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1. Introduction

- ~~
— -

~~~~ Reflection and transmission of electromagnetic waves at
>— boundaries between dielectric media, and reflect�.on at highly conduct—
0.. ing boundaries have been treated extensively in the literature for

A years. Usually approximations have been made to fit the special case
C_

~ 
under discussion. When dealing with good dielectrics, the conductivi-
ty is usually neglected and for highly conducting materials the die—
lectric constant is neglected. Almost always, the permeability is

— considered to be equal to that of free space, Between these limiting
~~~~~ LL... cases, there are a host of materials in which all three constitutive

parameters, permeability, permittivity, and conductivity should be

~~~~~
~~~~ 

The fact that any one or all three of these parameters can
— be complex generates the following interesting situation, Assume

= c ’—jc”, a = a ’—ja” and p = p ’—jp”, In a conducting medium the
apparent dielectric constant is c ,, = €—ja/w = (i ’—ci”/w)—j(e”-Ri’fw),(l)
where u~ = 2nf. Thus, If a ’ and a’~ are of the same sign as c ’ and c”,
the real part of dielectric constant appears to be decreased. Further,
Landau and Lifshitz1 have shown that p” and c” must always be positive,
but that there is no physical restriction on the sign of p ’ or ~~~

‘ , It
can also be shown that a’ must also always be positive by noting that
the total heat dissipated per unit time and volume, in a conducting

• medium is
Q = w/2 Ip hhi

~
2+ct

~~
2+ 2 

~ 2 I  (2)
where ~ indicates the time average of the fields. Hence, a’, p”, and
c” must all be positive to insure that the medium heats up rather than
cools. In this paper the following constitutive parameters will be
used.
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• Op
= u~ (ii —jp~) = p J p J e J (3)

c = £ (c —ja/uc ) = c Ic e3 (4)
T a r o o r

= e
o
c
r

_jt
~

flcS) (5)

Here p = 4iTxlO 7
H/m, and c (l/3671)xlO 9F/m in MKSQ dimensions and

units. The term tan t~ is t?ie loss tangent. The subscript r denotes
the dimensionless relative value. In many dielectric materials c and
tan ~ are well documented , but little is known about p” in magnetic
materials. The term c , where necessary, will be taken as
(e’ — a”/ue ) which ma~ mean that c can appear to be negative in some
ma€erials. This occurs in some mat~rials such as gold at infrared
wave lengths, as will be shown later. When C

r 
IS negative it is

usually not possible to determine whether c ’ or a”wc
0 
is the predomi-

nant factor.
Equations A(8) and A(9) in the appendix define the propaga-

tion constant in conducting media. Setting ~~~ 
= l+jO and a

n 
= 0 then

k = w2p c  = w2/c2 = ~ rad/m (6)

where a wavelength is defined as

X = 2ir /~ 2ir/k (7)

in which all quantities are real. If the medium is conducting and k
becomes complex, do we define X as 2IT/B , or as 2ir/k? In this paper
the latter definition is used which dictates that the wavelength (X),
index of refraction (n), and phase velocity of propagation (u0) must
all be complex quantities. Also, since A is complex, all distances
must be complex so that the total phase change along any path length
can be a real number of radians.

2. Weakly Conducting Dielectrics at Extremely Low Frequencies (ELF)
Although the title of this paper refers specifically to

conducting media it is necessary to begin with two semi—infinite non-
conducting dielectrics in contact in order to describe several inter-
esting angles of incidence as defined by Lytle and Lager2. To begin
with, a vertically polarized plane wave incident on the boundary
(Figure 5) between free space and a perfect dielectric is assumed.
When the medium of incidence (medium 1) is free space, there is an
angle of incidence (®~ ) such that total transmission into a medium
of refraction (medium 2) occurs, and the reflection coefficient
R~2 

= O(cqn.A(23)). This is tl~~ well known Brewster angle 0B which
occurs when:

?~ ( i 6  12 035
L ~ 
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= 0t2 
= ~~~ I c r2/ (c

r2
+ l ) I_ ½ ; C

rl
>C

rl~
C
rl 

= 1. (8)

When the situation is reversed such that the medium of in-
cidence (medium 1) has a large dielectric constant and the medium of
refraction is free space (medium 2), three more interesting angles of
incidence occur as pointed out by Lytle and Lager :

-l ½sin l/(c
l
-I-l) ; £~~~ = 1 (9)

at which total transmission into free space occurs (R~2 
= 0) and the

angle of transmission 
~
0t2~ 

is equal to the Brewster angle 
~°B~ 

above,

= sin
_l

( l/C rl ) ½; £ 2 = 1 (10)

called the critical angle, which occurs when the reflection coeff I—
cients for both vertical and horizontal polarization are both equal to
unity (i.e. R~2 

= R~2 
= 1), and

= sin~~ j (c 
1
+l)/(c21

+l)1½ ; £ 2 
= 1 (11)

called the “Devil” angle, which occurs when the reflection coefficient
is purely imaginary (i.e. R12 = —j). The name was coined by Lytle and
Lager because of their devilment at the unusual occurrences at this
angle.

This latter angle is treated , as example 1, in detail in
Figure 1 where the medium of incidence has constitutive parameters of
c 
1 

= 25, and a1 
= 0. The frequency (f) used in this example is one

H~rtz since this represents a frequency near the low end of the spect-
rum. However, the results here and in subsequent examples will be ob-
tained at any frequency provided the loss tangent (tan ~ = alwc ) Equ.
A(ll) remains constant as a function of frequency. The H—mode trans—
mission and reflection coefficients (T~2 

and R~ ) are calculated using
equations A(22) through A(25) in the appendix w~ere the “Devil” angle
of evidence is 11.7590. The E—mode coefficients are not calculated
since they are uniquely determined by equations A(26) through A(30).
The principle points of interest to be observed are as follows:

(a) The reflected H—field vector is equal in magnitude to
the incident field but lags the latter in time phase by 90°.

(b) The transmitted H—field is 1.414 times greater than
the incident field and lags the latter in time phase by 45

(c) The angle of refraction (0 2~ 
is a complex angle of

90°+j 11.07° which is quite contrary to what would be expected.
(d) The planes of constant phase and constant amplitude in

