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MORPHOLOGICAL EVIDENC E FOR A PITTING MECHANISM
IN DILUTE ALUMINUM ALLOYS

J. Perk ins , J. P.. Cummings , and K. J. Graham

Materials Science and Chemistry Group, Code 6lPs

Naval Postgraduate School , Monterey , CA 93940

In the course of a recent investigation (1) of the saltwater corrosion
behavior of several dilute aluminum alloy s, some dramatic direct microscopic
evidence of pitting phenomena was obtained . Observations , obtained by scan-
ning electron microscopy after galvanic corrosion exposures, illustrate a
pitting mechanism involving the extrusion of columns of corrosion product
from pi ts by the action of hydrogen gas generated inside the pits . Because
this behavior does not relate directly to the goals of the original study of

these alloys (1), it is being reported separately in this note.
The alloy s i nvesti gated were several dilute aluminum alloys designed

especially for appl i cation as sacrificial anodes in marine cathodic protection
systems. The nomi nal compositions of the alloy s discussed in this note are
given -in Table I. These alloys were exposed in natura l galvanic couples (area
ratio 1:27) with steel in aerated synthetic seawater; the experimental details
have been presented in an earlier report (1). Under these conditions , the
alumi num alloys (which were monitored for galv anic current and potential)
operated wi th a steady-state anodic current density of about 0.8 mA/cm2 and
the anodic polar iLdtion of the alloys was to about -l .OV (vs.SCE); (the cor-
rosion pot’- tials of the three alloys G, R , and K were measured (1) as -1.35 ,
-1 .1 5, and —l.2V , all vs .SCE , respectively) .

Macroscopi c Dissol ution Behavior

Each of the dilute aluminum alloys has its own unique pattern of dis-
• solution on the macroscopic scale. Al l oy G tends to initiate large dissolu-

tion caviti es along the machined edges and corners of sampl es (Figure la),
Alloy R forms vertically aligned elongated dissolution cavities on the broad
faces (Figure lb) , and Al lay K tends to exhibit profuse pitting (lc). These
behaviors have been discussed in an earlier report (1) and will not be con-
sidered in detail here. The active regions of the anodes are confined to the

_ _
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dissolution regions ; the rest of the surface is covered with a thin compact
film. All of the alloys tend to rapidly form (within a few hours) a certain
distribution of initial disolut ion sites , which then slowly expand laterally,
as opposed to initiation of more sites .

The dissolution surfaces of Alloys ~3 and R accumulate little if any
corrosion product in the early stages of attack (first 50 hours) while Alloy
K shows distinctly more accumulation than the other alloys , with about as much
product after 1 hour as the others show in 50 hours (1). Only after the dis-
solution surfaces become somewhat fi l med-over wi th corrosion product do the
fine (micron scale) pits discussed in this paper appear; i.e., these fine pits
are not an initial phenomena , and are distinguished from the larger initial
dissolution cavities . The samples , exposed in galvanic couples , initially
experience a relatively high current density (about 4 to 8 mA/cm2 ) which then
falls off to a stable level of about 0.8 mA/cm2 (1); this decrease corresponds
mainly to the accumulation of calcareous deposits on the surfaces of the
companion cathodes (steel); this reduces the galvanic current , and when the
current fal ls , and the aluminum anodes are less active , they tend to develop
corrosion product films over their dissolution regions (1). When this occurs ,
the conditions are apparently established for true pitting phenomena , i.e.,

~~4.1
- * occluded cells are escablished , and attack accelerates perpendicular to the

surface, forming deep pin -hole cavities.

Microscopic Dissolution Behavior

When the dissolution surfaces of these alloys are examined at high
magnification in the scanning electron microscope , each alloy is seen to have
its own characteristic dissolution morphology . In each case , the attack is
distinctly crystallographic in nature . but the specific form differs for each
alloy , as illustrated in Fi gure 2. Alloy G exhibits a unique step pattern ,
with very little corrosion product accumulation (Figure 2a). Alloy P. developes
a distinctly different dissolution morphology , consisting of an array of sharp
crystalloyraphic peaks (Figure 2b) and in this case also there is little cor-
rosion product on the reacting areas of the surface. Alloy K shows a much less
distinct etching pattern than the other alloys , and there is a tendency to
accumu l ate more corrosi on product, so that the underly ing dissolution morpho-
logy is only seen when the corrosion product is knocked off the surface; a
tendency to lntergranular penetration is also seerl for Alloy K. Of course,
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because the alloys are exhibiting crystallographic etching, the exact appear-
ance of the dissolution pattern varies with grain orientation (1).

