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Preface 

The Weibuil distribution function has been widely used 

as a statistical tool for predicting the fracture probabi- 

lity in structural materials. Application of this statis- 

tical method to composite materials addressing nonuniform 

stress distributions and the three parameter form of the 

theory has been very limited.  I have performed an evalua- 

tion of the three parameter Weibuil distribution function 

applied to a composite material under both uniform and non- 

uniform stress distributions which includes establishment 

of a parameter determination methodology as well as the 

evaluation of the theory's ability to predict fracture 

across a variety of failure modes. 

I am deeply indebted to several individuals who assist- 

ed in the conduct of this thesis. I am very grateful to my 

thesis advisor, Dr. Anthony N. Palazotto, fcr his guidance, 

encouragement and counseling which aided immensely through- 

out this study» to Dr. James Whitney and Mr. Marvin Knight 

of the Air Force Materials Laboratory for their support and 

assistance in providing the experimental data required to 

conduct this thesis. A special thanks to my family for 

their patience during this trying time, and especially to 

my wife, Jean, for her many hours of dedicated typing sup- 

port. 

Dennis R. Schneider 
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Abstract 

This thesis is an evaluation of the three parameter 

Weibull distribution function for predicting fracture in a 

composite material subjected to failure under both uniform 

and nonuniform stress distributions.    The specific forms of 

the three parameter Weibull equations for these failure 

modes are derived for a general laminated composite and 

simplified for the special case of a unidirectional com- 

posite.    An analysis into a parameter determination method- 

ology which is mathematically reproducible is presented. 

The resulting expressions and methodology are applied to 

experimental bendingt  tension and three-point loading fail- 

ure data for 0-degree and 90-degree unidirectionally lam- 

inated graphite-epoxy specimen^    Weibull parameter sets are 

derived from both the bending and tension experimental data. 

Each set is then used to evaluate the theory's ability to 

predict the probability of failure throughout the three 

failure modes and   thereby to establish a single set char- 

acteristic of the material.    Although a set of parameters 

peculiar to each failure distribution was obtained,- a char- 

acteristic jet of values capable of predicting failure a- 

cross the variety of failure modes was not found for this 

composite material. 

xi 



EVALUATION OF 

THE THREE PARAMETER WEIBULL DISTRIBUTION 

FUNCTION FOR PREDICTING FRACTURE PROBABILITY 

IN COMPOSITE MATERIALS 

I. Introduc tion 

Background 

The classical theory of strength can readily be shown 

to be incompatible in material failure prediction when com- 

pared with experimental measurements. This is most easily 

demonstrated by the dispersions in ultimate strength which 

occur in experimental measurements. 

In the past this variability of ultimate strength has 

generally been treated as relatively unimportant, since it 

could easily be taken into account through the use of large 

factors of safety. However, with requirements for greater 

economy, weight restrictions, and increased performance, 

significant effort towards the development of more accurate 

failure prediction techniques is being expended. To bridge 

the inconsistencies between the theoretical strength pre- 

dictions and experimental data, statistical theories of 

fracture have become a widely used tool. 

The most widely accepted statistical theory of frac- 

ture is that based on the Weibull distribution function 

[6,2]. This theory is based on a weakest-link failure con- 

cept and relates the probability of fracture to the actual 



stress observed at fracture [2]. To fit the physical facts 

ol the experimental variability, the theory has been cor- 

rected to a semi-empirical distribution based on experi- 

mental data [2]. Two basic criteria of fracture; size and 

normal tensile stress, are used in the theory, and it is 

postulated that failure in an isotropic, homogeneous mate- 

rial is fully described by three material dependent param- 

eters; the zero probability strength (location parameter), 

the flaw density exponent (shape parameter) and a scale 

parameter [7]. Within the validity of these criteria, the 

theory can describe failure for any type of stress distri- 

bution [6]. 

Use of this theory ha3 been applied to a large variety 

of materials» from ceramics to laminated composites. Daniel 

and Weil [6] investigated the effects of a stress gradient 

on the fracture characteristics of brittle materials; Bortz 

and Weil [2] investigated the applicability of Weibull's 

semi-empirical distribution function to ceramic oxides, 

deriving the Weibull material parameters under various con- 

dition of test temperature, heat treatment, surface condi- 

tions as well as specimen size; Kaminski [ll] studied the 

effects of specimen geometry on the predictability of the 

strength of a composite material; and Knight and Hahn [12] 

performed experiments on randomly-distributed short fiber 

composites, looking at the statistical characteristics of 

the experimental data by use of the Weibull distribution 

< 1 



function. 

Most of the efforts investigating fracture using stat- 

istics have dealt with homogeneous isotropic materials, with 

a lesser empnasis towards composite materials. However, 

with present day interest, especially within the aerospace 

industry, being placed on such factors as weight, strength, 

and performance, the composite material has taken on an 

important role in the development of lighter-weight high- 

strength aerospace structures. Even though modern manufac- 

turing procedures of this material allow for carefully con- 

trolled manufacturing conditions, its precise breaking 

strength cannot be accurately predicted L9Ü» The variabil- 

ity of breaking strengths in a composite is identical in 

nature to that found for other materials, even when speci- 

men/are tested under assumed identical test conditions. It 

is this variability among a controlled population which nec- 

essitates accurate statistical approaches to the fracture 

process. 

The Weibull distribution function can be applied to 

experimental data in either a two parameter or three param- 

eter form. Each characterization has been investigated 

using both uniform and nonuniform stress distributions. 

A discussion of the parametric equations and related 

functions is provided in Section II of this thesis, however, 

it is important at this point to mention some previous 

efforts relative to the Weibull theory. 



Daniel and Weil [6] addressed in detail the three 

parameter form of the Weibull equation for both uniform and 

nonuniform stress distributions. Columbia Resin (CR-39) 

was used as the experimental material. The theoretical 

derivations for different stress fields are presented based 

on elementary beam theory applied to a prismatic beam under 

four-point loading. The resulting set of statistical equa- 

tions provides a means with which the probability of frac- 

ture can be predicted for a variety of loading conditions 

and stress distributions assuming the three material param- 

eters are known. The hypothesis in their development is 

that the three parameters are in fact "material" constants. 

This is substantiated by graphically confirming a close 

correlation between theoretical and experimental data. Al- 

though a set of three material parameters was established 

and verified for one set of experimental data» no verifica- 

tion of this set of parameters with data from different 

stress distributions was provided. Similar efforts have 

since been completed using composite materials» however, 

detailed theoretical validation is very limited. 

Daniel and Weil also developed analytical means for 

determining the unknown material parameters from a given 

set of experimental data. Their method involved the simul- 

taneous solution of a system of three equations with three 

unknowns. However» due to computational difficulties which 

were experienced» the graphic method devised by Weibull [16] 



proved to be much easier for parameter determination. 

Since the composite material provides a material with 

unique characteristics when compared to conventional struc- 

tural materials, the applicability of the approach develop- 

ed by Daniel and Weil is of significant interest. Further- 

more, the verification of whether a given set of material 

parameters will allow the prediction of fracture probability 

throughout a variety of loading conditions would confirm 

that the parameters are in fact material related. More 

important, this evidence could provide a significant cost 

savings in terms of the number tests required to determine 

general fracture characteristics of a material. 

Purpose 

There are four separate purposes to be investigated in 

this thesis. 

The first purpose is to establish the basic forms of 

the Weibull equation for a composite lamina under uniform 

and nonuniform stress distributions using the apprr   ch de- 

veloped by Daniel and Weil for a homogeneous isotropic beam 

[6].    Classical laminate theory is expanded in the Weibull 

equation form for bending,   tension and three-point loading 

conditions*    The equations are derived using general com- 

posite material notation and then reduced to a simplified, 

single lamina form,  for the specific specimen being used in 

this study.    Composites with only unidirectional ply orien- 

tations (0-degree and 90-degree)  are investigated. 



The second purpose is to obtain experimental fracture 

data for graphite-epoxy to allow validation of the above 

equations. The material parameters are derived from experi- 

mental pure bending data gathered to form the characteristic 

fracture distribution of the material.  Twenty-five tests 

will form this distribution.  Both the analytical methods 

described in [7] as well as the trial and error graphical 

method recommended by Weibull [l6] are used to determine 

the material parameters. Procedures to permit reproducibil- 

ity of the parameters and parameter associated sensitivities 

are addressed. 

The third purpose of this thesis is to investigate the 

extendability of the three parameters found from bending 

tests to other failure modes.  This will investigate the 

hypothesis that the parameters are in fact material related 

numbers. A minimum of 25 test3 for both tension and three- 

point loading will establish the fracture distributions for 

each. The theoretical equations developed for the first 

purpose of this study will be solved using the three param- 

eters found from the bending test distribution. The crite- 

ria for conformance is the closeness of fit between each 

experimental distribution and theoretical prediction. Meth- 

ods of obtaining additional accuracy of fit will also be 

evaluated. 

The fourth purpose is to compare the three parameter 

and two parameter Weibull function in prediction accuracy. 



The two parameter model also considers nonuniform stress, 

however the third parameter, the location parameter, is 

assumed to be zero. Factors in comparison include the math- 

ematical difficulty of establishing the three parameter 

model and variations in fit accuracy when compared to the 

two parameter model. In addition, suitability of each model 

across the variety of failure modes is to be addressed. 

i 



II. Theory 

The theory development for this investigation is pre- 

sented in three sections. The first two sections will pro- 

vide a brief background into the basic Weibull theory and 

classical composite theory. The third section will provide 

the derivations and equations used in this thesis, which 

are a combination of the theories described in the first 

two sections. 

Weibull Distribution Function 

This section is intended to provide a background of 

the theoretical considerations of the Weibull theory for 

the prediction of fracture [6,16] as well as its extensi/^ 

to a variety of stress distributions. 

The Weibull theory [l6] is based on the concept that 

brittle materials contain a large number of flaws, which 

tend to lower the fracture stress of a material below the 

theoretical rupture stress [2]. These flaws are assumed 

to be of a random size and distribution throughout the bodyi 

and to be the cause of the scatter which is found in experi- 

mental fracture data. Two basic critera of failure used in 

the Weibull distribution function are size and normal ten- 

sile stress. For a uniaxial stress field in a homogeneous 

Isotropie material, the probability of fracture for a vol- 

umetric flaw distribution is given by 

S ' l-e ?6 (i) 

8 



where 

B-jLF^r* 
and        B  is the risk of rupture 

a    is the zero probability strength (location 

parameter) 

a  is the scale parameter 

m is the flaw density exponent (shape param- 

eter) 

Equation (1) shows that no special allowance is made 

for nonuniformity of stress. Each elemental volume with a 

normal tensile stress is added to form the overall risk of 

rupture for the specimen. To address the question of non- 

uniformity [6], one can look at specific case derivations 

using a prismatic beam under desired loading conditions or 

stress distributions. The three loading conditions which 

are investigated in this thesis are» pure bending, three- 

point loading and tension. 

