

LEVE

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

NONPARAMETRIC ESTIMATION FROM CENSORED DATA

by

Lee Won Hyung

March 1978

Thesis Advisor:

Donald P. Gaver

Approved for public release; distribution unlimited.

78 07 10 020

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM			
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER			
A. TITLE (and Subtitle)	- 9	F. TYPE OF REPORT & PERIOD COVERED			
Nonparametric Estimation for	rom Censored Data	Master's Thesis; March 1978			
The second secon	And the second s	6. PERFORMING ORG. REPORT NUMBER			
Lee Won Hyung		S. CONTRACT OR GRANT NUMBER(*)			
9. PERFORMING ORGANIZATION NAME AND AD	DRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
Naval Postgraduate School Monterey, California 93940					
11. CONTROLLING OFFICE NAME AND ADDRESS	s	12. HEPORY BATE			
Naval Postgraduate School Monterey, California 93940		18. NUMBER OF PAGES			
14. MONITORING AGENCY NAME & ADDRESS(II	different from Controlling Office)	18- SECURITY CLASS. (of this report)			
Naval Postgraduate School		Unclassified			
Monterey, California 93940		184. DECLASSIFICATION/DOWNGRADING			
16. DISTRIBUTION STATEMENT (of this Report)					
Approved for public release;	distribution unlimit	ced.			
17. DISTRIBUTION STATEMENT (of the abetract	entered in Block 20, Il different in	om Report)			
18. SUPPLEMENTARY NOTES					
19. KEY WORDS (Continue en reverse side if neces	nees and identify by block number	2			
Censored data	or of the factority by brock measure				
Survival probability					
Jackknife estimators of logis	Jackknife estimators of logistic transformation				
Bayesian estimators					
Simulation model					
For nearly two decades we	a Kasa Vapone				
of a statistical methodology					
bility of performance from em					
research on statistical probl					
from the need to answer pressing practical questions which could not be					
treated by the existing statistical techniques. Because life and per-					
formance tests are so time co					

DD 1 JAN 75 1473 EDITION OF 1 NOV 65 IS OBSOLETE
(Page 1) 5/N 0102-014-6601 |

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

practical necessity to terminate them as soon as possible.

For the statistician this means developing estimation and decision procedure for data, which are severely curtailed in one way or another long before all items on test have actually failed. The estimation is more complicated when the data are truncated, i.e. when the observer loses track of some individuals before death occur. The product limit method of Kaplan and Meier is one way of estimating p(t) when the mechanism causing truncation is independent of the mechanism causing death.

This paper proposes alternative estimators and compares them to the product limit method. A computer simulation is used to generate the times of death and truncation from a variety of assumed distributions. No single estimator gives the best fit to the "true" distribution of death under all situations. However, other estimators are shown to be better than the product limit estimator under all of the assumed situations. $\ensuremath{\mathbb{N}}$

ACCESSION	tw
eTIS	White Section
	Butt Section
CHARROUNG	1 0
JUSTIFICAT	108
IY	TIAN AND AND ITY MARTY
	TION/AVAILABILITY COORS
BY	TION/AVAILABILITY COSES AVAIL COS/OF SPECIAL

Approved for public release; distribution unlimited.

Nonparametric Estimation

from Censored Data

by

Lee Won Hyung Major, Korean Army B.S., Korean Military Academy, 1970

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL March 1978

Approved by:

Approved by:

Approved by:

Thesis Advisor

Second Reader

Mc Sovering (Thurston Advisor)

Chairman, Department of Operations Research and Administrative Sciences

Deah of Information and Policy Sciences

ABSTRACT

For nearly two decades we have witnessed an intensive development of a statistical methodology for assessing length of life and reliability of performance from empirical data. The initial stimulus for research on statistical problems in life testing and reliability came from the need to answer pressing practical questions which could not be treated by the existing statistical techniques. Because life and performance tests are so time consuming and expensive to run, it is a practical necessity to terminate them as soon as possible.

For the statistician this means developing estimation and decision procedure for data, which are severely curtailed in one way or another long before all items on test have actually failed. The estimation is more complicated when the data are truncated, i.e. when the observer loses track of some individuals before death occur. The product limit method of Kaplan and Meier is one way of estimating p(t) when the mechanism causing truncation is independent of the mechanism causing death.

This paper proposes alternative estimators and compares them to the product limit method. A computer simulation is used to generate the times of death and truncation from a variety of assumed distributions. No single estimator gives the best fit to the "true" distribution of death under all situations. However, other estimators are shown to be better than the product limit estimator under all of the assumed situations.

TABLE OF CONTENTS

I.	INT	RODUCTION 6
II.	THE	DRY 8
III.	THE	ESTIMATORS 16
	A.	STEP-FUNCTION ESTIMATORS 1
	в.	POINT ESTIMATORS 22
	c.	BAYESIAN ESTIMATORS
	D.	JACKKNIFE ESTIMATORS OF LOGISTIC TRANSFORMATION 30
	E.	A PARAMETER ESTIMATOR
IV.	INS	TRUCTIONS FOR USING PROGRAM 38
v.	RES	ULTS OF THE SIMULATION
APPENI	OIX A	A. ESTIMATORS FOR GROUPED DATA 60
APPENI	OIX I	B. LISTING OF COMPUTER PROGRAM 63
LIST	F RE	EFERENCES 74
INITIA	AL DI	ISTRIBUTION LIST

I. INTRODUCTION

Let the random variable T denote the time that elapses until an event occurs; the event may for example be an equipment failure, an individual's death, or the detection of a target. Denote by p(t) the probability of survival to time t,

$$p\{T > t\} = p(t)$$

Picturesquely, T is called a lifetime, and p(t) is a survival probability;

F(t) = 1 - p(t) is the distribution function of T.

In the medical field, one might wish to estimate the probability, p(t) that a patient survives t after a certain surgical procedure for cancer. In electronics, one wishes to estimate the probability of continuous failure-free operation of an equipment for time t. In the military, one might be interested in the probability of conducting a certain mission, under specified environmental conditions, without detection by the enemy. The event of interest may be a human death, equipment malfunctions, or sonar detection. Following Kaplan and Meier, Reference (1), this paper will refer to the event of interest as a "death". The test element in the sample may be a human, a radio, or a submarine. This paper will refer to the test elements as "individuals". Suppose that observed values of T are t₁, t₂, t₃,...t_N, so that N lifetimes are observed. In this case an appropriate (unbiased) estimates of survival to time t is

$$\tilde{p}(t) = \frac{\text{number of } t_i \text{'s > t}}{N}$$

Under many circumstances complete lifetimes are not observed; censoring occurs at certains, $\mathbf{x_i}$, beyond which the life of an individual is not known. In such cases construction of an appropriate estimate of the survival probability is more difficult. In this paper various estimates of survival probability are studied when lifetimes are randomly censored. This means that censoring times are assumed to be realizations random variables independent of the actual lifetimes.

The product-limit estimator of Kaplan and Meier, Reference (1), is an accepted method of dealing with the problem of censored data. This paper presents thirteen non-parametric estimators, including the product limit function. Censored data sets are simulated. The thirteen estimators are compared by examining their performance on the simulated data bases.

II. THEORY

There are two approaches to the empirical estimation of the survival probability, p(t):

- one may use the observed fraction of survivors at arbitrarily selected times (step function estimator), or
- (2) one may focus attention on the times of the observed deaths (point estimator).

The initial discussion is based on the assumption that all observations are complete, i.e., it is assumed that all individuals remain under
observation until their time of death. This initial assumption is for
the purpose of simplifying the discussion. Then, later in this paper,
the discussion is broadened to include incomplete data with observations
of both death and censoring events.

Survival Probabilities; No Censoring

Let $0 = t_0 < t_1 < t_2 \dots < t_i < t_{i+1} < \dots$ be a sequence of fixed times. Then if T is a lifetime

$$p(t_{i}) = p\{T > t_{i}\}$$

and denote the conditional probability of survival to time $\mathbf{t_i}$, given survival to $\mathbf{t_{i+1}}$ by

$$p(t_{i}|t_{i-1}) = p\{T > t_{i}|T > t_{i-1}\}$$

$$= \frac{p\{T > t_{i}\}}{p\{T > t_{i-1}\}} = \frac{p(t_{i})}{p(t_{i-1})}$$
(1)

If $p(t_{i-1}) = 0$, define $p(t_i | t_{i-1}) = 0$. Then

$$p(t_{i}) = p(t_{i}|t_{i-1})p(t_{i-1}) = p(t_{i}|t_{i-1}) \cdot p(t_{i-1}|t_{i-2})p(t_{i-2})$$

$$= \prod_{j=1}^{i} p(t_{j}|t_{j-1})$$
(2)

where $p(t_i | t_0) = p(t_i)$; p(0) = 1.

Observations on Uncensored Data at Fixed Times

Let a sample of N individuals come under observation. They are all observed from birth (or the appropriate event defining time zero) until death. With the first approach, preselects a series of times, $0 < t_1 < t_2 < \ldots$ before examining the observed time of death. In the medical follow-up example, one might select the times corresponding to exactly 1,2,3,... years after a surgical procedure for cancer. An estimate of the conditional probability of survival to t_i , given survival to t_{i-1} is

$$\tilde{p}(t_{i}|t_{i-1}) = \frac{N_{i} - r_{i}}{N_{i}}$$
 (3)

With N_i elements were present at the beginning of the interval, i.e., at time t_{i-1} , and r_i elements failed during the interval.

For a set of data which is not censored, $N_i = N_{i-1} - r_{i-1}$. Now replace probabilities by their estimates in (2):

$$\tilde{p}(t_i) = \frac{i}{\prod_{j=1}^{n}} \tilde{p}(t_j | t_{j-1}) = \frac{i}{\prod_{j=1}^{n}} (\frac{N_j - r_j}{N_j})$$

$$= (\frac{N-r_1}{N})(\frac{N-r_1-r_2}{N-r_1}) --- (\frac{N-r_1-\dots-r_{i-1}}{N-r_1-\dots-r_{i-2}})(\frac{N-r_1-\dots-r_{i}}{N-r_1-\dots-r_{i-1}})$$

$$= 1 - \frac{\sum_{j=1}^{i} r_j}{N}$$

Now the estimate $p(t_i)$ is of the form

$$\tilde{p}(t_i) = \frac{N-(r_1 + r_2 + ... + r_i)}{N}$$
,

and this is the same as

$$\tilde{p}(t_i) = \frac{s_i}{N}$$

where S_i is the number of the original group, of size N, that survive to t_i . If it is assumed that the N individuals each have the survival probability p(t), and that they die independently, then S_i , the random number that survive to time t_i is binomially distributed, with S_i being a realized value of S_i . Then, considering the estimate as a random variable,

$$\tilde{p}(t_i) = \frac{s_i}{N}$$

and

$$E[\widetilde{p}(t_{\underline{i}})] = \frac{N p(t_{\underline{i}})}{N} = p(t_{\underline{i}})$$

and

$$Var[p(t_i)] = \frac{p(t_i)(1-p(t_i))}{N}$$

Consequently $\tilde{p}(t_i)$ is an unbiased and consistent estimate of $p(t_i)$.

This is true for every t_i , and can be shown to be true for all t_i , i=1, 2,...I, as will.

All of this indicates that the estimate suggested is likely to be a good one if the sample size, N, is large.

Clearly $\tilde{p}(t_i) \leq \tilde{p}(t_{i-1})$. The survival probability, p(t), is thus estimated at a fixed sequency of times. At each time point, t_i being a typical one, there are r_i fewer survivors than at t_{i-1} , where $r_i = 0,1$, 2,...,N. Consequently a plot of $\tilde{p}(t_i)$ shows a non-decreasing step function, with downward steps of varying sizes at t_1, t_2, \ldots .

If the above times are close together, and if the time of death T, has a density function, then one can anticipate seeing values of r that are either zero or unity.

The so-called second approach is really a limiting case of the first, as the time of intervals of measurement decrease indefinitely. Thus when a death (or loss) occurs it is only a single event.

When no losses take place, the case now considered, the time t_i of the ith death is a really a realization of a random variable, denoted by \underline{t}_i ; this means that $p(\underline{t}_i)$ the probability of surviving \underline{t}_i , is a random variable. It can be shown that the expected value of $p(\underline{t}_i)$ is

$$E[p(\underline{t_i})] = \frac{N-i+1}{N+1}, i=1,2,...,N$$

where $\underline{t}_1 < \underline{t}_2 < --- < \underline{t}_N$.

The derivation involves integrating

$$E[p(\underline{t}_{i})] = \int_{0}^{\infty} p(t) \cdot \frac{N!}{(i-1)!(N-i+1)!} [1-p(t)]^{i-1} (-\frac{dp(t)}{dt}) [p(t)]^{N-i}$$

$$= \frac{N-i+1}{N+1}$$

by transformation from p(t) to x; see Cramér, Mathematical Methods of Statistics, H. Cramér, Princeton University Press, 1946.

Thus one is led to use

$$\tilde{p}(t_{i}) = \frac{N-i+1}{N+1}$$
 (4)

as an estimate of the value of $p(t_i)$, t_i being the $i\underline{th}$ time of death. Expression (4) provides estimator of the survival function at times of observed deaths when there are no losses because of censoring. The estimator at the points t_i : $t_i < t_2 < --- < t_N$, can be connected by straight lines, or a step function with step sizes 1/(N+1) may be used.

