTi].

Other fault models include the unidirectional fault nodel and the

- • multiple fault model . The unidirectior.al fault model is used extensively In

ctner work on self—checkir.~ networks [ANDE 1 ,SMIT2]. The multiple fault model

is often used in static netwcr~ dia;nosis [CHA] .

Definition 2.2. A unidirectional fault is a condition in which any number of

1i~es is stuck at one value.

Definition 2.3. ~A multiple fault Is a condition in which more than one line

is stuck.

A single fault is a degenerate example of a unidirectional fault and a

unidirectional fault is a degenerate example of a multiple fault. Examples cf

the representation of these faults are given in Figure 2.1.

• _

8

•1
Figure 2.ia. Single fault: line 5 stuck-at value s, s E(O,1)

H

Figure 2.lb. Unidirectional fault: lines 14 and 5 stuck—at value a , sE(O ,l)

• Figure 2.lc. Multiple fault: line 5 stuck—at value a and line 6 stuck—at value

1, E(O,l)

I f

9

A network which is dynamically checked for failures is referred to as

self—checking . For this thesis, self—checking will be defined using the

single fault model . Although the system is also self—checking for many

mult iple faults , the fault coverage is complete only for single faults. In

the definition of self—checking , let f represent the single fault, X the

network input vector , F(X) the normal network output , and Ff(X) the network

outDut when fault f occurs. It is assumed F(X) is a single outpu t network,

although the analysis is easily extended to multiple outputs.

Definition 2.14. A self—checking network is a network which satisfies the two

constra ints (w ith input X different from input Y) :

(a) Yf, SX 3 F (X) # F
f

(X)

(b)
~f3[E[XE[code inputs) &

YE [code inputs)] ~ (Ff(X) = F(Y)])

Condition (a) will be referred to as the self—testing requirement and

condition (b) will be referred to as the fault—secure requirement. The

definition of self—testing normally requires that Ff
(X) ~ [all F(X)). However,

Smith [SMIT2] has shown that this standard definition overlaps with the

fault—secure definition. Therefore, the revised definition of self—testing

used in part (a) of Definition 2.4 will be used .

• Alternating logic is the most well known and probably the simplest form

of time redundancy used in hardware dynamic fault detection. An alternating

network is used to implement alternating logic.

Definition 2.5. An alternating network is a network which for an input

sequence (x ,Y) generates an output sequence (F(X),F(T)) such that F(T):Fr(X).

L • •~~~~ •~• •~~~~~ ~~~~~~~ _ _

10

It may be useful in digital controllers to have an alternating signal

out put , but primary use of the alternating logic is probably in building

• self—checking systems . The network used to implement these types of systems

is called a SCAL network. Self—checking alternating logic may now be formally

defined.

Definition 2.6. A SCAL network is an alternating network which is

self—checking.

In order to sat isfy the requirements for a network to implement

• al ternating logic , certa in requirements are p lace d on the funct ion being

realized . First it is necessary to define a self—dual function .

Definition 2.7. A self—dual function is a function such that F(~)=P(X).

Using the definitions given , it is now poss ible to presen t some of the

basic theorems in SCAL .

~~~ Theor~~~ Qn ~~Ak

Reynolds [REYN1] presented the following theorem to describe the

requirements for an alternating network to realize a function .

Theorem 2.1. A network realizing a function F is an alternating network 1ff F

is a self—dual function .

Proof: If F is self—dua l then F(~ ):P(X) for every X and any network realizing

F must therefore be an alternating network . Conversely , if a network is an

alternat ing network , then F(!):F(X) and F is self—dual. Q.E.D.



11

It has been shown [YAMA J that any network can be made self— dual with the

addition of only one input . The additional input is the period clock which Is

0 in the first period when the true input is applied and 1 in the second

• period when the complemented input is applied . The period clock will be

represented by ~ . The requirements for an alternating network to be a SCAL

network may be determined using the previous definitions and theorem.

Theorem 2.2. An alternating network is a SCAL networ c 1ff the function

realized satisfies two conditions (with input sequence (Y,!) different from

input sequence (X ,I)):

(a) yfaX3 (F(X),F(X) ) # (Ff(X)~Ff(X) )

(b) 
~~~ [a[(x ,x) & (y ,Y )] 3 [(F f

(X) ,Ff(X)) = (F (Y) ,F(Y))]}

Proof: The conditions of Theorem 2.2 are both necessary and sufficient for

• / alternating logic to satisfy the constraints of Definition 2.14. (F(X),F(Y))

is the normal output sequence for input sequence (X ,!) and (Ff(X) , Ff(Y)) is

the output sequence under fault f. Therefore condition (a) of the theorem is

the alternating logic representation of part (a) of Definition 2.14. Also ,

(X ,X) and (Y ,Y) are alternatin g logic code inputs , so condition (b) of’ the

theorem is the alternating logic representation of part (b) of Definition 2.14.

• Q.E.D.

ZJL Merits ~~ SCAL

SCAL has a limited range of applications for which it Is desirable. Its

primary advantages are: (1) some basic functions are already self—dual and

involve no hardware coat to implement as SCAL (for example , see the optimal

adder [LIU] in Figure 2.2), (2) in many other cases It reauires less hardware

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~~~~~~~~ • _ _ _



‘~~ —• 

12

_ SI

- I c:-1 cr- i

H

’ 
~~~~~

o-
~Do

I
’

:

~
h
! 1~~~

o—. 1~•’::~:::,o-

— Figur e 2.2. Self—dua l adder

• :~~~~~~ •~~_ • - - - t~~ • _ _ • _ • __ --- -~ -. • _ _ _ _JI•• :~~~
•
~~ i•_ • _ • _ _ _

V _____
_ _ _ _ _ _ _ _ _ _

_

13

than other designs currently available for self—checking systems [REYN1], (3)

it provides self—checking for single faults, and (14) since the redundancy is

in t ime instead of space , no additional connections are required for the

alternating logic modules. The primary disadvantages of SCAL are: (1) it

requires twice as much time to perform the operation——this is not significant

in systems with s pare t ime , (2) it requires more hardware than networks which

are not self—checking, and (3) not all failures are covered . In summary, if

it is desirable to have a self—checking system and time is available at low

system cost , then alternating logic is a good method of design.

~

_ _ _ _ _ _ _ _ j

r.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

114

3. COMBINATIONAL SCAL V

1.1. Introduction

To design SCAL networks it is helpful to have design rules. Theorem 2.1

states that for a network to be an alternating network it must implement a

self—dual function. Theorem 2.2 gives the reauirements for the alternating

network to be a SCAL network. To determine whether a combinational network

satisfies the requirements of Theorem 2.2 some analysis procedures will be

presented in this chapter. In the first three sections the networks will be

assumed to have a single output. Section 3.14 will consider multiple output

networks. Section 3.5 will present an algorithm for analyzing combinational

networks to determine whether they are SCAL networks. An example of’ the

application of the algorithm will be given in Section 3.6.

~.2. General Self—Checking Recuirements

V 
To simplify the presentation of results, the following symbolism will be

used:

X represents an arbitrary input vector.

G(X) represents the value of an arbitrary line g for input X

F(X,G(X)) represents the network output for input X , with line g having

value G(X).

V F(X,s) represents the network output for input X , with line g stuck—at s,

se(O,l)

For correct operation, the alternating output is represented by:

(F(X ,G(X)),F(x,G(X))) — (F(X,G(X)),F(X,G(X)))

~

,
- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ 

V



In order to determine whether a network is self—checking , by Definition

2.14 it is necessary for the netwprk to be self—testing and fault secure. To

provide a procedure to determine whether a network satisfies these conditions,

it will be helpful to know whether a given line causes the network to violate

one of the conditions.

Theorem 3.1. An alternating logic network will generate an incorrect

alternating output iff there exists a line g such that:

V 
[F(X,G(x)) # F(X,s)] & [F(X,G(X)) ~ F(X,s)1 1

Proof: When X is the input and line g is stuck—at s then the equation above

means that the output is the opposite of what it should be in the first time

period. Also, when X is applied , the output of the faulty network is the

V opposite of what it should be in the second time period. Let Y be the value

of F(X,G(X)). Then F(X,s) # F(x,G(x)) ~ F(X,s) = y and

F(X,G(X)) = F(x,C(x)) = Y , so F(x,s) # F(x,G(X)) ~ F(X,s) = Y
Therefore, the output is (Y,Y) an incorrect alternating output, since the

output should be (Y ,Y).

Conversely, if F(X,G(X)) # F(X,s) , but

F(X,G(X)) = F(x,s) , then F(X,G(x)) = Y ~ F(X,s) = Y and the output would
• be (Y ,Y) which is a nonalternating output. Similarly when

F(X,G(X)) # F(X,s) , but F(x,G(x)) = F(X,s) , then the output would be a

nonalternating (Y,Y). Therefore only if the conditions given exist will an 
V

incorrect alternating output be generated. Q.E.D.

Using Theorem 3.1 tests can be derived to detect stuck—at faults on line

g. The analysis proceeds as follows:



Let: A F(X,O)~~F(X,G(X))

B = F(X,0)~~F(X,G(X))

C F(X,l)~~F(X,G(X))

D = F(X,1)~~F(X,G(X))

E A & B

F C & D

V 

Theorem 3.2. Using the above symbol definitions, iff E~O can line g be tested

• for stuck—at 0 faults and iff F=O can line g be tested for stuck—at 1 faults.

If E=O then [A V B] are tests for stuck—at 0 faults. If F=0 then [C V D) are

tests for stuck—at 1 faults.

Proof: Let E = O

then A & B = 0

and A & B = 1

and ~~V~~~= i

and [F(x,O)eF(x,c(x)) = 0] V [F(x,0)~~F(x,G(x)) = 0] = 1

and (F(X,0) = F(X,G(X))] V (F(X,O) F(X,G(X))] = 1
Letting F(X,G(X)) = Y ~ F(X,G(x)) Y

This implies [F(X ,0) = Y] V [F(X,0) = Y] = 1
So the output when g is stuck—at 0 for input (x ,Y) should be (Y ,’7) and

when E=0 it is (Y ,Y) or (Y,Y) or (Y,Y). If it is required that [A V B =1],

then: - V

À y  8=: 

= 1] V [F(~ ,O)~~F(~,G(~)) 1] = 1

and fF(X,O) ~ F(x,G(x))] V [F(x ,0) # F(X,G(X))] = 1.



-- ~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~ -- ~~~~~ V—~~~~~~~~~~~~~~~~~~ r - ~~~~~~~~~~~~~~~~~~~~

17

Again letting [F(X,G(X)) = YJ ~ [F (X ,G(X)) = Y]

Th is implies [F(X ,0) = Y] V [F (X,0) = Y] = 1

So the outpu t for g stuck—at 0 for input (X ,~) when [A V B 1] Is (Y,Y)

or (Y ,Y) or (Y ,Y). Combining the results, when E:0 and inputs are applied so

that [A V ~ 1], then the output for g stuck—at 0 is (!,Y) or (Y,Y). These

are non—alternating outputs . This is detected and thus the fault is detected .

Conversely , assume by way of contradiction that E=1. Then the proof is:

E 1

then A & B 1

and [F(X ,0) # F(X ,G(X) ) J  & [F (X ,O) # F(X,C(X))] = 1

Letting F(x,G(X)) = y~~~F(X ,G(X)) = Y  and [F(X,0) #Y] & [F(X ,O) # Y ]  = 1 .

This implies [F(X,0) = Y] & [F(X ,O) = Y] = 1

So for input (x ,Y) the output should be (Y ,Y) but when E~ 1 , the out put is

(Y,Y) , an incorrect alternating output. Since the output alternates, the

V fault cannot be detected . Therefore only if E~0 can the fault be detected .

V 

The proof for the case of F:0 is similar. Q.E.D.

This is readily observed in the following example illustrated in Karnaugh

map form in Figure 3.1 , where

F(X,G(X)) = C(x) & V ~~~
1

X
2

X
3 

V x2x3x4 
V x1

x3x4

and 0(X) = x
1
x2x3 

V V X 1
X2X3

X4:

An algebraic analysis of A ,B , and E gives:

A = F(X,O)~~F(X,G(X))

= (0 V X~
•
X

2
X

3 
V x2 3 x4 V x1x3x4) ~

(0(X) & x3 V x 1x2x3 V X2X3X4 V X
J
X

3
X

4

— 0(X) & x3 — x1x2x3x4 V x
1x2x3

x
4 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


_ - -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-_______

18

x t x z X IX, XIX,
X~ X~ 00 0 1 11 10 X~ *4 00 01 U 10 X, *4 00 01 11 10 X~ *4 00 01 11 10

001 1 00 1 1 1 00 1 1 1 00

oil 1 01 1 1 1 01 1 1 1 01
i i[1 11 1 i i 11 1
~o[1 10 1 10 10 1

Figure 3 . la . 0(X) Figure 3 .lb . F(X ,G (X)) Figure 3 .lc . F (X ,0) Figure 3 .ld . A

x i x, X IX , X i X ,
*4 00 01 11 10 *3 x~ 00 01 11 10 *3 X~ 00 01 11 10 X 4 00 01 U 10
00 1 00 1 00

001 1

01 1 01 1 01

01[1
11 1 11 1 1 1 i i 1 1 1 ii

‘0 1 10 1 1 1 10 1 1 1 10

FP-$$13
Figure 3.le. G(Y) Figure 3.lf. F(!,G(Y)) Figure 3.1g. F(!,o) Figure 3 . lh . B

- - • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1• .- - - - • -~~~~~~~~

-

- -, ~~~~~ —• ~~~~ -~~~ -- — ~~~~~~~~~~~~~~~~~~~~~~~~~~ V~ ~~~~~ -~~ --—•—-—-- - -,••-—~ -

~~~ PA~ IS B~~
T QUAI4I?Y

~~* ~~ 1I ~~~~~~~~ ~~Q

19

B = F(X ,0) ~ F(X ,G(X))

= (0 V x1x2x3 
V X

2
X

3
X
4 

V x
1x

3x4) e

(0(x ) & x
3 
V x1x2x3 V ;

2x3 4  V x
1
x3x4

)

= G(X) & X
3 

- X 1x2 X3X4 ‘ X
1

X
2

X
3

X~

: : : : 3~~~~
X
2
X
4 
v x

1
X

2
X
4

) 
V
J (~~~~ v X

1
X
2
X
4
)

~y Theorem 3.2 , since E~ 0 , then Inputs  for [P. V E] are test fc- r line g

stuck—at  0 . The tests are : 1011 , C11~~, 0100 , 1001. It is not necessary to

know tne correct output values for these inputs since tneir complement is also

appliec as input .  Wher . the input  and its complemen t is applied , the output

will  a l ternate  if there is no faul t  and will not al ternate if line g is

s tuck—at  0. P.s for all self—checking networks , the checker determines If tr.€

output  is correct. For testing purposes , whichever input of the inout  pair is

applied f irst  is irrelevant .  The pairs are : ( 10 11 ,0 160) and (01 1’) , l D C l ) .

Al thcu~h analysis of this particular case is lengthy , the algorithm

provides a structured approach for computer computation . Similarly,  the case

of g stuck—at 1 car. be analyzed .
V 

A method has been given to determine whether particular ir~outs check

whether the network is self—checking for faults on specific lines. It may

turn out that tnere does not exist an input which checks for certain faul t s .

