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Preface

The Weibull distribution function has been widely used
as a statistical tool for predicting the fracture probabi-
lity in structural materials. Application of this statis-
tical method to conposite materials addressing nonuniform
stress distributions and the three parameter form of the
theory has been very limited. I have performed an evalua-
tion of the three parameter Weibull distribution function
applied to a composite material under both uniform and non-
uniform stress distributions which includes establishment
of a parameter determination methodology as well as the
evaluation of the theory's ability to predict fracture
across a variety of failure modes.

T am deeply indebted to several individuals who assist-
ed in the conduct of this thesis. I am very grateful to my
thesis advisor, Dr. Anthony N. Palazotto, fcr his guidance,
encouragement and counseling which aided immensely through-
out this study: to Dr. James Whitney and Mr. Marvin Knight
of the Air Force Materials Laboratory for their support and
assistance in providing the experimental data required to
conduct this thesis. A special thanks to my family for
their patience during this trying time, and especially to

my wife, Jean, for her many hours of dedicated typing sup-

port.

Dennis R. Schneider
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Abstract

\}_I'

‘This thesis is an evaluation of the three parameter
Weibull distribution function for predicting fracture in a
composite material subjected to failure under both uniform
and nonuniform stress distributions. The specific forms of
the three parameter Weibull equations for these failure
modes are derived for a general laminated composite and
simplified for the speciial case of a unidirectional com-
posite. An analysis into a parameter determination method-
ology which is mathematically reproducible is presented.
The resulting expressions and methodology are applied to
experimental bending, tension and three-point loading fail-
ure data for O-degree and 90-dezree unidirectionally lam-
inated graphite-epoxy specimer{ Weibull parameter sets are
derived from both the bending and tension experimental data.
Each set is then used to evaluate the theory's ability to
predict the probability of failure throughout the three
failure modes and thereby to establish a single set char-
acteristic of the material.\\Although a set of parameters
peculiar to each failure distribution was obtained,’ a char-
acterigtic 3et of values capable of predicting failure a-
cross the variety of failure modes was not found for this

composite material.
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EVALUATICN OF
THE THREE PARAMETER WEIBULL DISTRIBUTION
FUNCTION FOR PREDTCTING FRACTURE PROBABILITY
IN COMPOSITE MATERIALS

I. Introduction

Background

The classical theory of strengih can readily be shown
to be incompatible in material failure prediction when com-
pared with experimental measurements. This is most easily
demonstrated by the dispersions in ultimate strength which
occur in experimental measurements.

In the past this variability of ultimate strength has
generally been treated as relatively unimportant, since it
could easily be taken into account through the use of large
factors of safety. However, with requirements for greater
ecor.my, weight restriciions, and increased performance,
significant effort towards the development of more accurate
failure prediction techniques is being expendad. To bridge
the inconsistencies betweer. the theoretical strength pre-
dictions and experimental data, statistical theories of
fracture have become a widely used tool.

The most widely accepted statistical theory of frac-
ture is that based on the Weibull distribution function
[6.2]. This theory is based on a weakest-link failure con-

cept and relates the probability of fracture to the actual




stress observced at fracture [2]. To fit the physical facts
ot the experimental variability, the theory has bcen cor-
rected to a scmi-empirical distribution bascd on expcri-
mental data [2]. Two basic criteria of fracture; gsizc and
normal tensile stress, are used in the theory, and it is
postulated that failure in an isotropic, homogeneous mate-
rial is fully described by three material depcndent param-
eters: the zero probability strength (location parameter),
the flaw density exponent (shapc parameter) and a scale
parameter [7]. Within thc validity ot these criteria, the
theory can describe failurc for any type of stress distri-
bution [6].

Use of this theory has bcen applied to a large variety
of materials, from ceramics to laminated composites. Danicl
and Weii [6] investigated the effects of a stress gradient
on the fracture characteristics of brittle materials: Borts
and Weii [2] investigated the applicability of Weibull's
semi-empiricail distribution function to ceramic oxides,
deriving the Weibull material parameters under various con-
dition of test temperature, heat treatment, surtface condi-
tions as well as specimen size: Kaminski [11] studied the
effects of specimen geometry on the predictability of the
strength of a composite material: and Knight and Hahn [i2]
performed expcriments on randomiy-distributed short fiber
composites, iooking at the statistical characteristics of

the experimental data by usc of the Weibull distribution
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function.

Most of the efforts investigating fraciure using stat-
istics have dealt with homogeneous isotropic materials, with
a lesser emphasis towards composite materials. However,
with present day interest, especially within the aerospace
industry, being placed on such factors as weight, strength,
and performance, the composite material has taken on an
important role in the development of lighter-weight high-
strength aerospace structures. Even though modern manufac-
turing procedures of this material allow for carefully con-
trolled manufacturing conditions, its precise breaking
strength cannot be accurately predicted [9]. The varisbil-
ity of breaking strengths in a composite is identical in
nature to that found for other materials, even when speci-
men/ are tested under assumed identical test conditions. It
is this variability among a controlled population which nec-
essitates accurate statistical approaches to the fracture
process.

The Weibull distribution function can be applied to
experimental data in either a two parameter or three param-
eter form. Each characterization has been investigated
using both uniform and nonuniform stress distributions.

A discussion of the parametric equations and related
functions is provided in Section II of this thesis, however,

it is important at this peint to mention some previous

efforts relative to the Weibull theory.




g

Daniel and Weil [6] addressed in detail the three
parameter form of the Weibull equation for both uniform and
nonuniform stress distributions. Columbia Resin (CR-39)
was used as the experimental material. The theoretical
derivations for different stress fields are presented based
on elementary beam theory applied to a prismatic beam under
four-point loading. The resulting set of statistical equa-
tions provides a means with which the probability of frac-
ture can be predicted for a variety of loading conditions
and stress distributions assuming the three material param-
eters are known. The hypothesis in their development is
that the three parameters are in fact "material” constants.
This is substantiated by graphically confirming a close
correlation between theoretical and experimental data. Al-
though a set of three material parameters was established
and verified for one set of experimental data, no verifica-
tion of this set of parameters with data from different
stress distributions was provided. Similar efforts have
since been completed using composite materials, however,
detailed theoretical validation is very limi ted.

Daniel and Weil also developed analytical means for
determining the unknown material parameters from a given
get of experimental data. Their method involved the simul-
taneous solution of a system of three equations with three
unknowns. However, due to computational difficulties which

were experienced, the graphic method devised by Weibull [16]




proved to be much easier for parameter determination.

Since the composite material provides a material with
unique characteristics when compared to conventional struc-
tural materials, the applicability of the approach develop-
ed by Daniel and Weil is of significant interest. Further-
more, the verification of whether a given set of material
parameters will allow the prediction of fracture probability
throughout a variety of loading conditions would confirm
that the parameters are in fact material related. More
important, this evidence could provide a significant cost
savings in terms of the number tests required to determine

general fracture characteristics of a material.

Purpose

There are four separate purposes to be investigated in
this thesis.

The first purpose is to establish the basic forms of
the Weibull equation for a composite lamina under uniform
and nonuniform stress distributions using the apprc ch de-
veloped by Daniel and Weil for a homogeneous isotropic beam
[6). cClassical laminate theory is expanded in the Weibull
equation form for bending, tension and three-point loading
conditions. The equations are derived using general com-
posite material notation and then reduced to a simplified,
single lamina form, for the specific specimen being used in
this study. Composites with only unidirectional ply orien-

tations (0-degree and 90-degree) are investigated.




The second purpose is to obtain experimental fracture
data for graphite-epoxy to allow validation of the above
equations. The material parameters are derived from experi-
mental pure bending data gathered to form the characteristic
fracture distribution of the material. Twenty-five tests
will form this distribution. Both the analytical methods
described in [7] as well as the trial and error graphical
method recommended by Weibull [16] are used to determine
the material parameters. Procedures to permit reproducibil-
ity of the parameters and parameter associated sensitlivities
are addressed.

The third purpose of this thesis is to investigate the
extendability of the three parameters found from bending
tests to other failure modes. This will investigate the
hypothesis that the parameters are in fact material related
numbers. A minimum of 25 tests for both tension and three-
point loading will establish the fracture distributions for
each. The theoretical equations developed for the first
purpose of this study will be solved using the three param-
eters found from the bending test distribution. The crite-
ria for conformance is the closeness of fit between each
experimental distribution and theoretical prediction. Meth-
ods of obtaining additional accuracy of fit will also be
evaluated.

