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Preface

This report summarizes an investigation which examined the
structured design methodology applied to an operational flight pro-
gram (OFP). Several design techniques are successfully applied to
a particular OFP. Hypothetical software modifications illustrate the
advantages of structured design OFP software over a current software
implementation. Software life-cycle effects of structured designed
OFPs are briefly described. An OFP familiarization and design
methodology is developed for avionics software engineers/contract
monitors. The report is written for a reader who possesses a basic
knowledge of software development and who understands the struc-
tured design methodology.
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Abstract

Constantine's structured design methodology is applied to a
real-time (flight) software program. A modified finite-state tech-
nique is successfully applied to an operational flight program (OFP)
mainloop. Transform and transaction analysis are successfully
applied to mainloop tasks. Each technique is demonstrated to show
avionics software engineers/contract monitors 'how to get started' on
a design. Two hypothetical software modifications illustrate advan-
tages of structured design over the current software implementation.
Short and long term effects of structured designed OFPs are briefly
described. An OFP familiarization and design methodology is
developed for avionics software engineers/contract monitors. T

Structured design techniques are beneficial to the software
engineer/contract monitor during initial understanding of OFP design
requirements from a draft Part I specification. Design alternatives
may be considered and the software producers interpretation of
design requirements may be verified. This effort was sponsored by
the Aeronautical Systems Division (ASD/ENAIA) located at Wright-

Patterson Air Force Base, Ohio.
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SOFTWARE STRUCTURE DESIGN TECHNIQUES
APPLIED TO EMBEDDED COMPUTER
SYSTEM SOFTWARE

I. Introduction

Background

General. In recent yvears, sophisticated and expensive Air
Force Computer programs (software) used in avionics systems have
been relatively inflexible, difficult to repair, and have required
extensive updates to keep pace with state-of-the-art improvements in
computer technology and changing operational requirements. Nor-

mally, in a software development program, deadlines and cost are

the major concerns. As a result, the importance of the design phase

is greatly de-emphasized. There is a great tendency to start coding

§ software at the beginning of the project. Since the design phase is,

33 1
in many cases, ''cut short,' errors result which remain unnoticed

until after system implementation. In addition, there is usually little

concern about future repair and update (maintenance) requirements,

and the efficiency and ease with which that software maintenance can

be performed.

Design Approaches. Some avionics software designs have been

accomplished with a ""bottom-up'' approach by developing software

before addressing functional interface and integration problems.

Recently, more successful designs have been accomplished with a




""top-down'' approach in which the '"top' is assumed to be a firm,
fixed requirements specification and hardware architecture. It had
been assumed that the data structure was already established. In
some cases, these types of assumptions change, and the designer
must then back-track to update his design.

More recently, a software design methodology called
'structured design'' has received much attention. This methodology,
which produces a modularized software design, allows easier system
implementation and maintenance than previous approaches permitted.
Cost effectiveness is usually improved with the use of this de.sign
method, and program complexity is reduced (Ref 40). There has
been an attempt to apply this design methodology to a real-time
system (Ref 20). At the time of this writing, the author is unaware of
any efforts to apply this methodology to operational flight software.

Typical Scoftware Problems. Avionics software, like automatic

data processing (ADP) software, is not without its share or problems.
In fact the typical problems associated with both types of software are
very much alike. In the avionics software, there are similar indica-
tions of high project costs and low or poor software reliability (Ref
10:477,479; and 36:228). However, there are other problems with
avionic software which need to be discussed.
Recently, it has been suggested that avionics software is being

used like a '"band-aid.' That is, the lack of early specified, firm,

explicit requirements contributes to the idea that avionics software

2
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can be used to "fix'" all the marginal hardware performance (Ref 10:

477). In general, engineering management should be performed on
avionics software to the level normally expected on any hardware
project (Ref 10:478).

The uncertainty of software module interfaces in a large pro-
pram causes considerable anxiety for managers. Problems fre-
quently occur here, and module design or debugping may require
several iterations. Designing a set of "milestones' may help moni-
tor project status, but it appears to be beneficial if a hierarchical
structure chart of the modules is constructed as early as possible.
Module intertfaces should also be defined. This approach helps in
evaluating design alternatives (Ref 10:478).

Normally, most avionics software lacks the flexibility of being
reuseable. Software procurement for avionics usually results in new
software for each new flipht computer. This redevelopment proce-
dure is extremely costly. Most software can not be readily changed
to meet the everchanging threat environment. It is unmaintainable by
the government, and difficult to maintain even by the original vendor

(Ref 30:228-229),

Purpose
I'he purpose of this report is to present the results of an investi-

gative effort to apply the structured design methodology to part of an

operational flight program. Computer software developed for avionics
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software systems by this design method should be easier to imple-
ment and understand. Complexity should be reduced, and the soft-
ware should be less difficult to maintain and more cost-effective with
respect to life-cycle costs. A generalized approach or methodology
for the design of avionics operational flight software will be devel-
oped. It will include the use of structured design. The objective of
the methodology will be to provide Air Force avionics software
engineers/contract monitors with an additional method to understand
the requirements definition for preliminary design and management

of operational flight software.

Scope

In order to more realistically investigate structured design
applied to avionics operational flight software, it would be helpful to
investigate a real system. The PAVE TACK operational flight soft-
ware (see Chapter III) draft Part I specification will be used. Due to
the complexity of the PAVE TACK requirements and the length of
time permitted for this study, the structured design methodology will
not apply to the entire PAVE TACK flight program software.

Since structured design is well documented (Ref 34; 40), this
study will be limited by purposefully halting the design process at
certain points with the specific purpose of showing the software
engineer '"how to get started" on a design. This approach allows

several design techniques to be used. These techniques are known




o At A

b 5

and well documented. Therefore, the techniques will be demon-
strated, not taught.

The draft and final PAVE TACK preliminary design (Part I)
specifications will be used. No attempt will be made to modify either
specification or produce any program code. Testing of any
redesigned software and access to the PAVE TACK computer hard-

ware will not be required.

Preliminary Rationale

It was desirable to have a clear and concise operational flight
program (OFP) design (Part I) specification at the start of this invest-
igative effort. The purpose of this specific\ation is to supply the
designer with a comprehensive and unambiguous software require-
ments definition for the OFP. Thus, all appropriate and necessary
information would be available to the software designer.

It was anticipated that a reasonable learning curve would be
experienced during the initial phases of the design investigation.
There was previous personal experience with defining and designing
from written software requirements, but no experience with avionics
software and no prior knowledge of OFP concepts. In addition, there
was no previous personal experience with AFSC Part 1 specifications
per se.

Finally, it was not known whether or not structured design could

be applied to an OFP or any part of an OFP. If structured design
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techniques could be used, then another aid would exist which would
allow avionics software engineers/contract monitors to cope with the
problems of interpreting OFP software design specifications. In
addition, it would aid in making better decisions and suggestions about

design alternatives.

Assumptions

The reader should be familiar with the basic concepts of an
OFP. However, if this is not the case, Appendix A briefly discusses
basic concepts. This brief discussion on flight scftware concepts
(Appendix A) was included since many people are interested in soft-
ware design, but avionics flight software is quite different from nor-
mal data processing software applications. It is assumed that the
reader understands the structured design methodology, its techniques,
and its principles.

Finally, any statements made by the author concerning flight
software, PAVE TACK, structured design, Air Force specifications,
or anything associated with this research effort is strictly the author's
interpretation of that information and bears no official judgment on
behalf of the Air Force. The author bears sole responsibility for this

research and report effort.

Development Plan

Chapter Il briefly discusses some problems associated with Air

Force software development, concepts of a software architecture for ¢

6
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flight program managers, and presents a description of the struc-
tured design methodology.

Chapter LIl presents a brief description of the PAVE TACK
operational flight program.

Chapter 1V discusses the initial approach taken for this investi-
gation, difficulties encountered, and how the approach was revised
and applied to achieve meaningful results.

Chaptér V presents a discussion on the effects of two hypothet-
ical software modifications to certain parts of the designs from
Chapter IV and the current PAVE TACK software. Short and long
term effects associated with OFP's designed using structured design
techniques are also discussed.

Chapter VI presents an OFP design methodology developed for
avionics software engineers and contract monitors. It is a general-
ized design approach which consists of three phases: (1) understand-
ing the flight program requirements; (2) use of a technique for under-
standing flight program tasks and task sequencing; and (3) use of
structured design techniques for task design.

Finally, Chapter VII presents results and conclusions of this
investigation. Some recommendations are also made for future

efforts,
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[I. Toward the Structuring of Computer Software

Introduction

This chapter briefly discusses certain problems associated with
Air Force software development. Some concepts for flight program
managers about software architecture are also presented. Finally, a
description of a recent software design technique which improves the
architectural design of software and aids in reducing hife-cycle costs
is presented. The information discussed in this chapter can be

applied to software in general (e.g. algorithm development).

The Problem/Coding Syndrome

From the very beginning, a person learning to program a com-
puter is taught to understand the problem to be solved, devise a
solution algorithm, and finally, code that algorithm in a suitable
programming language. Since this methodology is taught at a basic
level, it seems to stay with a person forever. Ior many years this
problem/coding tradition has been a part of the software life-cycle.