~ien this happens the network is determined to not be self—checking .

Theorem 3.3. Using the previous symbol definitions, if f or any line g,

[~X1?E — 0) or [~ x13F = 0] , then the network is not

self—checking .

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


r — - - - ‘~~- •~~~~~~~~~~~~~~~~~~~~~~ V -~~~-_•__ . •~ ~~- -~~~~-.. -~~~~~~~~~~~~~~~~~~~~ . — • -

20

Proof: From Def init ion 2. 14 , to be self—checking it is required that there be

a test for every potential fault. Each line may fail and so become stuck—at 0

or stuck—at 1. Theorem 3.2 specifies that the condition E=0 must be satisfied

for line g stuck—at 0 to be tested , and the condition F=0 must be satisfied

for line g stuck—at 1 to be tested . If there is no input X1 such that the

condition requi”ed for a fault on line g to be tested is satisfied , then the

network is not self—checking with respect to that line. Therefore the network

is not self—checking . Q.E.D.

Furthermore , if a line In the network cannot be tested for either a

stuck—at 0 or a stuck—at 1 fault , then the network is independent of the logic

value of the line.

• Theorem 3. 14. Using the previous symbol definitions, for a given line g, if

V [A V C = 0] , then the line is redundant.

Proof: Let [A V C = 0] . This implies A=0 and C=0. A=0 implies

F(Xi,0)=F(Xi,G(Xi)) for all X1 and C=0 implies F(Xi,1)=F(Xi,G(Xi)) for all X~.

So, [A V C =0] requires that the network output have the same value for either

value of the line g for all inputs. Therefore the value of the line has no

effect on the output and so is redundant. Q.E.D.

In addition , if a line can be tested for a fault in only one direction,

say s, then the subnetwork generating the line value may be removed and

replaced by a constant input of 1. In further analysis it will be assumed

that all such replacements have been done. The fault model for the line

includes only stuck—at s faults, since stuck—at I is the correct operation of

the line.

V

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • .. 

-



_ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

21

It is necessary to consider the problem of a multiple line redundancy,

where a combination of several lines together are redundant , but any one is

not redundant by itself. Smith and Metze ESMIT1] discuss this problem , but

for the discussion here it is assumed that all the redundancies are single

line redundancies. The redundancies will also be asssumed to be

unintentional , i.e., not intended for such purposes as protecting from

sequential logic hazard conditions.

Theorem 3.5. If a self— dual network is irredundant , then it is self—testing .

— Proof: If the network is irredun~ant, then there does not exist any line in

the network which satisfies the equation [A V C = 0] of Theorem 3 .4. Since

E = *&B , then A=0 implies E=0. Similarly C=0 implies F=0. So by Theorem 3.2

any line can be tested. Assuming all inputs are applied at some time, the

network is self—testing . Q.E.D.

In further analysis it will be assumed the networks are irredundant , all

inputs are applied , and hence the networks are self—testing . Therefore to

satisfy the conditions of Definition 2.4 for a network to be self—checking , it

will only be necessary to consider whether it is fault—secure.

To determine whether a network line prevents the network from being

V 
self—checking , the equation in Theorem 3.1 is evaluated. To simplify the

analysis, a corollary to Theorem 3.1 can be derived .

The equation in Theorem 3.1 is:

[F(X,G(X)) # F(X,s)] & (F(X,G(X)) # F(X,s)] — 1.

By algebra, this translates to:

[F (X ,G(X)) & F(X,s) V F(x,G(x)) & F(x,s)J

& (F(x,C(X)) &F(X,s) V P(X,G(X))&F(X ,s)) — i.

- --

~~



22

Sincc alternating logic is used , by Definition 2.5,

• F(X) = F(X) or F(X,G(X)) = F(X,G(X))

Using this relat ion , the above equation changes to:

[F(X ,G(X)) & F(X,s) V F(X,G(X) & F(X,s)J

& [F(X,G(X)) &F(X,s) V F(X,G(X)) & F(x,s)J = 1

By algebra , th is reduces to:

F(X,G(X)) & F(X,s) & F(X,s) V F(X ,C(X)) & F(X ,s) & F(X ,s) = 1

Since alternating logic is used , whenever X~ is applied , Y~ is also

applied in the alternating pair (Xj,Yi). So if for some alternating pair

(X
~ ,Yj) for input X~ ,

F(Xj,G(Xi)) = 1 and F(Xi,s) = 1 and F(Xi,s) = 1

• then for another alternating pair (X~ ,Y~) with X~=T~ and

F(X~~C(X~)) = F(X~~G(X~)) = 1 and F(X~3s) = 1 and F(X~3s) = 1

So if all input pairs are applied , then if for some X

~(X,G(X)) & F(X,s) & F(X,s) — 1

then also for another X
V 

F(X,G(X)) & F(X,s) & F(X,s) = 1

So only one of the above products needs to be checked to determine the

self—checking characteristics. To analyze for both stuck—at 0 and stuck—at 1

faults, s is replaced by the appropriate value as the following corollary of

Theorem 3.1 states.

Corollary 3.1. The network is self—checking with respect to a line g if f line

g is in an irredundant self—dual network and satisfies

F(X,G(X)) & [F(X ,0) & F(X,0) V F(X,l) & F(X,1)] — 0 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


23

Corollary 3.1 may be broken down to consider separately stuck—at 0 and

stuck—at 1 faults in line g. The network is self—checking with respect to

stuck—at 0 faults In line g iff

F(X,G(X)) & F(X,0) & F(X,0) — 0 .

The network is self—checking with respect to stuck—at 1 faults in line g

1ff

V

F(X,G(X)) & F(X,1) & Z(x ,1) = 0

The equation in the corollary may also be written in different forms

taking advantage of the eauivalences stated before. These revised equations

are:
F(X,G(X)) & ~(X,0) & F(~,0) V F(X ,G(X)) & F(X,1) & F(x,1) — 0

F(X,C(X)) & F(X,0) & F(x,0) V F(X,G(X)) & F(x 1) & F(X,1) = 0

F(X ,G(X)) & [F(X ,0) & F(X ,0) V F(X ,1) & F(x ,1)] — 0

In some cases it may be simpler to evaluate these equations rather than the

• one given in Corollary 3.1.

3.,3 ,. Sufficient Self—Checkiria Conditions

Rather than having to examine every line in a network to determine

whether the conditions of Corollary 3.1 hold , it is possible to determine and

V use some general rules for deciding whether certain types of lines always

satisfy the conditions of Corollary 3.1.

Theorem 3.6. If Vx,G(X) # 0(x), then the network is self—checking with

respect to line g.

Proof: Consider an input X1 with G(Xi) — d, dE(0,1). Then by the assumption

in Theorem 3.6, G(!j):~. So F(Yi,G(Xj)):F(Xj,d) and F(T11G(Y1))=F(Y1,~). Now

- •~•~- • •_VV ~•_S__ •V V_ ~ ~
_,__ - V~__~•__.~VV ,~~••

24

let F(Xi,d)Y and F(X1,~)=Y. If g is stuck—at s, then G(X1)=s and

By Theorem 3.1 , the network will not be self—checking 1ff

(F(x,G(X)) # F(X,s)] & (F(x,G(x)) # F(X,s)] = 1

By substitution of the values above, the equation changes to

(Y # F(X,s)] & (Y # F(X,S)] = 1. . Either s=d or s=a; without loss of

generality, let s=d . So , F (X ,s) =F (X ,d)= Y and the equation of Theorem 3.1 is

V not satisfied. Therefore, an irrectundant self—dual network is self—checking

with respect to line g. Q.E.D.

By this theorem, a network is self—checking with respect to all lines

which alternate In the two time periods of alternating logic. Using Theorem

3.6 , the result presented by Reynolds [REYN1] that a network is self—checking

with respect to all. input lines can be easily proven since all input lines

(have alternatiflg values.

If a line does not fan out, then the analysis to determine if the network

is self—checking with respect to the line is simpler than if it did fan out.

Theorem 3.7. If a line g in a self—dual network does not fan out in its path

to the output and the gates in the path are all unate, then the network is

self—checking with respect to line g.

Proof: For some input X~ the line g must be sensitized if the network is

irredundant. This will force the output to be the opposite of what it would

otherwise be, F(X1,s)=P(X1,G(X1)). Since the network elements on the path

from line g to the output are all monotonic and there is only one such path to

the output, g can only affect the output in one direction when it is stuck—at

s. Therefore, line g is not sensitized when is applied . If line g is not

_____________________ - ~~


~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ V V VV ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _

sensitized , then the output would be unchanged and a nonalternating output

pair (F(Xi,G(X
i
)),F(xi,G(xi))) = (F(Xi,G(xi)),F(xi,G(xi))) Is obtained .

Therefore , the failure is detected and the network is self—checking with

respect to line g. Q.E.D.

If network elements that were not monotonic were allowed on the path from

line g to the output , then Theorem 3.7 would not apply. For example, consider

Figure 3.2 where an exclusive—or gate is on the path from line g to the

output .  If the output of g for (xj,Yi) is (0,0), then when g is stuck—at 1 -

the output of g changes to ( 1 , 1) .  If the outpu t of Q for input (X i,Yj ) is

(0,1), then normally the output of f is (0,1). However when g is stuck—at 1 ,

then the out put is (1 ,0) and the failure of line g is undetected . In this

case the network is not self—checking with respect to line g stuck—at 1.

From Theorem 3.7 the result of Yamamoto , Watanabe , and Urano [YA MA ] that

two—level self—dua l networks with monotonic gates are self—checking can be

easily proven. Since none of the non—input lines fan out in the single output

network, the conditions of Theorem 3.7 are satisfied by the non—input lines.

The input lines alternate and so the network is self—checking with respect to

all the lines in a two level network. A level of inverters on the inputs

preserves this property since their outputs alternate. Furthermore , the

analysis can be applied to each output of a multiple output network. If each

output is checked for alternation , then the multiple output network is

self—checking.

The following result is based on the work of Reynolds [REYN1].



I . .

V 26

1 x _______________ _________ 
(0.1)

I

I ~ 1 __
I (0,1) ~-(1,0)

_ _  

g(x )

1
/ 

FP-5652

I Figure 3.2. Incorrect alternation

L -

~~~~

-

~~~~~~~~~~~~ 
_ _ _ _ _ _ _  _ _ _ _  _ _ _  _ _ _ _— - —- - — ---- V ~-V-V -~~ ~~~~~~~~~~~~~~~~~ -_____



r 
- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —

27

Definition 3.1. Path parity from line g to the network output is the modulo 2

number of inversions on the path.

Theorem 3.8. If all paths from line g to the network output have the same

parity, then the network is self—checking with respect to line g.

In multiple level networks the input is often fed to a level other than

the first. This enhances the self—checking properties of an irredundant

network as the following theorem proves. This theorem applies to a restricted

set of gate types defined as follows:

Definition 3.2. A standard gate is a NOT ,NAND ,AND,NOR , or OR gate.

• Theorem 3.9. In an irredundant network, if a line g is the input to the same

standard gate as an alternating line, then the network is self—checking with H

/ : respect to line g.

Proof: Since the network is irredundant and all inputs are presumed to be

applied , then the network is self—testing with respect to all the lines,

including line g, by Theorem 3.5. Now consider the fault secure property. In

a standard gate one input value dominates by forcing the output to a specific

value when the dominant input value is applied . This is observed by

considering their truth tables. The dominant input values are 0 for NAND and

• AND , and 1 for NOR and OR. Since an alternating value is applied to one input

line of the standard gate, then for the time period the dominant alternating

input is applied , the output value is independent of the other inputs to the

gate. Even if one of the other inputs is stuck—at s, the output of the gate 
-

will be correct. Therefore, the network outout will be correct for that time

~~~~~~~~~~~ V _ _ _ _ _  - - 

- -

~ V_ ~~ ——
~~

-- —- —.-—

28

period . During the other time period , if the network output is correct, then

the fault does not affect the output. If the network output is incorrect ,

then it is conalternating and the fault is detected . Either way, the network

is fault secure. Since the network is both fault secure and self—testing , by

Definition 2.4 it is self—checking . Q.E.D.

Note that Theorem 3.9 would not apply to a gate which is not a standard

gate , such as the XOR gate or majority gate since these do not exhibit the

dominance property.

Using the results presented it is now possible to follow a procedure to

determine whether a self—dua l combinational single—output network is a SCAL

network. If a line passes any of the following tests, then an irredundant

self—aual network is self—checking with respect to that line:

V
1. It alternates in value for all X~ .

2. It does not fan out and its path to the output is through unate

gates.

3. Path parity is the same for all paths from the line to the network

output.

4. It is the input to the sam e standard gate as an alternating line.

5. Conditions of Corollary 3.1 are met.

3~ 1L Multiole Outout Combinational J~
V So far only single output networks have been considered. In this section

a procedure is presented for determining whether a multiple output network is

self—checking with respect to a line in the network.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _ _ _



~ -- - •• ~~~~~~~~~ •~~~~~~~ - V ~~~~~~~~~~~~~~~~~~~~~~ VV_ •~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ • • ~~~~~~V

29

In general , multiple output networks may be classified as being of two

types: separable (Figure 3.3a) and nonseparable (Figure 3.3b). As is implied

by the names , the two types differ according to whether the combinational

logic generating the outputs from the alternating inputs may be entirely

separated or not. If the combinational logic may be separated , then the V

analysis of preceding sections may be applied to the logic generating each

output individually to determine whether the network is self—checking .

Similarly when the outputs are not independent but a portion of their logic 
V

is, then the methods of preceding sect ions may be applied to the portion of

the logic that is independent and thus its effect on the self—checking

property of the network may be assessed.

However, when some logic is shared to generate a line common to more than

one output (as line g in Figure 3.3b is), then the analysis procedure must be

changed .

Definition 3.3. A multiple output network is self—checking with respect to a

line shared commonly between more than one output 1ff for any input X~ for

which an output alternates incorrectly , some other output does not alternate

for that input.

To evaluate whether a line commonly shared between more than one output

satisfies the self—checking requirements , a determination of the specific

requirements on the line is useful. The symbol definitions used in the

previous sections wIll be used with a subscript added to indicate a specific

output line.

Theorem 3.10. For a line g stuck—at s, if an input X1 causes

•1
_ _ _ _



V 
30

CX , ~) I (F 1,

-
~~~ 11~~~

j

~~F2~~~~)

F~ -z i re 3.3a. Separable multiple output network

CX , ~~
_ _ _ Comb~ ationaI

_

V

H

Comb i no~ionaI _ _ _ _ _ _ _ _ _ _ _ _ _ _
Combinot,onol 2~~~2~

Logic Logic

FP-5653

F~~~re 3.3b. Nonseparable multiple output network

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



and F~ (T1~ s)=T~(!1, G(!1) )  then some output Fk must

satisfy Fk(Xj,s)=Fk(!i,s) for the network to be self—checking .

Proof: By Definition 3.3 an incorrect alternating output on one network

output , Fj , must be accompanied by a nonalternating output on another network

output , Fk, if the network is to be self—checking with respect to a fault on

line g. O.E.D.

If the network is shown by Theorem 3.10 to be self—checking with respect

to line g, it may still not be self—checking with respect to lines p or q of

• Figure 3.3b. These two lines must be checked as all other lines are checked

which are used to generate only one network output.