The fourth purpose is to compare the three parameter

and two parameter Weibull function in prediction accuracy.
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The two parameter model also considers nonuniform stress,
however the third parameter, the location parameter, is
assumed to be zero. Factors in comparison include the math-
ematical difficulty of establishing the three parameter
model and variations in fit accuracy when compared to the
two parameter model. In addition, sultability of each model

across the variety of failure modes is to be addressed.




II. Theory

The theory development for this investigation is pre-
gented in three sections. The first two sections will pro-
vide a brief background into the basic Weibull theory and
classical composite theory. The third section will provide
the derivations and equations used in this thesis, which
are a combination of the theories described in the first

two gections.

Weibull Distribution Function

This section is intended to provide a background of
the theoretical considerations of the Weibull theory for
the prediction of fracture [ 6,16] as well as its extensi--
to a variety of stress distributions.

The Weibull theory [16] is based on the concept that
brittle materials contain a large number of flaws, which
tend to lower the fracture stress of a material below the
theoretical rupture stress [2]. These flaws are ascumed
to be of a random size and distribution throughout the body.
and to be the cause of the scatter which is found in experi-
mental fracture data. Two basic critera of failure used in
the Weibull distribution function are size and normal ten-
gile stress. For a uniaxial stress field in a homogeneous
isotropic material, the probability of fracture for a vol-

umetric flaw distribution is given by

S =1-¢° t




where

- &_Gl)"‘ (2)
B= J;(_ Go av
and B 1is the risk of rupture

0 is the zero probability strength (location
parame ter)

g is the scale parameter

m is the flaw density exponent (shape param-
eter)

Equation (1) shows that no special allowance is made
for nonuniformity of stress. Each elemental volume with a
normal tensile stress is added to form the overall risk of
rupture for the specimen. To address the question of non-
uniformity (6], one can look at specific case derivations
using a prismatic beam under desired loading conditions or
stress distributicus. The three loading conditions which
are investigated in this thesis are: pure bending, three-
point loading and tersion.

The development of equations accounting for tensile
stress gradients can be accomplished using elementary beam
theory. Figure 1 shows a prismatic beam under four-point
loading and the resulting extreme fiber stress distribution.
The section between the minor span is assumed to bde in pure
bending, while the section between the minor and major span
has the type of stress distribution found in a three-point

loading condition. These sections can now be addressed

separately.
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Fig. 1.

{a) Four-point Loading Arrangement

{b) Extreme Fiber Stress Distribution




For a pure bending failure, let (k) in Figure 1 be
equal to infinity, thereby placing the total length of the
beam under pure bending. Using elementary beam theory, the

stress distribution within the beam is described by

6= Ahﬂi Z (3)

this assumption can be realized in a four-point bending
test using only failures occurring between the minor span as
the data samples.

The risk of rupture, Equation (2) can now be rewritten

in integral form as follows

B=f/L/h&(ﬂ}g 'G)mdv ()

©

where

Zu= Guh, (5)

26y

Equation (5) is necessary since the three parameter form of
the Welbull equation is being used, thereby making the as-
sumption that a stress value exists below which the piroba-
bility of fracture is zero. A physical interpretation of
Zu is shown in Figure 2 in which the shaded area represents
the region where the zero probability failure parameter,
(ou). is exceeded. The stress gradient for pure bendling is
as shown for every point along the x - axis. Integrating
Equation (4) results in the risk of rupture equation for

pur2 bending

11
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Fig. 2. Stress Distribuiion - Pure Bending
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where V is a dimensionless number expressing the quantity
»f unit volumes subjected to a uniform tensile stress [ 2].
Using Equation (%) in Equation (1) the probability of frac-
ture for a beam subjected to pure Ddending can be found.

The derivation of the risk of rupture for a center or
three-point loading condition requires that (k) in Figure 1
be equal to two. This is representative of a beam with a
varying moment as shown in Figure J}. According to elemen-
tary beam theory, the stress distribution within the beanm
is described by

= $6 L

Equation (2) can now be rewritten using this definition and

where
_Guhb

Xu= T (9)

the following integral limits

r—lc\
3 e

and 2 is given in Equation (5). The limit expressed by
Equation (9) represents the point in the x - direction at
which the stress reaches the value 9, A physical inter-

pretation of X, is shown in Figure 4. The superimposed

13
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Pig. 3. (a) Third-point Loading Arrangement
(b) Extreme Fiber Stress Distribution
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stresas curves show how the stress gradient and extreme
fiber stress varies with respect to the x and y axis for
this loading condition. Using simple proportions it can be

shown that

bu/z _ Oo, vy (10)
Xu L/y

from which Equation (9) is derived. Integrating Equation

(8) results in the risk of rupture equation for a third-

il
Gu (11)

point loading condition

- V 1]
Bz 5! G-c)"

+(-o'u)';"‘/ (‘R"Z ) d

Zu

f_\’_lil

where

ms=m o (12)
and (W) is *he largest lnteger less than or equal to (m) and
(=) is the decimal fractions of (m). The term (r) is intrvo-
duced as a dummy variable for the summation term.

Due to the complexity of the mathematics involved in
the derivation of Equation (1l1).a detailed derivation is
provided in Appendix A.

The derivation for the risk of rupture under tension
loading is the simplest of the three loading conditions
being investigated. Figure 5 shows that the streas distri-

bution for this loading results in a uniform stress over the

entire thickness of the beam and therefore is expressed as
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Fig. s.

Stress Distributien for Tension
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G = G (13)
The risk of rupture equation therefore becomes
ML b
8- ///(c? ca) 0, (1)
-% o

Integrating Equation (14) results in the risk of rupture

for tension loading
m
B v (&8)
Once the failure distribution of a material has been
established, another characteristic of interest is the dis-
tribution mean. Once the three material parameters m, Oy
and g, have been established, the mean failure stress cp

can be determined and used as a further check on the use of

the Weibull theory for a given set of data [2].

[

Cm= Gu+ [ ePde (16)
Ou

Equations (6), (11) and (15) represent the basic ap-
proach and format of the risk of rupture expressions which

will be extended to composit~ materials.

Clagsica. Composite Theory

This section outlines some of the basic laminated plate
relationships (for background see [1,3,10]. Figure 6
indicates the axis system relationships which are used in
the derivations, as well as some of the geometry of a

laminated composite.
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The stresses in an orthotopic composite plate, or lam-

ina, can be calculated with the following relationships

6.: Qll 811. Q % EI
Ga = | Qa 2 Qe €y

(17)
Gn L QI6 st Q“ K 6:2 K

b

where (Qij) is referred to as the lamina stiffness matrix

and whose components are

Qu = Eu/ (1 =Y W)

Qa = Eaa /(1 = Y Vo)

Qe = Gu (18)
Q= Y€/ (1~ VYaVa) = YauEu/(1- Yo Va)

Q= Qu «~ 0

and (k) the k th lamina within a laminated composite. The
matrix of Equation (17) provides the equations for finding
the stress due to loading the material axis. If the stress
is degired due to loading in other than the material axis,
(x.,y,2 in Figure 6), rotated some angle & off the material

axis, the stress is found using the following relationship

G Qu @lz Qe € "L

Gy * |Qa Qa Qe €y

af 1
Cr'i.w,k Qe Qu Q“x ﬁ"fﬂ 19D
where
Qu=Qu@s*0 + 2 (Qi2r 2Qus) Sin2@ Cos*G + Quz 5n*O
Q= Qu5n*6 +2 (Qa*?2Qes) St (o5 B + C 22 (o5'6
Q’ (OH*QZI'ZOIZ‘ZOG’-) S-n“@CoszG + O“(S'n‘Q* G.)S‘@) ( 20)

Qa* (Ou'Qu"?Or.b) S$in2B Ces?O + G (Sind@ + (0s*C)
" (Qu-Qa-2Q) SinB(os6 + (Guz"Qu.*ZOcc) Sn}8 ks
Qu= (Qu-Qr-2Gw) 5130 (osE + (Qe-Q2:+2Qed) Sin B (050

The convention used for positive rotation is shown in Figure

6.
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The strain components can be obtained from the follow-

ing relationships

€ € K
€y [~ fﬂr + 24Ky
f.ﬂv E ny H.:y ( 21)

where the (°) superscript refers to the midplane strains of
a laminated composite. The components of Equation (21) are

as follows

av/ay (22)

2
Ky }= -a‘%yz (23)
Lo O
Kev ) 2297300y
where u, v, and w are displacements in the x, y, and z
direction respectively. If one uses the relationships of
Equations (21), (22) and (23), Equation (19) can be written

as

{G_}kz (@], {eo} +z[a], (K} ( 24)

