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CHAPTER I

INTRODUCTION

Statement of the Problem

This research is concerned with the identification

of inventory cortrol methods for solving multiperiod inven-

tory problems having the following characteristics:

"1. Inventory costs and inventory demands can change

A• from period to period.

2. Future period demands are subject to uncertainty.

Probability assessments of future demands are based on

potentially limited inforiation; for example, information

that is analogous to the three-parameter assessments assumed

in the Program Evaluation and Review Technique (PERT) for

character'izing uncertain activity times.

3. Inventory control is potentially subject to a

variety of restrictions related to organizational require-

me1nts. This condition renders desirable constrained optimi-

zation procedures for inventory management.

4. The inventory control problem can be viewed as

a multiple-objective problem. For example, the minimization

of opportunity costs and the maximization of turnover might

be equally compelling objectives.

5. The decision maker is able to modify inventory

policies from period to period as previously random events

are realized.



6. The decision maker's limited analytical abilities

restrict him to use of well-known inventory models t'-.:

impose minimal mathematical and computational burdens, or to

easily formulated models that can be solved by computers

using readily available optimization packages.

In the absence of condition 2 (uncertainty concerning

future demands) , the conditions postulated above could be

satisfied by recourse to a deterministic, mixed-interger pro-

gramming formulation of the inventory problem. The ability

to invoke goal programming methods within the format of

integer programming renders the approach appropriate to multi-

objective, constrained, multiperiod inventory control. Fur-

theromore, in the absence of uncertainty, there is no need

for policy revision.

In the absence of conditions 1, 2, 3, and 4 (changing

costs or demands, uncertainty, constraints, and multiple

objectives), the inventory control problem could be solved by

recourse to well-known deterministic inventory models such as

the EOQ model, the (t ,S) model, or the (s,S) model.
p

In the absence of condition 6 (limited analytical

ability), the inventory problem ih be solved by recourse

to dyiuamic proqramwingjmethods. At this time, only a very

4faw special cases :ýf stochastic, multiperiod, constrained

inventory models have uoen solved, and at considerable

analytical and computational effort.

IF



As such, this research addresses a gray area that

falls beyond the established methods of management science.

The essential question concerns how to address inventory

control when faced with not unrealistic conditions for which

modeling and solution procedures have not been developed.

The pragmatic strategies that are considered in this

research all entail the use of deterministic inventory models.

In all cases, random variables are replaced by deterministic

proxies--for example, future random demands are replaced

with expectations--to provide (nonoptimal) policies for

imr.lementation over a multiperiod planning horizon. Such

policies are implemented only during the immediate period.

At the end of the period, expectations and policies are

revised based on conditions that were realized during the

period.

The problem addressed by this research concerns not

only the evaluation of the relative performance of several

pragmatic strategies, but also places special emphasis on

determining the best means of using deterministic mixed-

integer programming models as proxies for stochastic multi-

period inventory models. The special concern for the

mixed-integer programming model is based on the realization

that, among all of the easy-to-use deterministic inventory

models, the mixed IP formulation is the only model that is

amenable to the additional constraints and multiple-objective

3



criteria that coincide with broadly conceived statements of

inventory control.

Objectives of the Study

A major objective of the study is to determine

whether total cost over a four-period planning horizon is

sensitive to the reorder policy that is implemented for the

first period. To answer this question, it is necessary to

compute expected total costs using various reorder policies

for period I and optimal policies (contingent on the first-

period policy) for the remaining three periods. Such com-

putations, for a broad sample of cost and beta-distributed

demand patterns, permit plotting expected total cost over

the planning horizon as a function of the quantity specified

by the first-period reorder policy. If the resulting curve

indicates that there is no unique minimum expected total

cost, then concern for determining an optimal policy for any

one period vanishes. This realization leads to a statement

of the first hypothesis of this study.
____o___ __ opt .• t is

Hypothesis 1: Minimum ETC [X Ixo. , ' " , i
.,opt .opt Xopt] steepce

not unique; where ETC [X1I1 '2 X3, X4) is the expected

total cost over a four-period planning horizon, given an

inventory policy, X1, for the first period and optimal poli-

cies for the remaining three periods. Rejection of

Hypothesis I implies the existence of an optima] (and iden-

tifiable) first-period policy.

4



A second major objective of the research is to ascer-

tain whether an optimal first-period reorder policy can be

easily and economically determined for a four-period, finite

horizon inventory problem characterized by changing costs

and demands. This objective is pursued by addressing the

second hypothesis of the study.

H!y othesis 2: By using a combination of simulation

and mixed-integer programming methods, an optimal first-

period policy, X1, can be determined over a four-year plan-

ning horizon with a nominal investment in computer processing

time.

A third objective of the study is to ascertain the

magnitude of error that is introduced by applying a deter-

ministic proxy--specifically, a mixed-integer programming

formulation--for a probabilistic inventory problem. In

order to pursue this objective, it is necessary to assess

the adequacy of first-period reorder policies obtained by

using the mixed IP model when expectations are used as

demand inputs. This goal is accomplished by addressing the

third hypothesis.

cotHypothesis 3: ETC(X ) = ETC ); where ETC(XI*

is the expected total cost over a four-period planning hori-

zon resulting from the implementation of first-period reorder

policies derived from the mixed IP formulation. ETC(X0pt)
1

is the expected total cost incurred as a result of imple-

menting optimal first-period policies. Acceptance of

5



Hypothesis 3 implies that the difference between ETC(X1*) and

ETC(X~') cannot be shown to be statistically significant.

The fourth research objective is concerned with

evaluating the performance of the mixed-integer programming

formulation relative to the performances of the EOQ model,

the (t ,S) model, and the deterministic (s,S) model, when

each is employed in the solution of a multiperiod problem

characterized by beta-distributed demands. To accomplish

this objective, an experiment is designed in which each model

is used to solve a sample of inventory problems in which

reorder decisions must be made during each of twenty consecu-

tive periods. Each reorder decision is based on availdble

cost and demand estimates over a four-period finite planning

horizon.

Tests of the following null hypotheses are conducted

in order to assess the comparable performances of the models.

Hypothesis 4: ETC(IP) ' ETC(EOQl); where ETC(IP) is

the expected total cost (over twenty consecutive periods)

resulting from the implementation of a mixed-integer program-

ming model. ETC(EOQ1) is the expected total cost when the

EOQ model is employed by using estimates of the most likely

next-period demands as proxies for the constant demands

assumed by the model.

Hypothesis 5: ETC(IP > ETC(EOQ2); where ETC(EOQ2)

is the expected total cost resulting from employing the EOQ

model when demand inputs are determined by averaging demand

estimates over the next four periods.

6



Hypothesis 6: ETC(IP) > ETC(t ,Sl); where ETC(t p,Sl)

is the expected total cost given the implementation of the

(t ,S) model when next-period estimates are used as demand

inputs.

Hypothesis 7: ETC(IP)> ETC(t ,S2); where ETC(t ,S2)

is the expected total cost resulting from employing the
(t ,S) model when four-period averages are used as demand

inputs.

Hypothesis 8: ETC(IP) > ETC(s,Sl); where ETC(s,Sl)

is the expected total cost resulting from using the determi-

nistic (s,S) model when demand inputs are based on estimates

of most likely next-period demands.

Hypothesis 9: ETC(IP) > ETC(sS2); where ETC(s,S2)

is the expected total cost that results when the (s,S) model

is implemented by using four-period averages as demand inputs.

Rejection of any of these nine hypotheses implies

that, given the conditions set forth in the research, the

mixed-integer programming model performs at least as well as

the model specified by the hypothesis.

The study is further concerned with determining

whether the performance of the mixed-integer programming

model, relative to that of each of the other three models,

is sensitive to the ratio of stockout cost to holding cost.

This objective is pursued by conducting six linear regres-

sions to ascertain whether the difference between ETC(IP)

and the expected total cost resulting from employing each

7



version of the other three models is significantly dependent

upon the value of the cost ratio.

Sianificance of the Study

It is believed that certain multiperiod inventory

problems are more representative of the environment in which

* much inventory control is practiced than are the conditions

postulated by common inventory models. It is not uncommon,

for example, to encounter multiperiod inventory problems in

which (a) costs and demands vary from period to period, (b)

future periodic demands are characterized by uncertainty,

(c) the practitioner must take a global view of inventory

in order to be responsive to externally imposed constraints

and/or multiple objectives, (d) policies may be modified

from period to period as previously random events are real-

ized, and (e) the decision maker's analytical capabilities

are restricted to the use of computationally simple models

and/or the use of readily available computer programs for

optimization. This research provides results to guide prac-

titioners in selecting an appropriate solution procedure,

given the postulated conditions.

To the extent that this research explores an impor-

tant yet little studied area, it provides specific findings

of interest to the practitioner. It also provides a proce-

dure that can be followed by other researchers in further

explorations of how to proceed in the gray area that exists

8



between the use of well-known inventory models and the con-

ditions in which they must necessarily be implemented.

The ability to efficiently solve problems cast as

mixed IP models is a comparatively new development. It has

been recognized for somec time that the ability to solve such

models should allow practitioners to take a more globally

conceived approach to irwentory problems, but relatively

little computational and implementation experience is avail-

able. The findings of this research serve to demonstrate

* the feasibility and desizabilitv of this type of approach.

One of the significant developments in inventory

control during the past decade has been the advent of mate-

rial requirements planning (MRP) systems. NIRP provides the

data base and data-management systems that are essential

1

[ befo e the impemetto of impr-k oved inventory odlantrol prcon-

tory problems.

-f i Scooe aiid Limitations of the Study

The research is limited to the caze in which a

decision maker has available three-parameter estimates for

demands in each of four successive periods. The three

parameters correspond to estimates of (a) the least possible

demand, (b) the most likely (modal) demand, and (c) the

greatest possible demand. It may be noted that these

9



three-parameter estimates coincide with the activity time

estimates that have achieved widespread application in the

program evaluation and review technique (PERT). The esti-

mates further coincide with the types of assessments that

managers could reasonably be expected to develop when future

demands are estimated (at least in part) using naive fore-

casting methods such as exponential smoothing or seasonally

adjusted moving averages.

For the purposes of the research, it is assumed that

future demands may be further characterized by a beta-

distributed random variable. For each three-parameter

demand estimate, there exists a family of (two-parameter)

beta density functions. To identify a specific beta density,

it is necessary to make an assumption concerning its vari-

ance. In this regard, it is assumed that the decision maker

desires to establish inventory policies that are consistent

with the typical PERT assumption that the standard deviation

of period demand Is approximately equivalent to one-sixth of

the domain of definition; that is, one-sixth of the differ-

ence between the greatest possible and the least possible

demands.

The assumption that period demands may be reasonably

approximated by a beta-distributed random variable is prompted

by the richness of the beta, the ease with which distribution

parameters may be estimated, and the considerable success

that has been attained in its application in a similar fashion

10



in PERT. MacCriiimion and Ryavec (1964] have suggested that

the triangular distribution would have been preferable to the

beta in the PERT analysis. This ,qgestion was based on the

fact that the use of Lhe trianguular distribution would intro-

duce no error due to using estiamted parameters since its

mean and standard de\iation may be calculated exactly, given

the three-parameter estimate. The decision to use the beta

in this study, in view of this argument, was influenced by

the relatively small errors (except in extreme cases) caused

by parameter estimation, and the widespread familiarity of

the beta to practitioners.

The mixed-integer progzramning formulation is limited

to consideration of the "lost sales" case in which backlocged

orders are not filled. The model further assumes (a) con-

stant intraperiod demand and withdrawal rates, (b) instan-

taneous replenishment at the beginning of any period in which

a reorder is made, (c) one product, and (d) a single vendor.

Assumptions (b), (c), and (d) muay be easily relaxed by the

introduction of additional co-straints and variables. Assump-

tion (a) is essential; howevez, the ability to partition a

planning horizon into n (finitely many) subperiods permits

IMacCrimmon and Ryavec --.owed that the possible
errors resulting from the assumi,.'ion that ji = 1/6(b-a) and
the approximation o 1/6(a+4m+b' co2A be quite Large (up
to 33 percent for the mean and I? pexcenit for the standard
deviation) for extreme paramete, '. %ales. When the parameters
are restricted to more reasonable • nges, however, the errors
in the mean and standard deviation i:educe to 4 percont and
7 percent, respectively.

11i



the use of piecewise linear approximations to nonlinear

demand patterns.

The population of periodic demand distributions used

in the study is restricted to those distributions that have

skewness parameters [defined as the ratio of the right semi-

.2
range to the range) within the interval 0.1 to 0.9, and that

have modal values that fall within the range 0 to 100 units

per period. Thus the smallest demand per period that could

ever occur is 0, and the largest that could ever occur would

be 1,000. The restrictions on the modal and skewness param-

eters were imposed to preclude unreasonable variability in

demand patterns from period to period, while still allowing

for the consideration of a large variety of demand distri-

butions.

The population of holding costs used in the research

is limited to values falling within an interval correspond-

ing to 20 to 40 percent of the cost value of the stocked

item. This range is consistent with -he trend reported in

studies by Whitin [1966) and Nelleman and Thiry [1970].

Stockout costs, which are ctnsiderably more difficult to

determine in practice, are restricted to a range correspond-

ing to 30 to 60 percent of the cost value of the stocked

item. Reorder costs are assumed to take on, with equal

This measure of skewness was chosen, in preference
to the more commonly used coefficient of skewness, because
its linearity permits using uniform random fraction gener-
ators to generate random demand distributions.

