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H One of the objectives of this work is to study the design of

to ta l ly  self-checking systems that are made up of blocks whose fault

behavior is different from one another. Consequently, different codes

are mentioned and thei r assoc iated c i rcu i t  s t ructur es  discussed in detail.

Codes that are used to protect  against un idirectiona l errors are

studied . Systematic and non-systemat ic codes are shown to have the same

basic structure . The structure of non-systematic unordered codes , more

prec isely the class of fixed-weight codes , is further examined . It is

shown that these codes have codewords that can be effectively classified

in terms of congr uence , cycl ing and comp lementation classes.

The capabil i t ies  of unordered codes are defined with respect to

circuit structure and fault models. Some results , based on the previous

classification scheme , are presented on the design of two-leve l minimal

checke rs.

Some practical suggestions for and limitations on the use of

unordered codes under different fault models are described . After a brief

introduction to arithmetic codes , previous concepts about self-checking are

adapted to arithmetic circuits and checkers. It is demonstrated that known

checkers and adders are TSC pr ovided some ba sic ru les are followe d and some

increase in the hardcore is to lerable .  Finally a d iscuss ion of transla tors

attempts to unify the different codes and fault models.
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1. INTRODUCT ION

1.1. Survey of the Literature

Around 1956 the stud y of reliability was pursued within the scope of

automata and information theories. Among the results established then, Von

Neumann [53], Shannon and Moore [49] demonstrated that it was possible to

construct arbitrarily reliable computers out of unreliable computing elements.

In the same vein , Elias has shown that a simple combinational computer can be

made arb itrar ily rel iable by encod ing its inputs and outputs [18]. These three

papers form the foundation of reliable computation inc luding the area of self-

checking : indeed, error detection is a special case of reliability imp rovement

employing coding techniques. 
—

By the t ime results were available the IBM 650 was already in

existenc e (1.955). It was perhaps the first machine to contain what are now

called totally self-checking elements: its one-digit decimal adder consisted

of an inverter-free circuit with biquinary-coded inputs and outputs as well

as two-rail carry (48]. However all validity checkers did not satisfy the

requirements of totally self-checking checkers, i.e., a faulty checker could

have passed erroneous information without proper error signalling. Hence the

system was not totally self-checking. This type of overall structure is

characteristic of all the work performed in the 1955-1968 per iod and some

hereafter and will be referred to simply as self-checking or self-testing .

Sellers , Hsiao and Bearneon give a good description of the theory and practices

followed in that t ime span. The codes most wide ly used were parity [48],

residue [33], fixed weight [19] and algebraic [41] codes.

•1
I
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As the area of self checking advanced , some progress was made

concurrent ly in the area of redundancy i.e. fault masking. Most common

examples of these techniques are triple modular redundancy (TMR ) and quadded

logic [39]. In the late sixties the STAR (Self-Testing and Repairing) [5]

computer drew attention to both areas as they merged to produce the dynami-

cally redundant computer. In the early seventies Carter et al. also

studied the logic design for dynamic and interactive recovery [12 ,13].

After 1968 self-testing continues to be used extensively , at

least in practice. As for as the theory is concerned it is still discussed

[56 ,57] but it is often presented as a compromise or imperfect alternative

to totally self-checking which , at that time, had just formally made its

first appearance.

A totally self-checking (TSC) circuit is characterized informally

by the fol lowing des ign rules: 1) the normal set of input re~u1ar1y tests

the circuit inc luding checkers for any modeled fault , 2) when an output is

produced it is either correct or non-code. Figure 1.1 gives a block diagram

of a totally self—checking circuit. Most of the work has been concentrated

upon such circuits characterized by an inverter-free structure and a fixed

weight code space input. This type of circuit is well suited for the

detection of unidirectional faults which are intrinsic to memories and some 
—

communication channels.

Carter and Schneider introduced the idea of totally self-checking

circuits and applied it to parity and two-rail codes (11]. Anderson formalized

it by introducing the notions of self testing , fault-secure and code dis-

joint proper ties later refined by Smith [1,2,52]. The remainder of this

section is an overview of the work generated in this area.

1
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Figure 1.1. The totally self-checking model [1]. 
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Among the first results generated in that area were designs of TSC

par ity che~kers and duplication comparators (Carter and Schneider [11],

Anderson and Metze [2]). These were simply exclusive-or trees and were TSC

with respect to the occurrence of single faults [2,11). At the same time

designs of two-rail checkers were also presented , TSC this time with respect

to unidirectional faults [1,11]. Anderson then provided a general method

to construct checkers for rn-out-of-n codes using majority functions [1,2).

Then came other blocks : Ito studies a TSC two-rail adder [23] and used it

in TSC systems (i.e. a computer) whose design he also discussed in detail

[4]. Along the same lines Cook et al. introduced a design for a self-

checked microprogram control [151. Smith formalized and improved previous

results [50-52] and gave general design rules for the construction of TSC

checkers for rn-out-of-n code. He also linked the existence of TSC checkers

to Ramsey numbers and der ived bounds on the size of checkers and tests

sets [50]. His thesis [52] dealt with the design of TSC combinational

circuits. Among the results were rules for the interconnection of TSC

blocks , guidelines to design TSC circuits in general and an excellent

checker for k-out-of -2k codes requiring only 2k tests. Reddy had earlier

presented more restricted results, namely TSC checkers for k-out-of-2k ,

(k+1) and k-out-of-(2k+l) codes [44] and an easily testable realization

for p and (p or more)-out-of-n codes (44].

Besides fixed weight codes there is a class of systematic

unordered codes (Berger codes and their extensions [8)) which has received

some attention recently. The advantage of these codes is that the infor-

mation digits are separate from the check digits. Reddy [46] and Smith

(52] have both proposed schemes to construct TSC checkers for these codes

I
but so far the results obtained are not as satisfactory as the results

-:
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accumulated in the case of rn-out-of-n codes. The fact is that separability

does not enhance the ease of construction of TSC circuits for these codes.

As far as the design of TSC sequential machines us ing cod ing

techniques is concerned , the tendency is toward asynchronism and is

•xemplif ted in the works of Diaz [17], Pitt [40], Ozgflner [33) , and Reddy

and Kuh I (29). An alternative to coding techniques to achieve TSC design

is the use of time redundancy schemes (i.e. alternating logic) proposed

and studied by Bark and Kinne [7], Reynolda [47], and Woodard (58].

Synchronous sequential machines have also been studied in that context

[47 ,58].

1.2. Summary of Thesis

One of the objectives of this thesis is to study the design of

totally self-checking systems that are made up of blocks whose fault be-

havior (and therefore also the input and output codes used) is different

from one another. Consequently , different codes will be mentioned and

their associated circuit structures discussed in detail.

In the nex t chap ter , codes that are used to protect against uni-

d irectional errors are presented . Systematic and non-systematic codes are

shown to have the same basic structure. Indeed they can be produced using

the same generation rules that are expressed in terms of products of

lattices. The structure of non-systematic unordered codes, m ore prec isely

the class of fixed-weight codes , will further be examined . It is shown

that these codes have codewords that can be effective ly classified in terms

of congruence , cyc ling and complementation classes. These results will , be

used in the following chapters.

