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This report describes a doubly asymptotic (DA), boundary-element (BE) treat-
ment of a surrounding soil medium that offers considerable promise for
dynamic soil-structure interaction analysis. The soil-structure interaction
is reduced to a surface relationship that is asymptotically exact at both
high and low frequencies. Governing equations for linear problems are
developed in matrix form for application to complex structures. Numerical
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SUMMARY

This report describes a doubly-asymptotic (DA), boundary-element (BE) treatment of
a surrounding soil medium that offers considerable promise for dynamic soil-structure
é interaction analysis. The soil-structure interaction is reduced to a surface relation-
| ship that is asymptotically exact at both high and low frequencies. Governing equations
for linear problems are developed in matrix form for application to complex structures.
Numerical results are presented for a two-dimensional problem for which analytical solu-
tions have appeared in the literature. Good agreement between the DA/BE and analytical

results is observed.
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SECTION I
INTRODUCTION

The treatment of soil-structure interaction is of considerable importance in analy-
ses of the integrity of structures in ground-shock environments. There are currently
three basic approaches to the linear treatment of this problem: analytical, lumped-
element, and finite-element. Analytical approaches are restricted to very simple geo-
metries; hence, the results are useful for providing insight into the physics of the
problem, but the extension to complex geometries is difficult. The lumped-element ap-
proach, in which the soil characteristics are represented by discrete masses, springs
and dashpots, is economical, but the representation of actual soil behavior is crude.
The finite-element (FE) approach can model the problem to almost any accuracy desired,
but the large number of elements required precludes efficient computation. An approach
to achieve a more versatile and more economical method for the treatment of these prob-
lems would combine the best features of the different techniques. Such an approach is
pursued in this study: an analytical approximation of the soil-structure interaction
is combined with the modeling capabilities of the FE method, while avoiding the burden

of many elements in the soil.

This report examines a boundary-element (BE) treatment of the surrounding soil that
offers considerable promise for complex soil-structure dynamic analysis. The structure
is modeled through the use of an available FE code, and the soil-structure interaction
is reduced to a surface relationship through the use of a doﬁbly asymptotic approxima-
tion (DAA) [1], which requires the application of BE techniques [2]. The present study
focuses on the two-dimensional plane-strain response of structures surrounded gy an in-

finite elastic medium; the extension to more general problems is discussed.

The report first addresses the development of the method: the matrix equation of
motion for a structure embedded in an elastic medium is given, the doubly asymptotic
surface relationship is presented, and the response equation for the embedded structure
is synthesized. Then the solution procedure is discussed, and three numerical examples

are considered that illustrate the validity and accuracy of the approach.
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SECTION II
GOVERNING EQUATIONS

In this section, governing equations for a finite-element (FE) model of a structure
and a boundary-element (BE) formulation of a first-order doubly asymptotic approximation
(DAA) for the soil-structure interaction are provided. These equations are then com-
bined to form the response equation for the embedded structure. Finally, computational

procedures for the solution of the response equation are discussed.
2.1 STRUCTURAL MODEL

The matrix FE equation of motion for a linear structure embedded in an elastic med-

ium through which an incident disturbance propagates is

B GHE § =~ +5) e

s
whereﬂS and 55 are the mass and stiffness matrices for the structure, q is the struc-

tural displacement vector, f_ and fq are surface-force vectors associated with the in-

1]
cident and scattered waves, respectively, and a dot denotes temporal differentiation.
The mass and stiffness matrices are easily obtained from any available FE code. The
applied load is considered separable into an incident-wave force that would exist if the
structure were absent (hence a known quantity), and a scattered-wave force due to the
presence of the structure. The scattered-wave force constitutes a troublesome unknown;

hence an approximation is introduced for its evaluation.
2.2 DOUBLY ASYMPTOTIC APPROXIMATION

A first-order DAA is introduced to evaluate the scattered-wave force £S [1]. This
approximation is a surface interaction approximation, replacing the infinite volume of

external medium by a surface coincident with the external surface of the structure.