The software life-cycle is well known by software professionals
(Ref 1:4). However, as shown in Fig. 1, the requirements definition
phase and a major portion of the design phase have been bypassed.
The design phase consists of preliminary or system level design (Ref
22:14), and detailed design. In Fig. 1, the shaded area within the

design phase represents only part of the detailed design. See
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reference 12 for further details. The importance of the software

requirements definition ("what') and design (""how') cannot be over-
emphasized in any Air Force software development efforts.

The software requirements and design phases must be accom-
plished so that the end-item software system satisfies the user's
requirements, is more easily understood (reduced complexity), and
is maintainable. These attributes will help to significantly decrease
total software life-cycle costs. There is almost a direct relationship
between the requirements/design phases and the operational phase.

Software maintenance occurs in the operational phase (Ref 1:6;
12:25) of the software life-cycle. Latent software errors are gener-
ally discovered at this time (Ref 1:6). This category of errors (i.e.
latent) is usually due to poor requirements definition, poor design
effort, or both. Generally, the later the errors are found the more
costly they are to correct with respect to effort and time (Ref 12:5).
It is well known that software life-cycle costs are high and are con-
tinuing to increase. Therefore, software development can no longer
be taken lightly.

The Air Force has been involved with the procurement of aero-
nautical system software for many years, but recently has indicated
that maintenance and support of weapon system software throughout
the life-cycle may be accomplished by the Air Force if deemed cost
effective. Since new weapon systems have a long lead-time and tech-

nology (i.e. software and hardware) and mission requirements are

10




constantly being improved, it is very probable that an active modifi-
cation and enhancement program for any particular avionics software

will be generated.

Requirements Engineering

The purpose of the requirements definition phase in the software
life-cycle is to completely and unambiguiously document an interpre-
tation of the software requirements necessary to satisfy the system
specification. This phase of the software life-cycle can be consid-
ered the most critical (Ref 1:5). A Partl software specification
(design) contains the requirements information peculiar to the design
and development of a particular software system (Ref 2:15).

The requirements represent a complete analysis of "what'' (not
"how'') one is trying to accomplish with the software (Ref 22:14) or
what the software product will do, and serves as a basis for common
agreement among all parties concerned (Ref 12:5). A well detailed
description of "how' these requirements are to be achieved is accom-
plished in the design phase of the software life-cycle.

In general, software development is divided into many physical
tasks to be accomplished by many peopie, and as a result, it may be
extremely difficult to maintain the "integrity' of the entire system
(Ref 13:42-44). An excellent place to start maintaining system
integrity is with the use of a complete and concise software require-

ments definition. As with any problem which is to be solved, a better

11
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solution is achieved if the problem structure i{s more clearly and con-

cisely defined, described, and understood.

Architectural Philosophy

The word architecture implies organization. At first glance, a
well organized software systems architectural representation might
resemble an organization chart for some large corporation. This
architectural representation also implies a management hierarchy
(Ref 40:25) which is closely associated with the different information
levels within the organization or structure. In a software system, this
hierarchical structure is represented by the purposeful ordering of the
pieces or parts (modules) which make up the system.

A major concern of the software engineer or designer should be
the ordering of the modular structure in such a way as to reduce com-
plexity and ease the processes of coding, debugging, testing, integra-
tion, and operation §0 that software life-cycle costs will be reduced.
The design phase is extremely important. Within this phase, the pre-
liminary design should result in an identification of all modules, their
functional descriptions, their interfaces, the hierarchical structure
of those modules, the associated data structure relationships, and any
necessary performance requirements (Ref 22:15).

A recent report (Ref 38:5-6) indicates that the software for an
operational flight program used in a sophisticated electro-optical

sensor system was designed in such a way that its architecture will

12

N ——
SRS




not allow easy modification to meet changing requirements. In order

for the software maintenance and support operations to successfully
meet changing requirements, the necessary internal software design
information must be easily transferable, understandable, and com-

plete (Ref 8:23-25),

It would be highly desirable to use an appropriate design and
self-documenting methodology to provide this information. It should
be conducive to providing an improved software architectural design
which can more easily meet changing requirements and, in addition,

help reduce total software life-cycle costs.

The Technique of Structured Design

Recently several software design techniques have received the
attention of software engineers. MHierarchy plus input-process-output
(HIPO) by IBM (Ref 17), higher order software (HOS) by Draper Labs
(Ref 10), top-down by Wirth (Ref 39), information hiding by Parnas
(Ref 27; 28), Jackson's method (Ref 19), composite design by Myers
(Ref 26), and structured design by Constantine (Ref 40) are design
methodologies currently in use. The latter, structured design by
Constantine, will be briefly discussed.

Structured design is a set of general program design consider-
ations and techniques used to make coding, debugging, and modifica-
tion easier, faster, and less expensive by reducing complexity (Ref

20:Sec I,1). The major ideas of this methodology resulted from

13




nearly ten years of research by Mr. larry L. Constantine. He
approached his research from a cost standpoint and observed #®at
some designs were cheaper than others, were easier to implement,
and allowed faster and easier modifications (Ref 34).

A major objective of structured design is to develop a software
system of modules arranged in a hierarchical manner such that indi-
vidual portions can be evaluated, implemented, moc}ii.fied, or changed
without affecting the rest of the system (Ref 29:42). For an optimal
design, certain principles and rules are used. The principles of
Coupling (intermodular connection relationship) and Cohesion (intra-
modular strength relationship) aim for low or loose coupling between
modules, and high individual module cohesion (Ref 24:13). In addi-
tion, rules for module scope-of-effect and scope-of-control aid the
software designer in achieving this objective. A module’s scope-of-
control is that module plus all subordinate modules. The scope-of-
effect (of a decision) is the collection of all modules containing any
processing that is conditional upon a decision. For any given deci-
sion, the scope-of-effect should be within the scope-of-control (Ref
40:240).

A data flow diagram or bubble chart is used (see Appendix B).
The bubble chart defines the required order of data transformation
and, according to Constantine, should not show control flow, timing,
looping or machine dependency. The bubble chart does not indicate
the modular structure (Ref 20:Sec I,5). The focus is upon major

14
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streams of data as they flow from external input to external output,

and the transformation processes in between (Ref 24:15). A structure
chart is developed from the bubble chart and represents the hierar-
chical relationships of the modules and procedural or control infor-
mation (see Appendix C). These charts are used in a heuristic
manner to document design refinement and evaluate the system archi-
tecture with respect to the principles and rules previously discussed.
The functional orientation of structured design makes it partic-
ularly appropriate for software systems which might experience
changes in function (Ref 24:16), possibly like those associated with
operational flight software in a real-time embedded system. Modifi-
cations which involve additional, augmented, or deleted functions are
relatively straightforward (Ref 24:16) where structured design has

been used.

Summar

This chapter expressed a concern for software requirements
and design engineering with a goal toward purposeful software system
structuring and the use of a method for accomplishing that structuring.
The traditional approach of many software practitioners (and man-
agers) in going directly from the problem (system specification) to
the coding phase is highly undesirable and costly. The need for a
complete, unambiguous, written, and mutually agreed upon require-

ments definition is highly desirable. A software architecture which

15
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easily allows future changes, is easily understood, and aids in reduc-
ing software life-cycle costs associated with a system is also desir-
able. I.Dresent day Air Force software is very expensive. Finally,
Structured Design by Constantine is a software design methodology
that makes coding, debugging, and modification easier, faster, and
less expensive. These attributes are highly desirable for Air Force
computer software. Prior to discussing the application of design

techniques, the PAVE TACK OFP will be briefly described.




1. The PAVE TACK Operational

l':',‘&';} ’,,‘_,".‘_’b'."“"‘

Introduc tion
This chapter brietfly describes the operational flight program
tor a current Air Force sysiem named PAVE TACK. General infor-

mation, subsysatem intertaces and the executive structure are dis -

cussed.

PAVE TACK is a name given to an advanced day/night electro-
optical, pod-mounted attack and suxi\'vill;mcc system intended to
improve weapon delivery capability, The PAVE TACK pod can be
centerline mounted or located on any stores station of a particular
fighter aircraft.  In addition to supporting avionics and power con-
version equipment, the pod contains a digital computer (Retf 25:50).
Within the computer the OFP performs signitficant mission functions.

The PAVE TACK OFP interfaces with the pod to perform target
scarch and tracking functions, It also intertaces with the aircraft
computer (serial digital interface) tor the input of navigation and aim-
point data and the output of navigation correction updates. Computa-
tions are performed which in turn generate sipnals to the PAVE TACK
stablized sight subsystem to assist in acquiring and tracking targets.
Laser information (e, g. slant range), operator signals (e. g, tracking

control handle), and electro-optical sightline angular data are
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processed by the OFP to provide data for updating aircraft navigation
and weapon delivery functions (Ref 7:Sec II, 1).

The OFP resides in the flight computer memory. Under control
of the stored OFP, a conversion unit accepts analog data from the pod
and avionics systems and converts this data for use by the digial com-
puter. Atter processing the data, some outputs of the computer are
converted to appropriate analog signals. Other data is available or
produced in the form of 'discretes' which are special words in com-
puter memory. Each word consists of bits, each of which represent
a specific status (e.p. inhibit laser, system failure, hand-control
switch, and so forth). Xor further details on the OFP, the reader
may refer to references 4, 5, 6, 7, 15, 18, and 38.

