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INTRODUCTION: Opti cal tracking has been a mainstay of accu-
rate metri c range instrumentation since the first testing of modern
rocketry. The accuracies that were possible from optical instruments
exceeded those from other available instruments . Impro vements in en-
coders, optical testing, modelling of the atmosphere, and optical design

• continuously improved the accuracies of optical instruments . The major
drawback is the required film processing which delayed the delivery of

~~ 
boresight corrected optical data .

~Recent changes in technology have created the potential forc... relieving part of the delay in data delivery . Automati c tracking
methods using high-speed microprocessors , artificial intel ligence , and

u_i pattern recognition techniques , together wi th special modi fications to
.__J . the existing optical systems, are now avai lable to perform most of the

~~ 
j film reading function in an on-line , real-time mode . These methods far

exceed the conventional contrast, edge , and correlation trackers in
C.., sophisti cati on and capability , since they are based upon an understand-

~~~ ing of some definable properties of the image involving many parameters

~~ 
as compared to only a few.

THE INTELLIGENCE OF OBJEC T IDENTIFICATION : Pattern recogni-
tl•on is a mathematical science based upoii the separation of a parameter
space into two or more regions, so that when the parameter is measured
It may be classifi ed as belon ging to one of the appropri ate regions.
It follows that a vector parameter will give rise to a parameter space

• of djmensionality equal to the number of independent elements in the
vector. Thus , for an N-vector , the required separation is a hyperplane
In N space. If the parameter is a si ngle elemen t vector, •an assignment
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•can be t’3de on the basis of a single threshold on the real numbers , and
a tracker can be bu i l t that uses thi s deci sion rul e. An examp le we call
a contrast tracker uses a threshold on bri ghtness for the assignment.
A preprocessing algori thm may be placed before the decision . If we pre-
process for the magnitude of change in intensity , the same thresholdi nq
rule will yield an edge tracker. These are amongst the simplest appli-
cations of pattern recognition to the object identifi cation problem.
Since these algorithms are easi ly confused , many spurious objects in the
field of view (FOV) often meet the classifi cation cri teria.

A somewhat different approach that uses an array of points and
measures the cl oseness of fit to a subsequently measured similar array ,

S while choosi ng the best ma tch as the correct locati on , is generally
known as a correlation tracker. The decision is again based upon a sin-
gle element parameter vector (the closeness of fit), but the preprocess-
ing of data is much more elaborate . While this approach offers an

• improvement in confidence that the correct object has been located if
the object description is known , it suffers from two principal problems .
The first is that generally the object being tracked changes appearance
continually while objects in the background may not. This requires an
adaptive object description which may slowly converge to the acceptance
of an undesired object as the desired one. The second problem is that
this approach requires a very large amount of processi ng to do a good
job, since the optimal linear process would be a convolution of the NxM

- object description array over the PxQ array of data points, and gener-
ally P>>N , Q>>M. A commonly used simplificati on is an additive (sub-
tractive) algori thm that seeks the best fit of the desired array to the
data , instead of the convolution . This approach necessarily results in
loss of tracker performance. For these reasons , the correlation track-
ing method is generally limi ted to very restricted window tracking and
fairly slow update rates.

Approaches to real-time opti cal tracki ng have generally been
limi ted to these approaches for the followi ng principal reasons. The
first and most important has been the magnitude of the real-time proc-
essing requirement for the more elaborate approaches , which have exceed-
ed computational resources generall y available. The second has been a
lack of image understandin g that would allow the formulation of more
reliable, yet simple , approaches . Substantial progress has recently
been made in the former, and there are many encouragi ng new developments
in the latter.

A variety of methods of image data processing have become
known over the past decade . App l ications-oriented research at the US
Army Whi te Sands Mis.sile Range (WSMR) has lead recently to a system of
reasonably high sophisti cation using concepts developed in-house and
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through sponsored research to solve complex i dentifi cation and track-
ing problems. WSMR has concentrated on objects in the visible spectrum
and in real—time . Many other systems , not necessarily real—ti me , have
been developed for applications in medi cine, meteorology , and space
research.

Many of the newer methods invol ve the use of many elements in
the parameter vector to glean more information from the data. In apply-
ing pattern recognition methods to the object identi fication problem ,
the engineer is trying to minimize the amount of data he must handle and
maximi ze his confidence that he made the correct decision. Any linear
process will preserve the quanti ty of data (260,000 points for a 5l2x5l2
image , possibly 8 bits per point) which is obviously not des i rable if
much processing is required to make a decision . The engineer is forced
to require a hig h degree of parall el processing on linear processes , and
to perform nonlinear operations to reduce the data quanti ty prior to
determining the values of the parameter elements used in the decision
rule. Ideal ly, the dimensiona lity of the decision space should be kept
reasonably small to allow decisions to be made in real-time or in near
real- time.

Some of the preprocessi ng methods currently in use are :