12



probabilities, values corresponding to two, four, six, eight,

and ten times the cost value of the item of inventory.

The evaluation of comparative model performance is

limited to consider, in addition to the mixed-integer pro-

gramming model, three well-known deterministic inventory

models--specifically, the EOQ model, the (t ,3) model, and

the (s,S) model. This choice is based or. the realization

that these models are characterized by a degree of computa-

tional tractability that is consistent with the abilities of

most practitioners.

Organization of the Study

Five chapters follow this introductory chapter. Chap-

ter II describes the methodology followed in the ccrurse of

the study. The chaptrp:.ý discusses the generation zaid valida-

tion of sample data, as well as the analytical and statis-

tical techniques ,.hat wert. employed in subsequent analyses.

Chapteir III is concerned with the statement of models

evaluated in thh.s research, as well as the formal specifica-

tion of how he !).dc...s can be implemented ov'er time when the

decision maker is able to revise inventory policies based

on current realizations.

Chapter IV presents the results of tests of hypothe-

ses concerning (a) the sensitivicy of expected total cost

over a four-period planning horizon to first-period reorder

policies, (h) the feasibility of economically determinini

optimal first-period reorder policies, and (c) the adequacy

13



of first-period reorder policies derived from using the ?

mixed-integer progranming modeli th expectations as demand

inputs.

The fifth chapter presen•, thhe resul.ts of statisti-

cal tests conducted to compare thte performance of the mixed-

integer programming model with those 0 the EOQ, (t ,S), and

(s,S) models when each is implemented ur..iar the conditions

postulated by the research methodology.

The final chapter, Chapter IV, contains a suimmary,

conclusions, and reconmmendations fzor additional r• searci, in

the area.

14



CHAPTER II

METHODOLOGY

The methodology followed in this research involves

extensive data generation and the development of a procedure

whereby expected total cost over a four-period planning hori-

zon can be depicted as a function of the first-pjriod reorder

policy. The methodology also calls for an analysis of the

adequacy of mixed-integer programming solutions to the multi-

period inventory problem characterized by beta-distributed

demands, when expectations are used as demand inputs.

Finally, the methodology involves an analysis in which the

performance of the mixed-integer programming inventory model

is comnvared to the performances of three well-known deter-

ministic inventory models.

Data Generation

The research is limited to the multiperiod case in

which periodic demands are assumed to be distributed accord-

ing to a generalized beta distribution (not restricted to

the 0-1 interval). Periodic demands are generated via a

linear transformation of the beta distribution. The beta

is a very rich distribution that is completely specified

over a 0-I range by Lwo parameters, a and 6. The form of

the beta used in this stuAi is the familiar one in which the

15



mean, i, and standard deviaion, a, are assumed to be deter-

mined by

it = (A+4M+B)/6 (3.1)

a = (B-A)/6 (3.2)

where A represents the least possible value of the random

/ variable, B is the greatest possible value, and 'M is the

mode.

J The planned methodology necessitates the generation

of 675 generalized beta distributions. The generation of a

distribution is initiated by using a uniform random fraction

generator to obtain the skewness measure, K = (B-M)/(B-A),

where K is restricted to values between 0.1 and 0.9. This

range is believed to encompass those demand distributions

that might reasonably be expected to occur.

The modal demand, M, is next generated over the

range from 0 to 100, using a uniform fraction generator.

The least possible demand, A, where 0' : A < M, is then gen-

erated in the same manner. The greatest possible demand, B,

is next computed by solving B = (M-AK)/(l-k).

Beta-distributed demands. To generate a random sample of

demands from the specified distributions, it is first

necessary to solve for i and o by using relationships

(3.1) and (3.2). By transforminq these values to a 0-1

interval, i and 6 can be determined by solving simultaneously

16



p = a/(a+•) (3.3)

and

S= (a6)/(c+S) 2 (t+6+i). (3.4)

This yields

I 3 36[p2 (1-11) - p/36] (3.5)

and
B = c (l-p)/p. (3.6)

a and 6 are then provided as inputs to a computer

code in order to generate a beta-distributed random fraction.

A linear transformation of this value is accomplished by mul-

tiplying it by (B-A) and adding the result to A to obtain a

demand that follows a generaalized beta distribution. The

research methodology calls for the generation of 30 such

demands from each randomly generated distribution.

Validation of the beta random number generator was

accomplished by subjecting 10 randomly selected distributions

to goodness-of-fit tests. One hundred demands were generated

from each distribution tested. The computer code used to

conduct the tests employed ý' he Kolomogorov-Smirnov test at

the .05 significance level. All of the 10 distributions

tested were accepted as being beta distributions. A summary

of the results of the goodness-of-fit tests is presented in

Table 1.

Costs of inventory. The methodology of the study

requires the generation of a random sample of 125 sets of

17



Table 1

Results of Goodness-of-Fit Tests

Kolomogorov- Maximum
Distribution Smirnov Test Absolute

Number Statistica Errorb

1 .1360 .0536

2 .1360 .0607

3 .1360 .0465

4 .1360 .0556

5 .1360 .0503

6 .1360 .1136

7 .1360 .0937

8 .1360 .03PO

9 .1360 .0472

10 .1360 .0517

aBased on sample size, n, = 100, at .05 significance

level.
bThe maximum allowable eIrror is the maximum observed

difference between actual and theoretical cumulative cell
probabilities. If the error is less than the test statistic,
the distribution is accepted.
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inventory costs. Each set consists of a holding cost

($/unit/period), a stockout cost ($/unit short), and a reorder

cost (W/reorder). Each periodic holding cost is determined

by using a uniform random fraction generator to select a

value over the range $2 to $4 (corresponding to 20 to 40 per-

cent of the item cost value, which is assumed to be $10).

The unit stockout cost is generated in a similar manner to

find a value between $3 and #6. Each periodic reorder cost

is computed by using a uniform random fraction generator to

choose among five possible values ($20, $40, $60, $80, and

$100) that occur with equal probability.

The Development of Expected

Total Cost Functions

Research hypotheses 1 and 2 are restated for the con-

venience of the reader.

Hypothesis 1: Minimum ETC [X1 IXopt, " opt' Xopt] is

not unique; where ETC [X 1 IXpt, opt .o Xt] is the expected
1 2 3 '4

total cost over a four-period planning horizon, given an

inventory policy, X1 , for the first period and optimal poli-

cies for the remaining three periods.

Hypothesis 2: When a combination of simulation and

mixed-integer programming methods is used, an optimal first-

period policy, X1, can be determined over a four-period

4 Note that the item cost value is merely an artifact
whose absolute value is not important. It is used to obtain
holding costs, stockout costs, and reorder costs in relative
proportions that are likely to be encountered in practice.
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planning horizon with a nominal investment in computer

processing time.

To test these two hypotheses, 100 of the randomly

generated demand distributions and 100 of the randomly gen-

erated sets of inventory costs are used to describe 25 simu-

lated four-period planning horizons. The beginning inventory

level for each planning horizon is determined by generating a

uniform random fraction and multiplying this value by the

first demand generated during the first period. The periodic

inventory costs, the beginning inventory levels, and the ran-

domly generated beta-distributed demands provide the input

parameters necessary to formulate 750 four-period inventory

problems as mixed-integer programming models.

Reorder policies are first determined for the 750

problems by assuming that all periodic demands are known

with certainty. These policies, based upon perfect demand

information, provide a means for placing an estiamted lower

limit on the expected total cost over each four-period plan-

ning horizon. The policies also provide a range of values

over which reorder policies may be expected to vary for any

given planning horizon. Solutions to the mixed-integer pro-

gramming formulations are obtained through the implementation

55
of a readily available, easy-to-use computer algorithm. 5

5 The branch-and-bound integer programming algorithm
employed in this research is described on page 242 of Catalog
of Programs for IBM System 360 Models 25 and Above, GC20-
1619-8; program numbers 360D-15.20.005, International Busi-
ness Machines Corporation.
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To develop an expected total cost function for a

given four-period planning horizon, twelve reorder quanti-

ties are selected over the relevant range of first-period

reorder policies. An additional constraint is then added

to the mixed-integer programming formulation that permits

restricting the first-period reorder policy to each of the

twelve reorder quantities, in turn. By restricting the

first-period policy to a specific quantity, X1 , and solving

the mixed IP model for each of the 30 sets of periodic

demands, a researcher can estimate the expected total cost

over the planning horizon. This estimate is based on imple-

menting X1 in the first period and optimal reorder policies

contingent on the first-period policy) in each of the follow-

ing three periods to solve a sample of 30 randomly generated

problems. When a sufficiently large number of expected total

cost estimates is computed, it is possible to graph expected

total cost over a four-period planning horizon as a function

of the first-period reorder policy.

The decision to accept or reject Hypothesis 1, that

the expected total cost function does not have a unique min-

imum, is based upon an examination of the plotted expected

total cost curves. Acceptance or rejection of Hypothesis 2

must be based on a subjective analysis of the computer pro-

cessing time required to map an expected total cost function

adequately.
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Adequacy of Mixed-Inteqer
Programming Solutions
When Expectations are
Used as Demand Inputs

The methodology of the study requires an assessment

of the adequacy of first-period reorder policies that are

obtained when expected values are used as periodic demands

in the mixed-integer programming formulation. It is there-

fore necessary to use the computer algorithm to determine a

first-period reorder policy, X1 *, for each of the 25 sample

planning horizons when expected periodic demands are used as

demand inputs. Expected total cost for each planning horizon

can then be estimated by restricting the first-period reorder

policy to X.*, and solving the model again for each of the

thirty sets of periodic demands.

An analysis of variance (single-factor, repeated

measures) is then conducted, at the .01 level of significance,

to test the validity of Hypothesis 3. The contention of

Hypothesis 3 is that the expected total cost resulting from

the implementation of XI* does not differ siqnificantly from

the expected total cost incurred when the optimal first-period

policy, XloPt is implemented. Specifically, an attempt is

made to reject the null nypothesis, ETC(XI*) = ETC(X•P t ).

The adequacy of mixed-integer programming solutions,

given XI* first-period policies, is further explored by

developing an interval estimator for the percentage, .t, of all

four-period planning horizons (subject to the postulated

conditions) in which ETC(XI*) exceeds ETC(XI"' by no more
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ootthan 3 percent of ETC(X 1  ). This objective is accomplished

by constructing an asymmetrical 5 percent confidence interval
6

for i.

Analysis of Comoarative

Model Performance

A major concern of the study is to evaluate the per-

formance of the mixed-integer prograniiing model relative to

the performances of the EOQ, (t ,S), and deterministic (s,S)

models when each is used to solve a four-period, finite hori-

zon inventory problem characterized by beta-distributed peri-

odic demands. Accordingly, an experiment is conducted whereby

each model is implemented to solve a randomly generated sample

of 25 inventory problems. Each problem is designed to require

first-period replenishment decisions during 20 consecutive

simulated four-period planning horizons.

The experiment requires the generation of 575 gener-

alized beta distributions. A beta-distributed periodic

demand is subsequently generated from each distribution. A

set of costs, consisting of a holding cost, a reorder cost,

and a stockout cost, must also be randomly generated for

each of the 25 problems. The beginning inventory level for

6 The confidence interval for a percentage should not
be symmetrical about the sample percentage, p, except in the
special case where p = 50 percent. This is due to the fact
that the standard error of a percentage I varies with the
population percentage. For a given sampl• size, the varia-
bility of the sampling distribution of sample percentages L:
greater when the population percentagte is closer to 50 per-
cent than when it is not.
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each problem is generated as a random fraction of the first-

period demand.

The mixed-integer programming model uses expectations

as periodic demand inputs to obtain 20 reorder policies for

each of the 25 problems. Two different approaches are used

in employing the EOQ,(t ,S), and (s,S) models to obtain

solutions to the 25 inventory problems. In the first

approach, each model uses estimates of the most-likely demand

for each period as demand inputs. In the second approach,

demand inputs correspond to averages of most-likely demand

estimates over the four-period planning horizons.

The periodic reorder policies determined by employ-

ing the mixed-integer programming model are provided as inputs

to a computer code that is used to compute the total costs for

each 20-period problem resulting from the simulated implemen-

tation of each of the four j:lodels. These total costs are

used as bases of comparison in evaluating the performance of

the mixed-integer programming model relative to the perform-

ance of both versions of the EOQ, (t ,S), and (s,S) models.

An analysis of variance (single-factor, repeated

measures) is next conducted to test the contention that there

is no significant difference among the expected total costs

incurred by using the mixed-integer programming model and

each version of the three other models. This analysis entails

testing, at the .01 level of significance: the null hypothesis:

24



ETC(IP) ETC(EOQl) = ETC(EOQ2) = ETC(t ,Sl) = ETC(tpS2) =

ETC(s,S1) = ETC's,S2); where ETC(IP) represents the expected

total cost over 20 consecutive periods resulting from imple-

menting the mixed IP model, ETC(EOQl) represents the expected

total cost resulting from using the EOQ model when demand

inputs correspond to estimates oE most-likely periodic demands,

etc.