The estimators of equation (4) give intuitively acceptable results. For example, if the sample consists of only a single individual (N=1), then death is equally likely to occur before or after the time at which the true (but unknown) survival function equals one half. Thus, the result of equation (4) is reasonable:

$$E[\widetilde{p}(t_1)] = \frac{1}{2}$$

The point estimates of the second approach always occur at the times of discontinuity forestimates from the first approach. For example, consider a data base (N=4) with deaths observed at times 1,3,4 and 7. The first approach gives the following step function estimate of the survival function:

$$\tilde{p}(t) = \begin{cases}
1.0 & 0 \le t < 1 \\
0.75 & 1 \le t < 3 \\
0.5 & 3 \le t < 4 \\
0.25 & 4 \le t < 7 \\
0.0 & t < 7
\end{cases}$$

The second approach gives the following point estimates

$$p(0) = 1.0$$

$$p(1) = 0.8$$

$$p(3) = 0.6$$

$$p(4) = 0.4$$

$$p(7) = 0.2$$

A graphic comparison of the results of the two approaches is given below:

It is difficult to decide how to smooth out the step functions that result from the first approach. By connecting the tops of the "stairsteps," one places an upper bound on reasonable estimates. By connecting the bottom corners of the stairsteps, one places a lower bound on reasonable estimates. One might draw a smooth, decreasing curve that passes through all (or almost all) of the vertical faces of the step-function estimate. The second approach suggests method of selecting a unique point on each of these vertical segments.

Incomplete observations

When some of the observations are incomplete, equation

(4) requires modification. The expected value of the survival function at the time of the first observed death may be written:

$$E[\tilde{p}(t_1)] = \frac{N_1}{N_1 + 1}$$
 (5)

Here N_1 is the effective size of the sample during the interval terminated by the time observed for the first death (o,t_1) . In the special case of no censoring events, the value of N_1 is unambiguous. It is equal to the initial sample size $(N_1 = N)$. In this case equation (5) reduces to equation (4).

Subsequent point estimates for t_2 , t_3 ,... may be calculated iteratively:

$$E[\tilde{p}(t_i)] = \frac{N_i}{N_i+1} \cdot E[p(t_{i-1})]$$

where $t_0 = 0$ and N_i is the effective sample size over the time interval (t_{i-1}, t_i) . Thus,

$$E\left[\widetilde{p}\left(t_{i}\right)\right] = \prod_{j=1}^{i} \left(\frac{N_{j}}{N_{j}+1}\right) \tag{6}$$

Variance of the estimators

Kaplan and Meier, reference (1), give an expression for the exact calculation of the variance of step functions. They also discuss "Greenwood's formula," a large sample approximation that ignores terms of order $1/N_1^2$.

Herd, reference (2), presence without derivation an expression for the variance of estimates using the second approach (point estimators):

$$V(t_{\underline{i}}) = Var \left\{ E[\widetilde{p}(t_{\underline{i}})] \right\} = \frac{i}{j=1} \left(\frac{N_{\underline{j}}}{N_{\underline{j}}+2} \right) - \frac{i}{j=1} \left(\frac{N_{\underline{j}}}{N_{\underline{j}}+1} \right)^{2}$$

The notation here follows that for the estimating equation (6).

III. THE ESTIMATORS

This section describes the nine non-parametric estimators and four jackknife estimators of the survival probability. It also describes the parametric estimator for an exponential decay function. Exponential life distributions are the starting point for much of reliability theory and practice. The estimator derived from the exponential is regarded as "par" when the simulated data is based on an underlying exponential decay distribution for deaths. Thus, when deaths are exponentially distributed, the non-parametric estimators may be compared relative to each other, and they may be compared with the parametric estimator as a standard.

A hypothetical data base, consisting of five individuals, is used to illustrate each of the estimators. This sample data base is as follows:

Individual	Time of Death	Time of Truncation
A	1	-
В	Unknown (>2)	2
С	3	-
D	Unknown (>6)	6
E	7	<u>-</u>

The data have been arranged in time sequence of the death and truncation events. In the medical example, the data might indicate that patients A, C and E were observed to die exactly 1, 3 and 7 years, respectively, after their surgery. However, B and D moved away or otherwise became unavailable to the observer at these times. Further, the

cause of the unobservability is unrelated to the patient's health and life expectancy.

A. STEP-FUNCTION ESTIMATORS

1. The First Estimator, " $\tilde{p}_1(t)$ "

 $\tilde{p}_1(t)$ is a naive estimator; it is expected to perform poorly relative to the other estimators. \tilde{p}_1 only depends on the data from individuals whose deaths are observed. It ignores any information from the partial lifetimes noted for the censored observations. $\tilde{p}_1(t)$ is simply the fraction of individuals surviving to at least time t among those individuals whose time of death is known. It is a step function:

t	p ₁ (t)
0-1	1.0
1-3	0.667
3-7	0.333
7-∞	0.00

The naive estimator, $\tilde{p}_1(t)$, takes no account of the successful survival intervals observed for the censored individuals. Therefore it is biased in a downward (pessimistic) direction.

2. The Second Estimator, "p2(t)"

 $p_2(t)$ is the product-limit estimate. Kaplan and Meier, reference (1), have shown that this is the maximum likelihood estimator. The observed events, both deaths and truncations, are arranged in increasing order of occurrence: t_1, t_2, \ldots, t_N ; where N is the number of individuals in the sample.

Let $p(t_i)$ denote the cumulative probability of survival of an individual from time zero to time t_i . Let $p(t|t_i)$ denote the conditional probability of surviving to time $t(>t_i)$, given that the individual has

already survived to time ti. Then,

$$\tilde{p}_{2}(t_{i}) = p_{2}(t_{i-1}) \cdot p_{2}(t_{i}|t_{i-1})$$
 (E-1)

If we define $t_0 = 0$ and p(0) = 1, then

$$\tilde{p}_{2}(t_{i}) = \prod_{j=1}^{i} p_{2}(t_{j}|t_{j-1})$$
 (E-2)

The product limit estimator is in the form of equation (E-2) with

$$\tilde{p}_{2}(t_{j}|t_{j-1}) = \begin{cases} \frac{N_{j}}{N_{j}} = 1 & \text{if the event at } t_{j} \text{ is truncation} \end{cases}$$

$$(E-3)$$

$$\frac{N_{j}-1}{N_{j}} \qquad \text{if the event at } t_{j} \text{ is a death}$$

Here n_j is the number of individuals observed surviving in the interval $t_{j-1} < t < t_j$. This formulation causes the product limit estimator to be insensitive to the exact time of the censoring events.

The estimator is unity from time zero to the time of the first event, \mathbf{t}_1 , reflecting the fact that all individuals in our example are observed to live until at least time \mathbf{t}_1 .

- If the event at time t_1 is a truncation, then the estimator remains at unity until at least time t_2 . Again, no deaths are observed in the sample before t_2 .
- If the event at time t_1 is a death, then the estimator drops to (N-1)/N. This drop reflects the observed death of 1/N of the survival sample just prior to t_1 .

Values of the estimator \tilde{p}_2 are calculated iteratively at successive values of t_i (i=1,2,...,N).

The size of the survival sample declines as truncations and deaths remove individuals from observation. For the hypothetical data base listed above, one obtains:

t_	P ₂ (1	t)			
0-1			5/5	=	1.0
1-2			4/5	=	0.8
2-3	(4/5)	x	(3/3)	=	0.8
3-6	(4/5)	x	(2/3)	=	0.533
6-7	(8/15)	x	(1/1)	=	0.533
7-∞	(8/15)	x	(0/1)	=	0.0

The product-limit estimator explicitly accounts for the survival of these individuals (up to the time of the last death before each censoring event). Thus, $\tilde{p}_2(t)$ is a step function with a value that is not less than $\tilde{p}_1(t)$ for any value of t. If the sample contains no censoring, then $\tilde{p}_1(t)$ and $\tilde{p}_2(t)$ are identical.

If the last event in the sample is a truncation rather than a death, then the modified data give the following estimate, i.e., individual E had disappeared from the observer at time 6.5 (so that the fact of E's death at time 7 is unknown).

t	p ₂ (t) - Modified data
0-1	1.0
1-3	0.8
3-6.5	0.533

Since the time of the death for individual E is now unknown, one can only estimate that:

$$0 \le \tilde{p}_2(t) \le 0.533$$
 for $t > 6.5$

If the analyst is willing to assume a functional form for the survival function, then he may calculate the manner in which the estimator $\tilde{p}_2(t)$ decreases to zero. However, the data alone are insufficient when a strictly non-parametric estimator is used.

The product-limit estimator is a useful and intuitively appealing method of dealing with incomplete observations. It has been wider
used and studied. However, the product-limit has one disturbing
characteristic:

Most of the biological, physical or other causes of deaths produce a survival probability that continuously decreases in time. It is, therefore, one may be a little uncomfortable estimating the survival probability with a step function. One is tempted to smooth the estimator to make it a monotonic decreasing function of t.

3. The Third Estimator, "p₃(t)"

 $\tilde{p}_3(t)$ is a modification of $\tilde{p}_2(t)$. Like $\tilde{p}_2(t)$, it is a step function with discrete drops at those times corresponding to the observed deaths in the sample population. It may also be expressed as a product of conditional probabilities:

$$\tilde{p}_{3}(t_{i}) = \prod_{j=1}^{i} \tilde{p}_{3}(t_{k}|t_{k-1})$$
 (E-4)

where the t_k are the times of observed deaths and t_0 is zero. The conditional probabilities on the right-hand side of Equation (E-4) differ somewhat from those in Equation (E-2):

$$\tilde{p}_3(t_k|t_{k-1}) = \frac{N_k^{-1}}{N_k}$$
 (E-5)

Equation (E-5) differs from Equation (E-3) in the interpretation of the numbers of individuals at risk. Here, the value of N_k is taken to be the average number of individuals observed surviving in the interval between the (k-1)st observed death and the kth observed death. The number of observed survivors decrease at intermediate times if events are censored, and hence the N_k are not necessary integers.

The value of N_k is regarded as the effective sample size for the interval from t_{k-1} to t_k . In the sample data base shown above, individual B is known to have survived from time 1 to time 2, or half of the interval between the first death at t=1 and the second death at t=3. Therefore, the estimator p_3 treats individual B as half a participant in the interval between the death of individuals A and C.

The effective sample size for this interval is then 3.5 $(n = 3 + \frac{(2-1)}{(3-1)} = 3.5)$ (full contributions from individuals C, D and E, plus a half contribution from B). For our hypothetical data base, the following values are calculated for \tilde{p}_3 :

t	p ₃ (t)				_
0-1			5/5	=	1.0
1-3	4.5	x	1.0	=	0.8
3-7	(2.5/3.5)	x	0.8	=	0.571
(7)	(1.75/2.75)	x	0.571	=	0.364

The value of $\tilde{p}_3(t)$ can never be less than the corresponding value of $\tilde{p}_2(t)$. In the special case with no censoring events the estimators $\tilde{p}_1(t)$, $\tilde{p}_2(t)$ and $\tilde{p}_3(t)$ are identical.

One might perturb the data by shifting the time of B's truncation event down to 1+ ϵ or up to 3- ϵ , ϵ arbitrarily small. The dependence of the estimator \tilde{p}_3 upon the exact time of the censoring events may now be demonstrated.

For purposes of illustration, the time of the censoring event for individual $B(t_2)$ is decreased from 2 to 1.1, then increased to 2.9.

t_	$\tilde{p}_3(t)$, $t_2 = 2$	$\tilde{p}_3(t)$, $t_2 = 1.1$	$\tilde{p}_3(t)$, $t_2 = 2.9$
0-1	1.0	1.0	1.0
1-3	0.80	0.80	0.80
3-7	0.571	0.538	0.597
(7)	0.364	0.342	0.380

This example demonstrates an intuitively appealing characteristic of the estimator, \tilde{p}_3 . As the total observed survival time increases for the individuals in our sample (with deaths held constant), the value of the estimating function increases over at least a portion of its range.

We may safely assume that the true survival function eventually tends to zero with time, since no physical or biological system lives forever. However, there are no observations on the survival of individuals beyond time 7. The data only indicate that our step-function estimator drops to a value of .364 at t=7, but the nonparametric estimator gives no information about the survival function's subsequent decline from .364 to zero. However, the data alone are insufficient when a strictly nonparametric estimator is used.

B. POINT ESTIMATOR

As mentioned above, the estimators \tilde{p}_1 , \tilde{p}_2 and \tilde{p}_3 are somewhat undesirable because they give step-function estimates for a continuous survival function. The next three estimators \tilde{p}_4 , \tilde{p}_5 and \tilde{p}_6 are modification of the first three. Again they provide estimates of the survival function only at those points in time that corresponde to observed deaths.

These estimators are specified by Equations (E-2) and (E-4), except for a substitution of the term (N+1) in place of (N).

Since the point estimators have rigorous definitions at only discrete points in time, it is necessary to offer an interpolation rule. That is, we need a method of "connecting the dots." The method proposed here is to assume that the survival function declines in a piece-wise exponential decay between the discrete points in time. This procedure is equivalent to assuming that the hazard function is essentially constant between a consecutive pair of the discrete times, but that the hazard varies from one time period to the next. Such an assumption is intuitively acceptable unless one suspects violent fluctuations in the hazard function.

