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AN EFFICIENT DIRECT SOLVER FOR
SEPARABLE AND NON-SEPARABLE

ELLIPTIC EQUATIONS

1. Introduction

The numerical solution of elliptic partial different ial equat ions is frequent ly required for

atmospheric problems. These equations may be separable or non-separable and their solutions

are subtect to have a varie tY of boundary conditions. If we write the elliptic finite difference

form of the differential equation as .A x F. where A is the coefficient matrix . F, the forcing

function and x the required solution, then A can be diagonally dominant , weakly dominant or

even non-diagonally dominant . Even though a number of iterative and direct solvers are avail-

able in the literature for solving elliptic equations , no one method is efficient for all types of

equat ions. The iterat ive methods such as SOR (successive over-relaxation ) . ADI (alternate

direct implicit ) and hybrid methods such as optimized block implicit relaxation (Dietrich . et al..

1975) are ~er~ efficient for diagonally dominant equations. But they converge very slowly or

may ever diverge for the weak l~ or non-diagonally dominant equations

The direct solvers developed by Hockney (1965 ) . Bune man (1969 ) and Rosmond and

Faulkner ( 1976 ) are very powerful, but restricted to separable equations. For non-separable

equations the direct solvers of Lindzen.Kuo (1969 ) and Crout (1941 ) are available but require

large amounts of comput er memory and thus are limited to small arrays.

The error s ec to r propagation method (EVP ) (Roche: l9’ l .  1977 . Hirota et al.: 1970) is

applicable io an~ type of elliptic equation and requires an order of magnitude less memor~ than

Ltndzen-Kuo . However , as shown by Meavaney and Leslie ( 1972 ) . E\ P  is unstable for a large
‘Manuccoi p i s ubm its ea November 2~. 1’~~
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RANG~ RAO V MADALA

number of grid points, in this paper we develop a stabilized error vector propagation method

(SEVP) which is stable for any number of grid points and retains most advantages of EVP.

In Section 2 a review of EVP upon which SE~’P is based is given . The SEVP is

described in Section 3. A comparison of the computer time and memory requirements for

several representative direct and iterative solvers is given in Section 4 . A summary is given in

Section 5.

2. Error Vector Pr opagat ion Method ~~VP)

A general two dimensional elliptic equation in finite difference form can be written as

, 4 X ( i, j )  x ( i  —1 , ) )  + A } ( i , j )  x ( i ,j  — 1) + BB(, ,j )  x ( i , j )  +
(1)

CX ( i , j )  x ( i  + 1,)) + CY(i , j )  x ( i ,j  + 1)  F (/ ,j )

where the coefficients AX, A 1’. BB. CX and CY may be functions of both / and ./. and F is the

forcing function . We now review the EVP procedure described by Roche (1971 . 1977) for

solving equation (1) over a rectangular region shown in Figure 1 using Diriclet boundary con-

ditions. By rearranging the terms , equation (1) can be written as

x ( i , i  + I )  ( F( i . i )  — A X ( , .~~ x ( i  — L i)  — A I(i, , )  x( : , /  — 1)
(2)

— BB(, . j )  x ( , , / )  — cA’ (
~. / )  x ( i  + 1.j fl ( C Y U ,j )  ) —t

It is clear from equation (2) that if we know the solution on any two consecutive rows

then we can march in / to obtain the required solution. Since the solution is known only on

the boundaries B1, B2 . B3 and 84 , the EVP method requires an initial guess of the solution on

the row interior to B1 to march forward in j  . Based on this inital guess a particular solution .

x 1’ (; , j )  is obtained which satisfies equation (2) and all the boundary conditions except along

B2. If we assume that the particular solution deviates from the real solution , x (i .,). by

x H ,,j ) ,  then

2
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x ( i , j ) x~~(i , j )  + x~~(i ,j )
(3)

substituting equation (3) into equation (2) and noting that the particular solution satisifies

equation (2) and boundary conditions at B1, B3 ,  B4, we obtain the following homogeneous

equation

x~~(i ,j  + 1)  — (AX ( i ,j )  x H (i  — 1 ,j )  + A Y ( ,j )  x H (, , j  — 1) +
(4)

BB(, ,j )  x H (i , j )  + CX(i , j )  x~~
, + 1 ,j ) )  (C Y( ~, / ) )  ‘

with zero boundary conditions along B1, B3 84. Along B1 we find from equation (3)

x h ’(i . N)  x ( i ,N) — x~~ (i .N)

(5)