From Theorem 3.10, it is observed that the requirements for lines which

feed more than one network output are less strict than for other network lines

which feed only one network output. In the example in Section 3.6 this will

be observed. Also , for line L of the adder in Figure 2.2, it was necessary

that only the reduced reouirements for multiple output networks be satisfied .

Otherwise, the adder would not be self—checking .

In the analysis, all lines in the combinational logic block generating g

in Figure 3.3 are checked under the reduced requirements for multiple outputs.

To evaluate whether the network is self—checking with respect to a line g

shared by more than one output, first a single output is checked to determine

whether it is self—checking with respect to line g. If all outputs which use

line g are self—checking with respect to line g, then the network is

self—checking with respect to line g by Definition 3.3. However , if one

output is not self—checking with respect to line g, the network may st ill be

self—checking with respect to line g according to Theorem 3.10. To provide a

••



r -- _ _ _  
_ _ _ _ _ _ _ _ _

32

specific analysis procedure to check if this is so, Corollary 3.2 is derived .

Consider a stuck—at fault, s, on line g, which causes an incorrect
V 

alternating output on output F1. The equation of Corollary 3.1 is then

F1(X,G(X)) & F1(X,s) & F1(X,s) # 0

If another output, Fk, has a nonalternating output for this fault then

V 
Fk(X,s) Fk(X,s) or [Fk(X,

s) & Fk(X,S) V Fk(X,s) & Fk(X,s)J 
= I

H If the value(s) of for which the incorrect alternating output is

generated on F1 are included among the outputs of Fk which are nonalternating ,

then by Theorem 3.10 the network is self—checking with respect to g.

Furthermore , if there are several out puts which share line g, then all the

inputs for which they are nonalternating are protected from not being

self—checking on output 1. This is stated more precisely in Corollary 3.2:

3.2. If F1(X,G(X)) & F1(X ,S) & F1(X,S) # 0 for some output,

Fk(X,s) & Fk(X,s) V Fk(X ,s) & F
k

(X,sl & F
1

(X ,G(X)) & F1
(X,8) & F1(X ,s) =

then the n—output irredundant self—dual network is self—checking with respect

to line g by checking all the outputs.

In the analysis of networks to determine whether they are self—checking

with respect to a line g shared commonly by more than one output, the single

output analysis summarized in Section 3.3 will be done first since it is

simplest. However if g does not satisfy at least one of these conditions,

then it will be examined to determine whether It passes the more relaxed

-
‘ requirements for multiple output network lines. 

V~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



3,5~ Self—Checking flesi~n ~~~ Analysis A1~orithm

The results of previous sections now provide a complete algorithm for

determining whether an irredundant self—dual single or multiple—output network

is self—checking . The algorithm proceeeds as follows:

Algorithm 3 .1.

1. Each network output will be regarded as independent of the others.

Each line which is used to generate an output will be examined to determine

whether it satisfies at least one of the following conditions:

A. It alternates for every input pair (X 1,Y1).

B. It does not fan out and its path to the output is through unate

gates. 
V

C. Path parity is the same for all paths from the line to the network

output.

D. It is the input to the same standard gate (NAND , NOR , OR , AND , or

NOT) as an alternating line.

E. It meets the condition

F(X,G(X)) & (F(x,0) & F(X,0) V F(x,1) & F(X,l)) = 0

2. If any line from a subnetwork used by more than one output fails to

meet one of these conditions for an output 1, then tt is checked to see if

[ 
Fk

(X ,S) & F
k

(X ,s) V Fk (X ,s) & Fk(X~
s)] & F1(X,G(X)) & F1(X,s 

) & F1(X ,s) =
k l

3. If the line does not meet at least one of the above conditions, then

the network is not self—checking.

A detailed example Is presented in Section 3.6.

_ _ _ _ _ _ _ _ _ _



_ _ _ _ _ _  _ _ _ _ _  - - ------V-— - -_~~_-V~~~~~V • ~~~~~~ -V~~~V~~~ 
_ - _ - - - -~~

314

From the presentation of determining whether a network Is self—checking ,

a few design recommendations surface: (1) minimize fan out, particularly of

unequal parity to the output , (2) use two levels (plus an inverter level) to

automatically achieve self—checking , and (3) share logic between as many

outputs as possible, since this reduces the requirements on the lines for the

network to be self—checking .

3~6. Examole .~~~~~ Self—CheckinR AnalYsis

• To illustrate the application of the analysis procedure summarized in
•1

Section 3.5, an example of its operation will be given. The example is based

on the multiple output network of Figure 3.14. The example is contrived to

best demonstrate the algorithm ’s operation . The self—dual functions

implemented are:
F1 = A C V B C V A B ,

F2 = AeB~~C

F3 = MAJORITY (A,B,C) = AB V BC V A B

The first step involves considering each output network separately and

determining whether the network output is s~ 1? checking with respect to the

lines used in generating it. First consider output F,:

• 1. The lines used by F1 are shown in Figure 3.5a. They are:

1 ,2,3,4,5,6,8,9, 10 ,11 ,12 ,13,18,19,24,28,29,33,38.

2. Equivalent pairs of lines are: (3,24), (8,10), (9,13), and (19,28).

So the reduced set of lines to analyze is:

1,2,3,4,5 ,6,8,9, 11 ,12 ,18 ,19,29,33,38.

_ _ _ _ _ _ _ _ _ _  :~~ ~~~~~~



n-- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

35

____________ 18 

~ rf ~~~~
D -

~~
_- F.

- Figure 3. 14. Multiple output network example

L -.-- -- - . 
- 

~1
- -—a-  ~~~~~~~~~~~~ V -V -V •~~~~- V V • - - V - V•~~~ -V~~~~~ V~~~~~ — ~~~~~~—-V  - - - -V-V -~~ - -~~~~~~~~



- _________________

36

_ _  

F,

L 
1 t 5 _~

V 
Figure 3.5a. Network for output F1

- Figure 3.5b. Network for output F2

_ 4D8

: :~:-
~~~

9

-

~~~~ 21 1

32 

~~~~ :: ~~~~~~ 40 F

FP

Figure 3.50. Network for output F3

~~~~~~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~•~•J



- - ~~~~~~~~~~~-—~~-~~~~~ -— _____

37

3. Lines satisfying condition A of the algorithm are:

1 ,2,3, 14,5,6,8,11 ,12 ,29,38. This leaves lines: 9,18,19,33 .
V 

4. Lines satIsfying condition B of the algorithm are: 9,18 ,19,33. No

lines remain which do not satisfy at least one of the conditions for the

network to be self—checking . Therefore, the network is self—checking for

output F1.

Now consider output F3:

1. The lines used by F3 are shown in Figure 3.50. They are:

1 ,2,3,14,5,6,7,8,9 ,16 ,17,21 ,32 ,36 ,37 ,140.

2. Equivalent lines are: (3,32) , (8,16), and (9,37). So the reduced

set of lines to analyze are: 1 ,2,3, 14,5,6,7,8,9,17,21 ,36 ,140.

3. Lines satisfying condition A of the algorithm are:

1 ,2,3, 14,5,6,7,8,17,140. This leaves lines: 9,21 ,36.

14. Lines satisfying condition B of the algorithm are: 9,21 ,36. There

are no lines remaining which do not satisfy at least one of the conditions for

the network to be self—checking. Therefore, the network is self—checking for

output F2.

Finally, consider the more complicated subnetwork which generates F2:

1. The lines used by F2 are shown in Figure 3.5b. They are:

1 ,2,3, 1I ,5,9 ,12 ,13, 1ZI ,15,19,20,22,23,214,25,26,27,30,31 ,311 ,35,39.

2. There are no equivalent lines, so all the lines need to be analyzed.

3. Lines satisfying condition A of the algorithm are:

1 ,2,3, 14 ,5,12,15 ,214,27,31 ,39. The lines remaining to be analyzed are:

9,13,114,19,20,22,23,25,26,30,314,35.

-V-V -
~~~~

— -
~~~~
-

~~~~~
-V

- V - - _ _ _

38

14. Lines satisfying condition B of the algorithm are:

22,23,25,26,30 ,314,35. This leaves: 9,13,114,19,20.

5. No lines satisfy condition C of the algorithm.

6. Lines satisfying condition D of the algorithm are: 13,114 . This

leaves lines: 9,19,20.

7. Now evaluate each line to determine if condition E of the algorithm

is satisf ied: F2(X ,9(X)) = 9 & (AC V BC) V 9 & C V ABC

F2 (X,O) = C; F(x,O) = C; F(X ,0) = C

F2 (X ,1) = AC V BC V A B C

F2
(X ,1) = A C V B C V A BC

F2
(X ,1) A C V B C V A E C

F2
(X,9(X)) & F

2
(X,O) & F2 (X,0) = A B C V A B C

F2
(X,9(X)) & F

2
(X ,1) & F2(x,l) = 0

So the condition E is not met by line 9 because the stuck—at 0 fault

causes an incorrect alternating output when the input is iB~ or AM.

F2
(X,19(X)) = 19 & C & (A V B) V 19 & C V ABC

F2
(X ,0) = C ; F

2 (X,0) = C; F
2~x,

0) = C

F
2

(X,l) A C V ~~c V AB C

F2 (X ,l) = A C V BC V A B C

F2(X,1) A C V B C VA B C

F2(X ,l9(X)) & F
2 (X ,0) & F2(X ,0) — A B C V A B C

F
2

(X,19(X)) & F
2

(X,1) & F2(X ,l) — 0

So the condition E is not met by line 19 because the stuck—at 0 fault

causes an Incorrect alternating output when the input is A!C or ABC .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


39

F2(X,20(x)) 20 & C & (AVB) V 20 & C V AB C

F2
(X ,0) C; F(X ,0) = C; F(x,O) = C

F2
(X,1) =~~ c V BC V A B C

F2
(x,l)=A v BC V A B C

F2 (X,1) A C V B C V A B C

F2 (X,20(X)) &F
2(X,O) & F

2(x,0) A B C V A B C

V F2 (X,20(X)) & F
2(X,0) & F

2(x,O) = 0

A gain the condition E is not met by line 20 due to the stuck—at 0 fault

V

causing an incorrect alternating output when the Input is ~A~C or ABC .

8. The lines 9,19,20 did not meet any of the conditions for a single

output network to be self—checking; however , sInce 9 and 19 each go to more

than one output , they may satisfy the more relaxed multiple output condition .

They will each be separately analyzed to determine whether they satisfy the

condition in Corollary 3.2.

First consider line 9 for the stuck—at 0 case. The output F1 is also

dependent on line 9:

F1
(X,9(X)) A B V A C V 9 C

The output F3 is also dependent on line 9:

F3(X,9(X))
= A C V BC V 9

So the summation term in Corollary 3.2 is:

k 1
Fk

(X ,S) & Fk
(X 8) V Fk

(X,8) & Fk
(X,S)

= (AC v~~C) & (~~~
V BC) V (EVAB)& (C V AB) V 0 & 0 V 1 & 1

= O V (A B C V A B C) V O V 1 = j

_ • •~~~~~~~ • V . V ~~~~~~ V

140

The whole equation in Corollary 3.2 is:

l& (ABCVA BC) =0

Therefore the mult iple output network is self—checking with respect to

line 9. Now consider line 19 for the stuck—at 0 case. The only other output

also dependent on 19 is output F1.

H
- F

1
(X,19(X)) = 19 & C V AB

H So the summation term in Corollary 3.2 is:

V F1
(X,O) & F

1(X,
0) V F

1
(X ,0) & F

1
(X ,0) = (A V B) & (A V B) V AB & AB

= (A B V A B) V O = A B V A B

The whole equation in Corollary 3.2 becomes:

(AB V A B) & A B CV A B C) = (AB VAB) & (ABCVABC)

Therefore the multiple output network is self—checking with respect to

line 19.

Line 20 does not go to any other output , so the network is not

self—checking with respect to line 20 stuck—at 0. The network has been shown

to be self—checking for all other lines In this example. Some lines and their

outputs for each input pair are shown in Figure 3.6. An X after the output

pair means that the fault is detected by a nonalternating pair. Every output

dependent on the line must exhibit this property for one input pair , since the

network is irredundant and hence self—testing for alternating inputs. An *

after the output pair means that an incorrect alternating pair is generated.

For line 9, whenever this occurs on F2 there is always a nonalternating output

on F1 or F3. However for line 20 the incorrect alternating pair is not

accompanied by a nonalternating pair on another output and so, as was shown

earlier , the network is not self—checking with respect to line 20.

-V -

141

Line Stuck—at Output Input Pairs:

/Normal (000,111) (001 ,110) (010,101) (011 ,100)

38 Normal F1 0,1 1 ,0 1 ,0 1 ,0

39 Normal F2 0,1 1 ,0 1 ,0 0,1

140 Normal F
3 0,1 0,1 0,1 1 ,0

1 sb F2 O,OX 1,1X 1 ,1X 0,OX

1 s/i F2 1 ,1X O ,OX O ,OX 1 ,1X

13 s/0 F2 0,1 1 ,0 1 ,1X 0,0

13 s/i F2 O,OX 1,1X 1 ,0 0,1

V

-

~ 22 s/0 F2 1 ,1X 1,1X 1 ,0 0,1

22 s/i F2 0,1 1 ,0 1,0 O ,OX

9 s/O F1 0,1 1,0 1 ,1X 1 ,0

9 s/i F1 0,OX 1,0 1 ,0 1,0

9 sb F2 0,1 1 ,0 0,1* 1 ,0*

9 s/i F2 0,0 1,1X 1 ,0 0,1

9 5/0 F
3 1 ,1X 1 ,1X 1 ,1X 1,iX

¶ 1

9 s/i F
3 0,1 O ,OX 0,1 1 ,0

20 sb F1 0,1 1 ,0 1 ,0 1 ,0

20 s/i F1 0,1 1 ,0 1 ,0 1 ,0

20 s/0 F2 1 ,0 0,1* 1 ,0 0,1

20 s/i F2 0,1 1 ,0 0,OX i ,1X

20 s/0 F3 0,1 0 ,1 0,1 1 ,0 -
-

20 s/i F3 0,1 0 ,1 0 ,1 1 ,0

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

—~--- --~~- ~~~ V - V • • ~~~~~~~~~~
V V _ _

142 -

To make the network self—checking , it is only necessary to modify the -

subnetwork which generates line 20. Specifically , lines 114 and 15 could be -

fed into a separate NAND gate so that line 20 no longer fans out. This is

shown in Figure 3.7. Since the analysis of the network still applies for all

other lines and the network has been shown self—checking with respect to those

lines , only the part of the network modified will be considered , i.e., lines
V

2,g, 1k ,iS ,20,23,25, *1 ,fr2 , and ‘3. Using Algorithm 3.1 and analyzing the only

output affected by the change , output F2: -

1. Equivalent lines are (20 ,23) and (25 ,’3). So the reduced set of

lines to analyze is: 2,9,114 ,i5 ,25,*i ,*2.

2. Lines satisfying condition A of the algorithm are: 2,i5,’i. This -

leaves lines: 9,ilI ,25,*2,*3.

3. Lines satisfying condition B of the algorithm are: i11 ,20,*2,*3.

•
Only line 9 remains.

14. Line 9 satisfies the multiple output condition of the algorithm as -

before and so the network is completely self—checking . -

In this example of seventeen gates and three inputs a simulation may be

about as fast as the analytic approach used . However , for larger networks —

considerable calculation can be saved by using the analytic approach. It may

be desirable to combine the analytic approach and a simulation to analyze the

lines used by more than one output. The analytic approach has the added
—

advantage of giving more insight into what needs to be done to make the
-

network self—checking.

—
------V -•-V-V --~~

_ -,~~~~~~~--~ _ - - _ —- - - V- - -V
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -• . ~~~ -~ 

• . , • .-~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ —V -V~~ V - V  ~~~~ ~~~~~~~~~~

143

H
~~~

D

~~

~~~~~~~~~~~~ -

4 t ~~~~ 

r

D
~~

t

Figure 3.7. Self—checking modified network of Figure 3.14

t ~ 

_ _ _  _ _ _ _ _ _ _ _ _



-V -V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1414

14. SEQUENTIAL SCAL

~LL Introduction

Only combinational networks have been considered in previous chapters.

However, most systems used in the world are sequential in nature. Reynolds

(REYN 1 ] has presented a design technique for sequential machines which will be

briefly summarized in Sect ion 14.2 for background . A memory—efficient approach 
-

to sequential machine design is presented in Sect ion 11.3. ThIs utilizes the

technique of code conversion. In Section 14.14 a technique for direct

implementation of sequential machines from the state table is presented .

Finally, in Section 14.5 an example of the methods of Sections ~4.2 and 14.3 will

be given for comparative purposes.

In the discussion the standard sequential machine model in Figure 14.la

will be used . It is modified for alternating logic as shown in Figure 11.ib.

The asterisk indicates that the values are encoded in some manner ,

specifically including signal alternation . The objective of this chapter is

to develop SCAL sequential machines which are simple to design and/or at

minimal cost.