free space (medium 2) are not coincident. The constant phase plane is •

3

- - _- .
- ~~~~~~~~~~~ 
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perpendicular to the interface, while the constant amplitude is plane
• parallel to the interface.

(e) The incident angles O~ , 0 , and all occur within
the range of 0•l = ll°—12° such that 0 <~~ <®~ (Figure 3). For all
angles below tñe critical angle (O )t~e ~ransmitted H—field (H~2

) is
in phase with the incident H—field (H

~ 
). Between 0 and 0 the re-

flected H—field (H is out of time p~ase with the inciden~ field by
180 . r

(Note 1 — When the angle of ref’:action is complex , the planes of con-
stant phase and amplitude, in he medium of refraction (medium 2), are
not usually coincident. We avsume in all examples that they are coin—
cident in the medium of incidence (medium 1). The angle (i

~~
) of con-

stant phase plane can be calculated from

+ a
2
lcos

cos~~~= 2 2 ’ 
‘ 

(9)

I (~2Rcos + a2~~os) +(~2Rsin + a2lsin) I~
where cos O~~, = Rcos+jlcos, and sin 0~ , = Rsin+jlsin are the complex
cosine and sIne of the complex angle or refraction 

~
0
t2~

• The phase
constant (~ ) ,  and attenuation constant (a2) are defined by equationA(9). Simi~arly, the angle (0) of the constant amplitude plane in
medium 2 can be determined by

~ Icos — a Rcos
2 2 , (10)cos Ø 2 2 1

— ct~Rcos) +(82
Isin — a

2Rsin) ~

Both of these angles are measured from the plane of incidence (Figure
5) and can be considered as the refraction angles for constant phase
and constant amplitude propagation directions. The respective planes
are normal to these directions.)

When the two media are allowed to become weakly conducting,
as shown in Figure 2, the situation changes quite drastically. The
principal points to note are:

(a) The angle of refraction 
~
0t2~ 

has changed , but is still
complex. The real part of 0~~ still corresponds to the refraction
angle (~P) of constant phase planes.

(b) The reflected H—f ield0has decreased in magnitude andnow lags the Incident field by 153.4 in time phase. The transmitted
H—field has also decreased in magnitude but lags in time phase by only
30.2°. It should be ngted that if the conductivity of medium 1 is
increased (say a = 10 S/ni), the reflected field amplitude becomes
unity and lags by 180°. Hence the transmitted field becomes zero in
magnitude so that the boundary behaves like a near perfect magnetic
sheet reflector.
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3. Stron gly Conduc ting Media
Sea wa ter is a well known example of a strongly conducting

medium. Much interest has been shown in the reflection—transmission
coefficients when an electromagnetic wave is incident on the surface
of an ocean (medium 2) from air (medium 1). The constitutiv e para-
meters for both media at one Hertz and 10 GHz were estimated from an
extensive literature search and are shown in figure 4.

It comes as no surprise that sea water is a good reflector
of electromagnetic energy. However , it is not well known that the
refrac ted H—field (}1

t2
) is ngarly twice that of the Incident field for

angles of incidence up to 60 . The reason for this is that the m ci—
dent, reflected, and refrac ted B—fields are all in phase. This does
not mean that a lot of energy is refracted, however , since the re-
fracted E—fie].d amplitude is reduced by a fac tor of I~2/z1I which is

U
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of the order of 5x10 6 at one Hertz. This suggests that, if one de-
sired to communicate with a submerged submarine at one Hertz , an
H—field sensor, such as a magnetometer, may be more effective than an
E—field sensor such as a trailing wire antenna.

It is also interesting to note that the angle of refraction
is nearly 90 for both the constant phase and constant amplitude pro-
pagation at most angles of incidence at low frequencies, This is true
at all frequencies for the constant amplitude planes, hgwever at 10
GHz the constant phase plane angle of refraction is 5.6 . Thus, the
energy travels straight down in the sea water.

There is one exception to the fact that the reflection co-
efficient (R~2

) is nearly unity at all angles of incidence. This
exception is at an angle of incidence of 88 —89 , depending on fre-
quency, where a quasi—Brewster angle occurs such that the reflection
coefficient becomes quite small and the transmission is nearly unity.
This effect is more pronounced at the higher frequencies . 1

Figure 4 also shows that the skin depth(s), where H/H e
is 30 000 times greater at one Hertz than at 10 GHz, At fifty flertz
the skin depth(s) is 48.3 meters as compared to 341,7 m at one Hertz.

4. Layered Conducting and Permeable Media
The subject of multi—layered sandwiches is of extreme inter-

est in applications such as radar radomes, radar attenuating paints ,
radar attenuating aerosols, and electromagnetic wave shielding. Born
and Wolf 

~
; Cady, Karelitz , and Turner~ ; and others have treated this

subject in great detail. Born and Wolf, on the one hand , were primar-
ily interested in optics so several approximations were made. On the
other hand , Cady, et al. were interested in microwaves through good
dielectrics , so somewhat different approximations were made. Both
approaches to the problem involved chain matrix multiplication of a
succession of 2x2 matrices. If one follows this approach but makes no
approximations , a matrix equation such as equation A(36) results,
Using this, the reflection coefficient at the incident face of a multi-
layered sandwich and the transmission coefficient through the last
face can be calculated by virtue of equations A(37) through A(47) at
any angle of incidence. These equations are also applicable for any
value of p , and a providing c and a are real. The permeability
can be complexras indicated by equ~tions A (7) and A(8). The geometry