The approximation is

previously developed

The development

asymptotically valid at both high and low frequencies, as are the

approximations for fluid-structure interaction [3,4,5].

of a first-order DAA for linear soil-structure interaction proceeds

as follows. At high frequencies, each surface element of the discretized structure acts
as an infinite flat plate radiating plane waves into the medium. This can be visualized
by considering that, for a fixed surface-vibration pattern oscillating at high frequen-
cies, the characteristic propagation wave lengths in the medium are short compared with
the characteristic wavelength of the surface-vibration pattern. For normal and tangen-
tial motions of the ith surface element, this model yields as scattered-wavesurface forces

ggi = pcyay ﬁ?

t s K

gSi ey 4 Cs ag ui (2)
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where p is the mass density of the medium, a; is the sur{ ' e area of the element, Cd and

¢ are the sound speeds for dilatational and shear waves in the medium, respectively, and
s

o s B . s

u? and u, are the normal and tangential scattered velocities at the surface of the ele-

ment; see, e.g., [6]. For an assemblage of elements, (2) lead to the matrix relation

o = p Q.\c'm gé (3)

where A is a diagonal element-area matrix,,gm is a diagonal sound-speed matrix for the

-

medium, and gs is the computational scattered-velocity vector for the surface elements
expressed in local coordinates. Upon assembly, the local coordinates in (3) are trans-

formed to the global coordinates for the problem as

(4)

4, = EBu,

From (3), it is clear that the external medium appears to the structure as an added dam-

per in the high-frequency limit.

Low-frequency behavior of the medium is described by the quasi-static surface rela-
tion

B = By, (5)

in which Em is a surface stiffness matrix for the medium. In this limit, the external
medium appears to the structure as an added stiffness embodied in Em' The construction

of Kn is discussed in Section 2.4.
25

To construct the first-order DAA, (3) and (5) are added to obtain

& pug RICLNE N
e R

55 ; g T Em g (6)

=S

where the transformation of (3) as Bg = CTgé results from (4) and the fact that virtual
work must be independent of the coordinate system used, i.e., (SE)T g = (SB‘)'S‘.

It is easy to see the doubly asymptotic nature of the surface approximation. At low
frequencies, the velocity vector is small relative to the displacement vector, so that
the scattered force is essentially given by the static stiffness relationship; at high
frequencies, the reverse is true, so that the scattered force is essentially given by
the radiation damping relationship. In the intermediate frequency range, the DAA is, of
course, in error:; the purpose of the numerical results presented herein is to indicate
the magnitude of that error. If numerical calculations demonstrate the need for an im-
proved approximation, one may be derived; for fluid-structure interaction, an improved

DAA has been developed that substantially outperforms the original [5].




2.3 RESPONSE EQUATION

In linear problems, not only is the surface-force vector separable into incident-

wave and scattered-wave components [see (1)], but the surface displacement vector u is

also separable such that u = uy

doubly-asymptotic response equation for the embedded structure

» PR . T i i
+ oD 6 3 + (K + DK = + 5 T ¥
Ma+GACGDq+ (K +DKDg Ly *PDECACCD D

fdp )

where u and £S :

tural degrees of freedom that define the soil-structure interface.

T
are readily provided by an FE structural analysis code, DTQ A CmG

£I and u, are known, and Em is determined through the application

equation techniques as now described.

2.4 MEDIUM STIFFNESS MATRIX

The basic boundary-integral equation in two dimensions is [2]

o Ug- Hence (1) and (6) may be combined to give the

+ DTK

17 ~ <1 @)

have been transformed as u = D q and fg =D &g i.e., D selects the struc-

7 M K
In ()'”s amiNS
D is easily computed,

of boundary-integral-

L u(@) + fr“(mo) «*(Q dL@Q) = /u”(r,m %) dL(Q) 8)

L It

: k k : :
where P and Q are surface points, u and t are surface displacements and tractions,

£ )4 J
respectively, Tk and Uk are Creen's functions for the boundary,

and k = 1,2 and £ =

1,2 are the Cartesian coordinate indices. Through division of the structure's {(two-

dimensional) external surface into a series of boundary elements,

in matrix notation as
Su = K E

in which the 2 x 2 elements of § and F are given by

k2 1

Q ’
R TR B ol
ij ij k& i

Lj

gt B &, dL
ij =i A5

J

S

where Sij and Sk?