a



- - - - -
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~.t, ~ 

-_, 
~~~~~~~~~~~~~~~~~~~~~~~ ~~~ - ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~—

6

In Chapter 3 the capabilities of unordered codes are defined with

respect to circuit structure and fault models. Some results will be pre-

sented on the design of two-level minimal checkers. In fact the problem

of finding partitions that checkers must satisfy will be discussed in detail

and some guidelines based on the previous classification scheme are presented.

The concept of growth and existence tests is extended to the design of TSC

circuits and using this as a basis it is shown that there do not exist 2-

leve l TSC checkers for a class of systematic unordered codes, the Berger

codes. Finally some practical suggestions for and limitations on the use

of unordered codes under different fault models are described.

Chapter 4 touches an area where the design of TSC circuits has

been restricted : arithmetic circuits. After a brief introduction to arith-

metic codes, previous concepts about self-checking will be adapted to

arithmetic circuits and checkers. It is demonstrated that known checkers

and adders are TSC provided some basic rules are followed and some increase

in the hardcore is tolerable . At the same time it will be apparent that

practical TSC checkers are not known to exist if the hardcore size cannot

be increased.

The following chapter attempts to unify the different codes and

fault models by presenting some thoughts on translators and ways of using

codes to their best advantage. Encoding and decoding circuits as well as

a TSC memory architecture will be given in examples.

In conclus ion , a brief look at the pin fault model will explain

why it was kept out of contention in the previous chapters. The thesis will

be summarized and finally topics for further research will be suggested .

a
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2. THE STRUCTURE OF UN ORDERE D CODES

2.1. Introduction

In this chapter we examine the structure and properties of a class

of codes using lattice theory and other tools from modern algebra. The

codes in question are unordered and have already been discussed by

Anderson (1) and Smith [52]. The following treatment will unify the

structure of all unordered codes under a common set of generating rules. H

The second par t of this chap ter will descr ibe the struc ture of a subclass

of such codes , the fixed-weight codes, in terms of congruence and cycling

classes. These codes are non-systematic and this is a first attempt to

introduce some kind of useful classification of their codewords. Although

this classification does not solve completely the problems of encoding and

decoding such codes , it nevertheless simplifies it great1~ . Practical

considerations for those circuits will be deferred to Chapter 5. We begin

by giving a brief introduction to lattices.

2.2. Lattices and their Products

The content of this section has been extracted mainly from Birkhoff

(10] which may be consulted for further details. Partial ordering is a

binary relation that satisfies the reflexive, antisymmetric and transitive

properties. A set together with a partial ordering relation is referred

to as a partially ordered set (poset). A lattice is a poset in which every

pair of elements has a least upper bound ( l .u .b . )  and a greatest lower

(g.1.b.). A Boolean algebra is a distributive complemented lattice. The

set of vertices of a Boolean lattice is the set of binary vectors. Binary

vectors with exactly k ones will be called k-tuples. The partial ordering

IT  

- - - ----__



8

ol( >lo ~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

0000

B4

Figure 2.1. Masse diagrans of Boolean lattices.

a 

- - 
- ~~~~~~~~~~~~~~~~~ 



~~~~~ - - 

relation on the elements of a Boolean lattice is the usual covering relation:

,~~ 
<~~~ if and only if ai < b~ yi -

where the a
t
’s and b

k
’s are the components of binary vec tors ~ and ~~~,

respecti ’~~ly.

Example 2.1: Masse diagrams of some Boolean lattices appear in Figure 2.1.

We say that vertex a is adjacent to vertex b if they are connected by an

edge in the lattice. Immediate predecessors a
t
’s and immediate successors

to vertex b are vertices adjacent to vertex b ; also a~ < b and

b < Vi respectively. A subset of vertices is said to be ordered and

is called a chain if any two elements are adjacent. A subset of vertices

is said to be unordered and is called an antichain if every pair of elements

is not adjacent. A maximal antichain is such that its cardinality cannot

be increased.

Example 2.2: In Figure 2.1 all antichains consisting of all k-vertices

(i.e. all vertices with exactly k ones) are maximal.

Let A and B be two lattices. The direct product A X B is a lattice

whose elements form the set of ordered pairs (~,b) and

(
~~~ k~) . (~~, k~

) 
~~~~~~~~~~~~~~~~~~ e — g.1.b or l.u.b

Example 2.3: All higher order Boolean lattices B~ , i ’ 1 are isomorphic to

the direct product of lattices B~ whose exponents j add up to i: e.g.

3
4 1.8 2

X B
2

’. B
3 XB

1 
etc. A subproduct is any subset of a direct product

and may neither be a lattice nor a chain.

2.3. Unordered Codes

We first equate unordered codes with ancichains. A maximal

unordered code is simp ly a maximal antichain. It is possib le to look at a

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _  - j
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a lattice and pick out an antichain and use it as a code. For example in

Figure 2.1 the antichain consisting of 0011, 0101, 1001, 0110 , 1010 and

1100 is the (maximal) 2-out-of-4 code. This approach however gives no in-

sight into the structure or the construction of unordered codes from smaller

lattices , and it does not tell how closely related all the unordered codes are.

We shall instead combine smaller lattices using very simple mappings.

By the converse of l.u.b. (g.l.b.) we mean g.l.b. (l.u.b.). By

inspection it can easily be seen that the converse of a Boolean lattice is

the lattice itself upside down.

In the following only Boolean lattices will be considered. Let

A and B be such lattices. If B is the converse of A then a complementary

antichain of A in B is located “at the same level” as its complement in A.

This idea of complementarity will be generalized to the notion of relatively

unordered antichains. Intuitively it is easier to visualize relatively

unordered anticha ins as being “comparably located” in a lattice with respect

to a converse. The concept of comparable location can be formalized as

follow :

Definition 2.1: Two antichains ~ and ~, respective ly , are comparab ly

located if :

~~~~~~~ ~~~~~ and

~~~~~~ ~~~~~~ and vice versa with ~1
€A and ~j€B.

If A is a Boolean lattice and B the converse of a Boolean lattice

then comparably located antichains in A and B ar e said to be rela tively

unordered . Comparab ly located maximal antichains in and in its converse

are not only relatively unordered but are also complementary. Relative

unordering can also be defined funct ional ly :

a
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Definition 2.2: Two sets of elements are said to be relatively

unordered if their product is an antichain.

Unordered codes have been defined as antichains. This point of view imp lies

that antichains are selected from a lattice or a product of lattices. An-

other approach is to use smaller lattices and define a subproduct that maps

them simply and exactly into desired antichains. It is easily shown that

all unordered codes can be constructed in the same manner whether they are

systematic or not .

Theorem 2.1 : Any unordered code is a subproduct of relatively unorderd

ant ichains .

Proof : It follows direct ly from the def in i t ion of antichains (— unordered

codes) and the concept of relative unordering.

In fact , the mappings can be performed in several ways , for examp le:

-Every element in A and every element in relatively unordered anti-

chains in B are used.

-Every element in A and some elements in every relatively unordered

antichain in B are used.

-Some elements in A and some elements in re la t ive ly  unordered anti-

chains in B are used .

Clearly the mapp ings ar e listed in order of decreas ing ef f iciency

or rate since fewer and fever elements are being used . As it can be seen

the construction rules are very broad . Since lattices can be defined in

terms of sma l ler lattices it turns out that their antichains can always

be constructed out of relatively unordered antichains of smaller lattices.

Hence all  unordered codes can be obtained in that  manner.

Fixed weight or rn-out-of-n codes are codes made up of all the

a
binary vectors of length n with exactly m ones. Berger codes are systematic ,

- L

H
LA
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i.e. they compr ise all the vectors of length n (information vector) to each

of which is attached a check vector whose value reflects the number of

zeroes in the information bits. Fixed weight codes are produced by the first

type of mappings, Berger codes by the second. More precisely let x denote

a complete concatenation product of relatively unordered antichains . Then

all fixed weight codes of the form k-out-of- ( k + j )  can be obtained as

B
k XB J . As a special case k-out-of-2k codes are produced most efficiently

- 

I as Bk XB
k
. In the case of Berger codes it involves mapping comp lete anti-

H chains of Bk with singletons of relatively unordered antichains of
rlog klB 2 . Let * represent such mappings; then Berger codes are of the

form 3k~~~rlOS2k1 Two examples follow. In both cases, concatenation

products are indicated by the arrows and the small letters label the anti-

chains.

Example 2.4: The construction of a 3-out-of-6 code from i~~. Using Figure 2.2

the mappings are as follow:

a X 6 :  000111

b X V :  001011 , 001101, 001110 , 010011, 010101 , 010110 , 100011 , 100101 , 100110

cX~~: 011001, 011010 , 011100, 101001, 101010, 101100, 11001, 110010, 110100

d X O~: 111000

The construction of the 3-out-of-6 code is not unique. However

the construction from B3*B3 is the most “efficient” one since lattices of

the same size are used. All the code’-~ords are thus produced since

1B 3 * s3t — IaX 6 I + tbx ’d + L c X ~~~( + l d X ~ I
— lxl + 3X3 + 3 x 3  + l x i

— 20 — (~
). 

-i;---— ~~~.~~~
:-- - -

~ 
-—

~
—--.-,.- - -
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Figure 2.2.  Construction of the 3-out-of-6 code .

Figure 2.3. Construction of the maxima l B.rger code with 3
information digits .

I
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In general this satisfies the well-known identity

k fk \2  /2k
~~~~-0

so that effectively all k-out-of-2k codewords are generated in this fashion.