Subsystem Interfaces. It is necessary to synchronize the OFP

functions with those being performed by subsystems, and there are a
number of different interfacing loops involved. The three interfacing
loops are the operator loop, the pod/OFP loop, and the aircraft com-
puter/OFP loop. The functional subsystem interfaces for the OFP
may be seen in Fig. 2.

PAVE TACK's primary function is target acquisition and track-
ing. In the operator loop, this function is controlled by the aircrew.
Analog thumb tracker inputs (i.e. the tracking control handle) allow
the aircrew to control the line of sight (LOS) of the forward looking
infrared (FLIR) detector and laser in the pod. Feedback to the air-
crew 1s through a CRT display which is controlled by software and
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hardware. The interactive pod/OFP loop exists between the pod
subsystems and the . .'P. The pod provides analog LOS position and
rate data to the OFP, while the OFP provides analog LOS position
control as a function of errors and control inputs. Hardware and
software parameters maintain loop stability. The primary purpose
of the aircraft computer/OFP loop 18 to provide aircraft computer
navigation and aimpoint data to the OFP. This loop is interconnected
with the operator interface through the aircraft computer.

Executive Structure. The executive handles the timing and task

sequencing of the entire OFP. In addition, the executive is responsi-
ble for assuring that the program resumes without "impurity' where
it left off after a timing or data interrupt has occurred.

The executive control module of the PAVE TACK OFP consists
of three main routines: the power interrupt module, the level-1
interrupt routine, and the level-0 interrupt routine. The power inter-
rupt module performs the initial condition settings for the OFP after
the accurrence of the power-up interrupt or after the completion of a
system built-in test (BIT).

The level-1 routine controls the basic timing of the OFP pro-
gram execution. A programmable timer (counter) is set to generate
a level-1 timer interrupt every 8. 33 milliseconds. Whenever this
timer interrupt is generated, the executive control portion of the
level-1 routine is entered. Processing consists of a mainloop cycle
of 25 milliseconds, a fastloop cycle of 8,33 milliseconds, and slow

20




cycle of 100 milliseconds and 1 second. The fastloop performs the
rate aiding and image derotation angle extrapolation computations in
order to provide the rate aiding signals and derotation angle output

at the rate of 120 hertz. The slow cycles include a call to a subrou-
tine which flashes the laser transmitter-on indicator on the CRT at
the rate of five times a second whenever the laser transmitter is on.
The other portion of the slow cycle consists of the CRT display output
processing.

The main processing of the PAVE TACK OFP is performed
every 25 milliseconds when the executive calls the mainloop module.
The start of analog data input conversion is initiated by the executive
immediately before the execution of the mainloop. The mainloop may
be interrupted by the level-1 timer interrupts. The euvecutive checks
to see whether the slow cycle processings are required, calls the
slow cycle processings or sets the flags for slow cycle processings
when required, and returns to the processing interrupted. After a
cycle of the mainloop processing is completed, control is returned
to the executive.

The executive also calls the one hertz processes when required
and starts or continues a BIT software program which is performed
on a time available basis. This program is called the running BIT
program, and it performs limited self-tests of the CPU, memory,
input/output, and pod subsystems. The level-0 interrupt routine

services analog data conversion and laser input processing when the e

21




i Ao S Gl L I

5

oo

. e

signal converter interrupts are generated. The OFP executive con-
trol program is a synchronizing executive. The level-0 interrupt
routine services asynchronous external inputs at a higher priority

level than the executive program.

Summary

This chapter presented a brief description of an operational
flight program for a current Air Force pre-operational avionic sys-
tem called PAVE TACK. General information, subsystem interfaces

and the executive structure were discussed.
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IV. Application of Design Techniques

Introduction ' :
This chapter describes the results of applying several design
techniques to the PAVE TACK OFP. The initial approach attempting
to apply the structured design methodology is discussed. Included
are some of the problems that were encountered. Finally, the
revised design approach, as a result of the problems encountered
during the initial approach, is described, and several design tech-

niques are discussed.

Initial Approach

Objective. For the initial approach, the structured design
methodology was to be applied to the entire PAVE TACK OFP require-
ment. After a reasonable amount of requirements familiarization
time, the draft Part I software specification (Ref 4) was used, as it
should be, for the basis of the software design. It was anticipated
that this would be the same design starting point for an avionics
software engineer/contract monitor. The operation of the OFP,
developed with structured design, would be a ''black box'' equivalent
to the current software. However, the internal software architecture
of the new design would be different, and the benefits of this type of
design were previously discussed in Chapter II. Transform analysis

was used to start the design process.
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Application of Transform Analysis. Constantine defines Trans-

form Analysis, or transform-centered design, as a strategy which
identifies the primary processing functions (transform center) of the
desired software system, the high-level inputs (afferent data ele-
ments) to those functions, and the high-level outputs (efferent data
elements) from those functions (Ref 40:254). The concepts behind
the strategy of a structured design were briefly described in Chapter
II. The major steps of transform analysis are:
1. Restate the '"problem' as a data flow diagram (bubble
chart).
2. Ildentify the afferent and efferent data elements on the
bubble chart.
3. Perform first level factoring to obtain an initial high-level
structure chart.
4. Using this structure chart, factor the afferent, transform,
and efferent branches.
5. Complete the final structure chart by noting any departures
from the structure chart obtained in the previous step.
Departures refer to changes resulting from a design trade-off
analysis of scope-of-effect, scope-of-control, the px;inciples of
coupling and cohesion, and any a priori knowledge of particular
"real-world'" effects on a proposed design. As mentioned in step
one, the transform analysis process starts with the development of
a bubble chart.

24
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Attempting to start the initial development of a system-level
bubble chart for the PAVE TACK OFP was not easy. The draft Part
I specification (Ref 4) did not necessarily indicate how data for the
OFP was related to, or oriented (e.p. task, operator selected mode,
etc.) for use by the desired software. A system-level bubble chart -
should consist of all major inputs, all major outputs, and all appro-
priate data transformations between the two types of data. However,
due to lack of written direction (draft Part 1 specification), the com-

plexity of the design problem slowly became apparent. It might be ]

possible to orient the data for the bubble chart by task (or mission
related function), data classes (discrete or analog), mode search),
interrupt levels or some combination of these. Upon closer exami-
nation, it appeared as though a task and/or mode data orientation
might be the best direction to take.

However, a change in applying transform analysis to the entire

OFP had to be made in order to allow the study to proceed. With
respect to the entire OFP, processing outside the mainloop appeared
to involve too much timing and control. A basis in applying a bubble
chart is to avoid timing and control. Therefore, it was decided that
a bubble chart would not be directly applicable to the executive and :
other associated functions outside of the OFP mainloop. As a result,

the decision was made to apply the transform analysis steps to the

OFP mainloop since most of the operational airborne functions are

performed there (Ref 38:A1). L
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Several unsuccessful attempts were made to create a mainloop
bubble chart. One particular attempt is worth noting. Realizing that
the mainloop performed several functions, the idea of generating
subsets of bubble charts (bubble chunks), which would later be com-

bined, seemed appealing. Bubble chunks were created for several

sub-functions such as ACQUIRE, SNOWPLOW, TERRAIN MONITOR
and NAVIGATION cueing. The bubble chunks were combined to form
the bubble chart associated with sightline control during the search/
acquire function. Although the idea of using bubble chunks is a valid
technique (Ref 20:Sec 1I,26-31), it did not work well in this case.
The result was a very poor, if not invalid, bubble chart. The bubble
chart was extremely cluttered, had interfering, g.'jrossing data flow
lines (not allowed), was inconsistent in several areas (e.g. undesir-
able differences in data stream names), and tended to sho‘w some
control (not allowed). Later the reason for this result will become
apparent.

After much time was consumed experiencing several such
"blind alleys, " the final Part I software specification (Ref 5) became
available and proved to be helpful. The OFP functional summary
now listed the major tasks to be performed (Ref 5:Sec I, 1-2) rather
than a description of the OFP "modules' (Ref 4:2). Normally a
complete description (including interfaces) of OFP mainloop modules
would exist after the preliminary design as a result of an entire
application of, for example, tli. design techniques presented in this

26
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chapter. The following major tasks associated with the OFF main-

loop were extracted (verbatim) from the functional summary list

(Ref 5:Sec I,1-2):

1. Provide signals to the PAVE TACK sightline control

electronics to assist in acquiring and tracking targets.

2. Provide velocity trim and navigation update data to the
aircraft computer. (Clarifying Note: The navigation
update actually consists of velocity and range trim data.)

3. Inhibit laser opcrntions under specified conditions.

4. Provide image derotation and focusing signals to the

AN/AAQ-9 Infrared Detecting Set.

The major tasks listed above served as the first vague indication of

actual mainloop requirements as per a Part 1 specification.

The final Part I specification also gave very brief summaries
of the mainloop major tasks listed above (Ret 5:Sec 1,2-7). The
summaries were helpful with respect to task familiarization. It was
reasonable to expect, from a designer's point of view, some written
description of any precedence relationship associated with the set of
tasks comprising the mainloop. It was obvious from stxld;‘i;\\g,‘ the
specification that some tasks or actions were required prior to
others (e.g. input specific data at start of mainloop, or perform
coordinate transformation of inertial-to-sightline information).
However, precedence information of a level of detail sufficient for
this design study was not found.

