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AN EFFICIENT DIRECT SOLVER FOR
SEPARABLE AND NON-SEPARABLE
ELLIPTIC EQUATIONS

1. Introduction

The numerical solution of elliptic partial differential equations is frequently required for
atmospheric problems. These equations may be separable or non-separable and their solutions
are subject to have a variety of boundary conditions. If we write the elliptic finite difference
form of the differential equation as A x = F, where A is the coeflicient matrix. F. the forcing
function and x the required solution. then A can be diagonally dominant. weakly dominant or
even non-diagonally dominant. Even though a number of iterative and direct solvers are avail-
able in the literature for solving elliptic equations. no one method is efficient for all tvpes of
equations. The iterative methods such as SOR (successive over-relaxation). ADI (aliernate
direct implicit) and hybrid methods such as optimized block implicit relaxation (Dietrich. et al..
1975) are very efficient for diagonally dominant equations. But they converge very slowly or

may even diverge for the weakly or non-diagonally dominant equations.

The direct solvers developed by Hockney (1965). Buneman (1969) and Rosmond and
Faulkner (1976) are very powerful, but restricted 1o separable equations. For non-separable
equations the direct solvers of Lindzen-Kuo (1969) and Crout (1941) are available but require

large amounts of computer memory and thus are limited to small arrays.

The error vector propagation method (EVP) (Roche: 1971, 1977, Hirota et al.. 1970) is
applicable to any type of elliptic equation and requires an order of magnitude less memory than

Lindzen-Kuo. However, as shown by Meavaney and Leslie (1972). EVP is unstable for a large

*Manuscript submittea November 23, 1977.
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number of grid points. In this paper we develop a stabilized error vector propagation method

(SEVP) which is stable for any number of grid points and retains most advantages of EVP.

In Section 2 a review of EVP upon which SEVP is based is given. The SEVP is
described in Section 3. A comparison of the computer time and memory requirements for
several representative direct and iterative solvers is given in Section 4. A summary is given in

Section 5.
2. Error Vector Propagation Method (EVP)

A general two dimensional elliptic equation in finite difference form can be written as

AXCG j) xG=1,j) + AY(,j) x(,j —1) + BB(,j) x(,j) +
1)

CxG,j)xG +1,/) +CYGJ)xUGj+1) =F(@j)
where the coeflicients 4X, AY, BB. CX and CY may be functions of both /and j, and Fis the
forcing function. We now review the EVP procedure described by Roche (1971, 1977) for
solving equation (1) over a rectangular region shown in Figure 1 using Diriclet boundary con-

ditions. By rearranging the terms. equation (1) can be written as

x(, )+ 1) = (FU,j) —AX0G. ) xG =1,7) —AYG,j) xG,j —1)
(2)

= BB(1.j) x(i,j) = CX(,j)x( +1,/)) (CY(G,j)) ~)

It is clear from equation (2) that if we know the solution on any two consecutive rows
then we can march in j to obtain the required solution. Since the solution is known only on
the boundaries By, B;. By and B,, the EVP method requires an initial guess of the solution on
the row interior to B; to march forward in j . Based on this inital guess a particular solution.
xP(z.j) 1s obtained which satisfies equation (2) and all the boundary conditions except along
B,. If we assume that the particular solution deviates from the real solution. x(,j), by

M (i, /), then
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x(G ) =xPG ) + xHG,))
(3)

substituting equation (3) into equation (2) and noting that the particular solution satisifies
equation (2) and boundary conditions at B, By, B,, we obtain the following homogeneous

eqguation

xHGj+1) = = (axGj) xHG - 1,/) + AYG ) xHGj —-1) +

(4)
BB, j) xF G j) + cx G ) xHG +1, ) (cY, ) 7
with zero boundary conditions along B, B; B,. Along B, we find from equation (3)
xHGN) = x((N) = xPUN)
(5)

We can relate the homogeneous solution on any two rows by using (M —2) independent
vectors, where M represents total number of grid points in i including boundary points. Since
the solution along B, (given by equation (5)) is known, we will relate it to the solution on the
row just interior to the boundary B, . In other words, if the vectors €, and €, (Figure 1)
represent the homogeneous solution on the second and last rows respectively. then we can find

an influence matrix R ; such that

€ =€ Ry,
6)

In order to obtain R, ;. we start with the kth unit vector along the second row and march
equation (4) in j. with zero boundary conditions along B, B;. The kth row elements of the
R, matrix are the elements of Eq. (4) along B, boundary. By varying the values of k from 2

to (M —1) we complete Ry,

From equation (6) and the error vector (given by equation (5)) we compute the homo-
geneous solution on the second row. Using these values on the second row and zero boundary
conditions on B;. By and B, we march equation (4) in j to obtain the homogeneous solution

throughout the region. Then by superposition of the particular and homogeneous solutions we
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obtain the complete solution. Due to round off errors in computing the inverse of the matrix
R, ;. this solution does not satisfy the boundary condition along B, exactly. The accuracy of
the solution is improved by recomputing the ho™-neneous part of the sol: ion a few times.
Norniall_v. about six iterations are required for 20 grid points in marching direction to obtain an
error of 10 % on a computer with 56 bit word precision. The number of iterations required
increases as the number of grid points in the marching direction is increased up to about 25;

bevond 25 the method becomes unstable.