Filtering : Filt.ering operations generally involve the con-
volutlon of a point spread function array with the image to achieve some
desired objective wi th the image. Examp les include removing spatially

-• invariant degradations due to the opti cs of the atmosphere , boosting the
high frequency content of the image to enhance edges , removing noise in
the image, making the image more pleasing to the eye, and other such 

-

operations . Generally those operations which remove degradations are
called estimation and those wh ich emphasize certain spatial frequencies
or certain aspects of the image are called enhancement. It must be
noted that enhancement is an intentionally introduced distortion to pro-
duce some desired effect.

Transforms: Operations that map the image into a new domain
are called transforms. The el ements in the new domai n are a measure of
some property of the original image. The most common example is the
discrete Fourier transform (OFT), especiall y in the fast algori thms
(FFT). The DFT i denti fies the spatial frequency content of the image ,
which allows further processing based upon these components. A class
of binary Fourier (BIFORE ) transforms has been developed over the past
decade which are similar to the OFT but are more suited to compute r
applications . These might be called lesser transforms since they do
not represent the information in the image as completely. Because they

• are much more effi ci ently run on a computer than the DET, they have

L •_ S __ ••__~_ _ . L _ _ ~~~~~~~~~~~~~~~ 5• —-
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Important applications in image transformations. Among these lesser
transforms are the now popular Hadamard transform based upon Walsh func-
tions , and the less known but simple Haar transform. These transforms
can be useful for i dentifying features of interest in the image. It is
necessary, of course, to apply all of these transforms in a two-dimen-
sional algorithm to process the two-dimensional images .

Point Processing : In point processing , indi vi dual points in
the image are assigned new values based upon some assignment rule. This
may take a variety of forms wi th a large variation in apparent results .
One point processing algori thm averages the corresponding point of sev-
eral frames or sequential images to produce a weighted composite and
remove transient degradations. Anothe r assigns all values above a given
threshold to 1 and all values below to 0. This is known as threshold-
ing. A variation on thresholdin g is to assign predetermined gray levels
to 1 even though these may not be ~n a continuous range. Still another
algorithm, known as contrast stretching, assigns all values below some
Intensity 10 to 0; all values above another intensity I~ to the maximumgray level , say 256; and stretches the intermediate values to occupy the
full range. Generally, point processing methods are nonlinear, yielding
fewer bi ts in the output than in the data array .

The next step in the process is to identi fy the values of the
elements in the parameter vector . These elements may include such

fr ~ 
things as size , orientation , number of corners , bri ghtness , etc. When
joined in a single parameter vector , they descri be all we think we need
.to know to adequately describe the object for purposes of identi fication.

A REAL—TIME TRACKING SYSTEM: By using the above concepts to-
gether wi th high-speed microprocessors and special optics , a real- time
tracking system may be devised that demonstrates a substantial advantage
over the contrast, edge, and correlation trackc”s currently on the mar-
ket. The greatest challenge is that of doing “intelli gent” p rocess i ng
of video data at the extremely high data rates of standard TV.

The development of an intelligent real-ti me video (RTV) track-
ing system has been accomplished through the cooperative efforts of
research and devel opment personnel at WSMR , New Mexi co State Univers i ty
(NMSU), and the Optical Sciences Center of the Univers i ty of Ari zona.
The prototype RTV processor is bei ng assembled at NMSU , the automati c
zoom lens and image rotator at the Universit y of Arizona , and the system
Interfaces at WSMR. The system components wi ll be integrated and the
system deployed early in fiscal year 1979 as an add-on modification to
the Contraves Model F cinetheodol ite at WSMR.

Figure 1 is a block diagram of the RTV tracking system which
shows the RTV processor as the central element. The RTV processor

- 
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recei ves standard composite video from a television camera , locates the
target image , and provides contro l signals which drive the zoom and
Image rotation elements and point the Contraves tracking optics at the
target. it also provides boresight correction signals and target atti-
tude angles which are recorded into the verti cal retrace period of the
video tape used to record the tracking sequence .

The RTV processor consists of a distributive array of five
processors, shown in Figure 1. The video processor synchronizes and
digitizes the video signal from the TV camera , performs a statisti cal
analysis of the digitized image, and separates the target images from
the background. The projecti on processor accumulates binary projections
of the target and plume images and establishes the structural pararneters
which locate and describe the shape of the target and plume images. The
tracker processor establishes a structural confidence in the data and
Implements an intelligent tracking strategy . The control processor

• utilizes the structural confidence to combine current target coordinates
with previ ous target coordinates to orient the optics toward the next
expected target position , forming a fully automati c system. The input!
output (I/O ) processor provi des a user interface to the tracking proc-
essors and is responsible for recording the tracking data wi th a video
tape recorder.

A Research Oriented Processor Configuration: Four of the five
distributive processors (excluding the I/O processor) which comprise the

~~ 
~~~~ RTV processor are high-speed microprogrammable processors , each of ~4hich

