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ABSTRACT

For nearly two decades we have witnessed an intensive development
of a statistical methodology for assessing length of life and relia-
bility of performance from empirical data. The initial stimulus for
research on statistical problems in life testing and reliability came
from the need to answer pressing practical questions which could not be
treated by the existing statistical techniques. Because life and per-
formance tests are so time consuming and expensive to run, it is a
practical necessity to terminate them as soon as possible.

For the statistician this means developing estimation and decision
procedure for data, which are severely curtailed in one way or another
long before all items on test have actually failed. The
estimation is more complicated when the data are truncated, i.e. when
the observer loses track of some individuals before death occur. The
product limit method of Kaplan and Meier is one way of estimating p(t)
when the mechanism causing truncation is independent of the mechanism
causing death.

This paper proposes alternative estimators and compares them to
the product limit method. A computer simulation is used to generate
the times of death and truncation from a variety of assumed distribu-
tions. No single estimator gives the best fit to the "true" distribu-
tion of death under all situations. However, other estimators are
shown to be better than the product limit estimator under all of the

assumed situations.
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I. INTRODUCTION

Let the random variable T denote the time that elapses until an
event occurs; the event may for example be an equipment failure, an
individual's death, or the detection of a target. Denote by p(t) the

probability of survival to time t,

p{T > t} = p(t)

Picturesquely, T 1is called a lifetime, and p(t) is a survival pro-

bability;

F(t) = 1 - p(t) is the distribution function of T.

In the medical field, one might wish to estimate the probability,
p(t) that a patient survives t after a certain surgical procedure
for cancer. 1In electronics, one wishes to estimate the probability of

continuous failure-free operation of an equipment for time t. In the

military, one might be interested in the probability of conducting a
certain mission, under specified environmental conditions, without de-
tection by the enemy. The event of interest may be a human death,
equipment malfunctions, or sonar detection. Following Kaplan and Meier,
Reference (1), this paper will refer to the event of interest as a
"death". The test element in the sample may be a human, a radio, or

a submarine. This paper will refer to the test elements as "individuals".

Suppose that observed values of T are tl, t2, t3"°'tN' so that N
lifetimes are observed. 1In this case an appropriate (unbiased) esti-

mates of survival to time t is




Under many circumstances complete lifetimes are not observed; censoring
occurs at certains, xi , beyond which the life of an individual is not
known. In such cases construction of an appropriate estimate of the
survival probability is more difficult. In this paper various estimates
of survival probability are studied when lifetimes are randomly censored.
This means that censoring times are assumed to be realizations random
variables independent of the actual lifetimes.

The product-limit estimator of Kaplan and Meier, Reference (1), is
an accepted method of dealing with the problem of censored data. This
paper presents thirteen non-parametric estimators, including the product
limit function. Censored data sets are simulated. The thirteen esti-
mators are compared by examining their performance on the simulated data

bases.




II. THEORY

There are two approaches to the empirical estimation of the survival
probability, p(t):

(1) one may use the observed fraction of survivors at arbitrarily

selected times (step function estimator), or

(2) one may focus attention on the times of the observed deaths

(point estimator).

The initial discussion is based on the assumption that all observa-
tions are complete, i.e., it is assumed that all individuals remain under
observation until their time of death. This initial assumption is for
the purpose of simplifying the discussion. Then, later in this paper,
the discussion is broadened to include incomplete data with observations
of both death and censoring events.

Survival Probabilities; No Censoring

bee 0 = €. S B < € Lns SiE Gt
0 3

1 2 < ... be a sequence of fixed

i+l

times. Then if T is a lifetime
= >
p(t.) p{T t,}

and denote the conditional probability of survival to time ti' given

survival to ti+1 by

p(tilti_l) = p{T > tilT > ti_l}
pi{T > ti} p(t,)
T plT > t ;] Bt

(1)
1-1)




If p(t; ;) =0, define p(tilti_l) =0 .
Then
plt;) = p(ti|ti_l)p(ti_l) = P(tilti—l)'p(ti-llti-z)p(ti-z)
i
= t. |t 2
T eeyfe; (2)
j=1

where p(ti|to) =p(t;)) i plo) =1.

Observations on Uncensored Data at Fixed Times

Let a sample of N individuals come under observation. They are
all observed from birth (or the appropriate event defining time zero)
until death. With the first approach, preselects a series of times,

0 < tl < t2 < ... before examining the observed time of death. 1In the

medical follow-up example, one might select the times corresponding to
exactly 1,2,3,... years after a surgical procedure for cancer. An esti-

mate of the conditional probability of survival to ti, given survival

~ Hi -r
p(tilti-l) = ——EI——- (3)

With Ni elements were present at the beginning of the interval, i.e.,

at time ti-l' and ri elements failed during the interval.