The influence matrix, R, ,, depends only upon the coefficients of the elliptic equation
and therefore can be computed without knowledge of the forcing function and the boundary
conditions. This siep is called the preprocessor. 1f we want to solve equation (1) repeatediy
with the same coefficients but with different forcing functions and boundary conditions, the

influence matrix needs to be computed only once and stored in the memory for further use.

Although the EVP method is very efficient and requires a very small amount of computer
memory. it is unstable for large number of grid points in the marching direction (Meavancey
and Leslie. 1972). For computers with 24 bit precision, the limit is about 12 grid points, which
may be increased by going to higher precision or by using the two directonal marching method
described by Hirota et. al. (1970). Even with 56 bit precision and two way marching the limit

is extended 10 only about 40 grid points.
3. Stabilized Error Vector Propagation Method SEVP)

In the SEVP method. the integration region is divided into blocks. each of which is stable
for the EVP method. Further. any two consecutive blocks have two rows in common. The
division of the integration region into three blocks is shown in Figure 2. As with the EVP
method. SEVP is civided into two steps: the preprocessor step and the solution step. In the

preprocessor step, (2XNBLK-1) influence matrices are computed where NBLK is the total

4
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number of blocks. NBLK of the influence matrices relate the values of the homogeneous solu-
tion on the second and last rows of each block, while the remaining (NBLK-1) matrices relate

the homogeneous solution on the second rows of consecutive blocks.

a. Preprocessor

The first (M —=2) unit vectors on the second row of the first block are used 10 march in
direction. using equation (4) and zero boundary conditions on B,.B; and B,, 10 obtain
influence matrices for the last two rows of the block. If €. €, and €; (shown in Figure 2)
represent the homogeneous solution on the second and last two rows of the first block. then

€y =¢; Ry

€3 =€ Ry,

(8)
where R ; and R , are the influence matrices for the last two rows of the block.
Combining (7) and (8) to eliminate €, we obtain
&3 =e&; R 7Ry =S
)

The matrices Ry 1 and S relate homogeneous solutions on the second and last rows of the

block and on the last two rows of the block, respectively.

To obtain the influence matrices for the second block, we start with the unit vectors on
the second row of the second block. and compute the corresponding values on the first row of
the block from equation (9) to get the equivalent of a boundary condition for this block. The
homogeneous solution on the first row corresponding to the kth unit vector on the second is
the kth row of the matrix, S;. Using (M =2) unit vectors on the second row with correspond-
ing vectors on the first row and zero boundary values on B; and B, . we march equation (4) in
J to obtain influence matrices for the last two rows of the second block. If the vectors e;, €,

and €; represents a homogeneous solution on the second and last two rows of the block,
5
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respectively, then

€y = %3 Ry
(10)

and

€z =€y Bog
(1D

where R, and R, are the influence matrices for the last two rows of the block. Eliminating

e; from (10) and (11) we obtain

€, =e5S; S, = Ry3' Ry, i

Repeating the procedure described above for the third block (last block in Figure 2) we will

obtain a matrix, Rj,, relating homogeneous solution on the second and last rows of the block.

If €5 and €4 represents homogeneous solution on these rows, then

€6 = Es RJ’
(13)

As in the EVP method, all the influence matrices depend only on the coefficients of equation

(1.

b. Solution

We obtain the required solution by one forward and one backward sweep of the blocks.
During the forward sweep, an approximate solution is obtained which satisfies the equation and
the boundary conditions everywhere except on Boundary B,. In the backward sweep, this

solution is corrected to obtain the exact solution.

The forward sweep is started with the second row on the first block with an initial guess
for the elements of that row and the given boundary values along the first row. This pro-
cedure is exactly the same as EVP. When the solution has been marched to the end of the

first block, arbitrary values are assigned along the block boundary to obtain the correction vec-
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tor, €3. The second sweep forward generates a homogeneous solution for the first block. Itera-

tions are applied, if necessary, to reduce round off error.

For the second block we take the arbitrary solution assigned along the first block boun-
dary (second row second block) and the solution aiong the first row of the second block and
sweep forward again. An arbitrary solution is again imposed along the [ast row of the second
block to obtain the correction vector €5 . On the second (or homogeneous) sweep of the
second block we use the correction vectors e, and €5 to form the homogeneous solution. €3 is
computed from €5 by equation (11) and e, is obtained from e; using equation (9). The pro-
cedure continues until all blocks are swept out. For the last block, we use the boundary B, in-

stead of a guess value to find €.

The particular solution we have obtained on the forward sweep satisfies equation (1) and
the given boundary conditions everywhere except on the block boundaries. More importantly,
the last block contains the exact solution since the computation of the correction vector €g is

based upon the known boundary conditions along B,.