requires a stored mi croprogram to contro l its designated tracking func-
tion. To provide a powerful tool for future research in video tracking
algorithms and to facilitate operational testing of the RTV system , the
control store of each processor is realized wi th a read/wri te random
access memory.

These four distribu ti ve processors are bei ng bu i l t with a
standard microprogrammable processor architecture to simplify the
development and maintenance of the RTV tracking system. This standard
architecture has been designed , built , and tested at NMSU . Based on the
new Texas Instruments (TI) 74S481 Schottky processor chip, it provides
a mi croinstructi on cycle time of under 200 nanoseconds wi th sufficient
computational power to implement the required RTV tracking algorithms .
The standard architecture requires several LSI chips which may be parti-
tioned into contro l and processing sections . Overlapping the execution
of one mi croinstruction wi th the fetch of the next one allows the proc-
essor to achieve a minimu m microinstruction cycle time equal to the
larger of either the fetch time or the execution ti me , significantl y
increasing the speed of the processor.

_ _ _ _ _ _  
_ J
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The four high -speed processors included in the RTV tracking
loop are described in some detail in the followi ng paragraphs . In each
case, the processor is built around the standard architecture outlined
above . Some specialized hardware is added to the standard configuration
in each case to accommodate the specifi c functions of the individual
processors .

The Video Processor: The video processor decomposes each
video field into target , plume , and background pixels at the standard
video rate of 60 fields per second. As the TV camera scans the scene ,
the video intensity is digitized at m equally spaced points across each
horizontal scan line. A resolution of m = 512 pixels per line results
in a pixel rate of 96 nanoseconds per pixel . Within 96 nanoseconds , a
pixel intensity is digitized and quanti zed into 8 bits (256 gray levels) ,
counted into one of six 256-level histogram memories , and then converted
by a decision memory to a 2-bi t code indicating its classifi cation (tar-
get , pl ume , or background). The 2-bi t classification code is passed to
the projection processor via the tar get data (TO ) and projection data
(PD) lines . TD is high for target points ; PD is high for plume points .

The basic assumption of the image decomposition method is that
the target image has some video intensities not contai ned in the irnedi-
ate background. A tracki ng wi ndow is placed about the target image, as
shown in Figure 2 , to sample the background intensities immediately
adjacent to the target image. The window frame is parti tioned into two
regions , B and P. Region B is used to provide a sample of the back-
ground intensiti es , and region P is used to sample the plume intensities
when a plume is present . Usin g th e sampled intensities , a very simple
decision rule is used to classify the pixels in region I as follows :

Background points--Al l pixels in region T with intensiti es
found in region B are classified as background points .

• Plume points--Al l pixels in region I wi th intensities found
in region P , but not found in region B , are classif ied as
pl ume points . 

-

• Target points --All  pixels in region I wi th intensitie s not
found in either region B or P are classi f ied as target
points .

A tracking wi ndow placed about the ta rget image provides a
method for sampling the pixel features associated wi th the target and
background images . The background sample should be taken relatively
close to the target image , and it must be of sufficient size to accu-
rately characterize ‘the background Intensity distribution in the vicini-
ty of the target. The tracking wi ndow also serves as a bandpass fi lter

L~~ - ~~~~~~~~~~~~ S~~~ 
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4 T

FIGURE 2. TRACKING WINDOW

by restricting the target search region to the immediate vicinity of the
target. Although one tracking window is sati s factory for tracking mi s-
s u e targets with plumes , two windows provide additional reliabilit y and
flexibility for independently tracking a target and plume , or two tar-
gets. Having two independent wi ndows allows each to be optimally con-
figured and provides reliable tracking when ei ther window can track.