For a set of data which is not censored, Ni = Ni-l - ri_l . Now

replace probabilities by their estimates in (2):
5 S * R, -r,
p(t,) = I p(tj|tj_l) =TT (—J—lN_ )

j=1 j=1 ‘




_ (N—rl) (N-rl—rz) i (N-rl-.. .-ri_;‘ (N—rl-.. .-ri )
e N-r N-F =...=F, ' N-K, =u..-r,
1 i- I

Now the estimate p(ti) is of the form

b N= e St bl G e R )
plt,) = 1 2 i ,
T N

and this is the same as

Z|,.0

p(ti) =

where Si is the number of the original group, of size N, that survive
to ti. If it is assumed that the N individuals each have the survival
probability p(t), and that they die independently, then Si, the random
number that survive to time ti is binomially distributed, with Si being

a realized value of Si' Then, considering the estimate as a random

variable,
p(ti) =
and
H N p(t;)
E[p(ti)] = N L P(ti)
and

p(ti)(l'P(ti)
N

Var[p(ti)l

Consequently E(ti) is an unbiased and consistent estimate of p(ti).
This is true for every ti' and can be shown to be true for all ti' i=1,

2,063y &8 wWill.
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All of this indicates that the estimate suggested is likely to be a
good one if the sample size, N, is large.

Clearly p(t;) < B(t, ) . The survival probability, p(t), is thus
estimated at a fixed sequency of times. At each time point, ti being a
typical one, there are ri fewer survivors than at ti-l’ where ri =0,1,
2,...,N. Consequently a plot of 5(:i) shows a non-decreasing step
function, with downward steps of varying sizes at tl’tz"" >

If the above times are close together, and if the time of death T,
has a density function, then one can anticipate seeing values of ri that
are either zero or unity.

The so-called second approach is really a limiting case of the first,
as the time of intervals of measurement decrease indefinitely. Thus when
a death (or loss) occurs it is only a single event.

When no losses take place, the case now considered, the time ti of
the ith death is a really a realization of a random variable, denoted by
si; this means that p(gi) the probability of surviving L is a random

variable. It can be shown that the expected value of p(Ei) is

N=i+1 %
Elp(t)) = 551 » +=1,2/...0N
< —— &
where El 52 < EN .

The derivation involves integrating

A . N! g i-1 _ dp(t) N-i
] Elp(t))] = p(t) (D TM=isD) T [1-p(t)] = 5 ) [p(t)]
(o]
_ N-i+l
N+1

by transformation from p(t) to x; see Cramér, Mathematical Methods of

Statistics, H. Cramér, Princeton University Press, 1946.

11




Thus one is led to use

N-i+1l

plty) = === (4)

as an estimate of the value of p(ti), ti being the ith time of death.
Expression (4) provides estimator of the survival function at times of
observed deaths when there are no losses because of censoring. The

estimator at the points ti: ti <, S === K tN' can be connected by

2
straight lines, or a step function with step sizes 1/(N+1l) may be used.
The estimators of equation (4) give intuitively acceptable results.
For example, if the sample consists of only a single individual (N=1),
then death is equally likely to occur before or after the time at which

the true (but unknown) survival function equals one half. Thus, the

result of equation (4) is reasonable:
& 1
Elp(t))] =3

The point estimates of the second approach always occur at the times of

discontinuity forestimates from the first approach. For example, con-

sider a data base (N=4) with deaths observed at times 1,3,4 and 7. The

first approach gives the following step function estimate of the survival

function:
1.0 o<t<1
0.75 1<t<3
p(t) = 0.5 3<t<a
0.25 4<t<7
0.0 £ <7
12
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The second approach gives the following point estimates

p(o) = 1.0
p(l) = 0.8
p(3) = 0.6
p(4) = 0.4
p(7) = 0.2

A graphic comparison of the results of the two approaches is given

below:
1.0
p(t) |~
0.5 |-
\1
i
\4.
Y ey “ 1 2 b -
0 1 3 5 7 t

It is difficult to decide how to smooth out the step functions
that result from the first approach. By connecting the tops of the
"stairsteps,"one Places an upper bound on reasonable estimates. By
connecting the bottom corners of the stairsteps, one places a lower
bound on reasonable estimates. One might draw a smooth, decreasing
curve that passes through all (or almost all) of the vertical faces
of the step-function estimate. The second approach suggests method

of selecting a unique point on each of these vertical segments.

13




Incomplete observations

When some of the observations are incomplete, equation
(4) requires modification. The expected value of the survival function
at the time of the first observed death may be written:

Ny
El(t)] = T (5)

Here Nl is the effective size of the sample during the interval termi-

nated by the time observed for the first death (o,t,). In the special
1

case of no censoring events, the value of Nl is unambiguous. It is
equal to the initial sample size (Nl = N). In this case equation (5)
reduces to equation (4),

Subsequent point estimates for t2, t3,... may be calculated

iteratively:

Eﬁa(ti)) = * Elp(t

i
N.+1 F i‘l)]
b &

where to = 0 and Ni is the effective sample size over the time interval

(ti-l' ti). Thus,
i N,
EB(t)] = }]; (EQ%T) (6)

Variance of the estimators

Kaplan and Meier, reference (1), give an expression for the exact

calculation of the variance of step functions. They also discuss

"Greenwood's formula," a large sample approximation that ignores terms

of order 1/N12.