In the event the null hypothesis is rejected, the

research methodology calls for conducting painrise Student's

t tests to contrast the performance of the mixed-integer pro-

gramming model with that of each version of the three other

models. Specifically, the methodology requires attempting

to reject, at the .05 level of significance, the following

six null hypotheses:

Hypothesis 4: ETC(IP) > ETC(EOQI)

Hypothesis 5: ETC(IP) > ETC(EOQ2)

Hypothesis 6: ETC(IP) '_ ETC(t ,Sl)
p

Hypothesis 7: ETC(IP) > ETC(t ,SI)

Hypothesis 8: -ETC(IP) >ETC(s,Sl)

Hypothesis 9: ETC(IP) > ETC(s,S2)

The choice of the pairwise t test as a follow-up

test to the analysis of variance is attributed to the fact

that it is a test of the significance of the difference

between two dependent sample means. Obvicusly, a statistical

test, such as the standard two-sample t test, that assumes

independence between samp,.es would be inappropriate in this

25
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case, since both models use exactly the same demand and cost

data to arrive at periodic reorder policies. The pairwise

t test offers another advantage over the standard two-sample

t test in that it is not necessary to assume that the vari-

ances of the two samples are equal.

Rejection of any of the nine hypotheses relating to

comparable model performances, given the experimental condi-

tions, implies that the mixed-integer programming model per-

forms at least as well as the model specified by the hypothe-

sis.

The study is further concerned with determining

whether the relative performances of the inventory models

are significantly affected by the ratio of stockout cost to

holding cost. Accordingly, linear regression techniques are

employed to test the sensitivity of observed expected total

cost differences to changes in the value of the cost ratio.
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CHIPTER III

MODELS STUDIES IN THE RESEARCH

Introduction

This chapter provides a discussion of the four models

evaluated in the research, as well as the specification of

1'how each model can be implemented over a finite multiperiod

planning horizon when the decision maker is able to revise

inventory policies based on current realizations.

The Mixed-Integer Pro-gramming Inventory Model

A major objective of this research was to study the

apDropriateness of formulating the multiperiod inventory-

control problem as a deterministic mixed-integer programming

model. Although a search of the literature revealed no

instances in which a mixed IP model has actually been employed

as an aid to inventory control, the model would appear to

offer a number of distinct advantages to the practitioner.

For example, the mixed IP model can be formulated to accom-

modate (a) costs that are variable over time, (b) noncon-

stant demand rates, (c) replenishment that occurs either

instanteously or at a constant rate throughout. a period,

(d) limitations on storage and/or production capacity, (e)

funds-flow restrictions, (f) inventory taxes, and (g)

multiple vendors.
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Another apparent advantage stems from the fact that

the relevance of integer programming to planning and budget-

ing is well established [Jensen, 1958]. This fact suggests

that, when an inventory problem is formulated in an integer-

programming format, the inventory problem appears in a form

that can be embedded within a more comprehensive corporate

budgeting or planning model. The model thus affords the

opportunity for integrating inventory management with corpo-

rate strategy.

Underlyina assamptions of the mixed IP model. For the pur-

poses of this study, a deterministic mixed-integer program-

ming model is formulated to solve inventory problems charac-

terized by the following as3umptions:

1. The planning horizon is finite and can be par-

titioned into n (finitely many) periods.

2. Intraperiod withdrawal of items from inv!entory

can be approxima.ted with acceptable error by a constant

intraperiod demAnd rate.

3. Shortages that occur during a given period will

not be made up in subsequent periods.

4. In the event a replenishment occurs during a

period, the replenishment occurs at the beginning of the

period.

These assumptions are introduced to reduce slightly

the complexity of the IP model developed in this study. The

28

I



0 1

assumptions may be relaxed in order to model other inventory

problems more accurately.

Mixed IP model notation. The following notation is used in

the development of the multiperiod mixed IP inventory model.

j = 1, 2, ... , n, denotes periods.

d. = demand (number of units) during period j.
3

j = cost of replenishment (independent of amount)

during period j.

s. = cost per unit stockout during period j.
3

h. = cost of holding one unit in inventory during

period j.

b = beginning inventory level (just prior to start

of period 1).

X. = units of replenishment stock to be obtained at
3

the start of period j.

W. = units of stock withdrawn from inventory during)

period j.

= 1 if X. > 0; 0 otherwise.
3 -I

The X. are decision variables that represent inven-j

tory policy. When assigned numerical values, the X. indi-
3

cate when a replenishment is to occur and the magnitude of
the replenishment. Stockouts occur whenever W. < d.. The

A . are zero-one, integer-valued variables that serve toJ

introduce fixed replenishment charges whenever the corre-

sponding X. are strictly positive in value.
2
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Mixed IP model formulation. To develop an appropriate mixed

IP model, it is convenient to denote, in terms of the fore-

going notation, the amounts of stock on hand at the start

and end of each period. Table 2 shows the balances that would

be of interest when a planning horizon that has been parti-

tioned into four periods is conside::ed.

The following general relationships can be derived

from Table 2:

Stock on hand at j •J X + b (4.1)
start of period J i=i. I. i=l i

Stock on hand at = (X = i + b (4.2)
end of period j 1 1i=lI '

In (3.1) , the summation equals zero when its upper limit is

zero.

The objective function of the model takes the form

Minimize
total cost reorder stockout holding
over the = cost for + cost for = cost for (.1.3)
planning period j period j period j
horizon

The development of expressions for periodic reorder

and stockout costs is straightforward.

Reorder cost r (4.4)
for period j = (

Stockout cost (dj - W). (4.5)
for period ij j

30
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Table 2

Formulation of Expressions for Stock on Hand

Stock on Hand at Stock Stock on Hand atP eriod PerodWith- Soko ada
Start of Perioddrawn End of Period

1 b + X W b+X - W

2b+- 1 +

3b + X1 + X + X3  W3  b + X1 + X2 + X3

- W - W2  - W1 - W2

4 b + X1 + X2 + X3  W4  b + X1 + X2 + X3

-Wi W2 - W3  + X4 - 1 - W2

- W3, - W4
W3 W4

Negative stockout costs are prevented by a constraint (to be

defined later) that restricts the values W. may assume.J

Given the assumption that demand during period j can

be adequately approximated by a constant rate of withdrawal,
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an expression for the holding cost during period j may be

developed in the following manner:

Holding cost = h (average inventory during period j)
for period j j

= .5h (stock start of j + stock end of j),

=.5hi =Xi - !:i= W i +) +tJ

=1(xi-Wi) + 4.6)

The general form of the objective function is

obtained by substituting (4.4), (4.5), and (4.6) into (4.3):

Minimize
total cost nover the = •n rj + +__overthe i JjL~ + Sj (dj-Wj) + hj

horizon

j3= (Xi-Wi + (Wj/2) + b. (4.7

Three constraints are required for each period:

(1) Amount withdrawn during period j < stock on hand at start

of period j, or

_1< •=iXi _ i + b, (j = 1, 2, n). (4.8)

(2) Amount withdrawn during period j < demand during period

j, or

W d (j = 1, 2, n). (4.9)
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(3) . 1 if X.>0; 0 otherwise. (j = 1, 2, ... ,n). (4.10)J J

To achieve a form amenable to the solution algorithm

used in this research, the third constraint may be expressed

equivalently as:

= idi) Aj X. '> 0, where A. = 0 or 1. (4.11)

The solution algorithm implicitly imposes nonnega-

tivity constraints on all variables. It also contains pro-

visions for implicit bounds on variables. Consequently, the

second constraint and the condition that all Aj be limited

to values not in excess of unity can be accommodated in an

especially efficient manner.

By combining (4.7), (4.8), (4.9), and (4.11), the

model can be stated as

Minimize
total cost n
over the = n " (dj-Wj)+hj (Xi-Wi)
planning Ij=l 1jjSdj [Xl
horizon b]

subject ~+w./o +bJ} ~i •[W~

subject-to W. i X. - .+b (j = 1, 2, ... , n),

d) A.-X. > 0 (j = 1, 2, ... , n),

j-

"W. <d.J - j (j 1 1, 2, ... ,

(implicitly) A < I (j = 1, 2, °.. ,

all variables > 0

and Aj integer valued (j = 1, 2, ... , n).
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Implementation of the mixed IP model over a four-period

finite planning horizon. The application of the mixed IP

model to an inventory problem characterized by a four-period

finite planning horizon and changing periodic demands and

custs is fairly straightforward. The assertion is particularly

T true if the practitioner has been exposed to simple linear

programming models and has submitted a deck of data cards for

computer processing by a simplex program. After obtaining

demand and cost estiamtes for the next four periods, the

practitioner merely enters this information on data cards

according to format specifications provided with the solution

algorithm. The computer solution subsequently obtained will

provide optimal reorder policies for each of the four periods.

The policy of interest (and the one to be implemented), how-

ever, is the first-period policy. The process would be

repeated just prior to the start of each period. The practi-

tioner is thus permitted to take advantage of information

about the realization of events during the previous period to

adjust beginning stock levels and demand and cost estimates

for subsequent periods.

Although the mixed IP model that is formulated in

this research is appropriate to only a relatively simple

inventory problem, it can be modified by introducing addi-

tional constraints and/or variables to incorporate a Iost of

additional, pervasive, considerations. A later section of

this study is concerned with exploring alternative methods
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for possibly modifying the IP model solution in order to

enhance solutions obtained under conditions characterized by

stochastic periodic demands.

The Basic Lot-Size (EOQ)

Model

The EOQ model with constant withdrawal rate is the

most basic, and best known, of all inventory models. Dis-

cussion of the theory underlying the model can be found in

virtually any introductory textbook concerned with optimiza-
7

tion techniques. The model is based upon the assumption

that demand will continue at a constant rate of d units per

period of duration T over an infinite time horizon. Since

demand is known and constant, there is no need to consider

stockouts. From the practitioner's point of view, demand

must persist at an unchanging rate over a sufficiently long

planning horizon for an infinite-horizon model to serve as a

reasonable representation of reality. This condition is not

likely to be satisfied in many applications of the EOQ model.

The model further assumes that holding costs and

reorder costs remain constant ad infinitum. Therefore, the

model is strictly appropriate only in situations in which

both prices and capital costs remain constant over the long

run. The model also makes the assumption of the existence of

unlimited resources.

* 7 See, for example, S. B. Richmond, Operations Research
for Management Decisions (Ronald, 1968).
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EOQ model assumotions. Development of the classic EOQ model

is based on these specific assumptions:

1. A constant number of units per period of dura-

tion T will be required over an infinite time horizon.

2. Reorder and holding costs are unchanging ad

infinitum.

3. Stockouts do not occur.

4. Inventory is depleted at a constant rate over

time.

5. Replenishment occurs the instant the inventory

is depleted.

EOQ model notation. The following notation is commonly used

in the detivation of the EOQ model.

ch = cost of holding one unit in inventory for an

interval of duration T,

c = cost of placing a replenishment order (inde-

pendent of size of order),

d = demand per period of duration T,

Q = reorder quantity.

The purpose of the EOQ model is to determine the

value of Q that minimizes total costs.

The EOQ formula. In the EOQ model, stockouts are not per-

mitted by assumption. Thus, total cost may be expressed

simply as
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Total cost = Reorder cost = Holding cost
over T over T over T

Crd chQ
- ~+ -Q 2 (4.12)

Differentiating this expression with respect to Q, setting

the result equal to zero, and solving for Q yields the well-

• known expression for the economic order quantity,

2c dr d (4.13)Q=
2ch

Implementation of the EOQ model. For the purpose of this

research, it is envisioned that a practitioner using the

model to solve a four-period, finite horizon problem, char-

acterized by variable demands and changing costs, would

reasonably choose one of two approaches. The first approach

would entail obtaining cost and demand estimates for the next

period and using these values in the EOQ formula to compute

the desired order quantity for that period. When stock is on

hand at the beginning of a period, this amount would be

deducted from the computed order quantity.

A second approach, given the same specified condi-

tions, would be to compute the averages of estimated periodic

demands and costs over the entire four-year planning horizon.

These values would then be used to solve the EOQ formula.
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The use by a practitioner of either of these two

approaches violates the basic model assumptions of constant

demand rates and unchanging costs over an infinite planning

horizon.

The .t ,Sj Order-Level Model
p

The Ct ,S1 model is a periodic reorder model in
p

which the time interval between replenishments, t , is a

known constant. In this model, each time a replenishment

occurs, the amount of stock ordered is equivalent to

whatever amount is required to bring the inventory up to

a level of S units. The objective of the model is to deter-

mine an optimal value for S. The model may be formulated to

consider problems in which stockout costs are tine-dependent.

In this study, however, interest is in the form of the model

in which. stockout costs depend only on the size (number of

unitsi of shortage, and not on the time duration of a

stockou t.

Assumptions underlying the t 1,S) model. The formulation
p

of the Ct ,S1 model is based upon the following specific

p

assumptions;

1. A constant number of units per period T are

required ad infinitum.

2. Reorder, holding, and stockout costs remain
constant over an infinite planning horizon.
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3. Stock is withdrawn from inventory at a constant

rate.

4. Replenishment stock arrives at the end of each

time period tP,

The (t ,S) model is similar to the EOQ model in that

it is an unconstrained optimization model. Obviously, the

remarks criticizing the validity of the underlying assump-

tions of the EOQ model can be applied to the (t pS) model

as well.

(t ,S) model notation. The following notation is used in

the development of the (t ,S) model.