We can relate the homogeneous solution on any two rows by using (M —2 )  independent

vectors , where M represents total number of grid points in including boundary points. Since

the solution along 82 (given by equation ( 5) )  is known , we will relate it to the solution on the

row just interior to the boundary B
~ . In other words, if the vectors e

~ 
and e 2 (Figure 1)

represent the homogeneous solution on the second and last rows respectively, then we can find

an influence matrix R 
~~~ 

such that

~i 
R 1 1

(6)
In order to obtain R 

~~~~~ 
we start with the kth unit vector along the second row and march

equation (4) ifl .i. with zero boundary conditions along B1 B3 . The kth row elements of the

R 1 1  matrix are the elements of Eq. (4) along B2 boundary. By varying the va ues of k from 2

to (M —1 ) we complete R 1 1

From equation (6) and the error vector (given by equation (5)) we compute the homo-

geneous so’ution on the second row . Using these values on the second row and zero boundary

conditions on B
~

. B3 and B4 we march equation (4) in ito  obtain the homogeneous solution

throughout the region . Then by superposition of the particular and homogeneous solutions we

3



RANGARAO V . MADALA

obtain the complete solution. Due to round off errors in computing the inverse of the matrix

R 1 1 ,  this solution does not satisfy the boundary condition along B1 exactly. The accuracy of

the solution is improved by recomputing the ho” ’~eneous part of the sol ion a few times.

Normally, about six iterations are required for 20 grid points in marching direction to obtain an

error of 10 ~~ on a computer with 56 bit word precision. The number of iterations required

increases as the number of grid points in the marching direction is increased up to about 25~
beyond 25 the method becomes unstable.

The influence matrix , R 11 , depends only upon the coefficients of the elliptic equation

and therefore can be computed without knowledge of the forcing function and the boundary

conditions. This step is called the preprocessor. If we want to solve equation (I) repeatedl~
with the same coefficients but with different forcing functions and boundary conditions, the

influence matrix needs to be computed only once and stored in the memory for further use .

Although the E\’P method is very efficient and requires a very small amount of computer

memory , i t  is unstable for large number of grid points in the marching direction (Meavancey

and Leslie . I9’~2 ) . For computers with 24 bit precision, the limit is about 12 grid points , which

may be increased by going to higher precision or by using the two directonal marching method

described by Hirota et. al. (1970) . Even with 56 bit precision and two way marching the limit

is extended to only about 40 grid points.

3. Stabilized Erro r Vector Propagation Method SEVP)

In the SEVP method , the integration region is divided into blocks, each of which is stable

for the EVP method. Further. any two consecutive blocks have two rows in common. The

division of the integration region into three blocks is shown in Figure 2. As with the EVP

method, SEV P is divided into two steps: the preprocessor step and the solution step. In the

preprocessor step. (2X NBLK-l ) influence matrices are computed where NBLK is the total4
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number of blocks. NBLK of the influence matrices relate the values of the homogeneous solu-

tion on the second and last rows of each block , while the remaining (NBLK-1) matrices relate

the homogeneous solution on the second rows of consecutive blocks.

a. Preprocessor

The first (M — 2 ) unit vectors on the second row of the first block are used to march in j

direction. using equation (4) and zero boundary conditions on B~. B3 and B4. to obtain

influence matrices for the last two rows of the block, if 
~1’ 6 2 and e

~ 
(shown in Figure 2)

represent the homogeneous solution on the second and last two rows of the first block , then

~2 ~~~ R 11
(7)

e
~ 

R 12
(8)

where R~ 1 and R 1,2 are the influence mamces for the last two rows of’ the block.

Combining (7) and (8) to eliminate e
~ 

we obtain

€
~ 

R(7 ’ R 1 2  —

(9)
The matrices R 1 1 and S1 relate homogeneous solutions on the second and last rows of the

block and on the last two rows of the block, respectively.

To obtain the influence matrices for the second block, we start with the unit vectors on

the second row of the second block , and compute the corresponding values on the first row of

the block from equation (9) to get the equivalent of a boundary condition for this block. The

homogeneous solution on the first row corresponding to the kth unit vector on the second is

the kth row of the matrix . S~ . Using (It! —2 ) unit vectors on the second row with correspond-

ing vectors on the first row and zero boundary values on B3 and B4 . we march equation (4) in

./ to obtain influence matrices for the last two rows of the second block. If the vectors 6 3 ,  (4

and €~ represents a homogeneous solution on the second and last two rows of the block ,

5
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respectively, then

€
~~ 

R 1 1 (10)

and

€
~ 

R2 2 (II)

where R 2 1  and R12 are the influence matrices for the last two rows of the block. Eliminating

€
~~ 

from (10) and (11) we obtain

— e~~ S2 S2 — R~~’ R 2 t (12)

Repeating the procedure described above for the third block (last block in Figure 2) we will

obtain a matrix , R 3 2 ,  relating homogeneous solution on the second and last rows of the block.