The development of equations accounting for tensile 

stress gradients can be accomplished using elementary beam 

theory» Figure 1 shows a prismatic beam under four-point 

loading and the resulting extreme fiber stress distribution 

The section between the minor span is assumed to be in pure 

bending• while the section between the minor and major span 

has the type of stress distribution found in a three-point 

loading condition. These sections can now be addressed 

separately. 
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For a pure bending failure, let (k) in Figure 1 be 

equal to infinity, thereby placing the total length of the 

beam under pure bending. Using elementary beam theory, the 

stress distribution within the beam is described by 

<r« -2ujE z (3) 

this assumption can be realized in a four-point bending 

test using only failures occurring between the minor span as 

the data samples. 

The risk of rupture,  Equation (2)   can now be  rewritten 

in integral  form as follows 

______ l (M 
O     O    Zu.   V Co        I 

where 

Z.-&S- (5) 

Equation (5)   is necessary since the three parameter form of 

the Weibull equation is being used,   thereby making the as- 

sumption that a stress value exists below which the proba- 

bility of fracture is zero.    A physical interpretation of 

Z    is shown in Figure 2 in which the shaded area represents 

the region where the zero probability failure parameter, 

(a ),  is exceeded.    The stress gradient for pure bending is 

as shown for every point along the x - axis.    Integrating 

Equation CO  results in the risk of rupture equation for 

pure bending 

11 



Fig.   2.    Stress Distributern - Pure Bending 
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B

"ZOTM)   a crw l0' 

where V  is a dimensionless number expressing the quantity 

of unit volumes subjected to a uniform  tensile stress [ 2]. 

Using Equation (6)   in Equation (1)   the probability of frac- 

ture  for a beam subjected  to pure  sending can be found. 

The derivation of the risk of rupture  for a center or 

three-point loading condition requires  that (k)   in Figure  1 

be equal  to  two.    This  is representative of a beam with a 

varying moment as shown in Figure  3»    According to elemen- 

tary beam theory,   the stress distribution within  the  beam 

is described by 

c~ To" XZ OiXij (7) 

Equation (2) can now be rewritten using this definition and 

the following integral limits 

B-r/T(^4 * 
where 

**9&z (9) 

and Z    is given in Equation (5)»    The limit expressed by 

Equation (9)  represents the point in the x - direction at 

which the stress reaches the value a •    A physical  inter- 

pretation of x    is shown in Figure k.    The superimposed 

13 
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stress curves show how the stress gradient and extreme 

fiber stress varies with respect to the x and y axis for 

this loading condition. Using simple proportions it can be 

shown that 

<T» cz, (10) 

from which Equation (9) is derived. Integrating Equation 

(8) results in the risk of rupture equation for a third- 

point loading condition 

(        m 

-5 
\-r 

r«i 
(ii) 

where 

and (m) is the largest integer less than or equal to (m) and 

(*) is the decimal fractions of (m). The term (r) is intro- 

duced as a dummy variable  for  the summation  term. 

Due  to  the complexity of the mathematics  involved  in 

the derivation of Equation (11), a detailed derivation  is 

provided  in Appendix A. 

The derivation for  the  risk of rupture under  tension 

loading is  the  simplest of  the   three  loading conditions 

being investigated.    Figure  5 3how3  that  the  stress distri- 

bution for this loading results  in a uniform stress over  the 

entire  thickness of  the beam and  therefore  is expressed as 

*i 

Ü 

16 

^i^p» 



Fig. 5» Stress Distribution for Tension 
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G* Cl (13) 

The risk of rupture equation therefore becomes 

Integrating Equation (14)   results in the risk of rupture 

for tension loading 

B .- V (Ct-GUY (15) 

Once the failure distribution of a material has been 

established, another characteristic of interest is the dis- 

tribution mean.  Once the three material parameters m, au 

and o0 have been established, the mean failure stress cm 

can be determined and used as a further check on the use of 

the Weibull theory for a given set of data [2]. 

0C 

Cm * CS •  / e'BA<7 <16> 

Equations (6), (11) and (15) represent the basic ap- 

proach and format of the risk of rupture expressions which 

will be extended to composite materials. 

Classical Composite Theory 

This section outlines some of the basic laminated plate 

relationships (for background see [l,3,10]. Figure 6 

indicates the axis system relationships which are used in 

the derivations, as well as some of the geometry of a 

laminated composite. 

18 



Pig. 6. Lamina Axis System and Cross Section Geometry 
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The stresses in an orthotopic composite plate, or lam- 

ina, can be calculated with the following relationships 

QM Ck QU, 

Qn Qn   Q2* 

Q* Q2* Qu 
(17) 

where (Q..) is referred to as the lamina stiffness matrix 

and whose components are 

Qu  :E../(I ~tl%) 
Qa- £u/C\ -VaVi.) 
Q* =   612. (13) 
Qu« NaEai/Cl-VaVu)  -   V* Eu/CI-VuVii) 
Q*» Q24 • 0 

and (k) the k th lamina within a laminated composite. The 

matrix of Equation (17) provides the equations for finding 

the stress due to loading the material axis. If the stress 

is desired due to loading in other than the material axis, 

(x,y,z in Figure 6), rotated some angle 0 off the material 

axis»   the stress is  found using the  following relationship 

Q«i        Qu    Q« 
Qu      Qa   Qu 
(j)i&     Q#.   Q* 

(19) 

(20) 

where 

On* a G*
4
Q * 2 (0**20*) Si^e&s1© • On Sn4e 

On- 0« S*46 f 2 (Q**ZQ«) MQ Cos G • C» &S4<9 
§** (G-*Qtt-2Qfc-20tt) W9Os20 t QttC$'"4©*G*40) 
Qii-(On*QaMQ*) S,**eCc520 +   Gie(Sin40*&s«0) 

Q»-(Qii-Qii-20tt) 5^00*6 • (Q^-Ü22*2Qw)S.Me^536> 

The convention used for positive rotation is shown in Figure 

6. 
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The strain components can be obtained from the follow- 

ing relationships 

+ Z< 
K>y 

(21) 

where the ( ) superscript refers to the midplane strains of 

a laminated composite. The components of Equation (21) are 

as follows 

and 

S • < >& 

•a'V ] 

(22) 

(23) 

where u,   v,  and w are displacements  in the x.  y,   and z 

direction respectively.    If one uses  the relationships of 

Equations (21),   (22)   and (23), Equation (19)   can be written 

as 

Wk-p]kM*zMk{Ki (2*) 

For convenience, a simpler system of forces and mo- 

ments is now introduced which are defined as force resultants 

and moment resultants. The force resultant (N ) is defined 

as a force per unit width and the moment resultant (M ) as 

a moment per unit length. In general then, these values 
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where 

can be given in terms of the stress vector as follows 

~Tt *^ Zk_, V,   J 
where 

I   •     C V,  V ,   XV) 

By rewriting these equations,   a shorter notation can be 

obtained 

M-[B]{6V[D]{K} 

and D«-*£[Öu]k(U*h-l,;,) 
[A] - extensional stiffness 

[B] - coupling stiffness 

[D]    - bending stiffness 

and (h.   - h.   ,)  represent the individual lamina thicknesses. 

When the laminate is symmetric in both geometry and 

material properties about the mid-plane. Equation (27)sim- 

plifies considerably.    Due to the symmetry,   the thickness 

terms cause the coupling stiffness (B. .)  to go to zero [10]. 
* j 

For the uncoupled axial and moment loads. Equation (27) 

w.*>n be written as 
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M-MK) 
(29) 

(M).[0]{K) 
Whitney, Browning and Mair [17] further simplified the 

moment resultant equation as follows!  since from Equation 

(29) 

M •[<>]>} (30) 

Thus,   for a pure  bending moment  this can be written as 

V 

.*- »j 

yw, 
'/ d*; 

. >*w, '/• 
S  z 

w 
-L»"/, tely. 

0„    Da    Du 

D.1   On   Ou 
0»    Ow   OuJ 

\ 

0 

,°7 
(3D 

M    is the moment resultant defined by 

M if« 
M (32) 

If one assumes   that  the  specimen has a high length-to-width 

ratio  then 

W W(X) 
and 

where 

(33) 

which is of the same form as classical beam theory with the 

Isotropie modulus (E) replaced by an effective bending mod- 

ulus (K).    Stress can now be obtained as 

M,-P].Z{K} (3*0 
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where 

or 

CTxk  * If K Y 

(T>K-If2,T (35) 

{'     ll2>3 (36) 

SIM -"   Dim hVl2 
Equation (36)   then represents an equation applicable  to a 

general class of symmetric laminates,  derived by consider- 

ing a beam as a special case of a laminated plate. 

The axial  stress equation,  when considering only the 

normal  force resultant N   ,  can be derived as follows 

[e°] ' [A]"'NK (37) 

where 

Nx « -£ (38) 

Since symmetric specimens will be used the equation for 

tension only is 

{?)' {i}  '[A]"NX (39) 

the normal stress can then be expressed as 

* [GUK A"!, • Qme Ai!-> Q UK A"*} N» 
(*K>) 
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Weibull Equation  for Composite Materials 

This section deals with  the extension of the Weibull 

distribution function  forms,   presented  for a beam  in Equa- 

tions (6),   '11)   and  (15).   to  composite materials.    Deriva- 

tions are based on  the composite  theory equation forms pre- 

sented  in  the  previous section.     The  final  equations  are 

then presented both  in composite notation as well  as  in a 

simplified form applicable  to  the specific experimental 

specimens  being analyzed  in  this study. 

Since   the Weibull   theory  is based  on  fracture duo   to 

normal  tensile  stress  in materials containing random flaw 

distributions,   the  composite  is also assumed  to  contain 

volumetric  flaws and  to  be  subject  to normal   tensile  stress 

fracture.    The derivation of  the composite  bending equations 

can be modified with  this assumption,   and Equation (35)   re- 

duces  to 

M (<U) 

or 

UV* * Z [ft,,* DM • ä«n&« QfcKÖQx (**> 

if we now define 

for simplified notation,   then  the stress  In a laminate  sub- 

jected to  bending can be expressed as 

ewe i"*' 
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where (z)   is the distance from the neutral axis. 

The laminate specimen used in this investigation will 

consist of only unidirectional ply orientations and there- 

fore act like a single lamina with respect to stress dis- 

tribution. Equations (45) through (49) provide some basic 

definitions for later theory development and are graphically 

presented for a unidirectional laminate in Figure 7 

where the subscript (p) refers to the p-th lamina which is 

the lamina in which o = 0  .    The stress in the p-th lamina 
u r 

is defined as 

(T - CPZ s [CW DU • Qoifo • Q* D«j ^ (46) 

also 

(Tu,-Cph<rH ^7) 

6H • Cthr-i (W 

<TP • Cf hp (<»9> 

With  the use of these equations  the evaluation of the  risk 

of rupture  becomes 

where  the first triple integral represents the number of 

unit volumes in the lamina in which the stress partially 

exceeds o   •    The second  triple  integral  represents  the sum- 

mation of  this quantity for all other lamina in which  the 
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Fig. 7.  Typical Stress Distribution - Composite 

with Unidirectional Ply Orientation 
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stress exceeds a • Subscripts axe provided to a to ac- 

count for variations of this value in multi-directionally 

oriented specimens and as such make this term ply dependent, 

The equation in this form represents the risk of rupture 

for pure bending of a general laminated composite. For t_ 

unidirectionally laminated composite, as that being used in 

this thesis, a is assumed to be identical for all plies 

and consequently subscripts are dropped from subsequent 

equations. Integrating this equation results in the expres- 

sion for the risk of rupture for a unidirectionally laminat- 

ed composite subjected to pure bending. 