of a single layer sandwich is shown in figure 5. It is obvious how to
add additional layers up to m n—l where n is the number of faces.

Consider as the reflection coefficient of a radar attenuating
paint on aluminum for normal incidence at frequencies of 9 GHz, 10 GHz,
11 GHz, and 20 GHz. The constitutive parameters of the paint , used in
the problem, are shown in figure 6. It is not known whether such a
paint having these characteristics can be compounded , but , at least,
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here is one set of parameters which will produ ~e the results shown .
They were selected such that (

~r
/(E —jo/u )I — so that the

intrinsic impedance at normal iucide~ce an~
0f — 10 Hz matche s that

of air. The reflection coefficients, at normal incidence, are plot-
ted as a function of paint thickness. Note that at a thickness of
5.08 ~ n (0.02”), the magnitude of the reflection coefficient is 40 dB
below that of a perfect reflector at a frequency of 10 GHz.

:~ 
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V Now consider a thin sheet of iron , as an electromagnetic
shield at one KHz , as shown in figure 7. The most salient points to
note are as follows:

(a) The refracted B—field , at the incident face , is twice
the incident field as occurs in all highly conducting fields for the
same reasons stated earlier.

(b) The H-field exiting through the output face is negligi—



ble because the reflected field lags incident field by 180°. They
therefore cancel ~~~~ -h other at the output interface.

As a fin .. example con~ider a one meter thick aerosol be-
tween a radar, operating at 15 GHz, and an aircraft flying overhead .
The constitutive properties of this aerosol are-shown in figure 8.
It is not known whether such an aerosol could be compounded but the
principle is demonstrated that, with such an aerosol at an angle of
incidence of 60 , the overall transmission coefficient magnitude is
—28.1 dB per meter thickness. A signal reflected from the aircraft ,
upon returning to the radar would be subject to the same degree of
attenuation which could render an aircraft nearly undetectable.

5. Highly Conducting Media
In addition to the basic metals there are many highly con—

ducting materials such as graphite loaded epoxy and conducting poly-
mers. Little is known about their constitutive parameters so that
the equations included herein cannot be used to investigate various
practical examples. Examination of the published data on many materi-
als, however, leads one to suspect that conductivities become signifi-
cantly complex at far infrared frequencies. The complex index of re—
fraction of the basic metals are well documented so that this suspi-
cion can be verified and at least demonstrate that complex conductivi—
ties do indeed exist.

• We consider the case of gold which has a complex index of
refraction of n = n’—jn” = 25.2 —j55 .9 at A = 9.9 pm . Noting that
n = c/u (~ —j a )~ the propa gation constant (k = ~—ja) can be calculated
as k = 2•52xl0~

’ —j3.4lxlO’ at a frequency of 3.03xl013 Hertz. Find-
ing the square of k, where k2 = u2pc—jwpa , allows us to calculate a if
we assume values of unity for 

~r 
and C .  Thus

k2 = —5.31xl014—jl.7lSxlO’4 = P C  ~~~~~

from which a is determined as

a = a ’—ja” = 4.274x106—jl.605xl06

= 4.565xl06 1—0.359 rad S/rn

which is an order of magnitude smaller than the direct current value
of (a ~ 4xl0

7)S/m for gold.

6. Conclusions
Unfortunately , in a paper of this length, it is impossible

to include derivations of the equations used to make the calculations

r 
• 

V 
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of the quantities shown in the various figures. In fact , it is not
possible to show all of the quantities calculated on each figure.
However, the most significant quantities , which explain the strange
behaviors discussed , are included . Also all equations used are
included .

This by no means exhausts the subject of strange behaviors
under other circumstances. However, the author has found that when
all parameters are included , no matter how small, many surprises can
occur under the most ordinary of circumstances.
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Appendix
Mathematical Equations

Snell’s Laws

~~ 0~, cos8ri A (1)

- - 
k, ~~ = k2. sin e~2 A (2)

Fresnel ‘s Equations
T. E. mode (horizontal polarization)

2p2k1 cos e1 A (3)
112k, cos G, +~.z, (k~ - k~ sin e,)1’2 

-

— 
p2k, cos O~—j~, (k~-k~ sin2ø1)’ /2

E~= — a, A (4)
p2k, cos81+p, (k~-k~ sin 2 e1 )’” 2 

-

T. ~~~ mode (vertical polarization)

p- 2M,k~ cos e ~~~, A (5)

• 
1z,k~ cos81+p2k,(k~-k~ sin 2e,)’ 2

p1 k~ cosO1-i.i2k, k~-k~ sin
2 e1 ”2 

A (6)
p,k~ cose,+,.~2k,(k~—k~ sin

2 
~~1)” 2 I

The subscripts i, r, and t , denote incidence, reflection , and
transmission respectively. The numerical subscripts 1, 2, ——— , n
identify the medium in which the wave is traveling . Where the sub-
script r is used with the permitivity (c), and permeability (ji) it
denotes the relative value such that c C C , and p =p p where

a m o  n m o

C = —1— x l0~~ F/rn, and p 4ir x l0~~ H/rn in rationalized MKS units.° 36ii 0

The relative values are dimensionless. The conductivity (a ) has the
dimensions of Siemens/meter (S/rn). n

Horizontal polarization (T. E. mode) equations (3), and (4)
apply when the incident E—field is parallel to the boundary, as shown
in figure 1. For vertical polarization (T. M. mode), equations (5),
and (6) apply when the incident H—field is parallel to the boundary.
In these equations, the relative permeabilities are allowed to be
complex so that

/0

— . 
V V V -- .-  V —— — 
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= /A~7 /.L0 = I /ArnI ~~°~‘ J.1o A (7)

The square of the propagation constants which result from the wave
equations are

k~ = W 2 Pn Cn jW lmn cJn
A (8)

= ~~
2
~~~ c [ ~ (Ern