~ 
r10~~3i

Example 2.5: The construction of the maximal Berger code with B *5

The two lattices are given in Figure 2.3. The arrows give the following

mappings :

a x  6 : 00011

b X Y :  00110, 01010, 10010

C X B: 01101, 10101, 11001

d X ~ : 11100

It can also be seen that the only other maxima l unordered code than can be

3 Ilog 3l
obtained from B * ~ 

2 is:

a x 5 :  00011

b X B : 00101, 01001, 10001

C X Y: 01110, 10110, 11010

d x ~~~: 11100

These examples represent by no means a complete cross-section of

all unordered codes. They are however indicative of what the structure

of all  rn- out-of-n ana all Berger (maximal and others) codes. More spe~ifi-

cally we have not considered mappings of the third type . These mappings

are most inefficient (they are subsets of the f irs t 2 types) and w ill not

be considered in the remainder of this thesis.

It has ju st been seen that all  unordered codes have essent ia l ly

the same structure. In the next chapter , it wil l  be shown that despite

a
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this fac t , checkers for different unordered codes do not look alike . But

f i r s t  we examine the structure of fixed-weight codes which are widely used

in totally self-checking systems.

2.4. The Classification of Fixed-Weig~tt Codewords

In recent years there has been an increase in the use of fixed-

weight codes mainly in the design of totally self—checking digital circuits.

Even though these codes are nonordered and nonsystematic they were also

considered earlier for asyixinetric communication channels [19]. In this

section we present a method for c lassifying some of the fixed weigh t codes

into classes thus bringing the encoding method closer to a “systematic~’

procedure. An approach to the constructio~i of such codes was suggested

by Kautz and Elpsas a few years ago [25] .  It involved solving problems

in combinatorics related to the Steiner Triple system and its general izat ion ,

balanced incomp lete b lock designs [22 J .  As they pointed out , resul ts  in

that area were not very useful in coding theory. Here we present a method

by which one can produce a complete set of generators without repetition

for some of the f ixed we ight codes with higher rates.

As mentioned earlier rn-out-of-n codewords contain precisely m

ones in a total of n digit positions. Let the positions of the ones in

a particular codeword be labe l led c 1, C
2~~~~••~~

C
m

) where the numbering

scheme of these digit locations Starts with 0 and goes up to n- l .

Example 2.6: The c
i
’s corresponding to 011010 are 1,2 and 4 respectively.

In the following, codewords wi l l  be designated by an m-tup le consisting

of the c
i
’s obtained from their binary representation , e.g. 011010 -’ 124

a

- e

L, 
- .-- ~~~~ - - 
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Definition 2.2: Let us define the permutation T on the elements of a

fixed-weigh t codeword (rn-out-of-n) as follows :

T(c1
) — c~ + 1 mod n

This notation can be extended naturally to sets of elements as follow :

1(C) T(c~ ) V’ I~~EC

the set of c
1

1 s to which T is applied is called the ensemble of elements

moved by T.

Definition 2.3: A permutation I is said to be cyclic if

T(c
1
) c

1 + l  mod n ~i’-~ m

Definition 2..: A permutation I is quasi-cyclic if the set of elements

left fixed by the cyc le T is non-empty i.e.

T(c1
) — c~ + I mod n for some (but not a l l )  i m.

Definition 2.5: A (quasi) cyclic per-mutation T is ordered if the

elements of the cyc le are ordered . In the case of non-negative integers

this is the same as cycles of the form 
~ ~ 

55• This last

definition is made only for convenience as there exists an isomorp ism

between the elements of cycles with identical length. Using concepts

just mentioned we can define :

Definition 2.6 : A fixed-weight code is said to be (quasi-)cyc l ic if

it is closed under an ordered (quasi-)cyclic permutation I.

We shall see that they all are. Let us denote the greatest common divisor

of m and n by (m ,n~ . If (m ,n) — I, m and n are said to be relrtivelv prime .

It is now possible to establish some results concerning the structure of

fixed weight codes.

a-

~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.
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Theorem 2.2: If (m,n)’.l the codewords in an rn-out-of-n code can be

grouped into exactly ( ~)/n classes each of which is closed under cyclic

shifting and contains exactly ii codewords. Moreover a complete set of

( ~)/n  generators can be listed by finding the m-tuples whose c
i
’s satisfy

£ c
i
a j mod n forafixed j, 0< j< n .

i—i
Proof : First we know there are ( ‘~ ) codewords. Suppose we pick any

codeword and find that the summation of its c
i
’s is congruent , say , to b

mod n. Cyclic shifting T corresponds to the addition of 1 (modulo n) to

each of the c ’s or equivalently to the addition of m to the sununation

(— b mod n) of the c
i
’s. Since (m ,n) = 1, the length of the cycle wi l l  be

exactly the modulus r.. Hence there are ( ~ )/n classes of cardinality n.

It is easy to see from the above that each class will contain exactly one

codeword with Zc~~— j mod n for each j in the range 0 to 2k. 
0

This theorem covers , among others, codes of higher rates o~ the

form m+l-out-of-2m , m-out-of-2m±l , those with least rate, 1-out-of-rn

(rn-I-out-of-rn), those of the form “even ”(” odd”)-out -of-  “odd” (“even”) .  The

fact that we are using a fixed congruence relation , i.e. j i~. -i n guarantees

that the solutions are in distinct classes. Clearly there are other sets of

generators ; indeed there are n( ~ )/n such sets. Note that when half of

the rn-out-of-n codes have been found the other half can be obtained directly

by complementing each of the codewords in every code , i.e. replacing them

L by the ir comp lement in the set ~0 , l .. . ,m-1L This procedure is obvious since

I - 

~ — ~ n~m 
) and corresponds to bit by bit completnentation.

Example 2.7: Table 2.1 gives all the codewords of a 3-out-of-7 codes. The

[1 elements of each coluim~ are congruent to the value indicated by the heading

of the columns. The order in which they are given follows the natural ordering aLI of the cycle staring with 0 mod 7.

II
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T2 T3 T5 T6

0 mod 7 3 mod 7 6 mod 7 2 mod 7 5 mod 7 1 mod 7 4 mod 7

016 012 123 234 345 456 056

034 145 256 036 014 125 236 
-

025 136 024 135 246 035 146

124 235 346 045 156 026 013 
-

356 046 015 126 023 134 245

Tabie 2.1 - The codewords in a 3-out-of-7 code.

j  
I

_ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _  - - - - - - 
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Theorem 2.3: If (m,n) ~ I then the rn-out-of-n code can be constructed

as follow :

1) Construct the m-out-of-(n-l) code using Theorem 2.2.

2) If ((m-1),(n-l)),~- l then set rn — rn-i , n— n -i and reapply 1.

3) If ((m—l),(n-l))—1 then

3a) construct the ~m-I)-out-of-(n-1) code using Theorem 2.2.

3b) concatenate the current n-i to the current (m-1)-out-of-

(n-i) code

3c) merge the resulting code with the current rn-out-of—

(n-i) code.

4) Set m — m +- l , n— n +1 and reapply 3b until the originally

looked for rn-out-of-n code is obtained.

In other words the code can be constructed recursively and when recursion

is exhausted we have a classification for the codewords of the rn-out-of-n

code. The code thus obtained will be quasi-cyc lic.