1. The Estimator, " $\tilde{p}_{\Delta}(t)$ "

 $\tilde{p}_4(t)$ is analogous to $\tilde{p}_1(t)$ in that only those individuals observed to die are included in the sample. These two estimators are naive because they suppress all data from the survival times of individuals terminated from observation by censoring.

These estimates, i.e., $\tilde{p}_1(t)$ and $\tilde{p}_4(t)$, tend to ignore information from the more long-lived individuals in the sample, and they may be expected to give biased estimates of the survival function.

The point estimator $\tilde{p}_4(t)$ gives the following values with sample data base presented earlier in this section.

		Inte	rpolation
t	p ₄ (t)	t	P ₄ (t)
0	1.0	0-1	e ^{t•ln(3/4)}
1	3/4 = 0.75		t-1
3	$(\frac{2}{3}) \times 0.75 = 0.5$	1-3	$(\frac{3}{4}) e^{\frac{t-1}{2} \cdot \ln(2/3)}$
7	$(\frac{1}{2}) \times 0.5 = 0.25$	3-7	$(\frac{3}{4}) e$ $(\frac{1}{2}) e$ $\frac{t-3}{4} \cdot \ln(1/2)$

The interpolation for connecting the dots are as follows:

t	0 <u><</u> t <u><</u> 1	1 <u><</u> t <u><</u> 3	3 <u><</u> t <u><</u> 7
p(t)	e ^{-t/τ}	$p(t-1) e^{-\frac{t-1}{\tau}}$	$p(t-1) e^{-\frac{t-3}{\tau}}$
	t = 1	t = 3	t = 7
interpo- lation	$\frac{3}{4} = e^{-\frac{1}{\tau}}$	$\frac{1}{2} = \frac{3}{4} e^{-\frac{2}{\tau}}$	$\frac{1}{4} = \frac{1}{2} e^{-\frac{4}{\tau}}$
	$\frac{1}{\tau} = -\ln{(\frac{3}{4})}$	$\frac{1}{\tau} = \frac{-\ln{(\frac{2}{3})}}{2}$	$\frac{1}{\tau} = \frac{-\ln(\frac{1}{2})}{4}$
p(t)	t•ln(<u>3</u>) e	$(\frac{3}{4}) e^{\frac{t-1}{2} \cdot \ln(\frac{2}{3})}$	$(\frac{1}{2}) e^{\frac{t-3}{4} \cdot \ln(\frac{1}{2})}$

2. The Estimator, "p₅(t)"

The estimator $\tilde{p}_5(t)$ similarly corresponds to the product-limit estimator $\tilde{p}_2(t)$. These two estimators use information from the individuals on whom there are censored observations. \tilde{p}_5 , like \tilde{p}_2 , does not exploit information about that portion of the censored observation after the death event (of some other individual) preceding the censoring event.

For our hypothetical data base the following values are calculated for $\stackrel{\sim}{p}_{5}(t)$:

		Interp	olation
t	p ₅ (t)	t	p ₅ (t)
0	1.0		
1	5/6 = 0.833	0-1	e ^{t•ln(t/6)}
3	$(\frac{3}{4}) \times 0.833 = 0.625$	1-3	$\left(\frac{5}{6}\right) e^{\frac{t-1}{2} \ln \left(\frac{3}{4}\right)}$
7	$(\frac{1}{2})$ x 0.625 = 0.312	3-7	$\left(\frac{5}{8}\right) e^{\frac{t-3}{4} \ln{\left(\frac{1}{2}\right)}}$

Whenever censored observations are present, the estimator $\tilde{p}_4(t)$ never exceeds $\tilde{p}_5(t)$.

For $\tilde{p}_5(t)$, the value of N_i is taken to be the number of surviving individuals in the sample just before the observation of the ith death. This value is smaller than the number of surviving individuals just after the (i-1)st death if any truncation events occur in the interval. In fact, N_i is the smallest number of surviving individuals observed at any time during the interval (t_{i-1}, t_i) . Thus \tilde{p}_5 might be expected to introduce a bias by using values of N_i that are, on the average, too small. However, this bias would be much less severe than the bias anticipated for the estimator $\tilde{p}_4(t)$.

The estimators \tilde{p}_4 and \tilde{p}_5 are insensitive to the precise times of the censoring events. A change in the time of the censoring event for individual B to 1+ ϵ to 3- ϵ , ϵ arbitrarily small, does not alter the estimates from \tilde{p}_4 and \tilde{p}_5 given in the preceding paragraph.

3. The Estimator, "p (t)"

The estimator $\tilde{p}_6(t)$ corresponds to $\tilde{p}_3(t)$ by accounting for all of the survival time for the truncated observations. For our hypothetical data base, the following values are calculated for $p_6(t)$:

	p ₆ (t)	Interpolation		
t		t	p ₆ (t)	
0	1.0	0-1	e ^{t•ln(5/6)}	
1	5/6 = 0.833		$\frac{t-1}{2} \ln \left(\frac{3.5}{4.5} \right)$	
3	$(\frac{3.5}{4.5})$ x 0.833 = 0.648	1-3	$(\frac{5}{6})$ e	
	. 75		$\frac{t-3}{4} \ln \left(\frac{1.75}{2.75} \right)$	
7	$(\frac{1.75}{2.75}) \times 0.648 = 0.412$	3-7	(0.648)e	

The estimator $\tilde{p}_6(t)$ is based on the average number of surviving individuals noted in the various time intervals. These estimators give part credit for individuals whose lifetime is censored in mid-interval. The value of N_i for $\tilde{p}_6(t)$ is an unweighted time average. If the observation of an individual is truncated after 23% of the interval has elapsed, then that individual contributes a value of 0.23 to N_i . Individuals who are observed to survive the entire interval, and the individual whose death terminates the interval each contribute a value of 1.0 to N_i . This interpretation of the effective sample size is approximate if the hazard is approximately constant over the interval. If the hazard function changes markedly within a time interval containing censored events, then this interpretation of the effective sample size is biased. Therefore, the procedure of determining the value of N_i for the estimator $\tilde{p}_6(t)$ is based on the implicit assumption that the survival function is locally

exponential. If the hazard function may be assumed to vary slowly over each of the time intervals (t_{i-1}, t_i) then \tilde{p}_6 would appear to be biased on an acceptable approximation.

The estimator \tilde{p}_6 , like \tilde{p}_3 , depends on the precise times of all deaths and censoring events.

This illustrates that an increase (or decrease) in the total observed survival time causes an increase (or decrease) in the estimate \tilde{p}_6 over at least some of its time range.

If the last event is a censored, and not an observed, death, these estimators also require definition for the time period starting with the time of the last death and ending with the time of the final censoring event.

The method proposed here for $\tilde{p}_4(t)$ and $\tilde{p}_5(t)$ is to continue the exponential function used in the interval terminated by the time of the last death. This procedure can be illustrated with the modified data base used above in the discussion of \tilde{p}_2 and \tilde{p}_3 .

C. THE BAYESIAN ESTIMATORS

Consideration is next given to quasi-Bayesian estimators based on a uniform prior distribution on the unit interval. Let X_1, \dots, X_N be the true survival times of N individuals which are censored on the right by N follow-up times Y_1, \dots, Y_N . It is assumed that the X_i are independent,

identically distributed random variables with common distribution p(t) and we wish to estimate the survival function

$$p(t) = Pr(x > t)$$

However, we only have available the data,

$$Z_{i} = \min \{X_{i}, Y_{i}\}$$

$$\delta_{i} = \begin{cases} 1 & \text{if } X_{i} \leq Y_{i} \\ 0 & \text{if } X_{i} > Y_{i}, i=1,...,n \end{cases}$$

If δ_i = 0, then Z_i is called "a loss", and if δ_i = 1, then Z_i is called "a death".

Then $p_r[\delta_i = 1] = p_r[X_i > t] = p(t), i=1,...,N$.

The maximum likelihood estimator for p(t) is

$$\hat{p}(t) = \frac{s}{n}$$
 where $s = \sum_{i=1}^{N} \delta_i$

is the number of successful tests, s has the binomial distribution.

$$P(S|p) = {N \choose S} p^{S} (1-p)^{N-S}, s=0,1,...,N, 0
$$f_{p}(p) = 1, 0$$$$

The joint density of s and p is

$$f_{s,p}(s,p) = {n \choose s} p^{s} (1-p)^{n-s}, 0$$

The marginal for s is

$$p_s(s) = \int_0^1 {N \choose s} p^s (1-p)^{n-s} dp = {N \choose s} \cdot \frac{s!(N-s)!}{(N+1)!} = \frac{1}{N+1}$$

for s=0,1,...N. Thus, averaging over the values of p, all of which are assumed to be equally likely, the values of s are equally likely to occur. The posterior for p then is

$$f_{p|s}(p|s) = \frac{\Gamma(N+2)}{\Gamma(s+1)\Gamma(N-s+1)} p^{s}(1-p)^{N-s}, 0 ,$$

a beta density with parameters s+l and N-s+l. The mean of the posterior is (s+1) (N+2) and the modal (maximum value) of the posterior is s/N; thus the Bayes estimate of p (given s survivers occur in the sample of N) is

$$p^* = \frac{s+1}{N+2} \tag{C-1}$$

Then, equation (C-1) yields a step function and also has shown that the uniform prior has the effect of adding two individuals to the population at risk with one dying at time zero and the other essentially immortal.

The Bayesian estimators based on a uniform prior distribution on the unit interval are denoted $\tilde{p}_{11}(t)$, $\tilde{p}_{12}(t)$ and $\tilde{p}_{13}(t)$, that correspond, respectively, to the estimators $\tilde{p}_{1}(t)$, $\tilde{p}_{2}(t)$ and $\tilde{p}_{3}(t)$. The sample data base thus gives the following estimates of the survival function:

$$\frac{t}{0-1} \frac{\tilde{P}_{11}(t)}{4/5 = 0.8} \frac{\tilde{P}_{12}(t)}{6/7 = 0.857} \frac{\tilde{P}_{13}(t)}{6/7 = 0.857}$$

$$1-3 \quad 3/5 = 0.6 \quad (\frac{5}{6}) \times 0.857 = 0.714 \quad (\frac{5}{6}) \times 0.857 = 0.714$$

$$3-7 \quad 2/5 = 0.4 \quad (\frac{3}{4}) \times 0.714 = 0.536 \quad (\frac{3.5}{4.5}) \times 0.714 = 0.556$$

$$(7) \quad 1/5 = 0.2 \quad (\frac{1}{2}) \times 0.536 = 0.268 \quad (\frac{1.75}{2.75}) \times 0.556 = 0.354$$

At the time of the final event (whether a death or a truncation), these step-function estimators drop to some positive value. Again, we have no data to indicate how the survival function proceeds to zero at subsequent times.

D. THE JACKKNIFE ESTIMATOR

We will assume that we observed, or have generated in a simulation, a survival probagility $p(t_j)$, $j=1,\ldots,n$, from various sample sizes. Furthermore we have some parameter or characteristic $p(t_j)$ of the sample size which we wish to estimate with an estimator $\hat{p}(t_j)$. The jackknife estimator $\tilde{p}(t,n)$ described below is an approximately unbiased estimator of $p(t_j)$. A modification of it has other useful properties.

 \tilde{p}_{-i} (t,n-1) is the estimator from the sample of n of the X_i 's with the $i\underline{th}$ value deleted from the sample.

$$\tilde{p}_{i}(t,n) = n \, \tilde{p}(t,n) - (n-1) \, \tilde{p}_{-1}(t,n-1)$$
 $i=1,...,n$

$$\tilde{p}(t,n) = \frac{1}{n} \, \sum_{i=1}^{n} \, \tilde{p}_{i}(t,n) = n \, \tilde{p}(t,n) - \frac{n-1}{n} \, \sum_{i=1}^{n} \, \tilde{p}_{-1}(t,n-1)$$

the $\bar{\bar{p}}_{i}$ (t,n), called the PSEUDO-values.

The PSEUDO-values can be used to obtain variance estimates of $\tilde{\tilde{p}}(t,n)$ and to set approximate confidence limits, using Student's t.

The idea is that the PSEUDO-values will be approximately independently and normally distributed. The jackknife estimator $\overline{\widetilde{p}}(t,n)$ is a sample average so we form an estimate $S_{\widehat{p}}^2(t,n)$ of its variance given by the following relationship (Miller, 1974):

$$s^{2} = \frac{\sum_{i=1}^{\infty} (t,n) - \frac{1}{n} (\sum_{i=1}^{\infty} (t,n))^{2}}{n-1}$$

$$s^{2}_{\overline{p}(t,n)} = \frac{s^{2}}{n}$$

This procedure is particularly useful if the number of data points is small, but it must be used with care. Note, that the estimator $\tilde{p}(t,n)$ is designed to eliminate a $\frac{1}{n}$ bias term in the estimator $\tilde{p}(t,n)$. Of course the computational aspects of the complete jackknife can be quite onerous, especially if $\tilde{p}(n)$ were, say, a complicated maximum likelihood estimator. Miller, reference (4) has shown that the product limit estimator is its own jackknife.