_
~~~~~~)]

where w = 2irf, and f is the frequency in Hertz. The propagation
constant is expressible as

k~ = L3n j O n 

V 

A (9)

where 
~~ 

is the phase constant in radians per meter , and rirl is the
attenuation constant in nepers per meter. The quantity C can be
complex as well, such that

Cm =
° A (10)

= krnI~~
j t

~~
1
~~ 

-

In this report the quantities in parentheses are treated as
one quantity attributable to a single equivalent conductivity. The

• loss tangent then is

antan~~=— A 11WET
where

= €o I€ m n I ( i_ ~ I I)  
A (12)

If Cm and tan f are known at a given frequency, the conductivity
can be calculated by

1
an = j~ fmIC m n I t a n 6 x l O 9 A ( 13)

where Is the reported frequency at which tan ~ was measured . Here,
an is calculated from the loss tangent at the nearest reported f me—
quency to the actual frequency of interest and then treated as a
constant value. 

•

/1
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From equations (3) and (4) the TE mode transmission (T) and
reflection (R) coefficients for a positive going wave can be ex-
pressed as

E~2 2
T~2 ==—  = ____ - A ( 14)

E•1 1+Y~2
and

R~2 = = ~~~~ A (15)

~~i 1  l~Y~2
so that

R~2 T~2 -1 A (16)

where the admittance is

= 
1 p,k~ L1~(k,fk2 sin O I I ) 2 ] 1 / 2 

A (17)
Z~2 p2k, cos O11

and ® il is the angle of incidence from med~um i on face 1—2. These
equations hold at any interface between two media for a positive
going incident wave which is from left to might in figure 1. For a
negative going incident wave, these equations become

TE 
2 A (l8)

2 1  — 

E12 l+Y2 1

and —

RE = 
E~ 

= 
1-Y,~~ A (19)

2 1  E12 1+Y~,

so that

R~, =T~, — 1 A (20)

where

yE _.L 
- ~~~~ 

[ 1 - (k 2I k , sin ® )21 1 / 2  
A (21)

2 1  — — 

~i 1 k2 cos ®~2

At successive boundaries , the subscripts change from 12 ~ v1 21 to 23
and 32 at face 23 as shown in figure 1.