If € 5 and €
~~ 

represents homogeneous solution on these rows , then

~6 ~ 5 R 3~ (13)

As in the EVP method , all the influence matrices depend only on the coeff icients of equation

(1).

b. Solution

We obtain the required solution by one forward and one backward sweep of the blocks.

During the forward sweep, an approximate solution is obtained which satis fies the equation and

the boundary conditions everywhere exce pt on Boundary B2. in the backward sweep , this

solution is corrected to obtain the exact solution.

The forward sweep is started with the second row on the first bloc k with an initial guess

for the elements of that row and the given boundary values along the first row . This pro-

cedure is exactly the same as EVP. When the solution has been marched to the end of the

first block , arbitrary values are assigned along the block boundary to obtain the correction vec-

6
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ton , € 3. The second sweep forward generates a homogeneous solution for the first block. Itera-

tions are applied, if necessary , to reduce round off error.

For the second block we take the arbitrary solution assigned along the first block boun-

dary (second row second block) and the solution along the first row of the second bloc k and

sweep forward again. An arbitrary solution is again imposed along the last row of ’ the second

block to obtain the correction vector €~ . On the second (or homogeneous) sweep of the

second block we use the correction vectors € ,  and € 3 to form the homogeneous solution. €
~ 

is

computed from €
~ 

by equation (ii) and e, is obtained from e
~ 

using equation (9). The pro-

cedure continues until all blocks are swept out. For the last block , we use the boundary B, in-

stead of a guess value to find E6 .

The particular solution we have obtained on the forward sweep satisfies equation (1) and

the given boundary conditions everywhere except on the block boundaries. More importantly,

the last block contains the exact solution since the computation of the correction vector € 6 is

based upon the known boundary conditions along B,.

The backward swee p now corrects the errors introduced in the particular solution by

guessing the solutions along the block boundaries. Using equations ( 12) and ( 1 3)  we calculate

€ 4 and €~ t’or the homogeneous sweep of the last block and obtain the total solution for the

last bloc k which has two rows in common with the second block. To obtain the homogeneous

solution for the second bloc k we need to find the difference. € . , ,  between the particular solu-

tion on the last row of the block and the exact solution. One method of obtaining € .
~ 

is to store

the particular solution from the forward sweep and subtract it from the exact solution. Howev-

er , it is much easier to recompute the particular solution by backing up three rows into the

second block and repeating a small segment of the forward sweep . After € , is obtained we

sweep the second block to obtain the homogeneous solution which s then added to the panic-7
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ular solution. This procedure is repeated until we finish the blocks. Error reduction iterations

are applied at this step also.

The stabilization of EVP by this method is achieved by the introduction of the artificial

boundaries. Propagation of’ error is very severe in EVP , and when the error exceeds the accu-

racy of the computer it cannot be corrected by addition of a homogeneous solution. The intro-

duction of artificial boundaries before the error becomes too large limits the error in each

block. Since the influence matrices for small blocks have small error levels, the artificial solu-

tion generated by the introduction of these boundaries can be easily corrected to obtain art ex-

tremely accurate final solution.

4. Computer Time and Memory Requirements.

As a test problem for SEV P . Poisson ’s equation is solved over a square region with zero

homogeneous boundary conditions. The test problem is also solved with the Lindzen-Kuo

(Lindzen and Kuo, 1969). Crout (1.943) and SOR methods. The former two are direct solvers.