27
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A final attempt was made to apply transform analysis to the
OFP mainloop. Major functions were analyzed. During the attempt
to generate a bubble chart, it was realized that no afferent or efferent
data elements could be found between the major tasks. In fact, each
major task actually functioned as an input-process-output (IPO)
scheme. That is, each major function investigated for the mainloop
could be considered a small application program in itself. This
explained why previous bubble chart attempts (e.g. using bubble
chunks) did not succeed. With this realization, it became obvious
that the approach to the structured design investigation would have

to be modified.

Revised Approach

Objectives. For the revised approach, several design tech-
niques were applied to the PAVE TACK OFP mainloop requirement.
The final Part I specification (Ref 5) was used in the same manner
previously discussed (initial approach objective). The design tech-
niques were applied to several sections of the OFP mainloop, but
procedures related to each technique are carried out only far enough
to show the avionics software engineer/contract monitor "how to get
started' on a design. Finally, a software design is subjective, and
naturally, may vary from one designer to another.

Finite-State Technique. Ior the purposes of this study, the

finite-state technique is defined as a method that uses a state
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diagram to represent a specific algorithm's control flow. The state
diagram is made up of nodes and directed links which represent con-
trol of the OFP mainloop operational airborne functions or tasks.

The nodes are represented by circles. The directed links (i.e. edges)
between nodes are represented by an arc.

The technique, as used here, has been slightly modified from
current finite-state autonoma methods (Ref 24:22-27; 11:221-239).

In this study, each node represents a task. Since each task within
the OFP mainloop has previously been defined as an IPO scheme, no
data is passed between tasks at this level (state diagram) of observa-
tion. Proper sequencing of control from one OFP mainloop task to
another is of prime importance at this stage of design. In this
respect, the technique permits a better understanding of the algo-
rithm's control structure by using an appropriate ''level of observa-
tion" and reducing superfluous detail.

For the PAVE TACK OFP mainloop, a particular control
relationship (i.e. search, cue or track mode selected by the opera-
tor) was known (Ref 5:Sec I, 65; Sec XX, 9-10) at the start of each
mainloop execution. This relationship was used to direct control to
the next task in the mainloop. This is possible because the maximum
mainloop execution rate is forty hertz, and the mode does not change
during any particular mainloop cycle. Although the mainloop is

pre-emptable, task execution resumes when the request causing an

interrupt is satisfied. For example, an interrupt generated for
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laser data input pre-empts an '"in-process'' task in the mainloop.

After the laser data has been ''processed, " the interrupted task in
the mainloop resumes its processing. The control relationship,
defined above, works in a satisfactory manner for this application of
the finite-state technique since the mainloop can be considered a
closed sub-task system (mainloop is part of the executive). That is,
the mainloop contains a unique initial task (adjust raw input data for
OFP use) and a unique terminal task (adjust raw input data for OFP
use) and a unique terminal task (adjust processed data for output).
Obviously, execution of the mainloop is considered complete when all
applicable tasks, depending on the control relationship, have been
processed including the initial and terminal tasks.

The control relationship previously discussed, and results of
further analysis of the mainloop requirements (Ref 5:Sec III, 65-68)
were used to apply the finite-state technique. The resulting state
diagram is shown in Fig. 3, and a description of next-state transi-
tions by mode (search, cue or track) are shown in Table I. This
type of table may. be helpful during the coding phase, but can be
quite large depending on the particular OFP requirements. In Fig.
3, node one is the initial task and node eight is the terminal task of
the OFP mainloop. Node six (Perform Target Operations) is in an
abstract form in order to simplify the state diagram. It consists of
many sub-tasks or functions, some of which will be shown later in
this chapter (see Transform/Transaction Analysis).
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If larger, more complex task systems are required, the
designer can use a more rigorous approach. A stricter task notation
for chains and precedence may be used. If the designer requires
this type of detail, any good text that uses graph theory applied to
operating systems may be used. See reference 14.

The state diagram may be refined in any appropriate manner,
and verified by checking the tasks of the diagram against the func-
tional design requirements until the requirements are met. Desired
levels of detail, clarity and completeness may be achieved. It is
important that the state diagram directly reflects the algorithm
structure and meets the written design requirements. Once the soft-
ware designer completes this step (application of the finite-state
technique), the technique could be applied (if warranted) to another
single "task' within the state diagram just developed (e.g. Perform
Target Operations). Developing state diagrams at more than one
level allows design refinement. Each successive level would obvi-
ously contain a greater amount of detail. In addition, the techniques
which follow can also be applied to a single task until the entire OFP
mainloop design is complete.

Transtform Analysis Technique. For the revised approach,

Constantine's version of transform analysis (Ref 40:254-300) was
modified. The technique was extended to include iterations between
the bubble and structure charts (Ref 20:Sec 11, 1-36). The modified

transform analysis technique permits successive design refinement.
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| The major steps are:

3 1. Restate the "problem' as a data flow diagram (bubble chart).

i This is called the "first-cut' bubble chart,

2. ldentify the afferent and efferent data elements on the
bubble chart.

3. Develop a fully factored, 'first-cut" structure chart.

4. Using the basic principles of coupling, cohesion, scope-of-
effect, and scope-of-control, analyze the first-cut structure

chart.

5. Using the results of the analysis, rearrange any modules as
necessary, and recheck the analysis as necessary. When
the analysis is complete, the resulting structure chart is
called the "intermediate' structure chart,

6. From the intermediate structure chart, develop a new
(revised) bubble chart. This is referred to as the inter-
mediate bubble chart.

7. Revise the transform, and afferent and efferent data ele-
ments on the bubble chart as necessary. This is called the
"final' bubble chart.

8. Lastly, develop the final structure chart from the final
bubble chart,

In any analysis of a bubble chart, 1t should be remembered that the

bubble chart may be considered a graphical representation of the

problem's requirement definition. Obviously each bubble chart
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should be checked against the written requirements for misinterpre-
tation of those requirements or any other errors (e.g. an incorrectly
named data element). The final structure chart represents the
design, and the chart should reflect the problem structure.

Transform Analysis will be applied to the "Perform IDS Image
Derotation' task in the mainloop state diagram shown in Fig. 3,
Some of the OFP mainloop tasks are trivial (e.g. "Setup IDS Focus'"),
while others are more complex (e.g. "Preprocess Raw Data''). How-
ever, the infrared detector set (IDS) Image Derotation task is simple
to understand. Operator hand control data and electro-optical (EQ)
gimbal data are used to generate certain derotation data which per-
mits the IDS to perform the image derotation function. When a
target has been acquired (with respect to the aircraft using PAVE
TACK), the target image can be displayed (in the cockpit) in a nor-
mal and upright manner, and thus enhance recognition of a target.
This type of image display is accomplished if the operator selected
the "Horizontal Natural' display mode. If this type of image display
is not selected, the target image is displayed such that the vectored
component of aircraft velocity is upward relative to the display
(Ref 5:Secl, 6).

After an extensive analysis of the requirements for the IDS
image derotation task, a first-cut bubble chart was completed, and
the afferent and efferent data elements were identified as shown in
Fig. 4. The placement of the afferent/efferent "cuts'" may vary
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slightly from one designer to another. The central transform for

this problem lies between the afferent/efferent cuts. Within the
identified central transform, two main functions are performed.

Raw hand control data is derotated by using the derotation angle which
is either a preset, or calculated and modified angle. The modified
derotation angle is derived by applying predetermined angle limits to
the computed angle. The computed angle is obtained from the electro-
optical gimbal data (roll, pitch and yaw sine/cosine gimbal informa-
tion). For the second function, Lh;x derotation angle rate-of-change
increment is computed using the modified derotation angle and the
status of the horizontal-natural mode selected by the operator. The
horizontal-natural sta‘tus and the wide-field-of-view (WFOV) status
are obtained from specific discrete input words (DIWX) in memory.
The WFOV status is used to update the PAVE TACK pod status. The
WFOV status may also be used to scale (a magnification function used
for cockpit display) the derotated hand control data.

The bubble chart, Fig. 4, can be used to verify the designer's
interpretation of the problem by comparing it to the requirements
definition (Part I specification). If necessary, the bubble chart may
be revised to conform to the problem requirements as they are under-
stood at this point in time. When the designer is satisfied with the
first-cut bubble chart, the first-cut structure chart can be developed.

The first-cut structure chart shown in Fig. 5 was developed
directly from the first-cut bubble chart with the data and control
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arrows added. Any decisions within the hierarchical structure are
also shown. The modules are annotated with descriptive phrases
rather than single names. Table Il lists the input and output
parameters of the first-cut structure chart. Any control parameters
are underlined.

The software engineer/contract monitor may not want to use a
descriptive phrase for each module. As an alternative, singular
verbs can be used which characterize each module's function (Ref 40:
273-277). For example, the following names could be applied to the
second-level modules (by number) of Fig. 5:

1. GETHORZSTAT 6. DEROTHANCONTL

2. GETHANCONTLDAT

-]

. COMPANGROCI

3. GETSETANG 8. PUTHANDAT
4. GETMODANG 9. PUTANGDAT
5. GETVIEWSTAT 10. PUTINCREDAT

The designer has the choice of using either method of module identi-
fication. Regardless of the method chosen, its use should be con-
sistent for each structure chart.