Proof: If (m ,n) ~ 1 then (m ,n — 1) 1. It follows that the rn-out-of-

(n-i) code can be constructed using the previous theorem. The subcode thus

produced will consist of all rn-vertices which do not have n-I as a digit

position. (Remember that the range of digit positions is 0 to n-i.) The

next step consists of producing all the (m-l)-out-of-(n-1) vertices and

concatenate them with the digit (n-i). The merging of these two subcodes

produces exactly all the codewords of the rn-out-of-n code. Numerically

this is verified by the well-known tecursion formula for binomial coefficients:

(n-i) + - ( 
~)

a
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Of course rn-I and n-i may not be relatively pr ime hence the reason for

reapp lying step 1. Eventually these terms will be relatively prime since

m and n are decremented all the time. The ultimate situation where m— I and

n is anything ((l ,n) — 1) guarantees a finite number of steps in the recursive

process. Typically, however , the recursion will not have to proceed that

far. Steps 3 and 4 are provided to guide the concatenation and subsequent

merging in cases where a number of recursion levels is required.

The procedure given above constructs recursively the (m-l)-out-of-

(n-i) and m-out-of-(n-l) codes. At each recursion interval a new bit is

concatenated so that ultimately the codewords have the desired length.

This is best illustrated by an example.

Example 2.8: The construction or classification of the codewords for the

3-out-of-9 code. The 3-out-of-8 and the 2-out-of-8 codes have to be realized

(( ) + ( ) — ( )). The 3-out-of-8 code. is constructed first using

Theorem 2.2 yielding 56 codewords. This is going to be the cyclic part of

the 3-out-of-9 code. The 2-out-of-8 code cannot be built using Theorem 2.2

so the work is divided in two: the realization of the l-out-of-7 and 2-out-

of-i codes, both of which can be constructed using Theorem 2.2 (this process

yields a total of 28 codewords). The 1-out-of-i code is then concatenated

with the digit 7 and the result is merged with the 2-out-of-i code. These

28 codewords are then concatenated with the digit 8 (forming the quasi-cyclic

part of the code) and merged with the 56 codewords obtained above. All the

3-out-of-9 codewords have been obtained since none of the 56 codewords

constructed at the beginning contained a I in position 8.

Corollary 2.4: The set of codewords in a k-out-of-2k code can be

sorted into exac t ly 2(  2k4 
)/2k-L classes,haif of which are closed under the

quasi-cyclic shifting operation and half of which are closed under the cycling

operation T.



-~ -- ~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-----——- -_- .- —-—_- —. ----- --— --~~.---.--- -.-— ---—-—-— — ---— ~ --.-.-——‘-. •••~ •7~~~
••

~~
_ •_ ’••

21

proof: (by construction) Suppose we have obtained the codewords of

a (k-l)-out of- (2k-l) using the previous theorem. (We can use Theorem 2.2

H since (k-I, 2k-l) — I). We first observe that ( 
~~

) — 2 (  2k-i) By~
concatenating the number 2k-l to each of the codewords of the (k-l)-out-

of-(2k-1) code , exactly half of the k-out-of-2k code is obtained . All

congruence properties mod 2k-i are preserved , that is ,all the elements in

this half of the k-out-of-2k code are still congruent to the same number

mod 2k-i as they were in the (k-1)-out-of-(2k-l) code. Since the digit

position 2k-I is constant throughout this half of the k-out-of-2k code ,

this portion of the code is quasi-cyclic. The other half of the k-out-of-

2k is made up of the k-out-of-(2k-l) code obtained by complementing the

f irst ha l f ;  since none of the codewords in th is half  contains a c~ equal

to 2k-l we conclude that all the codewords have been obtained J.

This corollary is perhaps the most interesting application of

Theorem 2.3 since it shows how simp ly fixed codes with highest rate can

be generated. They are such that exactly half of the codewords are cyclic

and half are quasi-cyclic. In fact all the codewords are cyclic in the

first (2k-I) positions.

Example 2.9: Table 2.2 lists all the codewords in the A-out-of-8 code.

The first half is simply the 3-out-of-i code to which is concatenated the

digit 7. Since the digit 7 is stationary throughout , this part is the

quasi-cyclic part of the code. The cyclic part consists of the second

half and its elements are obtained by satisfying the same congruence relation.

S impler ye t,one jus t has to comp lement the first half of the code.

By compleinentation is meant bit by bit complernentation or

equivalently cornpleutentation in the set C0,l,...,n-1.). For codes of the

form k-out-of -2k half  of the codewords can be obtained by comp lement ing the
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T° T
i 

T
2 T3 T~ T

5 
1
6

0 mod 7 3 mod 7 6 mod 7 2 mod 7 5 mod 7 1 mod 7 4 mod 7

0167 0127 1237 2347 3457 4567 056 7

0347 3457 2567 0367 0147 1257 2367

0257 1367 0247 1357 2467 0357 1467 
From

1247 2357 3467 0457 1567 0267 0137 Table
2 .1

356 7 046 7 0157 1267 0237 1347 245 1

0 mod 7 4 mod 7 1 mod 7 5 mod 7 2 mod 7 6 mod 7 3 mod 7

2345 3456 0456 0156 0126 0123 1234

1256 0236 0134 1245 2356 0346 0145

1346 0245 1356 0246 0135 1246 0235

0356 0146 0125 1236 0234 1345 2456

0124 1235 2346 0345 1456 0256 0126

Table 2.2 Codewords of the 4-out-of-8 codes as obtained
from the 3-out-of-7 code.

a
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the first half as long as it makes up an integer number of cycling classes.

If we now define the classes of a k-out-of-2k code in terms of quasi-cyclic

shift and complementation then the number of generators is half the number

of classes given by Corollary 2.4 i.e. 
~ 

2k4 
)/2k-1. Complete sets of

generators for the 4-out-of-9, 5-out-of-lO , 5-out-of-li and 6-out-of-l2

codes are given in Table 2.3 (the digit should add up in this case to 0 mod 9

and 11 respectively). Finally some statistics on the number of classes are

presented in Table 2.4 for codes with higher rates.

2.5. Rates of Unordered Codes

Unordered codes have enough redundancy to detect all single and

multiple unidirectional errors (that is, errors that change only Os to is

or only ls to Os). This can be explained by the fact that such errors

cause elements of rela tive ly unordered antichains (that are used in the

product realizing the code) to move in the same direction and become ordered

with respect to some codeword. Code capabilities will be discussed further

in the next chapter.

Al though they de tect a fairly large class of err ors , unordered

codes have a reasonab ly good rate. Rate is defined as log
2 

(# of codewords) !

(# of bits in the cordword). Graph 2.4 plots the rates for both k-out-of 2k

and Berger codes. The graph is defined only at discrete points and curves

are drawn only to indicate the general aspect. The price to pay for

separability is evident from the graph since Berger codes have consistent ly

lower rates. It is also seen that the rate increases with the size of the

codeword . However , this is more than compensated for  by the complexity of

hardware that has to manipulate those codes (especially for  the f ixed weight

codes).

I L
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-4

0126 0135 0234 0378 046 8 0567 1278

1368 1458 1467 2358 236 7 2457 3456

a - A complete set of generators for the 4-out-of-9 and 5-out-of 10 codes

01235 012910 013810 014710 01485 015610 01579

01678 023710 02389 024610 02479 02569 02578

034510 03469 03478 03568 04567 068910 123610

12379 124510 12469 12478 12568 13459 1346 8

13567 158910 167910 23458 23467 248910 257910

267810 347910 356910 357810 36783 45789 456810

b - A comp lete set of generators for the 5-out-of-il and 6-out-of—12 codes.

Table 2.3.
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(m,n) # of codewords # of classes

(2 ,5) 10 2

(3,6) 20 2w

(3,7) 35 5

4 
(4,8) 70 5*

(4,9) 126 14 
- 

-

(5,10) 252 14*

(5,11) 462 42

(6 ,12) 924 42*

(6,13) 1716 132 H

(7 ,14) 3432 132*

(7 ,15) 6435 429

(8,16) 12870 429*

(8,17) 24310 1430

(9,18) 48620 1430*

(9 ,19) 92378 4862

(10,20) 184756 4862*

Table 2.4: Number of codewords and number of classes for
some rn-out-of-n codes (m ,n).