Microscopic Observations of a Pitting Mechanism

After about 50 hours galvanic exposure , Alloys G and R begin to develop
a disconti nuous film over their dissolution surfaces . When this occurs ,
evidence of a true pi tting phenomenon beg ins to be seen . Mushroom -like mounds
of corrosion product begin to push their way up at certain sites in the film
(Figure 3a). These emerging forms characteristically have a smooth hemi-
spherical cap, and by their form appear to be discontinuously extruded from
within the underlying pits (Figure 3b). These eruptions are nearly always
l ocated wi thin the mud-cracked film over the dissolution regions ; only occasion-
ally are such forms seen to emerge on the unattacked areas of the surface
(Figures 4a, 4b). These forms are assumed to consist of a hydrated aluminum
oxide corrosion product which has been emitted from the pit mouths by the
action of hydrogen gas pressure built up within the occluded cells (pits).

Alloy K shows a somewhat different morphological manifestation of fine-
scale pitting phenomenon , consisting of arrays of perfectly hemispherical
hollow domes located on the unattacked surface areas of ~he anode (Figure 3c).
These appear much earlier in the exposure history of the anode than the ex-
truded forms on Alloys G and R. These forms again appear to be the result of
hydrogen gas evolution within underlying pits . In this case , the pressure
inflates the domes by deformation of the genera l film ma terial. These domes
are known to be thin hollow shells because they often are observed broken open
(Figure 5), probably due to handling of the specimens. Even when the surface
is studied at high magnification , these domes cannot be clearly associated with
any physical feature in the general film structure , such as cracks ; note in
Figure 3c that the genera l film reflects the underlying grinding marks on the
specimen. When these hemispherical pods crack open , an interior filament of
very white corrosion product can be seen (Figure 5).

Discussion

Aluminum is well-known to pit in chloride -containing aqueous solutions ,
including seawater (2-6). In this study , the initiation of dissolution is
accomplished in all three alloys by the formation of local regions in the sur-
face film. These dissolution regions tend to spread laterally over the surface
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more rapidly than they penetrate , the anodic and cathodic reactions are not
separated , and occluded cells are not formed ; thus, t h c behavior is not based
on a classical pitting mechanism. However , later in the history of the samples ,
when the dissolution regions become somewhat filmed over with corrosion product ,
true pitting phenomena is exhibited , with separated anodic and cathodic reaction
sites, occluded cells , and accelerated penetration perpendicular to the surface.

in a solution such as seawater, the natural anodic and cathodic half-
cell reactions on aluminum may be considered to be

(1) A l -
~ Al~~~ + 3e

and (2) 02 + 2H20 + 4e -
~ 40W

respectively. Without considering the exact mechanism by which the true pits
initiate , which is historically a controversial matter (7-11), we may assume
that when the pits initiate these half-cell reactions become physicall y separ-

ated, with the aluminum dissolution reaction occurring within the pit site ,
and the oxygen reduction reaction occurring outside of it , on the surrounding ,
film~covered surface (2). In the case of the samples in the present study ,
which were anodically polarized to some extent due to couplin g with steel
sampl es, the oxygen cathodic half-cell reaction may not occur at all on the
alum inum surface, but rather on the steel cathode in the galvanic couple;
this does not affect the argument that follows whatsoever. Typically, a high
cathode-to—anode surface area ratio is set up once the pitting situation is
created, so that a high local anodic current density is created in the pit
sites. Also, because there is limited access of 02 to the pit interior , the
02 concentration in the pit solution (the anolyte) rapidly becomes nil (2).
The generally accepted theories for pitting (2) then argue that due to the
resultant local buildup of positive charge due to metal ion concentration
within the pit , migration of anions from the bulk solution is encouraged to
maintain charge balance , and that particularly the mobile C1 ion , if present ,
will be attracted to the pit interior. Of course in seawater, there is an
available supply of CY ions , and it is considered that when the anolyte corn-
position becomes sufficiently concentrated in Al and Cl , a hydrolysis

(water breakdown) reaction occurs (2). This may be represented by a reaction
such as :

(3) Al~~~ + Cl + 3H20 Al (OH) 3 (S) 3H~ + 3C1 . 

