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ABSTRACT

A numerical simulation of the two-
dimensional shear layer occurring at the interface
of two streams of different velocity is
described. The shear layer is represented

- by a large number of discrete vortices and is
allowed to evolve in accordance with the velocity
potential of the vortices. It is found that the
model effectively simulates the large-scale
evolution of the layer. The model, however, is
found to be inadequate for predicting the hydro-
dynamic sound generated in the shear layer
because small-scale vortex motion plays a major
role in acoustic prediction.

INTRODUCTION

BACKGROUND

The two-dimensional mixing layer generated at the interface of two
streams having different velocity and not necessarily having the same
physical properties has recently been the subject of much theoretical and
experimental study.]* This layer is an archetype of all shear flows
because it demonstrates in simple fashion the processes of turbulent energy
production, mixing, and entrainment which are fundamental to such flows.
Much of the research to date has been devoted to examination of the "large
coherent structure" of the turbulence within the layer. It appears that
the large scale turbulent motion within the layer, and in-other turbulent
shear flows, is in some sense deterministic. The individual events
associated with this large scale motion (for example, eddy growth and
interaction) occur in a particular sequence and reoccur randomly, but with
a statistically definable mean period. Of course the importance of large

*A complete listing of references is given on page 31.




turbulent eddies was postulated by Townsend2 over twenty years ago, but
these eddies were viewed as entirely random, short-lived phenomena. However,
the visual and quantitative observations of the development of spatially
coherent patterns within the turbulent mixing layer by Brown and Roshko3
and by Winant and Browand,4 and within a turbulent boundary layer by the

Stanford University group,5’6’7

have brought about a redirection of much
research into the turbulence problem and a revision of many long accepted
views as to its nature. The current view is that the large scale motion,
in particular the interaction between the coherent structures, dominates
the evolution and growth of the shear layer. Similar importance has been
attached to large structures observed in boundary-layer flows and in the
near-nozzle mixing region of axisymmetric jets.s’g’lo
The new awareness of the significance of large scale coherent

structures in turbulent flows has led several researchers to suggest that
these structures might play a role in the not well understood me%?anisms

If this

supposition is correct and if such structures are in some sense determin-

responsible for the hydrodynamic sound generated in shear flows.

istic, then major advances in the prediction of hydrodynamic sound might be
within reach.

The significance and role of large structures in sound generation, is,
however, a subject of much controversy. For example, the experiments of
Crow and Champagne,8 Moore,9 and Lau and Fisherlo have amply demonstrated
that large structures are a major if not dominant flow constituent in the
first four to six diameters downstream of the exit of an axisymmetric jet,
and it is a widely held belief that at least half of the total sound power
emitted by such jets originates from sources within the first four
diameters. A connection between the coherent structures and at least part
of the acoustic output might thus be expected. Crow's experiments,1] in
fact, suggest a close relationship. Crow performed far-field acoustic
experiments in which a jet was excited internally over a range of Strouhal
numbers (St = fD/Ue where f is the excitation frequency, D is the nozzle
diameter, and Ue is the exit velocity). He measured a peak gain of as
much as 30 dB (or a factor of about 2500) in the far-field noise filtered
about a Strouhal number of 0.3. This Strouhal number corresponded to a




preferred frequency for the growth of disturbances in the jet mixing layer
and for the generation of eddy-like large structures. Crow found no change
in the broad-band noise in response '~ this forcing. In 1 more recent but
quite similar study, however, Moore9 found that even with excitation at a
preferred frequency for disturbance growth (St % 0.5 in his experiment)
there was no significant increase in the far-field noise filtered about this
frequency. There was, moreover, an increase of 5-8 dB in broadband noise.
The results of Crow and Moore are strongly at variance and, as Crighton
notes,12 even the fact that Crow's exit velocities were slightly supersonic
and Moore's subsonic does not explain the differences. Crow's results
suggest that the large eddy behavior is directly responsible for significant
acoustic output, whereas Moore has suggested that the sound is generated by
smaller scale turbulent motion which may be modified through a highly non-
linear process by the excitation of large scale eddies.