(5D 

This equation can be simplified further by use of the char- 

acteristics peculiar to the specimens being incorporated 

into this thesis. For unidirectional fiber orientations 

CP*CK«C (52) 

because the terms in the lamina stiffness matrix Q. . are 

identical for each lamina. This reduces Equation (51) to 

n        Lb      (Chn-(m)   [  OvT fiY (53) 
B • -jsTiT ^— ;—CT"/ 

Equation (53) can also be written in terms of the extreme 

fiber stress as was Equation (6). The stress distributions 

for these composite specimens are linear, and therefore can 

be expressed as 
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°~* IT1* fez ^ 
since 

d(%   : C [%j =  (Tn (55) 

therefore 

B= (f^7) 
Lb     [On "(Tu\ f(7ii "(fu -/T.\W 

C (To 
(56) 

where 

C -   <T«(2/h) (57) 

now 

B=2(mM) 
(58) 

where 

LU =V 

Equation (58)   is identic*), to Equation (6)  as is expected 

for the type of composite being considered,  and therefore 

represents the risk of rupture equation for pure bending 

loading tests in the  thesis.    A similar approach is used in 

the derivation of the risk of rupture equation for three- 

point loading.    Some of the previously defined terms must, 

however,  be modified to allow for a varying moment.    The 

moment equation for three-point loading is 

X (59) M - (p/2) 

where (P)   is the applied load.    Equation (42)  can now be 

written 
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(TK * Z [QUK OM • Q.2K Ö.i+ CUD*]££ X (60) 

defining 

ci- [Q«K(V QincOtt+QiiiiOjtt (6l) 

then 

a • CK'ZX (62) 

5 
since the specimen/are unidirectional, the lamina subscript 

can be dropped. Figure 3D shows the extreme fiber stress 

distribution, and from this we define 

(Jb (beat*)* 67\(composite ) •  C -«§- 

or 

hn L 

where a is the maximum extreme fiber stress, and h is de- 
n n 

fined in Figure 7« Using Equation (62) in Equation (2) re- 

sults in the expression 

which when integrated takes the form 

5    Zb       fff (t'L/Z^-Cu)"*-'^ 

v-  .       .„  ,        (66) 

which can be put in terms of the maximum extreme fiber 

stress o by use of Equation (64). Using this definition 
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the final risk of rupture for a composite under three-point 

loading then becomes identical to Equation (11). 

The risk of rupture for a composite under tension is 

derived from Equations (25) and (27). In this case only 

the tension loading and extensional stiffness is considered. 

Using Equations (2) and (40) the integral equation for the 

risk of rupture under tension is 

ß.£ ffft&^M (67) 
which integrates to 

B*Lb£(£^jV^) (68) 

If one incorporates the unidirectional properties of the 

specimen as related to  this  thesis  in addition to 

(Tin*   G.   --   ConsUnt (69) 

Equation (68) reduces to Equation (15). 

This study will utilize Equations (15). (58) and (66) 

in predicting the risk of rupture for graphite-epoxy under 

the loading conditions for which each of the equations was 

derived, and then use these values in establishing the prob- 

ability of fracture from Equation (1). 
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Ill. Experimental and Analytical Procedures 

This section provides an overview of the methodology 

developed to obtain the material parameters in the Weibull 

distribution function. A description of experimental equip- 

ment and procedures as well as the analytical process used 

in manipulating the experimental data is provided. Also pos- 

tulated in this section is some analysis theory directed at 

data evaluation and interpretation. A sensitivity analysis 

is provided in an attempt to show the dependency of the re- 

sulting theoretical equations on the specific experimental 

data being analyzed. 

Material, Equipment and Test Procedures 

Graphite-epoxy specimens are used exclusively in the 

experiments. Specimens were constructed of both sixteen 

and eight ply graphite fibers impregnated in epoxy. Fiber 

orientations were unidirectional within each specimen. The 

specimens were cut from a single 2k  inch by 2k  inch sheet, 

thereby obtaining both O-degree and 90-degree oriented test 

samples from the same layup.  A description of the specimens 

is provided in Figure 8. Two laminate thicknesses are 

used due to limitations on specimen size; sixteen ply spec- 

imen for both four-point and three-point loading tests and 

eight ply specimens for the tension tests.  The lower ply 

specimens were chosen for tension so the necessary fracture 

loads would not deform or separate the end-tabs from the 
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specimen, thereby inducing measurement inaccuracies. 

A standard Instron testing machine was used to conduct 

all testing. For each four-point and three-point loading 

test, the load was applied at .05 in/min. The tension tests 

were conducted with a stroke rate of .02 in/min. The appli- 

cation of loading continued until castastrophic failure or 

load resistance went to zero. A chart recorder recorded 

deflection versus load for each specimen. Approximately 20% 

of the specimens were equipped with strain gages. For these 

specimens strain versus load was recorded. 

Accurate volumes were obtained for each individual 

specimen by conducting, individually, three measurements of 

thickness and width. These measurements were tUen averaged 

to obtain an average width and thickness per specimen. All 

testing followed in accordance with standard test proce- 

dures. In order to obtain a region of pure bending within 

the four-point loading tests, the cross-sectional dimensions 

were controlled to a span to depth ratio of 32 to 1 for each 

specimen.  A minimum of 25 specimens were tested for each 

ply orientation and loading condition. 

The succeeding paragraphs provide the steps followed by 

the author in arriving at the final procedures of deriving 

the material parameters using published information. With 

the accumulated experience obtained in the methodology pro- 

cess» a final technique is developed and presented. 

Material Parameter Determination 

Once the basic equations for the Weibull distribution 
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function are established,   experimental data is gathered  to 

validate  the  theory.    The problem that now arises is  the 

development of those values of the material parameters which 

make  the  theoretical probability of fracture  curve fit the 

experimental data best. 

Daniel and Weil  [6] used as a suitable criterion the 

analytical method of minimization of the sum of the mean 

squares differences.    In their procedure,  experimental data 

obtained from pure bending tests was used in the parameter 

determination. 

The procedure combines Equation (1)   and (6).    Taking 

the double log of Equation (1)  yields 

y» --    UU J75n •  Ln B   :Lnf  Ln(imt) {?Q) 

+ (rmi) In(Cn-Cii) - Ln tfn - M U (£ 
The corresponding (estimated value for the probability of 

fracture obtained experimentally is 

<; - --n (71) 

from which 

where   N = total number of specimen/ tested 

n - specimen number when specimen are arranged in 

ascending order of stress 

The least squares method requires 
M 

L  &"" y*)1'   MINIMUM (73) 
MI , , 

The necessary conditions  for th^j minimization also  require 

that the derivatives of Equation (73)   when taken with 

respect to o   » 0    and m to be set equal  to  zero. 
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This then results in three equations with three unknowns 

which can be solved simultaneously. Convergence to zero 

results in the determination of a unique parameter set. 

Although mathematically correct, convergence of these 

equations was found difficult to obtain. A possible reason 

being their highly non-linear nature [2]. 

Another more widely used approach is one suggested by 

Weibull [6].  This method is a trial and error procedure in 

which the experimental data is linearized. The recommended 

procedure is to rearrange equation (70) into the form of 

the equation of a straight line 

y = mi +b (7^ 

this is accomplished as follows 

LNLN^J^^NG; -(mti)LN(C-„-^)tLM^^-mLN(r9   (75) 

Two axes (x and y)   can now be established where 

Y=LNLN^ 4LKJ0-« <*> 

and 

X=   LM (Ch- (Tu) (77) 

The correct value of a is obtained through a trial and 

error procedure. Various a values are picked until a 

straight line results from the plot of Equations (76) versus 

(77). If a    is too low, a curve concave down will result, 
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if too high the result will be a curve concave up [16]. 

The slope of the resulting straight line then becomes 

(m + 1). Once m and a    are established*all values of Equa- 

tion (?0) are known except for a . This value can now be 

determined by substituting the known values back into Equa- 

tion (?0). 

This procedure was also employed by Daniel and Weil 

when their analytical method proved impractical. One draw- 

back found during their experimentation showed that gener- 

ally a very large number of guesses are required to finally 

obtain the desired linear result. Consequently they de- 

vised a process in which the upper and lower end slopes of 

the concave curves resulting from several estimates of a 
u 

are plotted against a . This procedure is illustrated in 
u 

Figure 9.  Connecting the end slope points with a straight 

line results in a plot as shown in Figure 9d. The inter- 

secting point provides the desired values for m and 0  • 

This procedure significantly reduces the total number of 

estimates to identify 0  . *    u 
The development of  the methodology for the parameter 

determination for this study was based on two sets of ex- 

perimental data,  each with established material parameters. 

One data set was for a ceramic material and the other for 

a composite material. 

The least squares analytical method of parameter deter- 

mination was not investigated due  to  the  findings by Daniel 

and Weil [?]•    A detailed analysis,  however,  was conducted 
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V aul au= au2 a,,= a 

B B B 

N + 1 
A = lnln N + i . n * ln a 

B = in (a - au) 

m 

(d) end slope plot 

Pig. 9- Parameter Determination Method 
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to establish an effective way to use the graphical approach. 

The ceramic material fracture data was used exclusively in 

this effort due to its more manageable magnitudes in stress 

values.  The composite data allowed for additional verifi- 

cation of the final procedures. 

The basic approach of the analysis followed the proce- 

dures outlined by Weibull, with modifications made as re- 

quired. The following paragraphs outline the sequence of 

events and the rationale which led to the final methodology 

for determining the material parameters. 

From the outset, of the analysis, a variety of a    values 

were plotted using Equations (76) and (77) as plot coordi- 

nates. The resulting graphical data, however, showed re- 

finement to the method was required. For all values of a n u 

chosen, no singularly definable straight line or identifiable 

concavity could be established. Figure 10 shows a typical 

case of the experimental data when plotted using Equations 

(76) and (77). 

To improve the method, a smoothed curve was fitted to 

the experimental data. Plotting the values along this 

curve instead of the individual data points, resulted in a 

definably straight line from which a and m could be obtain- 

ed. The problem with this technique, however, is the arbi- 

trary approach used in fitting a smooth line to the experi- 

mental data. This became more evident when the published 

material parameters for the data could not be duplicated. 

A more regimented approach for data smoothing was in- 
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stituted through the use of the least squares principle and 

thus various degree polynomial equations were studied which 

adequately approximated the data. This required a decision 

as to which degree polynomial provided the best results. A 

mathematical best fit could not be used since this would 

necessarily be a high degree polynomial, resulting therefore 

in an irregular curve rather than the desired smooth curve. 