"ch = cost of holding one uiiit in inventory for a

period of length T,

" = cost of a stockout of one unit (time-independent),

"cr = cost per replenishment order,

d = demand per period of duration T,

t = prescribed interval of time between replenishments,p

S = order level (number of units in inventory after

repl enishment) ,

b = backlog (total number of units short when a stock-

out occursI,

t = tp/T,

Statement of the (t ,S) model. Obviously, S > dt can never

p

be optimal since this would entail paying holding costs on

extra units that are carried but never used. Similarly, a
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value of S < 0 cannot be optimal since it would mean always

having to pay avoidable stockout costs. It follows that an

optimal (t ,S) policy can result only when 0 < S < dt. The
p

development of the expression for the value of S that mini-

mizes total costs is readily available in many textbooks. 8

It basically involves expressing total cost as

Total cost _ Reorder + Holding + Stockout
during T cost cost cost

c ChS 2  S
r r + 2h + c d-t (0 < S < dt) (4.14)

t 2dt s_

and then using simple differential calculus to obtain

Csd/Ch when c cht
S Soh (4.15)
sopt

dt when c > Cht.

Implementation of the (t ,S) model over a four-period finite

planning horizon. An important premise of this study is

that a practitioner employing the (t pS) model to solve a

four-period, finite,horizon problem, characterized by

changing costs and variable periodic demands, would select

from one of two alternative approaches. One approach would

involve using next-period cost and demand estimates as model

inputs to compute the optimal value for S. A new optimal S

8 See, for example, Roger D, Eck, Operations Research
for Business (Wadsworth., 1975).
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value would be computed for each period of the planning

horizon.

The alternative approach would entail the computation

of average periodic demands and costs, based on estimated

demands and costs for the next four periods, and using these

values as inputs to the model. Obviously, the use by the

practitioner of either of these approaches, given the specified

conditions, is strictly inappropriate since it constitutes

violation of the basic model assumptions of constant demand

rates and unchanging costs over an indefinite horizon.

The Deterministic (s,S) Model

The (s,S) model differs from both the EOQ model and

the Ct ,S) model due to the fact that its solution involves
p

finding optimal values for two unknown (or unprescribed)

decision variables. The fi.:st of these, s, represents the

inventory level at which replenishment occurs. The second

variable, S, represents the upper inventory level. The

practitioner using the Cs,SI model seeks values for s and S

that will minimize total inventory costs over a period of

duration T. The model may be formulated to consider stock-

out costs that are either time-dependent or time-independent.

This study is limited to the consideration of the form of

the model in which. stockout costs are time-independent.
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Assumptions of the deterministic (s,S) model. Specific

assumptions upon which the (s,S) model is based are:

1. Holding, reorder, and stockout costs are constant

ad infinitum.

2. Demand per period of duration T is constant over

an infinite planning horizon.

3. Stock is withdrawn from inventory at a constant

rate.

4. Replenishment occurs when the inventory level

is reduced to s.

5. Replenishments bring the inventory up to level S.

Cs,S) model notation. Development of the (s,S) model commonly

makes use of the following notation:

C = cost of holding on6 unit in inventory for aL period of length T,

: cs = cost per unit stockout,

c r = cost per reorder,

d = demand per period of duration T,

SQ = amount ordered when replenishment occurs.

Q = S -

if Statement of the CsrS1 model. The development of expressions

for obtaining optimal values for S and s is covered in
9

considerable detail in numerous texts. By applying

9 See, for example, F. S. Hillier and G. J. Lieberman,
Introduction to Operations Research (Holden-Day, 1974).
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differential calculus techniques to expressions rep.-esenting

total cost, it can be shown that

2chc d
Sopt C 2 Chcs when ch/cs / ,

d when ch/cs < 1, (4.16)

and
2c c d

Sopt ihi- when ch/C s >,
opt c(2c I-CS

d when co/c < 1. (4.17)

Implementation of the (sS) model ever a four-period finite

planninq.h:orizon. For the purpose of this study, it is

theorized that a practitioner using the Cs,S) model to solve

a four-period, finite horizon pcoblem, characterized by

changing costs and variable demands would behave in one of

two ways. The practitioner could ireasonably choose to use

estimates of next-period demand and costs in applying the

model to find optimal values for the decision variables. lie

may prefer, however, to us( four-period averages as cost and

demand parameters.

Thre practitioaer using the (s,S) model is not

restricted to placing replenishment orders only at the

beginning or end of a period. Instead, any time the stock

level falls to the level s, teplenishment occurs to bring

the level back up to S. This feature of the model, while

probably 4.,vantageous from a holding cost point of view,
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has the disadvantage of resulting in higher bookkeeping and

inventory monitoring costs.

When employing the (s,S) model under the conditions

specified in the research, the practitioner must recognize

that thie important model assumptions of constant demand and

costs over an infinite horizon ax:e being violated.

A
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CHAPTER IV

RESULTS: HYPOTHESES 1-3

Introduction

The purpose of this chapter is to report the results

of analyses conducted to test the first three hypotheses of

the study. The fii•st hypothesis is concerned with the

feasibility of determining an optimal first-period reorder

policy, given a four-period planning horizon characterized

by changing costs and beta-distributed periodic demands.

The second hypothesis is concerned with the economy with

which. such an optimal first-period policy can be identified.

The third hypothesis is tested in order to assess the

adequacy of first-period policies derived from the mixed-

integer programming model when expectations are used as

periodic demand inputs.

The analyses conducted in this chapter utilized

100 randomly generated generalized-beta distributions and

100 randomly generated sets of inventory costs to form 25

four-period planning horizons, Each set of inventory costs

was comprised of a reorder cost, a holding cost, and a

stockout cost. Each, generalized-beta distribution

represented the demand pattern during one period. Thirty

beta-distributed demands were generated from each distribution.
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The generation of demand distributions and sets of inventory

costs is described in detail in Chapter III. The information

specifying the first planning horizon generated is presented

in Table 3.

Reorder policies based on perfect demand information. The

beginning inventory level and cost information presented in

Table 3, together with a set of four beta-distributed

periodic demands, comprise the input parameters necessary

to formulate a four-period inventory problem as a mixed-

integer programming model. Thirty first-period reorder

policies were determined for Planning Horizon 1 by using the

mixed IP computer algorithm to solve the model for each of

the 30 sets of L5eta-distributed periodic demands. These

policies were optimal policies, since they were based on

actual, or perfect, demand information.

The expected total cost over Planning Horizon I,

given perfect de-nand information, was estimated by computing

the costs incu.red as a result of implementing each of the

1 30 policies. The first-period reorder policies and corre-

sponding costs over the planning horizon are presented in

Table 4.

The foregoing procedure was used to obtain 30

reorder policies, based on perfect demand information, for

each of the 25 four-period planning horizons. Given these

policies, an estimate of expected total cost could be

computed for each planning horizon. In turn, these costs
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Table 4

Planning Horizon 1, Reorder Policies and Costs
Given Perfect Demand Ti.ormation

Trial Policy Cost (R)

1 180,0 254.39
2 20.5 390.42
3 124.0 500.98
4 17.3 347 .68
5 66.0 415.57
6 58.3 402.21
7 87,4 482.53
8 49.0 443.07
9 48,1 410.11

1.0 97.2 437.66
11 82,2 454 .73
12 20.8 340.30
13 96.2 407.28
14 0.0 353.94
15 82.2 461.98
16 65.0 419.20
17 27.2 334 .22
18 44.3 382.85
19 109,0 480.87
2Q 29.0 349.24
2.1 69.7 428.38
22 0,0 292.85
23 32,9 429.62
24 117,0 472.17
25 68.3 479.20
26 112.0 524.66
27 107.0 502.23
28 104.0 495.90
29. 16.7 332.23
3Q 0.0 317.80

TotA! 12,354.30

Expected total cost = $12,354,40/30 = $411.48
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provided estimates of the least possible expected total

costs for the 25 planning horizons.

Test of Hypothesis 1

Obviously, 30 different reorder policies based on

perfect demand information are of limited value to the

practitioner who is confronted with uncertainty of demand.

The practitioner is interested in determining an optimal

reorder policy corresponding to that single reorder quantity

that results in the minimum attainable expected total cost

over the planning horizon. Thus, a major concern of this

research is an assessment of the feasibility of identifying

such. an optimal policy. This assessment was accomplished by
.opt

attempting to reject Hypothesis 1: Minimum ETC [X 1 I X2
xopt opt] iopt s topt opt
S3 , x4 is not unique; where ETC IXl "X2 ' 3 ' 4

is the expected total cost over the four-period planning

horizon when X1 is implemented in the first period and optimal

policies (contingent on XI) are implemented during each of

the three remaining periods.

Hypothesis 1 was tested by investigating the func-

tional relationship between expected total cost over a four-

period planning horizon and the reorder policy, X1 , imple-

mented during the first period. The investigation was

pursued by first introducing an additional constraint to the

mixed IP formulation that allowed restricting X1 to a

specific value.
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A relevant range that might include an optimal X1

was then determined for each planning horizon by observing

the 30 first-period policies based on perfect demand infor-

mation. A value of zero, indicating no stock replenishment,

should always be included in this relevant range. In cer-

tain instances, each of the 30 reorder policies called for

no replenishment during the first period. Given this situa-

tion, a relevant range for X1 could be estimated by observing

the parameters of the demand distributions.

Twelve values were next selected over the relevant

range of possible first-period reorder policies for Planning

Horizon 1. These values were used to construct an expected

total cost function for the planning horizon. Optimal poli-

cies.Ccontingent on X were determined for the remaining

three periods by restricting X1 to the first of these 12

values, and solving the mixed IP model for each of the 30

sets of beta-distributed periodic demands. The expected

total cost incurred by implementing X1 and the three optimal

policies was easily computed through a simple modification

of the mixed IP computer algorithm. By restricting X1 to

each. of the remaining 11 values, in turn, and repeating the

solution procedure, corresponding expected total costs were

obtained. Table 5 presents selected values of X and

corresponding estimated expected total costs for Planning

H{orizon 1.
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Table 5

Planning Horizon 1, Estimated Expected Total
Cost, Given X

Policy X ETC

1 0.0 544.11

2 20.0 565.54

3 30.0 542.96

4 40.0 529.14

5 45.0 516.07

6 50.0 509.92

7 55.0 508.93

8 65.0 502.10
9 75,0 493.74

10 85.0 501.42

11 100.0 530.12

12 120.0 593.61

'5
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Plotting the values displayed in Table 5 resulted in

a graphical representation of the functional relationship

between the first-period reorder policy, X1, and the expected

total cost over Planning Horizon 1. Expected total cost

functions for twelve representative four-period planning

horizons are presented in Figures 1-12. Each expected total

cost function is bounded by 95 percent confidence limits.

An examination of Figures 1-12 reveals that it is

generally possible to estimate the optimal reorder policy

for each planning horizon by simply noting which value of

X1 results in the lowest expected total cost. in only one

case, Planning Horizon 17 (Figure 9)., is the expected total

cost curve sufficiently flat to cause difficulty in esti-

mating the optimal first-period policy. Based on these

results, Hypothesis 1 is rejected; and it is concluded that the

Minimum ETC Cx Xoptl Xoptt Xopt]

X 1 2 X3  4

is unique. Therefore, the feasibility of determining an

optimal X1 is established.

Test of Hypothesis 2

Rejection of Hypothesio 1 attested to the validity

of using a combination of mixed-integer progranmming and

computer simulation procedures to identify optimal

first-period reorder policies. The next question to be

answered was whether this procedure is an economical way

to identify optimal policies, Accordingly, attention was
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directed toward Hypothesis 2, which states: By using a

combination of simulation and mixed-integer programming

methods, an optimal first-period policy, X1 , can be

determined over a four-period planning horizon with a

nominal investment in computer processing time.

Acceptance or rejection of Hypothesis 2 was based

on an analysis of the computer programming procedures and

computer processing time required to map an expected total

cost function adequately. Initially, these procedures

require that a computer program be written that will accept

the three-parameter periodic demand estimates, and use these

estimates to develop the specifying parameters (a and 8)

required by the beta random-number generator. The computer

program must then cause the generation of a sufficiently

large number of beta-distributed periodic demands to permit

estimates of expected total cost to be within specified
limits. The development of such a computer program can be

accomplished with relative ease. A similar program,

developed in the course of this study to generate 40

beta-distributed demands for each of four periods, required

approximately 3 seconds of computer processing time for

execution by a UNIVAC 1100 series c'mputer.

Although the basic branch-and-bound IP computer

algorithm is readily available, certain modifications would

be beneficial if the algorithm is to be used repeatedly.

One modification entails adding statements to the basic

program to provide for the direct computation of expected
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total cost and the variance of the cost for each simulated

first-period policy. Such. a modification was included in

the form of the solution algorithm used in this study and

can be made very easily.

Ssecond desirable modification would eliminate the

necessity for the practitioner to transform inventory cost

estimates into objective function coefficients. The

relationship between the various costs and the objective

function coefficients is well defined. Therefore, the task

of writing a program modification that would require the

practitioner to submit only the periodic cost estimates

should be relatively easy. The modification would

automat.'%.cally convert these estimates to the forms required

by the solution algorithm.

A third beneficial modification would allow sequen-

tially restricting the first-period reorder policy to each

of the trial values )f X1 prior to considering a new set of

beta-distributed periodic demands. This modification simply

entails establishing an additional loop within the main pro-

gram and should be accomplished wi.th relatively little

difficulty.