14




Herd, reference (2), presence without derivation an expression for

the variance of estimates using the second approach (point estimators):

5 -
N. N,
- P =TT ) - el
V(t;) = var {Elp(t,)]} 3 (Nj+2) A (Nj+l)

The notation here follows that for the estimating equation (6).




III. THE ESTIMATORS

This section describes the nine non-parametric estimators and four
jackknife estimators of the survival probability. It also describes
the parametric estimator for an exponential decay function. Exponential
life distributions are the starting point for much of reliability theory
and practice. The estimator derived from the exponential is regarded as
"par" when the simulated data is based on an underlying exponential decay
distribution for deaths. Thus, when deaths are exponentially distributed,
the non-parametric estimators may be compared relative to each other,
and they may be compared with the parametric estimator as a standard.

A hypothetical data base, consisting of five individuals, is used

to illustrate each of the estimators. This sample data base is as

follows:
Individual Time of Death Time of Truncation
A 1 -
B Unknown (>2) 2
C 3 -
D Unknown (>6) 6
E " -

The data have been arranged in time sequence of the death and trunca-
tion events. In the medical example, the data might indicate that

patients A, C and E were observed to die exactly 1, 3 and 7 years, re-
spectively, after their surgery. However, B and D moved away or other-

wise became unavailable to the observer at these times. Further, the

lé

-

-




cause of the unobservability is unrelated to the patient's health and

life expectancy.

A. STEP-FUNCTION ESTIMATORS

~

1. The First Estimator, "pl(t)“

El(t) is a naive estimator; it is expected to perform poorly
relative to the other estimators. 51 only depends on the data from in-
dividuals whose deaths are observed. It ignores any information from
the partial lifetimes noted for the censored Observations. gl(t) is
simply the fraction of individuals surviving to at least time t among

those individuals whose time of death is known. It is a step function:

& pl(t)
0-1 1.0
1-3 0.667
3-7 0.333
7= 0.00

The naive estimator, pl(t), takes no account of the successful
survival intervals observed for the censored individuals. Therefore
it is biased in a downward (pessimistic) direction.

2. The Second Estimator, "pz(t)"

gz(t) is the product-limit estimate. Kaplan and Meier, refer-
ence (1), have shown that this is the maximum likelihood estimator. The
observed events, both deaths and truncations, are arranged in increasing
order of occurrence: tl’ tz""'tN; where N is the number of individuals
in the sample.

Let p(ti) denote the cumulative probability of survival of an
individual from time zero to time t,. Let p(tlti) denote the conditional

probability of surviving to time t(> ti), given that the individual has

L7




already survived to time ti' Then,

-~

B,(t) = Pyt 1)+ (e ft, ) (E-1)
If we define to = 0 and p(0) = 1, then

i
By(t,) = ;Ulpz(tjltj‘l) (E-2)

The product limit estimator is in the form of equation (E-2) with

N.
-1 = 1 If the event at t. is {
Nj truncation J
’ - -3
pz(tjltj-l) (E-3)
N.-1 |
—%—— If the event at t. is
= a death J

Here nj is the number of individuals observed surviving in the interval |
tj-l < € < tj. This formulation causes the product limit estimator to
be insensitive to the exact time of the censoring events.
The estimator is unity from time zero to the time of the first
event, tl' reflecting the fact that all individuals in our example are

observed to live until at least time tl.

- If the event at time tl is a truncation, then the estimator

remains at unity until at least time t Again, no deaths

2°
are observed in the sample before tz‘

- If the event at time tl is a death, then the estimator drops
to (N=1)/n. This drop reflects the observed death of 1N of
the survival sample just prior to tl.

Values of the estimator p, are calculated iteratively at successive

values of ti(i=1,2,...,N).

18




The size of the survival sample declines as truncations and
deaths remove individuals from observation. For the hypothetical data

base listed above, one obtains:

. bz(t)

0-1 5/5 = 1.0
1-2 4/5 = 0.8
2-3 (4/5) x (3/3) = 0.8
3-6 (4/5) x (2/3) = 0.533
6=7 (8/15) x (1/1) = 0.533
if=c0 (8/15) x (0/1) = 0.0

The product-limit estimator explicitly accounts for the sur-
vival of these individuals (up to the time of the last death before
each censoring event). Thus,'ﬁz(t) is a step function with a value
that is not less than §l(t) for any value of t. If the sample contains
no censoring, then ;l(t) and Sz(t) are identical.