Logistic Transformation

Although one can legitimately jackknife the Kaplan-Meier estimate directly, there is some reason to believe that a preliminary transformation will give improved results. Consequently, consider the transformation

$$\ell = \ln \left(\frac{\widetilde{p}(t)}{1 - \widetilde{p}(t)} \right)$$

and notice that where the range of $\tilde{p}(t)$ is from zero to unity, the above transformation makes the range of ℓ run from $-\infty$ to ∞ . The procedure utilized will be as follows.

(A) Compute the overall estimate at a time point t, using all N data points, and using a "continuity" correction that has the effect of removing the effect of a zero in the logarithm (see D.R. Cox, Analysis of Binary Data, Methuen Monograph):

$$\ell_{N} = \ln \left(\frac{\widetilde{p}_{N}(t) + \frac{1}{2N}}{1 - \widetilde{p}_{N}(t) + \frac{1}{2N}} \right)$$

(B) Compute the ℓ -values by leaving out each data point in turn when computing $\tilde{p}(t)$: for i=1,2,...,N.

$$\ell_{N-1,i} = \ln \left(\frac{\tilde{p}_{N-1,-i}(t) + \frac{1}{2(N-1)}}{1 - \tilde{p}_{N-1,-i}(t) + \frac{1}{2(N-1)}} \right)$$

(C) Form the pseudo-values

$$z_i = N\ell_N - (N-1) \ell_{N-1,-i}$$

- (D) Compute \bar{z} , s_z^2
- (E) Put approximate confidence $(1-\alpha) \cdot 100\%$ limits on $E[\ell]$ as follows

$$L \leq E[\ell] \leq H$$

$$H(L) = \overline{z} + (-) t_{1-\alpha} (N-1) \sqrt{\frac{s_z^2}{N}}$$

where

(F) Transform bash to obtain

$$\frac{e^{L}}{1+e^{L}}$$
 , and $\frac{e^{H}}{1+e^{H}}$

The true value, p(t), should be enclosed between these levels for roughly $(1-\alpha) \cdot 100\%$ of all samples. The coverage properties of this procedure will now be checked by simulation: successive samples of size N will be selected, the jackknife limits H and L will be computed for each, and a check will be made as to whether $\frac{e^L}{1+e^L} \leq p(t) \leq \frac{e^H}{1+e^H}$ or not. Tables illustrating performance are given subsequently.

Let

 $x_{N-1,-i}$ is the logistic transformation estimator from the sample n of the x_i 's with the $i\underline{th}$ value deleted from the sample.

$$\ell_{N-1,-i} = \ell_{n} \left(\frac{\tilde{p}_{N-1,-i}(t) + \frac{1}{2(N-1)}}{1-\tilde{p}_{N-1,-i}(t) + \frac{1}{2(N-1)}} \right)$$

t i	1	2	3	4	5
t ₁	3.04	0.98	0.98	0.98	0.98
t ₂	3.04	0.98	0.98	0.98	0.98
t ₃	0.63	0	0.98	-0.46	-0.46
t ₄	0.63	0	0.98	-0.46	-0.46
t ₅		-3.04	-3.04	-3.04	-1.89

$$z_{i} = N \ell_{N} - (N-1) \ell_{N-1,-i}$$

$$= N \ell_{N} \left(\frac{\tilde{p}_{N}(t) + \frac{1}{2N}}{1 - \tilde{p}_{N}(t) + \frac{1}{2N}} \right) - (N-1) \ell_{N} \left(\frac{\tilde{p}_{N-1,-i}(t) + \frac{1}{2(N-1)}}{1 - \tilde{p}_{N-1,-i}(t) + \frac{1}{2(N-1)}} \right)$$

 z_{i} (N) are called PSEUDO-values of logistic transformation, the following values are calculated:

z_i:

t	1	2	3	4	5
t ₁	-6.05	2.198	2.198	2.198	2.198
t ₂	-6.05	2.198	2.198	2.198	2.198
t ₃	-1.9	0.606	-3.314	2.446	2.446
t ₄	-1.9	0.606	-3.314	2.446	2.446
t ₅	-3.0626	-3.0626	-3.0626	-3.0626	-7.162

Average of the pseudo-values

$$\bar{z} = \frac{1}{N} \sum_{i=1}^{N} z_i$$

Invert to find jackknife estimator of logistic transformation

$$\bar{z} = \ln \left(\frac{\tilde{p}(t) + \frac{1}{2N}}{1 - \tilde{p}(t) + \frac{1}{2N}} \right)$$

$$\tilde{p}(t) = \frac{(1 + \frac{1}{2N})e^{\bar{z}} - \frac{1}{2N}}{1 + e^{\bar{z}}}$$

called the jackknife estimator of logistic transformation

Variance of the z;

$$s_z^2 = Var(z) = \frac{1}{n-1} \sum_{i=1}^n z_i - \overline{z}$$

The following values are calculated:

t	ž	$\widetilde{p}(t)$	Var J
t ₁	0.5484	0.646	13.6
t ₂	0.5484	0.646	13.6
t ₃	0.0568	0.516	6.727
t ₄	0.0568	0.516	6.727
t ₅	-3.882	0	3.361

The jackknife estimator for estimating variability and giving confidence interval.

Tukey, reference (3) has suggested that in the jackknife procedure we consider the pseudo values $Z_i(N)$ as approximately independent and identically districuted and consequently, since \overline{z} is an average of

the $Z_{i}(N)$, proceed as if

$$\frac{N^{\frac{1}{2}}\bar{z} - \ell_{N}}{\{\frac{1}{N-1}\sum_{i=1}^{n} (z_{i} - \bar{z})^{2}\}^{\frac{1}{2}}}$$

has t-distribution with N-1 d.F.

If the z_i are approximately normal variates (Miller has shown) confidence bands for the unknown $\tilde{p}(t)$ are given, as for the mean of any normal variate when estimated from sample size n.

$$\frac{1}{z} \pm \frac{s_z}{\sqrt{n}} t_{1-\alpha/2}$$
 (N-1)

i.e.

$$\frac{1}{z} - \frac{s_z}{\sqrt{n}} t_{1-\alpha/2} (N-1) \le \ln \left(\frac{\tilde{p}(t) + \frac{1}{2N}}{1-\tilde{p}(t) + \frac{1}{2N}} \right) \le \frac{1}{z} + \frac{s_z}{\sqrt{n}} t_{1-\alpha/2} (N-1)$$

$$\bar{L}(n) = \bar{z} - \frac{s}{\sqrt{N}} t_{1-\alpha/2}$$

$$\bar{L}(n) = \bar{z} + \frac{s}{\sqrt{N}} t_{1-\alpha/2}$$

$$\frac{(1+\frac{1}{2N})e^{\frac{L}{N}(N)} - \frac{1}{2N}}{1 + e^{\frac{L}{N}(N)}} \leq \tilde{p}(t) \leq \frac{(1+\frac{1}{2N})e^{\frac{L}{N}(N)} - \frac{1}{2N}}{1 + e^{\frac{L}{N}(N)}}$$

The following values are calculated:

	4	$t_{1-\alpha/2} = 2.776$
t	Lower Int.	Upper Int.
t ₁	0	1.0
t ₂	0	1.0
t ₃	0	1.0
t ₄	0	1.0
t ₅	0	0.14

The basis for this leap of the imagination seems to be that if $\bar{z} = \bar{x} = \bar{x}_n$ then the procedure for obtaining confidence intervals using equation (D-1) and pseudo-values is the same as the procedure using jackknife. Then if $\bar{x}_N = \bar{z}_n$ and

$$\bar{z} = \frac{1}{n} \sum_{i=1}^{n} z_{i} \quad \text{we have}$$

$$z_{i} = N \ell_{N} - (n-1) \ell_{N-1,-i}$$

$$= N \bar{x}_{N} - (N-1) \quad \frac{\left\{\sum\limits_{j=1}^{N} x_{j}\right\} - x_{i}}{N-1}$$

$$= \sum_{j=1}^{N} x_{j} - \left[\sum\limits_{j=1}^{N} x_{j}\right] + x_{i} = x_{i}$$

Thus the pseudo value

$$z_i = x_i$$
 and $\bar{z} = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{x}_i$

The pseudo values are independent if $\bar{z} = \bar{x}_n$ and they are normal if \bar{x}_i is normal.

E. PARAMETRIC ESTIMATOR, "P7(t)"

This paper considers one additional estimator, denoted $\tilde{p}_7(t)$. It is a parametric estimator. Therefore, it is not really a competitor to the thirteen non-parametric estimators considered here. In general, a parametric estimator would not be used if the functional form were regarded as unknown. Similarly, a non-parametric estimator would not

normally be used if the survival function were strongly suspected to have a specified form.

 $\tilde{p}_{7}(t)$ is the well known maximum likelihood estimator for the exponential distribution:

$$\tilde{p}_7(t) = e^{-t/\tau}$$

where

$$\tau = \frac{\sum t_{i}}{\text{number of observed death}}$$

In our sample data base, the total observed survival time is 19, and three deaths are observed. Thus,

$$\Sigma t_i = 1 + 2 + 3 + 6 + 7 = 19$$

 $\tau = \frac{19}{3}$

and

$$\tilde{p}_7(t) = e^{-3t/19}$$

Calculations for selected times of interest yield the following estimates:

$$p_7(0) = 1.0$$

$$p_7(1) = 0.854$$

$$p_7(3) = 0.623$$

$$p_7(7) = 0.331$$

The thirteen non-parametric estimators are compared for a variety of generating distributions for both the death mechanism and censoring mechanism.

IV. INSTRUCTIONS FOR USING PROGRAM

INPUT

Each input card bears nine variables. The distribution of time of death is entered in the first set of (five) columns, the censoring distribution is entered in the second set of (ten) columns, a parameter of the censoring distribution is entered in the third set of (ten) columns, the number of replication is entered in the fourth set of (five) columns, the number of the event is entered in the fifth set of (five) columns.

For the purpose of all print output used code "0" and "1" in the sixth set of (five) columns, the seed number is entered in the seventh set of (five) columns, after the card giving the time of the last event of a data set, a card with "0" or "1" in the column 50 is inserted, i.e., the "0" indicating more data sets to follow and "1" indicating the last data sets and t value is entered in the ninth set of (eight) columns.

The distribution of timeof death and of censoring time used code as follows:

Code	Type of Distribution
1	Uniform
2	Exponential
3	Delta function

OUTPUT

The output lists:

- 1) the time of each observed failure
- 2) estimated survival probability at that time
- 3) the variance of that estimator
- 4) result of goodness fit

- a) mean error
- b) mean absolute error (ABS)
- c) root-mean-square error (RMS)
- 5) total number of observed death
- 6) confidence interval at particular time

Definition of Fortran Variables

NDIE : the distribution of time of death

NTRUNC : the distribution of censoring time

XTRUNC : the parameter of the distribution of censoring time

NREPL : number of replication

NEVENT : number of event

NWRITE : write all output or partial output of simulation

NEND : indicate more data sets or last data set

TN : t statistic value

 p_1 : the estimator, $\tilde{p}_1(t)$

 p_2 : the estimator, \tilde{p}_2 (t)

 p_3 : the estimator, $\tilde{p}_3(t)$

 P_4 : the estimator, \tilde{P}_4 (t)

 p_5 : the estimator, \tilde{p}_5 (t)

 p_6 : the estimator, \tilde{p}_6 (t)

p₇ : parametric estimator, $\tilde{p}_7(t)$

 p_8 : jackknife estimator of logistic transformation of $p_4(t)$

 p_{g} : jackknife estimator of logistic transformation of \tilde{p}_{5} (t)

 P_{10} : jackknife estimator of logistic transformation of \tilde{P}_{6} (t)

 P_{11} : Bayesian estimator of $\tilde{P}_{1}(t)$

 p_{12} : Bayesian estimator of \tilde{p}_2 (t)

 p_{13} : Bayesian estimator of $\tilde{p}_3(t)$

p₁₄ : jackknife estimator of logistic transformation of p₂(t)

SL(I,J) : PSEUDO-value

SBAF : average of pseudo-value

Var : variance of estimator, p(t)

Var : variance of jackknife estimator

u(I,J) : mean of goodness fit

w(I,J) : absolute mean of goodness fit

s(I,J) : root mean square error

 C_1 : upper confidence interval of $P_{14}(t)$

 $^{\text{C}}_{2}$: lower confidence interval of $_{14}^{\text{p}}$ (t)

 c_3 : upper confidence interval of $p_8(t)$

c₄ : lower confidence interval of p₈(t)

 C_5 : upper confidence interval of $p_9(t)$

c₆ : lower confidence interval of p₉(t)

c₇ : upper confidence interval of p₁₀(t)

c₈ : lower confidence interval of p₁₀(t)

To compare RMS with product limit ($p_2(t)$) and jackknife estimator of logistic transformation ($p_{14}(t)$)

	2 1	4.000	C 1CCO	20 1	505	: Input				
		C12885CE17424 C12885CE17424 C12845E77424 C12845E77424 C12845E7742 C12845CE185 C12845CE1748 C12845	C.95 CO O O CO.85 CO	CC.9303769 30076		: Output				
	C.10C	C.20C	0.300	0.400	0, 500	C.600	C.700	0.800	C.900	
P1 P2	-0.0C2 -0.013	-0.000	0.002	-0.000 3.015	-0.001 0.029	0.001	0.007	0.028	0.066	MEAN
PZ	8:053	C.C71	0.084	0.090	0.097	0.093	0.091	0.077	0.078	ABS
P1	0.065	0.085	0.105 0.694	0.113	0.119	0.115	C.113 0.120	0.100	0.102 0.185	RMS RMS
C1 C2	C.585 C.787	C.951 C.591	C.501 0.459	0.841	0.781	0.722	0.681	0.678	0.751	CCNF
	57.72e	91.254	97.085	97.959	53.542	59.125	97.959	98.542	97.668	PER
	100C	1000	1000	1006	998	990	951	796	343	
	2 2	4.00	OC 10CO	10 1	1509 :	Input				
	1 0	0.03688	0.0	C.C0000						
		0.14510 0.224457 0.224457 0.224457 0.465200 0.76452 0.76455	C. E8E89 C. 7619C	0.00000		odspac				
	0.100	0.200	0.300	0.400	0. 500	0.600	0.700	0.800	C.900	
FI	-0.003	-0.002	-0.C05	-6.001 0.041	0.006	0.100	0.031	0.362	0.274	ME
P1 P2	0.073	C.100	0.116	0:129	0.131	0.128 0.128	0.115	0:107	0.274	ASS
PI	0.058	C:13C	0:149	0:160	0.165	0.160	0.146	0.142	3:348	242
C1 C2	0.975	C.953	0.522	0.987	0.859	0.163	0.854	0.896	-0.015	CONF
	52.667		78.933	97 23	95.733	97.600	97.067	97.067	66.900	FER
	1000	1000	1000	996	984	944	853	650	275	

Computer output of the fourteen estimators

C

ζ.