Rather than limit the flexibility of this method, numerous 

polynomials were incorporated to approximate the data, and 

then evaluated with respect to the vaiability in the Weibull 

parameters. Although all higher degree polynomials produced 

distinctive values for m and j • each polynomial resulted 

in distinctively different values. The published parameters 

were again not duplicated. 

Analysis of the characteristics of each polynomial 

curve revealed an invariance in the curves in the region 

beyond the first three to six data points. A very high 

variability was found, however, in fitting these first few 

points. Figure 11 depicts this area. The characteristics 

of smoothing within this zone resulted in the following; a 

smoothed curve which flared as shown by curve 1 in Figure 

Hi resulted in o values near zero or even negative, curves 

within the shaded area resulted in values falling between 

zero and the lowest failure data point depending on whether 

the curve fit was chosen in the upper or lower portion of 

this shaded section, finally if a fit approximated curve 2, 
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values of a greater than the lowest failure data point 

were required to obtain a straight line plot using Equations 

(76) and (77). As a result of these characteristics and due 

to its physical significance within the Weibull equation, 

a was chosen as a bounding value. The lower limit of a 
u u 

was chosen to be zero based on the physical interpretation 

that stress below this value must result in a probability of 

fracture equal to zero. The lowest experimental failure 

stress determined the upper limit for a » thereby specify- 

ing that a finite probability of fracture exists above this 

value. 

Using various degree least square polynomials a variety 

of 0   's and m's were established within these limits of a . 

If these values are displayed in graphical form a linear 

relationship results as shown in Figure 12. This data im- 

plied that an infinite number of combinations of both m and 

a existed within the set limits, any of which could be used 

to theoretically duplicate the experimental data. The pub- 

lished material parameters for the sample data were also 

located on this line. Basod on these interesting results, 

this technique had provided the means of duplicating the 

published material parameters as one of a very large set. 

To verify that each set of values resulted in a valid 

theoretical prediction of the experimental distribution, 

randomly picked parameter sets were plotted using the Wei- 

bull equation and overlayed on the experimental data. Vis- 
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ually adequate fit was achieved with all sets. However, it 

was noted that sets with values of a near zero or near the 

lowest fracture data point did not match the experimental 

data as well as those with intermediate a    values.    It ap- u * 
peared therefore that a "best"  set of parameters existed 

which could be mathematically isolated. 

The mathematical analysis   to isolate  the best set of 

parameters employed  the  least squares method of summing the 

squares of  the mean difference  between the experimental data 

and  theoretical Weibull equations.    The error between these 

two models was calculated and plotted for a variety of 

material parameter sets.    The dashed line shown in Figure 

12 represents this sum of the mean difference  squared plot- 

ted against the corresponding m and o    values.    As can be 

seen,  a "best"  set of parameters does exist among  the  family 

of sets represented by the  straight line when analyzed in 

this manner.    Eventhough  the  set which resulted from this 

procedure did not match the published set of parameters, 

the magnitude of the overall error in fit difference is 

very small.    Figures 13 and Ik provide a graphical repre- 

sentation of the experimental data points overlayed using 

the published material parameters (Figure 13)  and the best 

set determined by the aforementioned procedure. 

The  final step in establishing the procedures for  the 

parameter determination was  to check  the sensitivity of fit 

accuracy between the experimental data and  theoretical  curve 
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due to small changes in each parameter of the Weibull dis- 

tribution function. The results showed that all changes to 

a and m would cause an increase in fit error. However, if 

a is made the variable at a fixed m and a the author was 
o u 

able to find values which decreased the fit error. The 

cause of this lies in the methodology used in the deriva- 

tion of this parameter. The procedure, which is used to 

find a  9  evaluates Equation (75) for each stress/probability 

value and establishes as many a    values as there are data 
o 

points. These values of a    are then averaged to obtain the 

final a • This final number therefore is very data sensi- 

tive since the addition of another failure value would gen- 

erally result in a change to a • 

Based on thi3 information, the value of o* for each o 

set of m and a    was allowed to vary approximately plus and 

minus one percent, and a new fit error was calculated for 

each resulting new set of parameters. Although the reduc- 

tion in error is extremely small in overall magnitude 

(.02655698) versus (.02655657) the resulting set of "best" 

parameters is changed significantly (m = 4.868, a    = 1661,5 

0 = 23^2,06 versus m = 4.856, au = 1670, oQ  = 2333*52). 

Due to this sensitivity found in the a parameter, the 

procedure of graphically establishing m and a    was revised. 

The writing of a computer program became necessary, incorpo- 

rating the experimental data in conjunction with Equation 

(76) and (77)» to allow a numerical refinement for various 

48 

""''"-•—^'  -     -    -••-•>»'• ""- ~-"**•«• 



values of a . From this numerical data, initial values of 
u * 

m could then be obtained. For each a , the values of m and 

0    are allowed to vary until a combination of the three 
o 

values is found which provides a minimum fit error to the 

experimental data. Figure 15 is a three dimensional repre- 

sentation of the physical interpretation of this error min- 

imization process. This procedure greatly simplifies the 

more involved and subjective graphical method. It also pro- 

vides immediate mathematical comparisons. The computeriza- 

tion verified the high sensitivity of fit accuracy to vari- 

ations in a when establishing an accurate theoretical model o ° 

for an experimental failure distribution. 

Since the above methodology demonstrated that for 

given values of a , the fit error could be minimized, the 

analytical method of maximums and minimums should also be 

able to predict this point. Therefore an analytical check 

of these procedures was also conducted. The minimum error 

expression can be written as 

-- £(S-Snf-- MINIMUM        (78) 

«•I 

were 

S* -J3- (79) 

and    S » Equations (1) and (6). 

Taking the derivative of this equation with respect to the 

variables yields the following expressions 
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kl 

Convergence of these equations was verified for all param- 

eters evaluated. 

The computerized analysis method which resulted from 

the refinement of the graphical trial and error procedure 

is used in analysing the data gathered for this thesis. 

The methodology is mathematically reproducible for a fixed 

set of experimental data, and therefore less subject to 

many inherent inaccuracies of graphical analysis techniques. 
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IV.  Results 

This section contains a compilation of results from 

the various analyses and data evaluations comprising this 

thesis. The discussion is divided into three subsections. 

The first two parts present the recults obtained from the 

Weibull parameter determination analysis and the theoretical 

equation validation using the experimentally obtained fail- 

ure distribution.  Peculiarities,which are reported in the 

first two efforts, led to a supplemental data analysis to 

further investigate the usability of the Weibull theory. 

The findings of this evaluation are discussed in the last 

part of this section. The detailed data from the experi- 

mental phase of this study are presented in tabular form in 

Appendix B. 

Due to the complexity in describing the large assort- 

ment of analysis variations which occurred during the con- 

duct of this thesis, the author feels it is necessary to 

present the reader with an overview of the total effort at 

the outset of this section. This is presented in Table 1. 

Also, a factor which must be pointed out at this time is a 

peculiarity which was discovered during the analysis of the 

90-degree flexure specimen. It was discovered that all 

specimen which had been equipped with strain gages had fail- 

ed at an above average stress. Consequently, it was decided 

to analyze this data as comprised of two independent samplest 

one containing 21 samples, the other containg 26. All 90- 

52 

~~—=—iT • 



Table I. 

Summary Correlation Chart 

Parameters 
Derived from 

Experimental 
Data checked 
for Correlation 

Resulting 
Correlation 

X-Correlation 
--no/poor Correlation 

0 
! 0 Bending 

0 
0Q Bending 
0Q Tension 
0 3-Point 

X 
X         I 

90 Bending* 90o Bending* 
90o Tension 
90 3-Point 

X 

90 Bending** 90Q Bending** 
90o Tension 
90 3-Point 

x 

X 

0 Tension 00 Bending 
00 Tension 
0 3-Point 

X 
x              i 

0 
90 Tension 90o Bending* 

90o Bending** 
90o Tension 
90 3-Point 

X 

0° 3-Point 0 3-Point X 
1   a    -  0 

u 
90° 3-Point 90° 3-Point X 

au = 0 

* 26 Specimen Data Sample 
#* 21 Specimen Data Sample 
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degree bending data will be analized in this manner. 

Parameter Determination 

The flexure data shown in Tables IX and X of Appendix 

B is used for the basic parameter determination. The com- 

puterized methodology described in Section III was employed 

in this analysis. Figures 16, 18, and 20 present the final 

sets of m and a    values for the 0 degree and two sets of 90- 

degree specimen/respectively. Additionally, Figures 17• 19 

and 21 provide the values of a which correspond to these 

values. Superimposed on Figures 16, 18 and 20 are the fit 

error values which result from the correlation between the 

experimental and theoretical distributions when using the 

sets of m, a and a  . Table II is a summary of the best 
u    o 

parameter values obtained as well as comparison cf the ex- 

perimental mean compared to the theoretical mean using the 

respective parameters. 

Table II. 

Weibull Parameters Using Bending 

Specimen 
Type 

m ou 
psi 

Go 
psi 

am psi 
Experimental/ 
Theoretical 

0-degree 

90-degree» 

90-degree#» 

18.70 

.90 

.91 

0 

8498 

8175 

180010.26 

1.30 

2.95 

249^05-50 
249307.14 

9792.25 
9736.34 

10173.09 
9981.98 

• 21 Specimen Data Sample    ** 26 Specimen Data Sample 
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These values are determined based on a fit error conver- 

gence factor of .0001 using the least squares method. Table 

III. gives the fit error values corresponding to the param- 

eters shown in Table II. 

Table III. 

Bending Data Fit Error 

Specimen 
Type 

Fit 
Error 

0-degree 

90-degree 

90-degree 

.02198 

.04589 

.06114 

The author questioned the difference in fit resulting be- 

tween the 21 specimen arid 26 specimen 90-degree parameters, 

but one has to realize the relationship of the parameters 

in the Weibull equation and the significant change in the 

shape of the distribution curve caused by the addition of 

the 5 instrumented specimen to the top of the distribution. 

Computations became some-what erratic as estimates of 

a approached the lowest failure data point where probabi- 

lity of failure values predicted by the Weibull expression 

became very sensitive to very small variations i- the in- 

dividual parameters. The author has attempted to attain as 

high an accuracy as possible, but practical considerations 

required the establishing of tolerances. As a consequence 

of this, the following minimums where placed on the param- 
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eter variation increments! a    +1.0 psij m + .01; g + .1 
u *• —     o — 

psi and +1.0 psi. Two minimums were placed on a due to 

the magnitudes of this parameter for the 0-degree specimen» 

Error variation per unit change in a for the 0-degree data 

was less than .00001. 

Figures 22, 23 and 2^ show the experimental pure bend- 

ing data and the Weibull equation plotted using the values 

shown in Table II. For comparative purposes additional plots 

with various parameter sets chosen from Figures 16, 18, and 

20 are provided in Figures 1C through 8C of Appendix C. 