When a UNIVAC 1100 series computer was used to

execute the mixed-integer programming algorithm employed in

this study, 40 four-period inventory problems (formulated

according to the conditions postulated in this study) could

be solved within approximately 10 seconds of computer-

processing time. Thus, an analysis of 15 trial first-period
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policies over 40 sets of four beta-distributed periodic

demands could be accomplished in roughly 150 seconds of

computer processing time. The suggested modifications to

the basic mixed IP computer algorithm should result in no

more than an additional 5 seconds of processing time.

Therefore, given that a sample of 40 sets of random demands

and 15 tria'. first-period policies are deemed sufficient,

the identification of an optSmal reorder policy should

require no more than 158 seconds of computer processing

E tile. At the current rate of $0.20 per second of computer

processing time, this figure represents an investment of

approximately $31,60, Given the type of company that would

be interested in using such a technique as an aid to

controlling its inventories, this figure appears nominal.

The relatively simple programming requirements and

the nominal cost of implementation support the conclusion

that an optimal first-period reorder policy can be easily

and economically determined through the combined use of

mixed-integer progranming and computer simulation procedures.

Hypothesis 2 is therefore accepted.

Test of Hypothesis 3

A primary concern of this research was an assessment

of the adequacy of first-period reorder policies derived

from mixed-integer programming models when expectations

are used as estimates of uncertain periodic demands. This

assessment was accomplished by testing, at the .01
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significance level, Hypothesis 3: ETC(X*) = ETC(xt

where ETC(XI*) is the expected total cost over a four-period

planning horizon when XI*, the first-period policy determined

by the mixed IP model using expected demands, is implemented.

optETC(X 1 p) represents the expected total cost resulting from

the implementation of the optimal first-period policy, opt

In both cases, subsequent reorder decisions over the planning

horizon are assumed to be made with knowledge of the first-

period policy and perfect information regarding periodic

demands, and are therefore optimal.

Xl*for each of the 25 sample planning horizons was

easily determined by solving the mixed-integer programming

formulation using expectations as periodic demand inputs.

The introduction of an additional constraint to the basic

model permitted restricting the first-period reorder quantity

to X1* for each planning horizon. Optimal policies

Ccontingent on X1*1 were determined for the remaining three

periods of a given planning horizon by restricting the first-

period policy to X and solving the mixed IP formulation

for each of the 30 sets of beta-distributed periodic demands.

Given this information, the task of computing the estimated

expected total cost resulting from the implementation of

Xl and X were each implemented as first-period policies.

An analysis of variance was next conducted to test

the contention that ETC(XI*) = ETC(X•P t ). Since both esti-

mates of expected total cost were based upo.. iden-:ical cost
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and demand information, they should be highly correlated.

Therefore, the repeated measures analysis of variance was

considered appropriate. Table 7 presents the results of the

analysis of vairance conducted to test Hypothesis 3 at the

.01 level of significance.

Since the computed F statistic, 4.877, does not

exceed the critical F value, 7.82, Hypothesis 3 cannot be

rejected at the .01 level of significance. In other words,

it cannot be stated, with 99 percent confidence, that

ETC(XI*1 differs significantly from ETC(XoPt)

Although Hypothesis 3 cannot be rejected at the .01

significance level, it should be noted that the computed F

statistic of 4.877 indicates that the hypothesis would be

rejected if a significance level greater than .035 is chosen.

A further examination of Table 6, however, reveals that the

average percentage by which the estimated ETC(XI*) exceeds

the estimated ETC(Xopt) is only 0.61. In addition, in onlyo1

one instance is the percentage difference greater than 3
opt)

percent of the estimated ETC CXO.t

Given the information in Table 6, a 95 percent

confidence interval was constructed for the difference, D,

between ETC XI*1 and ETC(Xopt) expressed as a percentage of

ETCCXOPt1. Construction of the confidence interval for D
1

is summarized in Table 8. Thus, the upper and lower 95

percent confidence limits for the percentage difference

between ETCCXI and ETC(Xopt) are .07 and 1.15, respectively.
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Table 6

Estimated Expected Total Costs' over Four-Period
Planning Horizon, XI* vs X

Esti- Esti- Dif- Pct.
Plan- mated mated fer- Dif-
ning ETC ETC ence fer-
Hori- XI X) (X1 ) ($) ence*
zon ($)

1 50.9 75.0 507.12 493.74 13.38 2.70
2 0.0 0.0 376.97 376.97 0.00 0.00
3 0.0 0.0 824.58 824.58 0.00 0.00
4 28.0 28.0 687.06 687.06 0.00 0.00
5 42.7 47.5 623.57 621.72 1.85 0.29
6 0.0 0.0 996.10 996.11 0.00 0.00
7 0.0 0.0 557.36 557.36 0.00 0.00
8 0.0 0.0 522.12 522.12 0.00 0.00
9 0.0 0.0 686.76 686.76 0.00 0.00

10 43.4 47.0 383.50 380.00 3.50 0.92
11 88.7 99.8 686.55 675.00 11.55 1.71
12 44.8 44.8 576.19 576.19 0.00 0.00
13 0.0 0.0 482.66 482.66 0.00 0.00
14 71.7 71.7 683.99 683.69 0.00 0.00
15 91.4 70.5 677.63 640.00 37.63 5.87
16 0.0 0.0 464.89 464.89 0.00 0.00
17 125.0 90.0 848.87 837.00 11.87 1.41
18 0.0 0.0 294.19 294.19 0.00 0.00
19 0.0 0.0 432.08 432.08 0.00 0.00
20 62.4 62.4 432.81 432.81 0.00 0.00
21 0.0 0.0 724.96 724.96 0.00 0.00
22 45.9 50.1 666.44 664,92 1.52 0.22
23 0.0 0.0 507.17 507.17 0.00 0.00
24 17.6 0.0 521.67 511.06 10.61 2.07
25 0.0 0.0 504.83 504.83 0.00 0.00

Avg. 586.80 583.13 3.67 0.61
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Table 7

Analysis of Variance for Hypothesis 3

Degrees
Source of Sum of of Mean
Variation Squares Free- Squares F

dom

Within horizons: 4.877**

Policies ........ 168.75 1 168.75

Residual ........ 830.40 24 34.60

Subtotal ...... 999.15 25

Between horizons 622,908.96 24

Total ............. 623,908.11 49

**FC.99;1, 24) a 7.82.
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A second 95 percent confidence interval was con-

structed in a similar manner for u, where .T is defined as

the percentage of all four-period planning horizons (devel-

oped 1-nder the conditions postulated in this research) in

A which ETCXI exceeds ETC(X pt) by less than 3 percent.

The confidence interval was constructed by first noting

the percentage, p, of sample planning horizons in which

ETC(XI*) is no more than 3 percent greater than ETC(XOPt)

This value, p = (24/25)(100) = 96, was used as the entering

argument in a prepared chart of confidence limits in order to

determine asymmetrical confidence limits for .r. The 1ower

and upper confidence limits obtained in this manner are 0.78

and 0.999, respectively.

The inability to reject Hypothesis 3 at the .01 con-

fidenlce level, and the coi.struction of the confidence inter-

vals for D and iT, attest to the adequacy of first-period

reorder policies derived from the mixed IP formulation when

expectations are used as demand inputs.

•i S unmmarv

•i.I This chapter has presented the results of analyses

conducted to test the first three hypotheses of the study.

Testing Hypothesis 1 involved using a combirnation of mixed,-

integer progranmming and computer simulation procedures to

1 0 From C, J. Clopper and E. S. Pearson, %'The Use of
Confidenice or Fiducial Limits Illustrated in the Case of the
Binomial," B3iometrika, 26 (19341.
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Table 8

Confidence Interval for D

Planning
Horizon da d-d (d-d)2

1 2.70 2.09 4.37
2 .00 -. 61 .37
3 .00 -. 61 .37
4 .00 -. 61 .37
5 .29 -. 32 .10
6 .00 -. 61 .37
7 .00 -. 61 .37
8 .00 -. 61 .37
9 .00 -. 61 .37

10 .92 .31 .10
11 1.71 1.10 1.21
12 .00 ,-.61 .37
13 .00 -. 61 .37
14 .00 -. 61 .37
15 5.87 5.26 27.67
16 .00 -. 61 .37
17 1.41 .80 .64
18 .00 -. 61 .37
19 .00 -. 61 .37
20 .00 -. 61 .37
21 .00 -. 61 .37
22 .22 -. 39 .15
23 .00 -. 61 .37
24 2.07 1.36 1.85
23 .00 -. 61 .37

Total 42.38

ad = estimated percent difference between ETC(XI*)

and ETC cXoPt)

=0.61; Sd = 42.37/24 = .133; sj = 1.33/25 0.26;

95% for D = 0.61 + 2.064C ,26) = 0.61 + .54.
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analyze a four-period, finite horizon inventory problem

characterized by changing costs and beta-distributed periodic

demands. It was concluded that the use of these procedures

permits the identification of a first-period reorder policy,

XI, the implementation of which results in the minimum

expected total cost over the four-period planning horizon.

It was also concluded that there exists a unique optimal

first-period reorder policy for any given four-period

planning horizon that is subject to the conditions postulated

in the research.

The test of Hypothesis 2 was accomplisited through a

subjective analysis of the piogramming and computer processing

time requirements attendant to the identification of an

optimal first-period reorder policy. The computer progranmming

required to modify the basic mixed IP computer algorithmi to

make it more amenable to the multiperiod inventory problem

was not considered to be excessive. As a result of an

analysis of the computer processing time required to solve

a four-period inventory problem, it was concluded that an

optimal first-period policy can be determined over a four-

period planning horizon with a nominal investment in

computer processing time.

The adequacy of first-period policies derived from

the mixed MP model when expectations are used as periodic

demands over a four-period planning horizon was assessed by

testing Hypothesis 3. An analysis of variance, conducted
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at the .01 level of significance, disclosed that the

expected total cost resulting from implementing mixed IP

first-period policies could not be shown to differ

significantly from the expected total cost incurred by

implementing optimal first-period policies. It was concluded,

therefore, that first-period policies obtained by using the

mixed IP model with expectations as periodic demand inputs

are generally adequate under the conditions postulated

in the study.
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3 CHAPTER V

RESULTS: AN EVALUATION OF COMPARATIVE
MODEL PERFORMANCE

Introduction

A major intent of this study was to evaluate the

performance of the mixed-integer programming inventory model

compared to the performances of the EOQ, Ct ,S), and deter-
p

ministic (s,SI models when each is used to solve a four-

period, finite horizon inventory problem characterized by

beta-distributed periodic demands. The much greater versa-

tility and potential of the mixed-integer programming mcdel

would appear to justify its selection over any one of the

three better-known models if it can be demonstrated that the

mixed IP model performs at least as well as the other models.

One commonality of the four models under consideration

is the assumption that future periodic demands are known with

certainty. Of particular interest is the behavior of

expected total cost when each of these deterministic models

is implemented to solve multiperiod inventory problems in

w~hich. periodic demands are stochastic. An experiment was

therefore conducted to assess the significance of the

difference betweep expected total cost incurred as a result

of using the mixed IP model and the expected total costs

resulting from the implementation of each of the three other
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models when demands are beta-distributed random variables.

Description of experiment. The experiment consisted of

using each of the four deterministic models to solve a sample

of 25 randomly generated inventory problems. Each problem

required first-period replenishment decisions during 20

consecutive simulated four-period planning horizons. Three-

parameter estimates of demand were assumed to be available

for the four periods of each planning horizon.

Although the mixed-integer programming mcdel can

easily accommodate inventory costs that change from period

to period, the EOQ, Ct ,Sj, and (s,S) models all assume
p

these costs to be constant ad infinitum. To avoid violation

of this assumption, the experiment called for randomly

generating a single set of costs, consisting of a holding

cost, a reorder cost, and a stockout cost, for each of the

25 problems. The experiment also required the generation

of 23 generalized beta distributions of demand for each

problem. A beta-distributed periodic demand was then

generated from each distribut. •n. The beginning iiventory

level for each problem was generated as a random fraction

of the first-period demand.

The mixed IP model used expected values as periodic

demand inputs to obtain 20 reorder policies for each of the

25 problems. Two different approaches were used in imple-

menting the EOQ, Ctp ,S) and Cs,S) models to obtain solutions

to the 25 inventory problems. in the first approach,
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estimates of the most-likely demand for each period were used

by each model as demand inputs. In the second approach,

averages of most-likely demands over the four-period planning

horizons were used as estimates of periodic demands.

Given the beta-distributed periodic demands and the

reorder policies obtained by using the mixed-integer

programming model, a computer code was used to compute the

total costs for each 20-period problem resulting from the

simulated implementation of each of the four models. These

total costs served as bases of comparison in evaluating the

performance of the mixed-integer programming model relative

to the performance of each version of the EOQ, (t ,S), and
p

Cs,S) models.

Overall test of comparative model performance. The total

costs resulting from the implementation of the mixed IP

model and each version of the other thr•c m.dels ar cn

displayed in Table 9. These total costs were used to conduct

an analysis of variance (single factor, repeated measures)

to test the contention that the total costs incurred were

independent of the inventory model employed. Specifically,

an attempt was made to reject, at the .01 level of

significance, the null hypothesis: ETC(IP) = ETC(EOQ1 =

ETC(EOQ2) = ETCCL ,Sl) = ETCCt ,S2) = ETC(sS1) = ETC(sS2).