/2.
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For the T. M. mode, similar equations result as follows.

2
T~’2 = = 

- 
A (2 2)

iT i~~~,H
‘r i  ‘- I

R’1
1
2 = = 

1 2  A (2 3)
H,1 l+Y’1

1
2

A (24)

H — — 
p2 k, [1— (k ,/k 2 ~~n e~,) 2 ]  1/2

Z,2 /L ,k2 cos8,,

Ti~ 2• T~1 = 
H 12 

= A (26)

H 
Hr 2 1 Y 2 1

R2, H12 
= A (27)

V 

R~, =T~, -l A (28)

y~ 1 = 
p1 k2 [l-(k2/k , Sifl e12)2 } 1/2  

A (29)
cos e,2

From these equations it is easily shown that

T~2 T~, ;T~ 1 T’~’2 ;R~2 R~’, and R~, ~ R’~2 
A (30)

If space 2 in figure 1 is a sheet between two semi—infinite
media, it is necessary to determine the phase shift and attenuation of
waves due to path length (12) in medium 2. A complex phase can be
defined as

Ø=k 212 —~ 212-ja212 A (31)

When the boundaries are plane and parallel 12 is related to the thick-
ness (t2) by

t 2
12 = sin 012 A ( 32)

I ‘.‘
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where sin 0t2 can be complex by Snell’s law (equation 2). Hence, 12
becomes a complex length . The complex impedance of the medium is

flZT I P r2 J ~~~~Z= 
~
I —  

~~~~~ - A (33)
y E T 2  Y C m 2  ~~~~

the velocity of propagation is

V p 2  = 
~~ P2 ET 2  = 

~ (I~r 2 I eJ°P)(cr 2 -j~~~~) A (34)

and the wavelength is - 
-

V p 2
A2 = - A (35)

We are now in such a position that we can calculate the trans-
mission and reflection coefficients at each interface and the phase
and attenuation in each space. Hence, the reflection and transmission
coefficient of a multi—layered sandwich can be calculated by using
successive (ABCD) matrix multiplication, as shown by Born and Wólfe~
by assuming a positive going electromagnetic wave to be incident on
the face of the sandwich and a negative going wave incident on the
opposite face. Then, the TM mode (vertical polarization) wave matrix
equation can be written for a multi—layer sandwich in matrix form as

• follows.

fti~1 1 1e3° —R~ 1 e~i2 I 2 C J a2 ’ 2
ig I ~ j irL n J  12 R’~2 T’j’2T~1— R ’j’2 R~’, o e °2 ’ 2 eH!~2 1 2

A
(36)

1 le~
0 —R~2 ~~~~~~~~~ ° 1

T~~ R~ 3 T~’3 T~’2—R ~’3 R~ 2 o e~~~3 l3 e J13 3 1
3]

. . . . 1 
lei0 RH

R~~ T~ m T~~n _R~ m R~~n Him 

;n m—1

_ _  

- •
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where l~ is the complex path length in the n—th space. All other
quantities have been defined above. For the TE mode (horizontal

polarization), T
~m~ 

T~~, R~~, R~~, coefficients can be obtained from

equation (30).

For a three—layer sandwich , this matrix in a short from is as
follows

1 

[
~~

1
[gj = 

flT~ m 
[aJH [bJH [cJH [dJH [e]H [IJ H [gJH Him]

A (37)
1 

[hi h2

] [~utm 1
11TH h h4 HimJn m  3

• Setting H . - = 0, thenim

R~~~~ h~ A (38)
l m R  h’1’

and

T” 
Htm flT~m A (39)im —

Additional layers can be added as desired with appropriate symbols
for the overall (h) matrix. The E—mode (horizontal polarization)
coeff ic ients can be calculated likewise by substituting the TE, RE,
quantities for the T1~, R’~, quantities in (36). Then,
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