The determining factor for the best 0-degree specimen 

parameters is the lower limit previously placed on g . 

Mathematically, however, a better fit can be achieved using 

negative values of a  . The minimum fit error occured at 

O    = -290,000 psi. This value is approximate since a de- 

tailed analysis into establishing this exact value was not 

conducted. Figure 2C in Appendix C verifies that using 

negative values does provide a mathematically accurate fit 

to the experimental data. Within the physical interpreta- 

tion of this parameter as the zero probability failure 

value, this of course cannot occur. The reason for the 

increased accuracy using a negative g value is again due 

to the mathematical relationship of the three parameters 

within the Weibull bending equation. This of course also 

points to the fact that placing a physical significance onto 

the a    parameter as it appears in the Weibull equation, may 

be incorrect. 
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Fig. 22. Comparison of Experimental Bending Data and 
Theoretical Cumulative Distribution Function 

0-degree Specimen 
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Theoretical Equation Validation 

The parameters developed in the previous section now 

permit the evaluation of the Weibull equations which where 

derived for tension and three-point loading failure. Based 

on the premise that the Weibull parameters are material re- 

lated values, the resulting theoretical distributions should 

approximate the distribution established experimentally for 

each failure mode. The specific evaluation results are pre- 

sented per failure criteria and specimen fiber orientation 

in the following subsections. 

A. Tension equation - 0-degree specimen. 

Equation (15) was evaluated in combination with the 

material parameters derived from the 0-degree bending fail- 

ure distribution as given in Table II. Direct substitution 

of this parameter set into Equation (1.5) resulted in a fail- 

ure distribution predicting 100 percent failure at stress 

values above 230,000 psi. This of course does not match 

the experimental data for 0-degree tension failure as can 

be seen in Table XI of Appendix B. 

Since the derivation of the Weibull equations assumed 

a volumetric flaw distribution, the volumetric differences 

between the bending and tensile specimen were normalized 

using the following relationship 

UW (81) 

where b • • bending 

t - • tension 
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from which a volumetrically normalized a can be defined as 

ftt-fcbVtNC*" (82) 

Equation (15) can now be written as 

Using this equation and the parameter set established from 

0-degree bending specimen^ the resulting theoretical distri- 

bution function improved slightly, however, the overall 

data match was still very poor. 

Comparison of the experimental failure distributions 

obtained for bending and tension indicated that the basic 

failure stress extremes are nearly the same. Therefore, 

based on this characteristic, a theoretical curve similar 

to that obtained for bending should also provide very ade- 

quate predictions for the experimental tension distribution. 

The modification of the tension equation under these cir- 

cumstances can now be accomplished as follows; since the 

parameter set being evaluated has a j value equal to zero, 

the bending risk of rupture equation can be written 

(8*0 &*>r Zp^"fef 
The tension risk of rupture equation under the same condi- 

tions is 

B.- v. to" (85) 
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Similar risk of rupture values are obtained for a given 

stress level only under the conditon where 

2(nvi)(Tcb
H • (T,<r (86) 

therefore, defining 

ft;. [^n±»j ^ (87) 

* 
Q .  is used to differentiate this a from that used 
OX 0 

in the expression normalizing the volumes.  By substituting 

this expression into the tension risk of rupture equation, 

the resulting form of this equation is 

B. •*(-©* (38) 
for the specific set of experimental data being evaluated. 

This equation yields very good failure predictions for the 

experimental data,  as is shown in Figure 25«    For graphite- 

epoxy specimen with O-dgree fiber orientation it is there- 

fore possible  to predict the probability of failure  in ten- 

sion using a set of Weibull parameters which have been es- 

tablished using experimental flexure data.    However,   the 

0    parameter must be modified to account for the differences 

in the nature of the two types of risk of rupture equations. 

The method utilized to modify the tension equation has also 

been used by Hahn and Knight [12] in studying short fiber 

composites. 

B.    Tension equation - 90-degree specimen. 

Equation (15) was evaluated using both the set of ma- 
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terial parameters d» fined using  the 90-degree  flexure data 

which included  the  strain-gaged specimen data points as 

well as  the  set which was established using only noninstru- 

mented specimen data.     Even after manipulations of    Equa- 

tion (15)   in  the manner described   for  the 0-degree   tension 

data,no  approximation of realistic   failure  probabilities 

could be  obtained using  the  parameters  from either  flexure 

data.     The   immediately obvious  reasons  for  this are   the 

values of a   .    These  values are greater  than 80 percent of u 
the experimental data joints.     As  a result, a negative  ex- 

ponentiated   term appears  in   the  risk  oi"  rupture  equation. 

Various combinations of Weibull parameters with ci * u 
values  lower  than  the   lowest   failure  stress data point,   ob- 

tained using Figures  18  and  20,   were  analyzed  but no  suit- 

able  combination could  be  established.     Due   to   the  signif- 

icant differences  in  the   failure  characteristics  in  tin» oo- 

degrt e  fiber oriented graph i te-opoxy  specimen when  subject- 

ed  to  tension as compared   to  pure  bending   failure,   no  cor- 

relation was   found   in   the use  of a single  set of Weibull 

parameters  for  failure  probability  prediction across   these 

failure modes. 

C.     Three-point  loading equation  -  0-dogreo  specimen. 

Equation (66)  was evaluated  using   the Weibull   param- 

eters defined using  the 0-degree  experimental  pure  bonding 

data.     Since   the  value  of a     in   this set  of parameters   is 

equal   to  zero,  Equation ((>(>)   can be  rewritten   in a much 

simpler  form as  follows. 
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where a ~ , is normalized for volume. 
o3pt 

Substitution of the parameters shown in Table II into 

this form of the risk of rupture equation yielded failure 

predictions far too low. For example, replacing a with the 

highest experimentally obtained failure stress for this 

failure mode resulted in a probability of failure of less 

than .22. Manipulation of Equation (89) in the manner de- 

scribed for the evaluation of the tension equation,allows 

the adjustment of the a parameter as follows 

Vb _, y.yj (90) 
flSHjGo? ' 2(rn+i)1"CoSVt 

from which 

fc** :    [(m%]W(7ol> (91) 

using this value  for a    in  the  three-point loading risk of 

rupture equation provides the best correlation attainable 

for this set of parameters.    The  resulting curve  is shown 

in Figure 26.    As is evident,this curve provides a poor cor- 

relation to  the experimental data and  therefore^ it is con- 

cluded  that theoretical prediction of a 0-degree  three-point 

loading failure mode using 0-degree bending parameters is 

not possible. 

0.    Three-point loading equation -  90-degree specimen. 

Evaluation of Equation (66)  was attempted using both 
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sets of 90-degree bending parameters.    Due  to the  complexity 

of the basic form of Equation (66),no solution could be ob- 

tained using the values as listed in Table n.    However, 

since   the  criteria for establishing Figures 18 and 20 is 

that all  sets of the  listed m,  a    and a    values provide a u o 
fit with  the  corresponding error,   then utilizing the  set of 

values corresponding  to a    =  0 should provide  an adequate 

measure of whether correlation between the experimental 90- 

degree  three-point loading and  the  three-point loading equa- 

tion given in Equation (89)   exist.    The resulting  theoret- 

ical curves are  shown in Figures  2? and 28.    As can be  seen 

in Figure  28,   the  theoretical  prediction curve using the 

parameters derived  from  the  90-degree  flexure data without 

the instrumented specimen is fairly good.    However,   the use- 

ability of the  theoretical data in Figure  27 is questionable 

The reader should be  aware  that  these  curves were plotted 

by direct substitution of  the material  parameters  from  the 

flexure analysis into Equation (89)   using Equation (8?). 

Manipulation of Equation (89)   as shown  in Equation (91)  was 

not necessary.    This of courts means  that the parameters 

are true material parameters  for the 90-degree bending  to 

90-degree  three-point data.    The reader should  recall   that 

for the 0-degree data,   the nature of  the  failure distribu- 

tion had  to  be considered  in order  to  achieve correlation. 

A point should be made at this  time,  and  that is  that  the 

three bending derived material parameters are not common  to 
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this group of experimental data, but are more oriented to 

the type of test. As a summary of this section the follow- 

ing correlation overview is provided. 

Table IV. 

Correlation Results - Bending Parameters 

Equation Data Fit Obtained 

Bending 0-degree Excellent 

90-degree* Excellent 

90-degree** Excellent 

Tension 0-degree Good 

90-degree None 

Three- 
Point 0-degree None 

90-degree Poor using 90 flexure* 

Good using 90 flexure** 

** not including strain-gaged specimen*. 

* including strain-gaged specimens. 

Alternate Parameter Determination Methods 

The problems encountered in obtaining correlation be- 

tween the experimental data and theoretical predictions 

using bending parameters led to the evaluation of using an 

alternate parameter determination method. Since Equation 

(15) could easily be rewritten in the form of Equation (75) 

it could therefore be used in the same manner as the bend- 

ing equation for parameter determination. The total param- 
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eter determination effort was therefore reaccomplished us- 

ing the tension data. Figures 29 and 31 provide the values 

for m and a    while Figures 30 and 32 provide the values for 

a which resulted from this analysis. Table V provides a o 

listing of the best fit values contained on these charts. 

Table VI lists the fit error corresponding to the parameters 

shown in Table V. 

Table V. 

Weibull Parameters Using Tension 

Specimen 
Type 

m a 
u, 

psi 
a 
0 

psi 
0* psi 
nr    . 

Experimental/ 
Theoretical 

0-degree 

90-degree 

17.53 

^.95 

0 

2120 

229965.27 

3604.6^ 

251869.99 
252128.76 

7228.6** 
7222.43 

Table VI. 

Tension Data Fit Error 

Specimen 
Type 

Fit 
Error 

j  0-degree 

90-degree 

.03782 

.03316 

Figures 33 and 3^ show the resulting theoretical curves 

overlayed on the 0-degree and 90-degree specimen tension 

data points. Evaluation of parameter correlation to the 
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other failure modes for each specimen type is presented be- 

low. 

A. Bending equation - 0-degree specimen. 

Equation (6) was evaluated using the 0-degree param- 

eters presented in Table V. Results similar to those ob- 

tained for the previous discussed analysis correlating bend- 

ing to tension using the bending parameters were obtained 

in this effort. Using the definition provided in Equation 

(87) and solving the equation for a  ,, the following express 

ion results 

Bb s Km"*») (Sf) (92) 

The theoretical curve obtained using this expression is 

shown in Figure 35.    This result show that parameters de- 

rived from either tension or bending yield favorable com- 

parisons to either theoretical equation. 

B. Bending equation -  90-degree specimen. 

Both of the 90-degree bending data samples were eval- 

uated in this analysis.    Poor correlation resulted for all 

equation manipulations attempted.    This is further substan- 

tiated by the fact that the parameter sets in Figures 18, 

and 20 compared to those in Figure 31 for a given value of 

a    do not agree.    The resulting best theoretical curves 

attained are shown in Figures 36 and 37. 