*permutation - comp lementation classes.

a

L 

_,-tpa-—_ —__—-——-— .—— _ - —
- -
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Number of Bits in Codeword

Figure 2.4. Relative rates for best fixed-weight and Berger
codes.
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2.6. Concluding Remarks

The previous theorems and corollary grouped fixed weight codes

into classes and comp lete sets of generators were obtained by satisfying

a fixed congruence relation. Nothing , however , has been said as far as the

actual computation of these sets is concerned . The exhaustive computation

can be quite tedious (even for a computer) but once the generators have

been found there is obv iously no need to recompute them all the time.

(The proof of Theorem 2.2 suggests a way of obtaining those generators.)

In fact a way of encoding a binary word into a fixed weight codeword would

be to use some of the bits of that word to address a table and other bits

to determine the amount of shi f t ing and comp lementation to be performed on

the contec t of that location. Compiementation is an inexpensive operation

so that in implementation both permutation and complementat ion, if poss ible ,

should be used as basic constructs. This will be discussed further in

Chapter 5.

Although codewords in a particular code can be systematically

classified , no general relation between the classes and generators of

different codes has been found. This would be a useful relation since it

would simp lify functiona l mappings between fixed weight codes of different

lengths and weights.

a
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3. SCt4E RESULTS ON THE DESIGN OF TSC CHECKERS FOR

UNORDERED CC1)ES

3.1. introduction and Definitions

This chapter presents some results on the design of TSC .~heckers

for both the fixed-weight and Berger codes. Two-level checkers are in

general desirable since they can detect malfunctions most rapidly . However

for codes with only a modera te codeword size, fat-tout restrictions become

prohibitive . The problem of finding minima l two-leve l checkers can be

identified with the problem of finding a minimal pa r t i t i o n  on the set of

cod e vertices and this par t i t ion  must be satisfied by a l l  checkers.  There

are difficulties associated with checkers for Berger codes and they will

be discussed in Section 3.6. The following sections give some consider at ion

to the use of unordered codes under the single fault and asynanetric error

assumptions. But first some definitions about circuits are provided .

In the following we shall present some results pertaining to the

class of acyclic combinationa l circuits that totally self-checking checkers

make up. Circuits , denoted by the letter C, will perform functional mappings

from an input space K to an output space Y. In a network with several

func tional blocks C~, the notion of input and output spaces can be extended

so it emcompases all network inputs and outputs. For circuits with r in-

puts and s outputs , the domain will be the set X of vertices o the

r-cube and the range the set Y of f vert ices of the s-cube. In order that

it be possible to detect failures , only proper subsets of the input and

output spaces may be appl ied to , and pr oduced by the circuit during normal

operation. These subsets are cal led the code spaces. The circuit then per-

forms partial mappings from a domain called the input code space .A ~ 
~

vertices)~ onto a codomain called the output code space B(Bc.1..
5 

vertices)’. a 
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The re la t ive  complement of the code spaces A and B with respect to the

spaces of 2r input vertices or 2~ output vertices will be refcrred to as

input and output non-code spaces , respective ly. Elements of the code spaces

will be called codewords and all remaining elements will be called non-code-

words.

3.2. Errors and Faults

Perhaps the most widespread concept of distance in use is the

Hanining distance. The Ranining distance is simply a metric measuring the

number of positions in which binary vectors differ. Codes with capabilities

specified in terms of minimum Hamming distance also assume that error patterns

are comp letely random. However there are situations where the distribution

of the faults is not so random. Memories and busses tend to exhibit error

patterns that have dependent components. Similar ly , failures of integrated

circuits may af fec t  mul t iple  lines and are likely to be in the same direction.

These types of faults are referred to as asymmetric faults and can be best

characteri.zed in terms of polarized distance [1]:

The polarized weigh t is def ined only on error vec tor s ob tained by

borrowless arithmetic subtraction of the erroneous vector from the “correct ”

vector.

Definition 3.1: The polarized weigh t w (E) ,  of an error vector E is the

2-tuple (W+
, w )  where and w are the numbers of positive and negative

components in B , respective ly .

De f inition 3.2: The polarized distance between two vectors x and ~

is ~iyx-~~) (component by component borrowless subtract ion) .

Anderson has carried out an extens ive study of the proper ties of polarized

distance ( I ] .  For the present purposes it suffices to provide the followin~, a
definitions:

L

~~~~~
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De f inition 3.3: Asyninetric errors have polarized weights  such that

+ -
U,

Definit ion 3.4: Unidirectional errors have polarized weights with

the following characteristics:

i f w ’~~ O then u)Tht O

and vice versa if w ~ 0 then (~) 0.

One may readily observe that

-Unidirectional errors form a subset of asyninetric errors.

-Single errors form a subset of unidirectional errors.

Up to this point we have mentioned errors only in the context of

coding theory. In logic networks these will appear as hardware failures which

are of a permanent nature. Transient failures may also occur and will be

detected if the propitious conditions are present i.e. if and only if a

codeword that sensitizes the fault is applied during its lifetime . So,

f or all practical purposes , transient faults either will appear as permanent

stuck-at faults or simply be non-existent, as far as fault modeling is

concerned. This is the classical stuck-at fault model where lines get

solidly stuck-at-I (s-a-I) or stuck-at-0 (s-a-O).

A fault in a circuit will be denoted by the set Lti/d j, l< i<k)

where is usually some gate input or output line stuck at the value

dj€ (0,l}; k is the multiplicity of the fault. The fault set ~ is the set

of modeled faults and is usually justified in terms of both s implicity

and likelyhood. The notions of asyninetric and unidirectional errors carry

over very simply to the definition of fault sets. Asymmetric and unidirectiona l

error s may have any mul tip licity . In addition asymmetric faults are such

that the number of d
i 

— 0 is not equal to the number of d~ 1; in the case

of unidirectional faults all the di
’s are equal. Single faults simp ly have a

--~~~~~~~~~~~~~~~~~~ —- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-=-~~~~~~~~~~~~~~~~~~~~~~~~~ - --- - -
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unit m u l t i p l i c i t y. The absolute number of f au l t s  of d i f f e r e n t  types are

given below. The qualifier “absolute ” means that circuit structure and

fault equivalence classes are not taken into account . In a circuit with

n lines:

The number of single faults = 2n

The number of multip le faul ts =

The number of unidirectional faults = 2( 2 fl
1)

[n /2J 
-

.

The number of symmetric faults E 
~
j
~~i/2~ 

=
even i i

The number of asymmetric faults (3t-
~
-.l) - ~~ (

t~5 (
1

)
even i -

The number of unieirect ional f au l t s  is obtained by computing

the number of all 0’s or all l’s patterns with the multiplicity ranging

from 1 to n. This comes out to 2t (
~

) = Z ( 2 t-
~
-l). For syn~netri~ faul~~

i—I
one computes the number of symmetric faults 

~ ,~
) term) times the number

of patterns with even multiplicity ((~ ) term with i even) and performs

the summation of the product terms for all even i’s. Equivalent ly we can

calculate the summation of the number of lines taken i at the time ,

multip lied by the number of lines stuck in the other direction , also taken

i at the time , but out of the remaining n-i lines. The number of asyninetric

faults is presented as a difference to emphasize that this number and the

number of multiple faults are of the same order. Indeed circuits with

complete test sets for asymmetric faults will cover a very large number of

the multiple faults. Figure 3.1 gives an idea of how some classes of faults

overlap.

a
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Asymmetric Faults

,,~~~~~~r~~~ionaI~~~ 
Symmetric

aU
~~~~~~~~~~~

DoubIe)

Multiple Faults

Figure 3.1. Classes of faults.
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In a circuit with 4 lines , about 22.57. of all multiple faults will

be symmetric whereas for a circuit with 20 lines the figure is about 117.

and less than 87. for a circuit with 40 lines. This means that , ignoring

structural constraints , a circuit with about 40 lines, designed to be totally

self- checking with respect to.asyninetric faults , will be self-checking with

respect to more than 927. of all poss ible faults. From a coding theory stand-

point , if information is encoded (using unordered codes) in blocks of 40

bits , then on the average the code wilL detect 927. of all errors. Unfor-

tunately the code will not correct any error .