If the last event in the sample is a truncation rather than a
death, then the modified data give the following estimate, i.e.,
individual E had disappeared from the observer at time 6.5 (so that

the fact of E's death at time 7 is unknown).

pz(t) - Modified data

t
0-1 1.0
1-3 0.8
3-6.5 0.533

Since the time of the death for individual E is now unknown,
one can only estimate that:

~

0 < pz(t) L 0.533 for t > 6.5

19




If the analyst is willing to assume a functional form for the

survival function, then he may calculate the manner in which the
estimator Bz(t) decreases to zero. However, the data alone are insuf-

ficient when a strictly non-parametric estimator is used.

The product-limit estimator is a useful and intuitively appeal-

ing method of dealing with incomplete observations. It has been wider
used and studied. However, the product-limit has one disturbing

characteristic:

Most of the biological, physical or other causes of deaths pro-
duce a survival probability that continuously decreases in time.
It is, therefore, one may be a little uncomfortable estimating
the survival probability with a step function. One is tempted
to smooth the estimator to make it a monotonic decreasing func-
tion of t.

~

3. The Third Estimator, "p3(t)"

§3(t) is a modification of Ez(t). Like Bz(t), it is a step

function with discrete drops at those times corresponding to the observed
deaths in the sample population. It may also be expressed as a product

of conditional probabilities:

1
Py(ty) = j|=ll Pyt |t ;) (E-4)

where the t, are the times of observed deaths and to is zero, The con-

k

ditional probabilities on the right-hand side of Equation (E-4) differ

somewhat from those in Equation (E=2):

x N, -1
Pyt [t ) = . (E=5)




Equation (E-5) differs from Equation (E-3) in the interpreta-

tion of the numbers of individuals at risk. Here, the value of Nk is

taken to be the average number of individuals observed surviving in
the interval between the (k-1)st observed death and the kth observed
death. The number of observed survivors decrease at intermediate times

if events are censored, and hence the N, are not necessary integers.

k

The value of Nk is regarded as the effective sample size for

the interval from tk—l to t In the sample data base shown above,

K
individual B is known to have survived from time 1 to time 2, or half

of the interval between the first death at t=1 and the second death at
t=3. Therefore, the estimator Py treats individual B as half a parti-
cipant in the interval between the death of individuals A and C.

The effective sample size for this interval is then 3.5

(2-1)
(3-1)

plus a half contribution from B). For our hypothetical data base, the

(n =3 + = 3.5) (full contributions from individuals C, D and E,

following values are calculated for 53:

& p4(t)

0-1 5/5 = 1.0
1=3 4.5 x 1.0 = 0.8
37 (2.5/3.5) x 0.8 = 0.571
(7) (1.75/2.75) x 0.571 = 0.364

The value of 53(t) can never be less than the corresponding value of
Ez(t). In the special case with no censoring events the estimators
El(t), Ez(t) and 53(t) are identical.

One might perturb the data by shifting the time of B's trunca-
tion event down to 1l+€ or up to 3-£, € arbitrarily small. The depend-
ence of the estimator ;3 upon the exact time of the censoring events

may now be demonstrated.

21




For purposes of illustration, the time of the censoring event

for individual B(tz) is decreased from 2 to 1.1, then increased to 2.9.

% 53(1:). t, = 2 53(t), t, = L.l Py (t), t, = 2.9
0-1 1.0 1.0 1.0

1-3 0.80 0.80 0.80

3-7 0.571 0.538 0.597

(7) 0.364 0.342 0.380

This example demonstrates an intuitively appealing characteris-
tic of the estimator, 53. As the total observed survival time increases
for the individuals in our sample (with deaths held constant), the value
of the estimating function increases over at least a portion of its
range.

We may safely assume that the true survival function eventually
tends to zero with time, since no physical or biological system lives
forever. However, there are no observations on the survival of indi-
viduals beyond time 7. The data only indicate that our step-function
estimator drops to a value of .364 at t=7, but the nonparametric esti-
mator gives no information about the survival function's subsequent
decline from .364 to zero. However, the data alone are insufficient

when a strictly nonparametric estimator is used.

B. POINT ESTIMATOR

As mentioned above, the estimators 51, 52 and 53 are somewhat unde-
sirable because they give step-function estimates for a continuous
survival function. The next three estimators 54, 55 and 56 are modifi-
cation of the first three. Again they provide estimates of the survival

function only at those points in time that corresponde to observed deaths.

22




These estimators are specified by Equations (E-2) and (E-4), except for
a substitution of the term (N+1) in place of (N).

Since the point estimators have rigorous definitions at only dis-
crete points in time, it is necessary to offer an interpolation rule.
That is, we need a method of "connecting the dots." The method proposed
here is to assume that the survival function declines in a piece-wise
exponential decay between the discrete points in time. This procedure
is equivalent to assuming that the hazard function is essentially con-
stant between a consecutive pair of the discrete times, but that the
hazard varies from one time period to the next. Such an assumption is

intuitively acceptable unless one suspects violent fluctuations in the

hazard function.

1. The Estimator, "54(t)"

54(t) is analogous to El(t) in that only those individuals ob-
served to die are included in the sample. These two estimators are naive
because they suppress all data from the survival times of individuals
terminated from observation by censoring.