-- — - - .—- -~~~~~~~~ - - ~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~ 
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Nnte that this reaction creates a solid corrosion product and l owers the pH
wi thin the pit , while maintaining the chloride ion concentration. Since both
the low pH and high C1 ion concentration tend to facilitate the anodic dis-
solution reaction , the overall process tends to accelerate; this is sometimes
referred to as autocatalytic behavior (2). In most model s of the pittin g

* 
process , formation of the solid corrosion product is assumed to occur at the
mouth of the pit , as a membrane or mound (3), which serves to further isolate
the pit solution (anolyte) from the bulk solution; the occluded cell situation
is enhanced . In the present study we are able to see directly the enhanced
l ocal generation of solid corrosion product at the pit sites. We see both
solid mounds (Alloys G and R) and thin membranes (Alloy K) over pit entrances
in the alloys discussed in this paper. It is also evident here that the solid
corrosion products precipitate in such a way as to effectively seal the pit

mouth , to the extent that hydrogen gas generation within the pit can build up
pressure and physically move or deform the mound.

It is well known that the anolyte composition changes considerably
during pit propagation (2), with a large decrease in pH and simultaneous
increase in aggressive anion concentration. It is also wel l accepted that in
this acidic occluded cel l , reduction of hydrogen ions will occur, according
to the reaction

(4) 2H~ + 2e -
~~ 2H -‘- H2 (g)

creating hydrogen gas (4). Even in single metal situations , it is known that
this reaction of H2 evolution within pits plays an important role in support-
ing the anodic dissolution reaction , and under conditions of increased anodic
polarization , H2 gas evolution from within pits is quite evident (3). The
classic study of Edeleanu and Evans (2) included direct observation that
(hydrogen) gas bubbles come from wi thin pits in the anodic attack of alumi num .

With the present microscopic observations we are able to directly confirm the
existence of a continuous formation process for the solid corrosion product

of equation (3), as wel l as observe its morphology , and from the morphological

observations we are able , by strong i nference, to support the concept of

hydrogen gas evolution wi thin pits represented by equation (4). The gas is

evolved within a sea l ed cel l , and builds up pressure that may be released

periodically by extruding the solid corrosion product out of the pit mouth , or
which may act continuously to form inflated hemispherical shells over the pit
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opening . Further study is required to determine the factors which cause
these different morphological manifestations of the basic pitting reactions .
Certainly, variations in the base alloy composition and consequent variations
in the character of the surface films are likely to have important influences .
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TABLE I: NOMINAL COMPOSITIONS OF ALUMINU M ALLOYS

Al loy G* R**

Hg 0.047% 0.03-0.06% --
Zn 0.45% 1.25-2.0% 6.0-7.4%

Cu 0.01 9% 0.003% max 0.005% max

Fe 0.034% 0.007% max 0.10% max

Sn -- -- 0.12-0.20%

Si -— -- 0.10% max

*Al loy G: Gal va1um~I (Dow Chemi cal USA)

**Al loy R: Reynode~II (Reynolds Metal Company )

***Alloy K: KA-9O~ (Kaiser Ma gnesium Company)
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Figure 1: Macroscopic dissolution behavior of the aluminum anodic samples in
synthetic seawater. Alloy G initiates attack which spreads laterally
inward from the specimen edges. Alloy R forms elongated cavities on
the broad faces of the specimen. Alloy K forms more (and smaller)
dissolution sites per unit surface area.

Figure 2: Microscopic dissolution morphology found within the dissolution
regions of the respective alloys . Al l oy G displ ays a distinct
step pattern on all grain surfaces, whereas Alloy R forms surfaces
usually made up of sharp peaks; both Alloy G and R accumulate little
corrosion product on the dissolution surface. If the corrosion
product is removed from Alloy K , a less distinct step structure is
seen , with intergranular penetration .

Figure 3: Microscopic observations of true (occluded cell) pitting phenomena
observed wi thin the dissolution regions of Alloy s G and K when
these regions become somewhat filmed over (after several days
exposure). Alloy s G and K develop mounds wi th smooth hemispherical
caps that emerge from the pit mouths within a cracked film. Al l oy
K develops infl ated pod-like domes in the general film on the
unattacked regions of the anode.

Figure 4: Less frequently observed are pitting and mound features on the
unattacked regions of alloys G and R.

Figure 5: Broken hemispherical pod on Alloy K; note the interior fil ament of
corrosion product emerging from the pit mouth . 



- . .—--—-~ . -, ~~—~ c- —
~~~~

- - —--- 
~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~

- -- -- -
~

--- —----

- 

-
~~~~

.