For convenience, a simpler system of forces and mo-
ments ig now introduced which are defined as force resultants
and moment resultants. The force resultant (Nx) is defined
as a force per unit width and the moment resultant (Mx) as

a moment per unit length. In general then, these values
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can be given in terms of the stress vector as follows

(N~ [:{m} ey g ([afed f i+ [el, (4 | 24]

M) [:{a}zaL - g_ I{[O]k{e{’} £ Zz{d]k (&} £ 247

L= (X,Y, xY)

By rewriting these equations, a shorter notation can be

obtained
(3« [N (€ (1 {9
G EOIGHSIG
Au : t' [é”}k(“x _hk-l)
Burgp [Quly (W= hic) (28)
and Durdt [Qufi (We~hia)
[A] - extensional stiffness
(B] - coupling stiffness
[D] - vending stiffness

and (hk - hk-l) represent the individual lamina thicknesses.
When the laminate is symmetric in both geometry and
material properties about the mid-plane, Equation (27)sim-
plifies considerably. Due to the symmetry, the thickness
terms cause the coupling stiffness (Bij) to go to zero [10].
Por the uncoupled axial and moment loads, Equation (27)

.an be written as
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(N} - [A](€)
) - [0]{K]

Whitney, Browning and Mair [17] further simplified the

( 29)

moment resultant equation as followss since from Equation

() (o))

Thug, for a pure bending moment this can be written as

— . - 20
K« S ¥Wae ][00 Da Daf (M
Kyt = § - 3‘W/wl Do D Du 0 (31)
Ky, -2 R W/M(DY; h_l).i' D;; D:&_J O
Mx ie the moment resultant defined by
My« 2 (32)

b

If one assumes that the specimen has a high length-to-width

ratio then

W= WX
and
aw, . M (33)
‘o’ TR
where
£ 2,

which is 0f the same form as classical beam theory with the
isotropic modulus (E) replaced by an effective bending mod-

ulus (E). Stress can now be obtained as

{G}k'[d]xz {H} (4
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or

Uxk = Z ‘Fm %—;"
Gy = 2 f2u|:11'
Gzx = Z {3&%?

{{"L}k' [Gim] [Slm}
L= 1,23
M= |.2.6 (36)
Qim® Qwe
Sim = Diwm /12

Equation (36) then represents an equation applicable to a

(35)

where

general class of symmetric laminates, derived by consider-
ing a beam as a special case of a laminated plate.
The axial stress equation, when considering only the

normal force resultant Nx' can be derived us follows

(€ - [A)" Ne (37)

where

P 8
Nx 5 (38)

Since symmetric specimens will be used the equation for

tension only is
(€}~ {€] = [A) ™ (39)

the normal stress can then be expressed as

Oxx = Gltt Exe a\u €y + aIGkExy

, N A (40)
= [GHKAIH' @u_k Aw + QukA-ng Nx

2h




T et

e

Weibull Equation for Composite Materials

This section deals with the extension of the Weibull
distribution function forms, presented for a beam in Equa-
tions (6), “11) and (15), to composite materials. Deriva-
tions are based on the composite theory equation forms pre-
sented in the previous section., The final equations are
then presented both in composite notation as well as in a
simplified form app.licable to the speciric experimental
specimens being analyzed in this study.

Since the Weibull theory is based on fracture due to
normal tensile stress in materials containing random flaw
distributions, the composite ig also assumed to contain
volumetric flaws and to be subject to normal tensile stress
fracture. The derivation of the composite bending equations

can be modified with this assumption, and Egquation ¢ 35) re-

duces to
Gen = Zfu T (81)
or
Gt Z [ QD+ Queliae Queli) T ()

C“ | G“H DL 'Q LY D|2 ¢ \d’.l.k |)i‘ l ( IJ)
) l b

for simplified notation, then the stress in a laminate sub-

Jected to bending can be expressed as

Guz Cu. (43)



where (2z) is the distance from the neutral axis.

The laminate specimen used in this investigation will
consist of only unidirectional ply orientations and there-
fore act like a single lamina with respect to stress dis-
tribution. Equations (45) through (49) provide some basic
definitions for later theory development and are graphically

presented for a unidirectional laminate in Figure 7

he * {hvu +(GT‘~°T&I (he - hp-«)} (45)

where the subscript (p) refers to the p-th lamina which is

the lamina in whichk ¢ 9, The stress in the p-th lamina

is defined as

G- CoZe[GuDrQubetQedd & 0
also
Gup = Cr hay, (47)
= Co hea (48)
Ge = Crhe (49)

With the use of these equations the ecvaluation of the risk
of runture becomes

j// (c,z O‘u.) d“i IBIL[::(_C_..%@)"‘CJV ( 50)

KePet 0 O

where the first triple integral represents the number of
uniit volumes in the lamipa in which the stress partially
exceeds 0, The second triple integral represents the sum-

mation of this quantity for all other lamina in which the
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stress exceeds 0y Subscripts are provided to 0y to ac-
count for variations of this value in multi-directionally
oriented specimens and as such make this term ply dependent.
The equation in this form represents the risk of rupture
for pure bending of a general laminated composite. For c
unidirectionally laminated composite, as that being used in
this thesis, g, is assumed to be identical for all plies

and consequently subscripts are dropped from subsequent
equations. Integrating this equation results in the expres-
gion for the risk of rupture for a unidirectionally laminat-

ed composite subjected to pure bending.

Lb {[@'hﬂj + i (Cche= G )™ = (Cchea= Gu )mj

(};“‘(m\‘l) Ce KeP+ Ce

(51)

This equation can be simplified further by use of the char-
acteristics peculiar to the specimens being incorporated

into this thesis. For unidirectional fiber orientations

Cox Cu= C (5%

because the terms in the lamina stiffness matrix aij are '

identical for each lamina. This reduces Equation (51) to

tb (Chn-Ga can-a‘u)”‘
B- (m+l)( C )(\ Go 5

Equation (53) can also be written in terms of the extreme
fiber stress as was Equation (6). The stress distributions
for these composite specimens are linear, and therefore can

be expressed as
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¢-ihz- loz (54)
3ince
N (ARNE(ARET (55)
therefore
Lb [Gn-Gu) {Ga-Ga\™
3 i (%25 %) o
where
C= (%) (57)
now
_ Lbh O_"G-u C-n'G'u.\,m ( 8
B'Z(m+l)( G )( o ) 2
where
Lbh =V

Equation (58) is identic~l to Equation (6) as is expected
for the type of composite being considered, and therefore
represents the risk of rupture equation for pure bending
loading tests in the thesis. A similar approach is used in
the derivation of the risk of rupture equation for three-
point loading. Some of the previously defined terms must,
however, be modified to allow for a varying moment. The

moment equation for three-point loading is
{ .
M = \P/z)x (59)
where (P) is the applied load. Equation (42) can now be

written
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Ok < Z [-ém( D-n'u + GIZK D-llz + émklj:s Z_F:_, X (60)

defining

C"t * [O"K Dl"’ QuxDu + Q,‘kD“ .ZEB (61)

then
G - CZX (62)

since the specimed?are unidirectional, the lamina subscript
can be dropped. Figure 3b shows the extreme fiber stress

distribution, and from this we define

Gb (beam)’ On (composite ) = C’_hzﬂl: (63) ‘
or
c' e Gn2 (64)

hn L
where on is the maximum extreme fiber stress, and hn is de-
fined in Figure ?. Using Equation (62) in Equation (2) re-

sults in the expression

o 2[.,[9.[&(5%0:_@)%\/ (65)

which when integrated takes the form

26 (€ ((Yohn-G)™"" 7
ch{[i( )

= Mt - )
sbe) [z -6l dz}

y 21

(66)

which can be put in terms of the maximum extreme fiber

stress O by use of Equation (64). Using this definition
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the final risk of rupture for a composite under three-point
loading then becomes identical to Equation (11).

The risk of rupture for a composite under tension is
derived from Equations (25) and (27). In this case only
the tension loading and extensional stiffness is considered.
Using Equations (2) and (40) the integral equation for the
rigsk of rupture under tension is

n b L hx
BE/ / f (@—Ké.ﬁ)md\/ (67)
et o o ‘e ¢

which integrates to

B-tb} (GR_G:‘JGT*Y(WM..) (68)
Kz

If one incorporates the unidirectional properties of the

specimen as related to this thesis in addition to
Gxw = Gt = Constant (69)

Equation (68) reduces to Equation (15).