C. Three-point loading equation - 0-degree specimen. 

Equation (66)  in the form of Equation (89) was evalu- 

.fii 



ated.    No correlation was obtained using the 0-degree  ten- 

sion parameters  from Table V.    This is expected based on 

the results of the previous analysis using the bending pa- 

rameters.    A distribution with a very small range of maximum 

to minimum failure  stress values would be expected  to re- 

quire a high value  for the flaw density exponent (m)   in 

order to establish correlation between the  theoretical  curve 

and experimental data. 

D.    Three-point loading equation -  90-degree specimen. 

Equation (89)   was evaluated using Weibull parameters 

corresponding to a    =0 from Figure 31»    Poor correlation, 

as shown in Figure 38,   resulted.    This  is expected since  the 

90-degree  bending and 90-degree  tension produced poor cor- 

relation»  while 90-degree bending compared favorably with 

90-degree  three-point loading. 

In summary,   the  results obtained in this section also 

did not produce a set of parameters which allowed fracture 

prediction through  the range of desired  failure modes.    The 

resulting set of tension data derived parameters proved  to 

be even less suitable  than those derived  from the bending 

data.    An overview correlation summary is in Table VII. 

Since  the  general  results of this  thesis were unable 

to produce a singular set of Weibull parameters from which 

suitable theoretical failure probabilities could be estab- 

lished for the range of failure modes investigated,   the 

author felt that it would be interesting to at least estab- 
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Table VII. 

Correlation Results - Tension Parameters 

Equation Data Fit Obtained 

Bending 0-degree Good 

90-degree# None 

90-degree*» None 

Tension 0-degree Excellent 

90-degree Excellent 

Three-Point 0-degree None 

90-degree None 

*    without strain. 

**    with strain. 

lish one set of parameters  for each experimental  failure 

distribution which allowed accurate   theoretical duplication 

of that distribution.    Parameter sets  to provide excellent 

theoretical curves  for both bending and  tension have already 

been established,  however,  no set  for  the  three-point   load- 

ing data has as yet been determined.    Equation (66)   is not 

suited  to  the manipulation conducted  Ln Equation (k?S),  how- 

ever,   the special  case of Equation (oo)   presented by Equa- 

tion (89)   can be  rearranged  into a similar form.    This   then 

allows  the determination of a best set of m and j    for a 

0 and as such represents best  theoretical prediction of  the 

three-point  loading data obtained  in  thi3  thesis.    The re- 

sulting values are shown in Table VIII. 
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Table VIII. 

Weibull Parameters Using Three-Point Loading 

ro o u o 
0 

Error 

O-degree 

90-degree 

42.97 

12.01 

0 

0 

211702.27 

6150.49 

.023202 

.041770 

The corresponding distribution functions are shown in Fig- 

ures 39 and 40. 
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V. Conclusions and Recommendations 

The objectives of establishing a set of Weibull param- 

eter using experimental data and then correlating these 

parameters to other data samples was accomplished. As a 

result of the methodology used in the parameter determina- 

tion, comparisons of various values of m, a and j are 
u o 

available  tor all data samples analyzed.     Listed below are 

some  specific conclusions derived  from this  thesisi 

(1) The graphical  procedures  for parameter determina- 

tion described by Weibull  and modified by Daniel 

and Weil are not reproducible.    The procedures 

result in approximations of  the material param- 

eters.    These approximations can easily be  re- 

placed by parameter sets with equal  failure  pre- 

diction ability. 

(2) The use of the above mentioned procedure does 

provide a fair initial guess at a linear distri- 

bution of parameter values from which,   after math 

ematical refinement,   a best set of values can be 

isolated  through  the use of a mathematical  fit 

difference routine  like   the  least square method. 

(3) The determination of the a    paramefcer is not math 

ematically possible when a best fit  is desired. 

The parameter must be determined  through a  trial 

and error process  in which a    is  fixed and  com- r u 

binations of m and a are allowed to vary.  Accu- 
o 
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rate fit becomes very sensitive to the o param- 

eter. 

(k)    The overall analysis was found to be very sensi- 

tive to data sample size. Large variations of 

data points in any specific section of a distri- 

bution was found to have significant effect on 

all parameters. Random variations of a few data 

points, however, have little impact on m and a 

but tend to affect a • Addition or deletions of o 
data points from a distribution also tended to 

alter the resulting best fit set of parameters at 

the sample size being used in this thesis.    The 

linear representation of m and a ,. however, was 

generally insensitive to this.    As a result of 

this characterization,  a minimum sample size 

should be determinable for which fit error con- 

vergence starts to occur. 

(5)    Except for "ne O-degree  tension and 90-degree 

three-point loading data the Weibull equations 

using a single set of material parameters were not 

correlatable through the three loading conditions 

studied for graphite-epoxy.    Possible causes for 

these results could be attributable  to the rela- 

tively small data samples used and possibly poor 

90-degree tension data.    However,  the nature of 

the discrepancies does not totally support this. 
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(6) A check of parameter set3 other than those pro- 

viding the best fit per a was not accomplished 

due to time constraints. It is conceivable that 

a parameter set of poorer accuracy, not falling 

on the linear m versus a    presentation exists u r 

which would allow better correlation between sev- 

eral  failure modes. 

(7) The physical  interpretation generally placed on 

0    is felt not  to exist.    This is demonstrated by 

the mathematical  improvement which results in   the 

O-degree bending data when negative  values of j 

are used. 

(8) Using the  three parameter form of  the Weibull 

iquation was  found  to  provide better fit than  the 

two parameter (a    assumed zero)   form.    For the 

data used  in  this  thesis,  an assumption of a    = 0 

would have  resulted  in a significantly  increased 

fit error. 

(9) There are a great number ot% limitations  in  the 

use of the Weibull equations.    For the composite 

studied and sample  size used,   the Weibull   theory 

is only useful   if  the parameters  are derived based 

on specific experimental  data.    Correlation was 

established between O-degree   tension and bending 

only after manipulation of the Weibull equation 

based on the characteristics of  the available ex- 

perimental data.    Thus» the use of  the Weibull 
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equations does not lead  to a reduction in test 

requirements and the associated cost savings  for 

composite materials.    From the available data 

used  in this study, it is appropriate  to  say that 

the only true correlation may have between the 

90-degree  three-point loading and 90-degree bend- 

ing without instrumented specimen data samples. 

However,  a more  conclusive evidence  could be de- 

veloped with additional  experimental  information. 

(10)     It is recommended  that the experimental data es- 

tablished  in this study be extended with addit- 

ional  test data  to  investigate  the variability 

of the Weibull parameters as additional data is 

added.    Care must however be  taken  to  insure 

specimen homogeneity  in both geometry and material 

Once a substantial  sample  size has been obtained, 

the error to parameter sensitivity  can be  investi- 

gated by random deletions or additions of data 

points within  this sample. 
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APPENDIX A 

Three-Point Loading Equation Derivation 

This appendix provides the detailed steps required to 

obtain the form of the risk of rupture equation shown for 

Equation (11). 
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Starting with Equation (8) 

B-*-r/'/i[ffiw-«rdv (1A) 

where (2A) 

and ia* -j^r 

Integrating with respect to Y yields 

Integrating with respect to X yields 

B-4-1 
•k 

1£z(r*i*i) <J2 

taking out  the  constants 

«i iL4 

substituting the integration limits yields 

CM 

Defining 

(3A) 

(*A) 

(5A) 

(6A) 

(7A) 

\ 

i-C^^^-rdz (8A) 
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The  integration of this  integral  is now addressed separa- 

tely in the  following manner. 

Defining <T • ^ (9A) 

then 

Integration of this  term results in the  following 

(iu) 

Further integration of the resulting integral leads to a 

form which can be expressed in series notation 

i -| «#-•%«}• wr^KJfi- «ra» 
(12A) 

using the following definitions 

HI •  ffi 4 oC (13A) 

N' KM (1UA) 
leads to  the  form defined  in Equation (11) 

(15A) 
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Substitution of this final expression for I into the risk 

of rupture equation will result in the form of this equa- 

tion shown in Equation (11). 

C        r«0 2u d 

(16A) 
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APPENDIX B 

Experimental Data 

This appendix provides a compilation of the experimen- 

tal data gathered for this study. 

104 

-»fa-» — - - 



c 
a 

•H 
O 
4> a 
in 
4) 
4) 
H 
0) 
n 

•  i 
x o 
M 

H 

1 
o 

*> 
C 

•H 
o 
a« 

o 

* 
CM CM u>cv- P*-vO ^FN-^ vO A>vO ^Nvo 4H4VH4I\;^HO V ON 

COM rH ONCM C\U>00 CM {•"WNiM v.M 0V0XVY4 ,H O (V UN C"- V\CD £v.v\ ,_< K\i 

a»  .H ON 00 CNNO 4 vO CM (*> '-i 4 Vi> u> f>  C^- 4 V\ o \0 NO O ON4 v--\ U'N ,r\ ,-> r  •* 

^ \ ^ oc^v>^^^>«^^ co co .H *v o c^ IN CM o co -4 -^ u vo c*> P» - « 
4 CM r-t ON P*- MNOXOJ O ^N {"VO O CV C^- O- ^ V »H CO O ix iV -4 P" V •> .a .  . 

10   H CSJ O CO CO C^ rH NO CM UN rH CO <*> tV k\J vO O C^ v.^ o O Cvi CO .H »O kM -H 
J$ ^$ \i"\r-< W\AO uNvo 444  U*> e\V> \ACV3  UN r> NO NO V» C^ PN O ,-4 
C\l CSJ CM CM iM CM CM CM CM CM CM CM CM vM CM CM CM CM CM vM CM CM CM CM *M vM 

l> 

d "2" 
o v> o o o o o o o o o o «> o o o o o o o o o o o o o •H 

CN 4 ON O ONvO IV O CM 4 C^ rH £»> v > v3 O -4 O 4 NO rH cv 4 o o> O ^ 
^   w CV-0\(>4 CM iH CM CM C^- ON w\> CM ON »M »"•> v.^ rH »"•> <*"N O <-* 4 r-i a^ 4 CM 

1 

a» 
(D   -^ CM rH CrN4 O rH CM CM CO C^ Vi>v\j vM k^ O (N v.>v^ ,*> u> pv CM v.> ,-H ^4^ f^ 
B*N r-t   (*> rH rH C*> vM   O kM  O CM -H »*> C*N »"•> »-> k*> »*> i*> CM    H .H O .H vM  O  v > 
n  £ v,> \.>Vi>u"NM>v,>\,>u>vJ>v,>\J"NU>v->u>ViMj>v,>v.>v.>v.>v.MJ'\v.>v,>v.'s\J> 

rH    .r^ 
O   w 

0<^OOC>O'Q&\3^^£>O£>&<^£>\^&0><>>0>^, O O O O O 
r-4 

v.^ 

* 

JC <*> 0\ Vi"> V.-> »*> CM vv> \*> v.> iN^ C*\ O CJV C*>4 ^>00 CO M"N cv CO »V> O r-i ON 
*-%  -^ O ONOO ON O O OX CO vl> Ct> OO O. w> O ON ».N ^^ vO ON J* CO ON ON v^ ;^. 
T«  £ ON ON ON ON O O v.*v ON ON ON O ON v*» »> v*s v>\ vN »."« ON ON O V*N k> ON v> v"*\ 
•H   «H •4 -4 -41 -^ Vi>-.>4 444 v^4 4 u>4 4 4 v,>4 4 v.>4 4 4 v.\4 