ETCCIP) represents the expected total cost over 20

consecutive periods resulti'•g from impleme-ting the mixed

IP model. ETCCEOQ1) represents the expecteed total cost
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Table 9

Total Cost by Inventory Model

PrOb-e Mied ECQ1 EOQ2 tp,Sl tpS2 s,SI s,S2
lem IP p

1 3569.85 4983.80 4900.60 3864.82 5044.14 4090.97 3744.69

2 2925.44 5753.80 6513.80 3116.96 4250.79 3065.23 2.F79.08

3 3243.62 5426.00 5459.60 3599.11 4842.69 2947.88 2924.02

4 1971.55 3774.80 4400.60 2195.62 3066.21 2048,58 1858.10

S 2737.59 4121.80 4344.80 2854.18 389S.14 2736.47 2787.28

6 3154.33 4854.00 5253.20 3425.80 3946.48 2409.00 2352.79

7 3314.70 5298.00 6092.40 3439.00 4,163.80 3507..1• 2709.441

8 2749.33 3497.60 3655.20 2737.31 3221.05 2339.53 2215.29

9 3693.24 5330.80 6514.00 3759.38 5045.48 3572.39 3561.6-

10 2501.44 3424.20 3636.00 2340.82 2766.48 1932.89 2013.06

11 3436.72 5247.80 5287.40 3717.48 1773.56 3108.79 3255.,S

12 2074.60 4714.00 4801.40 2405.99 3308.89 1802.31 1708.98

13 3211.42 4856.40 4621.00 3059.42 4217.74 30,18.92 2816.66

14 3132.12 5717.00 6576.20 ,342.59 4123.05 229,.89 2214,10

IS 3589.86 5765.00 6181.80 4114.66 1886.17 3235.39 3224.30

16 2595.84 3373.80 3632.00 2511.SS 3320.48 2062.67 1895.78

17 3869.53 4140.00 4061.80 3836.21 4314.04 34176.30 3570.00

18 3476.84 4121.40 4214.20 2896.68 36416.32 2754.04 26,12.40

19 3009.72 3929.80 3820.80 3173.66 3792.63 29841.99 2909.74

20 4015.92 5246.40 5556.80 4314.70 5109.76 4050.73 3992.38

21 3743.35 4094.00 42841.40 3976.48 4297.29 3907.96 3779.55

22 3436.40 3936.00 4062.60 3452.39 4067.43 2966.84 29416.39

23 2899.19 4163.20 4131.40 2974.08 3516.56 2,183.91 256,1.30

24 3725.41 4019.00 4054.80 3814.58 41247.53 30.17.96 3760.10

25 2528.89 2557.60 2676.00 2359.39 2311.48 17.-0.50 1755.03
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{ incurred as a result of using the EOQ model when demand inputs

correspond to estimates of most-likely periodic demands.

ETC(EOQ2) is the expected total cost resulting from use of the

EOQ model when demand inputs are based on averages of demand

estimates over four periods, etc. The results of the analysis

of variance are displayed in Table 10. Since the computed F

"iT statistic greatly exceeds the critical F value, the hypothesis

was rejected. It was thus concluded that, giren the conditions

postulated in the experiment, expected total cost is not

independent of the inventory model employed.

Pairwise tests of model performance. After the contention

was rejected that expected total cost is independent of the

inventory model that is employed, follow-up tests were

conducted to determine those models between which there were

significant cost differences. The primary purpose for

conducting the experiment was to contrast the performance

of the mixed-integer programming model with that of each

version of the three other models. Therefore, a test was

desired that would permit pairwise cost comparisons. Since

the paired costs during each comparison would not be mutually

independent, the pairwise Studentts t test was chosen as an

appropriate follow-up test.

Specifically, six pairwise Student's t tests were

conducted in an attempt to reject, at the .05 level of

significance, each of the following six null hypotheses:
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Table 10

Analysis of Vairance: Overall Test of Difference
_Beet,.ae!n Expected Total Costs

De-

Source of Sum of grees Mean
Variation Squares Free- Square F

dom

Within problems: 77.15**

Models ........... 94,071,070 6 15,671,845

Residual ......... 29,350,432 144 203,128

Subtotal ....... 123,071,070 150

Between problems ... 25,971,960 24

Total .............. 149,394,462 ¶

2

**(95;6,144) = 2.16.
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Hypothesis 4: ETCCIP) >_ ETC(EOQ1)

Hypothesis 5: ETC(IP) > ETC(EOQ2)

Hypothesis 6: ETC(IP) > ETC(tpSl)

Hypothesis 7: ETCCIP) > ETC(t ,S2)
p

Hypothesis 8: ETC(IP) > ETC(s,S2)

Hypothesis_9: ETC CIPI > ETC(s..S2)

The rejection of any of these six null hypotheses would imply

that, given the postulated conditions, the mixed-integer

programming model performs better than the contrasted model

specified by the hypothesis. Results of the pairwise

Studentts t tests are summarized in Tables 11-16.

The rejection of Hypotheses 4, 5, 6, and 7 led to the

conclusion that the use of the mixed-integer programming model,

under the conditions specified ia the experiment, results in an

expected total cost that is lower than the cost incurred by

using either version of both the EOQ and the Ctp,S) models.

This lower expected total cost, coupled with the previously

expounded pot.ntial advantages offered by the mixed-integer

programming model, supports the use of the mixed IP model

rather than either the EOQ or Ct p,S models when confronted

with. an inventory problem subject to the conditions specified

in this study.

Further comparison of the mixed IP and Cs,S) models. The

inability to reject Hypotheses 8 and 9 disallowed the

conclusion that the mixed-integer programming model performs

at least as well as the (s,S) model, given the conditions
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Table 11

Pairwise Test of Difference Between Expected
----Total Costs: D ETC CPI.- ETC (EOQl)

:rob- D D-D (D-D)2
].em

1 -1,413.95 - 84.35 7,115
2 -2,828.36 -1,498.78 2,246,341
3 -2,182.38 - 852.78 727,234
4 -1,803.25 - 473.65 224,344
5 -1,384.21 - 54.61 2 ,982
6 -1,699.67 - 370.07 136,952
7 -1,983.30 - 653.70 427,324
8 - 748.27 581.33 3177,945
9 -1,637.56 - 307.96 94,839

10 - 922.76 406.84 165,519
11 -1,811.08 481.48 231,823
12 -2,639.40 -1,309.80 1,715,576
13 -1,644.98 - 315.38 99,465
14 -2,584.88 -1,255.28 1,575,728
15 -1,675.94 - 346.34 119,951
16 - 777.96 551.64 304,307
17 - 270.47 1,059.13 1,121,756
18 - 644.56 685.04 469,280
19 - 920.08 409.52 167,707
20 -1,230.48 99.12 9,825
21 - 350.65 978.95 958,343
22 - 449.60 830.00 688,900
23 -1,264.01 65.59 4,302
24 - 293.59 1,036.01 1,073,317
25 - 28.71 1,300.89 1,692,315

Total .33,240.10 14,603,184

= 33,249.10/25 = 1,329.60

SD = /1,1,603,184/24 = 780.04

S-= 780.C4/2/• = 156,01

-1,329.60 - 0t = 156.01 8.52

t (.95;2.1) =-1.711

Reject Hypothesis ,1
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Table 12

Pairwise Test of Difference Between Expected
............ Toal.C sts;_D = ETC. (P)- ETC(EOQ2)

Prob- -2
lem D D-5

1 -1,330.75 274.19 75,180
2 -3,588.36 -1,983.42 3,933,955
3 -2,216.98 - 612.04 374,593
4 -2,429.05 - 824.11 679,157
5 -1,607.21 - 2.27 5
6 -2,098.87 - 493.93 243,967
7 -2,777.70 -1,172.76 1,375,366
8 - 905.87 699.07 488,699
9 -2,820.76 -1,215.82 1,478,218

10 -1,134.56 470.38 221,257
11 -1,850.68 - 245.74 60,388
12 -2,726.80 -1,121.86 1,258,570

13 -1,409.58 195.36 38, 166
14 -3,440.08 -1,835.14 3,367,739
15 -2,591.94 - 987.00 974,169
16 -1,036.16 568.78 323,511
17 - 192.27 1,412.67 1,995,637
18 - 737.36 867.58 752,695
19 - 811.08 793.86 630,214
20 -1,540.88 64.06 4,104
21 - 541.05 1,063.89 1,131,862
22. - 626.20 978.54 957,541
23 -1,232.21 372.73 138,928
24 - 329.39 1,275.55 1,627,028
25 - 147.71 1,457.23 2,123,519

Total -40,123.50 24,254,458

5 = 40,123.50/25 = -1,604.94

SD = V24,254,458/2,4 = 1,005.29

S5 = 1,005.29//95 = 156.01

-1,604.94 - 0 - -7.98
156.01

t (.95; 24) = -1.711

Reject Hypothesis 5
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Table 13

Pairwise Test of Difference Between Expected
Total Costs:. D = ETC(IR). - ETC(t ,S1)

Prob- 2SemD (D-'D)

1 -294,97 -184.44 34,018
2 -191.52 - 80.99 6,559
3 -355.49 -244.96 60,005
4 -224.07 -113.54 12,891
5 -116.59 - 6,06 37
6 -271.47 -160.94 25,902
7 -124.30 - 13.77 190
8 12.02 12.55 15,018
9 - 66.14 44.39 1,970

10 160.62 271.15 73,522
11 -280.76 -170.23 28,978
12 -331.39 -220.86 48,779
13 152.00 262.53 68,922
14 -297,47 -186.94 34,947
15 -524.80 -414. 27 171,620
16 83.99 194.52 37,838
17 33.32 143.85 20,693
18 580.16 690.69 477,053
19 -163.94 - 53.41 2,853
20 -298.78 -188.25 35,438
21 -233.13 -122.60 15,031
22 - 15.99 94.54 8,938
23 - 74.89 35.64 1,270
24 - 89.17 21.36 '156
25 169.50 280.03 78,417

Total -2,763.26 1,261,345

D = -2,763.26/25 = -110.53

SD = /1,261,345/24 = 229.25

S- = 229.25/2/2 45.85

-110.53 - 0t = = -2.4,l145.85

t (.95; 24) = -1.711

Reject Hypothesis 6
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Table 14

Pairwise Test of Difference Between Expected
Total Costs: D = ETCCIP) - ETC(t ,S2)

Prob- D D-D (D-D-2
lem

1 -1,474.29 -579.53 335,855
2 -1,325.35 -430.59 185,408
3 -1,599.07 -704.31 496,053
4 -1,094.66 -199.90 39,960
5 -1,157.55 -262.79 69,059
6 - 792.15 102.61 10,529
7 -1,149.10 -254.34 64,689
2 - 471.72 423.04 178,963
9 -1,352.24 -457.48 209,288

10 - 265.04 629.72 396,547
11 -1,336.84 -442.08 195,435
12 -1,234.29 -339.53 115,281
13 -1,006.32 -111.56 12,446
14 - 990.93 - 96.17 9,249
15 -1,296.31 -401.55 161,242
16 - 724.64 170.12 28,941
17 - 444.51 450.25 202,725
18 - 169.48 725.28 526,031
19 - 782.91 111.85 12,510
20 -1,093.84 -199.08 39,633
21 - 553.94 340.82 116,158
22 - 631.03 263.73 69,554
23 - 617.37 277.39 76,945
24 - 522.12 372.64 138,861
25 - 283.19 611.57 374,018

Total -22,368.89 4,065,376

D = -22,368.89/25 = -894.76

SD = /40,65,376/24 = 411.57

S5 = 411.57/vF2' 82.31

t = -894.76 - 0 _10.87

82-31

t (.95;2-1) = -1.711

Reject Hypothesis 7
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Table 15

Pairwise Test of Difference Between Expected
Total Costs: D = ETC(IP) - ETC(s,S1)

Prob- Dlem ODD(-)

1 -521.12 -776.62 603,139
2 -139.79 -395.29 156,254
3 295.74 40.24 1,619
'I - 77.03 -332,53 110,576
5 1.12 -254. 38 6'1,709
6 7'15.33 189.63 239,933
7 -192.44' -417, 94 200650
8 ,109.80 154.30 23,808
9 120.85 -134.65 18,131

10 568.55 313.05 98,000
11 327.93 72.43 5,2,16
12 272,29 16.79 282
13 162,59 - 93.00 8,649
14 83,4.23 578,73 331,928
15 354.47 98.97 9,795
16 533.17 277.67 77,101
17 393.23 137.73 18,970
18 722.80 4167.30 218,369
19 24'.73 -230.77 53,255
20 - 34 .81 -290.31 84,280
21 -164.61 -420.11 176,1492
22 469.56 214.06 45,822
23 4115.28 159.78 25,530
24 77.45 -178.05 31,702
25 788.39 532.89 283,972

Total 6,387.62 2,891,212

D = 6,387.62/25 = 255.50
SD = V2,891,212/24 = 3,17.08

8 = 34,7.08//3 = 69.42

t = 255.50 0 3.68
69.42.

t 952;2,1 .1.711

Cannot reject Hiypothesis 8
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Table 16

Pairwise Test of Difference Between Expected
Total Costs; D ETCCIP) - ETC(§,S2)

Prob- D D-5 D-15) 2
lem

1 -174.84 -527.87 2780647
2 345.76 - 7.27 53
3 319.60 - 33.43 1,118
4 113.45 -239.58 57,399
5 49.69 -402.72 162PI83
6 801.54 448.51 201,161
7 605.26 252.23 63,620
8 534.0.1 181.01 32,765
9 131.59 -221.44 49,036

10 488.38 135.35 181320
11 181.24 -171.79 29)512
12 365.62 12.39 154
13 394.76 41.73 1,741
14 918.02 564.99 3 19, 2ý 14
15 365.56 12.53 157
16 700.06 347.0" 120'.1.)o
17 299.53 - 53.50 2,86.).
18 834.44 481.41 231,756
19 99.98 -253.05 64,034
20 23.54 -329.49 108,56,1
21 36.20 -389.23 151,500
22 490.01 136.98 18,1164
23 334.89 - 18.14 329
24 - 34.69 -387.72 150,327
25 773.86 420.83 177ý008

Total 8,825.71 2,240,740

8,825.71/25 353.03

S D = V2,240,7,10/24 = 305.56

S-5 = 305.56/y/;-7-5 = 61.11

t = 353.03 - 0 = 5.78
61.11

t (.95;2-1) = -1.711

Cannot reject Hypothesis 9
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postulated by the experiment. The (s,S) model differs from

the mixed IP, EOQ, and Ct pS) models in that it is not a

periodic reorder model. Instead, the (s,S) model is a

perpetual review model in which orders are placed whenever

the stock level falls to some predetermined minimum level, s.

