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ABSTRA CT

A numerical simulation of the two-
dimensional shear layer occurring at the interface
of two streams of different velocity is
described. The shear l ayer is represented
by a large number of discrete vortices and is
allowed to evolve in accordance with the velocity
potential of the vortices. It is found that the
model effectively simulates the large-scale
evolution of the layer. The model , however , is
found to be inadequate for predicting the hydro-
dynamic sound generated in the shear layer
because small— scale vortex motion plays a major
role in acoustic prediction.

INTRODUCTION

BACKGROUND

The two-dimensional mixing l ayer generated at the interface of two
streams having different velocity and not necessarily having the same
physical properties has recently been the subject of much theoretical and

1*experimenta l study. This l ayer is an archetype of all shear flows
because it demonstrates in simple fashion the processes of turbulent energy
production , mixing , and entrainment which are fundamental to such flows.
Much of the research to date has been devoted to examination of the “large
coherent structure” of the turbulence within the l ayer. It appears that
the large scale turbulent motion wi thin the layer, and in~other turbulent
shear flows , is in some sense deterministic. The individual events
associated wi th this large scale motion (for example , eddy growth and
interaction) occur in a particular sequence and reoccur randomly, but with
a statistically definable mean period . Of course the importance of large

*A complete listing of references is given on page 31.
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turbulent eddies was postulated by Townsend2 over twenty years ago , but
these eddies were viewed as entirely random , short-lived phenomena. However,
the visual and quantitative observations of the development of spatially
coherent patterns within the turbulent mixing l ayer by Brown and Roshko3

and by Winant and Browand ,4 and within a turbulent boundary l ayer by the
Stanford University group,5’6’7 have brought about a redirection of much
research into the turbulence problem and a revision of many long accepted
views as to its nature . The current view is that the large scale motion ,
in particular the interaction between the coherent structures , dominates
the evolution and growth of the shear l ayer. Similar importance has been
attached to large structures observed in boundary-layer flows and in the
near-nozzle mixing region of axisymetric jets .8’9’1°

The new awareness of the significance of large scale coherent
structures in turbulent flows has led several researchers to suggest that
these structures might play a role in the not- well understood mechanisms
responsible for the hydrodynamic sound generated in shear flows .1 ’ If this
supposition is correct and if such structures are in some sense determin-
istic , then major advances in the prediction of hydrodynamic sound might be
within reach.

The significance and role of large structures in sound generation , is ,
however, a subject of much controversy . For example , the experiments of
Crow and Champagne ,8 Moore,9 and Lau and Fisher 1° have amply demonstrated
that large structures are a major if not dominant flow constituent in the
first four to six diameters downstream of the exit of an axisymmetric jet,
and it is a widely held belief that at least half of the total sound power
emitted by such jets originates from sources within the first four
diameters . A connection between the coherent structures and at least part
of the acoustic output might thus be expected . Crow ’s experiments ,~ in
fact, suggest a close relationship. Crow performed far-field acoustic
experiments in which a jet was excited internally over a range of Strouhal
numbers (St = fD/Ue where f is the excitation frequency . D is the nozzle
diameter , and Ue is the exit veloc i ty). He measured a peak gain of as
much as 30 dB (or a factor of about 2500) in the far-field noise filtered
about a Strouhal number of 0.3. This Strouhal number corresponded to 

a2



preferred frequency for the growth of disturbances in the jet mixing l ayer
and for the generation of eddy-like large structures. Crow found no change
in the broad-band noise in response - this forcing . In more recent but
quite similar study , however , Moore9 found that even with excitation at a
preferred frequency for disturbance growth (St ~ 0.5 in his experiment)
there was no significant increase in the far-field noise filtered about this
frequency . There was, moreover , an increase of 5-8 dB in broadband noise.
The results of Crow and Moore are strongly at variance and , as Crighton
notes ,12 even the fact that Crow ’s exit velocities were slightly supersonic
and Moore ’s subsonic does not explain the differences. Crow ’s results
suggest that the large eddy behavior is directly responsible for significant
acoustic output , whereas Moore has suggested that the sound is generated by
smaller scale turbulent motion which may be modified through a highly non-
linear process by the excitation of large scale eddies.

Although the experimental results of Crow and Moore differ
substantially, both indicate that large coherent structures play a signif-
icant noise -producing role. There have been several attempts to numerically
predict the hydrodynami c sound generated in shear flows . In all of these
the assumption that large scale structure plays a dominant role was
implicit. Davies et al.13 attempted to develop a model based on a discrete
vortex representation of the mixing l ayer for the calculation of the noise

from an axisymmetric je t .  Although a peak in the computed noise spectrum
was found at about St = 0.5 , most of the characterist ics of j et noise were
not well represented . Hardin and Mason 14 deve loped a discrete vortex
model for noise gene rated by shear flow over the mouth of a cavity . While
they include in their paper no direct comparison with experiment , they do

cla im that the model explains certain frequency and directivity phenomena.

Neither Davies et al. nor Hardin and Mason included mean-flow refraction or

“shrouding ’ effects. In unpublished work (1975), Lugt et al. attempted to

calculate the noise generated in a two-dimensional mixing layer represented

by discrete vortices. Using no more than 48 discrete vortices , they found
that they coul d not adequately represent the mi x i ng layer and hence that
the calculate d sound power had no physical meaning. Both Hardin and Mason

and Lugt et al. based their models for noise generation on Powell’ s15

3
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formulation of the acoustic source terms. Using a more direct approach ,

Metcalfe and Orszag16 attempted to model jet fluctuations with solutions
of the complete three-dimens ional Navier-Stokes equations. According to

Metcalfe 17 this effort was not successful due mostl y to an inability to

obtain sufficient statistical properties from the flow simulation .

This report presents the results of an effort to develop a mathematical !

numerical model for the acoustic radiation of a simple two-dimensional
mixing l ayer subject to an applied disturbance. It examines discrete

vortex-type approximations for the prediction of hydrodynamic sound and

hopefull y provides some insight into their ut i li ty .

MIXING LAYER SIMULATION - LARGE COHERENT STRUCTURES

Several recent attempts to model the behavior of the mixing l ayer

have emphas ized the characteristics of the large scale structure . Winant

and Browand4 proposed a very simple model which consists of two vertically

offset infinite arrays of equispaced line vortices. According to the

authors the vortices were found to rotate about one another and “draw

closer together ” (presumably in the mean-flow direction) while the distance

between the vortex rows increased . Qualitative agreement between

pred ictions of the model and ex per iment was asser ted for the layer grow th
rate .

Acton ,18 however , argued that a model for the evolu ti on of the mi xin g

layer , espec ially for the coalescense of large vortical structures , requires
consi deration of finer details of the l ayer structure . Acton therefore

modeled the mixing l ayer with a distribution of discrete vortices such that

a single coherent structure consisted of an amalgam of many discrete

vortices. He considered a spatially periodic disturbance of an infinite

discretized shear l ayer such that each period consisted of two sinusoidal

“waves ” displaced vertically relative to each other. Initially, vort i ces
in each of the “waves ” rol l up into rotat i ng concentrat i ons which su bse-
quently revolve about each other until they coalesce (see Figure 2 of this

report for the results of a similar simulation). The behavior reported by

Acton is in good qualitative agreement with the “pairing 1 ’ description of

Winan t and Browand .

4 
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Most recently, Ashurst 19 reported a numerical simulation of the
mixing l ayer using the discrete vortex approach without the assumption of
periodicity . He was abl e to obtain good agreement with the experimental
data of Browand and Weidman 2° for the mixing l ayer growth and the time -
averaged Reynolds stress profile within the layer. These calculations used
several thousand discrete vortices , were quite expensive , and yielded a
very fine color film of the shear-layer evolution .

The research reported here extends the basic approach of Acton ,
incorporates additional vortices , and attempts to compute from the vortex
motion the hydrodynamic sound generated by the shear-layer. The assumption
of periodicity is not overly restrictive for the purpose of this study , and
it allows the major aspects of shear l ayer behavior to be simulated
economically.

DISCRETE VORTEX SHEAR-LAYER SIMULAT ION

We consider a two-dimensional shear l ayer which extends infinitely
far in the positive and negative x 1-directions (Figure 1). The flow
veloc i ty far above the layer is -U and the veloc i ty below is U. The shear
l ayer of thickness at time t0 represents the lateral region (in x2) over
which the velocity varies from -U to U. The velocity components in the
x1 - and x2-directions are denoted by u1 and u2, respectively. In order to
investigate the nonlinear evolution of the shear l ayer which results from
the imposition of a spatial disturbance , we represent the vorticity

= 
~u2!~x.~ - ~u 1 /~x2, within the l ayer , by a distribution of discrete

point vortices each with circulation r. We distribute the vortices in
cyclic fashion over longitudinal sections of length A with N vortices per
section , and we consider the motion of the vortices within one cycle and
assume that the motion in all other cycles is identical . The motion is
thus periodic with period x. We assume that the effects of viscosity are
important only at very small scales of motion so that they may be safely
ignored .

5
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EQUATIONS OF MOT ION
The complex potential w = u 1 + iu 2 of a single 

infinite row of equi-

distant vortices of strength r and spacing A is

ii-’ . /iiiw(z) = ln sin~1~—~—

where z = x1 + i x~. Separating the real and imaginary components of w , we

obtain
sinh 2ii x 2 1A

u1 (x 1,x2 ) = - 

~T cosh 2ir x2!A 
- cos 2n x 1!X

and
sin 2i~ x 1/X

= 2A cosh 2~r x2!A 
- cos 2ir x 1/ A

Each of the N vor tices distributed within a cycle may be viewed as a
member of a different infinite row so that we represent the layer by N ~~~
of .equidistant vort ices. Then the ve locity at any point induced by a1 N
rows of vortices is given by

N sinh 271 (x 2 -x 2 . )/ x
u1(x 1,x 2 ) = 

j=l ~~~~ co~~ 2~tx 2 -x 2 ~)/x ~cos 2~ (x 1-x 1~~ )!A (1)

and
N sin 27r (x 1-x 1 . ) /A

u2 (x 1,x2 ) = 

j~ l ~~~ cosh 2~ (x 2 -x 2 ~)!A -coS 2~ (x 1-x 1~~ )/ A (2)

where ( x 1~~~x2 ,~ ) is the position of the ~th vortex within the cycle. Note
that as x2 approaches ±~~~~~, u1 approaches ~ U = rN/2x so that the required
vortex strength r is 2xU/N.

In inviscid incompressible flow vorticity convects with fluid

elements so that Equations (1) and (2) can be used to describe the motion

of each vortex, i.e.,

dx 1
dt u1 (x1~~~x2~~) u1~~ (3)

and

7
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I
dx
_ _ _ _  = u2(x 1 ~~x2~~) u~~ (4)

Equations (3) and (4) determine the motion of the ~th vortex in terms of

the N-l other vortices in the cycle. The velocities u1~~ and u2~ are

given by Equations (1) and (2). For purposes of computation , we non-

dimensionalize as fol l ows :
= 2Au 1/FN

u~ = 2Au 2/FN

x~ 
=

x~ = x2/X

and 
= trN/2A~

Then

dx* * N stnh 2 c~(X * .-x ~ )

dt* = = - 

~ j=l 
cosh 2T(x~ ~ x~~~)~~os 2~(xt 1 -x~~J 

(5)

and

dx* . N sin 2~ (x * ~~~2,i — * — 1 ~~
- 1,i l,j

dt* — — 

N .‘
~~ 

cosh 2ir(x~ .-x~ .)-cos 27T(xt .-x~ .)
3 —  c~,1 ‘3 1 1 1 ,3
j~i

and u~ approaches ±1 as x~ approaches ~
Equations (5) and (6) constitute a system of 2N coupled , non-linear ,

ordinary differential equations. With suitable initial conditions (the
x1 ,x2 position of each vortex) th

’ese equations determine the subsequent
motion of the vortices and the evolution of the l ayer. In this study the
equations were solved numerically using , during the early stages , a fourth-
order Runge-Kutta method ; solutions from which acoustic radiation were
calculated were obtained wi th a sixth-order Mim e predictor-corrector
algorithm since it was found that much greater accuracy was required

.8



All the calculations described in this report were performed on the
Texas Instruments Advanced Scientific Computer at the Naval Research
Laboratory wi th double precision arithmetic. DTNSRDC users access this
computer from a remote job entry terminal at DTNSRDC . Certain data were
transferred via punched cards and magnetic tape to the CDC 6700 at DTNSRDC
where the TIMAGE interactive graphics system and the DISSPLA computer
graphics package were used to generate most of the figures.

SHEAR-LAYER EVOLUTION

Figures 2a through 2h show a sample simulation of the evolution of
a shear l ayer represented by 256 vortices per period A .  The shear l ayer of
initial thickness 0.05 is assumed to have been disturbed by some external
means and at t=O has the configuration shown in Figure 2a. Note that each
wavelength consists of two sinusoidal “waves ” , each of length 1/2 , which are
displaced vertically relative to each other a distance 0.02. Each of the
waves has ampl itude -0.05. Vortices in the left-hand and right-hand “waves ”
are marked with 0’s and X ’ s, respectively. The integration was performed
with the Runge-Kutta method with time step 0.005 and required 101 CP seconds
to reach t*=l.O. During the initial stages of the evolution (Figures 2a-2d),
the vorticity in both “waves ” concentrates in nearly identical fashion.
(The behavior would be identical were it not for the vertical displacement.)
As the shear layer continues to evolve , the two vortex amalgams interact ,
rotate about each other (Figures 2e-2g), and coalesce (Figure 2h). This
process is quite similar to the “pairing ” process observed experimentall y
by Winant and Browand.4 The elongation of the structures in the flow (x1 )
direction (see especially Figure 2e) was also observed experimentally by
Winant and Browand who described the vortices as taking on a “more or less
elliptic shape wi th major-to-minor axis ratio of 2.” It is also clear that
fluid is transported to the opposite side of the mixing layer before being
ingested into the central region . Again similar behavior was noted by
Winant and Browand .

On the basis of this simulation and other simulations we have per-
formed , we believe that discrete vortex simulation can effectively model the
large scale behavior of the shear layer. Acton ,18 who used only 96
vortices, performed extensive calculations with his model and has presented

9
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Figure 2 - Evolu tion of a Shear Layer Represented by Di screte
Vor tices Shown at Different T imes
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Figure 2 (Continued )
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Figure 2 (Continued )
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his results in great detail , including comparisons with experimental data .
The overall characteristics of the shear-layer evolution shown in Figures
lOa through lOh in his paper are in excellent agreement with the cal culation
presented above . His paper is recommended to the interested reader.

VORTICITY-GENERATED HYDRODYNAMIC SOUND

MATHEMATICAL FORMULATION
To develop an estimate for the acoustic radiation from the evolving

shear l ayer we begin with Li ghthill ’ s21 fundamental expression for the
acoustic radiation generated by a compact region of fluctuating flow in an
otherwise quiescent fluid:

- c2 V 2p = V v T  (7)

where T ~ ; , c~ and p
0 are the ambient undisturbed sound speed and

density , and ~ is the fluid velocity computed with the assumption of
incompressibility . In applying Equation (7) to the shear layer we assume
that U/c0 << 1 • Powell 15 showed that the origin of the sound field can be
associated wi th the fluctuating vorticity field; another derivation was
given by Howe.22 We note23

= p0 
v.i~ + p

07
2( ~ v2 ) (8)

where L is defined by L = x ~ and ~ is the l ocal vorticity . Thus ,
specification of = x over the fluctuating region (which is assumed
to be small--its characteristic dimension is much smaller than an acoustic
wavelength) yields an estimate for the acoustic radiation .

The formal solution to Equation (7) wi th the source term of
Expression (8) is obtained using a Green ’s function and is

13 
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p (~~,t)-p
0 1 6(t-t-I~ -~ I/c )

_ _ _ _ _ _  _ _ _  ~ d3~~dtP
0 

= 
4irC~ fJ (v~ .L)

-p -p.

T y

-p ÷

~
6 (t-T-Ix-y IC 0~ d~~ dt

+y

This kind of solution is sometimes termed a retarded potential. The
acoustic signal reaching i~ at time t originates at position ~ wi thin the

-p -pfl uctuating region at t-Ix-yI!c0. We apply the usual simplifications to
this integral (for example , see Lighthi ll 2m and Crighton tm2 ). We make use
of the properties of linear differential operators applied to convolution
products and then perform the t-integration to obtain

-p -p
p(~~~,t ) -p

0 = f~~~
,t- Ix -y I /c 0 ) d~

-p -p ,P0 41TC~ 
x

-p x-y~
4.

+ 
1 -p -~ - -~~_ _v

~ J T 

(y,t-~x -y~/c0) 
d3y

.4. Ix yl
y

We then perform the x-differentiations and ignore higher -order terms
so that

-p -p-I. -Pp ( x , t )- p
0 = - ~_L_ J ~ X~ / 

~ ~L 
-~ -~ -~

P
0 4~c

2 
-p 

-p -p 2 
~~~ (y,t-~x-yI/c0

)d3.~,
0 y c0~x-y~

+ ± f 1 ~~~v
2 -p -~ - -p

41Tc 2 -p 2 
~~ 

~~ (y,-t - Ix -y I /c 0
)d3

0 y 
c0I x- y I

Finally, we assume that the eddy region is compact , that is , its
characteristic linear dimension is much smaller than the acoustic wave-

-p -P -plengths of the sound it generates , and that x-y % x, so that we consider
only the far-field acoustic radiation . We obtain

14
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_______  = 

41TC~~I~~

+ 
1 

~~~~~ ~~~~~~~~~~~~~~~~ )d3~4~rc~Ix I at2 -p 0

The last term may be neglected for compact sources22 so that

p(~~,t)-p0 = 
1 

~~ 
J(~~

_ . L(, t- I~ I/c0
)d3
~ (9)

4irc~~x~ at * . \ 1X I/  lx~
Equation (9) shows that , to first order , the acoustic radiation is
determined from the second time derivative of L. Note that the acoustic
signal at ~ at time t is now related , through the second time derivativ e ,
to fluctuations at the same time , t- I~I/c 0, for all locations ~~~.

We may evaluate L and its time derivatives in a simple fashion for an
array of discrete point vortices . For such an array

= 

j—l ~ 
= r ~(x1~~-y1 )6(x2~~-y2) é 3 (10)

where e3 is a unit vector normal to the plane of motion . We substitute
Equation (10) into Equation (9) and perform the ~ integration (which is
made easy by the appearance of 6 functions) to yield the acoustic radiation
per unit length (in the ~3-direction) at ~=x 1 é1 +x2é2+x3~3

-p -p -P
p (x ,t )-p  2 N /x.x .\ -p0 = 

1 _4~ ~ .~~ L 1 ..~~~~. . ( r &  x~ ) ( 11)p
0~y3 4~c~~~I dt2 j=l \ i~ i I I~I

where = the velocity of the Jth vector , and and are evaluatec
at t-IiJ/c 0. This acoustic radiation is due to flow fluctuations in the
plane x3 = constant. Equation (11) is written in terms of the previously
defined non-dimensiona l variabl es as
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~~~~~~~~~ t*)_p
0 = 

M~ ~~~ 
~~~~ ()~* 

~~~

“

~~
—

~~
-
~~
-- • (é x~~) (12)

21T[~*jN dt*2 j=l \ ~~ / [.~*I ~

where M = FN/2Xc0 = U/c0 is the mean flow Mach number , and ~y* 
= ~y3

/A .

We may express Equation (12) in terms of polar coordinates r* = I~*I and

o = tan 1 x~/x~ in the plane x~ = constant as

p(r * ,0 ,t*)_ p M4 ..0 = ~~~ {(A-B)cos 2o + C sin 2o + A + B] ( 13)

where 
1 N

A

2N . 
x2 3  U

1~~

and N
C = —

i
— s- (x * u~ - x* u~ )2N 1 ,j l,j 24 2 ,j

The quantities A , B , and C are evaluated at time t* _M [~*I

CALCULATION OF SHEAR-LAYER HYDRODYNAMIC SOUND

Equation (13) provides a means for estimating the hydrodynamic
sound generated by an unsteady vortical flow region approximated by a
distribution of discrete point vortices. In this section we describe our
application of Equation (13) to the sound emitted by a single spatial period
of the shear l ayer.

The presence of third time derivatives of position in the expression
poses sign i ficant difficulties. We found that numeri cal estimation of
these derivatives with finite differences did not produce sufficiently
accurate results without severe restrictions on the time-step size . We
therefore chose to obtain these derivatives by analytically differentiating
the equations of vortex motion , Equations (5) and (6). The resulting

16
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r

expressions directly relate 
~1j ’ ~~~~ ~~~ 

and~~2~ to x1~~ and x2~
wi thout truncation error (except that introduced in the calculation of x1 3
and x2 3 ). Note that all of the shear l ayer simulation results reported
in this section were obtained with a sixth-order Mi m e predictor-corrector
integration scheme applied to Equations (5) and (6).

Figures 3a and 3b display two stages in the evolution of the vortex
system in the test case of motion with no external shear-layer disturbance.
The layer is approximated by 126 vortices per unit length distributed
initially in 18 equispaced columns , 7 vortices per column , and the calcu-
lation was performed wi th ~t*=0.O0l25. This smaller number of vortices was
used in acoustic model evaluation calculations to reduce the otherwise very
large expense of performing computations with very small time steps. The
figures suggest a great deal of energetic non-physical (numerical) vortex
activity , and by t*=O. 5 (Figure 3b) significant numerical round-off error
has accumulated . The regular pattern along the layer and the antisymmetry
across the layer of vortex positions , which we expect in an exact
calculation , is significantly eroded. We emphasize that this error is due
to accumulated round-off in the calculation of the N-term sums in
Equations (5) and (6), and not to truncation error in the integration
scheme. Truncation error affects the position of the vortices in each row
in an identical manner so that a regular vortex pattern would still result.

The acoustic radiation as predicted from Equation (13) for the
simulation described here is displayed in Figures 4a and 4b as a function
of angle o measured from the position x1 -direction . The radiation is
presented in terms of a normalized “instantaneous ” intensity which we
define as

[f’~~o
_\f2,~r*\12L’s.’ o~’~A M~ )j

and which is equal by Equation (13) to [(A-B)cos 2o + C sin 2o + A + B]
2

Dividing this normalized intensity computed at time t* by (2ii r*)2 and
multip lying by M8 yields [(p-p

0
)/(p

0
Ay~~)]2, which is proportiona l to the

“instantaneous ” intensity , a~~,
p 2/ p 0, of the sound at position r*, e at time

17
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t~ + Mr’~.~ Also shown in Figures 4 is the intensity predicted by a second
identical simulation with ~t*=0.OO25. At t*=O.25 and at earlier times the
intensities predicted by the two calculations are in excellent agreement , and
both the vortex positions and the instantaneous vortex velocities were found
to agree to within more than four significant figures . At t*=O.5, however ,
significant differences in the predictions became apparent. These differ-
ences are caused by very slight differences in vortex position between the
two calculations which result both from the round-off error already mentioned
and truncation errors. These differences in position lead to large differ-
ences in the vortex velocities , accelerations , and , hence the acoustic out-
put. Since the discrete vortex approximation is made with the assumption
that the fine details of the flow are not of consequence , this result throws
doubt on the applicability of the model for predicting hydrodynamic noise.

The significant dependence of the acoustic radiation on the detailed
vortex distribution at each instant appears in more dramatic fashion in a
second series of calculations. Figures 5a through 5c and 6a through 6c
display vortex positions at three time levels from two calculations of the
layer evolution resulting from a single -wave disturbance . In the simula-
tion depicted in Figures Sa through 5c 126 vortices are “stacked” in
18 columns, 7 vortices per column . In the second simulation (Figures 6a
through 6c) 126 vortices are “staggered” in 18 columns with 4 vortices per
column , and 18 columns with 3 vortices per column . Although the over-all
evolution of the shear l ayer as represented by the two computations is
quite similar , the details of the vortex distributions are very different
as might be expected . The differences in the details of the vortex
distributions have , unfortunately, a very significant effe :t on the acoustic
radiation. (Figures 7a through 7c.) The predicted intens ities are quite
different both in magnitude and directivity . These results indicate that
the hydrodynamic sound computed from the discrete vortex model is not
dominated or controlled by the large scale evolution of the vortex system ,
but is in fact strongly dominated by high frequency components which are

The intensity of sound , I , is defined as the average rate at which energy
is transported across a unit area norma l to the propagation direction , so
that I = c

0
<p 2 >/p

0 
where < > denotes time average .
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Figure 7 - Comparison of Normalized Intensities of Acoustic Radiation from
Shear Layers at Three Different Times Resulting from a Single-Wave
Disturbance and with Different Initial Distributions of Vortices

(Dashed lines correspond to the case of the stacked initial
distribution shown in Fi gure 5a; the chain-dotted lines ,
to the staggered initial distribution of Figure 6a)
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Figure 7 (Continued)
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dependent on the detailed vortex distribution . Since we cannot expect flow
details (on the order of vortex spacings) to be properly simulated with
discrete vortices , the model just described is not appropriate for hydro-
dynamic sound calculations.

The above conclusion is supported by the earlier work of Lugt et al.
(1975) who used Hama and Burke ’ s24 single row model with 12 , 24 and 48
vortices per wave length. Lugt found that the acoustic output generated by
the single row model was highly dependent on the distribution of vortices
which comprise the developing and evolving vorticity concentration
(Figure 8). In such simple models , however , it is diff icult to distinguish
the effects of large scale evolution from the effects of small scale vortex
interaction .

MAXIMUM MINIMUM

OF SOUND POWER

Figure 8 - The Point Vortices Closest to the Center of a Rolling -up
Discontinuity Sheet Generate Most of the Sound. The Shaded
Area Represents the Upper Side of an Initially Horizontal

Discontinuity Sheet.
(From H.J. Lugt)

INCLUSION OF A FINITE-RADIUS VORTEX CORE
In order to overcome a number of problems which have been encountered

In various discrete vortex flow simulations , several authors have intro-
duced the concept of a finite -radius vortex core. The assumption is made
that , at distances from a vortex less than some specified value , the
velocity induced by that vortex is not given by the notential flow
distribution but is determined from a different non-singular distribution .
We incorporated Cho rin ’ s 25 formulation of the finite-radius core into the

25



discrete-vortex shear-layer model. We hoped that by smearing out the small-

scale details of the layer evolution and thereby reducing the large acceler-

ations induced by vortices on their close neighbors , acoustic predictions

less sensitive to the small-scale vortex motion could be obtained .

Following Chorin , we let (in dimensional form)

r x2u — — — —
I ~~ira r

and
r x1

U — — —

2 2iw r

with r /ç2+~~2 , denote the components of the velocity at (x1,x2) induced
by a vortex at the origin. These expressions are applied at r ~ a where a

is the core radius; for r > a the r 1 profile is applied . The combined
velocity expression thus exhibits the potential flow distribution outside
the core and finite values of u1 and u2 inside the core .

A number of computations were performed with several values of the
core radius a. These calculations show that , even with a as large as one-
third of the initial shear-layer thickness , the large-scale evolution of the
layer is not appreciably affected . The small-scale behavior of the layer
is , however, drastically affected and , in general , the acoustic intensity
is significantly lowered . Figures 9a through 9c compare the predicted
intensities (with a core radius of one-third the initial shear l ayer
thickness) for a computation beginning with the “stacked” vortex distribution
shown in Figure 5a and a computation beginning with the “staggered ”
distribution shown in Figure 6a. The intensities predicted by both the
“stacked” and “staggered” computations are a good deal lower than those
predicted without the finite -radius core (Figures 7b and 7c). This might
be expected since the accelerations and time rates of acceleration change
of c losely spaced vortices are substantially reduced and these quantities
are significant in the acoustic prediction (see Equation (13)). The
intensities at t*=O.5 predicted from the “stacked” and “staggered”
computations are encouragingly similar but by t* 0.75 they are quite
different so that there is , unfortunately, no indication that the critical
influence of the initial vortex distributions on the acoustic radiation
lessens as the vortex system evolves.
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• Figure 9 - Comparison of Normalized Intensities of Acoustic Radiation
from Shear Layers at Three Different Times (with Chorin ’s Finite-
Radius Core) Resulting from a Single Wave Disturbance and with

Different Initial Distributions of Vortices
(Dashed lines correspond to the case of the stacked initial
distribution shown in Figure 5a; the chain-dotted lines ,
to the staggered initial distribution of Figure 6a)
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Figure 9 (Continued )
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SUMMARY AND CONCLUSIONS

We have shown that a discrete vortex model of the two-dimensiona l
shear layer effectively models the large scale evolution and behavior of the
layer resulting from the application of an imposed disturbance . An identical
conclusion was reached by Acton .’8 The over-all behavior of the l ayer is
in qualitative agreement with the experimental observations of Winant and
Browand .4 However , although we are aware of no directly relevant data
wi th which to compare the model estimates of the hydrodynamic sound
generated in the layer , our investigation has led us to conclude that the
vortex model is not an appropriate representation of the shear l ayer for
acoustic predictions. We find that the detailed small-scale motion of the
vortex system plays a major role in the nonphysical (numerical) acoustic
predictions; this result is inconsistent with the original premi se under
which all vortex models are applied ; namely, that the small scale behavior
is not of significance. Because small scale motion has overwhelming
effects on the acoustic predictions , we are not able to elucidate the role
of the large scale behavior in the generation of hydrodynamic noise.

The conclusions presented here indicate that other applications of
discrete vortex models to the prediction of hydrodynamic noise 13 ’14 should
be carefully scrutinized . Although these other applications have been
made to statistically steady flow fields , the time-averaged results may
still be significantly affected by the non-physical small-scale vortex
motion.
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1 NAVSHIPYD MARE/Lib 1 \ Rand Corp/L. -S. Yao

1 NAVSHIPYD NORVA /Lib 10 Science App lications , Inc .
W ,J . Grabowski

1 NAVSHIPYD PEARL/Lib

1 NAVSHIPYD PHILA/Lib CENTER DISTRIBUTION

NAVSHIPYD PTSMH/Lib Copies Code Name

2 NAVSEC 1 1500 W.E. Cumins
1 SEC 6ll3B6/P.A. Gale 1 1504 V. Monacella
1 SEC 6l 14/R.S. Johnson 1 1 520 R. Wermter

12 DDC 1 1521 P. Pien
1 1 540 W.B. Morgan
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Copi es Code Name
1 1552 J. McCarthy
1 1552 N. Salvesen
1 1552 C. von Kerczek
1 1 562 M. Martin
1 1564 J. Feldman
1 1572 C . Lee
1 1572 D. Moran

1 1600 H.R. Chaplin

1 1630 A.G . Ford

1 1800 G.H. Gleissner
1 1802.2 F.N. Frenkiel
1 1805 E.H. Cuthill
2 1809.3 D. Harris
1 1820 A.W. Camara
1 1840 H.J. Lugt
1 1843 J.W . Schot
30 1843 J. Teiste
1 1844 S. Dhir
1 1850 1. Corin

1 1870
1 1890 G.R. Gray

1 1900 M. Sevik
1 1939 A. Bisson
1 1 942 F. Demetz
1 1960 D. Felt
1 1 965 M.L. Rumerma n

10 5214.1 Reports Distribution
1 522.1 Unclassified Lib (C)
1 522.2 Unclassified Lib (A)
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