The first-cut structure chart was analyzed. The structure in
Fig. 5 is fully factored, and has a depth of four. The fan-in.fof all
modules of the second through fourth levels is one. The fan-out or
span-of-control of modules in the same levels ranges from one to
three. Note that the fan-out for the level-one module is ten, which

might be considered slightly high. This in turn makes the
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Table II
First Cut Structure Chart Parameters

Module Input Output
1 --- Horizontal-Natural Status
2 --- Hand Control Coordinates
3 --- Preset Derotation Angle
4 --- Modified Derotation Angle
5 --- WFQOV Status
o Hand Control Coordi- Derotated Hand Control
nates, Preset Derota- Coordinates
tion Angle, Computed
Derotation Angle
7 Modified Derotation Computed Rate of Change
Angle, Horizontal- Increment, Preset Rate of
Natural Status Change Increment
8 WFOV Status Flag, ---
Derotated Hand Control
Coordinates
9 Derotation Angle -
10 Computed Rate of Change ---
Increment, Preset Rate
of Change Increment
11 --- DIw4
12 DIw4 Horizontal-Natural Status
13 --- Hand Control Coordinates
14 --- Preset Derotation Angle
15 --- Computed Derotation Angle
16 --- Derotation Angle Limits
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Table II (Continued)

Module Input Output

17 Computed Derotation Modified Derotation Angle
Angle, Derotation Angle
Limits

18 - DIw2

19 DIW2 WFOV Status

20 WFOQOV Status ---

21 Derotated Hand Control Scaled Derotated Hand
Coordinates Control Coordinates

22 Scaled Derotated Hand ---
Control Coordinates

23 Derotation Angle ---

24 Computed Rate of Change ---
Increment, Preset Rate
of Change Increment

25 --- EO Gimbal Angular Data

26 EO Gimbal Angular Data Computed Derotation Angle

&1 --- Pod Status

28 WFOV Status, Pod Modified Pod Status
Status

29 Modified Pod Status ---

Note: Control Information is underlined.
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scope-of-control eleven for the first level module. The scope-of-

control is four for modules four, five and twenty; three for modules
one, eight and fifteen; and two for all applicable remaining modules,
There are two decisions shown on the structure chart. One decision
15 1n the first level module and involves modules three and four.
The data (derotation angle) obtained from these modules is used for
processing in modules six and seven which are also invoked by the
first level module. Therefore, the scope-of-effect for this decision
is within the écope-of-control. The other decision is located in
module eight (second level), and its scope-of-effect is within the
scope-of-control for that module. Finally, note that modules two
and three are truly afferent, and modules nine and ten are truly
efferent by definition.

To complete the analysis, coupling and cohesion of all modules
was examined. The procedures used were applied to all modules on
the first-cut structure chart. The analysis of module coupling (Ret
40:116-142; 20:33-53) required the use of Fig. 5 and T-a.ble . For
example, modules one, eleven and twelve are data coupled. On the
other hand, module eight is control coupled. F'mally,. the cohesion
of all modules in Fig. 5 was examined. The analysis required
familiarization with cohesion type-definitions (Ref 40:143-18b; 26:
19-31). A sentence describing the purpose of each module was
written. Each sentence was analyzed (Ref 40:171-173: 26:28-30).

For example:
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1. Module one: The purpose of this module is to obtain the

"current'' horizontal-natural status.
2. Module eleven: The purpose of this module is to read
discrete input word fout (DIW4) from memory.
v
3. Module twelve: The purpose of this module is to find the
horizontal-natural status embedded within DIW4,
From these ''simple'' sentences, it is obvious that each of these
modules is functionally cohesive. Examining each module's coupling
and cohesion in this analysis enables the designer to investigate
alternative structures in an attempt to produce an intermediate
structure chart.

An example of investigating structure chart alternatives is illus-
trated in Figures 6 and 7. Figure 6t shows a section or one afferent
branch that was easily obtained from Fig. 5. Note that the decision
in the first level module of Fig. 5 is "high" in the structure. It was
desirable to move that decision further down into the structure (a
lower level). By moving modules three and four down to the third
level subordinate to a "'new' single module ("OBTAIN DEROTATION
ANGLE") in the second level, the afferent branch in Fig. 6 is
obtained. A problem created by this alternate afferent branch is that
the superordinate module is control coupled to the first level module
in Fig. 5. It is not necessarily desirable to go from data coupling to
control coupling, but in this case since the "Horizontal-Natural-
Status'' is passed to the "OBTAIN DEROTATION ANGLE' module to ¢
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affect the decision, the control couphing problem can be remedied.

The revised alternate afferent branch is shown in Fig., 7.
Module one ("GET HORYZ NAT STATUS'"), an afferent module {from
Fig. 5, is moved to the subordinate position as shown in Fig. 7.

The "OBRTAIN DEROTATION ANGLIE" module is now data coupled.
The modules on the second and third levels of Fig., 7 are still func-
tionally cohesive. Using this method of developing alternative
branches for the structure chart is useful since smaller sections of
the structure chart are casier to understand and analyze. It helps
the designer to develop the intermediate structure chart, which is the
next suppested design step. However, to arrive at an acceptable
intermediate structure chart, the desjgner must perform an analysis
such as that performed on the first-cut structure chart,

After several alternate revised first-cut structure chart
branches were analyzed, an intermediate structure chart was com-
pleted. IFor simplicity, the abbreviated intermediate structure chart
(no data or control arrows and no module numbers) is shown in Fig.
8. An analysis of the intermediate structure chart was accom-
plished in a similar manner as that described for the first-cut
structure chart. The completion of this structure chart permits the
development of the next bubble chart.

An intermediate bubble chart was developed as shown in Fig., 9.
It was verified against and shown to satisfy the final Part 1 specifica-
tion. A rule-of-thumb (Ref 20:Sec II, 10) sugpests that it the sum of
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the conceptual data streams cut by the afferent-transform and
efferent-transform lines is at a minimum, then a "better" subsequent
structure chart can be developed. Note that this sum for the first-
cut bubble chart in Fig. 4 is ten. The sum for the intermediate
bubble chart in Fig. 9 is eight. If the design process were to con-
tinue at this point, the intermediate bubble chart would be analyzed.
If appropriate, the afferent-transform and efferent-transform lines
may be moved. For example, if the '"Pod status' data stream in
Fig. 9 were to be moved to the right of the efferent '"cut, ' the sum of
cuts would drop to six.

Transform/Transaction Analysis Technique. Transform

analysis was applied to the "Performed Target Operations' task
(node six) from Fig. 3. Note that this particular task was shown at
an abstract level in order to reduce complexity of the state diagram.
This task actually consisted of many sub-tasks. Figure 10 shows the
bubble chart for this abstract task. The ''level of observation' for
Fig. 10 was purposefully kept high for this discussion. This reduced
superfluous detail at this point. Note that the transform ""Examine
Selection Data' is actually a transaction center as defined by
Constantine (Ref 40:301-302). This indication allows the use of a
supporting strategy to transform analysis called transaction analysis.
Transaction analysis (Ref 40:301-329) is a technique that uses
the characteristics of a transaction center to map or develop a modu-
lar software structure while permitting the designer to also use the
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principles of coupling, cohesion, scope-of-control and scope-of-

effect. A transaction center must be able to obtain the transaction,

determine its type, dispatch on that tylpo, and complete the processing
of each transaction (Ref 40:303). The major steps of the transaction

analysis strategy are (Ref 40:307-308):

1. Identify the source of the transaction.

2. Specify the appropriate transaction-centered organization.

3. Identify the transactions and their defining actions.

4. Note potential situations where modules can be combined.

5. For each transaction, or cohesive collection of transactions,

specify a "transaction' module to completely process it.

6. For each action in a transaction, specify an "action' module
subordinate to the appropriate transaction module(s).

7. For each detailed step in an action module, specify an
appropriate ''detail' module subordinate to any action
module that needs it.

The use of transaction analysis does not necessarily produce a struc-

ture with exactly four levels of processing. Depending on the '"prob-

lem' to be solved, fully factored transactions may only require a

single transaction-level module, or as many as nine or ten levels

(Ref 40:308).

Transform analysis was also applied to the '"Perform Search

Functions'' transform of Fig. 10. This increased understanding of

the function. The resulting bubble chart is shown in Fig. 11. Note
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Fig. 11. Bubble Chart for "Perform Search Functions"
(Ref Fig. 10)
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that another transaction center existed. Since Fig. 10 was developed
at a higher 'level of observation, ' application of the transaction
analysis technique would have resulted in a '"pancake'' structure chart.
It would have consisted of only a transaction level (second level).

However, application of the transaction analysis steps to the
bubble charts from Figures 10 and 11 lead to the development of the
partial structure chart shown in Fig. 12. The structure chart demon-
strates the result of using the transaction analysis technique. If the
design process were to continue at this point, transform analysis
would be applied to the "Track' and '""Cue' transforms in Fig. 10.
Transaction analysis would be used where applicable.