This feature of the model, while resulting in higher stock

monitoring and bookkeeping costs, permits the maintenance of

a lower average stock level, and thus results in lower holding

costs. The feature also permits a more immediate response

during periods in which demand is considerably greater than

predicted.

An additional test was conducted in order to determine

whether the attractive perpetual review feature of the (s,S)

model could be offset by decreasing the time between reorder

points for the mixed-integer programming model. Problem 18,

in which the Cs,S] model performed considerably better than

the mixed IP model' during the original experiment, was

reformulated as a 40-period problem. This reformu]ition

ý;as 'accomplished by halving estimated and realized periodic

demands and the periodic holding cost. Stockout cost and

r'eorder cost, which were assumed to be time-independent,

remained unchanged.

The branch-and-bound integer programming algorithm

was then used to determine mixed IP first-period reorder

policies for 40 consecutive eight-period planning horizons.

A computer code was next employed to compute the total costs
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resulting from using the mixed !P model and both versions

of the Cs,S) model. These total costs are presented in

Table 17.

The resultant total costs provided evidence to

support the contention that the performance of the mixed IP

model compares more favorably to that of the (s,S) model

when the time between reorder points is shortened. Whereas

the use of the mixed 1P model had resulted in a cost that was

26.25 percent greater than the cost incurred by using the

first version of the Cs,S1 model when 20 reorder points were

considered, this difference dropped to 6.23 percent when 40

reorder points were considered. Similarly, the cost

differential between the mixed IP model and the second ver-

sion of the Cs,S) model was reduced from 31.5 percent to 7.80

percent when the number of replenishment opportunitiv. for

the mixed IP model was increased from 20 to 40. The fa-ct that

the total cost incurred as a result of employing the mixed IP

model was reduced by 21.44 percent when the Rumber of reorder

points was increased to 40 should also be noted. These

results suggest that it may be possible to determine an optimal

number of periods into which a finite planning horizon can be

partitioned in order to implement the mixed IP model most

effectivelv.

Test for sensitivity to cost ratio. The study was further

concerned with ascertaining whether the performance of the

mixed-integer progranming model, relative to those of the
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Table 17

Total Cost Comparisons, Mixed IP Model
vs.. (&,S . Model, Problem 18.

Total Cost

Model Four-Period Eight-Period
Planning Planning
Horizon Horizon

(20 periods) (40 periods)

Mixed IP .................... 3473,84 2731.2S

(sSl) ...................... 2754.04 2591.62

(s,S2) ................ 2642.40 2553.99
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EOQ, (t ,S), and (s,S) models is sensitive to the ratio of

stockout cost to holding cost. Accordingly, six linear

regressions were conducted to determine if the difference

between ETCCIP1 and the expected total cost resulting from

employing each. version of the other three models is

significantly dependent upon the value of the cost ratio.

The results of the regression analysis are summarized in

Table 16.

The results of regressions 1 and 2 revealed the

existence of significant linear relationships between the coý,.

ratio and both [ETCCIP) - ETCCEOQ1)] and [ETC(IP) - ETC(EOQ2',].

The contention that there is no significant linear relation-

ship between expected total cost differences and the cost

ratio could not be rejected for any of the four remaining

pairs of models.

The negative coefficients of regression that were

computed in regressions 1 and 2 imply that, in both cases,

the difference between expected total costs decreases in

absolute magnitude as the ratio of stockout cost to holding

cost becomes smaller. This observation raised the question

of whether the mi-xed-integer programming model would continue

to perform better than both versions of the EOQ model when

stockout cost is less than holding cost. Nine of the 25

inventory problems that were generated for purposes of

evaluating comparative model performance have ratios of

stockout cost to holding cost that are less than 1. These

nine problems were used to conduct two additional tests of
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Table 18

Results of Bivariate Linear Regressions: Independent
Variable X Stockout Cost/Rolding Cost

Std. R
Regression Number and Std.

Dependent Variable 8 Error R F

1. ETC(IP) - ETC(EOQI) . - 990.03 222.69 .4622 19.77**

2. ETC(IP) - ETC(EOQ2) . -1413.45 257.59 .5669 30.11**

3. ETC(IP) - ETC(t p,S) - 129.32 85.06 .0913 2.31**

-t ITC(IP) - ETC(tp,S2) - 284.65 148.83 .1372 3.66-

5. ETC(IP) - ETC(s,SI) 137.35 131.99 .0450 1.08S*

6. ETC(IP) - ETC(s,S2) 216.44 110.05 .1440 3.87*
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difference between expected total corts. Pairwise Student's

t tests were conducted in an attempt to reject the following

null hypotheses:

Hypothesis 4a: ETCCIPI > ETC(EOQI)

Hypothesis 5a: ETCCIP) > EýTC(EOQ2)

The results of the pairwise t tests are presented in Tables

19 and 20. Both null hypotheses were rejected at the .05

level of significance. These test results led to the con-

clusion that, given the conditions postulated in the experi-

ment, the mixed IP model performs better than both versions

of the EOQ model when the ratio of stockout cost to holding

cost is less than 1.

Summary

This chapter has presented the results of analyses

conducted to evaluate the relative performances of the mixed

IP model, the EOQ model, the (t ,S) model, and the

deterministic (s,S) model, when each was employed in the

solution of a multiperiod inventDry problem characterized by

beta-distributed demands. The evaluation was accomplished

through an experiment in which each model was used to solve

a sample of 23 randomly generated inventory problems. Each

problem required that replenishment decisions be made during

20 consecutive simulated periods. Replenishment decisions

were based on cost and demand estimates that were available

over a four-period finite planning horizon.
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Table 19

Pairwise Test of Difference Between Expected Total Costs:
D = ETC(IP) - ETC(EOQI) (Stockout Cost Less

than Holding Cost)

Prob- TC(IP) TC(EOQI) D D-tD (D-D)-
,i e m

1 3869,53 4140.00 - 270.47 34,0.88 116,199

2 3,176,84 4121.40 - 644.56 - 33.21 1,103

3 :3009.72 3929.80 - 920.08 --308.73 95,31.4

4 4015.92 5246.40 -1230.-48 -619.13 383,322

5 3743.35 41094.00 - 350,6-1 206.70 67,964

6 3.136.40 39'1 ý.tV - .499.60 111.75 12, -88

7 2899.19 4 ,t., 20 -1264 .01 -652.66 425,965

8 3725.41 *d019.00 - 293.5-9 317.76 100,971

9 2528,89 2557.60 - 28.71 582.64 339,469

Tot a -5502.15 1,542.795

= -5502.15/9 = -611.35

SD = ¢1,5.12,795/S = 439.15

S- = 139.15/1g = 1-46.38

= -611.35 - 0 -4,18
14t6.38

t ý.95;8) =-1.86

Reject Hypothesis -Ia

S~95r
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Table 20

Pairwise Test of Difference Between Expected Total Costs:
D = ETC(IP) - ETC(EOQ2) (Stockout Cost Less

than Holding Cost)

Prob- TFC( IP) TC(EOQ2) D D-b (D-D)2
1 em

1 3869.53 4061.SO - 192.27 491.97 2,12.033

2 3,176.S4 4214.20 - 737.36 - 53.12 2 822

3 3009.72 3820.80 - 811.08 -W26 8,t 16,089

4 4015,92 5556.80 -1540.S -S56.64 7 33, 32

5 3743.35 4284.40 - 541.05 1,13. 19 20,5

6 3436.40 4062.60 - 626.20 58.0,1 3,369

7 2899.19 4131.40 -1232.21 -547.97 300,271

8 3725.41 40541.80 - 329.39 354.S5 125,919

9 2528.S9 2676.00 - 1.17.71 536 53 2S7 ,sC-

Total -6158.15 1,732,702

D -6158.15/9 = 684.24

SD = V1,732,702/8 = 465.39

S- = 165.39/,(9 = 155,13

t -684.21 - 0

t (.95;S) = -1.86

rejtect Ilypoths 18 5.
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The mixed IP model used expectations as demand inputs

to obtain reorder policies. Each of the other three models

used two different approaches in determining proxies for the

constant demands assumed by the models. In the first

approach, estimates of the most likely next-period demands

were used as demand inputs. In the second approach, demand

inputs consisted of averages of demand estimate-, over the

next four periods.

I' An analysis of variance was conducted to test the

hypothesis that, given the conditions postulated in the

experiment, expected total cost is independent of the

inventory model employed. Following rejection of this

hypothesis, follow-up testr were conducted to evaluate the

performance of the mixed IP model relative to the performance

of each version of the other three models. The mixed IP

model wan found to perform significantly better, under the

postulated conditions, than each version of both the EOQ and

Ct p, S models.

The performance of the mixed IP model was not found

to be better than either version of the Cs,S) model. Sub-

sequent analysis demonstrated, however, that the performance
4

of the mixed IF model, relative to that of the Cs,S) model,

could be improved substantially by increasing the number of

opportunities for replenishment for the mixed IP model.

The sensitivity of expected total cost differences

to tlie ratio of stockout cost to holding cost was assessed

through simple linear regression analysis. Two expected
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tolal cost differences, involving both versions of the EOQ

model, were found to be sensitive to the cost ratio.

Additional follow-up tests disclosed that the mixed IP model

performs better than both versions of the EOQ model whether

the ratio of stockout cost to holding cost is greater than

or less than 1.
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CHAPTER VI

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS
FOR ADDITIONAL RESEARCH

Introduction

This research was concerned with the identification

of inventory control methods for solving multiperiod inven-

tory problems that are more representative of the environ-

ment in which much inventory control is practiced than are

the conditions postulated by common inventory models. A

review of the literature has revealed that, to date, only

a very few special cases of stochastic, multiperiod, con-

strained inventory models have been solved, and then only

after considerable analytical and computational effort.

This study was concerned with the essential question of how

to address inventory control when confronted with not

unrealistic conditions for which modeling and solution

procedures have not been developed.

Each of the pragmatic strategies considered in this

research entailed the use of deterministic inventory models.

In each instance, random variables were replaced by deter-

ministic proxies to provide Cnonoptimal) policies for

implementation over a multiperiod planning horizon. These

policies were implemented only during the immediate period.

Expectations and policies were revised at the end of the
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period in response to conditions that were realized during
the period.

In addition to evaluating the relative performance

of several pragmatic strategies, the research placed special

emphasis on the best means of using deterministic mixed-

integer programming models as proxies for stochastic multi-

period inventory models. The special concern for the mixed-

integer programming model resulted .from recognition of the

fact that, among all of the easy-to-use deterministic

inventory models, the mixed IP formulation is exceptionally

amenable to the additional constraint.- and multiple-objective

criteria that coincide with. broadly conceived statements of

inventory control.

Sunmary and Conclusions

One major objective of the research was to determine

whether total cost over a four-period planning horizon is

sensitive to the reorder policy that is implemented for the

first period. This question was answered by computing

expected total costs using various reorder policies for

period 1 and optimal policies Ccontingent on the first-

period policyl for the remaining three periods. These

computations, conducted over a broad sample of cost and

beta-distributed demand patterns, permitted plotting expected

1 otal cost over the planning horizon as a function of the

reorder quantity specified by the first-period policy. The

curves obtained in this manner resulted in the rejection of
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the hypothesis that there is no unique minimum expected

total cost over a four-period planning horizon. Rejection

of the hypothesis implied the existence of an optimal

Cand identifiable[ first-period policy.

A second objective of the study was to determine

whether an optimal first-period reorder policy can be easily

and economically determined for a four-period, finite horizon

inventory problem characterized by changing costs and demands.