This study will utilize Equations (15), (58) and (66)
in predicting the risk of rupture for graphite-epoxy under
the loading conditions for which each of the equations was
derived, and then use these values in establishing the prob-

ability of fracture from Equation (1).
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III. Experimental and Analytical Procedures

This section provides an overview of the methodology
developed to obtain the material parameters in the Weibull
distribution function. A description of experimental equip-
ment and procedures as well as the znalytical process used
in manipulating the experimental data is provided. Also pos-
tulated in this section is some analysis theory directed at
data evaluation and interpretation. A sensitivity analysis
is provided in an attempt to show the dependency of the re-
sulting theoretical equations on the specific experimental

data being analyzed.

Material, Equipment and Tesit Procedures

Graphite-epoxy specimens are used exclusively in the
experiments. Specimens were constructed of both sixteen
and eight ply graphite fibers impregnated in epoxy. Fiber
orientations were unidirectional within each specimen. The
specimens were cut from a single 24 inch by 24 inch sheet,
thereby obtaining both O-degree and 90-degree oriented test
samples from the same layup. A description of the specimens
is provided in Figure 8. Two laminate thicknesses are
used due to limitations on specimen size; sixteen ply spec-
imen for both four-point and three-point loading tests and
eight ply specimens for the tension tests. The lower ply
specimens were chosen for tension so the necessary fracture

loads would not deform or separate the end-tabs from the
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specimen, thereby inducing measurement inaccuracies.

A standard Instron testing machine was used to conduct
all testing. For each four-point and three-point loading
test, the load was applied at .05 in/min. The tension tests
were conducted with a stroke rate of .02 in/min. The appli-
cation of loading continued until castastrophic failure or
load resistance went to zero. A chart recorder recorded
deflection versus load for each specimen. Approximately 20%
of the specimens were equipped with strain gages. For these
specimens strain versus load was recorded.

Accurate volumes were obtained for each individual
specimen by conducting, individually, three m=azsurements of
thickness and width. These measurements were tlien averaged
to obtain an average width and thickness per specimen. All
testing followed in accordance with standard test proce-
dures. In order to obtain a region of pure bending within
the four-point loading tests, the cross-sectional dimensions
were controlled to a span to depth ratio of 32 to 1 for each
specimen. A minimum of 25 specimens were tested for each
ply orientation and loading condition.

The succeeding paragraphs provide the steps followed by
the author in arriving at the final procedures of deriving
the material parameters using published informatica. With
the accumulated experience obtained in the methodology pro-

cess, a final technique is developed and presented.

Material Parameter Determination

Once the basic equations for the Weibull distribution




function are established, experimental data is gathered to
validate the theory. The problem that now arises is the
development of those values of the material parameters which
make the theoretical probability of fracture curve fit the
experimental data best.

Daniel and Weil [6] used as a suitable criterion the

analytical method of minimization of the sum of the mean

squares differences. In their procedure, experimental data
obtained from pure bending tests was used in the parameter
determination.

The procedure combines Equation (1) and (6). Taking

the double log of Equation (1) yields
Yn = Lnln }_'LS-n LanB = Ln 'i\!'—- Ln(mﬂ)
+(M+I) Ln(6n-6a) - LnGn - M LGy

The corresponding (estimated value for the probability of

(70)

fracture obtained experimentally is

Snt N7 (71)
from which
l3'If\=[.s"| Ln %1—:—:-',—‘ (72)
where N = total number of specimen) tested
n = specimen number when specimeﬁﬁare arranged in

ascending order of stress

The least squarﬁs method requires

b (s Ya)': MINIMUM (73)

ul
The necessary conditions for this minimization also require
that the derivatives of Equation (73) when taken with

regpect to 0,0 94 and m to be set equal to zero.
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This then results in three equations with three unknowns
which can be solved simultaneously. Convergence to zero
results in the determination of a unique parameter set.

Although mathematically correct, convergence of these
equations was found difficult to obtain. A possible reason
being their highly non-linear nature [2].

Another more widely used approach is one suggested by
Weibull [6]. This method is a trial and error procedure in
which the experimental data is linearized. The recommended
procedurs is to rearrange equation (70) into the form of

the equation of a straight line

Y= mX+b (74)
this is accomplished as follows

N+l

V
LNLN ST N G = (MA1)IN (Gn- Gu)+LN AGIOE mINGo (75)

Two axes (x and y) can now be established where

- Nt (76)
Y= LNLN NEIED + LN On
and
X= LN (Gn- Cu) (77)

The correct value of 9, is obtained through a trial and
error procedure, Various 9, values are picked until a
straight line results from the plot of Equations (76) versus

(77). 1If g, is too low, a curve concave down will result,




if too high the result will be a curve concave up [16].

The slope of the resulting straight line then becomes

(m+ 1), Once m and o, are established, all values of Equa-
tion (70) are known except for o, This value can now be
determined by substituting the known values back into Equa-
tion (70).

This procedure was also employed by Daniel and Weil
when their analytical method proved impractical. One draw-
back found during their experimentation showed that gener-
ally a very large number of guesses are required to finally
obtain the desired linear result. Consequently they de-
vised a process in which the upper and lower end slopes of
the concave curves resulting from several estimates of ou
are plotted against 0, This procedure is illustrated in
Figure 9. Connecting the end slope points with a straight
line results in a plot as shown in Figure 9d. The inter-
secting point provides the desired values for m and 0y
This procedure significantly reduces the total number of
egtimates to identify ou.

The development of the methodology for the parameter
determination for this study was based on two sets of ex-
perimental data, each with established material parameters.
One data set was for a ceramic material and the other for
a composite material.

The least squares analytical method of parameter deter-
mination was not investigated due to the findings by Daniel

and Weil {?]. A detailed analysis, however, was conducted
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Pig. 9. Parameter Determination Method




to establish an effective way to use the graphical approach.
The ceramic material fracture data was used exclusively in
this effert due to its more manageable magnitudes in stress
values. The composite data allowed for additional verifi-
cation of the final procedures.

The basic approach of the analysis followed the proce-
dures outlined by Weibull, with modifications made as re-
quired. The following paragraphs outline the sequence of
events and the rationale which led to the final methodology
for determining the material parameters.

From the outset of the analysis, a variety of I, values
were plotted using Equations (76) and (77) as plot coordi-
nates. The resulting graphical data, however, showed re-
finement to the method was required. For all values of Ty
chosen, no singularly definable straight line or identifiable
concavity could be established. Figure 10 shows a typilcal
case of the experimental data when plotted using Equations
(76) and (77).

To improve the method, a smoothed curve was fitted to
the experimental data. Plotting the values along this
curve instead of the individual data points, resulted in a
definably straight line from which Uy and m could be obtain-
ed. The problem with this technique, however, is the arbi-
trary approach used in fitting a smooth line to the experi-
mental data. This became more evident when the published
material parameters for the data could not be duplicated.

A more regimented approach for data smoothing was in-
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stituted through the usge of the least squares principle and
thus various degree polynomial equations were studied which
adequately approximated the data. This required a decision
as to which degree polynomial provided the best results. A
mathematical best fit could not be uscd since this would
necesgsgarily be a high degree polynomial, resulting therefore
in an irregular curve rather than the desired smooth curve.
Rather than limit the flexibility of this method, numerous
polynomials were incorporated to approximate the data, and
then evaluated with respect to the vaiability in the Weibull
paramcters. Although all higher degree polynomials produced
distinctive values for m and Uu' each polynomial resulted

in distinctively different values. The published parameters
were again not duplicated.

Analysis of the characteristics of each polynomial
curve revealed an invariance in the curves in the region
beyond the first three to six data points. A very high
variability was found, however, in fitting these first few
pointe. figure 11 depicts this arca. The characteristics
of smoothing within this zone regsulted in the following: a
smoothed curve which flared as shown by curve 1 in Figure
11, resulted in o, values near zero or even negative, curves
within the shaded area resulted in values falling between
zero and the lowest failure data point depending on whether

the curve fit was chosen in the upper or lower portion of

this shaded section, finally if a fit approximated curve 2,




S - Probability ot Failure
g - Failure Stress

Fig. 11. Area of Curve Smoothing Sensitivity
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values of Iy greater than the lowest failure data point
were required to obtain a straight line plot using Equations
(76) and (77). As a result of these characteristics and due
to its physical significance within the Weibull equation,
g, was chosen as a bounding value. The lower limit of O
was chosen to be zero based on the physical interpretation
that stress below this value must result in a probability of
fracture equal to zero. The lowest experimental failure
stress determined the upper limit for 0, thereby specify-
ing that a finite probability of fracture exists above this
value.