0

(8) mav be expressed

(9)

(10)

2
are Kronecker deltas, i and j are boundarv-element indices, Ej and

¢. are assumed BE shape-functions, and Li is the length of the jth boundary element. For
J

i ’ ek PR ote given by [2,7)
the two-dimensional plane-strain case, the kernels Ti] and Lij are given by s

(% ar
U 3 1] & [
= —— - + p -
By R, [ali Cpn Ca * 2 Ty 0 Tyt G By Tyg et rij,k)]
)
e = ) -
Uij £y Onp Cg 0 Tyg = Ty & Ty, Mg




where Cl’ CZ’ C3 and C4 are material constants, rij is the distance from a node point
on the ith element to the variable (field) point of integration onthe jth element, n,
is the unit normal to the surface of the jth element, n? is the cosine of the angle g
between nj and the kth Cartesian direction, and a subscript following a comma repre-
sents spatial differentiation with respect to the indicated Cartesian coordinate at
point j. In the present implementation, the displacement and traction shape-functions
£
J

from under the integral signs in (10). The numerical techniques used to evaluate the

and C? are assumed to be constant over the jth element, so they may be brought out

integrals in (10) are discussed in the appendix.

Once the matrices in (9) have been generated, it is a simple matter to obtain the

medium stiffness matrix; because F is nonsingular, it can be factored to obtain

£=F_182=Ku ; (12)

~ ~

As the preceding development 1is not based on variational principles, the derived
stiffness matrix may not be symmetric; therefore,gm is symmetrized before it is used in

(7).

The brevity of the preceding BE formulation is appropriate, in view of the exten-
sive coverage of the subject provided in [2]. The emphasis here has been on the spe-
cific approach of this study; it has been found to be most economical, especially the
use of numerical integration to evaluate the matrix elements defined in (10). The appar-
ently new technique of using boundary integral equations to define a medium stiffness
matrix is valuable, in that it facilitates the use of the form (12). This form is
required for an efficient marriage of an FE structural model and a BE soil model. There
are also improved forms of the BE method available that utilize higher order shape-func-
tions to describe boundary displacements and tractions, as well as sophisticated isopara-
metric-element representations; these procedures are reviewed by Cruse [8]. The simple
approach used in this study is, however, adequate for the purposes of the present investi-
gation. If software were to be constructed for production analysis, the incorporation of

refined BE techniques would be appropriate.
2.5 SOLUTION PROCEDURE

The doubly asymptotic response equation for the embedded structure, (7), has the
form of the standard matrix equation of structural dynamics; hence, the solution of (7)
may be accomplished with well-established techniques. For the linear response problems
considered here, the integration of (7) is performed in accordance with the trapezoidal
rule [9]. The equation solver used with the time integrator is the skyline format pro-

cedure of Felippa [10].




A study of (7) on a term-by-term basis is informative. The mass matrix produced
by REXBAT [11], the structural finite-element code used in this study, is diagonal; a
consistent mass matrix could be used, however, without unduly complicating the solution.
The damping matrix is highly banded in all cases and presents no computational diffi-
culties. The stiffness matrix, on the other hand, may be nearly full, due to the added
stiffness terms. (Note that the matrices generated from (10) are full.) For the simple
examples considered here, this dense stiffness matrix presents no difficulty. However,
for large systems, the compact bandwidth (low connectivity) of the structural model,
which is needed for efficient solution, would be lost through the addition of the fully
populated medium stiffness matrix. To overcome this problem, a staggered-solution ap-
proach, such as the one developed for fluid-structure interaction analysis by Park,et
al. [12] should be considered for large systems of equations. The forcing function, i.e.,
the right side of (7), may look complicated, but each term is known and the load vector

is easily computed by simple matrix-vector multiplication and vector addition.

The power of the present approach is certainly evident for engineering applications,
as the FE and BE methods enjoy direct applicability to the complex geometries of engi-
neering structures. Furthermore, the doubly asymptotic response equation for the em-
bedded structure is merely the second-order ordinary differential equation of structural

dynamics.

10
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SECTION IIIT
NUMERICAL RESULTS

In this section, numerical results for the transverse excitation of an infinite,
circular cylindrical cavity and for two infinite, circular cylindrical shells by an
incident plane, dilatational wave are compared with corresponding analytical solu-
tions. Problem geometry and notation are shown in Figure 1; in all cases, plane strain
response is assumed. The coincident finite-element and boundary-element grids for all
three problems consist of 40 elements of equal length. The finite-element shell models
incorporate straight beam elements with elastic moduli modified for replication of plane

strain conditions.

The results are presented in nondimensional form. Length is normalized to a, time
3 y : - 2
is normalized to a/cd, and stress is normalized to pe, = A + 2p, where A and u are the

Lamé coefficients for the medium.
PN s INCIDENT WAVE

A plane dilatational step-wave, characterized by a compressive pressure P, and

0

moving in the x,-direction, can be described in terms of a 1ondimensional scalar poten-

1
tial ¢I as

74
¢I = - X PO(T R 1)" H(t - Xy = 1) (13)

where T is nondimensional time, X, is nondimensional position along the x., axis, and H

1 il
is the Heavyside operator. For this incident wave, the shear potential is zero [6].