The backward sweep now corrects the errors introduced in the particular solution by
guessing the solutions along the block boundaries. Using equations (12) and (13) we caiculate
€4 and €5 for the homogeneous sweep of the last block and obtain the total solution for the
last block which has two rows in common with the second block. To obtain the homogeneous
solution for the second block we need to find the difference, €5, between the particular solu-
tion on the last row of the block and the exact solution. One method of obtaining e is to store
the particular solution from the forward sweep and subtract it from the exact solution. Howev-
er, it is much easier to recompute the particular solution by backing up three rows into the
second block and repeating a small segment of the forward sweep. After e is obtained we

sweep the second block to obtain the homogeneous solution which is then added to the partic-
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ular solution. This procedure is repeated until we finish the blocks. Error reduction iterations

are applied at this step also.

The stabilization of EVP by this method is achieved by the introduction of the artificial
boundaries. Propagation of error is very severe in EVP, and when the error exceeds the accu-
racy of the computer it cannot be corrected by addition of a homogeneous solution. The intro-
duction of artificial boundaries before the error becomes too large limits the error in each
block. Since the influence matrices for small blocks have small error levels. the artificial solu-
tion generated by the introduction of these boundaries can be easily corrected to obtain an ex-

tremely accurate final solution.

4. Computer Time and Memory Requirements.

As a test problem for SEVP, Poisson’s equation is solved over a square region with zero
homogeneous boundary conditions. The test problem is also solved with the Lindzen-Kuo
(Lindzen and Kuo, 1969), Crout (1943) and SOR methods. The former two are direct solvers.
The relaxation by SOR is stopped when the normalized error (normalized with the forcing
function) reaches 10 ~*. A comparison of the computing time taken by these methods and
SEVP is given in Figure 3. When the grid dimension exceeds 60 for Lindzen-Kuo (L-K) and
50 for Crout methods the computer memory is exhausted. [t is clear from the figure that the
SEVP method is more efficient than the other three methods. For M = N = 40, the SEVP
method is about two times faster than L-K and Crout methods and 20 times faster than SOR.
The computation times given in Figure 3 were obtained with double precision (56 bit preci-

sion) operations on a vector computer.

Figure 4 shows the computer time required by the preprocessor step and the solution step
of SEVP on a vector computer. The ratio of computing time required by the preprocessor step

to that required by the solution step is about 3 for M =N = 10 and increases with inciease in

3
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grid dimension. The L-K method can also be separated into a preprocessor step (computing o
matrices) and a solution step. For the test problem single precision on 32 bit word computer is

adequate for the L-K method.

Figure 5 gives a comparison of the computer time taken by the single precision Lindzen-
Kuo and double precision SEVP methods to solve the test problem. The top two curves are
the total computer time (preprocessor and solution steps) required while the lower two curves
are for the solution steps only. It is clear from the figure that SEVP method is faster than

Lindzen-Kuo method for both the preprocessor and solution sieps.

Table 1 gives the auxiliary memory requirements for the three direct methods for a 32 bit
word computer using double precision. It is clear from the table that the SEVP method’s auxi-
liary memory requirement is an order of magnitude smaller than that required by the other two

direct methods.

5. Selection of the Marching Direction and the Block Size

If NB(k) represents the maximum number of points in the marching direction of the kth

block, then
NB (k)< P4

where P is a constant which depends only upon the computer precision and A represents the
minimum value of CY(i.j) CX ~'(i.j) if we march in ; and of CY(i, /) CY ~1(s, /) if we
march in /. It is clear from this equation that we can reduce the auxillary memory required by
the SEVP method by choosing the marching direction in such a way that A > 1. [t can also
be shown that the method requires less computing time to solve the elliptic equation in the
case when A > 1 than in cases A < 1. Therefore, the computing speed of the method in-

creases with |A|. On the other hand, the Lindzen-Kuo and Crout methods deteriorate with the
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increasing A and became unstable for A > 100.
6. Summary and Conclusions

A new method called SEVP was developed to solve elliptic equations which has most of
the advantages of the EVP method and is stable for any number nf grid points. In comparison
with Lindzen-Kuo, Crout and SOR methods this method is faster and requires about an order

of magnitude smaller computer memory than the Lindzen-Kuo and Crout methods.

The procedure described in Section 3 to solve elliptic equations with Dirichelet boundary
conditions can be easily be extended to other boundary conditions such as Neumann, periodic
or mixed. It can be also be used to solve elliptic equations over a region with irregular boun-

daries.
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Table | — A Comparison of the Auxiliary Memory Requirements
(in thousands of words) for SEVP, Lindzen-Kuo and Crout
Methods on 32 Bit Word Comouter Using Double Precision.

GRID SIZE CROUT SEVP LINZEN-KUO
— |

10 44 0.2 238
20 33.2 24 17.6
30 111.6 54 576
40 262.4 16.0 1344
S0 510.0** 25.0 260.0
60 878.4* 50.4 446.4
70 1391.6* 88.2 705.6*
30 2073.6 JESEL 1049 6*
90 2978 .4* 178.2 1490.4*

100 4040.0* 220.0 2040.0*

*More than the total central memory available on computer at the
Naval Research Laboratory.
**Normalized error is more than 104,
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