The completed '"Perform Search Functions'' branch of the
structure chart shown in Fig. 12 is '"classical'" (Ref 40:304). How-
ever, there are no fixed limits on the number of levels in a structure
chart developed as a result of using the transaction analysis tech-
nique. The ''detail level' shown in Fig. 12 resulted from further
analysis of the requirements associated with the bubble charts of
Figures 10 and 11. Note that the modules outlined with dashed
rectangles were placed in their appropriate position in Fig. 12 to
add some perspective, and show their relationship with respect to
the search function previously expanded. The '"Calculate Rate Aiding"
module was included since it was associated with the cue and track
functions. Finally, OFP slant range data was required for each
function (i. e. Search, Cue and Track). Therefore, the slant range
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module was placed at the ''detail level' as shown in Fig. 12. It was
now accessable by the other functions. The position of that module
was significant. Fan-in was increased, and perhaps maximized. In
addition, the module remained highly cohesive, 1f the module was

coded, the increased fan-in would reduce coding requirements (Ref

40:230, 308).

Comments. At this point, it would be helpful to remember
several things. Software design, regardless of the technique used,
is generally subjective, and one designer's results may obviously
vary from another designer's results. When using the transform or
transaction analysis techniques discussed in this chapter, a table of
input and output parameters for each level (e.g. first-cut) of struc-
ture chart should be developed. Each structure chart should be
fully analyzed. Several alternate structures should be developed, if
appropriate, for comparison. Finally, a comparative analysis of
alternate structures would allow the designer to ''find, ' with confi-
dence, the '"best' structure chart for a particular level (e.g. the

intermediate structure chart level).

Summary

The initial and revised approaches for the application of
several design methodologies were discussed. For the initial
approach, the unsuccessful attempt to apply transform analysis to

the PAVE TACK OFP was discussed. As a result, the approach
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was modified.

In the revised approach, several design techniques were suc-
cessfully applied to the PAVE TACK mainloop and discussed. Each
use of a technique was demonstrated far enough into the design
process to show the software ;angineer/contract monitor "how to get
started'" on a design. Use of an OFP Part I specification as a basis
for design allowed the software engineer/contract monitor a ''place"
to start. The design techniques allow further understanding of the
OFP requirements. They also allow verification of requirements.
Finally, by using these techniques, the software engineer/contract
monitor is in a better position to discuss a particular OFP design,

or make constructive suggestions on an in-process OFP design.
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V. Comparison of Modification and

life-Cycle Effects

Introduction

This chapter discusses two hypothetical software modifications
applied to a particular task and module of the PAVE TACK OFP
mainloop. New designs, from the previous chapter, effected by
these modifications are briefly examined and compared to the current
OFP software. Finally, some short and long term affects associ-
ated with OFPs designed by structured design techniques are dis-

cussed.

IDS Image Derotation Task Comparison

Current Software. The IDS Image Derotation task is currently

implemented as a single module (Ref 0:01-02). In Chapter IV this
task was shown as an IPO scheme. Also, the task was viewed at a
certain "level of observation' which permitted easier understanding.
However, since the current software equates this task with that of a
module, then by definition, the '"level of observation' is lower, and
the task itself will be examined as a module.

The current ""module' for image derotation has certain unde-
sirable characteristics. Coupling and cohesion were analyzed by
examining the OFP product specification (Ref o:01-02, Sec X, 89-90,
Sec XXX, 289-291). This single module is common coupled due to
its various reads and stores to a shared global data structure. It
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has procedural cohesion since several functions are grouped within

the module for algorithmic reasons. This was immediately obvious
when the coding for the module was examined and compared to the
module's flowchart.

Revised Design. In Chapter IV, transform analysis was used

to develop a modular structure for the 1IDS Image Derotation task.
The resulting intermediate structure chart in Fig. 8 displays the
characteristic of functionality within the structure. The modules are
minimally coupled and maximally cohesive as a result of transform
analysis. These characteristics reduce complexity, and permit
easier, faster modification of software when necessary.

Sample Modification. The proposed modification is hypotheti-

cal, and affects the current software and revised design in different
ways. The modification requires that the derotation angle's com-
puted rate of change increment also be used in the computations for
derotation of the hand control data. Figure 13 shows a simplified
flowchart of the current image derotation "module.!" Portions of the
flowchart effected by this modification are denoted with an asterisk.
The computations for the derotation angle rate of change increment
are located at (C) on Fig. 13. To accomplish the modification, the
hand control data computations at (A) must be placed immediately
after (C). Since the flowchart segment at (B) uses the computed hand
control data from (A), segment (B) must be placed immediately after
the new location of (A). The revised flowchart is shown in Fig. 14.
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After actual coding of the module, complete retesting of all effected
functions within the module would have to be accomplished. In addi-
tion, the module's input/output interface would have to be reverified.
Finally, the time required to accomplish this modification, including
recoding, retesting, implementation, and documentation revision,
would obviously add some fixed cost to the total PAVE TACK software
life-cycle costs.

For the revised design (Chapter IV), the implementation of this
modification would be much easier, and less costly. In Fig. 8 the
""Derive Derotation Hand Control Data! module (module four) and the
""Compute Derotation Angle Rate of Change Increment' module
(module five) are located at the second level in the structure ~hart.
Presently, module four is invoked prior to module five. To affect
the required modification, a simple change within the superordinate
module would be made to invoke module five prior to module four.
This change would permit the rate of change increment data to be
passed to module four which computes the derotated hand control
data. The only other change would be to incorporate the rate of
change increment into the hand control data computations. Since this
module would remain data coupled and functionally cohesive, it can
be easily retested, and the input/output interface quickly redefined
and verified. Finally, since the implementation of this modification
is easier and faster in the revised design than with the current

""module, "' the resulting costs are much less. Obviously, the impact ]
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on the total life-cycle costs is less.

Comment. Although this hypothetical modification may seem
trivial, the effort and resulting costs of more complex modifications
will follow the same trend. That is, modifications will generally be
easier, faster, and cheaper due to the previously discussed implicit
characteristics normally associated with a software architecture

developed with the use of the structured design methodology.

Slant Range Modification Comparison

Sample Modification. This modification is also hypothetical,

and also affects the current software and revised design in different
ways. The modification requires a change to the algorithm used to

derive slant range. At this point, it does not matter what the actual
change is, but rather that there must be a revision to the algorithm
for slant range.

Current Software. In the current PAVE TACK OFP, slant

range is derived in at least seven different modules. It is not diffi-
cult to understand that the recoding effort would take time, and in
fact, would be somewhat redundant. All effected modules would have
to be retested, and each input/output interface reverified against the
written requirements. The total cost associated with recoding,

retesting, implementation and documentation updating would be added

to the PAVE TACK total life-cycle costs.
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Revised Design. As shown in the partial structure chart in

Fig. 12, there is a single module for slant range calculations. It is
accessible by any other module requiring a slant range calculation.
After modifying this module, retesting and input/output interface
reverification would be accomplished. The module would still remain
highly cohesive. It is obvious that the recoding, retesting, implemen-
tation, and documentation updating would take less effort and time
with the revised design than in the current software. Finally, the

modification costs would be significantly less,

Short Term Effects of Structured Designed OFPs

Although this study investigated structured design techniques
applied to only part of the PAVE TACK OFP mainloop, certain
characteristics associated with this type of software design cause
short term effects worth noting. Some of the effects are:

1. Reduced complexity in design allows easier understanding

of that design.

2. The goal of low coupling between modules and high cohesion
within modules permits easier and less complex coding,
testing, and integration.

3. Use of the structured design methodology has an overall
effect on the reduction of total system design errors.

4. Since the software architecture of a system would be well

defined, management can refine their software development
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plan as well as revise development cost estimates.
5. The affects mentioned above would contribute toward a

less complicated design review.

Long Term Effects of Structured Designed OFPs

In a similar manner, the same type of characteristics associ-
ated with structured designed software also cause long term effects.
Some of the effects are:

1. A total system is more easily maintainable and manage-

able.
2. The total system is more flexible to changing requirements.
3. Less total time and effort are consumed in making revi-
sions to software,
4. All effects (short axla_d long term) would contribute toward

the reduction of total life-cycle system costs.

Summary

It was obvious from the two hypothetical modifications that the
functionally modular structures produced (Chapter 1V) by using
structured design techniques responded easily and effectively to
changing requirements. Modifications were discussed for the IDS
Image Derotation task and the slant range algorithm. Finally, some
short and long term affects associated with OFP software designed
by structured design techniques were discussed. Characteristics and
benefits of structured designed software were previously discussed.
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A generalized OFP familiarization/design methodology includes some

e

techniques which may be used to achieve these characteristics and |

benefits, and is described in the next chapter.
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V1. A Software Engineering OFP
Design Methodology

Introduction

This chapter describes a suggested software engineering OFP
design methodology developed for Air Force avionics software
engineers/contract monitors. The need for such a methodology is
briefly discussed as well as the objective and goals established to
develop it. The methodology consists of three phases: (1) understand-
ing the flight program requirements; (2) use of a technique for under-
standing flight program tasks and task sequencing; and (3) use of
structured design techniques for flight program tasks. Fach phase is

discussed.

General

Software engineers monitoring the development of avionics
flight software (e.g. operational flight programs) often rely com-
pletely on the software developers' choice of design. They accept
the software end-item without much input to the producer about
design during preliminary design of the software architecture. A
good software design requires discussion of design alternatives
between the developer and user. This interaction should result in a
mutually agreeable design which also satisfies the particular flight
software written requirements definition (Part I specification). In

order for the software engineer to effectively participate in and
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monitor the development of an OFP, it would be beneficial to have a

software engineering methodology which would permit a more effi-
cient and effective evaluation of OFP design alternatives. The
methodology could also be used to verify the software developers
interpretation of the written requirements definition.