Although the experimental results of Crow and Moore differ
substantially, both indicate that large coherent structures play a signif-
icant noise-producing role. There have been several attempts to numerically
predict the hydrodynamic sound generated in shear flows. In all of these
the assumption that large scale structure plays a dominant role was

implicit. Davies et a1)3

attempted to develop a model based on a discrete
vortex representation of the mixing layer for the calculation of the noise
from an axisymmetric jet. Although a peak in the computed noise spectrum
was found at about St = 0.5, most of the characteristics of jet noise were

e developed a discrete vortex

not well represented. Hardin and Mason
model for noise generated by shear flow over the mouth of a cavity. While
they include in their paper no direct comparison with experiment, they do
claim that the model explains certain frequency and directivity phenomena.
Neither Davies et al.nor Hardirn and Mason included mean-flow refraction or
"shrouding" effects. In unpublished work (1975), Lugt et al. attempted to
calculate the noise generated in a two-dimensional mixing layer represented
by discrete vortices. Using no more than 48 discrete vortices, they found
that they could not adequately represent the mixing layer and hence that
the calculated sound power had no physical meaning. Both Hardin and Mason

and Lugt et al. based their models for noise generation on Powe]l's]5




formulation of the acoustic source terms. Using a more direct approach,
Metcalfe and Or‘szag]6 attempted to model jet fluctuations with solutions
of the complete three-dimensional Navier-Stokes equations. According to
Metca]fe]7
obtain sufficient statistical properties from the flow simulation.

this effort was not successful due mostly to an inability to

This report presents the results of an effort to develop a mathematical/
numerical model for the acoustic radiation of a simple two-dimensional
mixing layer subject to an applied disturbance. It examines discrete
vortex-type approximations for the prediction of hydrodynamic sound and
hopefully provides some insight into their utility.

MIXING LAYER SIMULATION - LARGE COHERENT STRUCTURES

Several recent attempts to model the behavior of the mixing layer
have emphasized the characteristics of the large scale structure. Winant
and Browand4 proposed a very simple model which consists of two vertically
offset infinite arrays of equispaced line vortices. According to the
authors the vortices were found to rotate about one another and "draw
closer together" (presumably in the mean-flow direction) while the distance
between the vortex rows increased. Qualitative agreement between
predictions of the model and experiment was asserted for the layer growth
rate.

Acton,]8 however, argued that a model for the evolution of the mixing
layer, especially for the coalescense of large vortical structures, requires
consideration of finer details of the layer structure. Acton therefore
modeled the mixing layer with a distribution of discrete vortices such that
a singie coherent structure consisted of an amalgam of many discrete
vortices. He considered a spatially periodic disturbance of an infinite
discretized shear layer such that each period consisted of two sinusoidal
"waves" displaced vertically relative to each other. Initially, vortices
in each of the "waves" roll up into rotating concentrations which subse-
quently revolve about each other until they coalesce (see Figure 2 of this
report for the results of a similar simulation). The behavior reported by
Acton is in good qualitative agreement with the "pairing" description of
Winant and Browand.




19 reported a numerical simulation of the

Most recently, Ashurst
mixing layer using the discrete vortex approach without the assumption of
periodicity. He was able to obtain good agreement with the experimental

20 for the mixing layer growth and the time-

data of Browand and Weidman
averaged Reynolds stress profile within the layer. These calculations used
several thousand discrete vortices, were quite expensive, and yielded a
very fine color film of the shear-layer evolution.

The research reported here extends the basic approach of Acton,
incorporates additional vortices, and attempts to compute from the vortex
motion the hydrodynamic sound generated by the shear-layer. The assumption
of periodicity is not overly restrictive for the purpose of this study, and
it allows the major aspects of shear layer behavior to be simulated

economically.