In pursuit of this objective, a subjective analysis was

conducted of the programming and computer-processing time

requirements attendant to the identification of an optimal

first-period reorder policy. The computer programming

modifications necessary to make the basic mixed IP computer

algorithm more amenable to the multiperiod inventory problem

were not found to require an excessive amount of programming

expertise. A study of the computer-processing time required

to solve a four-period inventory problem resulted in the

conclusion that, by using a combination of simulation and

mixed-integer programming methods, an optimal first-p .riod

policy can be determined over a four-period planning horizon

with a nominal investment in computer processing time.

A third major objective of the research was to

ascertain the significance of the error that is introduced

by applying a mixed-integer programming formulation as a

deterministic proxy to a probabilistic inventory problem.

This objective was pursued by using analysis of variance

techniques to assess the adequacy of first-period reorder
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policies obtained by using the mixed IP model when expec-

tations are used as periodic demands over a four-period

planning horizon. An analysis of variance, conducted at

the .01 significance level, revealed that the expected total

cost incurred by implementing mixed IP first-period policies

could not be shown to differ significantly from the expected

total cost resulting from the implementation of optimal first-

period policies. This disclosure led to the conclusion that

first-period policies obtained by using the mixed IP model

with expectations as periodic demand inputs are generally

adequate under the conditions specified in the research.

The fourth major objective addressed by this research

was concerned with, evaluating the performdnce of the mixed-

integer programning formulation relative to the performances

of the EOQ model, the Ct p,S model, and the deterministic

CsSI model, when each. is employed to solve a multiperiod

problem characterized by beta-distributed demands. To

accomplish, this objective, an experiment was designed and

conducted in which each model was used to solve a sample

of 25 randomly generated inventory problems. Each problem

required that replenishment decisions be made during 20

consecutive simulated periods. Replenishment decisions

were based on available cost and demand estimates over a

four-period finite planning horizon.

The mLxed-integer programming formulation used

expectations as periodic demiands to obtain replenishment

policies. Each. of the other thxee models used two different
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approaches in establishing proxies for the constant demands

assumed by the models. In the first approach, periodic

demand inputs were based on estimates of the most likely

next-period demands. In the second approach, demand inputs

"were determined by averaging demand estimates over the next

four periods.

The hypoziLesis that expected total cost is independent

of the model employed, given the conditions postulated in

the experiment, was rejected using analysis of variance

techniques. Follow-up tests were then conducted to evaluate

the performance of the mixed-integer programming formulation

relative to the performance of each version of the other

three models. In these tests, the mixed IP model was found

to perform significantly better, given the experimental

conditions, than each version of both the EOQ and Ct pS)

models.

The performance of the mixed IP model was not found

to be superior to either version of the Cs,S) model. This

result was not unexpected, however, given the nature of the

Cs,SI model and the limited conditions postulated in the

experiment. The perpetual review feature of the Cs,S) model

permits the maintenance of a lower average stock level, and

thus results in lower holding costs. This feature, coupled

with. the assumption of instantaneous replenishment, also

permits a more immediate response during periods in which

actual demand is considerably greater than predicted. During

the design of the experiment, no conscious effort was made
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to establish inventory costs at levels that would have

tended to offset these apparent advantages of the (s,S)

model. Instead, the various inventory costs were randomly

determined over ranges that were consistent with earlier

portions of this study. In addition, the experiment was

not designed to reflect the higher stock monitoring and

bookkeeping costs that are attendant to a perpetual review

model such as the Cs,S) model.

An additional test was conducted to determine whether

decreasing the time between reorder points for the mixed-

integer programming model could offset the attractive per-

petual review feature of the Cs,SL model. A problem in

which the Cs,S) model had originally performed considerably

better than the mixed IP model was reformulated as a 40-

period problem. A computer code was then used to compute

the total costs resulting from using the mixed IP model and

both versions of the Cs,SI model to solve the problem. The

reductions in the cost differentials between the mixed IP

model and each version of the Cs,S) model were significant.

These reductio.ts provided evidence to support the contention

that the peý'formance of the mixed IP model, relative to the

performance of the Cs,S) model, could be improved substantially

by increasing the number of opportunities for replenishmnent

for the mixed IP model.

A further concern of the study was to ascertain

whether the performance of the mixed-integer programming

model, relative to those of the EOQ, (tp,S1, and (s,S)
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models is sensitive to the ratio of stockout cost to holding

cost. Accordingly, linear regression analysis was used to

assess the sensitivity of expected total cost differences

to the cost ratio. The analysis disclosed that two expected

total cost differences, involving both versions of the EOQ

model, were sensitive to the cost ratio. Additional follow-up

tests, however, permitted the conclusion that the mixed IP

model performs better, given the experimental conditions,

than both versions of the, EOQ model whether the ratio of

stockout cost to holding cost is greater than or less than 1.

In this study, the researcher manually accomplished

the data processing procedures, including the modification of

an available branch-and-bound computer algorithm, required

to facilitate the identification of optimal first-period

ir.wentory policies. With• comparatively little additional

effort, the basic computer code can be further modified to

make the approach more accessible to practitioners. These

additional modifications would require only that the

practitioner provide 3-parameter estimates of periodic

demands. it is believed that such estimates can be

economically obtained through an analysis of corporate

records pertaining to sales forecasts, production capabilities,

etc. The cost of subsequent optimization has been shown to

be nominal. These factors, coupled with the increased

availability of computer algorithms and the current wide-

spread accessibility of data procEssing equipment to

companies of all sizes, suggest that the continued extensive
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use of simple lot-size models is highly questionable.

Considerably better results can be achieved by using the

more powerful mixed-integer programming inventory model

that was described in this study.

As a result of one of the findings of this research,

there is strong evidence that the number of periodic reorder

points required to make the mLxed IP model equivalent in

performance to the deterministic Cs,S) model is reasonably

small. When the model is embellished with additional

constraints, this- conclusion may not continue to hold.

However, as the mixed IP model is embellished to more closely

reflect the realities of the inventory problam being modeled,

its applications-oriented superiority over the (s,S) model

appears to be highly probable.

The most persistent criticism of multistage stochas-

tic inventory models has been that the computational and trac-

tability burdens imposed by these models make them of little

or no value to the practitioner. In this study, very adequate

results were obtained by using a deterministic .idxed IP model

as a proxy for the stochastic inventory model. These results

tend to support the contention of others that efforts to

develop complex and unwieldy stochastic optimization models

might be more profitably directed toward explorations of

approximation methods.
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The multiperiod inventory problem addressed in this

research is recognized as a special case of the geaeral

multistage stochastic programming problem. Reflection on

the techniques and methodology that were employed in the

study suggests that it may be possible to extend these tech-

niques and the methodology to other optimization problems,

such. as capital budgeting and queueing problems.

The basic research methodology - namely, simulation

and optiiaization techniques - is by no means unique to problems

characterized by beta-distributed periodic demands. Although

this study, was limited to the consideration of only beta-

distributed demands, there is no reason to believe that the

basic methodology would be any less appropriate if periodic

demands were known to be distributed according to other

probability distributions.

The data requirements for usingv the basic procedures

described in thi.s research. coincide ,ery closely with the

information structure. of material requirements planning (MRF

svstems. Hence, the procedures for identifying optimal

periodic reorder quantities can be easily coupled with. existhng

MRP systenms, It would appear evident that, in many circumstIn.:es,

the inclusion with, an MRP system of an inventory control mode-

of the form described ifn this study would serve to enhance

inventory decision makinq.
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Recommendations for Additional Research

This study was necessarily limited in scope. During

the course of the research, however, several opportunities

for appropriate follow-on studies became apparent. Some

suggestions for additional research in the area follow.

Coupling the mixed IF model and MRP systems. One potential

follow-on study would provide a discussion of the manner in

which a mixed-integer programming inventory model, such as the

model developed in this research, may be embedded within a

material requirements planning MIRP). systedm. An MRP system

is an information system that is designed to translate an

organization's master production schedule into time-phased net

requirementrs, and the planned coverage of such requirements,

for each c'omponent inventory item needed to implement the

schedule. MRP has become an increasingly popular method of

controlling inventories. Proponents of MRP systems have

resisted the use of embedded inventory models primarily because

of the unrealistic assumptions attendant to these models.

The mixed IP inventory model is devoid of many of

the assumptions that are bothersome to the advocates of MRP.

The model can be tailored to reflect the unique specifications

and restrictions of the inventory system being modeled. Such

a model could not only provide day-to-day assistance in

inventory management, but could also be used by management

to assess the overall effects of alternative managerial

decisions. This assessmen- could be accomplished by varying
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specific parameters withia the information system and using

the model to compute resultant expected costs.

A study in which a mixed IP model is embedded within

an existing MRP system would be of particular interest. Such

a study, would serve to ascertain the feasibilityr of such an

approach. to the inventory control problem, and would also

provide a guide that interested practitioners might follow.

Demand distributions, This research was limited to consideration

of multi-period inventory problemns in which periodic demands are

assumed to follow- a generalized-beta distribution. A worthwh.,LJe

follo•w-on effort would entail an evaluation of the applicabil-

ity of the general solution procedures advanced in this study

when periodic demands are kanown to follo- a probability dis-

tribution other than a beta distribution. Such a research

effort might also include a discussion of the magnitude of

the error introduced by assuming beta-distributed per•iodic

demands when actual periodic demands are be'.ter described by-

another distribution. Of particular intereýst wx,01 . be an

assessment of possible errors when extreme dewand distributions,

such as the uniform and quasi-delta distributions, are

encountered.

A relatively short study could also be devoted to a

discussion of the errors introduced as a result of using

approximations for the mean and standard ieviation of the

beta-distributed demand variable, rather tLhan the exact

values for these parameters. Such a discussion might lead to
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the suggestion that a probability distribution other than the

generalized-beta distribution may be more generally applicable

to problems in which the actual demand distribution is unknown.

Fxtension of the basic mixed' TP inventory model. The mixed-

integer programming model that was formulated in this research

is applicable to only a comparatively simple inventory problem.

An additional research effort might present a discussion of how

the basic ]P model can be modified to incorporate a host of

additional, pervasive considerations.

Such a study might demonstrate, for example, how the

objective function of the model can be easily modified to

accommodate additional managerial objectives such as the

minimization of the present worth of Cfuture) total inventory

costs, or the minimization of tax expense. The study could show

how, by introducing additional constraints, the basic model can

be extended to consider factors such aE storage capacity

restrictions, cash flow limitations, and maximum replenishment

restrictions.

"The study could also illustrate how the basic model

can be modified to accommodate multiple inventory items and

multiple vendors. A discussion could also be provided of the

manner in w4hich the model can be extended to permit

replenishment stock to arrive throughout a period, rather than

only at the beginning of a period. A ý;imilar discussion

could show how the model can I-be revised to allow back orders

to be filled.
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A study, in which the researcher formulates a mixed

IP model to fit an existing inventory system would be

especially beneficial. Such, a study should emphasize the ease

I with which a practitioner can interact with the model.

Optimal reorder points. During the course of this research,

an analysis of the relative performance of the mixed IP model

revealed that, under the conditions postulated in the

experiment, expected total cost over the planning horizon

decreased as the number of opportunities for replenishment

were increased. A follow-on study in which a method might be

developed for determining the optimal number of replenishment

opportunities over a given planning horizon would be

particularly beneficial.

Additional tests of comparative model performance. in this

research, the evaluation of comparative model performance

was limited to consider, in addition to the mixed-integer

programning model, three well-known deterministic inventory

models - specifically, the EOQ model, the Ct ,S) model, and

the Cs,SI model. An additional study could be conducted to

contL'ast the. performance of the mixed IP model with the

performances of bther commonly used models. A very challenging

research effoy-. would involve comparing the performance of the

mLed IP model to that of the multi-period stochastic (s,S)

model.
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Variable costs of inventory. In this study, it was concluded

that, given the postulated experimental conditions, first-

period reorder policies obtained by using the mixed IP model

with expectations as periodic demand inputs are generally

adequate. Additional research should be conducted to determine

if a similar approach may be applied when confronted with

problems characterized by stochastic inventory costs.

Relation to the qeneral problem. A particularly valuable

follow-on study would relate the multiperiod inventory control

procedures employed in, this research to the general multistage

stochastic progranuming problem. Such a study would serve to

put the findings of this research in the perspective of a

more general problem.

The multiperiod inventory problemi discussed in this

research. may be identified as, being a special case of the

general multistage stochastic prograimming problem in which

the decision maker has recourse to variable policies after

the first-period solution has been obtained. Suggested

solution procedures for the general problem have been based

primarily on attempts to include constraints for all possible

realizations of random variables. In the presence of

continuous random variables, the model becomes unbounded with

respect to the order of the constraint matrix. No practical

solution has yet been developed for solving this classical

operations research. problem.
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in research conducted preliminary to this dissertation,

the researcher attempted to obtain an approximate solution to

the problem through the combined usage of mixed-integer goal

programming and computer simulation techniques. The intent was

to develop a generally applicable decomposition method that

would require modeling only those conditions that w.,uld have to

be satisfied given one vector of realizations for random

variables. Starting with the optimal solution for one realiza-

tion, the intention was to then sequentially apply goal

programming methods to subsequent realizations in a manner

that would penalize new solutions that failed to satisfy

'reviously examined realizations. In many respects, the

intended solution technique could be regarded as being a

search method that is based on sequential sampling and

sensitivity analysis. The well-known difficulties encountered

in using sensitivity analysis in integer programming applications

led to the abandonment of the approach in this research.

Nonetheless, the approach might prove to be a workable method

for stochastic extensions of linear programming models.
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