~~~ J. Flio—Floo Imolementation

Reynolds [REYN1] has discusse d at length the details of the dual

flip—flop implementation approach . Only a brief summary will be presented

here .

Only two steps are needed to convert a sequential machine , as the one in

Figure 11.1 , to an alternating logic sequential machine. First, the
-

V

r u - V
~~~~~~~~~~~~~~~~~~~~~~~~~ 

_____ - •~~V-VVV - V ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ •,•••—~ ~V- V-V

145

4

X I—— -  f 
_ _ _

IL Y I

I 

D 1 4

- 

~~

• 

Figure k.la . Standard sequential machine model

H i

V 

(X ,~~) ~ (Z ,2)

-V 
__________

1.. ?

FP-5657

Figure 14.ib . Alternating logic sequential machine model

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~


~46

combinational network should implement a self—dual function. At most , this

requires the addition of one extra variable——specifically the clock line.

Second , in the dual flip—flop implementation , the number of delays in the

feedback path is doubled. As the inputs alternate in value, the output and

feedback variables alternate. This is shown in Figure 11.2a.

The value of y is two time units delayed from the value of Y. In a

standard sequential machine the inputs to the combinational network are X~ and

and the outputs are Z~ and Yt. In the alternating logic implementation

in Figure 14.2a the inputs to the combinational logic are X~ and
~t—2

in the

first time period and X~4~ and ~~~ in the second time period , where

and X= T~~1. The outputs are (Zt,Zt+i) and
~~~~~~~~ 

with and

~~~ ~~~~ 
in a correctly operating alternating logic network. An example of a

sample data stream is shown in Figure 14.2b.

All input and output signals alternate in unison with the period timing -

clock. To verify correct operation , it is necessary to monitor not only the Z

outputs , but also the Y outputs to ascertain that the correct state

information is fed back to the network. The method of checking the lines is

critical to the operation of a SCAL system and will be discussed in the next

- chapter .

~L.L. Code Conversion Technique

In detect ing faults of a given fault class in a system , different

encodings of the data may be used for different parts of the system as long as

the required code space distance is maintained in the codes. This requires

code conversion between parts of the system . In the case of SCAL , single

~

- _ —- --V --- ,-;
~~~

- --— 
~~~~~~~~~~~~~~~~~

-V 117

(X ,~~) SELF ~ (Z ,2)
J DUAL

(y,~~
)

~I NETWORK (Y ,V)
V

V

1D 2
~~f D1

1~
V

Figure 11.2a. Dual flip—flop sequential machine

(X L,~~ ,X2,~~2I ...) 111.1 SELF- (Z 1,21~~ 21~~2 , . . .)

~~~J 
DUAL _____

p - — - ~I NETWORK — —
(y ~,y1,y2,y2 ) I 

~~~~~ ~~ 
‘
~2)

j 0 2 .4D1 ~~~4

FP-5S5~

t igure 11.2b. Sample data input stream

—-V ~~~~~~ - -

-

—-V —-V
_
~— ~- -V -V—V--V —~ -V —~~ - —-V

148

fault detection requires a code space distance of two. Therefore in the space

domain a single parity bit provides sufficient code space distance to maintain

detection of a single fault.

This conversion characteristic is useful to match the failure mode of a

particular subsystem with an appropriate code for detecting the most likely

faults. For example, one approach to storing alternating signals is to double
V

the size of memory , as was shown in the previous section. During successive

time periods the alternating signals are obtained for use by the processor.

For an n—bit word of a normal system this would require 2n bits for storing

the word . This method is inefficient in using memory since only n+1 bits are

required to provide the necessary code distance for single fault detection .

Therefore , an approach which translates the coded information to and from a

~~re efficient encoding in memory is desirable.

Figure 11.3 shows a system level representation of an approach using

translation between time and space encoding for data storage. The feedback

variables from the conventional logic (Y,Y) are translated to a code T which

is stored and retrieved later as code t. This is converted to give the same

(y,
~) input to the combinational logic as the dual flip—flop approach required

for alternating logic . In this manner an efficient match of the qualities of

alternating logic for reduced processor costs is combined with an efficient

match of parity encoding to minimize memory costs. Without loss of

generality , an even word size, n , and even parity will be used in further

analysis.

A system wide clock will be used to control in which of the two time

periods the alternating logic system is operating. It will be represented as

--•----- “-- •V --V •
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _-V ___

~~-V__J _ 
- -V  • • - -  • 

- 

AI~



- ----V --- -V - - ---V--V-V-V-V~~~~-V—---- -—- -V- -V-
_ _ _ _ _ _ _ _

149

V 

V 

X _ _ _ _ _ _ _ _ _ _ _ _ _

Parity to 1Parit Alt ernating
Alternating 

_______  Encod d _____  

Logic to
Logic ‘ t Memor 1’~~ 

Parity
Translator ~‘ I Translator

FP— 5659

Figure 11.3. System representation of code translation

~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

50

(0 ,0) and will have the alternating value pair of (0,1). The normal system

clock operates at twice the frequency of (0,0) and is used to generate (0,~~).

Positive edge—triggerred D—type flip—flops will be used , so that data are

latched on the 0 to 1 transition of their inputs. The period c]~ock could be

used as an additional input , when it is necessary to convert an odd word size

to even word size or to change the parity.

- :~ As can be seen in Figures 14.11a and ~1.kb , the translators are simple and

inexpensive. The alternating logic to parity translator will be referred to

as ALPT and the parity to alternating logic translator will be referred to as

PALT.

The complete system is shown in Figure 11.5. The n outputs of the

combinational network (~~,Y) are input to the ALPT where the Y value is latched

on the 0 to 1 transition of 0 and the parity of is latehedon the 1 to 0

transition of 0 . These n+1 values are stored in memory and when retrieved an

XOR with (0~~~
) or (0,1) is taken with each line to form (y,~). The

complemented parity of all the y outputs is latched on the 0 to 1 transition

of 0 . It is Output with the E Yi parity calculated earlier to give a

i—out—of—2 code to provide the self—checking property of the system. If the

feedback is thru only one level of memory, then no additional latches would be

required for memory, since the ALPT stores one time period of information in

its latches.

If random access memory is used, then the address selection of memory

must be self—checking . This is accomplished as discussed by Dussault [DUSS1]

by including the parity of the address with the parity of the data stored in

the ALPT. Upon retrieval the same Is done in the PALT and , If correct, a

___ ____ ___ ____ ___ _ -

51

•

(X 1,~~1)-~—

-

~

~:~
••

(x~ ,~~)—

•;1

I ~~~~~~~~~~
g

L _ _ _ _ _

Figure 11.14a. Alternating Logic to Parity Translator (ALPT)

(4~) I~IIIjIII ~~~ ~~~~~~~~~~~

V HI
h

L ~ E~~
o-9-

~ 1-out-of-2
n+1 JCode

Figure 14.kb. Parity to Alternating Logic Translator (PALT)
FP-5660

V

~II ~~

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

52

H (X ,~~~) ~ Self-Dual I >(Z ,Z)

_ _ _ _ _ _  

~~~~inationalj 
(

_
)

• Li (y,~
)
•.. ______ ______

L~~~~
N g 1

L •

b

— _ _ _ _

_ _ _

_ _

L~ 1~
_

(1~~
) Y 1

*
~

o
iJ

1-out-of-2 Code FP-5661

- Figure 14.5. Complete code translation system

b—__ -

~~~

- V - V

_ _ _ _ _ _ _ _ _  - V -rn--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



- -- - -V- --- -  - - - --V .—- ,•—--- ,-- — - - -~--- - -—--. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~-V-VV~~•-- V~ V-V V~ V-• ~V~•~ -V -- V

53

1—out—of—2 code is generated . For example , if the parity of the data is odd

and the parity of the address is even , then the output parity line of the ALPT

will be odd . Similarly, when the data are retrieved , the parity of the data

out of memory and the parity of the address are combined to give odd parity.

The PALT will then output a i—out—of—2 code. However , if a failure occurred

on either write or read so one line of address is incorrect, then a 1—out—of-2

V 
code would not be generated . The system can be shown to be self—checking

[DUSS2J.

For the system to remain self—checking , all the units in the feedback

path must be self—checking . The determination of why the translators work and

why they are self—checking will now be presented .

The feedback outputs must be checked along with the external outputs of

the combinational logic by a self—checking checker. If the feedback variables

were not checked , a single fault in the logic generating the feedback

variables could go unnoticed while causing several outputs to be invalid.

This violates the fault secure property required in a self—checking system .

Further analysis is given in Chapter 5.

Therefore , a single fault on one of the combinational logic feedback 
-

output lines can be assumed independent of a failure on any other line.

Furthermore , exce pt for X0+i, each output line of the ALPT is separately

generated from only one feedback line and so a single fault there also affects

only one line. Now consider the self—checking characteristic of the ALPT.

Theorem 14.1. The ALPT is self—checking if the parity of its output is

checked .

___



r 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ___________________

ThIS PAG~E IS BEST QUALITY PRLCTICABL~
O~~Y PJ~~ISki~.D TO DDC

~ 514

Proof: Each class of’ lines will be consiaered separately , using

representatives of the classes as in Figure 14 i4a.

1. A stuck—at s fault on lines b ,c ,e,f, or i w ill be detected whenever

the value of’ the line is ‘

~~~, since the parity of the output will be incorrect.

Each such input is a test and rio input generates an ircorrect parity output.

Therefcre , the ALPI is self—checking with respect to b , c , e , f , and i .

2. A fault on line d will be cetected whenever the values of the lines 0

an d g change since the valu e of line c will not be changed to the n ew value of

line b as it should when the clock changes . Each such input is a test and no

input generates an incorrect parity out~ut . Therefcre , the ALPI is

self—checking with rescect to line d.

3 . p fau l t  on l ines h or j will be detected whenever the value ~f the

V 
lines f and g change since the value of line i will not be changed to the new

value of line f as it should when th e clock changes . Each such input is a

test and no thput generates an incorrect parity output. Therefore , the AL?T

is self—checking with respect tc lines h and j.

~~~. A stuck—at s fault on line a when a should be (~~,s) wil l cause out put

to be the opposite of what it should be. Fowever , X~~ 1 , will ~e the same

as it would be without the fault s ince it is determ ined in the second tine

period when a sr~culd have beers s. ~.lterna tive1y, if a should be s ,i) , then

out put X 1 will oe correc t but X r+i will be Incorrect. In either case , the

parity will be incorrect and the failure detected. All inputs will cause the

parity to be inco rrect and sc the ALPT is self—checking with respect to line

a.

V

-
_ _ _

- -

~~~~ V - V V~~

________________ — ~~~~~~~ .. __.• —-V



r -~~~~~~ V V V V _  
~V V V -~~~-V _ V ~~~~~~~~ V

55

5. If g is stuck, then the latches will retain a constant output which

may not be correct , but the parity will remain correct. If this happens , the

network is not fault secure. However , if it Is assumed that all fan out of

the clock 0 is from a common node, then only one clock input line or all

clock lines must fail, i.e., not some subset of clock lines. The case of one

clock line failing has been considered in steps 2 and 3 above. If all clock

lines fail, then the system will stop and no output, correct or incorrect ,

will be generated . Thus it is fault secure. Any input which is applied while

0 has failed will cause this and so it is self—testing if the system

shut— down is ragarded as a noncode state. So the network is self—checking

with respect to g.

Since the network is self—checking with respect to all lines in the

network, the network is self—checking. Q.E.D.

Three conditions for the network to be self—checking were assumed in the

proof: (1) all fan out of clock line 0 is from a common node , (2) stopping

the system is regarded as a valid self—checking operation in event of failure

(th is will be discussed further in Chapter 5), and (3) the output parity must

be checked.

Theorem 11.2. The memory is self—checking if its output parity Is cheoked .

Proof: In the memory all outputs are independent of each other and so any

single fault affects at most one output line. If the output line is

sensitized , then the fault is detected . Some input will sensitize the memory

line or the memory unit is unnecessary and may be removed . Since the memory

• is self—testing and fault secure for any fault, it is



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~ V~~~~~~~~ •~~~~~~~~~~~~~~~ - - V  V~~~~~~~~~~ V V V V  

56 -

self—checking . Q.E.D.

The only remaining unit to be cons idered in the code translat ion process

- - is the PALT.

Theor em 14 .3 .  The PALT is self—checking if its 1—out—of—2 code output is

checked.

V Proof: The analysis will be done on classes of lines labeled in Figure 11.14b.
- V 1. A fault on lines e,f,g, or h is detected by the 1—out—of—2 code - -

• checker used . These are fault secure and self—tested when sensitized and so

the network is self—checking with respect to e,f ,g, and h.

2. A fault on line b causes b not to alternate which is detected when

sensitized in the combinational unit receiving the non—alternating value. It

is fault  secure and self—tested when sensit ized and so the network is

self—checking with respect to b.

3. If line a is stuck—at s and is sensitized , then b will be (s ,~
) when

it should be (i,s); i.e., it alternates incorrectly. However , the parity on

line f would be the opposite of what it should be and so f and h would be

opposite and g and h would be the same. This would be a noncode word and

would be detected. So the network is fault secure. Since any input which has

line a at i is a test , the network is self—checking with respect to line a.

11. A fault on lines c or d would cause b not to alternate and the

analysis of step 2 applies to show the network self—checking with respect to c

and d. Since the network is self—checking with respect to all lines in the

network, the network is self—checking . O.E.D.

J



57

Theorem 11.11. Combining an ALPT , memory, and a PALT provides a self—checking

feedback.