Using various degree least square polynomials a variety
of ou's and m's were established within these limits of 0,
If these values are displayed in graphical form a linear
relationship results as shown in Figure 12. This data im-
plied that an infinite number of combinations of both m and
Ou existed within the set limits, any of which could be used
to theoretically duplicate the experimental d.uta. The pub-
lished material parameters for the sample data were also
located on this line. Bas~d on these interesting results,
this technique had provided the means of duplicating the
published material parameters as one of a very large set.

To verify that each set of values resulted in a valid
theoretical prediction of the experimental distribution,
randomly picked parameter sets were plotted using the Wei-

bull equation and overlayed on the experimental data. Vis-
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ually adequate fit was achieved with all sets., However, it
was noted that sets with values of 0, hear zero or near the
lowest fracture data point did not match the experimental
data as well as thoge with intermediate T4 values. It ap-
peared therefore that a "best” set of parameters existed
which could be mathematically isolated.

The mathematical analysis to isolate the besti set of
parame ters employed the least squares method of summing the
squares of the mean difference between the experimental data
and theoretical Weibull equations. The error between these
two models was calculated and plotted for a variety of
material parameter sets. The dashed line shown in Figure
12 represents this sum of the mean difference squared plot-
ted against the corresponding m and 0, values. As can be
seen, a "best" set of parameters does exist among the family
of sets represented by the gtraight line when analyzed in
this manner. Eventhough the set which resulted from this
procedure did not match the published set of parameters,
the magnitude of the overall error in fit difference is
very small. Figures 13 and 14 provide a graphical repre-
sentation of the experimental data points overlayed using
the published material parameters (Figure 13) and the best
set determined by the aforementioned procedure.

The final step in establishing the procedures for the
parameter determination was to check the sensitivity of fit

accuracy between the experimental data and theoretical curve
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due to small changes in each parameter of the Weibull dis-
tribution function. The results showed that all changes to
Oy and m would cause an increase in fit error. However, if
a, is made the variable at a fixed m and o, the author was
able to find values which decreased the fit error. The
cause c¢f this lies in the methodology used in the deriva-
tion of this parameter. The procedurc, which is used to
find 0_, evaluates Equation (75) for each stress/probability
value and establishes as many 00 values as there are data
points. These values of o, are then averagad to obtain the
final 0g" This final number therefore is very data sensi-
tive since the addition of another failure value would gen-
erally result in a change to 0y

Based on this information, the value of O, for each
gset of m and o, was allowed to vary approximately plus and
minus one percent, and a new fit error was calculated for
each resulting new set of parameters. Although the reduc-
tion in error is extremely small in overall magnitude
(.02655698) versus (.02655657) the resulting set of "best”
param=ters is changed significantly (m = 4,808, 0, = 1601.5
0 = 2342.06 versus m = 4.856, 0, = 1670, o = 2333.52).

Due to this sensitivity found in the 0, parame ter, the
procedure of graphically establishing m and 0, was revised.
The writing of a computer program became necessary, incorpo-
rating the experimental data in conjunction with Equation

(76) and (?77)., to allow a numerical refinement for various




values of 0, From this numerical data,initial values of

m could then be obtained. For each ou,the values of m and
c, are allowed to vary until a combination of the three
values is found which provides a minimum fit error to the
experimental data. Figure 15 is a three dimensional repre-
sentation of the physical interpretation of this error min-
imization process. This procedure greatly simplifies the
more involved and subjective graphical method. It also pro-
vides immediate mathematical comparisons. The computeriza-
tion verified the high sensitivity of fit accuracy to vari-
ations in 0, when establishing an accurate theoretical model
for an experimental failure distribution.

Since the above methodology demonstrated that for
given values of cu,the fit error could be minimized, the
analytical method of maximums and minimums should also be
able to predict this point. Therefore an analytical check
of these procedures was alco conducted. The minimum error

expression can be written as

€ - i(S‘Sn)z= MINIMUM (78)
weare ™
n
< = NET (79)

and Sn- Equations (1) and (6).
Taking the derivative of this equation with respect to the

variables yields the following expressions

49




E835001d UOT}BZTUTUIW JoIIy °*GT *F14

J0333

314

nu———-q———---—--—___\

50




O

i (5-50%%m

[T

i (5-50%%,

Nz (80)

i (S“Sn)as%a O

[, T3]

@]

"

Convergence of these equations was verified for all param-
eters evaluated.

The computerized analysis method which resulted from
the refinement of the graphical trial and error procedure
is used in analysing the data gathered for this thesis.
The methodology is mathematically reproducible for a fixed
get of experimental data, and therefore less subject to

many inherent inaccuracies of graphical analysis technigues.
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IV. Results

This section contains a compilation of results from

the various analyses and data evaluations comprising this

thesis. The discussion is divided into three subsgections.

The first iwc parts present the recults obtained from the

Weibull parameter determination analysis and the theoretical
equation validation using the experimentally obtained fail-
ure distribution. Peculiarities,which are reported in the
first two efforts,led to a supplemental data analysis to
further investigate the usability of the Weibull theory.

The findings of this evaluation are discussed in the last
part of this section. The detailed data from the experi-
mental phase of this study are presented in tabular form in
Appendix B.

Due to the complexity in describing the large assort-
ment of analysis variations which occurred during the con-
duct of this thesis, the author feels it is necessary to
present the reader with an overview of the total effort at
the outset of this section. This is presented in Table 1.
Also, a factor which must be pointed out at this time is a
peculiarity which was discovered during the analysis of the
90-degree flexure specimen. It was discovered that all
specimen which had been equipped with strain gages had fail-
ed at an above average stress. Consequently, it was decided
to analyze this data as comprised of two independent samples:

one containing 21 samples, the other containg 26. All 90-
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Table I.

Summary Correlation Chart

Parameters
Derived from

Experimental
Data checked
for Correlation

Resulting

Correlation

X-Correlation
--ns/poor Correlation

o .

0 Bending
(¢ .

90 Bending*
0 .

90" Bending**

0o Tension

o]
90 Tension

0° 3-Point
g =o
u
90° 3-Point

Uu—O

o

0o Bending
0o Tension
0  3-Point

) .
90, Bending®

90o Tension
90" 3-Point
902 Bending**
90o Tension
90" 3-Point

0, Bending
0, Tension
0 3-Point
90, Bending*
90, Bending**
90, Tension
90" 3-Point

0 3-Point

90 3-Point

¢ 26 Specimen Data Sample
®%+ 2] Specimen Data Sample
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degree bending data will be analized in this manner.

Parameter Determination

The flexure data shown in Tables IX and X of Appendix
B is used for the basic parameter determination. The com-
puterized methodology described in Section III was employed
in .this analysis. Figures 16, 18, and 20 present the final
gsets of m and O, values for the 0 degree and two sets of 90-
degree Specimeﬁ?respectively. Additionally, Figures 17, 19
and 21 provide the values of g, which correspond to these
values, Superimposed on Figures 15, 18 and 20 are the fit
error values which result from the correlation between the
experimental and theoretical distritutions when using the
sets of m, Uu and 0y Table II is a summary of the best
parameter values obtained as well as comparison »{ the ex-
perimental mean compared to the theoretical mean using the

respective parameters.

Table 1I.

Weibull Parameters Using Bending

Specimen m Oy 0o Op PSi
Type psi psi Experimental/
Theoretical
O-degree | 18.70 | o | 180010.26 gﬁggg;:{ﬁ
90-degree® .90 | 8498 1.30 g;gg:gg
90-degree®® | .91 | 8175 2.95 1053 on
?
® 2] Specimen Data Sample s 26 Specimen Data Sample

s4




saoyaueaed Jurpuag sand asadap-0 91 "FTJI
o ; g -.w.'r e :.-IT.[' i..rL..!n% —he e ¢L|a:i...l.m

B N L L e T LT T PRI IR

1

00z e eeTil

— : .

T sy obme T T
! &n.m.“ _ .




Py e |

SIs}sweed FUTpusg aangd 2332sp-0 LT *@1:

B it A e e

. (tsd) cotx™ .
onz 002 071 021 _ 8 : ! ;
b s e . .ﬂ SR R S——

o
Q
2
o]

ST L e S A it

}

AR SN, SRV [ it § Bl |

SR e O S |
e ._-. - -.-.I-_. a P . i !-..n_-ll-..... g . - —

- : (t1ed) 2

MR U T T e S Y. ;<

| h | 0 |
|-..1:-1:-.i.m|-1!.m:. L L o R o | 99T -
R =k ._ P e S i R W
= o “ =ty _ . s e B s

hooh w i beadag bt PN f et i = PR T B P E e et o) e ) e s |

| | | m _ m " & | dis: ,




(uswtoeds peded uTeBIIS 3FNOYUJTM)
sJajaweled Futpuag aang 29a3ap-06 QT "Ftd
[ . . 1 m o _.‘ o : " TTIT T T T .._ oo : H Tyttt v )
__ L - - — B L - 1. - _ i u P | BN m _ .......
: o | R
i

- . o

_

IR 5 IS U SN W T - JS B Lol R ||

oo edy o™ 0 .