DISCRETE VORTEX SHEAR-LAYER SIMULATION

We consider a two-dimensional shear layer which extends infinitely
far in the positive and negative x]-directions (Figure 1). The flow
velocity far above the layer is -U and the velocity below is U. The shear
layer of thickness 80 at time ty represents the lateral region (in x2) over
which the velocity varies from -U to U. The velocity components in the
Xy - and x2—directions are denoted by Uy and Uy, respectively. In order to
investigate the nonlinear evolution of the shear layer which results from
the imposition of a spatial disturbance, we represent the vorticity
w = auz/ax] - au]/axz, within the layer, by a distribution of discrete
point vortices each with circulation I'. We distribute the vortices in
cyclic fashion over longitudinal sections of length A with N vortices per
section, and we consider the motion of the vortices within one cycle and
assume that the motion in all other cycles is identical. The motion is
thus periodic with period A. We assume that the effects of viscosity are
important only at very small scales of motion so that they may be safely
ignored.
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Figure 1 - Shear-Layer Geometry




EQUATIONS OF MOTION
The complex potential w = up + iu2 of a single infinite row of equi-
distant vortices of strength I and spacing X is

w(z) = %%—1n sin(%?)

where z = X + i Xo Separating the real and imaginary components of w, we

obtain
sinh 27 x,/X
Uy (Xq9%,) = - l; 2
g2 2\ cosh 2n xz/A - COS 2m x]/x
and
sin 2w x]/x

T
UZ(XI’XZ) ~ 2x cosh 2w xz/x - CcO0S 2m x]/x

Each of the N vortices distributed within a cycle may be viewed as a
member of a different infinite row so that we represent the layer by N rows
of equidistant vortices. Then the velocity at any point induced by ali N
rows of vortices is given by

uy (xq5%5) = 5% —(5%) zlz: zﬂéiz:zz’j;ji-cos Tk "%y )7 X (1)
=1 b e e s &
and
N i .
uz(xl’xz) =2 (%%) z;thgé;l fl’ );;A-cos 2n(Xy-Xy /A (2)
3=l g 2, LA

where (Xl,j’xz,j) is the position of the jth vortex within the cycle. Note
2 approaches + =, Uy approaches ¥ U = IN/2x so that the required
vortex strength T is 2xU/N.

In inviscid incompressible flow vorticity convects with fluid

that as x

elements so that Equations (1) and (2) can be used to describe the motion
of each vortex, i.e.,

dx] :
at = WX %) = U5 (3)

and




d X, -
2.3 :
dt up(Xy 52Xy 5) = Uy 5 (4)

Equations (3) and (4) determine the motion of the jth vortex in terms of
the N-1 other vortices in the cycle. The velocities Uy j and U j are
given by Equations (1) and (2). For purposes of computation, we non-

dimensionalize as follows:

u? = 2Au]/FN
u§ = 2xu2/rN
x? = x]/x
x§ = xz/x
and t* = tIN/2)2
Then
dx!lf’i ikt 1 5% sinh Zn(xg,ifxg’J) )
* 1 * oyX* = * _yXx
dt 1,i N =1 cosh 2"(X2,i Xz,j) cos 2n(x]’i x],j)
J#i
and
5 * _y%x
dxg,i R i N sin 2n(x1’i xl,j) (6)
* 1 * _yXx = * _yXx
dt 2,i N j=1 cosh 2“(x2,i xz’j) cos 2n(x],i xl,j)

J#i

and uf approaches +1 as xE approaches 3« .

Equations (5) and (6) constitute a system of 2N coupled, non-linear,
ordinary differential equations. With suitable initial conditions (the
X1 9%5 position of each vortex) these equations determine the subsequent
motion of the vortices and the evolution of the layer. In this study the
equations were solved numerically using, during the early stages, a fourth-
order Runge-Kutta method; solutions from which acoustic radiation were
calculated were obtained with a sixth-order Milne predictor-corrector
algorithm since it was found that much greater accuracy was required.




A1l the calculations described in this report were performed on the
Texas Instruments Advanced Scientific Computer at the Naval Research
Laboratory with double precision arithmetic. DTNSRDC users access this
computer from a remote job entry terminal at DTNSRDC. Certain data were
transferred via punched cards and magnetic tape to the CDC 6700 at DTNSRDC
where the TIMAGE interactive graphics system and the DISSPLA computer
graphics package were used to generate most of the figures.

SHEAR-LAYER EVOLUTION

Figures 2a through 2h show a sample simulation of the evolution of
a shear layer represented by 256 vortices per period ». The shear layer of
initial thickness 0.05 is assumed to have been disturbed by some external
means and at t=0 has the configuration shown in Figure 2a. Note that each
wavelength consists of two sinusoidal "waves", each of length 1/2, which are
displaced vertically relative to each other a distance 0.02. Each of the
waves has amplitude -0.05. Vortices in the left-hand and right-hand "waves"
are marked with 0's and X's, respectively. The integration was performed
with the Runge-Kutta method with time step 0.005 and required 101 CP seconds
to reach t*=1.0. During the initial stages of the evolution (Figures 2a-2d),
the vorticity in both "waves" concentrates in nearly identical fashion.

(The behavior would be identical were it not for the vertical displacement.)
As the shear layer continues to evolve, the two vortex amalgams interact,
rotate about each other (Figures 2e-2g), and coalesce (Figure 2h). This
process is quite similar to the "pairing" process observed experimentally
by Winant and Browand.4 The elongation of the structures in the flow (x])
direction (see especially Figure 2e) was also observed experimentally by
Winant and Browand who described the vortices as taking on a "more or less
elliptic shape with major-to-minor axis ratio of 2." It is also clear that
fluid is transported to the oppnsite side of the mixing layer before being
ingested into the central region. Again similar behavior was noted by
Winant and Browand.

On the basis of this simulation and other simulations we have per-
formed, we believe that discrete vortex simulation can effectively model the
large scale behavior of the shear layer. Ac’con,]8 who used only 96
vortices, performed extensive calculations with his model and has presented




Figure 2 - Evolution of a Shear Layer Represented by Discrete
Vortices Shown at Different Times
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his results in great detail, including comparisons with experimental data.
The overall characteristics of the shear-layer evolution shown in Figures
10a through 10h in his paper are in excellent agreement with the calculation
presented above. His paper is recommended to the interested reader.

VORTICITY-GENERATED HYDRODYNAMIC SOUND

MATHEMATICAL FORMULATION

To develop an estimate for the acoustic radiation from the evolving
shear layer we begin with Lighthi]]'SZI fundamental expression for the
acoustic radiation generated by a compact region of fluctuating flow in an
otherwise quiescent fluid:

2
ap C(Z) v2p = v-v-T (7)

at?
where T % pOV';V, €y and o, are the ambient undisturbed sound speed and
density, and V is the fluid velocity computed with the assumption of
incompressibility. In applying Equation (7) to the shear layer we assume
that U/c0 << 1. PoweH]5 showed that the origin of the sound field can be
associated with the fluctuating vorticity field; another derivation was

22 23

given by Howe. We note

vev-l = vl + pOVZ( %VZ ) (8)

°0
+. . o e o -> . T
where L is defined by L = v x v and w is the local vorticity. Thus,
specification of L = & x V over the fluctuating region (which is assumed
to be small--its characteristic dimension is much smaller than an acoustic
wavelength) yields an estimate for the acoustic radiation.
The formal solution to Equation (7) with the source term of
Expression (8) is obtained using a Green's function and is

13




o(X,t)-p §(t-t-|X-¥|/c,)
S Ifwfb — 0" 43y d«
T 3 x-Yy|

s(t-1-|xX - y|/c0)

1 ( v2 ) d3y d
+ Yy drt
anc J’ I ¥ = 1% - 7|
T

This kind of solution is sometimes termed a retarded potential. The
acoustic signal reaching X at time t originates at position ¥ within the
fluctuating region at t—|§-§|/co. We apply the usual simplifications to
this integral (for example, see LighthiIIZI and Crightonlz). We make use
of the properties of linear differential operators applied to convolution
products and then perform the t-integration to obtain

D(I:t)'p s g
0. (st |%-y|/7c,) 4L
(o] 4 2 X 0 >
0 wES 7 [X-y|
f zf” Ft-[%-Flreg) X
4'nC(2) x*_f- 0 Iz’;l
y

We then'perform the x-differentiations and ignore higher-order terms
so that

o(X,t)-p 32 g g2
= 0.-. ‘2 f( "Z”%—t (¥,t-|x-y[/cq)dy
0 4‘nC0 5/’ Colx'.VI
2 A > >
. — L Y (J.t-[X -/
4TTC2 > CZIX - yl atz
0 y 0

Finally, we assume that the eddy region is compact, that is, its
characteristic linear dimension is much smaller than the acoustic wave-
lengths of the sound it generates, and that ;-§ Y X, SO that we consider
only the far-field acoustic radiation. We obtain

14




->

p(X,t)-p 2 Bt T

- 0 - ]» 2 J’ X)X (y,t- lxl/co)d3y
0 4nc6|xl at2 ;-

4HCBIX| at?
The last term may be neglected for compact sources22 so that
p(;,t)-p 1 2 _’.—) ¥ e € - ->
e 2 ML TG Bk @
0 4nc6|x| at ;- Ix] ) |x|

Equation (9) shows that, to first order, the acoustic radiation is
determined from the second time derivative of E. Note that the acoustic
signal at X at time t is now related, through the second time derivative,
to fluctuations at the*same time, t-|;|/c0, for all locations y.

We may evaluate L and its time derivatives in a simple fashion for an
array of discrete point vortices. For such an array

N N
;(y!t) = Z] I i Z I G(X] J-yl)é(XZ J'.YZ)e3 (]0)
J= J= y 7

(&)
od

where é3 is a unit vector normal to the plane of motion. We substitute
Equation (10) into Equation (9) and perform the y integration (which is
made easy by the appearance of & functions) to yield the acoustic radiation
per unit length (in the é3-direction) at §=x]é]+x2 2+x3e3

p(X,st)-p L IT? ¥ ™
oAy 0 = l-» _(_j; Z <—..>—J_> '_):_ g (Fe3 Xuj) (]])
0™3 4nedlx] dt? g1\ [X] /x|

where U, = ij’ the velocity of the jth vector, and ﬁj and ;j are evaluatec
at t-lil/co. This acoustic radiation is due to flow fluctuations in the
plane Xq = constant. Equation (11) is written in terms of the previously
defined non-dimensional variables as

15




> O e ->
p(x*, t*)-p, oM d? g(i_"i) X* (&, xU*) (12)
00MY3 2n|%x (N dt*2 G\ R SR 3

where M = FN/ZXCO = U/c0 is the mean flow Mach number, and Ay; = Ay3/x.

We may express Equation (12) in terms of polar coordinates r* = |;*| and
1

§ = tan~ x§/xT in the plane x§ = constant as
p(r*,e,t*)-po MY o o » 5
pOAy§ = o [(A-B)cos 26 + C sin 26 + A + B] (13)
where N
R
A=-ag Z .5 "2,
Jj=1
) N
-l * *
B = 2N E] 2.
and

N
= _L * * - * *
. 2 (xf g ouf g - X3 s g)

The quantities A, B, and C are evaluated at time t*-M|X*|.

CALCULATION OF SHEAR-LAYER HYDRODYNAMIC SOUND

Equation (13) provides a means for estimating the hydrodynamic
sound generated by an unsteady vortical flow region approximated by a
distribution of discrete point vortices. In this section we describe our
application of Equation (13) to the sound emitted by a single spatial period
of the shear layer.

The presence of third time derivatives of position in the expression
poses significant difficulties. We found that numerical estimation of
these derivatives with finite differences did not produce sufficiently
accurate results without severe restrictions on the time-step size. We
therefore chose to obtain these derivatives by analytically differentiating
the equations of vortex motion, Equations (5) and (6). The resulting




i’ xl,j’ and Xz,j to X],j .

without truncation error (except that introduced in the calculation of X1 j
and Xo j)' Note that all of the shear layer simulation results reported

expressions directly relate il i’ 22 and x,

in this section were obtained with a sixth-order Milne predictor-corrector
integration scheme applied to Equations (5) and (6).

Figures 3a and 3b display two stages in the evolution of the vortex
system in the test case of motion with no external shear-layer disturbance.
The layer is approximated by 126 vortices per unit length distributed
initially in 18 equispaced columns, 7 vortices per column, and the calcu-
lation was performed with At*=0.00125. This smaller number of vortices was
used in acoustic model evaluation calculations to reduce the otherwise very
large expense of performing computations with very small time steps. The
figures suggest a great deal of energetic non-physical (numerical) vortex
activity, and by t*=0.5 (Figure 3b) significant numerical round-off error
has accumulated. The regular pattern along the Tayer and the antisymmetry
across the layer of vortex positions, which we expect in an exact
calculation, is significantly eroded. We emphasize that this error is due
to accumulated round-off in the calculation of the N-term sums in
Equations (5) and (6), and not to truncation error in the integration
scheme. Truncation error affects the position of the vorticés in each row
in an identical manner so that a regular vortex pattern would still result.

The acoustic radiation as predicted from Equation (13) for the
simulation described here is displayed in Figures 4a and 4b as a function
of angle 6 measured from the position x]—direction. The radiation is
presented in terms of a normalized "instantaneous" intensity which we

define as
(“‘po >(2nr* 2
oOAY§ Mu

and which is equal by Equation (13) to [(K—ﬁ)cos 26 + C sin 26 + A + é]z.
Dividing this normalized intensity computed at time t* by (2nr*)? and
multiplying by M8 yields [(p-po)/(ooAyg)]z, which is proportional to the
"instantaneous" intensity, aapz/po, of the sound at position r*, ¢ at time
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t* + Mr*.T  Also shown in Figures 4 is the intensity predicted by a second
identical simulation with At*=0.0025. At t*=0.25 and at earlier times the
intensities predicted by the two calculations are in excellent agreement, and
both the vortex positions and the instantaneous vortex velocities were found
to agree to within more than four significant figures. At t*=0.5, however, {
significant differences in the predictions became apparent. These differ-
ences are caused by very slight differences in vortex position between the
two calculations which result both from the round-off error already mentioned
and truncation errors. These differences in position lead to large differ-
ences in the vortex velocities, accelerations, and, hence the acoustic out-
put. Since the discrete vortex approximation is made with the assumption
that the fine details of the flow are not of consequence, this result throws
doubt on the applicability of the model for predicting hydrodynamic noise.
The significant dependence of the acoustic radiation on the detailed
vortex distribution at each instant appears in more dramatic fashion in a
second series of calculations. Figures 5a through 5c and 6a through 6c
display vortex positions at three time levels from two calculations of the
layer evolution resulting from a single-wave disturbance. In the simula-
tion depicted in Figures 5a through 5c 126 vortices are "stacked" in
18 columns, 7 vortices per column. In the second simulation (Figures 6a
through 6¢c) 126 vortices are "staggered" in 18 columns with 4 vortices per
column, and 18 columns with 3 vortices per column. Although the over-all
evolution of the shear layer as represented by the two computations is
quite similar, the details of the vortex distributions are very different
as might be expected. The differences in the details of the vortex
distributions have, unfortunately, a very significant effe:t on the acoustic
radiation. (Figures 7a through 7c.) The predicted intensities are quite
different both in magnitude and directivity. These results indicate that
the hydrodynamic sound computed from the discrete vortex model is not
dominated or controlled by the large scale evolution of the vortex system,
but is in fact strongly dominated by high frequency components which are

B The intensity of sound, I, is defined as the average rate at which energy
is transported across a unit area normal to the propagation direction, so
that I = <o <p? >/p0 where < > denotes time average.
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Figure 7 - Comparison of Normalized Intensities of Acoustic Radiation from
Shear Layers at Three Different Times Resulting from a Single-Wave
Disturbance and with Different Initial Distributions of Vortices

(A0/pg)?  (NORMALIZED)

(Dashed 1ines correspond to the case of the stacked initial
distribution shown in Figure 5a; the chain-dotted lines,
to the staggered initial distribution of Figure 6a)
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dependent on the detailed vortex distribution. Since we cannot expect flow
details (on the order of vortex spacings) to be properly simulated with
discrete vortices, the model just described is not appropriate for hydro-
dynamic sound calculations.

The above conclusion is supported by the earlier work of Lugt et al.
(1975) who used Hama and Burke's24 single row model with 12, 24 and 48
vortices per wave length. Lugt found that the acoustic output generated by
the single row model was highly dependent on the distribution of vortices
which comprise the developing and evolving vorticity concentration
(Figure 8). In such simple models, however, it is difficult to distinguish
the effects of large scale evolution from the effects of small scale vortex
interaction.

MAXIMUM MINIMUM

OF SOUND POWER

Figure 8 - The Point Vortices Closest to the Center of a Rolling-up
Discontinuity Sheet Generate Most of the Sound. The Shaded
Area Represents the Upper Side of an Initially Horizontal
Discontinuity Sheet.

(From H.J. Lugt)

INCLUSION OF A FINITE-RADIUS VORTEX CORE

In order to overcome a number of problems which have been encountered
in various discrete vortex flow simulations, several authors have intro-
duced the concept of a finite-radius vortex core. The assumption is made
that, at distances from a vortex less than some specified value, the
velocity induced by that vortex is not given by the notential flow r']
distribution but is determined from a different non-singular distribution.

25

We incorporated Chorin's™™ formulation of the finite-radius core into the
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discrete-vortex shear-layer model. We hoped that by smearing out the small-
scale details of the layer evolution and thereby reducing the large acceler-
ations induced by vortices on their close neighbors, acoustic predictions
less sensitive to the small-scale vortex motion could be obtained.

Following Chorin, we let (in dimensional form)

iy B A
" 210
and
e
u2 2no r

with r = Vx2+y?, denote the components of the velocity at (x],x induced

)
by a vortex at the origin. These expressions are applied at r 2 o where o
is the core radius; for r > o the r-! profile is applied. The combined
velocity expression thus exhibits the potential flow distribution outside
the core and finite values of U and u, inside the core.

A number of computations were performed with several values of the
core radius o. These calculations show that, even with o as large as one-
third of the initial shear-layer thickness, the large-scale evolution of the
layer is not appreciably affected. The small-scale behavior of the layer
is, however, drastically affected and, in general, the acoustic intensity
is significantly lowered. Figures 9a through 9c compare the predicted
intensities (with a core radius of one-third the initial shear layer
thickness) for a computation beginning with the "stacked" vortex distribution
shown in Figure 5a and a computation beginning with the "staggered"
distribution shown in Figure 6a. The intensities predicted by both the
"stacked" and "staggered" computations are a good deal lower than those
predicted without the finite-radius core (Figures 7b and 7c). This might
be expected since the accelerations and time rates of acceleration change
of closely spaced vortices are substantially reduced and these quantities
are significant in the acoustic prediction (see Equation (13)). The
intensities at t*=0.5 predicted from the “stacked" and “staggered"
computations are encouragingly similar but by t*=0.75 they are quite
different so that there is, unfortunately, no indication that the critical
influence of the initial vortex distributions on the acoustic radiation
lessens as the vortex system evolves.
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Radius Core) Resulting from a Single Wave Disturbance and with

Different Initial Distributions of Vortices
(Dashed 1ines correspond to the case of the stacked initial
distribution shown in Figure 5a; the chain-dotted lines,
to the staggered initial distribution of Figure 6a)
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SUMMARY AND CONCLUSIONS

We have shown that a discrete vortex model of the two-dimensional
shear layer effectively models the large scale evolution and behavior of the
layer resulting from the application of an imposed disturbance. An identical
conclusion was reached by Acton.]8 The over-all behavior of the layer is
in qualitative agreement with the experimental observations of Winant and
Browand.4 However, although we are aware of no directly relevant data
with which to compare the model estimates of the hydrodynamic sound
generated in the layer, our investigation has led us to conclude that the
vortex model is not an appropriate representation of the shear layer for
acoustic predictions. We find that the detailed small-scale motion of the
vortex system plays a major role in the nonphysical (numerical) acoustic
predictions; this result is inconsistent with the original premise under
which all vortex models are applied; namely, that the small scale behavior
is not of significance. Because small scale motion has overwhelming
effects on the acoustic predictions, we are not able to elucidate the role
of the large scale behavior in the generation of hydrodynamic noise.

The conclusions presented here indicate that other applications of
13:1% Shoutd
be carefully scrutinized. Although these other applications have been

discrete vortex models to the prediction of hydrodynamic noise

made to statistically steady flow fields, the time-averaged resuits may
still be significantly affected by the non-physical small-scale vortex
motion.
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