The Projection Processor: The projection processor consists
of a projection accumulation memory (PAM ) and a standard processor which
are designed to form proj ections of simultaneous target and plume win-
dows and to compute structural parameters from the proj ections. The
pixel data from each tracking window enters the PAM in real-ti me as a
synchronized serial stream on lines TO and PD. As the classi f ied pixel
data is received , the PAM accumulates the projection data while the
processor monitors the y-proje ctions , accu mulates the total number of
target and plume points , and determines the midpoi nt s used to split the
x— projections. Each x-proje ction is split to allow the computation of
target and plume attitude angles based on the locations of the median
centers •of the x- and y- projections of the top half and bottom half of
the target and plume images .

j
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During the vertical retrace interval , the projection processor
‘divi des each projection into eight segments of equal mass using a simple
algorithm to sequentially address each line of the projection and multi-
ply the number of pixels in the line by eight. If the result exceeds
the total number of pi xels in the projection , a flag is sent to the PAM
forcing the next line to be placed at the beginning of the next 1/8 seg-
ment of the projecti on. If the result is less than the total number of
pixels in the projection , additional lines of pixels are accu mulated
until the line containing the 1/8 percentile point is located.

The 1/8 percentile points for each of the six projections are
computed within 410 usec of the ve rti cal retrace period and then passed
to the communication memory along wi th the total number of target and
plume points . These parameters constitute the structura l parameters
used by the tracker processor to define an intelligent tracking strategy.
Figure 3 illustrates the accumulation of the proj ections and the compu-
tation of the percentile points and , for simplicity , omi ts the splitting
of the x-proj ection.

Tracker Processor: The tracker processor receives the struc-
tural parameters from the proj ection processor , locates and character-
izes the structure of the target and plume images , and decides on a
tracking strategy to maintain track. It then outputs control signals to
place the window frames in the video processor and outputs target loca-
tion and orientation data to the control processor along wi th a confi-
dence in the measured data . Since it operates on the projection data
from field n while the projections for the next field (n+l) are being
accumulated , the tracker processor is always one field behind the video
and projecti on processors. The tracker and contro l processors must both
finish their calculations before the vertica l retrace interval begins
for field n+l. This constraint requires the tracker processo r to output
its data to the control processor wi thin 7 milliseconds after it receives
the projection data.

Since the tracker processor is the only processor that corn-
municates wi th all of the other three processors , each of which has its
own coordinate sys tem, the tracker processor must interpret the input
data intelligently and then output the appropriate data to the video and
control processors in their respecti ve coordinate systems . The inputs
are positi ve 16-bit integers defined for a coordinate system whose o n -
gin is the fi rst pixel scanned inside the appropri a te trackin g window .
The outputs to the video processor are 9-bit pos itive integers defined
for a coordinate system whos e origin is the fi rs t pixel scanned wi thin
the FOV . The 16-bi t outputs to the contro l processor are defined for a
coordinate system whose origin is the boresight.

5 5 5- 5-~~~~S- -  - S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -~~~
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FIGURE 3
PROJECTIONS AND PERCENTILE POINTS

An overall view of the functions of the tracker processor is
given in Figure 4. It has two modes of operation , the initial acquisi-
tion mode and the autotrack mode. The initial acquisition mode is used
when the RTV sys tem is trying to lock onto the target of interest. Dur-
ing this mode , the video processor does little or no learning on the
target and plume intensities. The tracker processor wi l l  not instruct
the control processor to begin predicting the target location unti l it
Is sure of the existence of at least the plume wi thin the-plume window.
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FIGURE 4. TRACKER PROCESSOR FUNCTIONS

When the plume image moves into an appropri ate region of the FOV , the
tracker processor wil l  notify both the video processor and the contro l
processor wi th a flag indicating that it is now ready to shift into the
autotrack mode.

The autotrack algorithm is divided into the four main modules
shown in Figure 4. The data conversion module transform s the projection
input data into physical variables ; such as , target and plume size ,
position , and shape. These vari ables are then combined wi th previous
target activi ty data from the history update module to obtain addi tional
variables ; such as , the changes in target and plume position and size .
All of these variables are compared with preassigned reference constants
to obtain a set of binary inputs wh ich are used di rectly by the state
interpretation module to define the current tracking situation and pro-
duce an optimum tracking strategy. The strategy is implemented by the
output computation module in the form of contro l signals to the video
and con trol p rocessors .