- a - 9 - T O
. : | _

..:___._{ B

57

S SN . 3 e

e D' G [ SR ,

4 - e ol e

'
i WL

S Lo - 2t s L




(uswiosds psZe? uleIls INOULTIM)
SisloueIed FUIpuss san.s saIFsp-nb AT 214
i : ] ﬁﬂmm.u.ma:ﬁ.ﬂﬂn nam beenmsrrfh mer = = e e o4 < MR
21 et z z # z . o

— . Q.. it ettt
m m ! :
= R ISR S8

i ] ; I e
vy
M L OC OO L T L L S S R
| _ | _ : . : _ (ted)
e |||.”.|||I + PUP——— .m =spats - = : 2 e - t - - .. — ...NQHH.iili
" : _ : _ hreyid - ; | ! - : b0 ..
|.|||+ I I!----mr|l--..” ——— el . P T VR I L . Mq-!'
} ! ] | ' !
- _. i : _ : T e
_ | ! i _ :
—— e |..m.|ll.||||u.|| Y .w. ._-. 1 : : *.-[I
1 i H ! { I i t
: m ! : ' fooes ! I S .
rels N i, 0: [N SRR AV OV - - b o
m . . _ ! i i
" ! | ! ! |
: _ _ _ ' v Begrreesson |
U W 1 R O DO R
“ _, | h Letdierdomeitin. | 7 TR U T SR T e W h vt 100k T S I
_ | : | FREE S | _ : | ;




......

(uowtoads paFeld uteais Furpnyout)
sJajaweled Fulpuag aand ssIFsp~06

1 ote

*02 *3td

[P CREET S
I

ooo PRI

L TIPS I

i
'
e Lk T
...... ‘-
.mr
v
i

H |

frrmr s re e e e e

JOXAT = ==

B b f
..... N _
e ] AR &
e |

DY B PRy

P e




(Usutoads pode? utexys Suipniout)
saajaureded IFutpusg sand saaFsp-06 12 214

..... b sy o™
ST L 6T - A . .




L g

Y TSI

These values are determined based on a fit error conver-
gence factor of .0001 using the least squares method. Table
ITI. gives the fit error values corresponding to the param-

eters shown in Table II.

Table III.

Bending Data Fit Error

Specimen Fit
Type Error
0-degree .02198
90-degree .0ls589
90-degree 06114

The author questioned the difference in fit resulting be-
tween the 21 specimen and 26 specimen 90-degree parameters,
but one has to realize the relationship of the parameters
in the Weibull equation and the significant change in the
shape of the distribution curve caused by the addition of
the 5 instrumented specimen to the top of the distribution.
Computations became some-what erratic as estimates of
o, approached the lowest failure data point where probabi-
lity of failure values predicted by the Weibull expression
became very sensitive to very small variations i the in-
dividual parameters. The author has attempted to attain as
high an accuracy as peossible, but practical considerations
required the establishing of tolerances. As a consequence

of this, the following minimums where placed on the param-
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eter variation increments: o, x 1.0 psiy m + .01, a, £ 1
psi and + 1.0 psi. Two minimums were placed on a, due to
the magnitudes of this parameter for the O-degree specimeéi
Error variation per unit change in Ty for the O-degree data
was less than .00001.

Figures 22, 23 and 24 show the experimental pure bend-
ing data and the Weibull equation plotted using the values
shown in Table I1. For comparative purposes additional plots
with various parameter sets chosen from Figures 16, 18, and
20 are provided in Figures 1C through 8C of Appendix C.

The determining factor for the best O-degree specimen
parameters is the lower limit previously placed on 0,
Mathematically, however, a better fit can be achieved using
negative values of a, The minimum fit error occured at
o, = -290,000 psi. This value is approximate since a de-
tailed analysis into establishing this exact value was not
conducted. Figure 2C in Appendix C verifies that using
negative values does provide a mathematically accurate fit
to the experimental data. Within the physical interpreta-
tion of this parameter as the zero probability failure
value, this of course cannot occur. The reason for the
increased accuracy using a negative Ty value is again due
to the mathematical relationship of the three parameters
within the Weibull bending equation. This of course also
points to the fact that placing a physical significance onto
the 0y, parameter az it appears in the Weibull equation, may

be incorrect.
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-- WELBULL CURVE
] o S=Nm/N+l

0.87

9 - FRACTURE PROBABILITY
N = NUMBER OF 3JPECIMENS

4 Nu ~ SPECIMEN NUMBER
a.-

= 18.7

= 0 psi

m

a
u

a
0

= 180010.2629 psi

PROBABILITY OF FRACTURE
0.37 0.

%00.00 200,00 220.00  230.00 240,00 260.00  260.00 270.00  280.00
FRACTURE STRESS llU'(psi)

Fig. 22, Comparison of Experimental Bending Data and
Theoretical Cumulative Distribution Function
0-degree Specimen
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-= REIBULL CURYE
c [ )
.u ° S=N'/N+l °
8 = FRACTURE PROBABILITY ®
N = NUNBER OF PECIAENS
g_ Nm - SPECINEN NURBER ©
. "
m= .90
= 0 = 8498 psi
28
2’
«
e
&8
’_.
™
[ ]
-
=1
<
[ "
R
L ]
-]
.‘1
e ®
NA0.00 195,00 240,00 080.00 uol.. 1100.00 1216.00
FRRCTURE STRESS al0’(psi)
Fig. 23. Comparison of Experimental Bending Data and

Theoretical Cumulative Distribution Function
90-degree Specimen®

® without strain gaged specimen:
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-- WEIBULL CURVE
8] o S=Nw/Nel .
° ®
8 - FRACTURE PROOBRBILITY °
N - NURBER OF SPECIAENS
4 Nu - SPECINEN NUNBER
o] .
g m= .91 . I:
Eg Uu= 8175 pPsSl
21 o= 295 pa
E X .95 psi
&8,
»0
[ =4
| )
=
8%,
-]
<
.
8.
-]
-
.'!
8 ®

A0.00 906.00 940.00 §96.00 (060,00 1106.00 1190.00 126,00 1870.20
FRACTURE STRESS llO'(psi)

Fig. 24, <Zomparison of Experimental Beiding Data and
Theoretical Cumulative Distribution Function
90-degree Specimen*

* including strain gaged specimens
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Theoretical Equation Validation

The parameters developed in the previous section now
permit the evajuation of the Weibull equations which where
derived for tension and three-point loading failure. Based
on the premise that the Weibull parameters are material re-
lated values, the resulting theoretical distributions should
approximate the distribution establishad experimentally for
each failure mode. The specific evaluation results are pre-
sented per failure criteria and specimen fiber orientation
in the following subsect®oasns.

A. Tension equation - 0O-degree specimen.

Equation (15) was evaluated in combination with the
material parameters derived from the O-degree bending fail-
ure distribution as given in TableII. Direct substitution
of this parameter set into Equation (15) resulted in a fail-
ure distribution predicting 100 percent failure at stress
values above 230,000 psi. This of course does not match
the experimental data for O-degree tension failure as can
be geen in Table XI of Appendix B.

Since the derivation of the Weibull equations assumed
a volumeiric flaw distribution, the volumetric differences
between the bending and tensile specimen were normalized

using the following relationship

Vb V
GF * o (81)
where b - bending

t - tension

66




from which a volumetrically normalized g, can be defined as

. =Y
Gov = Gob Ve me " (82)

Equation (15) can now be written as

Be Ve (—%@) m (83)

Using this equation and the parameter set established from
O-degree bending specimeﬁ;the resulting theoretical distri-
bution function improved slightly, however, the overall
data match was still very poor.