The incident-wave force vector iI' which appears on the right side of (7), is ob-
tained as follows. First, the elements of the incident-wave computational stress vector
in global (xl,xq) coordinates are determined by application of classical continuum form-

ulas to (13) [6]: this yields

o
Ti

ch
j

= (A + 218 ) POH(T - x4 = 1)

3l

0 (14)

where X1q denotes the x]—pnsition of the ith surface mode. Second, a global stress ‘ec-

tor is constructed from these elements, which is then transformed, on the basis of Monr's

I

circle, into local coordinates as or =M 9;- Finally, the force vector in local coordin-

ates is determined as ﬁf == gf, which is then transformed into global coordinates to
yield [c.f., (6)]
f, * G ANQ 15)
| ~ ~a~ 1
11
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The incident-wave displacement and velocity vectors ur and EI’ which also appear on

the right side of (7), are obtained from the classical relation ukK = 3 ¢/3 x, . This

k
relation and (13) yield as the elements of these vectors
Wy B Bl U At e
i ] P T et T e
& = 5. P WT-x,-1)
Ii 1k ‘o 11 (16)

3.2 CIRCULAR CAVITY

The cavity problem is formulated simply by takinglﬂs = ES = 0, which reduces (7) to
a first-order equation. A comparison between results obtained by the present method and
analytical results presented in [13] is provided, for step-wave excitation, in Figure 2.
Minor discrepancies exist between the DA/BE and analytical response histories at early
times. At late times, both sets of response histories approach the appropriate asvmp-
totes [1, 14]; these asymptotes are t-4, t-1 and ™2 for 6=0°, 90°, and 180°, respect-

ively.
3.3 CONCRETE SHELL IN SLOW GRANITE

The second check problem, the response of a concrete shell to an incident wave of
rectangular pressure-profile, is also taken from [13]. The ﬁondimensional parameters
for this problem are h/a = 0.01, 00/0 = 0,865, Cs/cd = 0.63, cn/(‘d = 1.87, v = 0.25, and
T 0.2; the duration of the incident rectangular pulse is 10. DA/BE and analytical dis-
placement histories for this problem are compared in Figure 3. 1In this figure, as in
Figure 2, the DA/BE responses generally tend to lag behind their analytical counterparts.
As discussed in [1], this tendency is the result of excess radiation damping introduced
by the DAA. Also of interest is the DA/BE prediction of shell response at 0=0° before
1=1.53, which is the earliest time a disturbance can reach that point [15]; this nonphvs-
ical result illustrates that the DAA is not a wave propagation approximation. Despite its
deficiencies, however, the DAA produces results that nowhere differ from their analytical
counterparts by more than 107 of the peak response and aiso approach the proper late-time

asymptote. The latter characteristic attests to the correctness of the‘Em—cnlculation.

Although the DAA tends to overestimate radiation damping, its inclusion is absolute-
ly necessary for an accurate treatment of abrupt soil-structure interaction. This is
indicated in Figure 4, where displacement responses corresponding to the DA/FE responses
of Figure 3 have been computed from (7) with £m set equal to Q. As one would expect,
the highly oscillatory response thus calculated produces extremely poor stress/strain

results.
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denote results from (13)].
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3.4 CONCRETE SHELL IN GRANITE

The final check problem, the response of a concrete shell to an incident step-wave,
is taken from [1]. The appropriate nondimensional parameters here are h/a = 0.05, oo/p =
1.6, f‘s/cd = 143, cO/cd = 12, and v = v, - 0.25. Velocity response histories at 6 =
0° & 180° are shown in Figure 5, corresponding to DA/BE, DA/analytical and exact/analyt-
ical treatments of the structure-medium interaction. It is seen that the DA/BE and DA/
analytical results are in almost perfect agreement, which is most reassuring. Premature
initial response at points in the shadow region and excessive radiation damping charac-
terize the DA results here as they did in Figure 3. The associated error is modest, how-
ever, with all results coalescing at late times. Stress response histories in the middle
and inner fibers of the shell at 6 = 90° are shown in Figure 6. Here, some minor dis-
crepancies between the DA/BE and DA/analytical results appear: near T = 0, the DA/BE
histories exhibit a more realistic delay before a stress response appears; near T = 1.5,
short-term reversals in stress appear in the DA/BE histories, whereas the analytical
histories are smooth; finally, at late times, the DA/BE asymptotic stress values are
slightly less than their analytical counterparts. Much larger discrepancies exist be-
tween the DA results and the exact results, especially during the period 4 2 e 19
Even here, however, the error never exceeds 15%, which is generally acceptable for engi-

neering analysis.