1 .                                           —   

n •H 
n C* 
0)   -^ ON *ACM C*VO vM ONO ^.^4 ONO v^^N^ 04 jv 4 \.>,H ,»>,'>CN 4 
£   £ C^   O CD CO  r-i ON fH  ON C^- O Cl>  v"^     H  vO   H  .-4  r-<  r-i  ^,\'  .\^   rH kV   OwO   C* ^ 
X  -H c^ co c^ 0- co i> co iv r»- co c^ ^o ».o ^o v\^ v\> kO A^ ^ c^ t> a> cv »> c^ *> ; < 
Ü   w 

•H 
OOOOOO O v-"* O O O O O O O O w"> O O O' O O' O O O *."» 

a* 
H y 

V 

c a 
4»    U u 
6    4> ^ -<<*<<*»:•<-< -i: »<«< «t *< -c -<-< «c »<•< •«: -c •< *«: *< *< -«: 

r-4 CM »^4 V'N\4> A> ONO rH C*X-"J v.>v»> f>CO ONO    < *M .'N4 »*>»0 v»» »\' 
• * 

•H   jQ > * 
°    »' *                               H H n H H --! H H H >M »\ »Vi »V >V »V C>4 4 
«>    3 •                                                    *   •   • 0 
O.K 
W 

105 

•——— ~T — -      - • 



c 
o 
e 

•H 
O 
4) 
Q. 
w 
0) 
0) 
u 
ti) 
4) 

T» 
I 

O 
• ON 

X 
I 

o) cd 
•H •> 
^ «j 
C< Q 

O 
•4 

C 

o 
tx. 
u 

o 
tu. 

S
t
r
e
s
s
*
*
 

(
l
b
/
i
n
2
) NO vO ON CN O ON O O ^t CT O ON CO \0 rH CM «M O UN 0»N ON vO 00 ^N H ^N       i 

•H rH QC^-CO^ ONvO C^ '«A O C*> rH rH CM vX) f«- C\C0 C"- jfr O) O O C»» f> 

CM-^^t CN C^- C^-vO CN ON rH O OC^ ON-^ ON SO 4M vO vO 4M rH V» VO ON O 
rH -^/  ON <*\C0 ^M ON-^ v*.^ O UN -H rH OX V VO vM rH V,N o- 0\J NO -3/  '-N UN.H; 
NO oo orH v* j- rH ONVM >.O ONtNj w>o w o nc-oovo^a ON-J" C^ 
03 ON (> ON ON ON ON rH ON CX) O ON ON CM 4M rH ON O ON ON O ON CN) Os rH O 

rH                   rH                    1-HrHrHrH                    rHrH.HrH 

L
o
a
d
 

(l
b)
 CM W^ON.^ONrHvOvOONOOOCMrHV>rH O CD OOON CM 00 ON O O 

c\\r\\i\jfr ^t _-$• u*\oo <*><• c^_t u\co ON c^^t NO ^ vr»v>4 ON UNCO NO 
rHrHrHrHrHrHrHrHrHrHrHrHrHrHrHrHrHrHrHrHrHfHrHrHrHrH 

ßo 

O  w 
> 

O O CNrH C*NON04t> CNCWOCO •* CNCNVVS O OCNrH-S- O OCO VJN 
rH CM CM rH rH ONvO HO»\IH O 4M O *M rH o vM O 4M CM O 4M iM rH O 
UN U> U*\ UN UN^fr  UN UN VjN. UN UN \.> VJN. UN UN UN UN UN UN UN UN Ü\ UN UN u> UN 

r»   C 
•H    MH 

3B  *- 

CMOrH^tUNONrHv7sOOC*NC>- ^>4 CO 4 00 O C\l N4 C^ 00 4M UN O 
vV» -^ ^t UVM ONH"» -^ ^4 CNöD C\\0 C*N CNNO vM UN ^ ^ v> ^ ,\j rH k*N 
ON O O C7\ O 00 C*> O 4> O 43 ON O ON o O ON o ON O O CN O O v3 o 
^ UNVi"\_^ Vi">^ UNViA-t ViNVi"\H/ U>^J lAXAJf V.NJ/ ^NVi>^t ViA\,A\4>v.> 

T
h
i
c
k
n
e
s
s
 

(i
n)
 

ON UA ON^ C^- H^ O O <*^ ON O UA rH rH ONOO 4M v.> »\l o O vM O 4M V^ -J 
C^-^O CO 4t> C^ C^ OCO P^-00 CO C^ ONJNcO M>00 O 0VOf> 0NON00 V> 

oooooooooooooooooooooooooo 

S
p
e
c
i
m
e
n
 

N
u
m
b
e
r
 

in « M a) m a« (Q « ai «I a) M i« » ai « ca aa an « »« M M a\ ee\ PQ 
>-i 4M {*V4 NO i^O? ON O rH 4M «*"\-c? NO C^ 00 4*v <~i »M O^ U>NO C^ V L-N 

0   H H H H H H H H H »\i -M v\! i\l CM »\i >\ «*A-S 

Ü 

IN 

..-4 

m 
3 

Cl* 

eU 
rH 
:^ 

rH 
cd 

v. 
a» 

O 

T3 
^ 

i 

L1 

10b 



• 
Hn^ CN-3/ CM CM \0 CM iMHvHMOiM O ON >-i ON r-4 O {N ^N C^ O 

«VI 
05    C 
4)   .H 

CO CM <*N. VJ-\ .\i O O O v*.> ON ON CM .3; O V* O IN P- ^ ^N rH C^- C^ ON vM , 
OV4 U"> CM (N P*- Vi\ -H ^ CM O ^>^^Cx-vl

,V C\CM r-4 ON UN CM £N. \ 
fc \ CM O VO f*>C0 VO It -3 0N<O a> vO O ^M ^ CO P- —< P- ON v > -+  O *-N H •X, 

•*   43 UNV-NvO o P- r- <-~> _*  O CO U\,^H ON .* -^ OP v»-» J; v\>  ,TN ,H —4 ON p~ 
10  H O C*> CM ON -H CM CO ON O vM .-4 vO r-i vM O ON CM CO CO ^M W\CM -$ UNO II 

«•_-» \r\ c*> r> vO CO vO CM 4$ UNP-vt,"* »ANJ1 vO UNV-> c>v> v--4 O^^ I'^H 
CM CM CM vM CM c\i CM CM CM vM CM CM CM CM CM CM CM vM CM vM CM vM CM CM vM tA 

•H 

13 7> i>vi>^oOO *Ao O O O O UN O u> UNo O O O u> O UN o o [rj 

c CO CO CVOW>Ht^4^ c*>-t ONvO ~4 v\ p- O ^ V vM P- v.N o  jv.vO > 
a> O    r-4 C^- ^ A vM ON UN O C*>4jv O ^ CO O -t C*~ -4 O O O O ^M V'O^VH 
fi iJ   ^ ^J -^   ViAU>U> V>>^ 3"   ^>^>-^   ^   Vi>_^   U>V,^U>^1.>4 ^*  _•   ^>-^- ^ 1 

•H 
Ü n 
4> a' 
a. 
m cd 

4> ^-% v*> v*> CO CM CM V» v"M OP CO ^ O vM CM 3 CM v,.'« v\"» v^ v*"* CO ^ CM -$ CO ^M r-4 

4> en ^ f>- **"\CD CO ^ **NcO O ON rH Vi"> r-i ^> 00 C^ CO r^ C^>.\> v^ ^ CNCO «X-1 '> 
4> 3 £ fHr-4r-4,HrHrHr^,Hr-^rHr-^rHkMrHr~4-Hr-4r-4'--4r--1rHr-4r-4.-4r-; ^* 
u 

•   4) 

r-4    -H 
o ^ 

r-4   rH   rH   rH   rH   rH   r-4   r-4   rH   r-4   r~4   ,-H   r-4   r-4   r~4   r-4   r-4   rH   rH   .-1   r-4   r-4   ,    4      H   .-i -i 

Ü 
•H «O 
X   1 

O 

a>  • 
»H 

# 
« 

XS C^ r-« ON O O^J Vi1» r-* CM O vX" V«">CO CNiM^ CN~t !^*M^ f*\a> CO 
.o cfl *J    ^ co r>- o\ o CN r-4 cs v~» o o co o».v •-* ^ c* •$ o v^ c*v v*v v^ v*\ ».^ c*\ 
<tf •* n v: ON ON O» O ON ON ON o v^» v ? v\> ON ON v> O O v > ^^ v*v v*N V*N ON ON ON 
H  CO •H    ^-4 

3B w 
^*-^-^  U>if J& ^  V.>\iNV.N_J^*^*  V.M,M.-M->^.»4 4^.* 4 ^.*4 

V 
IM 

3 to 
4» 
kl 

o n •H 

»4 a» ^ CV^NrN^fr ^? v\> -^ v»^ ON CO ON^N^ r>- »'> H *M O CM t^ »O V^OxO ^^ ;* 
w" w: CO ONCO ON ONCO vV* v*\ v-^ k> JNvO O v\> v*N v*\ v*\ ON v*v w^ ON CO v^ O ON v»* 

C .*   «H i*N ,*> »-> ,T\ »*N f»> .*N .*N k*> .'N .*N v'N J"  .*N .»N ,'N ,*> ,'N ,'N ,*> ,'N »*> ^  i*N .* N a 
o Ü w 

*r4) 
o & O O •& O O O O v> v> O O O O O w> O O O v> O v^ O v% C ! 

•H 
n X* 
c H 4» 
a> 

1 
c 

c •r4 
» u a 
H   «1» r-i vNJ k*>^ v»^\4> rv CO ON O 'H »M »"'N-^ W>\4> C^ ONCO O r-i CM f-V^ V,N u 

~* 43 rH   rH  rH   rH   rH  rH   rH   rH   rH  , -4   CM   CM   CM   »M   »M   CM • * 
o   6 1       1       |       1       1       1       1      1       1       1       1       1       1       1       1       1       1       1      1       1       1       1       I       1       1 n 
4»   3 O O O O O O v"» O v"> O O O O O »> O O O O O O v"> c» o o 
AS • t * * t • 
irt 

10? 