Comparison of the experimental failure distributions
obtained for bending and tension indicated that the basic
failure stress extremes are nearly the same. Therefore,
based on this characteristic, a theoretical curve similar
to that obtained for bending should also provide very ade-
quate predictions for the experimental tension distribution.
The modification of the tension equation under these cir-
cumstances can now be accomplished as follows: since the
parameter set being evaluated has a Oy value equal to zero,

the bending risk of rupture equation can be written

S L 84
B - Zimnj (GEJ“ (8%)

The tension risk of rupture equation under the same condi-

B Ve (&)"‘ (85)
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Similar risk of rupture values are obtained for a given

stress level only under the conditon where

14 Ve
2(mf)‘rﬁ| o R (86)

therefore, defining

Gl « (2] g, (87)
*

ot is used to differentiate this o from that used

in the expression normalizing the volumes. By substituting

0

this expression into the tension risk of rupture equation,

the resulting form of this equation is

B- v (& <88)

for the specific set of experimental data being evaluated.
This equation yields very good failure predictions for the
experimental data, as is shown in Figure 25. For graphite-
epoxy spec.men with O-dgree fiber orientation it is there-
fore possible to predict the probability of failure in ten-
slon using a set of Weibull parameters which have been es-
tablished using experimental flexure data. However, the

0, parameter must be modified to account for the differences
in the nature of the two types of risk of rupture equations.
The method utilized to modify the tension equation has also
been used by Hahn and Knight [12] in studying short fiber
composites.

B. Tension equation - 90-degree specimen.

Equation (15) was evaluated using both the set of ma-
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— WEIBULL CURVE
| o S5=Nm/N+l

0.07

9 - FRACTURE PROBABILITY
N - NUNBER OF SPECINENS

| 4 Na - SPECIMEN NUMBER
Q

m = 18.7
" cy= 0 psi
el o0,= 228724.75 psi
[~ ]

Q.37

PROBRBILITY OF FRACTURE

.1

0.12

8

900.00 210.00 220.00 230.00  240.00 2%0.90 260,00  270.00
FRACTURE STRESS s10°(psi)

Fig. 25. Comparison of Experimental Tension Data and
Theoretical Cumulative Digtribution Function
0-degree Specimen - using Bending Parameters
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terial parameters d« fined using the 90-degree flexure data
which included the strain-gaged specimen data points as
well as the set which was established using only noniunstru-
mented specimen data. Even at'ter manipulations of Egqua-
tion (15) in the manner described for the O-degree tension
data,no approximation of realistic tailure probabilities
could be obtained using the parameters from either flexure
data. The immediately obvious reasons tor this are the
values of Uu' Thege values are greater than 80 percent of
the experimental data points. As a result,a negative oex-
ponentiated term appears in the risk of rupture equation.
Various combinations of Weibull parameters with Y
values lower than the lowest tailure stress data point, cb-
tained using Figures 18 and 20, were analysed but no suit-
able combination could be established. Due to the asignif-
icant differences iun the tairlure characteristies in the 90-
degree fiber oriented praphite-cpoxy specimen when subject-
ed to tension ag compared to pure bending tailure, no cor-
relation was ifound iu the use of a gingle set of Weibull
parameters for taillure probdability prediction across these
failure modes.
€. Three-point loading equation - O-depree gpecimen.
Equation (oo) was evaluated using the Weibull param-
eters defined using the O-degree experimental pure bending
data. Since the value of Ty in this get of parameters is
equal to zero, Equation (eo) can be rewritten in a much

simpler form as followr
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. Va G \" 8
B”*' 2 (m-+i (Oﬁsn) (69)

where is normalized for volume.

Gojp‘t
Substitution of the parameters shown in Table Il into
this form of the risk of rupture equation yielded failure
predictions far too low. For example, replacing ¢ with the
highest experimentally obtained failure stress for this
failure mode resulted in a probability of failure of less
than .22. Manipulation of Equation (89) in the manner de-

scribed for the evaluation of the tension equation,allows

the adjustment of the 0, parameter as follows

Vs Van (90)

Z{m+NGos® ~ 2 (M+}* GolPe

from which

3~

Gosme = [(T\;’:'ﬁw} Gob (91)

using this value for o, in the three-point loading risk of
rupture equation provides the best correlation attainable
for this set of parameters. The resulting curve is shown

in Figure 26. As is evident,this curve provides a poor cer-
relation to the experimental data and therefore,it is con-
cluded that theoretical prediction of a 0-degree three-point
loading failure mode using O-degree bending parameters is
not possible.

D. Three-point loading equation - 90-degree specimen,

Evaluation of Equation (66) was attempted using both
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Fig. 26. Compari_son of Experimental Three-point Loading
Data and Theoretical Cumulative Distribution Function
O-degree Specimen - using Bending Parameters
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sets of 90-degree bending parameters. Due to the complexity
of the basic form of Equation (66),no solution could be ob-
tained using the values as listed in Table 1I. However,
since the criteria for establishing Figures 18 and 20 is
that all sets of the listed m, 7, and Ty values provide a
fit with the corresponding error, then utilizing the set of
values corresponding to 0, 0 should provide an adequate
measure of whether correlation between the experimental 90-
degree three-point loading and the three-point loading equa-
tion given in Equation (89) exist. The resulting theoret-
ical curves are shown in Figures 27 and 28. As can be seen
in Figure 28, the theoretical prediction curve using the
parameters derived from the 90-degree flexure data without
the instrumented specimen is fairly good. However, the use-
ability of the theoretical data in Figure I7 is questionable.
The reader should be aware that these curves were plotted

by direct substitution of the material parameters from the
flexure analysis into Equation (89) using Equation (87).
Manipulation of Equation (89) as shown in Equation (91) was
not necessary. This of courze means that the parameters

are true material parameters for the 90-degree bending to
90-degree three-point data. The reader should recall that
for the 0-degree data, the nature of the failure distribu-
tion had to be considered in order to achieve correlation.

A point should be made at this time, and that is that the

three bending derived material parameters are not common to
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Fig. 27. Comparison of Experimental Three-point Loading
Data and Theoretical Cumulative Distribution Function
90-degree Specimen - using Bending Parameters®

* 90-degree data - including strain gaged specimen.
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Fig. 28. Comparison of Experimental Three-point Loading
Data and Theoretical Jumulative Distribution Function
90-degree Specimen - using Bending Parame ters®

* 90-degree data - without strain gaged specimens;
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this group of experimental data, but are more criented to
the type of test. As a summary of this section the follow-

ing correlation overview is provided.

Table IV.
Correlation Results - Bending Parameters
Equation Data Fit Obtained
Bending O0-degree Excellent
90-degree* Excellent
90-degree** Excellent
Tension O-degree Good
90-degree None
Three-
Point 0-degree None
90-degree Poor using 90 fle.,ure*
Good using 90 flexure#**

* not including strain-gaged specimens.

* including strain-gaged specimens.

Alternate Parameter Determination Methods

The problems encountered in obtaining correlation be-
tween the experimental data and theoretical predictions
using bending parameters led to the evaluation of using an
alternate parameter determination method. Since Equation
(15) could easily be rewritten in the form of Equation (?5%
it could therefore be used in the same manner as the bend-

ing equation for parameter determination. The total param-
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eter determination effort was therefore reaccomplished us-
ing the tension data. Figures 29 and 31 provide the values
for m and 0y while Figures 30 and 32 provide the values for
0, which resulted from this analysis. Table V provides a
listing of the best fit values contained on these charts.
Table VI lists the fit error corresponding to the parameters
shown in Table V.

Table V.

Weibull Parameters Using Tension

Specimen m cu 9, O _psi
Type psi psi Experimental/
Theoretical
0-degree | 17.53 0 229965.27 251869.99
252128.76
90-degree Lh.95 1} 2120 3604, 64 7228.64
7222.43

Table VI.

Tension Data Fit Error

Specimen Fit
Type Error

0-degree 03782

90-degree .03316

Figures 33 and 34 show the resulting theoretical curves
overlayed on the O-degree and 90-degr=e specimen tension

data points. Evaluation of parameter correlation to the
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Fig. 33. Comparison of Experimental Tension Data and
Theoretical Cumulative Distribution Function
O-degree Specimen
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Fig. 34. Comparison of Experimental Tension Data and
Theoretical Cumulative Distribution Function
90-degree Specimen
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other failure modes for each specimen type is presented be-
low.
A. Bending equation - 0-degree specimen.

Equation (6) was evaluated using the 0-degree param-
eters presented in Table V. Results similar to those ob-
tained for the previcus discussed analysis correlating bend-
ing to tension using the bending parameters were obtained
in this effort. Using the definition provided in Equation

(87) and solving the equation for 0.+ the following express-

b.
ion results

E3 . Vb e\
b~ 2(m+) (65: (92)

The theoretical curve obtained using this expression is
shown in Figure 35. This result show that parameters de-
rived from either tension or bending yield favorable com-
parisons to either theoretical equation.