17
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(Exact/Analytical, DA/Analytical, DA/BE).
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SECTION IV
CONCLUSION

The numerical results of the previous section indicate that the doubly asymptotic
approximation of [1] offers considerable promise for the satisfactory treatment of dyna-
mic soil-structure interaction. In addition, the boundary-element methods described in
Section IT and the Appendix constitute a firm technology for application to engineering

structures with complex surface geometries.

The extension of DA/BE methods for the treatment of nonlinear soil response is dis-
cussed in [16]. As one would expect, this is a major effort, requiring consideration of
the state of the medium at points removed from the surface of the structure. In spite
of the difficulties, however, the nonlinear problem appears to be yielding to the new

me thods.
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APPENDIX

This appendix discusses the numerical approach used to evaluate the integrals in

2 2
(10) for determination of the matrix elements ng and F?..

First, the boundary is divided into 2-D boundary elements, each with a centrally
k2
ij
i,j,k and %, and a circle is fitted to the nodal points j-1, j and j+1; this completely

: k2 , -
located node. For a single calculation of Sij and F,,, fixed values are assigned to
determines the center and radius of the arc describing the jth element. The ends of the
jth element are then point j-% on the arc half-way between points j-1 and j and point
j*% on the arc half-way between points j and j+1. Hence Li is the arc length between

points j-% and j+%, and the unit normal anywhere on the element is completely defined.

0 n

Second, the displacement and traction shape—functions, C; and C%, are taken as unity,
so the integrals in (10) only involve the kernals (11). In this connection, it is import-
ant to remember that T?? and U?; pertain to a fixed point (the nodal point) on the ith
element, but to a variable point on the jth element. For j # i, the geometric quanti-

ties in (11) are easily determined as

( 1%+ ¢ 2|
T = > A R SRR
a6y 151 1j 2 2])
e = N R AT
1 ( kj kl)/ 1
Ari, 1 s
=L = o r.. +nlr,, . 17)
3”] d 3
and Simpson's rule is used to evaluate the integrals with points j-% j and j+% as the
integration points. For j = 1, special evaluation methods are used, as described in the

following paragraph.

With regard to the integral of Tt;, it may be shown [7] that [see (11)]

a
-1 %14
— (8 G ‘ = = 7(C )
/rii m, Cke Cat Tygp Ty, 9y o Bl B
L, i
1
k ?
_/;wi Tig,g = My Tgg ) 9y =0 (18)
i

where the first i-subscript of the doubly subscripted variable iy refers to the fixed
nodal point for the ith element, and the second i-subscript of iy and any single i-

subscript refers to a variable point on that element. With regard to the integral of

PRECEDING PAGE BLANK-NOT FILMED
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a

U?;, it may be shown that [see (11)]

[ n ro dLi = ri(i—%) (Qn ri(i-%) - l) + ri(i+%) (!Ln ri(i+%) - 1) (19)
1
where the subscripts (i-%) and (i+% refer to the end points of the ith element. Inte-
gration of the second term in the expression for U?i [see (11)] is performed by means of
Simpson's rule, with the nodal point i and the end points i-% and i+% as integration
points. In this exercise, the second of (17) is used directly to evaluate rii,k rii,ﬁ
at the end points, while it is used at the nodal point in conjunction with a Richardson

extrapolation [17] of the form

r(n) r(n) u

ik
f1ik ddi,0 - 2

+ 2r

“Ti(i-e),k Ti(i-€), i(i-2¢),k Ti(i-2¢e),8

+ 2r (20)

i(i+2e),k Ti(i+2e),2 " Ti(ite),k Ti(ite),q

where r, ,, , for example, denotes the value of r.. [obtained from the second of
i(i-€),k ik

(17)] that pertains to the ith nodal point and to a fixed point located between the nodal

points i-1 and i at a distance € from nodal point i; here, € has been taken as 0.05 Li'

2
Finally, each value of ng is scaled through division by Lj' This scales the trac-
tions tj so that they, in effect, become nodal forces, producing a stiffness matrix‘gm

of the standard FE form.
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