Proof: By Theorems 11.1 , 11.2, and 14.3 each subunit is self—checking , provided

the conditions of the Theorems are all met. These are (1) the 1—out—of—2 code

of the PAL T must be fed to the system checker , and (2) the parity of the ALPT

output data lines must be checked . Condition 1 is automatically satisfied in

any self—checking system which must have a self—checking checker and V

appropriate hardware , discussed in Chapter 5. Condition 2 is satisfied since -

the parity is checked in the PALT by (1) determining the complement of the

parity of the data lines and (2) feeding that with the parity calculated by -

the ALPT (line x5~1) to a checker. Therefore , the conditions are suff icient

for the feedback system to be self—checking. Q.E.D.

Thus a simple method Is provided to build a sequential SCAL at minimal

memory cost.

An alternative self—checking feedback network which provides the code

space distance necessary is shown in Figure 14.6. This combination also

provides a reduced checker cost for the system since the first checker used

could be the sane as the one required to monitor the feedback variables. The 
-

second checker would not require the logic used only in the generation of the

f output. The translators are the same as before except that the parIty

generator and checking circuitry are not used.

~LJL Direct Immiementatlon

The two previous sections have considered methods of converting an

arbitrary sequential system. This section will discuss methods of directly

- • __V __  ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- V- V - ----V--V —-V - --
~~~~~~

--V—-V-- -V -V - V - --- - -V -V -
~~~~~~~

58

- 

. (X ,~
) -)t Self-Dual >(Z ,7)

_____
I Combinationa l

- 
~~ Logic _ _ _ _ _ _ _ _ _ _ _ _

S . .  

~~ 4~~ecker }~T ~~~

H

H 

- 

r~~
E

~~i~~~~~~~~~~~

- FP-5662

• 1-out-of-2 Code

Figure 11.6. Modified self—checking feedback network



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

59

implementing a sequential SCAL system from the logic description . As such , it

will not have the fixed structural properties of the previous methods and so

• will be more difficult to design , but may be less expensive in hardware .

The possible approaches to designing the feedback logic for a SCAL system

are enumerated in Figure 14.7. A checker is normally used on the feedback

variables. If it were not used and if a fault occurred which changed the

value of one of the feedback variables, then the input to the comb inational

. - logic would receive a noncode input two time periods later. If the fault

V forces one of
V

the system outputs to a noncode value , then the faul t is

detected . However , if the fault only affects the feedback variable which

originally had the fault , it could allow the feedback variable to generate an

incorrect code word. This would cause the system to be in the wrong state and

would violate the fault secure condition of self—checking systems.

Another possibility is that the noncode feedback causes another unchecked

feedback variable to generate a noncode output. With more than one feedback

variable generating noncode outputs fed back into the combinational logic , it

would appear as a multiple fault to the combinational logic. This is not

include d in the self—checking fault coverage and, consequently, the system

would not be self—checking .

Appropriat e analysis of the network could be made or design strategies

developed which would insure the fault was detected before it incorrectly

affected the output. These would be fairly complex and the additional

hardware logic cost would probably be greater than the excess checker cost.

Analysis of the logic could save some of the checker cost if certa in feedback

outputs did not need to be checked . However , in further analysis It will be

• - - - -- - - -—----V -• --

60

Output Checker Used
-

~~~ Output:

Input: Parity Alternating
Parity 1 2

Alternating 3 4

I No Output Checker Used

V 
- Output:

Input: Parity Alternating
Parity 5 6

Alternating 7 8

V 
FP-5663

Figure 14.7. Feedback logic design in SCAL

- i  

_ _________



- - - - V -V - V — V - - -~~~~~~~~~~ ~~~~ -V~ V--V -~~ 

61

assumed that an output checker Is used .

Case II
, alternating input and alternating output, was discussed in

Sections 11.2 and 11.3. The other cases use a combination of space and time

redundancy directly and are candidates for direct implementation from the

V logic descriptions. Although parity code will be discussed , any space

• redundant code could be considered . Other codes may have lower system cost by

V 
- reducing the cost of combinational hardware. However , the standard approach

to sequential machine design has been to assume a high memory cost. So

~~erall cost is lowest if memory cost is lowest. Since pari ty only requires

one extra feedback variable, and some redundancy Is required to provide

self—checking , it is the least expensive approach.

Case 1 , parity input and parity output , is effectively wha t is usea for

feedback in the code conversion technique if the ALPT and PA LT are regar ded as

par t of the combinational logic. However , if the parity is used by the

• combinational logic directly as input and generated directly for the output ,

the costs of the ALPT and PALT could be saved . This completely loses the

advantage of alternating logic. Although it may be used in space redundancy

approaches, it will not be considered further here since it has the cost of

double time requirements of SCAL without any compensating value.

Case 2, parity input and alternating output , may be implemented by using

- 
- 

the ALPT to convert the alternating feedback to parity . There is little

reason to use this approach since it loses the advantages of alternating logic

in combinational logic without reducing memory costs.

Case 3, alternating input and parity output , may be implemented by having

the combinational logic generate a parity code output and using a PAL T module . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - - -

~~~ - -  V 

• 

-- - 

-



——

~~~

-V ----- --

~~

-V—-V
~~-V-~

62

To generate the parity code either the combinational outputs during the first

or second time period could be used. Whichever outputs are used , the parity

code must be generated independently of the other outputs so that a fault to

. - an output will not also change the parity. Similarly, using a parity code

- V requires that an even number of outputs not be cnanged at the same t ime so

logic sharing is greatly restricted . However , if two outputs are latched
V

during opposite periods , then they may share logic. A simple example of this

was the ALPT which took the parity of the outputs in the opposite time period

• in which they were latched. The ALPT is also the least expensive way of

•
V generating the parity.

Cases 1 ,2, and ~
which directly use parity code in the comb inational

logic , - show l i t t le promise in application to alternating logic . The code

translation approach of Section 11.3 is easier to design, more structured , and

almost always less expensive. Therefore , techniques of directly implementing

sequential SCAL through modified sequential machine design techniques will not

be worthwhile.

~L5J.. Comoarative Examole ~~ Technicues Presented

An example of the implementation of a sequential machine using the

techniques of Sections 11.2 and 4.3 will be given to compare their merits. The

direct implementation techniques of the last section are not effective and no

example will be given of them.

To enhance the comparison an example from previous work by Kohavi [KOH A]

and then Reynolds (REYN1] will be used. It is of a 0101 sequence detector.

The original sequential machine of Kohavi is in Figure 14 .8 . The version

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

• V -



• 63

V — 

~~~~~iiiiii ~~~~II~~ .—___-_________________________o 

~,

H ’ - - _ _ _

-
~~~~

o--

. .

I 
_________  i i

- .

H 

_

• FP-5100

Figure 14.8. Kohavi’s 0101 sequence detector

L -  . - - 
~~~~

• - •

- - -V-—----— - - - — -- -~~~~~~~ - -~~~~~~- V - - . -V. -.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ----- ----V-



- -V-V~~~~_ _ ~~~~V -V-V -V-V -V - V V V-V_ -V -V-V_~ -V~V - V~-VV ~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

611

developed by Reynolds is in Figure 4 .9 (wi th  a clock operating at twice

V 
the frequency of 0 ). The translator implementation is in Figure 14.10. The

comparative costs are in Table 4.1, with n and m defined as the Kohavi number

of flip—flops and gates, respectively.

As is observed , to achieve self—checking extra logic is required in addition

to the double time requirement of SCAL . Assuming f l ip—flops have a high cost ,

the cost is least if the translation method is used in implementing sequential

machines , and this cost effectiveness becomes even more apparent the larger

the machine is. In particular for computers the total memory cost is doubled

in the dual fl ip—flop approach , but is Increased very little in the translator

approach.

The system—wide checker cost should be divided among each unit in the

system ; thus the amount of cost to be apportioned for the particular subunit

depends on the system size. It is not included in the costs given since

checker cost would be a small part of the total system cost . The number of

gate inputs and the number of gate delays may also be cost factors to

consider.

The general case is also given. It uses the 1.8 cost factor , determined

by Reynolds I R E Y N 1 ] ,  as an approximate cost of converting normal logic to

SCAL . Cost factors vary widely from one for an adder to multiples for some

logic. The key point is that in the comparison between the dual flip—flop

approach of Reynolds and the translator , gate cost is about the same , but

flip—flop cost is much less for the translator approach. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~~~~~~~~~~~


V V -- —-V - V —- V -
~~~~
•-

~~~-~~~— - -- ~~~~~~~~~~
--- - - •—

~~~~
•— -V -V~~~~~_V•-V ~~-V-VV - V V~~ V -

65 
-

V 
(0 , 1 )

r — 

~~~~~~~~~~~~~~~~~~~~~~~~ 1

—

_______ ______

V (X L ,~~~
4_

~~~ - ~~~~~~ 
f— —

- 

- - ____D L_ 
_ _ _ _ _  

( y  ~~
- — — 

_____ ____ ~~~~~~ 
1 .1~ 

j 

-

V L ___ ____ _________

FP— SOela

• Figure ‘~.9. Reynold’s SCAL 0101 sequence detector

_ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~
-

~~~~~~ —~~~~~~~~ -~~~~~~ -~~~~~~~~~~~~~~—~~~


- -

- - V~~ ~-V-V-V~~ V-V-V-V-V-V~~ -V -V-V• -V-V-V-V - -r -V-~~-V• - - ~~~~----V •-V-V
~~~~~~

V

66

(0 ,1)

V 

• 
~~~~~~~~~~~~~~~~~ 

-

-
—

_ _ _

—

- - —

~~
_ _ _ _

_ _ _ _ _ (y
~~~~~)

- — 
_____ I _______ 

1’ 1

L -- 

~~~ I°~~ 
-

~LHU
1
~~1

_ _ E~iT e
(~~~) T —

1-out-of-2 Code

Figure 14.10. Translator implementation of 0101 sequence detector

• _ _ _ _ _ - -- V S-V-V-V-V ~~~ V - - ~~~~~~~~~~~~~~~~
1,

—

67

Table 4 .1 . Comparative costs of sequence detector

Flip—Flops Gates

Kohavi example 2 12

Reynolds example 14 19

Translator example 3 23

Kohavi general n m

I Reynolds general 2n 1.8m

Translator general n+1 1.8m+n+2

I -

P1

I 1

•

~
‘
\ _

-_ -—-V-V-V--- . .-V____T _ •_I1T~~_ ___ V __ _ _ ___ V _ _ _ _

-

— ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ - V V~~~~~~~~~

68

5. CHECKER DESIGN

~~.L. Introduction

This cha pter will cover (1) the design of SCAL checkers JSi the

conventional assumption of interdependent outputs , (2) the design of SCAL

checkers for independent outputs , (3) the design of SCAL checkers for networks

which have some dependent and some independent outputs , and (14) the

integration of the checker into the complete SCAL system. In evaluating the

checkers it will be assumed there are a multiple number of inputs to the

checker (from the network outputs). It is also assumed that a minimum number

of checker outputs are desired so that the hardware requirements of the system

are minimized . This assumption is substantiated in the last section of this

chapter .

~.L. Dual—Rail Checkers

The conventional approach to designing checkers has allowed the inputs to

be interdependent ; i .e . , the outputs may utilize some of the same logic in

their generation . In the space domain with the classic assumption of

V unidirect ional faults , the network is usually constructed with inverter—free

logic beyond the input level . In this case the interdependency does not imply

any extra constraints on the checker design.

In the time domain , Reynolds [REYN 1] proposed using a set of f l ip—flops

to record the network output in the first time period and feeding these

delayed outputs and the second time period outputs into a dual—rail totally

self—checking checker (TSCC) (ANDE 1] . This entire checker of Reynolds will be

-— VI~~~~~~~I V ~~~~~~_

-V V~~ ~~~~~~~~~~~ ~~~

85

If the module is assumed to not have a fault within it , then the internal

state of (c ,f,g) would never reach (1 ,1 ,1) in the analysis above. As was

shown before , the connections to the module allow the system to be

self—checking if the module is assumed fault— free.

Theorem 5.2 means that no completely self—checking system can be built

with the normal logic gates available. There must be some nonstandard unit

wh ich is used as the hardco re for the system , or the ~iodule that is not

self—checking must be replicated to obtain the desired reliability . This does

not consider some other mode of operat ion such ~s transition oriented logic or

pulse—mode logic which probably have other untestable faults.

One other possibility for providing self—checking capability in the

system is to feed back the checker outputs so they m ay be latched during the

next cloc k per iod , as shown in Ft~ure 5.7. Once a faulty output is signalled

by the checker it will then remain at that noncode word , (0,0) or (1 ,1).

Presumably this status is displayed and the fault recognized by the operator.

All operations since the last time the checker out put was checked may be in

error.

System—wide all the checkers in the system can be fed to one final

checker without loss of the self—checking characteristic. Only this one

checker needs to be monitored in assuring self—checking operation.

-V

- - ~~~~ ~~~~~~~~~~~~~~~~~~~~~~ - -

-__ _ _ _ _ _ _ _ _

86

01 — Anderson - —Dual-Rail
-Oi o,, Checker — —g

FP-5671
.

Figure 5.7. Feedback of checker outputs

____ - -


~~~~~~~~

-— - -

~~~~~~~~~

69

referred to as a dual—rail checker and is shown in Figure 5.la. This checker

can use the first stage of the dual flip—flops used in the dual flip—flop

sequential logic design as the flip—flops for the feedback lines being

checked . This is shown in Figure 5.Tb .

The dual—rail checker requires two outputs, which have been shown by

Anderson LANDE~1 to be the minimum required of a system checked during only

one time period . However , since two time periods are used in the remainder of

the alternating system, it may be useful to convert these dual outputs to a

single alternating output, as depicted in Figure 5.lc. The output q changes

at the rate of the time period clock ~ , (0,1), and q should be (1 ,0) if the

network is operating properly. It will be (0 , 1) or constant if there is a

faul t in the network.

5L3J. Independent Line Checker

If the checker inputs are independent , then the requirements of the

checker design are reduced. Reynolds [REYN1] proposed using an exclusive—OR

(XOR) ~~te network as a checker.

Theorem 5.1. An XOR network is a self—checking single outpu t checker for SCAL
V

if each XOR gate has an odd number of inputs.

Proof: If an odd number of inputs feed each XOR gate and each input

alternates in value with the period clock, then the output will also alternate

in value. This applies to all of the XOR gates in the network, so all the

lines alternate. By Theorem 3.6, a network is self—checking with respect to

the alternating lines in the network . Therefore , the network is

-V

-V

r ~~~~~~~~~~~~~~~~~~~~~~~~~ --~~-r-----~~~~~~~ - .-- -- ~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-~~~~~ -~~~~~

70

X i __ .[
} Anderson

C Dual-Rail
TSCC

S

Xn 0 Q
(4~

) C

Figure 5.la. Reynold ’s dependent line dual—rail self—checking checker

X1 .
• X~

:
F* I__

~
.
~
_ i

h—
L _ _ _ _ _ _ _ TSCC

I-; —f
— D Q

c —g
V - Q D Q D

C C — _ _ _ _

Y1 Q o Q D
C C

Figure 5.lb . fleynold’s checker In dual flip—flop network

_

V

Yn •
FP-5665

Figure 5.lc. Modified Reynold ’s checker with alternating output

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _



r— V - -V~~- V - V~~ -V-V~-V_VV~ -V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

71

self—checking . Q.E.D.