3.3. Basic Definitions

In this section , basic concepts and results  re levant  to the scope

of this chapter as well as the rest of the thesis are presented. The

formalis-’ in the following is due to Smith [49-51].

As before let A be the input code space and B , the output code

space. The functional block C will perform a mapping G(a,f) where the first

argument is some member of the input space and f is an element of the fault

set3. Mappings under the no fault situation are denoted by G(a,~ ). The

following definitions are made with respect to a fault set 3.

Definition 3.5: A funct ional  block is f a u l t  secure if

Y f ~~3 Ya~~A C(a ,f )  — G(a ,Ø) or G(a,f )~~B

In words : C will never produce , under a modeled fa u lt , an incorrect codeword .

Definition 3.6: A functional block is self-testing if

Y f E 3  3- a€A such that C(a,f )  g B

That is , all modeled failures can be detected by some codeword .

a

— 
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Definition 3 ,7:  A functional block is totally self—checking (TSC) if

it is fau lt secure and self-testing. Removing the overlap between the self-

testing and fault secure properties an equivalent definition of TSC is

obtained .

Definition 3.8: A functional block is totally self-checking if it

is faul t secure and

YfE 3 a aEA such that G(a,f )  ~ G(a ,~~)

An equally interesting concept in the idea of essentially totally self-

checking circuits.

Definition 3.9: A functional block C is essentially totally self-

checking (ETSC) with respect to the fault set 3 if:

i) it is total ly self-checking with respect to 3 .

or ii) it is fault secure with respect to 3 and for any fE3

which is not tested by input codewords , the network G

under f is ETSC with respec t to 3* = (3_f}.

Totally self-checking circuits for unidirectional faults are con-

structed without inverters. They implement unate functions; these are

comp letely monotonic and therefore preserve the direction of the fault and

propagate it to the outputs [10,49]. Totally self-checking checkers are

TSC circuits whose function is defined by the code disjoint property :

Definit ion 3.10: A circuit is code disjoint if it always maps non-

code inputs to noncode outputs.