Use of this methodology by a software engineer/contract moni-
tor permits establishment of various stages of familiarization. This
important effect allows two primary uses of the methodology. First,
the user of this methodology can gain a greater understanding of the
OFP requirements definition (draft Part I specification). Second, the
user may develop a separate OFP design for familiarization. The
latter not only permits greater understanding of requirements, but
more importantly, allows more detailed and thorough discussions
between the software engineer/contract monitor and the software

producer about OFP design alternatives.

Requirements for Methodology Development

To help develop a useful and meaningful methodology, an objec-
tive and accompanying goals were established. The objective was to
develop an OFP design methodology or approach which would assist
or aid software engineers/contract monitors (the methodology user
in this case) ia the initial understanding and/or design of OFP soft-
ware from a draft Part 1 specification. It was desirable to include

the finite-state technique and the techniques of structured design as
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demonstrated in Chapter IV.

A reachable set of goals were developed. The goals were:

1. The approach should aid the user from a practical point of
view if it is to be useful.

2. It should be simple enough to allow a free-flow development
of ideas for the design, yet comprehensive enough to be
useful.

3. It should be understandable in order to facilitate ease of use
and maximize information transfer to the user.

4. It should be flexible in order to permit use on different OFP
requirement definitions.

5. It should allow hardware independence during design.

Design Methodology

The design methodology may be applied in three phases. Phase
one consists of understanding the problem to be solvea. Phase two
suggests the steps to be taken for application of the finite-state tech-
nique to OFP tasks. Finally, phase three will complete the prelimi-
nary design by application of the structured design techniques. The
software engineer/contract monitor may stop at the end of any phase.
Use of each successive phase lowers the 'level of observation"
applied to the '"problem' and increases understanding of the overall

OFP design.
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Phase 1. In phase one, there are certain, and probably obvious,

steps that can be taken by the user to understand the 'problem' to be
solved. In this case the problem is to understand the requirements
for the development of a viable OFP design. A top-down approach is
suggested for understanding those requirements.

The understanding ''process'' is started by achieving a thorough
understanding of the software system specification. Mission and
technical requirements of the OFP are explained in the specification
as well as functional areas, programming language requirements,
design standards, and so forth. The system specification establishes
the initial functional baseline for the system (Ref 2:15). To further
decompose the problem and increase understanding, the next sug-
gested step in phase one is to obtain the written requirements defini-
tion.

It will be necessary to gain a detailed understanding of the
written requirements definition. The draft Part I software specifi-
cation contains the particular written requirements for the design,
development, functional performance, test and qualification of the
OFP (Ref 2:15). The draft Part I specification will be used as the
"basis for design'' in the remaining phases of this design methodology.

Finally, familiarization with any written assumptions and limi-
tations associated with the OFP is suggested. They may be required
or useful during the design process. The assumptions and limita-
tions can usually be obtained from either the system or draft Part I
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specification, or both. Implementation and hardware information is

"nice to know, ' but inclusion of such information during the prelimi-
nary design should be avoided. This type of information will be useful
later during the detailed design (e.g. algorithm implementation, tim-
ing, etc.). The preliminary design process should remain free of
biases or limitations since the resulting OFP design may be unduly
affected. If deeper understanding of the OFP:is desired, or the soft-
ware engineer/contract monitor must develop a high-level (''level of
observation') OFP design, the initial steps are suggested in phase
two.

Phase II. In phase two a basic sequence of steps are suggested
for the application, where applicable, of the finite-state technique as
discussed in Chapter IV. In Chapter IV a particular OFP mainloop
contained tasks represented as an IPO scheme for a particular 'level
of observation.' Typically, the IPO relationship will hold for OFP
mainloop tasks as well as some tasks (e.g. built-in-testing) found in
OFP executives. Therefore, the software engineer/contract monitor
can use the suggested steps in this phase for a 'first interpretation"
of the requirements definition and preliminary design.

The finite-state technique is applied to the OFP major tasks in
the same manner as discussed in Chapter IV. In addition the soft-
ware engineer/contract monitor should write a brief description of
each major task in the OFP. Each task description should represent

an individual rewritten interpretation of the requirements from the
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draft Part I specification. It is important at this point in time that
the designer's interpretation of task requirements and the task state
diagram be committed to paper. In addition to the notation described
in Chapter IV for use with this technique, part of Appendix D contains
some additional task description notation which may be helpful.
Abstraction can be used where appropriate to simplify the state dia-
gram. Abstraction was demonstrated in Chapter IV (i.e. '"Perform
Target Operations'').

The written interpretations of tasks and the validity of the state
diagram should be verified against the requirements definition (i.e.
draft Part I specification) for any misinterpretations. Where appro-
priate, the system specification may be used. However, the draft
Part 1 specification should contain all information necessary for
design. If it doesn't, it may be inconcise, incomplete or ambiguous.
Appropriate corrective action(s) slloulfi be taken to correct the draft
Part I specification if this problem exists.

A viable task state diagram and accompanying task descrip-
tions may need revision (e.g. an error exists in the diagram),
Correct or modify the task state diagram as necessary. Clarify
written task descriptions where appropriate. When these steps are
completed, the user is ready to proceed to the final steps in this
phase.

At this point, if time permits, it is worthwhile to initiate a

"reader cycle.'" The written OFP design interpretation can be given
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to another knowledgeable person for a critique. The reader should
(also) use the draft OFP Part I specification to verify the software
engineer?contract monitor's design interpretation. Comments should
be written by the reader, and no form of communication should take
place between the two people concerned before or during the critique
process.

At the completion of the reader's critique, existing discrep-
ancies should be discussed with the reader. The software engineer/
contract monitor should correct or modify any valid discrepancies
noted. When these steps are complete, two products of this phase
should exist: a final task state diagram and clear, concise, unam-
biguous written task descriptions.

Phase two is now complete. The designer may stop at this
point or proceed to phase three. This decision can depend on many
factors. However, the two most important factors are the depth of
understanding needed and the level of familiarization desired. Com-
pletion of phase three in this methodology should result in a total
understanding of the OFP preliminary design requirements. The
software engineer/contract monitor should in fact end up with a
viable OFP preliminary design. However, a prime objective at the
completion of phase three would be a discussion of OFP design
alternatives or suggestions about an 'in-process'' design with the

software producer.
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Phase 11I. In this phase, the structured design methodology is

applied to individual OFP tasks (state diagram nodes). The struc-
tured design methodology can be used as discussed in Chapter IV.

The transform analysis technique is applied to each ''defined' task.
Either the Constantine or Hughes version of this technique may be

used by the software engineer/contract monitor. If transaction

centers are revealed, the transaction analysis technique is used.
This technique was also discussed in Chapter IV. The structured
design process continues until the final task structure charts are
completed, including their supporting information.

At the completion of phase three the software engineer/contract
monitor should have a detailed understanding of the OFP require-
ments plus a final documentation package to support that understand-
ing. The information contained in the final documentation package is
easily transferable to another person. It should include:

1. If applicable, a task state diagram (from phase two) and
concise written descriptions for each task shown on the
diagram.

2. Final bubble charts which directly reflect the requirements
detinition for each defined task.

f. A tinal, fully annotated structure chart for each task which

represents the hierarchical software structure developed

forn its associated final bubble chart.
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Fig. 14 (continued)
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4. A written functional description of each module of each
final task structure chart.

5. A final module input and output parameter table for each
final task structure chart.

0. A final, full analysis of module coupling, cohesion, scope-
of-effect and scope-of-control for each final task structure
chart.

Obviously, the software engineer/contract monitor can use the final
task state diagram and final task structure charts together for an
overall system representation and viewpoint. The final documenta-
tion package can now be used for technical and management in-house
discussions and briefings as well as backup information for technical

discussions of design alternatives with a software producer.

Limitation

Use of the finite-state technique in this methodology was
limited to non-concurrent processes. The technique was discussed
in Chapter IV and successfully applied to the PAVE TACK OFP main-
loop. The mainloop processing was sequential. Concurrent

processes are beyond the scope of this study.

Summary

This chapter presented a description of a suggested software
engineering methodology developed to help software engineers/con-

tract monitors evaluate OFP design alternatives more efficiently and
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effectively. The general need tor such a methodology was briefly

discussed as well as the objective and goals established to develop

this methodology.

three phases and each phase was described.

The design methodology or guideline consisted of

Use of this methodology

also permits the software engineer/contract monitor to verify the

OFP software developers interpretation of the written requirements

definition.
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VII. Results, Conclusions, and Recommendations
’

Introduction
This chapter highlights the results and conclusions of this study.
Objectives for this investigation were met. Recommendations are

made for future avionics efforts,

Results

A modified finite-state technique was successfully applied to the
PAVE TACK OFP mainloop. A state diagram was developed. FEach
node of the state diagram represented an OFP mainloop task. The
diagram displayed proper sequencing of the mainloop tasks. This
technique was limited to non-concurrent processes. The task state
diagram directly reflected the mainloop control structure.