These estimates, i.e., bl(t) and'b4(t), tend to ignore informa-
tion from the more long-lived individuals in the sample, and they may
be expected to give biased estimates of the survival function.

The point estimator 54(t) gives the following values with sample

data base presented earlier in this section.

Interpolation
-~ e
t p4(t) t p4(t)
0 1.0 0-1 " it e
1 3/4 = 0.75
" , S5 ein(2/3)
3 (3) x 0.75 = 0.5 1-3 (z)e
3 4 ";—3 «2n(1/2)
7 (3) x 0.5 = 0.25 37 e
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The interpolation for connecting the dots are as follows:

1+
p(t) T—-'-'y\
!
| -
T
' [ o~
o S TR L S T ]
! . |
o
0 1 2 3 4 5 6 7 t
t 0 Sk = 1 1 i & i 3 3 i.t i 7
o Bl _ 3
-t
p(t) % p(t-1) e © ple-1) o
t=1 t=3 £ =7
interpo- & g -
latioi 3a * 2as i1 2wl "
& 2~ 4 4 2
2 i
i L A
T AT T 2 15 4
t'i?,n(i) t-1 -Q,n(a) 3 'Q,n(l'-)
4 3 2 3 1 4 2
p(t) e (z)e (E)e

2. The Estimator, "Es(t)"

The estimator 'f)s(t) similarly corresponds to the product-limit
estimator ;’z(t) . These two estimators use information from the indi-
viduals on whom there are censored observations. '135, like 1’32, does
not exploit information about that portion of the censored observation

after the death event (of some other individual) preceding the censor-

ing event.
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For our hypothetical data base the following values are

calculated for p e

Interpolation

t By (1) t P it)
0 1.0
1 5/6 = 0.833 0-1 oS rinitss)

3 5 t;l Q“‘%’
3 (3)x 0.833 = 0.625 T e

2 6

1 5 t:xB Q“(%)
7 (5)x 0.625 = 0.312 3-7 (2e

Whenever censored observations are present, the estimator p4(t) never

exceeds §5(t).

For is(t), the value of Ni is taken to be the number of surviv-

ing individuals in the sample just before the observation of the ith

death. This value is smaller than the number of surviving individuals

just after the (i-1)st death if any truncation events occur in the

interval. In fact, Ni is the smallest number of surviving individuals

observed at any time during the interval (ti—l’ ti). Thus ES might be
expected to introduce a bias by using values of Ni that are, on the
average, too small. However, this bias would be much less severe than
the bias anticipated for the estimator 54(t).

The estimators 54 and ;5 are insensitive to the precise times
of the censoring events. A change in the time of the censoring ecvent

for individual B to 1l+€ to 3-g, € arbitrarily small, does not alter the

estimates from 54 and 55 given in the preceding paragraph.
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3. The Estimator, "56(1;)"

The estimator Ee(t) corresponds to 53(t) by accounting for all

of the survival time for the truncated observations. For our hypo-

thetical data base, the following values are calculated for p6(t):

Interpolation
t p6(t) € 96(t)
0 1.0 0-1 & ekoisd
1 5/6 = 0.833 t;l on (2.:)
a5 g S, 3
3 Gztg) x 0.833 = 0.648 1-3 (6)e
t-3 k25
378 7 G
7 (?'—73) x 0.648 = 0,412 3-7 (0.648)e

The estimator Ee(t) is based on the average number of surviving
individuals noted in the various time intervals. These estimators give
part credit for individuals whose lifetime is censored in mid-interval.
The value of ui for 56(t) is an unweighted time average. If the obser-
vation of an individual is truncated after 23% of the interval has
elapsed, then that individual contributes a value of 0.23 to Ni‘ Indivi-
duals who are observed to survive the entire interval, and the individual
whose death terminates the interval each contribute a value of 1.0 to Ni'
This interpretation of the effective sample size is approximate if the
hazard is approximately constant over the interval. If the hazard function
changes markedly within a time interval containing censored events, then |

this interpretation of the effective sample size is biased., Therefore,

the procedure of determining the value of Ni for the estimator Es(t) is

based on the implicit assumption that the survival function is locally

26
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exponential. If the hazard function may be assumed to vary slowly over

each of the time intervals (t,

i-1' ti) then 56 would appear to be biased

on an acceptable approximation.
The estimator 56' like 53, depends on the precise times of all

deaths and censoring events.

" P (t), t, = 2 Pg(t), t, = 1.1 Be(t), t, = 2.9

0 1.0 1.0 1.0

1 5/6 = 0.833 5/6 = 0.833 5/6 = 0.833
3.5 > 3.05 _ 3.95 -

3 (799 x 0.833 = 0.648. (TG) x 0.833 = 0.628. (T52) x 0.833 = 0.665
1.75 _ 1.75 - 1.75 '

7 (5752)x 0.648 = 0.412. (F33) x 0.628 = 0.399. (33=7) x 0.665 = 0.423

This illustrates that an increase (or decrease) in the total observed
survival time causes an increase (or decrease) in the estimate 56 over
at least some of its time range.