An example of an XOR self—checking checker is given in Figure 5.2a. Note

that  the alternating period clock is added to the last XOR gate so that all

the XOR gates have an odd number of inputs .

The gate cost can be made minimal by proper construction of the XOR tree.

V 

- One output is the minimum poss ible so the network provides the minimum cost

checker. To get a two—rail output , it is only necessary to add a flip—flop on

the output for the first time period , as in Figure 5.2b. The checker output

is monitored in the second time period . It is also possible to build a

self—checking checker network with even input XOP, gates as shown in Figure

5.2c. In this case, only the out put pair (0,1 ) is a code wor d and all other

output pairs are noncode words. This type of checker is less cost—effective

than the checker composed of odd input XOR gates.

5..JL . Mixed Checker Designs

As was stated before , the requirement for a network to be able to use an

XOR checker is that its outputs be Independent. This restriction may be

relaxed provided the outputs satisfy certain constraints similar to those

tested in Chapter 3 for the network to be self—checking .

$pecifically , if an even number of the network outputs brought into the

checker are stuck , then the parity would be unchanged and so the checker would

incorrectly give a code word output. However, if an odd number of the network

outputs are stuck , then even if another network output should alternate -

incorrectly the fault would be detected . A summary is provided in Table 5.1

of the conditions for up to three network output faults in which the XOR V 

~~~~ ~~-~~~~• ~~~


- - ---V~~~~~~~~~~~~~~~~ - ~~~

V

72

x l
X 2
x 3 _______

I—

X4

Figure 5.2a. XOR self—checking checker

x l
_ _ _ _ _ _ _ _ _ _ _ _

•
_ _ _ _

g
x 3 ________

L

x 4 I D Q

_ _ _ _n
lC

-

— Figure 5.2b. Dual—rail output XOR checker

4) I

r~-s~~
Figure 5.2c. Even input XOR checker

L - - - - - --- - - -- - -- - - --

73

Table 5.1. Conditions where XOR checker suffices

Number Number Inputs Checker

Inputs Stuck Alternating Incorrectly Result Operation Proper

O 0 Proper Operation Yes
V

V
V 0 1 Fault Not Detected’ Yes

1 0 Fault Detected Yes

O 2 Fault Not Detected’ Yes

V
1 1 Fault Detected Yes

2 0 Fault Not Detected No

0 3 Fault Not Detected’ Yes

1 2 Fault Detected Yes

2 1 Fault Not Detected No

3 0 Fault Detected Yes

r - - -V _-_ ~~ ~~~ VV ~~~~~~~r
V .rV —--V --V-~~-- -V-~~~~—-_—-—

711

checker will suffice. A self—checking network will not output an incorrect

alternating word without at least one output not alternating. Therefore, the

chacker does not need to check for this failure. These cases are marked by an

asterisk in Table 5.1.

Using the fact that the XOR checker will fail only when an even number of

the network outputs being checked have failed to a constant value, cond itions

similar to those in Chapter 3 for determining whether a combinational network

is self—checking can be developed to determine whether the XOR checker is

self—checking. All lines which have a fan out path to more than one output

must be considered . This includes the inputs. Where there is a large amount

of multiple use of some logic it is fairly likely that the network will not

satisfy this condition . Since the inputs feed more than one output network,

the way in which the function is implemented may require drastic alteration in

order not to allow generation of any pair of nonalternating outputs in the

event of failure. In order Lu modify the network so that it would satisfy

this condition , there is a high probability that more logic would be required

than adding the additional logic to the checker which allows the checker

inputs to be interrelated . So, this is not a useful approach to pursue -

further.

However , in many networks some of the outputs may use common logic while

others do not. Furthermore , it is possible to partition the network accor ding

to the subnetworks used by groups of outputs. In this case, a checker design

utilizing the mix of dependent and independent variables is appropriate.

• Algorithm 5.1:

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

r -

~~~~~

V • -

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—

~~~~~~~~~~~ 

75

1. Put all variables which are independent of all other variables in

partition A. The remainder are in partition B.

2. Further divide the outputs in B into subpartitions
~i

so that the

outputs form groups in which each outpu t in the group is not dependent on

logic used by any output outside the group .

V

- 3. Among each B1, one of the outputs may be placed in the A partition as

V long as it does not alternate incorrectly for any fault. A network

modification like those discussed previously could change the way the
V

partition is made and hence reduce the checker cost by placing more of the

outputs in the P partition .

1)~~ All the outputs in the A partition may be checked with the XOR

networks. All the outputs remaining in a B partition must be checked by the

dual—rail input checker for dependent inputs.

Notice that in the example in Figure 3.7, all the outputs would initially

be in the same B partition. Further , they would all be in the same B1,

partition B1. Either output F1 or F3 could then be put into the A partition .

However, they could not be both in the A partition. F2 must remain in the B1

partition since it does alternate incorrectly for faults on lines 9, 19, and

20 in the network.

Consider also the following example. Suppose there are nine output lines

from a function. Outputs 1 , 2, 3 are independent of any other output. The

groups of outputs which share logic are (4, 5, 6), (6,7). and (8,9). Outputs

5 and 8 generate an incorrect alternating output for a line they share with

other outputs in their groups. The dual—rail checker implementation is in

Figure 5.3a. The algorithm proceeds as follows:

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

--



- - -  -V-~ ’V - ~-,--V- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _-V

~

- V _ - V - V

~~~

76

2 ~ D Anderson
I

~
Q Dual-Rail

L ______ TsCc
3 L Ui

_

-f
-g

7 L 1
~~Ji

-

-

8 L BI
V

Figure 5.3a. Dual—rail checker

U f-
L1 _

TI1I~F Anderson

-

6 L ~~~~ Dual Rail

~J i 1~~
g

:L~
—

V •

Figure 5.3b. Minimal checker implementation of example

77

1. A~(1 ,2,3] ; B~ { 14 ,5,6,7,8,9]

2. B1:(4,5,6,7]; B2~~8,9]

3. A= (1 ,2,3,11,9]; B1=[5,6,73; B2=(82

4. Outputs 1 ,2,3, 14,9 are checked by an XOR checker. Outputs 5,6,7,8 are

checked by the dual—rail checker. The implementation is shown in Figure 5.3b.

The checker outputs of the two checkers need to be combined in order to

provide a minimum number of checker outputs . There are two approaches: (1)

if a single alternating outpu t is desired , then another XOR checker is used

with the previous checker outputs as its inputs; (2) if a dual—rail output is

• desired , then a dual—rail totally self—checking checker is used . These two
-

implementations are chosen for the previous example in Figures 5.14a and 5.14b

respectively. In either case, the outputs of the first stage checker which is

different from the second stage checker may be incorporated directly into the

first stage checker which is the same as the second stage checker; i.e., it~

is not necessary to have the separate stages .

The cost of using the dual—rail checker only as in Figure 5.3a for an -

n—line input checker is n flip—flops and (n—1)6 two—input gates for Anderson ’s

[ANDE 1] dual—rail TSCC. The case given has nine inputs , so forty—eight gates

and nine flip—flops are required . Using the reduced cost checker described ,

depending on the output checker, either (1) three triple—input XOB gates,

eighteen two—input gates and four flip—flops are required or (2) two

triple— input XOR gates, twenty—four two— input gates, and four flip—flops are

required. Either way, the cost is about one—half of the dual—rail checker’s

cost for this example. The cost formula for this revised implementation

depends on how many outputs are in the A partition . The number of latches in

— - V

- ---— ---V -V

-V -V--- •.~~~~_-V_-V -V -V -V- -V -V — —-V -V-V-V-

- - - - ——-‘--—“ ~~

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
78

V Q Anderson
Dual — Rai l

6

~ LEI~F V

V 

; 
L~+1

Figure 5.4a. XOR checker output checker

H IeF~~ 
_ _

~~~~~~ 
I L J~ f Anderson

_ _ _ _ _ _

Anderson
f

_ _ _ _ _ _

6 L J~I1— TSCC
ai g

7 L8 L~~_ FP- 5668

Figure 5.4b. Latching checker output checker

~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~~~~~~~~~~~~~~~~~~~ - -V ~~~~~~~~- --
~~

-V

V.— •V_~~~~ V
~— r— —- -

79

V

a dual—rail implementation may be reduced in either approach if the lines are

also used for feedback outputs.

5.,.5~. Hardcore Elements IJA SCAL

In order for the checker to have any value for the system, it is

V necessary to use its outputs to control whether the network continues to

operate. Generally, this portion of the network is referred to as the

hardcore since it is the part that is assumed not to fail even within the

V fault model. One approach to hardcore is to physically make the module have a

failure rate significantly below the other system components so that it nay he

regarJed as relatively fault—free. Another approach is to redundantly

implement the module so that a low probability of all the modules failing is

achieved . This first approach is beyond the scope of material covered here;

only the second approach will be examined .

In a self—checking system it is desired to terminate operation once a

fault occurs which causes an illegal output. It is also desirable to retain

the state where the failure occurred . Therefore , turning off power is not

acceptable. Either the inputs iust stop arriving or, in the synchrouous case ,

the clock must stop. For alternating logic it is assumed a clock is used for

~ync~ironization , ac.i so disabl ing of’ the cloc k will he used . Disabling of the

input lines (as would be used in an asynchronous system) would be very

similar. Particular implementation would vary depending on the network given.

Since the checker output stages have been demonstrated to be convertible ,

an implementation using either form of checker output is acceptable, although

one may cost less. Considered here is the dual outpu t of the latching

-V

- - - - -V ~~~~~V.-V~~~~ V~~~~~

80

checker. To enable the clock only when the output is correct (opposite

values) , the truth table In Table 5.2 must be implemented . This is

implemented using the network module in Figure 5.5a. Regarding the network

elements separately, a fault on the XOR gate output to stuck—at 1 will be

undetected. Therefore, if the fault occurs , there will be no way of knowing

when another fault occurs in the system .

V However , if the module is itself regarded as a single ~~t.e, then a ny

failure to one of its input or output lines is ietected: if’ f or g is

V
stuck—at 1 or 0, then (f ,g) will eventually be (1 ,1) or (0,0), respect ively ,

forcing the XOR gate output to 0 and turning the clock off; if the clock into

or out of the module Is stuck—at 1 or 0, then the system will also stop . The

fa ilure is detected the moment it is observable , i.e., before any wrong code

word is sent out. The fault can then be easily isolated .

-

V

Alternatively , if the individual gate Nults are to be ‘nodelet , then the

nodule can be replicated as in Figure 5.5b. This will decrease the

V probability of a failure in the hardcore un it being undetected . Whene ver a

system failure is 1e~;e.~ted , this unit should be checked or replaced to retain

its relatively high reliability. For a probability of failure p and n

replications , the probability of hardcore failure becomes p”. It can be made

arbitrarily small for p<1.

There is still the question of whether there is any way to build this

hardcore unit so that it is self—checking .

Theorem 5.2. There does not exist a self—checking network consisting of

normal logic gates (NAND , AND , OR , NOR , XOR , INOR , or NOT gates or flip—flops)

which can disable the clock once a fault has been detected .

~~~~--V- - - ’— -V  
_ _  



- V—
~

— 1

81

Table 5.2. Hardcore clock disable truth table

Clock In f g Clock Out

O 0 0 0

-
, 0 0 1 0

0 1 0 0

- 
- 0 1 1 0

- 
: - 1 0 0

-
- 1 0 1 1

- 

~~ V 1 1 0 1

- . 1 1 1 0

F



!r- I ~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~ V~~~~ 
—

-

82

~•1

Cl?CkiIii ~~~~~ILID T %J~
Figure 5.5a. Hardware clock disable module

~J i

‘

1
’ 

Clock ____ 
_ _ _ _ _ _ _ _  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

Figure 5.5b. Multiple clock disable modules
FP --5669

— ~~~~~~~~~~~~ ~~ ~~ ~~~~ • V VV ~~~~~~~~

83

Proof: Let the 3—tuple (c,f,g) represent the network’s inputs: the clock

line and f and g from a dual—rail self—checking checker. The 4—tuple

(c ,f,g,O) includes the output clock generated . A model of this is shown in

Figure 5.6a. The normal transition sequences are shown in Figure 5.6b. This

assumes a single input line change at any instant In time. Under correct

operation , c should only change when fig . By inspection all the transit ion

sequences during normal operation can be observe d to be included in Figure
V

5.6b. Some of the possible sequences upon the occurrence of a fault are shown

in Figure 5.6c. The outputs are unspecified , and so are marked as X. Now

consider what the value of X must be. It will be shown that no value of X

will allow the type of network specified in the theorem to be self—checking .

When the values of f and g indicate a noncode word , the clock out put

should not change. If it changed values , it would tr igger an operat ion within

the system ; i.e., the system would not be fault secure. To detect a noncode

checker input, it is required that the output remain 0 when (c,f,g) go from

(0,1 ,1) to (1 ,1 ,1).

When f fails and (c ,f,g) go from (1 ,1 ,0) to (1 ,1 ,1) , the output must

remain at 1 to avoid triggering the network to a new state. When c goes to 0

V
and (c,f,g) go from (1 ,1 ,1) to (o ,i,i) , the output must remain unchanged at 1.

However , this now requires that the output for (0,1 ,1) be 0 when the network

operates properly and 1 after a fault occurs. Therefore, the fault state must

be maintained in some manner within the module . However , there is no way to -

reach and test this fault state in normal operation . Since the network is not

testable , it cannot be made self—checking . Q.E.D.

-V — - - V -V __ -V

~

8i~

3
Figure 5.6a. Model of network (c,f,g,O)

Figure 5.6b. Normal transition sequences

— — — —
~~~~~~~~~~~~~~ ~

-4P
~
( ~~~~~~~~~~~— — 

— 
,. — 

~~
. ..-

V 
i

l

l

, 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
\

I I
i~~±~ L

FP-5670

Figure 5.6c. Faulty transition sequences

— ~~~~~~~~~~~~~~~~~


~~~~~~V~~~V~~~~-V - V - V V  

85

If the module is assumed to not have a fault within it, then the internal

stats of (c ,f,g) would never reach ( 1 ,1 ,1) in the analysis above. As was

shown before, the connections to the module allow the system to be

self—checking if the module is assumed fault—free.

Theorem 5.2 means that no completely self—checking system can be built

V with the normal logic gates available. There must be some nonstandard unit

which is used as the hardco re for the system , or the module that is not

self—checking must be replicated to obtain the desired reliability . This does

V not consider -some other mode of operation such ms transition oriented logic or

pulse—mode logic which probably have other untestable faults.

One other possibility for providing self—checking capability in the

system is to feed back the checker outputs so they may be latched during the

next clock per iod , a.s shown in Figure 5.7. Once a faulty output is signalled

by the checke r it will then remain at that noncode word , (0,0) or (1 ,1).

Presumably this status is displayed and the fault recognized by the operator.

All operations since the last time the checker out put was checked may be in

error.

System—wide all the checkers in the system can be fed to one final

checker without loss of the self—checking characteristic . Only this one

checker needs to be monitored in assuring self—checking operation. 