The relaxation by SOR is stopped when the normalized error (normalized with the forcing

function) reaches 10 “
~~~. A comparison of the computing time taken by these methods and

SEVP is given ir Figure 3. When the grid dimension exceeds 60 for Lindzen-Kuo (L-K) and

50 for Crout methods the computer memory is exhausted. it is clear from the figure that the

5EV? method is more efficient than the other three methods. For M — N — 40. the SEVP

method is about two times faster than L- K and Crout methods and 20 times faster than SOR.

The computation times given in Figure 3 were obtained with double precision (56 bit preci-

sion) operations on a vector computer.

Figure 4 shows the computer time required by the preprocessor step and the solution step

of SEVP on a vector computer. The ratio of computing time required by the preprocessor step

to that required by the solution step is about 3 for M — N — 10 m d  increases with in~.’ease in

S 
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grid dimension. The L-K method can also be separated into a preprocessor step (computing a

matrices) and a solution step. For the test problem single precision on 32 bit word computer is

adequate for the L-K method.

Figure 5 gives a comparison of the computer time taken by the single precision Lindzen-

Kuo and double precision SEV P methods to solve the test problem. The top two curves are

the total computer time (preprocessor and solution steps ) required while the lower two curves

are for the solution steps only. It is clear from the figure that SEVP method is faster than

Lindzen-Kuo method for both the preprocessor and solution sLeps.

Table 1 gives the auxiliary memory requirements for the three direct methods for a 32 bit

word computer using double precision. It is clear from the table that the SEVP method’ s auxi-

liary memory requirement is an order of magnitude smaller than that required by the other two

direct methods.

5. Selection of the Marching Direction and the Block Size

If .VB(k) represents the maximum number of points in the marching direction of the kth

block, then

NB ( k )  
~ PA

where P is a constant which depends only upon the computer precision and A represents the

minimum value of CY(: .j )  CX — l ( / , ) )  if we march in j  and of CX (i ,j )  CY —l ( i ,j )  if we

march in i . It is clear from this equation that we can reduce the auxilIary memory required by

the 5EV? method by choosing the marching direction in such a way that A ) I. it can also

be shown that the method requires less computing time to solve the elliptic equation in the

case when A ~ I than in cases A < I. Therefore , the computing speed of the method in-

creases with IA!. On the other hand, the Lindzen-Kuo and Crout methods deteriorate with the

9 
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increasing A and became unstable for A ~ 100.

6. Summary and Conclusions

A new method called SEV P was developed to solve elliptic equations which has most of

the advantages of the EVP method and is stable for any number of grid points. In comparison

with Lindzen-Kuo , Crout and SOR methods this method is faster and requires about an order

of magnitude smaller computer memory than the Lindzen- Kuo and Crout methods.

The procedure described in Section 3 to solve elliptic equations with Dirichetet boundary

conditions can be easily be extended to other boundary conditions such as Neumann , periodic

or mixed. It can be also be used to solve elliptic equations over a region wit h irregular boun-

daries.
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Table 1 — A Comparison of the Auxiliary Memory Requirements
(in thousands of words~ for SEVP, Lindzen-Kuo and Crout
Methods on 32 Bit Word Comouter Using Double Precision.

GRiD SIZE CROUT SEVP LINZEN-KUO

10 4 .4 0.2 2.8
33.2 2 .4 17 .6

30 111 .6 5.4 57 .6

40 262.4 16.0 134,4
50 5 l 0 .O~~ 25 .0 260.0
60 878,4* 50.4 446.4
70 1391.6* 88.2 705.6*
80 2073.6 115.1 1049.6*
90 2978.4* 178.2 1490.4*

100 4040.0* 220.0 2040.0*

More than the tota l ~entraI memory available c~n computer .ir the
Naval Research Laboratory.

**Normajj zed error is more than tO~~.
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1:1 B O U N D A R Y  B1j :1

Fig. I — The region over which the .~Uiptic equa- <
uon is solved by EVP method Bi, 82, B3, and z84 are the boundaries,

0 0

C2: C1 R 11j :N —

BOUNDARY B2

i~~1 BOUNDARY B1 i~~M 

BLO~~K 1

CVC,R i i
£

BLOCK 2 Fig. 2 — A three block di~ sion of the region
I for the SEVP method.

a , 0z

C4 :C 3R2 1

~~ 5 C3 R2 2  

BLOCK 3

BOUN DARY 82
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— PREPROCESSOp AND SOLUTION (SEVP)~— — - PREPROCESSOR AND SOLUTION(L ’ KY,
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F~ . 3 — A ~~~mparison of the computing time requirements
for the SEVP, Lindzen-Kuo , Crout and SOR methods.
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Fig. 4 — Computer time taken by the preprocessor and
solution steps of the SE’.’? method.
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Fig. 5 — A comparison ot the computer time requirements
of single precision Lrndzen-Kuo and double precision SEVP
methods using .i vector computer with 32 bit word length.
The top curves give the total tune taken by both steps:
the preprocesser intl the solution ~reps . The iower two
curves give the time taken by :he solution steps.
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