1

	2 1	4.0000	1000	20 0	505					
	C.1CC	C-20C	0.300	0.400	0.500	C.600	0.766	0.800	C.900	
2.12004567-89C1234	32151C45%57881 CCCGCGCGCCCCCGGGGGCCCCCCGGGGGGCCCCCCGGGG	-0.0007135 -0.0007135 -0.000135 -0.000135 -0.0001337 -0.0001337 -0.0001337 -0.0001337 -0.0001337	-0.07926 -0.0986 -0.0986 -0.0085 -0.00	-0.100 -0.0029 -0.0029 -0.004 -0.0099 -0.004 -0.004 -0.004 -0.008 -0.006	-0.114 -0.001 -0.002 -0.103 -0.001 -0.107 -0.107 -0.1001 0.002 -0.1001 0.004 0.029	-C.121 -0.003 -0.1006 -0.006 -0.1009 -0.1006 -0.007 -0.0015 0.0039	-0.1142947800588789999999999999999999999999999999	-0.0928 -0.02177 -0.03177 -0.0385 -0.0385 -0.0514 -0.0417	-0.0649 00.00477 -0.00339 -0.00351 0.00531 0.0050 -0.0050 0.0050 0.0050 0.0050	WAY A
123456785G12274	4 12300144316668 7510755275090000000000000000000000000000000	0.100 0.071 0.078 0.0666 0.0665 0.1069 0.1069 0.10687 0.0673	G.11E G.0E4 O.0E3 O.078 O.078 O.0514 C.077E C.077 O.084	0.13905335552224 0.01288552224 0.012880 0.01288222 0.012882 0.0128	0.1427 0.0971 0.1889 0.08732 0.0888 0.1288 0.1288 0.096	C.141 0.093 0.026 0.027 0.086 0.086 0.087 0.086 0.086 0.086 0.085 0.085	1297247558860455 1297188718880889 1000000000000000000000000000000	0.104 0.085 0.085 0.0974 0.0984 0.0984 0.0984 0.0983 0.0983	05707556230 00746230 0005580730 0005580730 0005580730 0005680	######################################
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	9669657688C33C	0.1291644 0.0128844977773772	C.114977 C.114977 C.114977 C.000.14488 C.000.000.0000 C.000.0000 C.00000 C.00000 C.00000 C.00000 C.00000 C.00000 C.00000 C.000000 C.000000 C.000000 C.000000 C.00000 C.00000 C.00000 C.00000 C.00000 C.00000 C.00000 C.00000 C	0.165 0.1134 0.1154 0.1082 0.1082 0.1083 0.1083 0.1083 0.1083 0.1083	0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119	C.168 O.1160 O.1160 O.10954 O.10954 O.10954 O.10954 O.10954 O.10954 O.10954	0.11516428607 0.11520428607 0.1522107 0.11029 0.11029 0.11029	0.119 0.099 0.1096 0.1096 0.0982 0.1007 0.101 0.101 0.158	0.068 0.00554 0.10554 0.10554 0.1075147 0.00194 0.00194 0.1158	ATTANAMENTANAME
C12345676	C.968 C.961 C.961 C.967 C.967 C.967 C.967	2.5373 2.	833200 645567540 645567540 64567540 64567540	0.826 0.357 0.776 0.267 0.8363 0.361	0.768 0.273 0.656 0.191 0.756 0.756 0.757 0.282	0.717 0.196 0.611 0.127 0.638 0.639 0.649	0.657 0.155 0.624 0.624 0.624 994	0.741 0.071 0.420 0.045 0.071 0.571 0.571 0.571	0.2528 20.2528	CONF CONF CONF CONF CONF CONF CONF
	1000	1CCC	100	1000	1000	1000	994	933	320	

V. RESULTS OF THE SIMULATION

This paragraph presents graphical comparisons of the 13 estimators based on simulated data. Each comparison is based on 1000 replications of a simulated data base. The bias and RMS error (square-root of mean-squared error) of each estimator depends on the parameters that control the simulated data base. No single estimator dominates all others under all conditions.

The bias and RMS errors of the estimators depend on several factors:

(A) The sample size (NEVENT) of individuals under observation at time zero affects the accuracy of the estimators. In general, a larger sample size leads to a better estimate than a smaller sample. Values of NEVENT selected for simulation are 5, 10, 25, and 50 (plus one simulation with NEVENT = 100).

- (B) The distribution of times at which the observations are censored (unless the individual dies earlier) affects the performance of the various estimators. This distribution is particularly important in conjunction with the distribution of lifetimes (do most individuals die before censoring is likely?, are deaths and censoring events about equally likely at all times?, are most observations censored before death?). Three types of distributions are assumed to underlie the censoring mechanism:
- Some of the samples are generated on the assumption that no censoring occurs.
- (2) Some samples are generated from a uniform distribution of times of censoring.

- (3) Other data bases are generated from an exponential distribution of censoring times.
- (C) The distribution of lifetimes (ignoring the possibility of censoring) also affects the performance of the various estimators. Two types of distributions are assumed to underlie the death mechanism:
- Some of the samples are generated from a uniform distribution of lifetimes.
- (2) Other data bases are generated from an exponential distribution of lifetimes.

If a uniform distribution of lifetimes is selected, its range is always over the interval from time 0 to time 1. If an exponential distribution is selected, it always has a mean lifetime of 1. The distributions of truncation times (uniform or exponential) have parameters .25, .5, .667, .75, 1, 1.333, 1.5, 2 and 4. A wide variety of samples may be simulated by mxing various pairs of distributions (for censoring times and deaths). Since the time units are arbitrary, the restriction on mean lifetimes is irrelevant.

The true value of the survival function is, p(t), and the form of this function affects the relative performance of the 13 nonparametric estimators. For example, the Bayesian estimator $p_{12}(t)$ tends to be better as measured by square-root of mean-squared error than its counterpart (the product-limit estimator, $p_2(t)$) for the time frame in which

However, the product limit estimator tends to be better for those times when p(t) is close to zero or unity.

The point estimators, $p_5(t)$ and $p_6(t)$ tend to be better than the product-limit estimator ($p_2(t)$) for all time periods. The jackknife

estimators of logistic transformation $(p_8(t), p_9(t), p_{10}(t))$ of point estimators tends as same as its counterpart point estimators $(p_4(t), p_5(t), p_6(t))$ for all time periods. And also the estimator formed by jackknifing the logistic transformation $(p_{14}(t))$ of the product limit estimator tends to be better than its counterpart product limit $(p_2(t))$ for the time frame in which

However, the product limit estimator tends to be better for those times when p(t) is close to unity. Point estimators, $p_5(t)$ and $p_6(t)$ tend to be same for the time frame in which

$$0.1 < p_{T}(t) < 0.9$$

However, the $p_5(t)$ tends to be better for those times when $p_T(t)$ is close to unity. The jackknife procedure may be validated, in an empirical sense, by sampling experiments or computer simulation in the followign manner. First, times of censoring and death are obtained by drawing random numbers from postulated distributions. Second, the jackknifed estimator of the logistic-transformed product-limit estimation is found, and confidence limits are computed by the method of Tukey, reference (3). Since the true value of survival function, p(t), is known, so is the theoretical value of A. The jackknife confidence intervals can be checked for coverage: if $L_{\alpha} \leq A \leq H_{\alpha}$ then the particular interval covers, while otherwise (if $A < L_{\alpha}$ or $H_{\alpha} < A$) it does not cover. Finally, the above procedure can be repeated many times (say 1000) and the fraction of repetitions which contains the true value of A is recorded. This fraction of the coverage should desirably be close to $(1-\alpha)$, the nominal confidence level.

The jackknife confidence limit procedure can be said to be <u>robust</u> of validity, ref (7), if the actual coverage is close to the nominal coverage, $1-\alpha$, for a various distributions. Such seems to be true for large n (n \geq 50). However, the jackknife confidence limits do not cover accurately when the true value of p(t) is close to unity.

The following tables illustrate confidence limits of jackknife method of product limit $(p_2(t))$. Many computer generated graphics are presented on the following pages to complete this section.

Table 1

Simulation Experiments Validating Table

0.009 96,939 98,980 95,918 96,939 0.068 0.025 0.938 0.855 88.886 0.932 0.863 96.429 91.558 95.130 89.844 0.049 73.333 66.667 33.029 95.023 05.023 86.047 0.047 72.787 0.049 * * 0.1 * * 96.774 | 92.150 | 95.308 | 0.992 0.078 0.995 0.034 0.059 0.911 0.915 0,166 0.125 0.122 91.489 85.668 87.943 0.080 0.924 0.940 0.963 0.131 0.837 0.837 86.364 87.27 ** 0.2 * * 0.202 0.068 0.969 0.113 0.907 0.971 0.979 96.688 0.112 0.821 0.251 0.827 0.247 0.10 70.0 0.3 0.942 0.904 0.115 0.276 94.091 0.914 0.816 0.945 0.819 0.163 0.155 0.166 0.917 0.171 0.256 0.891 0.276 93.52 78.333 78.667 78.667 80.0 0.4 75.408 85.714 90.816 74.194 85.630 92.669 72.340 82.496 87.943 53.117 61.039 68.571 87.987 93.506 0.882 0.883 0.318 0.173 0.923 0.238 79.070 86.047 0.825 0.898 0.324 92.273 0.906 0.231 0.897 0.216 0.922 0.305 0.821 0.217 72.340 85.496 88.15 0.5 95% Confidence Limits (t value = 2.776) 0.836 0.259 0.846 0.914 0.301 0.893 0.393 73.636 82.727 0.291 0.399 0.912 0.313 0.901 0.305 0.891 0.380 9.0 57.209 65.116 72.093 0.494 0.419 0.902 0.917 0,366 0.918 0.422 0.407 0.901 0.456 0.862 0.385 0.893 0.496 0.871 0.911 0.7 50,792 68,358 0.924 0.515 66.122 0.935 0.910 0.552 0.923 65,545 0.558 56,259 54.255 0.906 0.533 0.935 0.559 0.618 0.580 0.931 0.917 70.0 09.0 0.8 56,735 54.545 0.744 0.775 45.887 0.962 0.760 55,887 0.948 0.718 0.962 0.709 0.741 0.955 0.957 0.964 0.957 0.953 0.757 0.751 58.0 6.0 True Value Lower Int. Lower Int. Upper Int. Upper Int. Upper Int. Upper Int. Lower Int. Upper Int. Upper Int. Lower Int. Upper Int. Lower Int. Lower Int. Upper Int. Lower Int. Lower Int. Coverage Coverage Coverage Coverage Coverage Coverage Coverage Coverage distinguish 1,3333 1,3333 0.6667 2.0 4.0 2.0 4.0 1.0 Tung. Parameter Censoring nential nential Expo-Expoform form Uni-Uni-Dist. of n=5. nential nential Death Expo-Expoform Uniform Uni-Dist. of