AD—AO56 534 ILLINOIS UNIV AT URBANA—CHAMPAIGN COORDINATED SCIENCE LAB FIG 9/5
DESIGN OF DIGITAL SYSTEMS USING SELF—CHECKING ALTERNATING LOGIC——ETC (U)
OCT 77 S E W000ARD DAABO7— 72— C—0259

UNCLASSIFIED R— 758 NL
2 Cr2

_IN~~~~~~~ END

I



_ _ _ _ _ _ _ __ _ _ _ _ _ _ __ _ _ _ _ _  —

86

1’ Oi — Anderson
4 — Dua~-Rai1

on Checker — —g

I. on
FP-5671

FIgure 5.7. Feedback of checker outputs

0
3

_ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~



87

6. SCM.. MODULES IN NETWORK DESIGN

6.1. Introduction

Recently a multi—valued logic gate was reported developed by industry

[ELEC]. Through the years many such special types of’ gates have been stu~1ted

both in theory and to a lesser extent in application. Among these special

types of gates are the type known as threshold gates. And among threshold

gates are gates known as majority gates and minority gates. These types of

gates are particularly well suited for SCAL. The discu~ston here will be of

the theoretical properties, with the realization that physical construction of

them may be economical someday.

The minority module is represented as shown in Figure 6.la. The truth

table implemented is also shown. The majority module is similarly presented

in Figure 6.lb. Two minority modules nay be used to implement a majority

module as shown in Figure 6.lc. The minority module has been shown to be a

complete gate set by Reynolds [REYN1].

Theorem 6.1. The minority module is a complete gate set.

Proof: The 2—input NAND gate is well known to be a complete gate set (POST].

As shown in Figure 6.ld , a 2—input NAND gate can be implemented by the

minority module. Therefore the minority module is a complete gate

set. Q.E.D.

A further discussion about strong and weak completeness is given by

Reynolds [REYN1]. The majority module is not a complete gate set since

complementation cannot be done. Therefore, emphasis will be primarily on

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~


88

f -- - -x1x2 x1x2 x1x2 x1x2

_ _ _

1
_ _ _

1

Figure 6.la. Minority module

~~1 2 ~~~1 2 ~~~1 2 X i~~

Figur e 6.lb. Majority module

_ _ _ _ _ _ _ _ f

Figure 6.lc. Minority module implementation of’ majority module

0 FP- 5672

Figure 6.ld. Minority module Implementation of 2—Input NAND

A

I ~~

n~~.”— ~i ~~~~~~~~~~~~~~ .—.---.-.——--. , , .

89

minority modules in this discussion.

For alternating logic, when the inputs alternate, the outputs must

alternate. Assuming a period clock with successive values (0,1), a network

composed of 2—Input NANDS can be made an alternating network using minority

modules. Let m(X1,X2,Ø) represent the output of the minority module with

inputs X 1,X2, and period clock

(F (X), F(X)) = (m (X1,X2,~) ,m(X1,X2,ø))

= (m (X1,X2, O) , U1(X1,X2, 1))

= (x 1x2, x1x2)

= (NAND (X 1,X2), AND (x 1,x2))

Similarly a network of 2—input NOR gates can be made an alternating

circuit by using the coi~pleineat .)r ~;h~ per I.od ~1.~ck (1 ,O) .

(F (X) ,F(X)) = (ni (X 1,X2 , ø) , m(X 1,X2,~~))

= (m(X1p X2,l),m (~1,~2 O))

= (X1VX2,X1
VX2)

= (NOR(X1,X2), OR (X1,X2))

This provides the output value of’ the original network in the first time

period. In the second time periob the complemented value is output to provide

the desired alternation . Since all lines in and out of’ the module alternate,

by Theorem 3.6 the network is self—checking with respect to the gate.

6.2. Desi~n Yj..~ Minority 11Q~~1~~

Most networks require more than 2—input g.~tes. ~‘or’ this reason it is

necessary to consider whether a network with multiple input NAND gates can be

directly transformed with minority modules into an alternating logic network.

- - .~~~~~~~~~_ - ~~. -.

90

In the analysis these symbolic definitions will be used :

A L is an L input vector to a logic gate

W(AL) is the number of l’s in AL

m1(A) is the •~inority function with in I input vecotr A

It is assumed that there is an odd number of inputs to the minority

nodule . The minority function with input vector A is 1 If and only if

~ • 1 ~
(A L) ~L/2. A NAND gate with input A is 1 if and only if W(A

L)
� (L-l)and an

AND gate with input A is 1 if and only if W(A
L)

= L . A few more symbol

definitions are required :

is an all 0 vector with k elements

Ck is an all 1 vector with k elements

(
~ k , Ck) is a clock Lnput , with k elements

A Bin the concatenation of two vectors

So W(A B) = W(A) + w(B).

Theorem 6.2. For all NAND gates with N input vectors, X , there exist m1 such

that for all (x,Y):
(m1(X I

~~
),mi(i~

Ca))
= (NAND(X),AND(X))

with K=N— 1 and I=N+K=2N—1

Proof:

W(x ii C
~

) W(x) + W(CK)
- w(x)

II CK) I 1ff W(X) ‘C 1/2

_ _ _ _ _ _ _ _ _ _ _ _ _ - —. . - . - -

91

since I — 2N - I thie is rewritten as
-

W(x) < (2N-1)/2 or W(X) < N - 1/2 or W(X) ~~N - 1

80 mI (X II CK) 1 1ff w(x) ~~N - 1

W(x II C~() = W(x) + W(C) = W (x) + K

TnI (X lI C K) 1. 1ff W(X) + K < 1/2

this can be rewritten as V(X) < (2N - 1)/2 - K

or W(X) < (N - 1/2) - (N-i) or W(X) ‘C 1/2 or W(X) — 0

• /
The conditions for NAND (X) and AND(X) are the same as those for the

minority gate in the two time periods. Q.E.D.

Similarly a minority module implementation can be made from a NOR gate

network.

Theorem 6.3. For all (X,T),

(m1(x IICK),InI(X l IC K)) — (NOR(X), OR(X)) with K~I— l and I=N+K:25N— 1

Proof: The proof is similar to the proof of Theorem 6.2.

To clarify the application of the above theorems, an example will be

given. A network of NAND gates and its truth table is given in Figure 6.2a.

This is converted directly into minority modules using Theorem 6.2 as shown in

Figure 6.2b. However, a more efficient implementation is shown in Figure

6.2c.

- . .~~~~ • • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .,

1 1
-

92

Figure 6.2a. Example network

A
m3

A—
C rn3 m5 f

•
H

-

_ _ _

m3

Figure 6.2b . Direct conv ersion to minority modules

FP -5673

Figure 6.2c. Minimal realization with minority modules

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~



~~~~~~~~~ - -~~— - ~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~—-- -~~~~~~~~~~~—~~~~~~~~~~
--•—-,

93

From the the contrived example it is clear that some functions may be

very inexpensive to implemen t with minority modules. In this case the

f~inction to be implemented is a 3—Input minority function . This is a

self—dua l function . When It is implemented with NAND gates , four NAND gates

are required with nine total inputs. If each NAND is directly converted to

minori ty logic by the method in Theorem 6.2 , then four minority modules are

required with fourteen tota l inputs. However, a single minority module with

three tota l thputs is all that is actually required . A technique to implement

• the function with minority modules directly from the truth table is useful.

An appropriate weighting should be made for the cost of’ inputs also. The

minority modules in general would have (N—i) clock inputs in the

implementation of an n—input NAND gate. The design should try to ninLnize

overall the number oC such inputs . A branch and bound procedure such ms

~)f Davidson [DAV I ] would ~e appropria te . A dete l.led d t 5 C 1’3~~i~On of the

implementation of functions using majority gates is given by Muroga [MURO].

The implementation with minority modules is similar and will not be presented

here.

The minority modules of any size are self—checking if implemented In the

nanner presented in Theorems 6.2 and 6.3. This is because they all have

alternating inputs and outputs for all input vectors. By Theorem 3.6 this

means that each line is self—checking.

The implementation of a function using alternating logic and minority

modules is a very straightforward approach to achieving self—checking . It

relies upon the inexpensive availability of minority modules and a relatively

small cost assigned to extra time required to achieve self—checking . In

~ 

-~~~~~~.• -~~~~~



•-- - - -—--— •- -~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •—~~~~~~~~~~~ ~~—.----— • —-~~

• I j

91~

I instances where normal speed is desired and self—checking not required , the

system could be easily switched to a norial ternat ing mode and could pr’ovile the

desired operation.

I ,

I t



95

7. SCAL COMPUTER DESIGN

L.L. Introduction

One of the primary applications for alternating logic is in computer

systems where improved reliability is desired . In many instances the use of

alternating logic could be the most cost—effective solution.

Section 7.2 will apply to computers noise of the code translation design

approaches discussed tn Chapter 14~ An analysis of the use of’ self— dual

modules in computer system design will be done in Section 7.3. Finally, in

Section 7.1! a discussion of SCAL use in large systems to achieve fault

tolerance will be presenteJ.

L
~
2. System 

~ fl~ Q~~..QI& ConsideratiQn~

As was discussed in Chapter 1!, it is desirable in system designs to match

the code used to the failure mode of particular elements . For example , when

all output lines of’ an element ai’e independent and the cost of each addltLonal

out put line is the same , a parit y code is appropriate . A single—bit parity

code is also appropriate for single line faults on busses or in the memory .

However, in the central processing unit (CPU) generat ing a par ity bit out put

is almost as costly as building an entire CPU. In this case an rn—out—of—n

cod e or Berger code is useful in space domain self—checking . Alternating

logic has been shown to be effective as a time—domain approach. Therefore,

the most cost—effective self—checking computer system should use a combination

of codes dependent on the performance characteristics desired .

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~_____________________________

96

A model of a computer system is presented in Figure 7.1. Each element of

the system has a greatly improved reliabili ty if it is protected from

undetected single faul ts .  For many applications protection from single faults

would be the most cost—ef fect ive mode of’ operation . An economic justification

can be briefly given . Assume that functions exist which can descrIbe : ( 1)  a

• degree of fault protection in relation to the various faults protected

• against , (2) a measure of improved re l iabi l i ty  for the system owner , (3) a

cost for various designs which oottraal ly achieve the re l iab i l i ty  desired , and

(1!) a cost—benefit utility of’ reliability improvements (derived from functions

2 and 3). Typical plots of’ these last three functions relative to the first

are shown in Figure 7.2. The functions have values only for certain discrete

degrees of’ fault protect ion. For the types of costs and values shown in

Figure 7 .2 , the peak u t i l i ty  is reached when single faul t  p r ote c ;i .ofl ~‘3 u~ ei.

The type of coding and design which can provide the minimum cost used in the

,~raph can be analyzed . In a typical design process , a minimum cost for each

type of fault  protect ion dei~tr ed would need to be determined before the

utilities could be derived . In this case, assume the cost is known and it is

desired to determine how it can be achieved .

The CPU could use alter’natin.g logic to provide the minimum hardware cost

for single fault protection . The memory could use a parity code requiring

• only one bit per word . The translators discussed in Chapter 1! could he used

by the CPU to commun icate  with the bus. A totally self—checking checker could

be used to report to the outside world whether the system is operating

properly. A code reply signal could be used with the peripheral devices on

the input—output data paths. The reply signals would provide assurance that

_



• -.-- ~ 
- -‘ •— —• —w-~ 

•
~
—---

~
-- -- ---

~~~~~~~
-
~~
‘—~~

‘-
~

• i~

97

Input Code Code Output
Data Reply Reply Data

• t L f t 1 1 1 1
Encoding Encoding -

Buffer Buffer

Bus:

• I

Figur e 7.1. Computer system model

~~~~~~~~~~~~~~~~~~~~ -- - • -..- - z •
_ •
~ ~~~~~ _Ji__ _

~~~• •
•

• _;.•_ • • • , -~~~~~ • • -• •~~~ - - • • - • -~~- - - •• ~~ -•••


~~~~~~~~~ •• --• ~~~~~~~~~~~~ •~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ft -

• 

- 

98

D Benefit
~~~Cost
D Uti lity

a,
>

0
a’

a, -

U)

Hi _ I
FP- 5675

Figure 7.2. Reliability design trade—off

• . —v--- . • - - — 1
-~~~~~~~~ -— - ~~~.1i ~~~~~~~~

-•
~~~~~~~~~~~~ --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -—--- -~~- ~~~~~~~~~~ ,-~ —-—- -



• 
~~~~~~~~~~~~~~~~~~

99

the correct data transfer had been made. Therefore the entire system would be

protected from single faults. The resulting computer system is shown in

Figure 7.3 .

• 7.~ . Self—Dual Modules

In designing the CPU it is oft en usefu l to combine certain function.

• 1: Among these are arithmetic operations, the shift operation, and status

determination . As was discussed earlier in Chapter 2, the adder is inherently

self—dI2a 1. Similarly , the shift operation is self—dual. It can be easily

• implemented , as shown in Figure 7 .4 a , by using two flip—flops instead of the

usual one. The status conditions can also be stored in two flip—flops as

opposed to the usual one to achieve self—dua l operation , as shown in Figure

7.1!b. Alternatively, one of the encoding techniques for sequential machines

•
• could be used, as discussed In Chapter 1!. By using these and other self—dual

modules a SCAL CPU can be designed . The specific set of modules required

would depend on the operations to be done by the CPU. The study of the design

of an alternating logic CPU to replace a particular CPU would be useful in

further research.

7.1!. Large System Design WiLh S~1L

Shedletsky [SHED2] has proposed the use of’ alternating logic in a system

he refers to as an alternate data retry (ADR) syste~n. The alternating

capability of the system is utilized only upon occurrence of a fault. When

the system detects a fault, the complemented signals are used and the correct

values determined . This provides a method of achieving fault tolerance. It

100

• • Input Parity Parity Output
• Data Reply Reply Data

H u s
_ _

Encoding [Encoding
Buffer [Buffer

ft
_Bus: Encoded Data TSCC
_ _ _ _

_ _ ft _ _ _

1 Parity
PALT ALPT I Encoded] Memory

ft
SCAL

-
CPU FP-5676

Figure 7.3. SCAL computer system

I1I I

Ji

~

•

~

~• •.I•ii~~ iI ~1•.~~~•

• - •— _ _ _ _

101

Bit O Bit i Bit n

•

InPut.fl t~j .JD
o~ ~4D

Q9
j D Q[~~~~~~~~~~~

3f

~~
__ OUfPUI

Figure 7.lIa. Self-dual shift operation

Input fD Q
~
— D 0 Output Status Bit 0

_ _
C

•

Input D Q D ~1—Output Status Bit 1
C C I

Output Status Bit n

• Figure 7. 1$b. Self—dua l status storage —

~~~~~~~~~~~~~~~~ _ _ _ _ _  ~_i~
_
~~• I



F, 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

102

requires a check of the data during normal operation to determine whether the

system i~ in error. To do this a space domain self—checking procedure was

recommended. How’jver, Shedletsky ’s approach requires double the amount of

logic required in a self—checking system to achieve fault tolerance.

Let the cost of a normal system be P1. Let the co~t Increase factor to

convert a normal system to a space domain self—checking systen be S and the

cost increase factor to convert a given system to an alternating logic system

be A. To convert a normal system to a space and time domain self—checking

system , the cost is A S ‘N , if the conversions are independently done.

There is the possibility that a space domain self—checking system may be

inherently self—dual , In which case the cost could be as low as S ‘N.

However, it is more likely that the space domain self—checking CPU is not

self—dual. Assuming the space domain self—checking CPU is not self—dual, then

A and S are approximately two. Thus the cost of building the ADR CPU is four

times the normal Cpu cost. This is probably worse than a triple modular

redundant (ThR) CPU which has similar performance.

A SCAL CPU design which is more competitive with the TMR design is shown

in Figure 7.5. In this case a normal CPU and a SCAL CPU are used in parallel

to obtain space domain self—checking. In order to operate at the same speed

as the normal CPU, the SCAL CPU uses only the first time period of the two

time periods normally used in SCAL. When a fault is detected in either CPU ,

then the system operates at half—speed. The two time periods of operation of

SCAL can be used with the normal CPU to generate three sets of output. A vote

could be taken or the faulty member removed . This is comparable with TMR and

may cost less than TMR if the value of A is less than two.

—-
-~~~~~~~~~~~~

103

—•

_ _ _
~ Normal

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _x _—
~~ CPU

TSCC

Output
_ _ _ _ _ _ _ _ _

Select

SCAL
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _—

~~ CPU

I i
FP—5678

Figure 7.5. Fault tolerant alternating logic CPU

~~

—

~~~

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - —

101!