. ~-‘

K ~~~~. 
- 200urn

Fi gure 1: Macru ~~~~~~~ i .  H - ‘ : - ~~~~~ u v  - 1  
~~~t -  i i . U 1 ’ 4 •~~ui~~t ~~~~~ ‘ ‘ i n

synt .het i . ~~~~~~~~~~~~~~~~~~ ~i l - ) /  -~~ - i :  ~~ ~~~ ~. ~~ rCd d~ 1at t- ~ral 1y
i flwdrd It  ~~~ - -  - ~1 ~ i’ . lof lid dv t I e S  On
the br .~id 1 u i .  Al l~~ I ~~~ i~~u p e  (and n~i11 er )
di ssolut ion i per ui H ,u  t ~~.. urea -



_ _ _

I

—

G 
• ~~~~~~~~~ 

0 ~i r nJ

~~~~Wsw!vflfr 
_ _

V
.

W~~~’-- . ~•
~~1 ‘:‘ ~~~~~

1 1 A ’  . ~
- i i I) t ~~ i L 4 t  I o r - r ;  h ’  . , w i  i i i  ii Ui, J .‘ 1 u t 1 UI

t~~
(j 1 t ) t l . f i t  1 ’ i . . . ! l~~ ul ~~~

. .  f r I  • ; , -
~~ ~1 i - ~~Iay ~ u Ji~ t in t

s~ep pat t .t ,ii ()f l  : ~r , i i ’ i i, I ~ - - ., wh ‘ t i ,  All ~~ H forms --wr~tht-5
I 1 y r~~l l (  :j~

; ,,~ ‘ .~~ ‘ 
- i ~ s; both Al I oy C and H jccumu 1 a t  i ’ l i t

( U Y T ’u . l I f i ~ LU~ H • ;~~~~. ‘ I - . d i-  - lli ’ lO f l  SUI f d f .  It t he i w  1 .1
1 I I l j dU(  I 1 rt!I’.u-~ I t ro~ii I 1 . a k- s d i s t i n c t .. step s t  u I I ,

seen , with :nter qranu )ar pene trdt ion .



—_______ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ Z~’

G 2O FJm

R 20~im

K 2O~im
4s’~~~~~~

F igure 3: MiI .r ’u~~co pi  o t - ’ - rv~” iDI S ot  t rue ( o t c l u l r -d I €1 I) l l t t i I l i i ~ - I - , i , ~

I’ t l ;& ’ rv f ’ cj w i  th~ ri th Ee iti ’.~o 1ut ion re’j ons of Al Iii~’~, U anJ ~these re IJ i of t -  ~ • I ‘U somewhat f h u e d  over (a fu’r St ’V Prd  1 ia - -

v~ po5ure ) - A l m v ’ -. U and K develop mounds w i t h  . t t i o t i t  P he: i - p h  r I~~~ i 
-

c~dpS t hat eIfU ’ rf J~’ f i l ~ the pi t  mouth s w i t h i n  i raij ed f i 1~~. A l  1u1
K de ve lops Inf late .1 pod— i Ike domes in the genera l f i  lit u~ ’ ~~~~~~

unattacked regions of the anode . 
- -



_____ - - -i__i___i- - —
~~~~~~

-‘
~~~

---- - -. 
~~~~~~~~~~~~~~~~~~~~~~~~ 

--

~~~~~~~ ~~~~~~~~~~~~~~~~ 
- 

-

-

- - ~~~~~~~~~~~~~ 
-.

~ -~

4 

______ ______ 
- - - p -

~~~~~
_ _ _ _ _  

S 
-

- —S.— - — -2~ 
- —

~~ 
- — -

~~~~~~-. ~ “~~f l~ — ~~“ -
- 

I ~~~~~~~ ~ - 
1’ - 

- 

—~ I -

-1

- 

100 pm R 10O
~~~~~

j

-

~~ 
.

- 

- 

- -

S. 
-

- 
_ _

G _. 4 2O pm J R 2O~ ir~

I t , , . 
~~ ‘_ ‘ - - .  ~~~~~~~~~~~~~ ~ - , . r . I ? -  i ’ l l ! , ~l’ I - , ’ l  • - -~~~

‘ ,~I ’  - ‘ I -

1 . I, ‘ :



- - —~~~
----— - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ____ ~~~~~~~~~

______  

II 
~

‘

- -~ ~—~~- —----

- 
- 

~~~~~~~~~~~ -__

~~~~~~ 
-
~~~~~~~~ - —-~~~~~~~~~~~~~~~ 

-

--  ~
____ ~~~~~~~~~~~~~~~~~~~~~~~ - —

k- 
- _

r i  
_______ _______

K ~~~~ 
‘
~~~~

_
~~~~~5O~jm 1

Figure 5: Broken hemis pher ica l pod on Alloy K;  note the  interior filanuent of
corrosion !Jroduct emerg ing ‘ rum the pi t  mouth.  
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