Table 2

Simulation Experiments Validating Table 95% Confidence Limits (t value = 2.262)

n=10

0.966 0.760 0.840 0.976 0.015 0.058 98.214 98.214 090.0 57.798 77.982 89.297 96.330 99.083 98.165 99.083 96.024 76.453 0.649 98.542 99.167 97.917 82.083 0.003 0.589 0.937 56.818 98.949 | 86.165 0.097 0.00 0.1 0.0 * 0.851 0.896 97.067 97.067 0.745 72.727 0.938 0.089 0.865 0.012 0.089 0.033 0.032 0.168 0.800 0.130 0.583 0.083 0.637 0.2 0.00 98.133 97.333 96.8 0.854 0.828 0.984 0.058 0.646 0.120 0.030 0.779 0.092 0.892 0.731 0.120 0.806 0.308 0.251 0.150 97.727 0,603 0.121 Coverage | 57.093|79.159|87.566|94.921|99.124|100.0 | 100.0 0.00 0.3 0.00 0.844 0.730 0.673 0.048 0.163 0.858 0.785 0.160 0.151 0.821 0.761 0.182 97.727 0.647 0.153 95.733 97.60 0.00 0.00 0.4 0.753 0.716 78.125 84.167 94.167 98.333 0.874 0.340 0.859 0.125 0.138 0.379 0.703 0.184 0.242 0.851 0.204 0.068 0.767 0.225 0.787 98.214 100.0 0.5 98.174 100.0 93.182 100.0 0.96 0.887 0.336 91.733 0.176 0.250 0.772 0.100 0.578 0.468 91.733 0.220 0.861 0.792 0.814 0.794 0.227 0.767 0.265 9.0 0.922 78.933 0.241 94.643 0.843 0.913 0.455 0.834 0.836 0.286 96.923 79.545 93.182 0.272 0.891 0.305 0.165 0.855 78,933 0.837 0.324 0.7 0.359 70.933 0.948 0.953 0.899 0.896 0.640 0.966 0.930 0.410 0.897 0.391 0.295 86,154 0.896 0.709 0.902 0,383 87.50 0.423 0.8 0.975 0.975 0.954 0.956 0.860 59,091 52,667 0.582 0.612 0.615 53.542 0.546 0.940 0.840 0.949 0.596 0.602 0.957 62.0 0.09 57.6 6.0 Upper Int. True Value Lower Int. Lower Int. Upper Int. Upper Int. Lower Int. Upper Int. Lower Int. Upper Int. Lower Int. Upper Int. Upper Int. Lower Int. Upper Int. Lower Int. Lower Int. Coverage Coverage Coverage Coverage Coverage Coverage Coverage distinguish 4.0 1.0 2.0 2.0 1.0 4.0 1.0 4.0 Time Perinage nential nential Censoring Expo-Expoform form Uni-Uniof Dist. nential nential Death Expo-Expoform form Uni-Uniof

Table 3

Simulation Experiments Validating Table 95% Confidence Limits (t value = 2.093)

n=25			95% Confid	ence	nce Limits ((t value =	= 2.093	3)					
Dist Dis	nisting distinguish of Trunc. Meter	2 Jan 18 18 18 18 18 18 18 18 18 18 18 18 18	True Value	6.0	0.8	0.7	9.0	0.5	0.4	0.3	0.5	0.1	
			Upper Int.	0.986	0.948	0.893	0.833	0.774	0.717	0.682	0.798	0.805	_
Expo-	Expo-	2.0	Lower Int.	0.787	0.603	0.477	0.372	0.283	0.199	0.126	090.0	0.0	
nential	nential		Coverage	68.148	93.827	97.778	98.765	98.272	98.272	99.259	98.025	95.309	
			Upper Int.	0.941	0.897	0.848	0.787	0.746	0.702	0.693	0.731	0.826	_
		1.333	Lower Int.	0.778	0.612	0.501	0.411	0.325	0.245	0.173	0.112	0.058	
			Coverage	66.260	91.057	91.057 97.154	98.374	98.374 98.780 95.935 96.341	95,935		93.496	80.488	
			Upper Int.	0.967	0.910	0.851	0.794	0.753	0.745	0.785	0.825	0.892	
		0.667	Lower Int.	0.850	0.696	0.582	0.478	0.384	0.302	0.211	0.159	0.103	
			Coverage	67.742	90.323 90.323		93.548	93.548 90.323		87.097	74.194	58.065	
			Upper Int.	0.948	0.911	0.864	0.809	0.748	0.689	0.636	0.614	0.683	
Expo-	Uni-	4.0	Lower Int.	0.751	0.578	0.469	0.376	0.293	0.218	0.149	0.091	0.045	
nential	form		Coverage	66.821	93.968 97.681		99.768	99.768 98.840 99.536	98.536	98.840	98.376	93.039	
			Upper Int.	0.922	0.860	0.792	0.730	0.675	0.643	0.715	**	**	
		1,333	Lower Int.	0.836	0.708	0.601	0.513	0.431	0.369	0.327	**	**	
			Coverage	66.260	91.057	97.154	98.374	91.057 97.154 98.374 98.780 95.935		96.341	**	**	
			Upper Int.	0.951	0.878	0.799	0.714	0.627	0.541	0.455	0.372	0.309	
Uni-	Expo-	2.00	Lower Int.	0.393	0.299	0.274	0.250	0.221	0.186	0.146	0.100	0.054	
form	nential		Coverage	85.985	87.121	90.278	91.919	91.919	93.813	95.581	97.854	88.005	
			Upper Int.	0.950	0.877	0.796	0.717	0.638	0.559	0.490	0.446	0.428	
		1.00	Lower Int.	0.402	0.306	0.275	0.249	0.218	0.181	0.140	0.096	0.056	
			Coverage	83.770	86.721	89.344	90.328	93.934	95.738	95.525	98.689	86.866	
			Upper Int.	0.952	0.879	9.797	0.761	0.624	0.541	0.460	0.394	0.347	
Uni-	Uni-	2.00	Lower Int.	0.406	0.303	0.274	0.250	0.220	0.186	0.146	0.100	0.057	
torm	Iform		Coverage	84.253	89.367	89.367 89.906 90.675 92.059	90.675	92.059	94.616	94.616 95.577	97.443 86.945	86.945	

Table 4

Simulation Experiments Validating Table 95% Confidence Limits (t value = 2.010)

n = 50

1		_	_																						
	0.1	*	**	**	*	*	*	0.625	0.020	95.846	0.864	0.021	95.211	0.798	0.009	94.895	0.734	0.007	94.028	0.599	0.076	94,556	0.203	0.058	94.234
	0.2	*	**	**	*	*	**	0.503	0.049	96.947	0.756	0.046	96,463	0.635	0.034	95.882	0.585	0.030	95.823	0.472	0.122	94.778	0.295	0.118	96.052
	0.3	*	**	**	0.540	0.132	96,120	0.541	0.082	96,012	0.670	0.083	96,463 96,463	0.602	0,066	95,882	0,594	0.061	_	0,465	0,165	96.112 94.778	0.393	0.168	97.023 96.052
	0.4	0.636	0.215	96.720	0.566	0.168	96.120	0.612	0.111	95.820	0.648	0.121	96.012	0.646	0.097	96.032	0.653	0.087	96.720	0.520	0.209	96.033	0.490	0.211	97.023
	0.5	0.626	0.238	95,910	0.636	0.202	95.960	0.689	0.134	95.820	0.689	0,155	95,312 96,012	0.711	0.121	96.032	0.721	0.107	95.823 96.720	0.598	0.246	95.778 96.033	0.585	0.247	96.723 97.023
	9.0	0.692	0.268	95.520	0.717	0.228	95,830	0.766	0.149	95,618	0.753	0.182	95,312	0.780	0.137	95,327	0.791	0.120	95,523	0.681	0.277	95.778	0.677	0.275	96.723
	0.7	0 772	0.290	95.140 95.520	0.799	0.244	95,210	0.839	0.153	95,237	0.822	0.198	94.875 95.312	0.848	0.144	95,327	0.858	0.124	95.038	0.769	0.301	95.667 95.778	0.766	0,295	96.012 96.723
	8.0	0.856	0.302	94.870	0.876	0.245	95,120	0.908	0.142	95.237	0.892	0.199	94,325	0.913	0,136	94,761	0.920	0.114	94.876	0.855	0.312	95.222	0.853	0,303	95,362
	6.0	0.938	0.300	94.650	0.950	0.238	94.860	0.968	0.121	94.275	0.959	0.201	92,381	0.970	0.128	94.568	0.974	0.103	94.523	0.937	0,318	94.667	0.936	0.296	94.826
	True Value	Upper Int		1	Upper Int.	Lower Int.	Converge	Upper Int.	Lower Int.	Converge	Upper Int.	Lower Int.	Converge	Upper Int.	Lower Int.	Converge	Upper Int.	Lower Int.	Converge	Upper Int.	Lower Int.	Converge	Upper Int.		Converge
	distinguish	را د	1.0			1.5			3.0			0,6667			1,3333			2.0			1.0			4.0	
		SILL TORING	Ilni-	form								Expo-	nential								Uni-	form			
	Dist. Dist.		Fxno-	nential								Expo-	nential								Uni-	form			

Fig. 1: Comparison of RMS derived from sample size 5. (Step function estimators vs. point estimators)

Fig. 2: Comparison of root mean square derived from sample size 5. (Step function estimators vs. jackknife estimators of logistic transformation)

Fig. 3: Comparison of root mean square derived from sample sizes. (Step function estimators vs. Bayesian estimators)

ADITE | METALE 2 Alleges 4. Todo NEVINTE 10

P2(.) .vs. Patel .ts. P: (s), .vs. P6(x)

Fig. 4: Comparison of root mean square derived from sample size 10. (Step function estimators vs. point estimators)

Fig. 5: Comparison of root mean square derived from sample size 10. (Step function estimators vs. jackknife estimators of logistic transformation)

Fig. 6: Comparison of RMS derived from sample size 10.
(Step function estimators vs. Bayesian estimators)

MARIE 1 MINGROUP STREET 4.0000 MINENTE 26

P21.1 .VS. P3(+1 .VS. P5(+), .VS. P(1X)

Fig. 7: Comparison of RMS derived from sample size 25. (Step function estimators vs. point estimators)

Fig. 8: Comparison of RMS derived from sample size 25.
(Step function estimators vs. jackknife estimators of logistic transformation)

Fig. 9: Comparison of RMS derived from sample size 25. (Step function estimators vs. Bayesian estimators)

APPENDIX A

ESTIMATORS FOR GROUPED DATA

With grouped censored data the definition of $p(t_i/t_{i-1})$ given by equation (5) does not hold unless the assumption is made that all truncations occur at the end of the time interval. If, on the other hand, it is assumed that all truncations occur at the beginning of Δt_i the equivalent form of equation (5) is

$$p(t_{i}/t_{i-1}) = \frac{N_{i} - a_{i} - r_{i}}{N_{i} - a_{i}}$$
 (G-1)

With N_i elements were presents at beginning of interval, i.e., at time t_{i-1} , r_i elments failed during the interval, and a_i elements truncated from the sample during the interval but prior to failing. As a hypothesis, assume that all aborts occur simultaneously somewhere within the time interval, so that r' failures occur prior to the truncations and time remaining r_i - r' after the truncations. Then

$$p(t_{i}/t_{i-1}) = \frac{N_{i} - r'}{N_{i}} \cdot \frac{N_{i} - a_{i} - r_{i}}{N_{i} - r_{i} - a_{i}}$$
(G-2)

Thus, the value of $p(t_i/t_{i-1})$ depends on when the truncations occur. It is assumed that this is not known for the grouped data case. Nevertheless, it is possible to place limits on the value of $p(t_i/t_{i-1})$ since equation (G-2) always gives values between those of equation (5) and (G-1). Thus

$$\frac{N_{i} - a_{i} - r_{i}}{N_{i} - a_{i}} \le p(t_{i}/t_{i-1}) \le \frac{N_{i} - r_{i}}{N_{i}}$$
 (G-3)

For average sample size approximation, a simpler expression from the point of view of computational ease may be derived by substituting a/2 for a in equation (G-1) giving

$$p(t_{i}) = \frac{N - \frac{a}{2} - r}{N - \frac{a}{2}}$$
 (G-4)

The equation (G-4) may be thought of as the result of assuming that the average number of elements in the time interval is the number at the beginning decreased by half the number of truncations.

Records are usually available to provide a fairly precise time the death events. In the medical example, the exact time of death is usually recorded in medical records required by law. In the equipment lifetesting example, the time of malfunction or failure is usually known very precisely if the results are catastrophic; and maintenance records give a reasonably precise time even if the failure is not critical to a larger system. In the military example, the event of interest is usually a sensor detection or some other action that is routinely recorded in a log book.

Equaiton (G-4) is a modification to the product-limit estimator, p_2 , when the times of truncation are known only in grouped form. Herd, reference (2), suggests a similar modification to estimators using the second approach (p_5 or p_6) with aggregated truncation data. Illustrate results for this method based on the sample data base of the main test are given below. Here, of course, we do not know that individual B dropped out of observation at time 2 and that individual D dropped out at time 6. We know only that the two truncations occurred in the interval (1,3) and (3,7), respectively.

Product limit's modification is denoted by $\mathbf{\tilde{p}_2}'(t)$ and Herd's modification is denoted by $\mathbf{\tilde{p}_5}'(t)$.

Their results on the sample data base are as follows.