This is the original definition. Actually some non-codewords may

never be produced by a fault set. These non-codewords will be referred to

as improbable. The property of mapping probable non-codewords (and perha ps

not all improbable non-codewords) into non-code outputs is the error

preserving property. It is equally satisfying in practical checkers as a

- ~~~~~~~~~ ---i - ---~~~~~ -~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~
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the code disjoint property. One may also require that error preserving

mappings be performed under the no fault condition. However asymmetric

faults may afflict both a circuit and its checker , in which case the fault-

secure and code disjoint properties combine to produce a non-code output .

In the single fault case it is assumed that a fault in a circuit implies

the exclusion of a fault in its checker and vice versa. In that case a

checker is code disjoint under the no-fault situation and fault-secure

in the faulty mode. Totally self-checking checkers usually have 2 outputs;

this figure is a minimum and there is nothing conceptually incorrect with

more outputs (although less economical). These 2 outputs will be produced

by functions F and C, be labelled (f ,g) and take norma l values in the set

~.(0,l) , ( l ,0)]. Non-code space inputs or faults in the checker will produce

(f ,g) E C(0,0) ,(l ,l)). Smith has shown that the following two conditions

are necessary and sufficient for the realization of TSC checkers for rn-out-

of-n codes [50,52].

Condition 1: Every (m+I)-vertex covers at least one m-vertex in

F and at least one rn-vertex in G.

Condition 2: Every (rn- 1)-vertex is covered by at least one

rn-vertex in F and at least one rn-vertex in C.

The problem has now the flavour of combinatorics. Indeed the existence of
i

I

~
satisfactory par titions for arb itrary m and n has been linked to the

existence of the Ramsey number N(m+1, m+ l ; m) R(m) as follows:

Theorem 3.].: (Smith (50-52]) for m < (~ ) ,  R(m) > rn if and only if the

rn-vertices of the n-cube can be partitioned to meet conditions 1 and 2.

Ramsey numbers known in this case are R( 1) = 3  and R(2 ) =6 inferring the

existence of checkers for the l-out-of-2 , 2-out-of-4, and 2(3)-out-of-5

codes. Since 13< R (3)<17, checkers for the 3-out-of-n codes certainly

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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exist for 6< n<l2, perhaps for l3~~m <l7 and definitely not for n>- 17.

These results did not tell anything new; however they give an idea of the

magnitude of the design problem. The problem of finding a satisfactory

partition of the code vertices into F and G is in general difficult
(relatively easier for k-out-of-2k codes). if a satisfactory partition exists,

let H(m,n) be the minimal number of code vertices that must be in block F.

Then the 2-level AND-OR realization of F has H(m,n)+l gates; similarly

the OR-AI~D 2-level realization of G has H(m,n) + 1 gates (such realizations

will be called hybrid). H(m,n) is bounded as follow :

H (!n,n)>n1ax(1~ 1~ 1~ 1~*3 1~5*2111, ~~ ~+j---1, 1~11 ---v

3.4. Some Results on the Design of Two-Level TSCC

Theorem 3.2: Given a set of iaiplicants of size m such that all (rn-I)-

vertices are contained in these itnplicants, let us form a set of implicates

by taking the relat~ve complement of th-se implicants. Then the irredundant

two-level hybrid realization using these implicants and implicates is a

totally self-checking checker for the m-out-of-2m code. By irredundancy

it is meant no dup lication of implicants or implicates.

Proof: As usual for checkers it has to be proven that they are code

disjoint, fault-secure, and self-testing. As mentioned before it suffices

to prove the following:

1) f (rn) — 1  i f f  g (rn ) = 0  2) f (m )  — 0  i f f  g (m) —l

3) f(rn-.l) — 0  and g ( r n - l ) — O  4) f(m+l) — l and g(m+l )—l

The function f is the AND-OR part of the checker while g is the OR-AND

section. By f (m) it is meant that the domain of f is a set rn-vertices.

Cases 1 and 2 are easily proven us ing the re la t ive  complement constraint .  

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Suppose first f (in ) — 1. Clearly an iniplicant is equal to I, i.e m variables

are 1, and therefore its relative complement is all zeros. It follows that

the corresponding implicate is zero thus forcing the final AND gate to zero,

~~nce g(rn) —0. Inasmuch the second case is concerned suppose that at least

one variable in an implicate is 1, then at least one of the variables in

the corresponding imp licant is set to zero. Since g(ni) — 1, it implies that

each and every implicate has at least one on-variable causing all the

iniplicants to be zero thus f (m)—O. These arguments are dual in the other

direction and need not be given here. Case 3 is equally simple to prove.

If an (rn-I) vertex is applied to the checker then no implicant will be

true since they all have size m. Also all (m-i)-vertices are subsets of

some imp licants and because of the relative complement property each (rn-i)-

vertex will have no element in common with at least one implicate. Thus

g(m-1) 0. For case ~: one h~as to show that there is an implicant which is

a subset of each (n*1)-vertex and that all implicates have some elements

in common with each (rn+l)-vertex. Suppose we have the set of all (rn-I)-

vertices and a set of rn-vertices that covers all of them. Since we are

dealing with closed sets then by simp le comp lementation arguments we can

say that all (m+l)-vertices (i.e. the relative complement of all (rn-i)-

vertices) covers the relative complement of the set of rn-vertices. But

both the set of rn-vertices and its complement are of the same size and cover

all rn-l vertices so that the set of all rn-vertices is covered by the se t of

all (m+l)-vertices. Q.E.D.

The previous theorem establishes an equivalence between the

problem of constructing hybrid 2-level TSCC and that of finding a set of

rn-vertices which has for subset the set of all (m-l)-vertices. Moreover

a
it can be observed that if the cardinality of this set of irnplicants is

L 1.
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minimal then the corresponding realization of the 2-level TSSC is minimal.

This situation occurs when there is no large overlap between the rn-vertices.

This is going to be formalized in the following

A minimal set of ni-vertices such that all (m-l)-vertices are con-

tairied in it without repetition has the property that each rn-vertex con-

tains or covers exactly m(rn-l)-vertices that are not covered by any other

rn-vertex. It can be verified for the 2-out-of-4 and 4-out-of-8 codes that

there are exactly (p1)/k members in the minimal set of rn-vertices. How-

ever nothing can be said in general. For example m does not divide exactly

the cardinality of the set of (m-l)-vertices for ni larger than 5. Note that

this situation is taken into account by using the ceiling of terms in H(m ,n)

instead of the ceiling of the product of the terms. It is, however , possible

to approach the minimum number of rn-vertices needed by reducing the amount

of overlap between rn-vertices.

Let us use the same notations as the one used in the previous

chapter and represent vertices by numbers (c
i
’s) representing the positions

of the ones in the vertex. Suppose we have two rn-vertices such that all but

one of their c
i
’s are the same , then both ni-vertices have one (rn-l)-vertex

in common. For example vertices 12789 and 01278 both cover vertex 1278.

Now assume that two rn-vertices have the same c
i
’s except for two that are

found to be not common to both. It is then possible to show that the set of

(rn-1)-vertices produced from or covered by those rn-vertices is irredundant.

Theorem 3.3: The set of (rn-1)-vertices produced by a set of rn-vertices

such that their elements,taken pairwise, are the same in all but t~ o of the

c
i
’s is irredundant i.e. no two (m-1)-vertices produced are the same.

Proof: Such rn-vertices have exactly one (m-2)-vertex in common. The
a

construction of (m-1)-vertices covering an (rn-2)-vertex requires the

. - -  -~~~~~~~~~~~
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concatenation of a c~ which appears in no more than one rn-vertex to the

common (m-2)-vertex. Also the m-l other (m-l)-vertices contain no more

than one of the c
i
’s that do not belong to both en-vertices. It therefore

follows that, under those conditions , the (m-l)-vertices are produced from

the rn-vertices without repetition. Q.E.D.

In the previous chapter it was shown how fixed weight codewords

could be arranged in congruence classes. The next theorem provides an aid

in finding a minimal or near minimal partition that satisfies conditions I

and 2 based on those classes.

Theorem 3.4: The elements of a congruence class (excluding a comple-

mentary subclass) are such that any pair of such rn-vertices have all but

exactly two c
i
’s in common.

Proof: By definition all the elements in a congruence class are

congruent to the same value modulo n. In order to move from one element

to another in the same class, and thus preserve the congruence rela tion,

- _ changes to the digit positions c~ must be performed in a symmetrical fashion.

Changes are said to be symmetric if the value c is added to one digit

posi tion and subtrac ted from another digit pos ition to maintain the

resulting vertex in the same congruence class (all the operations are per-

formed modulo n). Some values of c will be inappropriate since they would

change some digit positions into digit positions that are not going to be

altered by the change. Such inappropriate changes produce vertices that

shall be excluded automatically from the congruence class. The elemental

change that can be e f fec ted is the simp le addition of + 1 to a digit position

and of -l to another. All other changes can be expressed in terms of that

simple change. For this change of + I and -I it can easily be seen that
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exactly two digit positions are affected . Also a systematic production of

rn-vertices from a single ni-vertex that satisfies the congruence relation is

possible and will generate all rn-vertices that satisfy the congruence relation

of the initial vertex. In this generation scheme complements will also be

produced. The reason for excluding a complementary subclass in general is

that 0 and n have the same value modulo n; hence the presence of both

0X
1

X
2 •. •X

J 
and x1x2. ..xjn in the same congruence class. Because its

elements do not differ in two c
i
’s the complementary subclass that is to be

excluded is one of the 2 subclasses that contains half the vertices just

described i.e. for each vertex of the form 0x1
x
2
...x~ exclude the one of the

form x1x2...xjn or vice versa. The complementary subclass is empty for

cyclic codes since 0 mod n is represented solely by the number 0. So, as

long as that complementary subclass is exc luded each pair of elements in

the r2sulting set of rn-vertices belonging to a congruence class will have

exactly rn-2 digit positions in common. Q.E.D.

The results of the previous two theor ems can be expressed also

in terms of distance, Two rn-vertices that have all but two c
i
’s in

common are at a distance of 4. Indeed since each vertex comprises a 1 in

two positions that are not shared by the other vertex, the resulting

distance is 4.

These results do not give a complete solution to the problem of

generating minimal partitions that meet conditions I and 2. However they

indicate not only a good initial guess but also the sequence in which a

heuristic procedure to construct those partitions should proceed; First

select a congruence class as starting set , remove the comp lementary sub-

class described above (if any) and select other codewords to be compared

with the initial set in an order such that complete congruence classes 1,

~
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are examined one after the other. When this is over it is probable that