8. CONCLUSION

• L.L. Summary

Analysis of the application of alternating logic to the design of

self—checking systems has been done. In particular, results have been

obtained in the areas of combinational logic, sequential machine design, SCAL

checkers, SCAL modules, and SCAL system design. These will be briefly

•
-

aimmarized.

• Rules to evaluate whether a network is self—checking were presented. An

• alternating logic network is not self—checking if any line in the network does

not satisfy at least one of the following criteria:

(1) It alternates for alternating inputs.

(2) It does not fanout and its path to the output is through unate gates.

(3) Path parity is the same for all paths from the line to the network

output.

(L I) It is an input to the same standard gate (NAND, NOR , AND , OR , or NOT)

as an alternating line.

(5) using the definition of line G and function F used in the thesis, it

meets the condition

F(X,G(X)) & (F(x,0) & F(X,O)VF(X,l) & F(X,l)) # 0
(6) If any line from a subnetwork used by more than one outpu t fails to

meet one of these conditions for an output, 1, then it is checked to see if:

L_1 ~~~~~~
& Fk(X,s) V Fk(x,s) & Fk(X,s)] & F1(X,G(X)) & ~1(X,s) & F1(~,s) 0

105

A memory—efficient approach for the design of SCAL sequential machines

was presented. In the design of large systems this approach is particularly

valuable. A less practical approach to the design of SCAL sequential machines

by direct implementation was also presented . This may sometimes have cost

savings, but does not in general appear to be a desirable approach.

• Two types of SCAL checkers were discussed . The implementation

• requirements for dependent input checkers were specified. Techniques of

combining dependent and independent input checkers were presented. These

achieve a minimal cost implementation of checking required for SCAL systems.

In addition an analysis was given of the hardware requirements and the

implications of alternative designs .

Minority modules were shown to be sufficient to implement in SCAL any

NA ND or NOR network. The code translation approach was shown applicable to

system level design. In addition an effective use can be made of certain

alternating logic modules in designing systems with improved reliability.

8~2. Current SCAL Research

The position of this thesis with respect to all the work done in this

area is illustrated in Figure 8.1. From the figure it is evident that many of

the aspects of logic design have been considered in their application to SCAL.

Considerable work remains to be done.

I

• 106

I. Conceptual

Definition of Alternating Logic: Bark and Kinne (BARK]

Theory on Fault Detection of SCAL : Yamamoto, Watanabe, and Urano [YAMA]

Theory on Self—Checking: Anderson and Metze [ANDE1]

Theory on SCAL : Reynolds and Metze [REYN1]

Code Conversion in SCAL : this thesis

II. Combinational Logic

Initial Discussion : Bark and Kinne [BARK]

Two—Level Network’s Fault Detection Properties: Ya.namoto, et.al. [YAMA]

Costs of SCAL : Reynolds and Metze [REYN1]

Classes of Multiple Level Networks are SCAL : Reynolds and Metze [REYN1]

General Self—Checking Analysis: this thesis

Improve Design Techniques: for future research

III. Sequential Logic

Initial Discussion: Reynolds and Metze [REYN1]

Dual Flip—Flop Implementation : Reynolds and Metze [REYN 1]

Code Conversion Technique: this thesis

Direct Implementation Approach : this thesis

IV. Self—Checking Checkers

Initial Discussion: Reynolds and Metze [REYN1]

General Designs: Reynolds and Metze [REYN1]

Dependent Line Checker Requirements: this thesis

Minimal Cost Checker Design: this thesis

Figure 8.1. Summary of current SCAL related work

r ~~~~~~~~~~~~~~

•___________

107

Hardcore Logic Requirements: this thesis

V. Modules in SCAL

Initial Discussion: Ibuki , Naemura, and Nozaki [IBUK]

Uses in SCAL: Reynolds and Metze [REYN1)

• Mult iple Input Modules: this thesis

VI. Systems

Alternate Data Retry: Shedletsky [SHED]

System Design: this thesis

SCAL Functions: this thesis

Figure 8.1. Finished •

‘ j I L
-

______ ~~~

- - .••~~~~~~~~~~-—-~~~-- - _ _ _ _ __ _ _ _ _ _ _ _

108

~~~ Recommendations ~~~ Iurther Research

Some of the areas where future research may prove fruitful are evident

from Figure 8.1. Specifically these include :

1. Constructive design procedures for combinational logic. The tools

for analyzing whether a network is self—checking have been provided. It may

now be possible to show techniques of designing SCAL.

2. Design techniques for sequential machines which do not require a

• checker on feedback variables. The complexity of this problem was presented

in Chapter LI.

3. Further study of implementation of the direct conversion technique

for SCAL sequential machines . This c’Ld not appear promising, but some new

study may turn up worthwhile results.

14 More general application of hardcore analysis. The clock line was

assumed to be the line to be used in controlling the system. A more general

proof is probably possible. In addition , the application to space redundant

self—checking systems should be straightforward.

5. Consideration of multiple faults in minority modules. Using

additional redundancy of the minority modules , it should be possible to

achieve self—checking for multiple faults.

6. System design using SCAL. Work similar to the space domain work of

Ho and Metze (HO1 ,H02] in the area of SCAL would be interesting.

In addition , work could be done on asynchronous implementation and

different  time encodings . However , the additional hardware cost does not

present a promising opportunity for research in the use of different time



-~~ 
-•-—- ---,- — ••-—•- —- ---••-—-•.-—

109

encodings .

One final note should be made of the merits of SCAL . This was discussed

in detail in Chapter 2 and will be summarized . SCAL is not a universal

solution to improving the reliability of digital systems. However , in

applications where the cost of the additional time required for SCAL operation

• is not significant, SCAL can provide savings in hardware. Savings can also be

realized in the physical pin count of the large scale integration devices in

- 
which SCAL is used .

I •

FT 

-- ~~~~~~-- -- -—--• ----- •- .—----~~~~~~----- • - —• — - - - ---- — - — - ---~~~-- - • -~~—- ---~ -~~~~ —- •---•• • -•—rn- -~- -,•---•-



-~~~~-~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

110

REFERENCES

[ANDE 1] Anderson , D. , “Design of Self-Checking Digital Networks Using Coding
Techniques ,” Coordinated Science Laboratory Report H—527 , Univers ity
of Ill inois , September 1971.

[AN DE2 J Anderson , D., and Metze’-, G., “Design of Totally Self—Checking Check
Circuits for M—out—of— N Codes , ” IEEE Transactions ~~ Comeuters, pp .
263—269, March 1973.

[BARK] Bark , A. , and Kinne , C., “The A pplication of’ Pulse Position
Modulation to Digital Computers ,” Proc. National Electronics
Conference, pp. 656—66 LI , September 1953.

[BREU] Breuer , M., and Friedman , A., ~~a~nosis .& Reliable Design ~~ Digital
Systems, Computer Science Press, Inc., Woodland Hills , Cal iforn ia ,
197 6.

[CA RT] Carter , W . , and Schneider , P., “Design of Dynamically Checked
Computers ,” 1E~~ ~~~~~, Volume 2, Edinburg , Scotland , pp. 878-873,
August 1968 .

[CHA] Cha , C., “Multiple Fault Diagnosis in Combinational Networks ,”
Coordinated Science Laboratory Report R—650 , University of Illinois,
June 197LI .

[DAVI] Davidson , E., “An Algorithm for NAND Decomposition of Combinational
Switching Systems ,” C000rdinated Science Laboratory Report R—382 ,
University of Ill inois , May 1968.

[DUSS 1] Dussault , J., and Metze , G., “A Low—Cost Totally Self—Checking
Checker for 3N and Residue 3 Codes,” Proc. ~~ ~kii j .~~Ji Annual
Allerton Conference ~~ Circuit ~~ System Theory. Monticello ,
September 30—October 1 , 1976.

[DuSS2] Dussault , J . , “On the Design of Self—Checking Systems Under Various
Fault Models ,” Coordinated Science Laboratory Report to be
publi shed .

[ELECI “Four—Level Logic Coming Next Year from Signeties,” Electronics,
pp. 3 1—32 , October 28 , 1976.

[HOl] Ho , D., “The Study of a Totally Self—Checking Adder ,” Coordinated
Science Laboratory Report R—582, University of Illinois, August

• 1972.

- —

_ _ _ _ _ _ _ _ _ _ _

111

[H02] Ho , D., “The Design of Totally Self—Checking Systems,” Coordinated
Science Laboratory Report R—723, University of Ill inois , April 1976.

[IBU K] Ibuki , K., Naemura , K., and NozakI, A., “General Theory of Complete
Sets of Logical Functions ,” Electronics ~~~

Communications j.n Jaoan
(IEEE Translation) , Volume 146 , Number 7, pp. 55—65 , July 1963 .

[KE T l ~] Ketelsen , M . , “An Integrated Circuit Fault Model for Digital
Systems ,” Coordinated Science Laboratory Report R—7143, University of
Illinois , September 1976.

[KOHA] Kohav i, Z., Switching ~~g Finite Automata Theory. McGraw—Hill , New
York , 1970.

• LLIU] Liu , T . , Hohulin , K . , SE’iau , L . , and Muroga , S., “Optimal One—Bit
Full Adders with Different Types of Gates ,” I~E~ Transactions QnComouters , Volume C— 23, Number 1 , January 19714.

[MURO] Muroga , S. , Thresho)~~ Logic
~~~~~~~ J.~~ ADDlications,

Wiley—Interscience , New York , Chapter 12, pp. 3116_3611 , 1971.

[OZGU] Ozguner, F., “Design of Totally Self—Checking Asynchronous
Sequential Machines ,” Coordinated Science Laboratory Report R—679 ,
University of Illinois, May 1975 .

[PITT ] Pitt , D . ,  “Design of Totally Self—Checking Asynchronous Sequential
Machines ,” Report Number UIUCDCS—R—73—593, University of Ill inois,
September 1973.

[POST ] Post , E . ,  ~~~ Two—Valued Iterative Systems ~~ Mathematical Logic.
Princeton University Press, New Jersey, 19141.

[REYN1] Reynolds , D., and Metze , G., “Fault Detection Capabilities of
Alternating Logic , ” ~roc. ~.th Annual Svmoosium 2fl Fault Tolerant
Comoutin,~~ pp. 157—162, June 1976.

• [REYN2] Reynolds , D., and Metze , G., “The Design of Alternating Logic
Systems with Fault Detection Capabilities , ” Coordinated Science
Laboratory Report R—738, University of Ill inois , September 1976.

[REYN3] Reynolds , D., “Self—Checking Design Using Complete Sets of
Alternating Primitives ,” Proc~ ~~ J~LU1 Annual Allerton
Conference ~n Circuit 

~~~ 
System Theory, Monticello , September

30—October 1 , 1976 .

[SHED1] Shedletsky , J., “A Rollback Interval For Networks with an Imperfect
Self—Checking Property , ” Technical Report Number 96, Center For

• Reliable Computing , Stanford University, December 1975.

112

[SHED2] Shedletsky , J., “Error Correction by Alternate Data Retry,”
Technical Report Number 113, Center For Reliable Computing , Stanford
University, May 1976.

(SMITI] Smith , J., and Metze, 0., “On the Existence of’ Combinational
Networks with Arbi trary Multiple Redundancies,” Proc. ~~ tfl~Allerton Conference, October 1—3, 1975.

(SMIT2] Smith , ~J., “The Design of Totally Self—Checking Combinational
Circuits,” Coordinated Science Laboratory Report R—737 , University
of Illinois, August 1976.

• I [WAKE1] Wakerly, J., “Checked Binary Addition Using Parity Prediction and
Checksum Codes,” Technical Note Number 39, Digital Systems
Laboratory, Stanford University, January 1971!.

• • [WAKE2) Wakerly, J., “Partially Self—Checking Circuits and their Use in
Perform ing Logical Operations,” .I.~~~

Transactions ~~ Comouters,
Volume C—23, pp. 658—666, July 19714.

[YAMA] Yamamoto, H., Watanabe, T., and Urano, Y., “Alternating Logic and
Its Application to Fault Detection ,” Proc . 121Q I&E~ International
Computing Grouc Conference , Washington , D.C., pp. 220—228, June
1970.

113

APPENDIX : ABBREVIATIONS , CONVENTIONS, AND GLOSSARY

• j A. 1 . Abbreviations

ALPT: Alternating Logic to Parity Translator

iff: If and only if

PALT: Parity to Alternating Logic Translator

SCAL : Self—Checking Alternating Logic

A . 2 . Glossary

Failure: Physical device malfunction

Fault : Logic representation of a failure

Function: Logic operation performed

Network : Implementation of a function

System: Combination of Networks

Translator : Network which transforms data from one code to another

A.3. Conventions

f: Fault

• f’: Self—dua l function (Reynold ’ s notation)

(f,g): Outputs of checker (Anderson’s notation)

F: Function

F(X): Output from network implementing F when X is applied

F(T): Output from network implementing F when ! is applied

I • !(X): Complemented output from network implementing F when X is applied

F (X ,Y) : Alternating output from network implementing F when (x ,Y) is

applied

Ff(X): Output from network Implementing F when X is applied and fault f

occurs

F(X,G(X)): Output from network implementing F, with value G(X) on line

g, for input X

F(X,—): Output from network implementing F, with value s on line g, for

input X

-

•
I F1: Output of the i—th function

• 0(X): Value of line g in the network for input X

s: Logical value a faulty line is stuck—at (0 or 1)

• I X: Input vector

(X ,
~~

) : Alternating input sequence

• (Y,!): Alternating sequence

• (0,0): Period clock alternating with time period of system, (0,1)

• - (0,0) : Complement of period clock , (1 ,0)

L
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _



115

VITA

- Scott Eugene Woodard was born in Urbana, Illinois on November 26, 1951.

He has received a BS degree in 1973 and an MS degree in 1975 in Electrical

~~gineering from the University of Illinois, Urbana—Champaign. Currently he

L is in the Ph.D. program of the Electrical Engineering Department of the

University of Illinois.

I ~( _
I .

~~~~~~~
-:
~~~ • ~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _


