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1. INTRODUCTION

Historically, the most common assumption for generating a shock wave
in a lattice from a microscopic point of view is to maintain the end
particle at a steady compression velocity u for all times. Paskin and

Dienes 1 2
, t’tanvi

3
~
6
, Duva11

3 5
, and Lowell

34
, Tasi7~~

2
, and Musgrave

U l 2
,

and Powell and Batteh13 have used the above assumption while Beckett
14

1. A. Paskin and G.J. Dienes, “Molecular Dynamic Simulations of Shock
Waves in a Three-Dimensional Solid”, J. Appl. Phys. 43, 1605
(1972).

2. A. Paskin and G.J. Dienes, “A Model for Shock Waves in Solids and
Evidence for a Thermal Catastrophe”, Solid State Comm. 17, 197
(1975).

3. R. Manv i , G.E.  Duvall , and S.C. Lowell , “Finite Amplitude Longi-
tudinal Waves in Lattices”, m t .  J. Mech. Sci . 11, 1 (1969) .

4. G.E. Duvall, R. Manv i, and S.C. Lowell , “Steady Shock Profile
in a One-Dimensional Lattice”, J. Appl . Phys. 40, 3771 (1969) .

5. R. Manvi, and G.E. Duvall, “Shock Waves in a One-Dimensional,
Non-Dissipating Lattice”, Brit. J. Appl. Phys. 2, 1389 (1969).

6. R. Manvi, “Shock Wave Propagation in a Dissipating Lattice Model”,
Ph.D. Thesis (Washington State University, 1968) (Unpublished).

7. J. Tasi, “Perturbation Solution for Growth of Nonlinear Shock
Waves in a Lattice”, J. Appi. Phys. 43, 4016 (1972). See also
Erratum (J. Appi . Phys. 44, 1414 (l9~3)).

8. J. Tasi, “Perturbation Solution for Shock Waves in a Dissipative
Lattice”, J. Appi. Phys. 44, 2245 (1973).

9. J. Tasi, “Far-Field Analysis of Nonlinear Shock Waves in a Lattice”,
J. Appl. Phys. 4~, 4569 (1973).10. J. Tasi , “Reflection of Nonlinear Shock Waves in a Lattice”, J.
Appl. Phys. 47, 5336 (1976).

11. M.J.P. Musgr~~e and J. Tasi, “Shock Waves in Diatomic Chains - I.
Linear Analys is”, J. Mech. Phys. Solids 24 19 (1976).

12. J. Tasi and M.J.P. Musgrave, “Shock Waves in Diatomic Chains - II.
Nonlinear Analys is”, J. Mech. Phys. Solids 24, 43 (1976).

13. J. Powell and J. Batteh, “Shock Propagation in the One-Dimensional
Lattice”, BRL Report No. 2009, 1977. (AD #A04479l)

14. D.H. Tsai and C.W. Beckett , “Shock Wave Propagation in Cubic
Lattices”, J. Geophys. Res. 71, 2601 (1966).
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MacDonald 15
, and Tsai’4~~

7 have assumed that it is more realistic to
accelerate the end particle from zero to its final velocity in a time
tmax~ Indeed , it seems impossible for the end particle to achieve its
final velocity instantaneously. There should be some effect on wave
propagation in the surface atoms, and perhaps some other phenomena owing
to the differences in the two cases. However , it is not clear whether
the results will be changed enough to warrant the additional complications
of a more realistic model. Therefore, the purpose of thi s report is to
obtain a better understanding of wave propagation in a lattice for the
two different cases. A fringe benefit of this study is that some results
have been obtained for the most common assumption , which will be reported
here for the first time.

The specif ic problem chosen for study in this report is a small part
of an ever increas ing research effor t to descr ibe shock propaga tion in
solid s from a microscop ic point of view. Usually this nonlinear problem
of solv ing Newton ’s second law for the motion of individual particles
is done numerically on the computer. Since this method starts from such
a fundamental equation , many physical effects can be treated without
the usual simplifying assumptions of conti~tuumn mechanics . For
instance, a well- known lattice-dynamical result predicts that if a one-
dimensional lattice -with linear interatomic forces is subjected to steady
compression, the wave profile will spread as it travels farther into
the lattice. This effect is explained by the fact that the normal-
mode frequencies have different group velocities. However , this disper-
sion arising from the discrete nature of the lattice is not included in
the hydrodynamnic approach. Furthermore, when nonl inear interatomic forces
are taken into account, the wave profile steepens and the normal modes of
the crystal become coupled. The consequences of this coupling can best
be determined by a microscopic approach.

Many physical effects are assumed in a continuum approach to have
specific characteristics based on intuitive reasoning . One such assump-
tion is that the shock compressed material has yielded completely, so that
the stresses may be assumed to be hydrostatic. The usua l jus t i f ica t ion
for this state~nent is that the high pressure in the compressed region
causes the shear-yielding to be complete. However, Tsa i’5 has suggested

15. D.H.  Tsai , “An Atomistic Theory of Shock Compress ion of a Perfec t
Crystalline So l id” , in Accurate Characterization of the High-Pressure
Environment, edited by E.C. Lloyd , Natl. Bur. Stds. Spec. Pubi. No.
326 (U.S. GPO, Washing ton , DC , 1971), p. 105.

16. D.H. Tsai and R.A. MacDonald, “Second Sound in a Solid Under Shock
Compress ion”, J. Phys . C, 6, L17l (1973).

17. H. Prask, P. Kemmey, S. Trev ino , D.H. Tsai, and S. Y ip, “Computer
Simulation Stud ies of the Microscop ic Behav ior of Shocked Sol ids”,
Proceed ings of the Conference on Mechanisms of Expl osion and Bla st
Waves, editor J. Als ter (JTCG/ALNNO , Naval Weapons Station, Yorktown ,
VA, 1973, XVI).
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that the yield strength of the material is probably much higher under
dynamic conditions. This problem of time - dependent yielding under
the transient condition of shock compression has not been exhaustively
studied either experimentally or theoretically in the high-pressure
regime. Furthermore, it is not clear if the steady state assumption,
and thus the Hugoniot relationships in their usual form , apply. Other
assumptions for continuum treatments of shock propagation concern the

equation of state for the solid and the nature of viscous effects
18’19.

Actually, little is known about the equation of state, and the orig ins of
viscous effects are not completely understood. In principle, by calcu-
lating the positions and velocities of the particles as a function of
time in the microscopic approach , the quantities such as pressure ,
density , and temperature can be determined without an equation of state
or assumed viscous effects.

Final ly ,  nonlinear (anharmonic) lattice dynamics has been greatly

infl uenced by the work of Fermi, Pasta and Ulain (FPU)20. At the time of
their paper it was generally accepted that small nonlinearities would
lead to equipartition of energy. In a linear (harmonic) system energy
deposited into a normal mode can never flow to another normal mode, but
it was thought that a small nonlinearity would cause energy to flow from
one mode to another until the time-averaged energy of each mode was the
same. FPU studied the vibration of particles connected by nonlinear
springs by using a computer. They found that the system did not approach
thermal equil ibr ium, but rather returned to its original state after a
recurrence time. On the other hand, the hydrodynamic theory assumes
that thermal equilibrium exists behind the shock and a l lows for only small
deviations from equilibrium within the front. A recent report by Powell

and Batteh13 exam ines this question in some detail , includ ing a discuss ion
of the similarities and differences in the results and interpretations of
earlier authors.

The approach to thermal equil ibr ium in the compressed reg ion is
important to the theory of detonation. For instance, the Zeldovich-von

Neumann-Doring (ZND) theory of detonation
21 

treats the shock front as
a mathematical discontinuity. The only function of the shock wave is to
provide the energy necessary to raise the temperature, densi ty, and
pressure of the lattice to values higher than in the undisturbed lattice.
The condensed reg ion, where chemical reactions occur , is assumed to be
in thermodynamic equilibrium . However, numer ical and perhaps analytical

18. W. Band , “Studies in the Theory of Shock Propagation in Solids”,
J. Geophys. Res. 65, 695 (1960).

19. D.R. Bland , “On Shock Structure in a Solid” , J. Inst. Math.
Appl ications 1, 56 (1965).

20. E. Fermi , J . R .  Pasta , and S.M. Ulam , “Studies in Nonlinear Problems”,
Los Al amos Sci. Lab. Rep . LA-l940, 1955; also in Collected Works
of Enrico Fermi (Univ of Chicago Press, Chica go, 1965), V. II , p. 978.

21 B.Lewis and G. von Elbe, Combustion, Flames and Explosion of Gases
(Academic Press , New York , 1951), Chap. Xl.
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solutions may show that the shock profile is not steady, or the time to
re-establish equilibrium is of the same order as of the time required
for a chemical reaction. In that case some assumptions used in detona-
tion theory will have to be changed.

2. THEORY

This model treats a semi-infinite chain of atoms, of mass m, which
interact pairwise through a Morse potential. At equilibrium the lattice

spacing between neighboring atoms is %, the displacement of the jth
atom from its equilibrium position is given by the coordinate x., the

distance to the j atom from the orig in of the system located at the
equilibrium position of the zeroth atom is r., and the corresponding

distance to the equilibrium position of the j atom is r
0~. (see

Figure 1). The coordinates obey the relation,

r.  = r . + x. . (2.1)j oj :i

v0

~ VVW~~ V V V , WV • • •
0 1 2 N - i  N

Figure 1. Model for simulating shock propagation in a one-dimensional
discrete lattice.

The aim of this calculation is to obtain the solution for the classical
equations of motion of the atoms when the zeroth atom is subjected to an
acceleration which changes its velocity from zero to its final value u
in a time tm~~ 

Thereaf ter , the initial particle travels at a steady
compression velocity u.

The Hamniltonian for the chain can be written as

H = m ~ v
2. + • (r 1, r2, •• . , r ) , (7 .2)n

where v. = dx ./dt is the velocity of the ~th particle and ~ is t he total
potential energy of the lattice. Newton’s second law for the j particle
becomes

d x.
m —i- = F. + F . ext 

, (2.3)
dt

14 
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where F~ = - is the fo::e exerted on the J
th particle by the remaining

atoms of the lattice and F~ is the corresponding external force. In

this investigation, F~
e
~
ct is zero for all particles except j=o, when it

is varied in such a manner that this particle goes from zero velocity
to the steady compression velocity u in a time t . It is themax
intention of this report to investigate the difference between the above

F0~~
t 
and the more usual one which constrains the zeroth particle to

move at constant velocity u for all times.

If we assume that ~ can be obtained by summing over two bodypotentials , i.e.,

~(r01, r02,•~~•, ~~~~~~~ = • (~r.—r .~ ) (2.4)

I <j

where r~3 
= r~

_r
~. then ~ can be expanded in a Taylor series about the

equilibrium positions of the relative displacements , rj~ = r
01 

- r0~ .

Furthermore, if we assume that the deviations of the r.. from their
equilibrium value are small , the expansion can be truncated af ter second
order terms such that

~~~~~~~~~~~~~~~~ 
r~~°,

...) + 5 ~~ 

x x .  , (2.5)

i ,j = o

where is a constant which will arbitrarily be set equal ‘~ zero here-
af ter and where

= 
( a 2

~ (‘6ii I ~~~~~~ 1
1 J F  r , r .

01 03

The first-derivative term in the Taylor series expansio
~h

for the potential
vanishes since it is the nega tive of the force on the j atom in the
equilibr ium conf iguration , which is zero. The potential in Eq. (2.5) is
called the harmonic potential. Finally, if we assume only nearest-neighbor

interactions such that only the j+l~~ and ~j_ 1
St atom exer t an apprec iable

force on the jth atom , we have

$ij 
= — 

~
‘
~~i,j—l 

— 2
~ij 

+ 6i j+l~ 
(2.7)

15



where y is the force constant of the “spring” connecting success ive
particles and 6 is the Kronecker 6. Equations (2.3)-(2.7) then tmply

that the equation of motion of the jth particle is given in the harmonic
approximation by

2d x .
m 2 = y(x.~ 1-2x.+x. l~ 

+ F . ex 
. (2.8)

dt ~

Equation (2.8) is a linear, second-order, differential equation and it
has an exact analytic solution for certain external forces, which will
be given later.

However, while Equation (2.8) can generally be used for calculating
the equilibrium properties of a lattice especially at low temperatures,
it is not a good starting point to describe a shock wave in a solid.
The first reason is that at the high temperatures present in shock waves
the relative displacements of the atoms from equilibrium are so large
that higher order terms must be retained in Equation (2.5) . Second , in
the harmonic approximation the shock energy is initially distributed
among the norina.l modes in a nonequilibrium fashion and there is no
coupling mechanism allowing the crystal to thernialize after the shock
has passed. Furthermore, the steepening of the wave profile in a
compressed lattice is caused by the nonlinear terms. Therefore, the
shock wave, which results from the steepening, must include nonlinear
terms.

In the present research a Morse potential was used, and only nearest-
neighbor interactions were assumed. The Morse potential can be written
as

~ I -a(x . -x. ) 1 2
eM = D 

~ 

i i-l 
_ l]  , (2.9)

i=1

where D, and a are constants which are usually fit to the experimental
data.

3. THE HARMONIC LATTICE

A harmonic lattice cannot support a shock wave in the usual sense
for the reasons given in the preceding section. However, the calcula-
tion was performed to gain a better physical understanding of the
analogous nonhi~ear case. In addition, the calculations for the
anharmonic case must reduce to the harmonic case as the nonlinear terms
go to zero.

We shall begin by presenting the solution of Schroedinger22 for the

22. E. Schroedinger, “Zur Dynainik Elastisch Gekoppelter Punktsysteme”,
Ann . Phys. 44, 916 (1914).
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equations of motion for the atoms of an infinite, one-dimensional,
harmonic lattice for arbitrary initial conditions. When the lattice
is in equilibrium neighboring atoms are uniformly separated a distance

where the zeroth atom is Jocated at the origin (see Figure 2). Ali

the external forces are zero. By observing the symmetry of the problem
we can choose the initial velocities and positions of the particles for
j ~ 1 so that the zeroth particle travels to the right in a prescribedmanner. The result of the above selection is to change the boundary-
value problem for wave propagation in a semi-infinite lattice to an
initial-value problem for an infinite chain. We then use this model to
investigate wave propagation for two sets of boundary conditions on the
zeroth particle. In the first case, the zeroth particle is set in
motion at constant velocity u, and in the second case it is accelerated
from zero to its final velocity u in a time t after which it moves
at constant velocity u. max

3.1 General Solution of the Equations of Motion for the Semi-Infinite ,
One-Dimensional , Harmonic Chain with Boundary Conditions.

Cons ider a chain cons isting of N atoms (see Figure 2) connected
by harmonic springs of force constant y. Every atom has mass m and is
labeled by index j

N-i . N-l
- ---

~
-- ~~~~31~~

We will assume for convenience that N is odd . It will be made arbi-
trarily large in the final results.

The differen tial equation of motion for the ~th atom, assuming
only nearest-neighbor interactions , is given by Eq. (2.8) without the
forc ing term , viz. ,

2d x.
m 2 = y ( x .~~~1 

- 2x. + x .  (3 .1)
dt ~

As N-÷°’ Morse and Ingard 23 give the Schroedinger solution22 in our
notation as

23. P.?!. Morse and K.U. Ingard , Theoretical Acoustics (McGraw-Hill ,
New York , 1968). Chap. 3.
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x
3

(t)  = ~~ J2~~2~
(u0t) +(

~
.._ 

~ Vm ) J 2j _ 2p_ l (wot)~~ (3.2)

p=-~ 
m~p+l

and

dx.(t)
_____  = ~ ~~ J2. 2~ (w0t) + 4 u 0 (a~ -a~ + 1)J 2~~ 2~~ 1(u 0t) ~ , (3.3)

p=-
~

where ~~ V~ are the initial displacement and velocity at time t=o ,

J (u t) are the Bessel functions of the first kind , of order m , and

w = 2 / .

We can guess from symmetry considerations the initial conditions
which must be imposed on the particles j ~ 

- 1 in order that the zeroth
particle has the equation of motion x0=ut for all time. Consider an

observer in a frame of reference moving at velocity u which is located
at the origin of our stationary system at time t=o. If the initial
conditions of the particles j > 1 are the mirror image of the particles
j ~ - 1 in this moving system, there will be no force on the zeroth
particle. Therefore, we assume the following initial conditions,

= ~~~~ V~~~~= 2u~V 1~~j~ 
a0 0, V0=u . (3.4)

It can be shown that

V = 2u Ip I - u + 
~~ 

V , p ~ o . (3.5)

m=p+1 m= Ipj

Rearran gemen t of Eq. (3.2) using Eq. (3.4) and Eq. (3.5) results in the
solution to the semi-infinite chain with the boundary condition
x =ut viz.,
0

x~ (t) = 

!=~ 
~ ap(J2j 2p (wot )  -

+ 

~~~~~ 

v) (J 2~+2~_1~~0t) 
+

+ (2P-1) J2~+2~~1 (w0t) , j > o (3.6)
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and

dx . (t) w
= ~ (a -a~~1) (J 2~_ 2~_ 1 cw 0t) + J2j+2p+i(uot))

+ J2 .2 (w
0t) + (2u-V )

- u J2.(w0t) , j ~ o (3.7)

where the following relationship has been used

~i ~~~~~~ 
= .2! (Jm l (wot) - Jm+i (wot) ) . (3.8)

Other useful relationships of Bessel functions are

J_m~~o
t) = (_1)m J(w t) m integer (3.9a)

1 = J2m (w
ot) = J0(w0t) + 2 

~ 

J2~
(w0t) , (3.9b)

= 2 ~ (2m+l) J2m+1~~o
t) , (3.9c)

and

J (0) = 6 . (3.9d)m om

With the above relationships one can easily verify that x. (o) = a.,
= V..

3 3

From Eq. (3.6) and Eq. (3.9c) one can show that

x (t) = ~ 
(2p+l) J2 1

(w t) = ut , (3.10)
o p=o

which is the correct boundary condition.

20
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A special solution of Eq. (3.6) used in this investigation for the
quiescent lattice, (a. =o, V=o for j > o, V0= u), is

x (t) = -
~~~~~ ~ 

(2p+l) J . 
2 1 (w0t) . (3.11)23 +o p=o

Another special solution used in this investigation of the semi-
Ut 

•infinite chain with the boundary condition x0 
= ut - 

2 max

can be determined by making the following observations. Let
utmaxY.(E) = x.(~) - 2 (3.12)

where f = t-t so that the initial conditions at E=o aremax utmaxY (o) = o , Y0 (o)=u , Y~ (o)= a. - 20

and
(3.13)

Y.(o)=V .,(j > o)

.thwhere a- and V . are the position and velocity of the j  particle at
3 3

~=o.

Y~(~ ) satisfies an equa tion of the same form as Eq. (3 .1 ) ,  and has the
same initial condition~ at t=o as x.(o) in Eq. (3.6). Therefore, theul. 3
solution for x =ut max

iso 
- 

2

oj

( 

ut
j . 

(~ (t-t ))
1x.(t-t ) = a max

3 max 
P=1 ( 

p 
- 

2 )[J2~_ 2~(~0 c t t  )
\

max ) - 2j+2 p \. o max j
+ 
2 v \ (

~ (t t ))
o \m=P ) j+2p-1~

+ J2 J 2 p+l (wo
(t_ t~~~))] 

- 

ut 

(3.14)

+ (2p-l) J2~+2~_ 1(~ (t-t ))
l + 

max
0 ~~o max 2 max
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and

dx .(t-t ) w
= ~ (a~-a~~1) [J 2j_ 2p_i(Wo(tt max))

+ J2j+2p÷l (wo(tt max))]+ ~ V~ J2j~ 2p(Wo(tt max))

+ (2u-V ~) ~2~+2~ (wo
(t_t

max)) ~ 
- ~ ~~ (wo

(t_t max))~

t > t  . (3.15)max

The above solutions are matched at t=tm to the solutions which have

a different boundary condition between t=o and t=tmax •

Let us now consider a special solution to Eq. (3.1) with the follow-
ing initial conditions at t=o, viz., a

3
=0, v0=0, vj . are arbitraty,

and v _ are to be determined , with the boundary condi tion

= - 

Ut 

sin 
(

~~~
t ), 0 ~ t ~ t (3. 16)

max

and

dx /
0 U u h i t

= ~~ - - cos ( 
~ 

. (3.17)
max

Under these conditions Eq. (3.3) and Eq. (3.17) reduces to

~ (l~
cos

(~~~ax )) 
= 

~~~ 

(v~+v~~) J2~ (w0t) (3.18)

where the V are to be determined for arbitrary V . The cos-p p
24 max

has an expansion in terms of Bessel functions depending on the range

iT 
, v i z . ,

max 0

24. Handbook of Mathematical Functions, edited by M. Abramowitz and
1. Stegun (Nat’l Bur . Std., WASH , DC , 1964), Chap. 9).
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cos(w t s in e)  = .J~~~~~t j  + 2 ~ J 2 (~~ t )  cos 2n 8, (3.19)
n= 1

for the case ~ 1 where sin 8 =t U) t U)
maxo max o

and

cos(u t  coshc*) = J0 (w 0t)  + 2 
~ 1 

( 1) k J 2k (wot) cosh 2k a , (3.20)

for the case ~ 1 where cosh a = . With the aid oft (A) t U)max o max o

Eq. (3.9b) and the above equations , Eq. (3.18) can be written as

U 

~~ 1(l_ cos 2p 8) J2~ (U)0t)
+ V )  J 2 (w 0t) = (3.21)

u ~ (l~~(~ l)~’ cosh 2pa) J 2 ( u t )
p=l p

dx
—

~~~~~

- is an example of an entire function. Therefore, it has a uni que
Neumann ’s expansion. We can conclude that the relationship between the
arbitrary V and the determined V isp -p

u( 1-cos2p8) , ~ 1
v + v  = 

max o 
(3.22)p -p

u ( l - (- l)~ cosh 2pcz) , 
~ ~ 1

max o

A note of caution is appropriate at this point. If one tries to oLtain
Eq. (3.22)  by mul t ip ly ing Eq. (3.18) by

J2, (wet)
w0t

and then integrating from 0 to with the aid of Kapteyn ’s orthogonality
25relation

25. W. Kapteyn, “Sur Quelques Integrales Definies Contenant Des Fonctions
De Bessel”, Archives Neerlandaises Des Sciences Exactes et Naturelles,
VI , 103 (1901).
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J (t) 
dt = 

i
_ ( J~T’ - ~

)‘
~ , n ~~‘ 1 (3.23)J -xte

0

a different result is obtained. This procedure requires a questionable
interchange of two limit operations, one being the infinite series, the
other the infinite (improper) integral. Apparently Eq. (3.20) is not

.26uniformly convergent as pointed out by Gautschi . The following
summations are used for the final solution, viz.,

p

~ cos(2m8) = 
s in[(2p +l) 8  ] 

- 
1 (3.24)2 sin 8 2m= 1

and

p

~ (_1)m cosh(2ma) = 
(-l)~cosh(2p+l)ct - coshcx (3.25)2 cosh am= 1

Therefore, the solution to Eq. (3.1) for a semi-infinite chain with the
boundary condition Eq. (3.16), and the initial conditions

a.j=0, 
v~~~~0 (3.26)

is

~ sin[(2p+l)8) It 
~~

2u max o

~ 
)~i 2sinB ‘t U)

3 (A)
x.(t) = — 

~~

° P~° (-l)~~cosh (2 p +l ) a  
______ > 1 f2 cosh c& ‘ t wmax o

(3.27)

and

dx.(t) 
( (1-cos2p8) 

‘ U) ~ i )
2j+2p °

= 
max ~ 

~ J (w t) . (3.28)
(1-(-1)~ cosh2pa), ~ > 1p=l ( t (I)max o

26. W. Gautschi , private communication.
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Eq. (3.27) and Eq. (3.28) at t=tm become the initial conditions
a

3
, V . for Eq. (3.14) and Eq. (3.15), ~~ z . ,

a- = x.(t ) , (3.29)
j  j  max

and
dx.(t )

= 3 max 
(3.30)

3 dt

We now have the matched solution for a semi-infinite chain whose end
particle is accelerated in a prescribed manner from zero to constant
velocity u in time tmax

3.2 Propagation in the Initially Quiescent Lattice.

If we assume that initially all par ticles except the first, which
travels at velocity u (x

0=ut), are at rest in their equilibrium positions ,
thwe have Eq. (3.11). The velocity of the j particle is

dx.(t)
______ = u J2~~(w 0t) + 2u 

p~1 
J2~~2 w0t) . (3.31)

The infinite series in Eq. (3.11) and Eq. (3.31) converge rapidly, and
a computer program was written to evaluate the sums .

In Figure 3 , we have plotted the nondimensionalized velocity and
displacement of the 10th particle as a function of nondimensionalized
time , i . e . ,

U) ds.(t) dx .(t)
s~ (r) = 2. x.(t), ~~~ — = , z=w t . (3.32)

The peak velocity of the wave disturbance arrives at the 10th particle
at a rate of one half part icle per unit of nondimens ional time. This
result is the maximum normal - mode velocity as can be obtained from
the dispersion relation for the harmonic lattice, viz. ,

ka
U ) (k)  = (L)~~ sin _22. (3.33)

where w(k) is the frequency of the normal mode with wave vector k.
The group velocity is

w a  kadw(k)  0 o o
dk - 2 COS~~~y~
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Figure 3. In dimensionless units the velocity which oscillates about

unity and the displacement from equil ibr ium of the 10th
particle are plotted as a function of time for a harmonic
lattice with a rise time r =0.0.max

26



where the maximum is given by

dw(k) 
= ~~~ ° 

. (3.35)
max

Per unit of nondimensionalized time r=~0
t, the speed is cL0/ 2 , or one

half lattice spacing per unit tau. At a later time the wave has

reached the 60th particle, as can be seen in Fig. 4. The dispersive
nature of the wave is evident.

The results for all cases where tm #0.0 are obtained from Eq. (3.27)

and Eq. (3.28) for t 
~ ~~~~ 

and from Eq. (3.14) and Eq. (3.15) for

t > t . When the rise time t = 1.0 , we notice l i t t le  difference inmax max
Figure 5 from the case t =0 in Figure 3. For a rise time t =6.0 wemax max
notice that each amplitude of the successive peaks in the wave train at

the 10th particle in Figure 6 is less than the correspond ing ampli tude
th . . . . that the 10 particle in Figure 3. When this wave reaches the 60

particle in Figure 7, each amplitude is not so great as the corresponding
amplitude at the 6Othparticle in Figure 4. This trend continues as the
rise time increases. For a rise time t =12.00 each amplitude in the

th max
wave train for the 10 particle in Figure 8 is very low . By the time

the wave reaches the 60th particle in Figure 9 its amplitudes are much
smaller than at the 60th particle in Figur e 4. When the wave reaches

th . . . .the 140 particle in Figure 10, it st i l l  does not have the amplitudes
of the 60th particle in Figure 4 , although its amplitudes have increased
from their value at the 60th particle in Figure 9.

Now we can make some general observations about the velocity-time
trajectories at specif ic par ticles near the surface in the harmon ic
approximation . Each amplitude of the successive peaks in the wave train
is less than the corresponding amplitude for the instantaneous com-
pression case by an amount which is inversely proportional to the rise
time Tmax~ This phenomenon most likely results from the fact that the

total computed work done on the zeroth particle at the time when the
first velocity peak is at a specific particle is less than the corre-
sponding instantaneous acceleration case. Therefore, surface effects
will persist ± r  hundreds of atoms if the rise times are large enough.
It should be pointed out that wave propagation in a quiescent harmonic
la ttice has more applicab ili ty to propagation on a thermal background
than one might at first suspect. Powell and Batteh13 have concluded
that in a harmonic lattice the ensemble average taken over many initial
conditions will lead to the same results for the average velocity and
displacement as for the case in which the initial conditions are zero.
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Fi gure 4. In dimensionless units the velocity which oscillates about
unity and the displacement from equilibrium of the 60th

particle are plotted as a function of time for a harmonic
lattice with a rise time T =0.0.max
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Figure 5. In dimensionless un its the veloci ty wh ich osc il la tes about
un ity and the displacemen t from equi libr ium of the 10th
particle are plotted as a function of time for a harmonic
lattice with a rise time r =1.0.max
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Figure 6. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 10th

particle are plotted as a function of time for a harmonic
lattice with a rise time t =6.0.max
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Figure 9. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 60th

particle are plotted as a function of time for a harmonic
• lattice with a rise time T =12.00.max
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Figure 10. In dimensionless units the velocity which oscillates
about unity and the displacemen t from equi l ibr ium of
the 140th particle are plo tted as a function of time
for a harmonic lattice with a rise time T 12.00.max
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4. NONDIMENSIONALIZED EQUATIONS
FOR ANHARIIONIC CASE AND METhOD FOR SOLUTION

If the Morse potential of Eq. (2.9) is used in Newton ’s second

law o~ Eq. t2. 3) , and n ext is set to zero , we can obtain the nondi-
mensionalized equations~of motion, viz.,
d2s~ (r) 

= 
1 

[
exP {~

A~(sj+1~sj } - 
exp { - 2Am(Sj+l~

Sj) }2 4Adr m
(4 1)

- exp
{
-Am (s.-s. i)} + exp~~- 2A (s -s 1)}]~i ~ 1m j j

where the definitions in Eq. (3.32) are used as well as
2mu

A =~~~~- , D —  ° (4 2)m 8tZ 2

The boundary condition for the zeroth particle can be chosen as desired .
In this paper three cases are investigated ,

S = T , t > 0 (4.3a)
Tmax . f u r  \ 1s = — - r -  sin jo 2 

~jmax ) ) ‘
(4 . 3b)

S T - l / 2 T , r > ro max max

2
T 

- 1/2 r , -r > r (4.3c)S = , 0~ t -r s0 = max maxo 2r mamax

where r = w tmax o max
Eq. (4.1) and Eq. (4.3) constitute a set of N coupled , nonlinear , second-order differential equations which must be solved numerically for variousvalues of the parameters under consideration . These equations can beconverted to a set of 2n first order equations, viz.,

3 3
1

= ~~~~~— exp {_2Am(s.~ s .i )
.} 

- exP [
_A

m (sj _ s
3 1 )Jm

- exp [~2Am sj+i ~ sj ) J +  exp [-A  (s -s ) i }~i ~ 1 (4.4)m j+l j j
d2s

0

2di
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where the dot denotes differentiation with respect to the dimensionless
t ime -r .

To solve Eq. (4.4) we employed a computer program developed by

Powell and Batteh13, modified to take into accoun t the different
boundary conditions in Eq. (4.3). This program uses a fourth-order

Runge-Kutta scheme27 . Given the values of the functions on the left-
hand side of Eq. (4.4) at time i , this method approximates their values
at time r+ ~-r by a fourth-order polynominal in Ar .

The harmonic limit of Eq. (4.4) occurs as Am tends to zero. When

Am = 0.0001, good agreement with the harmonic case was obtained . The

interested reader can obtain more details on the program from the above
reference 13.

The remainder of this paper will discuss the results of the numeri-
cal solution of Eq. (4.4) for different cases.

5. PROPAGATION IN THE INITIALLY
QUIESCENT, ANHARM ONIC LATTICE

In this section we will discuss the numerical solution of Eq. (4.4)
for var ious values of the anharmonic ity parameter A

m and r ise time Tmax~
For this discussion the following definitions are needed . The term
solitary wave means a localized traveling wave of constant shape and
amplitude. In this report, the term soliton describes a nonlinear
solitary wave which emerges from a collision with a similar pulse ,
retain ing the same shape and speed it had initially.  Final ly , the term
envelope soliton describes an envelope of constant speed imposed on a
solitary wave train with its own carrier speed.

The results are divided into four parts , each of which represents a
different boundary condition on the zeroth particle. When the zeroth
particle travels at constant velocity, we observe a sol itary wave tra in
at the head of the veloc ity trajectories of ind ividual particles and an
oscillatory tail which persists in the long-time limit. A sinusoidal accel-
eration on the zero th particle produces what may be an envelope sol iton
traveling much slower than the shock wave. The same behavior is observed
for a ramp acceleration. Finally, when the zeroth particle is decelerated
to zero, an example of solitons spreading out in time is observed .

27. B. Carnahan, H.A. Luther, and J.0. Wilkes , Appl ied Numer ical
Methods (W y , New York , 1969), Chap. 6.
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5.1 Zeroth Particle Travels at Constant Velocity

Let us look at the results of solving Eq. (4.4) under the boundary
condition Eq. (4.3a). This physically corresponds to the case where the
zero th particle is pushed at constant speed for all time. For the
anharmonicity parameter A =0.2, Tma =O

~ 
and Ar=O.05 the velocity and

position of selected particles is plotted as a function of tau. As the

wave travels from the 10th particle to the 90
th 

particle in Figure 11
to Figure 14, we see tne amplitudes of the successive velocity peaks
near the head of the shock wave gradually develop into a solitary wave

train as was po inted out by Tasi9 and Powell and Batteh 13
. The latter’3

have plotted the maximum particle velocity behind the shock front for
A~=O.2 and Am=l~

O at a time when the front is approximately located at

the 480th particle. Their result indicates that the amplitudes of the
leading solitary waves approach a dimensionless velocity of 2.0. The
lead ing ampl itudes for the case Am= l O  approa~e the value of 2.0 much

sooner than the case A =0.2. The oscillatory tail is evident in Figure

11 and Figure 12 as was noticed by Tasi
7
. A similar oscillatory tail

was reported by Zabusky in his numerical solution to the Korteweg-de

Vries equation28.

For the anharmonicity parameter Am=l~ O~ Tmax=O •O~AT=O~O2S I and

boundary condition Eq. (4.3a), we see that the solitary wave train at

the head of the shock wave has nearly formed at the 70th particle

in Figure 15. As the wave passes the 80
th 

and 240
th 

particle in
Figure 16 and Figure 17 we notice that the leading amplitudes of suc-

cess ive ve locity peaks have increased sl ightly over the 20th particle.
For all these cases we notice that the amplitudes of the oscillatory
tail at times long after the shock has passed has not approached zero

as was the case for the 10
th and 2o~’ particle for A =0.2. A careful

examination of the 80th and 240 th velocity t ra jector ies  w i l l  also show
a slight spreading of the leading solitary waves. The greater the
amplitude the faster they travel. This property is a characteristic of
solitons . It was decided to observe the oscillatory tail at times long

after the shock wave has passed. The 15t and 5th particles were observed
for times greater than 200 in Figure 18 and Figure 19. The maximum

amplitude of the 15t particle is approximately 1.2 while that of the 5th

particle is approximately 1.5. The oscillatory tail for the 20th particle

28. N.J. Zabusky, “Solitons and Bound States of the Time-Independent
Schrod inger Equa tion”, Phys . Rev . 168, 124 (1968) .
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Figure 11. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 10th

particle are plotted as a function of time for a lattice
with an anharmonicity parameter A~= .2 and a rise time
r =0.0.max
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Figure 12. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 20 th

particle are plotted as a function of time for a lattice
with an anharmonicity parameter Am=~

2 and a rise time
T ~0.0.max
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Figure 13. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 60
th

particle are plotted as a function of time for a lattice
with an anharmonicity parameter Am=~

2 and a rise time
T 0.0.max
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Figure 14. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 90th

particle are plotted as a function of time for a lattice
with an anharmonicity parameter Am=~

2 and a rise time
T =0.0.
max
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Figure 15. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 20
th

particle are plotted as a function of time for a lattice
with an anharmonicity parameter A =1.0 and a rise time
-
~ =0.0. 
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Figure 16. In dimensionless units the veloci ty  which oscillates about
unity and the displacement from equilibrium of the 80th

particle are plotted as a function of time for a lattice
with an anharmonicity parameter A =1.0 and a rise time

=0.0. m
max
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p Figure 17. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the
part icle  are plotted as a function of time for a lattice
with an anharmonicity parameter Am= l O  and a rise time
T ‘~0.0.max
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Figure 18. In dimensionless units the velocity which oscillates about

unity and the displacement from equi l ib r ium of the
particle are plotted as a function of time for a lattice
with an anharmonicity parameter A =1.0 and a rise time
-
~ =0.0. m
max
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• Figure 19. In dimensionless units the velocity which oscillates about

un ity and the displacement from equil ibr ium of the 5th
particle are plotted as a function of time for a lattice
with an anharmonicity parameter Am=l~

O and a rise time
t =0.0.max
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in Figure 20 was observed for a much longer period of time , ind its

maximum amplitude was found to be slightly greater than the 5th

particle.

5.2 Zeroth Particle Accelerated Sinusoidally

Let us compare the results of solving Eq. (4 .4)  under the boundary
condition Eq. (4.3b) to the ones obtained under the boundary condition
Eq. (4.3a). This physically corresponds to the case where the zeroth
particle is accelerated sinusoidally from zero velocity to its final
velocity in time Tmax~ 

For the anharmonicity parameter Am=O~
2
~

t =12.0, and M=O.5, we observe that the amplitude of the velocitymax thof the shock wave at the 20 particle in Figure 21 is less than the

case t =0.0 in Figure 12. As the shock wave reaches the 60th particlemax
the leading peak in Figure 22 is the same as Figure 13, but the succeed-
ing pulses are less in ampl~~ude. According to our results, by the time
the wave has reached the 80 particle,the cases m ax 0.0 and Tmax =l2~ O
look the same. Therefore, for a low anharmonicity parameter such as
Am=O~

2 each amplitude of the successive peaks in the wave train for

surface particles is less than the corresponding amplitude for the
instantaneous compression case by an amount which is inversely propor-
tional to the rise time r . This phenomenon is analogous to themax
1-iarmonic case. The most distinguishing factor between the harmonic
and ~Tightly anharmonic cases is the steeper and narrower pulse width
for the latter, which gradually develops into a solitary wave train.

For the anharmonicity parameter Am=l~
O
~ 

t max = l 2 • O  and Ar= .025 not
only do we see the characteristics already described at lower anharmoni-
cities , but also the appearance of a dip in the amplitude of the
velocity at a time after the shock wave has passed an individual parti-
cle. Perhap s, the disturbance is an envelope soliton . In Figure 23

to Figure 27 we observe the envelope traveling past the 20
th 30th 40

th

and 60th particle at approximately one sixth the speed of the shock
front. The amount of computer time prevented us from fol~gwing the
envelope past 325 tau. The velocity trajectory of the 60 particle
has the same profile for ima =0 as for rma =12.0 except in the vicinity
of the envelope from the time the shock wave arrives until 325 tau .
The profiles of particles greater than 60 look ai.. ke up to 325 tau as
the envelope would be expected to appear at a later time .

~ hIn Figure28 we show the initial solitary waves arriving at the 380 particle
for the case t max = l 2 • O , but we expect the same in i t i a l  prof i le  to hold
for other values of t

max~ 
The 380th particle is the farthest point in

the lattice for which we were able to compute a meaningful profile.
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Figure 20. In dimensionless units the velocity which oscillates about

un ity and the disp lacement from equi libri um of the 20th
particle are plotted as a function of time for a lattice
with an anharmoni city parame ter A

m=l~
O and a rise time

T =0.0.max
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Figure 21. In dimensionless units the velocity which oscillates about

uni ty and the d isplacement from equi l ibr ium of the 20th
parLicle are plotted as a function of time for a lattice
wi th an anharmonic ity parameter A ~.2 and a rise time
m =12.0. m

max
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Fi gure 22. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 60th

particle are plotted as a function of time for a lattice
with an anharmonicity parameter A

m=~
2 and a rise time

-r =12.0.max
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Fi gure 23. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 20
th

part icle  are plotted as a function of time for a la t t i c e
with an anharmonicity parameter Am=l~

O and a rise time
-r =12.0.max
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Figure 24. In dimensionless units the velocity which oscillates about

uni ty  and the disp lacement from equi l ibr ium of t 1 e  30 th
particle are plotted as a function of time for a lattice
with an anharmonicity parameter A

m=LO and a rise time
r =12.0.max
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Figure 25. In dimensionless units the velocity which oscillates about

uni ty  and the d i s p l a c e n L u t  from e q u i l i b r i u m  of the 10th
particle are plotted as a function of time for a la t ’iLe
with anharinonicity parameter A = l • O m l  •I rise t ime
r =12.0.max
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Figure 26. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 40th

particle are plotted as a function of time for a lattice
with an anharmonicity parameter A ~l.0 and rise time
r =12.0. m

max
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Figure 27. In dimensionless units the velocity which oscillates about
p 

unity and the displacement from equilibrium of the 60
th

particle are plotted as a function of time for a lattice
with an anharmonicity parameter A~l.0 and rise time
-r =12.0. II

max
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Figure 28. In dimensionless units the velocity of the 380
th particle

wh ich osc illates about uni ty is plotted as a function
of time for a lattice with an anharmonicity parameter
A =1. 0 and rise time -r =12.0.m max
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We wanted to verify that the envelope would occur for other
anharmonicities, and at the same time investigate the effect of different
rise times max For the anharmonicity parameter Am=l~

2I and Lv r O. 025
we looked at the ninth particle for different values of max~ 

For

m =4.0 we see no envelope at all in Figure 29. This result is most
max

l ikely explained by the fact that as max approaches zero no envelope

has been reported by any investigator. For values of rma =S .O, 12.0, and

20.0 in Figure 30 through Figure 32, respectively, we observe an envelope
which appears to deepen and appear at a later time relative to the
arrival of the initial disturbance at the ninth particle.

5.3 Zeroth Particle Given a Ran~p Acceleration

We wanted to make sure that what seemed to be an envelope soliton
was not caused by our choice of the sinusoidal acceleration given to
the zeroth particle , rather than some other acceleration , like the ramp
acceleration in Eq. (4 .3c) . For the anharmonicity parameter Am=l~

2
~

and Eir= .025 an envelope was observed at the ninth particle for Tmax=4.O

and rmax=l2.O in Figure 33 and Figure 34, respectively. Even for

m =4.O an envelope was formed in contrast to the case in Figure 29

for the same rise t ime.  For -r = 12 .0 the envelope was deeper than themax
case r =4.O and occurred at a later time after the arrival of the

shock wave.

5.4 Zeroth Particle Decelerated to Zero

Finally , we wan ted to see the effect of s tar t ing the zeroth parti-
cle at constant velocity and then decelerating it to zero in time

max The boundary condition is Eq. (4.3a) minus Eq. (4 .3b) . For the
anharmonicity parameter A

m=l •O~ 
&r=.025, and tmax =l2~

O we have a beaut i-

ful example of solitons spreading out in time starting at the tenth
particle in Figure 35 and going to the fortieth particle in Figure 36.

6. DISCUSSION

In this report we have investigated the effect of accelerating the
end particle of a one-dimensional lattice to its final velocity in a
characteristic time The purpose was to determine the shock pro-

file caused in this manner and compare it with the instantaneous com-
pression case. For harmonic lattices we noticed that in the surface
atoms each amplitude of the successive peaks in the wave train was less
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Figure 29. In dimensionless units the velocity which oscillates about

uni ty and the disp lacemen t from equi libr ium of the 9th
particle are plotted as a function of time for a lattice
with an anharmonicity parameter A =1.2 and rise time

~- = 4 . 0 .  
m

max

58



200 1 I I I I I I I I I I I I I I I 2.0
• N = 9
- TMAX 8.00

• AM :120

4 0 - , - 0 . 4

0 I I I I I I I I I I I I I I I I I I I 0
0 40 80 120 160 200

Figure 30. In dimensionless units the velocity which oscillates about

uni ty  and the displacement from equil ibrium of the 9th
particle are plotted as a function of time for a lattice
with an anharmonicity parameter A~=l .2 and rise time-r 8.0.
max
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Figure 31. In dimensionless units the velocity which oscillates about

unity and the displacement from equilibrium of the 9th

particle are plotted as a function of time for a lattice
with  an anharmonicity parameter A = 1 .2  and r ise  t ime
-r =12.0. m

max
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Figure 32. In dimens ionless uni ts the veloc ity wh ich osc i lla tes about
unity and the displacement from equilibrium of the 9th

particle are plotted as a function of time for a lattice
with an anharmonicity parameter Am=l •2 

and rise time
-r =20.0.max
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Figure 33. In dimensionless units the velocity which oscillates about

un ity and the displacemen t from equil ibrium of the 9th
particle are p lotted as a function of t ime for a lattice
with an anharmonicity parameter A =1.2 and rise time
T
m =4

~
O• A ramp acceleration o?zeroth particle is

used .
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Figure 34. In dimensionless units the velocity which oscillates about

• unity and the displacement from equilibrium of the 9th

particle are plotted as a function of time for lattice
wi th an anharmonicity parameter A

m=l •
2 and rise time

1max l2
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A ramp acceleration of zeroth particle is used .
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Figure 35. In dimensionless units the velocity which propagates as
four solitary waves and the displacement from equilibrium

th . .of the 10 particle are plotted as a function of time for
a lattice with an anharmonicity parameter A

m=l•O and

deceleration time r =12.0. The zeroth particle startsmax
out with initial velocity of unity and is decelerated to
zero .
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Figure 36. In dimensionless units the velocity which propagates as
four soli tary waves and the disp lacemen t from equ il ibr ium
of the 40th particle are plo tted as a func tion of time for
a lattice with an anharmonicity parameter Am=l~

O and

deceleration time •tmax =l 2 O
~ 

The zeroth parti le starts

out with initial velocity of unity and is decelerated to
zero.
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than the corresponding amplitude for the instantaneous compression case
by an amount which is inversely proportional to the rise time max~ 

As

the la ttice becomes slightly anharmonic , each amplitude of the succes-
sive peaks in the wave train passing through the surface particles
behaves in a manner which is analogous to the harmonic case. The most
distinguishing factor between the harmonic and slightly anharmonic
cases is the steeper and narrower pulse width for the latter, wh ich
gradually develops into a solitary wave train at the head of the shock
wave while an oscillatory tail persists. Finally, for an anharinonicity
parameter one or greater we noticed , in addition to the above anharmonic
effects, what appears to be an envelope soliton propagating at a slower
speed than the shock wave for certain rise times .

As was mentioned in the introduction, a very important and current
research area is the process by which the lattice returns to thermal
equ ilibr ium, if at all , after it has been perturbed by a shock wave
propagating on a thermal background . All the investigators of this
problem sample their data behind the shock front to determ in e whether
or not the criteria for thermal equilibrium have been satisfied . The
question of whether chemical reactions in reactive materials occur in
the equilibrated or the non-equilibrated region of the crystal is very
important for detonation theory. Surface chemistry will also be
influenced by the strength of the disturbance passing through this
region. It is possible that different rise times could affect the

above phenomena. Tsai16 has already reported that instantaneous
compression of the end-most particle causes a large increase in the
kinetic energy of the surface atoms which takes a long time to ther-
malize.

Ther e also rema ins the problem of why the principal investi-
• . .14-16gators interpret their results differently. For instance, Tsai

uses non-zero rise times and claims that the shock profile is not
steady in time for a three-dimensional lattice. He says that there
is an ever-expanding region of non-equilibrium between the shock front
and the thermally equilibrated region behind the front . On the other
hand Paskin~~

2 uses a zero rise time and claims that the shock prof i le
is steady in time. Powell and Batteh13 use a zero rise time and have
found that the shock profile is not steady in a one-dimensional lattice.
Unfo rtunately, we did not propagate our shock wave on a thermal back-
ground in this investigation. However, we feel that the different
wave characteristics in the surface atoms , and the possibility of
envelope solitons propagating at a slower speed than the shock front,
would exist , but would be masked by the thermal background. Therefore,
future investigators should be aware of these results as they str ive for
a uniform interpretation of the shock wave problem.
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