<u>t</u>	p ₂ '(t)
0-1	5/5 = 1.0
1-3	$4/5 \times 1.0 = 0.8$
3-7	$2.5/3.5 \times 0.8 = 0.571$
(7)	$0.5/1.5 \times 0.571 = 0.190$
t	p ₅ '(t)
0	1.0
1	$5/6 \times 1.0 = 0.833$
3	$3.5/4.5 \times 0.833 = 0.648$
7	$1.5/2.5 \times 0.648 = 0.389$

APPENDIX B

LISTING OF COMPUTER PROGRAM

```
C
                             TRUNCATED DATA PROGRAM
                      DIMENSION NN(9), D(14), T(1300), IT(1300), P1(1300), P2(1000 *0), P3(1300), P4(1000), P5(1300), P6(1330), PJA4(1000), PJA5 *(1000), PJA6(1000), TJ(1000), ITJ(1000), PZ(1000), S(14,5), *U(14,9), W(14,9), P1(1000), P12(1000), P13(1300), SLA(50,5) *C1, SL2(50,50), SL3(50,50), SBAR2(50), SBAR2(50), SBAR3(50), *PJ4(50,50), PJ5(50,50), PJ6(50,50), FJ2(50,50), PZ2(1000), *SL4(50,50), PJ5(50,50), PJA2(1300), C(14,9), RMS1(50), RMS2(*(50),RMS3(50),RMS4(50),UNINT1(50), LINT2(50), ULINT4(50), U*INT3(50), RINT1(50), RINT3(50), RINT4(50), CF(8) *VARJ2(50), VARJ4(50), VARJ5(50), VARJ6(50), UP2(50 *1,UP3(50),UP4(50),RO1(50),RO3(50),RO3(50),RC4(50),CALL CVFLOW
 1
            1 FCRMAT (15,110,F10.4,515,F8.3)
2 FCRMAT(1X,'NDIE ERROR')
3 FCRMAT(1X,'NTRUNC ERROR')
4 FCRMAT(1X,'NREPL ERROR')
5 FCRMAT(1X,'NWRITE ERROR')
6 FCRMAT(1X,'NWRITE ERROR')
7 FCRMAT (1X,'P',12,9F8.3,3X,'MEAN')
10 FCRMAT(1X,'I5,10F1C.5)
11 FCRMAT(1X,'I5,10F1C.5)
12 FCRMAT(1X,'P',12,9F8.3,3X,'ABS')
13 FCRMAT(1X,'P',12,9F8.3,3X,'ABS')
14 FCRMAT(1X,'P',12,9F8.3,3X,'RMS')
15 FCRMAT(1X,'P',12,9F8.3,3X,'RMS')
16 FCRMAT(1X,'P',12,9F8.3,3X,'RMS')
18 FCRMAT(1X,215)
C
                            READ INPUTS AND SET INITIAL VALUES
                       A=0.01
READ(5,1)NDIE,NTRUNC,XTRUNC,NREFL,NEVENT,NWFITE,ISEEC,
*NEND,TN
JEVENT=NEVENT-1
WRITE(6,13)NDIE,NTRUNC,XTRUNC,NREFL,NEVENT,NWRITE,ISEE
            *D
                                                                                                                                                                               THIS PAGE IS BEST QUALITY PRACTICABLE
                                                                                                                                                                             FROM COPY FURNISHED TO DDC
                             TEST INPUTS
                                         (NDIE-LT-1) GOTO 105

(NDIE-GT-2) GOTO 105

(NTRUNC-LT-1) GC TO 103

(NTRUNC-GT-3) GOTO 103

(NREPL-LT-1) GO TO 104

(NREPL-GT-1000) GOTO 104

(NREPL-GT-1000) GOTO 102

(NEVENT-LT-2) GOTO 102

(NEVENT-LE-1000) GOTO 200
                            IFF
                            ERRCR MESSAGES
         102 WRITE (6,5)
```

```
STCP
103 WRITE (6,3)
   STCP
1C4 WRITE (6,4)
STCP
   105 WRITE (6,2)
          START MAIN CALCULATION
   2CC CC 250 J=1,9
NN(J)=0
CC 250 I=1,NP
S(I,J)=0
U(I,J)=0
          C(I,J)=0.0
h(I,J)=0
DC_4999 IREPL=1,NREPL
          NCI=0
DC 999 IEVENT=1, NEVENT
          CREATE TTRUNC()
   CALL RANDOM(ISEED, TTR, 1)
GCTO (300,350,400),NTRUNC
GCTO 103
30C TIR=TTR*XTRUNC
GCTO 500
35C TIR=-XTRUNC*ALOG(TTR)
GCTO 500
4CO TIR =XTRUNC
          CREATE TDIE()
   5CC CALL RANDOM(ISEED, TDI,1)
GCTC (89C,730), NDIE
GCTC 132
730 TCI=-ALOG(TCI)
          DETERMINE SMALLER OF TDIE() AND TTRUNC()
   8CC IF (TDI.LE.TTR) GOTO 810
          TT=TTR
          GC TO 850
   81C
   NCI=NDI+1
ITT=1
85C T(IEVENT)=TT
IT(IEVENT)=ITT
CCC
          CREER DATA
   THIS PAGE IS BEST QUALITY PRACTICABLE
C
         CCNTINUE
TN=T(NEVENT)
T7=0
   999
                                                     FRUN COPY FURNISHED TO DDC
          DII=NDI+2.
IF (NDI.GT.0) GOTO 8122
```

```
P4(NEVENT) = SRH
P5(NEVENT) = SRH
TT=0
DC 8121 J=1,NEVENT
TT=TT+T(J)
DN=TT/T(NEVENT)
P6(NEVENT) = SQRT(DN/(CN+1.))
GCT0 1111
  8121
CCC
            CALCULATE P1() AND P4() AND P11() VECTORS AND P7 DATA
  8122 N=NDI
           J=0
II=0
III=0
DC 2199 I=1,NEVENT
T7=T7+T(I)
IF(IT(I).EQ.1) GOTC 2150
           J=1

GCTO 2199

P1(I)=FLOAT(N-1)/FLOAT(NDI)

P4(I)=FLOAT(N)/FLOAT(NDI+1)

P1(I)=FLOAT(N)/DII

TTI=T(I)
            I I I = I I
I I = I
 CCC
            CALCULATE P2() AND P5() AND P12() VECTORS
  2225 PF=1.
           N=NEVENT
PPP=FLOAT(N+1)/FLCAT(N+2)
           P=1.
J=0
DC 2399 I=1, NEVENT
IF (IT(I).EQ.1) GCTG 2350
           IF (IT(I).EQ.1) GCTC 2350

J=1
GCTC 2399

PP=PP*FLOAT(N-1)/FLOAT(N)

P=P*FLOAT(N)/FLOAT(N+1)

PFP=PPP*FLCAT(N)/FLOAT(N+1)

P2(I)=P

P5(I)=P

P12(I)=PP

J=C
                                                                         THIS PAGE IS BEST QUALITY PRACTICABLE
                                                                         FROM COPY FURNISHED TO DDC
```

```
2399 N=N-1

IF (J.EQ.O) GOTC2425

IF (NDI.GT.1) GOTO 2400

TAU=-TII/ALCG(P5(II))

TAU=-TII/ALCG(P12(II))

GCTC2410

24CC TAU=DTI/ALCG(P5(II)/P5(III))

TTAU=DTI/ALCG(P12(II)/P12(III))

241C IF (DT.GT.150*TAU) TAU=DT/150

P5(NEVENT)=P*EXP(-DT/TAU)

IF (DT.GT.150*TTAU)TTAU=DT/150.

P12(NEVENT)=PPP*EXP(-CT/TTAU)
CCC
                      CALCULATE P3() AND P6() AND P13() VECTORS
                     PP=1.
N=NEVENT
P=1.
PPP=FLOAT(N+1)/FLOAT(N+2)
   2425
                       J=C
                      TT=0
                      TTT=0
DC 2599 I=1, NEVENT
IF (IT(I).EC.1) GCTO 2550
                      J=J+1
TT=TT+T(I)-TTT
GCTC 2599
 GCTC 2599
2550 DN=N
IF (TT.NE.O) DN=DN+TT/(T(I)-TTT)
PF=PP*(DN-1)/DN
P=F*DN/(DN+1)
PFP=PPP*DN/(DN+1.)
P2(I)=P
P6(I)=P
P13(I)=PP
J=C
TT=O
TTT=T(I)
  TT=0

TTT=T(I)

2599 N=N-1

IF(J.EQ.O)GC TO 1111

CTT=TN-TTT

IF(CTT.GE.1E-70)GCTC 3005

CN=.5*(J+1)

GCTC 3010

30C5 DN=TT/DTT

301C P6(NEVENT)=P*SQRT(CN/(DN+1.))

IF(NDI.GT.1)GC TO 1997

TTAU=-TII/ALOG(P13(II))

GCTC 1998

1997 TTAL=DTI/ALCG(P13(II)/P13(III))

1998 IF(DT.GT.15C*TTAU)TTAU=DT/15J.

P13(NEVENT)=PPP*EXP(-CT/TTAU)
       SET UP A LOOP FOR ALL JACKKNIFE CALLS (PJ4, PJ5, FJ6)
 1111 CC 1000 I=1, NEVENT

DC 1011 J=1, NEVENT

PJ2(I,J)=0.C

PJ4(I,J)=0.C

PJ6(I,J)=0.C

SL1(I,J)=0.C

SL2(I,J)=0.C

SL2(I,J)=0.C

SL3(I,J)=0.C

1011 CCNTINUE

PJA2(I)=0.0

PJA4(I)=0.0

PJA6(I)=0.0

SEAR1(I)=0.0

SEAR1(I)=0.0

SEAR2(I)=0.0
                                                                                                                                     THIS PAGE IS BEST QUALITY PRACTICABLE
                                                                                                                                     FROM COPY FURNISHED TO DDC
```

```
SEAR3(I)=0.C

SEAR4(I)=0.C

P/2(I)=0.0

VARJ2(I)=0.C

VARJ4(I)=0.C

VARJ5(I)=0.C

VARJ6(I)=0.C

CGNTINUE

DC 1001 I=1, NEVENT
        MOVES DATA INTO TJ() AND ITJ() VECTORS
K=1

JNEXT=0

JEEFCR=0

JAFTER=0

10C2 IF(K.EQ.I)GC TO 7003

TJ(K)=T(K)

ITJ(K)=IT(K)

IF(IT(K).EQ.0)GO TC 7001

JNEXT=JBEFCR

70C1 K=K+1
JBEFCR=K

70C1 K=K+1
GC TO 1002

73C2 JAFTER=JBEFCR
JBEFCR=JNEXT
GC TO 1010

70C3 IF(I.GT.JEVENT) GO TC 7002
10J3 IF(K.GT.JEVENT)GO TO 10J4
TJ(K)=T(K+1)
ITJ(K)=T(K+1)
IF(ITJ(K)-EC.0)GO TO 4002
IF(JAFTER.EC.0)JAFTER=K

40C2 K=K+1
 40C2 K=K+1
GC TO 1003
10C4 IF(JAFTER.EC.O) JAFTER=JEVENT
1J1C NDIJ=NDI-IT(I)
             CHECK IF ZERO DEATHS
                   IF(NCIJ.EQ.0)GOTO 1301
                    N=NDIJ
                   P=1.
J=0
II=0
                   III=0
GC TC 1014
        CALCULATE PJ4() VECTORS
1014 DC 1016 IJ=1.JEVENT

IF(ITJ(IJ).EQ.1)GC TO 1015

J=1

GC TO 1016

1015 P=FLOAT(N)/FLOAT(NCIJ+1)

PZ(IJ)=P

III=IJ

I = IJ
 II=IJ

J=0

N=N-1

1016 CCNTINUE

IF(J.EQ.0)GC TO 1019

II=TJ(II)

CTI=TJ(III)-TII

IF(NDIJ.GT.1)GO TC 1017

TAU=-TII/ALCG(PZ(II))

GC TO 1018

1017 TAL=DTI/ALCG(PZ(II)/PZ(III))

1018 DT=TJ(JEVENT)-TII

IF(DT.GT.150.*TAU)TAU=DT/150.

PZ(JEVENT)=F*EXP(-DT/TAU)
```

```
1020 IF(K.EQ.I)GC TO 2021
PJ4(K,I)=ALCG((PZ(K)+A)/(1-PZ(K)+A))
K=K+1
GC TO 1020

2021 IF(K.EQ.NEVENT)GD TO 5021
IF(IT(I).EQ.O)GD TC 1025

5021 TJA=TJ(JAFTER)
IF(JBEFCR.NE.O)GD TD 1022
PX=ALOG(PZ(JAFTER))*T(I)/TJA
PZZ=0.0
IF (PX.LT.-150) GCTO 7025
PZZ=EXP(PX)

7025 PJ4(I,I)=ALCG((PZZ+A)/(1-PZZ+A))
GC TO 1025

1022 TJB=TJ(JBEFCR)
DTJ=TJA-TJB
CTE=T(I)-TJE
PX=DTB*ALOG(PZ(JAFTER)/PZ(JBEFCR))/DTJ
PZZ=0.0
IF (PX.LT.-150) GCTO 7026
PZZ=PZ(JBEFCR)*EXP(PX)

7026 PJ4(I,I)=ALCG((PZZ+A)/(1-PZZ+A))
1025 IF(K.GT.JEVENT)GOTC 3027
PJ4(K+1,I)=ALOG((FZ(K)+A)/(1-PZ(K)+A))
K=K+1
GC TO 1025
   CCC
               CALCULATE PJ5() VECTORS
    1026 N=JEVENT
                                P=1.
PP=1.
                               J=C.
DC 1028 IJ=1,JEVENT
IF(ITJ(IJ).EQ.1)GO TO 1027
  IF(ITJ(IJ).EQ.1)GO TO 1027

J=1

GC TO 1028

1027 P=P*FLOAT(N)/FLOAT(N+1)

PP=PP*FLOAT(N-1)/FLOAT(N)

PZ(IJ)=P

PZ2(IJ)=PP

J=0

1028 N=N-1

IF(J.EQ.0)GC TO 1031

IF(NDIJ.GT.1)GO TC 1029

TAL=TII/ALCG(PZ(II))

GC TO 1030

1029 TAL=DTI/ALCG(PZ(II)/PZ(III))

1030 IF(DT.GT.150*TAU)TAU=DT/150.

PZ(JEVENT)=P*EXP(-CT/TAU)

1031 K=1
                             PZ(JEVENT) = F*EXP(-DT/TAU)

K=1

IF(K.EQ.I)GC TO 2033

PJ5(K,I) = ALCG((PZ(K)+A)/(1-PZ(K)+A))

PJ2(K,I) = ALCG((PZ2(K)+A)/(1-PZ2(K)+A))

K=K+1

GC TO 1032

IF(K.EQ.NEVENT)GO TO 5033

IF(IT(I).EQ.O)GO TO 1136

IF(JBEFCR.NE.O)GO TO 1135

PX=T(I)*ALOG(PZ(JAFTER))/TJA

PZZ=0.0

IF (PX.LT.-150) GCTO 7027

PZZ=EXP(PX)

PJ5(I,I) = ALCG((PZZ+A)/(1-PZZ+A))

GC TO 1136

GC TO 1136
    GC TO 1136
1135 PX=DTB*ALOG(PZ(JAFTER)/PZ(JBEFCR))/DTJ
```

```
PZZ=0.0

IF (PX.LT.-150) GOTO 7028

PZZ=PZ(JBEFCR)*EXP(PX)

PJ5(I,I)=ALCG((PZZ+A)/(1-PZZ+A))

IF(K.GT.JEVENT)GO TO 1036

PJ5(K+1,I)=ALCG((PZ(K)+A)/(1-PZ(K)+A))

PJ2(K+1,I)=ALCG((PZ(K)+A)/(1-PZZ(K)+A))

K=K+1
                      K=K+1
GC TO 1136
          CALCULATE PJ6() VECTORS
  1036 N=JEVENT
                      P=1.
J=0
TT=0
                       TTT=0
                      DC 1038 IJ=1.JEVENT
IF(ITJ(IJ).EQ.1)GC TC 1037
                      IF(I(J(IJ).EQ.I)GC (C 103)

J=1

IT=IT+TJ(IJ)-TTT

GC TC 1038

CN=N

IF(IT.NE.J)CN=DN+TT/(IJ(IJ)-TTT)

P=P*DN/(DN+1.)

PZ(IJ)=P
                      111=17(I7)
11=0
7=0
TTT=TJ(IJ)

1038 N=N-1
    IF(J.EQ.0)GC TO 1041
    CT=TJ(JEVENT)-TTT
    IF(DT.GT.1E-7J)GC TO 1039
    DN=.5*(J+1)
    GC TO 1040

1039 DN=TT/DT

104C PZ(JEVENT)=P*SQRT(CN/(DN+1.))
1039
1040
1041
1042
                     K=1
IF(K.EQ.I)GC TO 2043
PJ6(K,I)=ALCG((PZ(K)+A)/(1-PZ(K)+A))
K=K+1
CC TO 1042
K=K+1
GC TO 1042

2043 IF(K.EQ.NEVENT)GO TO 5043
IF(IT(I).EQ.0)GO TC 1146

5043 IF(JBEFCR.NE.O)GC TO 1045
PX=T(I)*ALOG(PZ(JAFTER))/TJA
PZZ=0.0

IF (PX.LT.-150) GOTO 7029
PZZ=EXP(PX)

7C25 PJ6(I,I)=ALCG((PZZ+A)/(I-PZZ+A))
GC TO 1146

1345 PX=DTB*ALOG(PZ(JAFTER)/PZ(JBEFOR))/DTJ
PZZ=0.0
                   PZZ=0.0

IF (PX.LT.-150) GGTO 7030

PZZ=PZ(JBEFCR)*EXP(PX)

PJ6(I,I)=ALCG((PZZ+A)/(1-PZZ+A))

IF(K.GT.JEVENT)GGTO 1001

PJ6(K+1,I)=ALGG((FZ(K)+A)/(1-PZ(K)+A))
 703C
 1146
               PJ6(K+1,I)=ALOG((FZ(K)+A)/(1-PZ(K)+A))
K=K+1
GC TO 1146

CCNTINUE
DC 8888 I=1,NEVENT
DC 8811 J=1,NEVENT
IF(I.EQ.J)GCTO 8811
SL1(I,J)=FLCAT(NEVENT)*ALOG((P4(I)+A)/(1-P4(I)+A))-FLC
*AT(NEVENT-1)*PJ4(I,J)
SL2(I,J)=FLCAT(NEVENT)*ALOG((P5(I)+A)/(1-P5(I)+A))-FLC
*AT(NEVENT-1)*PJ5(I,J)
SL3(I,J)=FLCAT(NEVENT)*ALOG((P6(I)+A)/(1-P6(I)+A))-FLC
*AT(NEVENT-1)*PJ6(I,J)
SL4(I,J)=FLCAT(NEVENT)*ALOG((P2(I)+A)/(1-P2(I)+A))-FLC
*AT(NEVENT-1)*PJ2(I,J)
10C1
```

```
DC 8999 I=1, NEVENT

CC 8911 J=1, NEVENT

IF(SL4(I,J).EQ.O.O)GOTO 3111

VARJ2(I)=(SL4(I,J)-SBAR4(I))**2/FLCAT(NEVENT-1)+VARJ2(
      * I )
       ÎF(SL1(I,J).EQ.0.0)GOTO 3112
VARJ4(I)=(SL1(I,J)-SBAR1(I))**2/FLCAT(NEVENT-1)+VARJ4(
 3112 ÎF(SL2(I,J).EQ.O.O)GOTO 3113
VARJ5(I)=(SL2(I,J)-SBAR2(I))**2/FLCAT(NEVENT-1)+VARJ5(
 *1)
3113 IF(SL3(I,J).EQ.O.C)GOTO 8911
VARJ6(I)=(SL3(I,J)-SBAR3(I))**2/FLCAT(NEVENT-1)+VARJ6(
THE PACE IS BEST QUALITY PRACTICABLE
                                                     THE STATE IS HEST WHAT IN TO DOC
```

```
RINT2(I)=1./(1.+1./EXP(RO2(I)))
UINT3(I)=1./(1.+1/EXP(UP3(I)))
RINT3(I)=1./(1.+1./EXP(RO3(I)))
UINT4(I)=1./(1.+1./EXP(UP4(I)))
RINT4(I)=1./(1.+1./EXP(RO4(I)))
         8999 CENTINUE
                                        PRINT OUTPUT
       3J50 IF (NWRITE.EQ.0) CCTC 3500

hRITE(6,8)(IREPL,IT(I),T(I),P1(I),P2(I),P3(I),P4(I),P5

*(I),P6(I),PJA2(I),PJA4(I),PJA5(I),PJA6(I),P11(I),P12(I

*),P13(I),I=1,NEVENT)

write (6,10)
  CCC
RECUCE VECTURS

35JC K=1
CC 4000 I=1,NEVENT
IF (IT(I).EC.1) GCTO 3900
IF (I.NE.NEVENT) GOTO 4000

39CC T(K)=T(I)
P2(K)=P1(I)
P2(K)=P2(I)
P3(K)=P4(I)
P5(K)=P5(I)
P6(K)=P6(I)
P5(K)=P5(I)
P6(K)=P6(I)
PJA2(K)=PJA2(I)
PJA4(K)=PJA4(I)
PJA5(K)=PJA6(I)
PJA6(K)=PJA6(I)
P11(K)=P11(I)
P12(K)=P12(I)
P13(K)=P13(I)
UINT1(K)=RINT1(I)
UINT2(K)=UINT2(I)
RINT3(K)=RINT3(I)
UINT4(K)=RINT4(I)
RINT3(K)=RINT4(I)
RINT4(K)=RINT4(I)
                                       RECUCE VECTORS
         40CC CENTINUE
                                        CALCULATE DIFFERENCES, MEAN, RMS, AND MEAN ABS
                                       K = 1
TTT=0
                                    K=1

TTT=0

CT=-T(1)

PP1=1

PF2=1

PF3=1

PF6=1

PF6=1

PF1C=1

PF1C=1

PF11=(NEVENT+1.)/(NEVENT+2.)

PF13=PP12

PF13=PP12

PF14=1.

PC4=P4(1)

PC5=P5(1)

PC6=P5(1)

PC5=P5(1)

PC5=PJA4(1)

PC5=PJA4(1)

PC1J=PJA6(1)

CCNF1=1.

CCNF2=1.
                                                                                                                                                                                                                      THIS PACE IS BEST QUALITY PRACTICABLE
                                                                                                                                                                                                                        FROM COPY FURNISHED TO DDC
```

```
CCNF3=1.
CCNF4=1.
CCNF4=1.
CCNF3=1.
CCN
4100
42CC
```

```
C(10) = PP1 0 * EXP(DTT/T10) - P
D(11) = PP11 - F
D(12) = PP12 - F
D(12) = PP13 - F
D(14) = PP14 - P
CF(1) = CCNF1
CF(2) = CCNF3
CF(4) = CCNF5
CF(4) = CCNF6
CF(5) = CCNF7
CF(8) = CCNF7
CF(11) = C(11) + CC
IF(NWRITE • EQ • 0) GOTO 4911
WRITE(6,10)
WRITE(6,10)
WRITE(6,10)
WRITE(6,12) I, P, (C(I,L), L=1,9)
CCNTINUE
CCNTINUE
CCNTINUE
CCNTINUE
CCNTINUE
              4911
                                                                                                                                                                                                                                                                                                               ,(U(I,L),L=1,9),(W(I,L),L=1,9),(S(I,L),L=1,9)
             4997
4998
 C
              4999 CONTINUE
CCC
                                                                    PRINT SUMMARY STATISTICS

DC 5100 J=1,9
D(J)=.1*J
WRITE (6,7) (D(J),J=1,9)
WRITE (6,1C)
CC 5300 J=1,9
IF (NN(J).GT.0) GCT0 5150

DC 5125 I=1,NP
S(I,J)=1E9
C(I,J)=1E9
C(I,J)=1E9
GCT1 5250 I=1,NP
S(I,J)=SQRT(S(I,J)*XJ)
U(I,J)=U(I,J)*XJ
U(I,J)=U(I,J)*XJ
U(I,J)=W(I,J)*XJ
CCNTINUE
WRITE (6,10)
W
                                                                                PRINT SUMMARY STATISTICS
              51CC
              5125
              515C
              52 E C
53 C C
              20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            THIS PACE IS BEST QUALITY PRACTICABLE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FROM COPY FURNISHED TO DDC
```