CO    C 

•P    £> 
I/)   H 

OOC\JOCMCs-CM00CMC*N CAvO OVrNrH-^CMrHOCNCs CN.^ rH o 
CnrHOCMOOfHOCMCM-^ r>OVPy(^(\J 0\^ O CD 04 (M>(>4 

*A CNvO «t CO 0\ CM O *AcO it O-VO CNvO vr\ rH vP\ CN.^- OscO o c^ o 
HHonr\o4 vr\ vA^t jt v^ e*\-d" •* -4 CNCO ^O^OW^H 
Cv. c^ C^-VA OvO CO ISNOvO 00^- Cvc^-CO O-WO-MD CO v£> O-O-CO ON 

X
I
I
.
 

O
-
d
e
g
r
e
e
 
S
p
e
c
i
m
e
n
 

1 
O 

O O^t CO CO C^-^>VT\CO VP\00 r\MHH(>0\0(NJCOOO^OO 
co co CN o vO CN CM o \r\ vr\ CM oo co ON CNCO O O VA ,H VACO ao CM VO 
CM CM CM (\| r\(M CACM CM CM C^r-t CM CM OCM CM CNCM OCM CNi CM CN. CN. 

0)   —* 

3    C 
O   w 
> 

O-O-vOvO OvO UYtNtNO-vO C^-* tN O-\0 O- C^- C^CD C^CO C^ C^- O- 
rHrHrHrH»-4fH^H^*rHf-4fHf-«'-«r-4rHrHrMr-4rH^-*'~4rHrH»H«-4 
f-4rHf-ir-«fHrHrHr-4r-«iHrHfHr-<fHrSrHr-4rHr-tr-4^rHrHrHrH 

T
a
b
l
e
 

n
g
 
D
a
t
a
 
- 

9 

.#-4 

O CM HO COC^rNCMrHvOvOUNCM <^-* H O-i'OH O C>M44 
•O vO -^ v>"V4fr OvO vmvO vn u>^ vr> \r\ u>^ vp\vo v O vr> u>\i> vo \Q 
C7sONONOC^ONONONONOONOONONONONONONC>0 ONONQNONiJs 
<^C>C^0NCS0NC^0NC>0NCKC7N0N0N0N0N0N0N0NO Oc>ON O O 

*H 

o 

c 
o 

»4 
to 
c 
0) 

n 
n 
4> 
c 
o 

>-* 

'S 
..-4 

r\CM OH4 rHC^-w^v>uNo^t' v>c>c>o vrwne^uNot^n <*><•*> 
ON ON CN ON ON <?•* CO ON ON ON CN ON C\? ONONONONONCJvOONQNCNONCN 
c*> (^ c*> c*> <r> C*N C*N (T> <•> r> r*> r\ r> CN »**> .•»> c> r> r> rs <*> CN <"> CN C*N 

C 

a 
o 
• 
ft 

CO 

s 
6 
3 
Z 

»H CM O^ VW> NCOOOHN r>jf XAvO OCO OO »H CM <*>^t ^ 
p4r-4«-4r-4f^iH^HrHfHrHCMC\»CMCaCMCM 

1     1     1    1     l     1     1     1     I     1     l    1     1     1     1     1     t     i     l     l     l     I    l     1     1 
ooooooooooooooooooooooooo 
OC^C>ONONC>ÖONONC^ONONONÖNC^ON(>C^ÖNC^ONO\ONÖNON 
• » * * * 

n 
JO 
CtJ 
•p 

+-> 
co 

t3 
a> 
U 
3 
•P 
O 
c6 
U 

ft 
ii 

t> 
>-. 
<D 
e U 

.~4 c 
Ü .H 

Q) n 
ft 3 

t'1 
i 

•o 
0) -o 

S1 4» 
•P 

60 CO 
i rH 
C 3 .^ o 
ei H 
^ cd 
*-> o 
n 

* 
* # 

108 



c 
a> 
B 

•H 
Ü 
0) 
Qt 
l/i 

0) 
a) 
u 
hfl 

• 0) 
H «d 
M   I 
MO 
X 

I 

<J> CO 

JO  4 

CO Q 

2 

3 
o 

c 
•H 
o 
cu 
<D 

h 

* 
CQCV) 
to  fi 
a> .H 

+> P 
(0 H 

W^vOHvOvOvO^tHGOCviO^O^HvOOrHCMCsivOOCOr-» OsvO 
00 Cvl ON O OVH O\0O O ^A VT\vO O <M 000 CM _^- -=J" XTM*^\T\CM^jt 

vO r\GO fnONCVJO^O^-ONO^HvO^fHCNiCn^NiONOCsivOH 
ONHH^ ^A-* HrNC^-OCOOC^ONOU^rHvOOvlCVJ CACO CA ^A vTy 
CMCOC^OH VTNCOVO C\J e^H C-CAO-OVVO O-00 CAO-00 O CM 0\ H 
C\H tVCAOvQvO [WO (AOCAOCAO\(AOC\)ONC\1.3"OOOOOv 
O-vßvO O-vOvO O-^AC^O-O-vo CVO-vO O-vOvO^ vr>vo ^AO-O-vO 
C\lC\lC\JC\JCViC\JC\lC\JC\lC\JC\]CNlC\lC\jo^C\J^ 

L
o
a
d
 

(l
b)
 OOOOOOOOOOOOOOOOOOOOOOOOO 

coocoHHnriN CA^ vo o cvj .=)• vo vo c\* vo oo ovvo r*. CAOO 
O H O H <H H OO HHOOOOOHNOOOOHHHO 
CNiCVJCViCVlCViOJCViCViCMCVJCViCViCVJCViCViCViCVJCViCM 

Q) ,-* 

3  fi 
H .H 
O -^ 
> 

OOVAOC^ONrnor^CMrHCD^OvHCvjCOOCVCVJ ONCO iHvOvOOO 
H^- CAC\] C^ O-.* (VJf^HHOOW CA0O C\]vOV\CAC>-CACAC\] 
OOOOOOOOOOOOOOOOOOOOOOOOO 

W
i
d
t
h
 

(i
n)
 vO-*-*OD V>00 CV^ArHOCVJtVC>-Cvl(nC\i^t H *ACO HO»ANH 

CDONOvOvOOOOOvOvOOOQOvOOvfArHO ONCO OOOCVJOOH 
ONOvQvOvO OVOVONC/VONQVOVOVOVO O ONOVO OvO O ÖvO O 
^•^r Jt^" *A4fr-3" *-^-*-* .* .*-* UNV/V3- j. VA^- \T\\A-ä- vrs\r\ 

T
h
i
c
k
n
e
s
s
 

(i
n)
 vOvO-3" rH OvVAvO ONCAr-O-vOOOCVJ XAOvCM.^ tVvO OvHONO-O 

0-000 CO CO OH O00 00 OOVO O-O-CO CVJcOOOCOHCOCOaO 
r-o-o-c   o-ooo O-O-O-O-OO-O-O-CNCO O-CO00 o-oo o-o-o- 
OOOOOOOOOOOOOOOOOOOOOOOOO 

S
p
e
c
i
m
e
n
 

j 
N
u
m
b
e
r
 

O-vO C^OO C>OCVi»AOCNl«n\AOvr-l^<NJ^vO O-if *AC\lirvO.J 

* *                                *                         *     * 

Ü 

b 

c 
•H 
(0 
3 

T3 
CD 

CO 
H 
3 
o 
H 
«J 
O 

* 

c 
0) 
S 
H 
O 
0) 
a 

a> 

C 
H 

CO 
U 

«P 
to 

109 



ß 
a 
ü 
<D 
ft 
w 
0) 
0) u 
t*ß 
d) •o 

•  I >o 
M ON 
X 

I 

0) 4 

£5   (4 

EH 

•H 

O 

4-> 
c 

•H 
O 

O« 

<D 

WM 
IQ   C 

r-\ vO O C^- ONvO CD CM 00 C^- CM .cfr ONCM 4fr i\J H^ vtl H H CM\J C^ H t^ 
OO ONvO vO SO H CM UNON ON 00 C^ O CN ON.^ ON rH CN CM ON V\00 rH ON 

ONOQ34 ^-^fr -^t CO CO VO CN CN CM UN VT>i\j _^ CJOHHOlVJnH 
CN r>--^ co M."> H c\oo o (*>ON-* u>r^^t o\rsj^t nONvo c^c^^j- r^- 
.4- UN CM u*\. ON-j- vO -^ O- OS ONCO UN c^ H ONCO C^-H"> Ü0 ON ONvO 00 C*- 
O O H O O W O IM 0\H O H O^O IM H W O H H iM *\l i\| c\l H 
rH rH rH rH rH rH rH rH         rH rH rH rH rH rH rH rH rH rH rH cH rH rH rH rH 

L
o
a
d
 

(l
b)
 0vVAOO0\OHOlMr\N0sOv0ONOO^4 ON p»- O O 4* 

O-CO ONOO 00 O 00 O C^ ONCO CD rH CO ON ON O 00 CNCNONOvü O ON 
rH          rH                                r-\                         rH                                        rH rH 

0) ^ 

rc H   »H 
O   «^ 
> 

\0 OCO -3- VArH 00 ONxO ^OH C^-CO UN_^ vf» lÜP-kMaiHO ONvO 
rH^ -3" f-i UNUNrH^T O 0N.tf rH UN.^ O UNONO uN-4" -H/ ^J- ^ CN-S 

rHrHrHrHHrHrHrHrHrHrHrHrHrHrHrHrHHHrHrHrHrH.HrH 

W
i
d
t
h
 

(i
n)
 vO ON CM G 00 00 O vO ONvO UN (V- H VN; VN\0 ON VN-S u^-^ ONvO ON CM 

OrH ONOvCM CM ONCNONCM CM00 ^ -3 ON ON-^ ON CM 0VM H; CM vM vM 
ON O O ON O O ON O ONO O ON O O ON O O ON O ^ > O v > v > O v > 
_^ UNUN-^ UNUN-t VN^ UNUN-J vr\u>_$ UN UN..f u> UN UN u> UNUN UN 

T
h
i
c
k
n
e
s
s
 

(i
n)
 OUNiNJ OCO VN\D *M UNCM fN .H f> O ^">VO rH f> v '> C- CN^t f> CM vM 

C^ Ov ON fN- ON ON O- ONvO CO CO O- ON OvvO ON CO v«> v » a> ONCO 00 CO ON 

ooooooooooooooooooooooooo 

S
p
e
c
i
m
e
n
 

N
u
m
b
e
r
 

Hl Hl Hl Hl Hl C0 H) Hl Hl Hl Hl Hl Hl H) Hl Hl Hl Hl Hl Hl Hl Hl Hl Hl Hl 
00 ON O rH CM ON^J UN f> CO ONO H *M ON^t ^>v»> C^ 00 O H UN UNO 
CM CM ^rxnnn^onn^ ^j_i^_t^t^-^ U>^N    .H CM 

*                                    »                         # • • 

II 

tl 

•H 
Dl 

»' 

c> 
iH 

O 

•H 

.:> 

l l 

•n 

i 

• • 

110 



APPENDIX C 

Data Plots 

This appendix provides graphical data verifying the 

linear relationship between the values of m and a . Also, 
u 

the validity of using the sum of the mean error technique 

for isolation of the best set of values can easily be seen 

by plot comparisons of similar data. 
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