The Control Processor: The function of the control processor
is to generate the four contro l signals that drive the real-tir~e video
tracker; i.e., the tracker azimuth A 1 and elevation E~ which are sent to
the RTV—Contraves sys tem Interface and the opti cs rotation 

~~ j  
and zoom

Z1 wh i ch are sen t to the RTV-zoom/rotation interface (Figure 1). In
addition, the control processor outputs the following tracking data to

, - 
_ _ _ _
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the 1/0 processor after each field so they can be recorded in the verti-
cal retrace period of the video tape : field count , tracker s tatus ,
time , x-displacement from boresi ght , y-displacement from boresight , tan-
gent of the target orientation angle from vertical boresight , target
azimuth , target elevation , tracker azimuth , tracker elevation , image
rotation angle , and zoom ratio.

The tracking opti cs feeds the target image to the video proc-
essor portion of the RTV processor (Figure 1) which establishes the tar-
get coordinates wi th respect to the optics boresight. The control
processor combines current target coordinates wi th previous tar-get coor-
dinates to point the optics toward the next expected target position.
The predicted control equations are based on the combination of linear
and quadratic opti cal estimates taken from a five- deep history stack.
Since the input data is derived from field (K —l ) ,  and the estimates are
being computed during field K , the contro l estimates must predict ahead
two time increments to provide control signals which wil l place the
boresight at the correct pos ition during frame K+l.

COMPUTER SIMULATION OF THE REAL-TIME V IDEO TRACKER. A co~’pu-
ter simulation of the RTV tracking system , incorporating the algorithms
used in the contro l stores of the four distribut ive processors , has been
developed and implemented on the PDP 11/35 system at WSMR . The purpose
of this simulation is to provide a method for test ing new design con-
cepts and evaluating the RTV tracking sys tem under realist ic tracking
conditions. The simulati on model includes dynami c mode 1s for the target
trajectory and the Contraves Mode l F cinetheodolite tracking system , in
addition to the RTV processor algorithms , for simulating the comp lete
tracking sys tem. The recent development of an image processing labora-
tory at WSMR has enabled research personnel to digit ize sequential video
fields of typical tracking imagery . These fields of digitized video are
now being used in the RTV simulation and in the development of improved
image segmentation and structura l analysis algori thms .

The RTV simulation is being used as a research tool at WSMR.
It is especially effective in evaluatin g the RTV system performance and
in identi fying and seekin g solutions to real-time tracking problems
before the RTV tracking system is dep loyed. With the added capability
of using digitized video from a variety of trackin g sequences as inputs
to the video processor , the simulation can now test the sys tem perform-
ance under a variety of tracking condi tions , thus allowi ng thorough
evaluati on and possible refinement of the tracking and processin g algo-
ri thms and the state transitions of the tracker processor.

CONCLUSiON; RTV tracking is not new , but recent developments
have added new capabilit ies that enhance the advanta ges of these sys-
tems. Video tracking offers some distinct advantages over electronic

‘ - -5 - --  — -- 5- j - - -.  -5- - -,  - -—5
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tracking (such as ECM immunity), but su ffers from some di sa dvan tages as
well (such as restrictions in visibility). Several other aspects cf
system development for RTV tracking are discussed in the papers and
reports listed in the bibliograp hy.

A continuing research need exists for better understanding of
imagery. A human incorporates many elements into the parameter vector
that he uses to identify an object. The difficul ty of understanding the
human visual process has caused rather slow progress in teaching cornpu-
ters to “see. ° We know that the human uses such things as texture , ori-
entation , color , si ze , shading , shape , context, etc. to i dentify objects .
Parameter vectors which incorporate these elements are di ff icult to
quantify. It is not necessary , however , to require the computer to see
the same things a human does. It is diffi cul t to visualize elements of
parameter vectors tha t do not have a physical meaning to a human , but
which may be useful for computer recognition processes . Much work re-

- . mains to be done to produce a highl y sophisti cated sight process in a
computer.

The concepts described in this paper have, however , been test-
ed and will result in a prototype system deployed in 1979. Through a
process of simulation and breadboard verifi cation , WSMR has de term ined
that such a system is well wi thin the current capabilit ies of technolo-
gy. A great deal of national (and some international ) attention has
been focused on this proj ect because of the unique applications of pat—
tern recogniti on in a tracking situation.
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