If the last event is a censored, and not an observed, death,

these estimators also require definition for the time period starting
with the time of the last death and ending with the time of the final
censoring event.

The method proposed here for 54(t) and Es(t) is to continue the
exponential function used in the interval terminated by the time of the
last death. This procedure can be illustrated with the modified data

base used above in the discussion of 52 and 53.

C. THE BAYESIAN ESTIMATORS

Consideration is next given to quasi-Bayesian estimators based on
a uniform prior distribution on the unit interval. Let Xl""'xN be the
true survival times of N individuals which are censored on the right by

N follow-up times Yl""'Yﬂ‘ It is assumed that the xi are independent,
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identically distributed random variables with common distribution p(t)

and we wish to estimate the survival function
p(t) = Pr(x > t)

However, we only have available the data,

(&)
]

min {X,, Y.}
i’ i

LodE X< ¥,
=

0 if Xi > Yi, i=lye..,n

If 61 = 0, then Zi is called "a loss", and if

S.
i1

1, then Zi is called "a death".
Then pr[Gi =1] = pr[Xi > £ = pitthy i=lycaaNi

The maximum likelihood estimator for p(t) is

p(t)
is the number of successful tests, s has the binomial distribution.

N s -s
) P (1=p;" 5 ¥90,1,ues )8, 0 € p < 1

P(s|p)

fp(p) Ly @ < pl< il

The joint density of s and p is

£ -
s,p'%P - ‘2) p®(1-p)" %, 0 < p <1, 3=0,1,... N,
The marginal for s is

s! (N-g)! - &
(N+1)! N+1

1 N s n-=s
pg(s) = f (s) p°(1-p) " “dp
o

Ny.
()
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for s=0,1,...N. Thus, averaging over the values of p, all of which are

assumed to be equally likely, the values of s are equally likely to occur.

The posterior for p then is

T qi+2 s Ne-s
fpls(pls) = 2 p(l-p) ", 0<p<1l,

T T (s+1)T (N=-s+1)

a beta density with parameters s+l and N-s+1l. The mean of the posterior
is (s+l)i‘N+2)and the modal (maximum value) of the posterior is s/M; thus

the Bayes estimate of p (given s survivers occur in the sample of N) is

p == (C-1)

Then, equation (C-1) yields a step function and also has shown that the
uniform prior has the effect of adding two individuals to the popula-
tion at risk with one dying at time zero and the other essentially
inmortal.

The Bayesian estimators based on a uniform prior distribution on
the unit interval are denoted Eil(t)' iiz(t) and 213(t), that correspond,
respectively, to the estimators El(t), Ez(t) and 53(t). The sample

data base thus gives the following estimates of the survival function:

. pll(t) plz(t) pl3(t)

0-1 4/5 = 0.8 6/7 = 0.857 6/7 = 0.857

1-3 3/5 = 0.6 (g) x 0.857 = 0.714 (g? x 0.857 = 0.714
3

3-7 2/5 = 0.4 (4) x 0.714 = 0.536 (2.2) x 0.714 = 0.556

(1) 1/5 = 0.2 (%) x 0.536 = 0.268 (;';:)x 0.556 = 0.354
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At the time of the final event (whether a death or a truncation),
these step-function estimators drop to some positive value. Again,
we have no data to indicate how the survival function proceeds to zero

at subsequent times.

D. THE JACKKNIFE ESTIMATOR

We will assume that we observed, or have generated in a simulation,
a survival probagility p(tj), j=ls...,n, from various sample sizes.
Furthermore we have some parameter or characteristic p(tj) of the
sample size which we wish to estimate with an estimator ﬁ(tj). The
jackknife estimator p(t,n) described below is an approximately unbiased
estimator of p(tj). A modification of it has other useful properties.

§_i(t,n-1) is the estimator from the sample of n of the X,'s with the
ith value deleted from the sample.

§i(t,n) = n pi(t,n) - (n-1) §_l<c,n-1) i), . eeshi

B (t,n) = n B(t,n) - =

1 A

~ 1
p(trn) ;

L o =]
[ =]

p_, (t,n-1)
1 1

i
the ;i(t,n), called the PSEUDO-values.
The PSEUDO-values can be used to obtain variance estimates of g(t,n)
and to set approximate confidence limits, using Student's t.
The idea is that the PSEUDO-values will be approximately indepen-
dently and normally distributed. The jackknife estimator g(t,n) is a

2

sample average so we form an estimate S,\(t ) of its variance given by
plt,n
the following relationship (Miller, 1974):