The transform analysis and transaction analysis techniques
were successfully applied to separate OFP mainloop tasks. Initially
transform analysis did not work when applied to the entire mainloop
since each separate task functioned as an input-process-output
scheme. Data were not passed directly between tasks. Therefore,
attempts to create a mainloop bubble chart produced invalid results,
However after revising the approach, separate task bubble charts and
structure charts were successfully developed and analyzed. Coupling,
cohesion, scope-of-effect and scope-of-control were examined.

During an application of transform analysis, transaction analysis was
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applied when transaction centers were discovered. A structure chart
was developed and analyzed.

Two hypothetical modifications were made to certain parts of
the redesigned OFP. The modifications were easily made and con-
sumed little time. Modification costs were reduced with structured
design software when compared to the current PAVE TACK OFP soft-
ware.

A generalized OFP familiarization and design methodology was
proposed. It provides guidance for using the finite-state and struc-
tured design techniques. A software engineer/contract monitor
participating in or monitoring the design and development of an OFP
can use a draft Part I specification and these techniques to gain an
understanding of design requirements. The software producers
interpretation of an OFP's requirements can also be verified at the

preliminary design review (PDR).

Conclusions

The bubble chart used in the transform analysis technique is a
graphical representation of the requirements definition. It helps the
user of the technique to understand the requirements. In addition, it
can be used to verify the requirements of the (draft) Part I software
specification. Inconcise written descriptions of OFP tasks and incon-
sistent terminology used to describe different tasks are readily

discovered. Areas of superficial or extremely detailed OFP
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information are easily detected with the use of a bubble chart.

The OFP requirements definition in a Part I specification must
be complete, concise and unambiguous. Requirements written in
"natural' English satisfy familiarization needs, but not OFP design
needs. The OFP requirements should not be so loosely written that
the software producer's '"experience'' will be expected to provide the
missing information. MIL-STD-483 and MIL-STD-490 (Ref 3:Sec 1I,
28-32) are reasonable guidelines for development of a Part I specifi-
cation, but specific methodologies should be specified to the software
producer for requirements analysis and design. This will help ensure
complete, concise and unambiguous software specifications, and a
""better" OFP design.

Due to the scope of this study, a partial conclusion was drawn
about the techniques used in this study applied to an OFP executive.
No attempt was made to show conclusively that the finite-state tech-
nique could be applied to develop a total OFP executive. Also, the
structured design techniques were not applied to OFP executive tasks.
Concurrent processes were not considered in this study. However,
based on the successful results of applying these techniques to an
OFP mainloop not involving concurrent processes, these techniques
can be applied in the same manner to an OFP executive of the same
class (non-concurrent) of processes.

Use of the OFP familiarization and design methodology sug-
gested in this report should permit early interaction with the software
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producer concerning OFP design alternatives. In choosing the proper
alternative, consideration should also be given to the software mainte-
nance aspect due to the changing requirements normally associated
with OFPs. Use of this methodology by the software engineer/con-
tract monitor will obviously depend on personal time available and

the project schedule. The availability of a draft Part I specification
prior to PDR will also affect "how much' of the methodology can be

used on a particular OFP,

Recommendations

Requirement analysis and design methodologies or techniques
should be specified in the statement of work written by the software
engineer/contract monitor. The goal is to obtain a complete, con-
cise and unambiguous requirements definition and the "best'" OFP
design. Requirements analysis/definition methods such as Struc-
tured Analysis (Ref 30; 31; 32; 33), Problem Statement Language/
Problem Statement Analyzer (PSL/PSA) (Ref 35) or SREM (Ref 9)
are suggested. Structured Design (Ref 20; 21; 40) or Composite
Design (Ref 26) are suggested for preliminary OFP design in addition
to the Finite-state technique discussed in this report. If Structured
Analysis is used for requirements analysis, a method exists that
permits an easy transition to the structured design techniques (Ref
23:71-93). Finally, any deviations in the basic OFP design that

changes the task design (structure charts) to facilitate OFP
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implementation should be described by the software producer in the
Part II specification.

The requirements analysis and design methods previously sug-
gested obviously will not solve all the requirements and design
engineering problems. However, use of these methods will signifi-
cantly reduce the problems. Better OFP designs will be the result.
The required effort and time will be less for OFP modifications to
meet changing requirements, and thus, total software life-cycle costs

will be reduced.
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Appendix A

Brief Discussion of Operational Flight Program Concepts

Avionic software can be categorized as either mission or sup-
port software. Mission software executes within a flight computer
(on-board computer) and performs mission-related functions. A
frequently used analogous term is ""embedded' software. Support
software aids in the design and production of avionic systems (Ref
37:998).

Mission software can be further divided into two sub-categories.
The first is real-time functions, which are performed with an OFP,
and the second is system testing which is performed with an opera-
tional test program (Ref 37:999).

The OFP contains functions which are executed in a flight com-
puter in real-time (or near real-time), and perform the primary
aircrait mission functions such as executive control, navigation,
guidance, targeting and display processing (Ref 37:999), A combina-
tion of these functions is not normally found in ADP software. Also,
the OFP is often used to close avionic control loops. These may
range from relatively slow control, such as range update of naviga-
tion parameters, to rapid control in a critical aircraft/missile
control loop function which must be completed in a few milliseconds.

The requirement may exist for displaying all pertinent information
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for aircrew evaluation and reaction in real-time where aircrew safety
is directly involved, and as a result, the software becomes consider-
ably more integrated and complex. The OFP can also be used to per-
form continuous checking of specified hardware parameters. Finaily,
the requirement may exist for absolute software program correctness
so that, conceivably, the OFP might be used to control the release of
a nuclear weapon, It is easy to see that functional requirements are
quite different from normal ADP (Ref 10:476).

Inputs to an OXP generally originate from sensors via analog-to-
digital converters, and control actions are automatically taken without
a stored record of the input which caused them (some applications
require a stored ''snap-shot' of certain system or program parameters
on a flight recorder). This type of closed-loop operation can depend
upon a variety of hardware devices, each one having many failure
modes not necessarily predictable. Therefore, recovery and real-
time control requirements exist, and the software must continue to
operate in a reliable manner regardless of any hardware problems

that may occur (Ref 10:476).
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Appendix B

Bubble Chart Symbol Descriptions

The following symbols are used in this report and are

described as follows (Ref 40:54-62,565-566):

Symbol

Name

Description

The circle represents a transform of data from one
form to another. '"Name' identifies the transform
process and is a verb or verb phrase.

The labeled arrow represents a data stream either
entering an initial transform, leaving a final trans-
form, or connecting one transform to another.
"Name'' identifies the data stream and is a noun or
a noun phrase,

The asterisk represents the conjunction operator
which is used to denote the "AND!' function of data
streams.

The ring~-sum symbol represents the disjunction

operator which is used to denote the "EXCLUSIVE-
OR" function of data streams.

APLUSC

= APLUSB
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Appendix C
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Structure Chart Symbol Descriptions

The following symbols are used in this report and are described

as follows (Ref 40:547-552,589-699):

T w——

f Symbol Description ‘
i |
; Name A simple rectangle represents a module. ''Name"

1 is the module name and is a verb. A descriptive

| verb phrase may be used in place of a single name.

o—— An arrow with a dot on its tail denotes control

: information.

{

4 o— An arrow with a small circle on its tail denotes 3
i data.

1

{ O A diamond denotes a conditional decision embedded

in a module.

e

X A plain labeled arrow represents the super-ordinate-
subordinate reference to a module. "X'" may be used
to represent the Arabic number identifier of the
subordinate module.

y
1
s
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Example:

(Structure Chart)

e

OBTAINX

e

INPUTX CKXMAGNITUDE J——SCALEX
(Table)
Parameters

Module Input Output

1 - XVALVE

6 SEe XVALUE (RAW)

7 XVALUE (RAW) OKFLAG

8 XVALUE (RAW) XVALUE (SCALED)
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Appendix D

Symbols and Notation for Use with
Finite-State Technique

The following symbols and notation may be used to extend the

finite-state technique (discussed in Chapters IV and VI):

Symbol or
Notation Description

The circle represents a node or task on the task
state diagram. "X'" is an Arabic number which
denotes the node identifier. "PROCESS" is a verb
or verb phrase that identifies the task process.
This task is preemptable.

Same description as above except that the double
circle represents a non-preemptable task.

NAME | This directed line or arc represents a transfer of
control from one task to another. '""NAME" identi-
fies the condition of transfer.

_NAME/Z This dashed line or arc also represents a transfer
of control from one task to another, but in addition,
control information may be passed to the next task.
“Zt represents the control information identifier.

Ti(L,P,O,t) A 4-tuple may be used to identify certain informa-
tion to be associated with or contained in a written
description of task number i, "1'" and "O'" are
identifiers, each of which represents a set of
numbers. KFEach set contains Arabic numbers that
identify the major input and output data associated
with task i after task 1 is initiated and before it
terminates. "P'" is an identifier which represents
the written description of the task i process, 't"
is the time allowed (in some convenient time unit)
for completion of task i processing. The 4-tuple
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notation for each task can be annotated onto the
task state diagram. Some convenient method may
be used to associate the 4-tuple notation with the
task or node representing the task (e.g. a
"squiggle arrow, ''—==). Note that a 5-tuple, Ti
(I, P,0O, t-min, t-max), could be used for task i
if a minimum and maximum time for task comple-
tion are applicable,
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