LIST OF REFERENCES

- "Nonparametric Estimation from Incomplete Observation," E. L. Kaplan and Paul Meier, <u>American Statistical Association Journal</u>, June 1958.
- "Electronic Reliability," G. R. Herd, ARINC Monograph No. 3, 1 May 1956.
- 3. Biometrics, J. W. Tukey, 1951.
- "Jackknife Censored Data," Rupert G. Miller, Jr., Technical Report, Stanford University, 1976.
- 5. "Estimating Cumulative Probability from Aggregated Truncated Data," H. Spitz, Research Contribution No. 56, Center for Naval Analysis, 6 July 1964.
- 6. "Fortran Program to Estimate Cumulative Survival Probability and Variance," Robert L. Hubbard, OEG Internal Research Memorandum 28, 31 October 1962.
- "Modeling and Estimating System Availability," Donald P. Gaver, NPS 55-77-4, January 1977.
- 8. "Nonparametric Bayesian Estimation of Survival Curves from Incomplete Observations," V. Susarla and J. Van Ryzin, Journal of the American Statistical Association, December 1906.
- 9. "Confidence Interval Estimation of Survival Probabilities for Censored Data," David R. Thomas and Gary L. Grunkemeir, <u>Journal</u> of the American Statistical Association, December 1975.

INITIAL DISTRIBUTION LIST

	No.	Copies
 Defense Documentation Center Cameron Station Alexandria, Virginia 22314 		2
 Library, Code 0142 Naval Postgraduate School Monterey, California 93940 		2
3. Department Chairman, Code 55 Department of Operations Res and Administrative Science Naval Postgraduate School Monterey, California 93940	search	2
 Professor Donald P. Gaver, C Department of Operations Res and Administrative Science Naval Postgraduate School Monterey, California 93940 	earch	5
5. Assoc. Professor R. Neagle F Department of Operations Res and Administrative Science Naval Postgraduate School Monterey, California 93940	earch	2
6. Dr. Robert L. Hubbard Center for Naval Analyses 1401 Wilson Blvd Arlington, Virginia 22209		1
7. Mr. Richard B. Halley Portland State University P. O. Box 751 Portland, Oregon 97207		2
 Maj. Lee Won Hyung, Korean A OR Office, G-3, R.O.K. Army Republic of Korea 		5