Zﬁiz(t,n) = %(Zﬁi(t,n))z

n-1

2 52

S;(t,n) n
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This procedure is particularly useful if the number of data points
is small, but it must be used with care. Note, that the estimator §(t,n)
is designed to eliminate a %-bias term in the estimator p(t,n). Of
course the computational aspects of the complete jackknife can be quite
onerous, especially if p(n) were, say, a complicated maximum likelihood
estimator. Miller, reference (4) has shown that the product limit
estimator is its own jackknife. 1

Logistic Transformation

Although one can legitimately jackknife the Kaplan-Meier estimate
directly, there is some reason to believe that a preliminary transforma-
tion will give improved results. Consequently, consider the transforma-
tion

~

£ = n( )

—B(t)
1-p(t)

and notice that where the range of p(t) is from zero to unity, the above
transformation makes the range of £ run from =» to ®, The procedure
utilized will be as follows.
(A) Compute the overall estimate at a time point t, using all N data
points, and using a “continuity" correction that has the effect
of removing the effect of a zero in the logarithm (see D.R. Cox,

Analysis of Binary Data, Methuen Monograph) :

P, (t) + s
i = 2n( N M )

N ~ 1
l-pN (t) + W

(B) Compute the f£-values by leaving out each data point in turn when

computing p(t): for i=1,2,...,N.

~ . -
N-1,-i 2(N-1)

5 1
1=Py-1,-i ®) * 3m-D

3l

“_....------Illlllllll.llIllllll--.-.---.-------.-.-"




(C) Form the pseudo-values

z; = Nby - (1) &,

1 -i

2

(D) Compute z, Sz

(E) Put approximate confidence (1-0)*100% limits on E[L] as follows

L<E[2] <H

z #(-) &, o WL

Z| un
N N

where H(L)

(F) Transform bash to obtain

, and
1+e l+e

The true value, p(t), should be enclosed between these levels for
roughly (1-0)*100% of all samples. The coverage properties of this pro-
cedure will now be checked by simulation: successive samples of size N
will be selected, the jackknife limits H and L will be computed for each,
LL < p(t) < eHH or not, Tables

1+e 1+e
illustrating performance are given subsequently.

e

and a check will be made as to whether
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QN-I =3 is the logistic transformation estimator from the sample n
’

of the Xi's with the ith value deleted from the sample.

) a1

P LR e
2 = Q‘n(pN-l,-l( 2(N-1) ,
el 1-p (£)+ = :
N-1,-i 2(ti-1)
QN-I,-i
S [ 2 3 4 5
t
ty 3.04| o0.98| o0.98| o0.98| o0.98
t, 3.04| o0.98| o0.98| 0.98] o0.98
£, 0.63 0 0.98| -0.46| -0.46
& 0.63 0 0.98| -0.46| -0.46
£ -3.04| -3.04| -3.04| -1.89
zl = NQN - (N-1) QN-l -
p. (t) L o (t) :
P (t) + 5y Pu_y -3 (&) +2meD)
= Nl (< ) = (=1 sLN(Nl'l —)
1-p, (t)+ 2y - M- () gr=

zi(n) are called PSEUDO-values of logistic transformation, the
following values are calculated:

z,:
1

. 1 2 3 4 5
t
tl -6.05 2.198 | 2.198 2.198 2.198
t2 -6.05 2.198 | 2.198 | 2.198 | 2.198
t3 =L1.9 0.606 [-3.314 2.446 2.446
t4 -1.9 0.606 |-3.314 2.446 2.446
ts ~3.0626|-3.0626)|-3.0626 |-3.0626 (-7.162
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Average of the pseudo-values

NI
[}
Zir-
[ e -
N

Invert to find jackknife estimator of logistic transformation

% = fn (M)

l-§.(t)+ -2%

Ble) = (l-l»:_'ldl)ez - ZLN
l+e z

called the jackknife estimator
of logistic transformation

Variance of the z;

S © . = var(z) = ;%T

The following values are calculated:

t z p(t) Var J:t
tl 0.5484 0.646 13.6
t2 0.5484 0.646 13.6
t3 0.0568 0.516 6.727
t4 0.0568 0.516 6.727
ts -3.882 0 3.361

The jackknife estimator for estimating variability and giving confidence
interval.

Tukey, reference (3) has suggested that in the jackknife procedure

we consider the pseudo values zi(N) as approximately independent and

identicaliy diztricuted and consequently, since 2 is an average of
y
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the 2 i (N}, proceed as if

n
1 =.2y%
{El-l E (zi z)°
has t-distribution with N-1 4.r.

If the z:,L are approximately normal variates (Miller has shown)
confidence bands for the unknown p(t) are given, as for the mean of

any normal variate when estimated from sample size n.