B. Bending equation - 90-degree specimen.

Both of the 90-degree bending data samples were eval-
uated in this analysis. Poor correlation resulted for all
equation manipulations attempted. This is further substan-
tiated by the fact that the parameter sets in Figures 18,
and 20 compared to those in Figure 31 for a given value of
au do not agree. The resulting best theoretical curvee
attained are shown in Figures 36 and 37.

C. Three-point loading equation - O-degree specimen.

Equation (66) in the form of Equation (89) was evalu-

8h




ated. No correlation was obtained using the 0-degree ten-
gion parameters from Table V. This is expected based on
the results of the previous analysis using the bending pa-
rameters. A distribution with a very small range of maximum
to minimum failure stress values would be expected to re-
quire a high value for the flaw density exponent (m) in
order to establish correlation between the theoretical curve
and experimental data.
D. Three-point loading equation - 90-degree specimen.

Equation (89) was evaluated using Weibull parameters
corresponding to 0, © 0 from Figure 31. Poor correlation,
as shown in Figure 38, resulted. This is expected since the
90-degree bending and 90-degree tension produced poor cor-
relation, while 90-degree bending compared favorably with
90-degree three-point loading.

In summary, the results obtained in this section also
did not produce a set of parameters which allowed fracture
prediction through the range of desired failure modes. The
resulting set of tension data derived parameters proved ‘o
be even less suitable than those derived from the bending
data. An overview correlation summary is in Table VII.

Since the general results of this thesis were unable
to produce a singular set of Weibull parameters from which
sui table theoretical failure probabilities could be estab-
lished for the range of fallure modes investigated, the

author felt that it would be interesting to at least estab-
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Table VII.

Correlation Results - Tension Parameters

Equation Data Fit Oﬁzglned
Bending “gqh_——o-degré;_ Good
90-degree® None
90-degrece* None
Tension 0-degree Excellent
90-degree Excellent
Three-Point O-degree None
90-degrev None

* without strain.

#% with strain.

l1ish one set of parameters for each experimental failure
distributicn which allowed accurate theoretical duplication
of that distribution. Parameter sets to provide excellent
theoretical curves for both bending and tension have already
been established, however, no set for the three-point load-
ing data has as yet been determined. Equation (69) is not
suited to the manipulation conducted in Equation (75), how-
ever, the special case of Equation (c0) presented by Equa-
tion (89) can be rearranged into a similar form. This then
aliows the determination of a best set of m and 9 for au =
0 and as such represents best theoretical prediction of the
three-point loading data obtained in this thesis. The re-

sulting values are shown in Table VIII.
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Table VIII.

Welbull Parameters Using Three-Point Loading

] g g Error

u )
0-degree | 42.97 0 211702.27 | .023202
90-degree 12,01 0 6150.49 041770

The corresponding distribution functions are shown in Fig-

ures 39 and LO.
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Y. Conclusions and Recommendations

The objectives of establishing a set of Weibull param-
eter using experimental data and then correlating these
parameters to other data samples was accomplished. As a
result of the methodology used in the parameter determina-

tion, comparisons of various values of m, Uu and oo are

available tor all data samples analyzed. Listed below are

some specific conclusions derived from this thesis:

(1)

(2)

(3)

2 il

The graphical procedures for parameter determina-
tion described by Weibull and modified by Daniel
and Weil are not reproducible. The procedures
result in approximations of the material param-
eters. These approximations can ¢asily be re-
placed by parameter sets with egual failure pre-
diction ability.

The use of the above mentioned procedure does
provide a tair initial guces at a linear distri-
bution of parameter values from which, atter math-
ematical refinement, a bes*® set of values can be
isolated through the use of a mathematical fit
difference routine like the least square method.
The determination of the 0, paramecer is not math-
ematically possible when u best fit is desired.
The parameter must be determined through a trial
and error process in which o, is fixed and com-

binations of m and Uo are allowed to vary. Accu-

oL




(&)

(5)

rate fit becomes very sensitive to the g, param-
eter.

The overall analysis was found to be very sensi-
tive to data sample size. Large variations of
data points in any specific section of a distri-
bution was found to have significant effect on
all parameters. Random variations of a few data
points, however, have little impact »n m and Oy
but tend to affect To Addition or deletions of
data points from a distribution also tended to
alter the resulting best fit get of parameters at
the sample size being used in this thesis. The
linear representation of m and Uu._however, was
generally ingensitive to this. As a result of
this characterization, a minimum sample size
should be determinable for which fit error con-
vergence starts to occur.

Except for “ne N-degree tension and 90-degree
three-point loading data the Weibull equations
using a single set of material parameters were not
correlatable through the three loading conditions
studied for graphite-epoxy. Possible causes for
these results could be attributable to the rela-
tively small data samples used and possibly poor
90-degree tension data. However, the nature of

the discrepancies does not totally support this.
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(6)

(?)

(8)

(9)

A check of parameter sets other than those pro-
viding the best fit per g, was not accomplished
due to time constraints. It is conceivable that
a parameter set of poorer accuracy, not falling
on the linear m versus oy presentation exists
which would allow better correlation between sev-
eral failure modes.

The physical interpretation generally placed on
04 is felt not to exist. This is demonstrated by
the mathematical improvement which results in the
0-degree bending data when negative values of 9,
are used.

Using the three parameter form of the Weibull
2quation was found to provide better fit than the
two parame ter (Ou asgsumed zero) torm. For the
data used in this thesis, an assumption of 9, 0
would have resulted in a significantly increased
fit error.

There are a great number of limitations in the
uge of the Weibull equations. For the composite
studied and sample size used, the Weibull theory
is only useful if the parameters are derived based
on gpecific experimental data. Correlation was
establigshed between O-degree tension and bending
only after manipulation of the Weibull equation
based on the characteriastics of the available ex-

perimental data. Thus, the use of the Weibull
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(10)

equations does not lead to a reduction in test
requirements and the associated cost savings for
composite materials. From the available data
used in this study,it is appropriate to say that
the only true correlation may have between the
90-degree three-point loading and 90-degree bend-
ing without instrumented specimen data samples.
However, a more conclusive evidence could be de-
veloped with additional experimental information.
It is recommended that the experimental data es-
tablished in this study be extended with addi t-
lonal test data to investigate the variability
of the Weibull parameters as additional data ic

added. Care must however be taken to insure

specimen homogeneity in both geometry and material.

Once a substantial sample size has been obtained,
the error to parameter sensitivity can be investi-
gated by random deletions or additions of data

points within this sample.
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APPENDIX A

Three-Point Loading Equation Derivation

This appendix provides the detailed steps required to
obtain the form of the risk of rupture equation shown for

Equation (11).
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Starting with Equation (8)

o % h

B-&=| [ [ (FEx2-a)dv

0 %, '2u

x, = Suhl
where u 311;2“

and 1-4"66%—5‘
Integrating with respect to Y yields
Y "h
4 m i
B- & [ (1gxz-a"dxdz
'
Integrating with respect to X ylields

| (4G mai .
L2 (] (B2 X2 - &)
B Co Lu [ ?FI_CE.?_ (m.., })]

L/‘-

dﬁ
Z

X,

taking out the constants

Y2 m4| th
Bk | (18- @) g,

substituting the integration limits yields

B et [ £ (362 @)™' g5

Defining

[- [2(36z-0)™d;
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The integration of this integral is now addressed separa-

tely in the following manner.

Defining ¢ - (9A)
then
h/z | m+i
I‘ fzu‘f(cz'ﬁ) dZ (10A)

Integration of this term results in the following

hja / . hy
- ) (Mm=+1} Z |
Zu 1‘%*'5 jz.. z(CZ2-a)™ (114

Further integration of the resulting integral leads to a

I - L(.r_i%:’a;)m«

form which can be expressed in series notation

N h/
I- L—rﬁ}ﬁ’"""t-m'}+ o [ F (22 @)y,

re9
(124)
using the following definitions
mes=m:-+« (13A)
N+ m (144)

leads to the form defined in Equation (11)

% . o l-r “{l

(154)
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Substitution of this final expression for I into the risk

of rupture equation will result in the form of this equa-

tion shown in Equation (11).

LA -r . ek
. WE(Q'@ o e (&) () (L we

r«0
(16A)
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APPENDIX B

Experimental Data

This appendix provides a compilation of the experimen-

tal data gathered for this study.
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APPENDIX C

Data Plots
This appendix provides graphical data verifying the
linear relationship between the values of m and a, Also,

the validity of using the sum of the mean error technigue
for isolation of the best set of values can easily be geen

by plot comparisons of similar data.
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