S
= z
A i/—n_ tl-—a/2 (N-1) (D-l)
l.e. < 3
i W p(t) +'2—N i TR
s =g (N-1) < n( } S+ —% . 1)
/;' 1-0/2 l-§(t)+ % /rT 1-a/2
L(n) = z - ;,E tl-a/z
L(n) = z + E tl—a/Z
1., 5Ny 1 1, LN 1
(1+ ) — (1+ —e ==
2N 2N 5t) < 2N . 2N
3 & g=™ 1+ o™

The following values are calculated:

\ 4 t)ayp = 2-776
t Lower Int. Upper Int.
tl 0 1.0

t2 0 1.0

t:3 0 1.0

t, 0 1.0

ts 0 0.14
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The basis for this leap of the imagination seems to be that if
z=Xx-= }-(n then the procedure for obtaining confidence intervals
using equation (D-1) and pseudo~values is the same as the procedure

using jackknife. Then if ;‘N =2 and

- h il 3]
z == ¥ z we have
n .
i=1
z, =N& - (n-1) %
i N N-1,-i
N
{2 ¥ L+-%
= j=1 * 1
= - MN-
NXN MN-1) No1
N N
=% X = [z X.]+Xi=X
j=l J j:l J
Thus the pseudo value
- 1 n -
z, = X, and Za= =l O = R
i i 1 I 5 n
i=1
The pseudo values are independent if z = )—(n and they are normal if

Xi is normal.

E. PARAMETRIC ESTIMATOR, "'b7 s

This paper considers one additional estimator, denoted 57 (). It
is a parametric estimator. Therefore, it is not really a competitor to
the thirteen non-parametric estimators considered here. In general, a
parametric estimator would not be used if the functional form were re-

garded as unknown. Similarly, a non-parametric estimator would not
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normally be used if the survival function were strongly suspected to
have a specified form.
57(t) is the well known maximum likelihood estimator for the expo-

nential distribution:

” _-t/T
p7(t) =e

X ti
where T =

number of observed death

In our sample data base, the total observed survival time is 19, and

~ three deaths are observed. Thus,

% ti =1+2+3+6+7-=19

-
3
s 57(t) . g ~3t/10

Calculations for selected times of interest yield the following esti-

mates:

p7(0) = 1.0

p7(1) = 0.854
P, (3) = 0.623
p7(7) = 0.331

The thirteen non-parametric estimators are compared for a variety of
generating distributions for both the death mechanism and censoring

mechanism.
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IV. INSTRUCTIONS FOR USING PROGRAM

INPUT

Each input card bears nine variables. The distribution of time of
death is entered in the first set of (five) columns, the censoring dis-
tribution is entered in the second set of (ten) columns, a parameter of
the censoring distribution is entered in the third set of (ten) columns,
the number of replication is entered in the fourth set of (five) columns,
the number of the event is entered in the fifth set of (five) columns.
For the purpose of all print output used code "0" and "1" in the sixth
set of (five) columns, the seed number is entered in the seventh set of
(five) columns, after the card giving the time of the last event of a
data set, a card with "0" or "1" in the column 50 is inserted, i.e., the
"0" indicating more data sets to follow and "1" indicating the last data
sets and t value is entered in the ninth set of (eight) columns.

The distribution of timeof death and of censoring time used code as

follows:
Code Type of Distribution
1 Uniform
2 Exponential
3 Delta function
OUTPUT

The output lists:

1) the time of each observed failure

2) estimated survival probability at that time
3) the variance of that estimator

4) result of goodness fit
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a) mean error
b) mean absolute error (ABS)
c) root=mean-square error (RMS)
5) total number of observed death
6) confidence interval at particular time

Definition of Fortran Variables

NDIE : the distribution of time of death ]
NTRUNC : the distribution of censoring time
XTRUNC : the parameter of the distribution of censoring time
NREPL : number of replication
NEVENT : number of event
| NWRITE : write all output or partial output of simulation
NEND : 1indicate more data sets or last data set
TN : t statistic value
P, : the estimator, §l(t)
P, : the estimator, 52(t)
P, :  the estimator, 53(t)
P, : the estimator, §4(t)
P : the estimator, Es(t)
Pg : the estimator, 56(t)
P : parametric estimator , §7(t)
Pg : jackknife estimator of logistic transformation of b4(t)
Pq : Jjackknife estimator of logistic transformation of bs(t)
P1o jackknife estimator of logistic transformation of bs(t)
Py Bayesian estimator of bl(t)
P15 : Bayesian estimator of Bz(t)
P14 : Bayesian estimator of 53(t)
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jackknife estimator of logis*tic transformation of‘bz(t)

P14 :

SL(T,J) PSEUDO-value

SBAT : average of pseudo-value

Var : variance of estimator,‘}(t)

VarJ : variance of jackknife estimator
u(I,J) : mean of goodness fit

wi(I,J) : absolute mean of goodness fit
s(1,J) : root mean square error

Cl : upper confidence interval of p14(t)
C2 : lower confidence interval of pl4(t)
C3 : upper confidence interval of p8(t)
C4 : lower confidence interval of pa(t)
C5 : upper confidence interval of pg(t)
C6 : lower confidence interval of pg(t)
C7 : upper confidence interval of plo(t)
C8 : lower confidence interval of plo(t)
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Computer output of the fourteen estimators
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