some (m-l) -vertices will not have been covered. These (m-l)-vertices nuist

then be covered with as few rn-vertices as possible and this is the standard

covering problem often encountered in switching theory.

Example 3.1: A starting set for constructing a minimal set of 5 vertices

that will cover all. 4-vertices can be the congruence class in the 5-out-of-

10 code whose elements have value 0 mod 9:

01269 34578 12789 01278

01359 246 78 13689 01368

02349 15678 14589 01458

03789 12456 14679 01467

04689 12357 23589 02358

05679 12348 23679 02367

24579 02457

34569 03456

The second and fourth columns are the complements of the first

and third respectively. Also the third columns differs from the fourth

onl y in the digit 9 be ing replaced by the digit 0. Therefore for each

complementary pair one element has to be removed. The resulting set will

cover 20 x 5 — 100 of the ( ) — 210 4-vertices without repetition.

Example 3.2: A minimal set of 4-vertices that will cover all 3-vertices

i.e. a minimal partition for the 4-out-of-8 code is:

0123 0145 0167 0256 0247 0346 0357

4567 2367 2345 1347 1356 1257 1246

El 
_  

1’
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In this case most of the elements are congruent to 1 and 6 mod 7.

This set has the property of being self-comp lementary . The two-leve l hybrid

cornplementation of the checker is such that the inputs to the AND-OR section

are exac t ly the same as those to the OR-AND section . Although this situation

occurs also for the 2-out-of-4 code we are unable to conjecture anything

about other codes.

3.5. Self-Checking and Growth and Existence Tests

In this section we extend the notion of growth and existence tests

to the idea of self-checking. The next section wi l l  present an app lication

of that approach.

These two types of tes ts  were introduced by Paige f35J and b y —

Kchavi [26 ] who called then “a” and “b ’ tests. We shall consider only the

simp lest form , i.e. tests  for two-level structures. The ~‘existence” tests

ver i fy  the existence of an implicant . Growth tests consist in making

implicants independe t: of a par t icular  variable thus causing cubes to grow

into larger ones. ;~~ no - fau l t  result  of the application of a growth test  - -

is an output equal to zero. More precisely suppose f = E  P., . In order to

check that none of the inputs to the j~ 1~ AND gate is stuck at 0 one needs

only to select an input vector a E P  and a Z P .. Also if the k -th
j j j 1.

input to the jth AND gate is stuck at 1, the behaviour of the network changes

as if a supp lementary subcube (adjacent to P~) was added to the origina l

function. The test set is therefore the set of bjk €P jk such that

b k~~
t P1~ Due to fault equivalence , the OR gate is completely tested by

i i
the above tests. Although there is one existence test per implicant , a

growth test can check the growth of several implicants upon a single

a
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app lication. These ideas extend very easily to design constraints for

the self checking part of two-level totally self-checking circuits.

The set of existence tests must be such that

~~
y
~~
f&)— 1 3a ,EA~ f (a  ) — f ( y )  and a ~ EJ j j 

i~j

Dually f can be rep laced by g. In words it simply means that each and

every existence test must be performed using code space inputs. Also, the

growth of an impl ican t must be checkable by a code space input:

Let b~ — P~ and be adjacent boolean subcubes. Then these must

exist input vectors

b
ik

E. 
~ ~~~~~ ~jk 

~ k and b
jk 

g~~ p~

Theorem 3.5: Assuming code disjoint design , the existence of “existence

tests” is necessary and sufficient to guarantee that a 2-leve l irredundant

AND-OR realization be totally self-checking.

Proof : Since f • g — 1 if and only if their domain is some code space

input then every growth test in f must be an existence test ing and vice versa

Since test sets for two level structures are sufficient (but not —

necessary) test sets for any irredundant multileve l realization of the same

function, very little can be inferred from results for 2-leve l realizations.

3.6. Checkers for Berger Codes

Although Berger codes have the advantage of being separable , no

good checkers are known for such codes. If the checkers have to be TSC with

respect to unidirectional fau l t s  then the only method known is to translate

the Berger code into an ni-out-of-n code and then check that code using

known checkers. ~~e way is to translate the Berger code with n information
a
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bi ts  into the l-ou t -of-2 m code and then check that  code (46 1. This is of

course a very expensive approach for maxima l codes with large n. Smith

[51] maps the (3 ,5) Berger code onto the less radundant 2-out-of-4 cod~ s.

However no general methods are know n to perform such mapping s .  If the

fau l t  model is the single fau l t  assumption th en  the use of invert ing gates

is permitted and there is a variety of “s imp ler ” ways to check Berger codes.

One can use any irredundant s t ruc ture  that  counts the number of ones in the

in formation b i ts  and compares it with the value of the check b i t s .  Such a

structure may be made up of half  adders or be a unate array whose outputs

produce the funct ions  “rn or more ones ” comb ined with inverters to give a value

that can be compared with the check b i ts  [45].

It is in general recognized that ideal checkers should respond

quickly to changes in their  input s .  This is achieved by an implementation

with the smallest number of levels. The next theorem is conc.erned with the

non-existence of 2- leve l checkers for maxima l Berger codes. What is less

obvious is that it addresses essentially the same pa r t i t i on  problem as for

the fixed-weight codes.

Theorem 3.6 : There do not exist 2-level realization of TSC checkers

(with respect to unidirectional f au l t s , i.e. invert e r - f ree  s t ructure)  for

maximal Berger codes.

Proof: In maximal Berger codes there is a single codeword of the form

x ...x x ...x = O...Ol...l. In order to check that codeword1 n n+I n-1-log
2

(n+l)
the checker under no fault must produce the output (f,g)  (0 ,1) or (1,0).

Also because of unateness constraints the functions f and g are completely

defined for all the non code inputs. For example the pair (f ,g)  f or all

inputs Xl•~~
Xn
X
n+l~ •~

Xn+log (n+l) 
> O . . . O l . . . l  is (1 , 1). Now suppose that  a

~
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f(0...Ol.. .1) =0 then there must exist codewords

such that f(y
1
. . 
~~n+log (n+1)~ 

will cover the ones imposed by the code dis-

joint property. To preserve the unateness property and satisfy the require-

ment for an existence test , this will have to be achieved by a set of

codewords whose check bits are at a distance 1 from the check bits of 0. . .01

...l.. ,This requirement is needed so that there are existence tests composed

of single implicants that are also code vertices. The only such set is

([(n-l)-vertices)ll...lO). The function f(((n-l)-vertices)ll...1O) must be

1 for it it is 0 it leaves uncovered a set of 1 in vertices of the form

[(n-l)-ver tices lll...l. So far so good. The next codewords to be covered

by the function are 3[(n-2)-vertices)ll...lOl). The check bits l1...0i are

not adjacent ot the check bits ll...lO. Therefore there is no way in which

it is possible to cover by f the sets of is in the (( n—2 ))ll...lOvertices
POSit~ 3nS giv~~ that ~~~ ve~t~ces ll ...bO) equals 0 and still have an

existence test within the set of codewords. Dually f can be replaced by g

and the theorem is proved in general. Q.E.D.

Example 3.3: Application of the proof to the Berger code with 7 information

bits and 3 check bits. In the table below let a, b and c represent the

check bits. The top row of digits gives the number of ones or the weight

of the information bits. The squares represent code space outputs (0,1) or

(1,0) and 0 and 1 stand for (0,0) and (1,1) respectively. All. the non-code

space inputs are completely defined by the unateness and code disjoint

property.

a

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



46

0 1 2 3 4 5 6 7abc

000 0 0 0 0 0 0 0 0

001 0 0 0 0 0 0 1

011 0 0 0 0 0 1 1 I

010 0 0 0 0 0 0 1 1
- -  - -~~  - - abc

110 0 Li 1 1 i i I

Ill (0 1 1 1 1 I
101 0 0 0 1 1 1 1 1

100 0 0 0 1 1 1 1

Let f(0000000l 1l) — 1. Then abc is the only unate function that

ca n cove r i t .  Its  exi s tence  test  is 0000000 111 and the growth tests are

subsets o f ~.L-v er t i c es)  110 , -ve r t i e c~ } 101 and - ver t i cs} 011. I f  we

let f ( ~~1-ver t ices ~ 110) — 1 we do not have an essen t ia l  growth test any

more. Therefore let [((1-vertices) 11.0) be 0. The unate function g that

w i l l  cover ( 1— v e r t i c e s )  110 is (Ztl(l or more ot-ies)).ab . 1,hc function

f .C 2 — v e r t i c e s l  110) has to be covered by a una t t ’  function whose existenc e

tests are ~Z11(2 ones or more) ANDed with  the consensus of 110 and 101. How-

ever such consensus does not exist thus preclud ing the existence of an exist-

enc e tes t  [or the unate  f u n c t i o n  tha t  has t o  cover ~ or more ones’). (ab + ac ’
~

indicated by the dotted contour .

3 .7 .  DesIgn of Checkers  under  the Single Fault Assumption

Perhaps the most prevailing fault mode l being used is the sing le

f a u l t  assumption . T o t a l ly  s e l f  checking  systems have t r a d i t i o n a l ly con-

cent ra ted  on other  f a u l t  mod els as w e l l .  These o ther  f a u l t  se ts  cover the

s ingle  f a u l t  set as m d  ft a ted in sec tion  3. .~ , and i t is the re a son  for  the

p lacement of this section. Sm I t h  pr e sent ed  a gene~~~l treatment of the des i gn a 

— - - _ - - —_- -  - --
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of circuits that use unordered code under the single fault assumption [52).

In this section we show that one can easily check unorder ed code s under

that assumption . In section 5.5 it wil l be demonstrated that one cannot

improve the handling of those codes under that same assumption.

It is possible to use rn-out-of-n or Berger codes in sections of

the computer different from memory or busses and wher e the single fault mode l

is generally accepted . The trade-off is between translation into a more

appropr iate code and having to care for unnecessary redundancy. Of course ,

if the fa u lt mode l is no longer unidirec t iona l , as typically it won ’t be in

the case of checkers , then it La possible to relax the inverter-freeness

constraint on the design. Moreover the improbable f a u l t  set is increased to

- . For example for k-out-of-2k codes under the sing le f a u l tuni single

ass umption one has to check only for non-codewords of the form (k-I) and

(k+l)-out-of-2k. This means that parity checking is sufficient .

Indeed in both the fixed weight codes and the Burger codes , the

parity b it is evident. In fixed weight codes , the parity bit (or its

complement) is just any bit. In Berger codes the toast significant chuck

bit is the parity of the information bits. Checking can be accomplished

simply by using a TSCC for parity codes. These two situations are described

in Figures 3.2a and b. Also note that in th~ case of Burg er codes , trans-

lat ion into parity codes is accomp lish ed by s imply ignor in g a l l  the chock

bits except the least significant one . Figure J..~c shows an examp le wher e

this idea is used to advantage . Code translation will be discussed further

in Chapter 5 and the pari ty checked add er in Chapter 4.

Smith’s check.r (Figure 3,3’) is an excellent checker which Is i’S’.’

under the’ unid irectional fault assumpt ion. However it is toe’ expensiv e to

L
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Check Bits rn— out- of -n
Info Bits tog

,
__ _

~~~
A__

~
___.

~~ ,..._.A~.L,, Code input

L~~~:~~k ~~~~~~~~~~ _ _

I~~TSC Parity Checke1 TSC Parity
n+1 input ] Checker

H
( a )  ( b )

Operand 1 Operand 2

In f o rm at ion Check Infor mat ion Check

Max i mat
Berger
Code

Par ity Parity Checked Adde r ~~~~~ Checker

________ 

] Output

S S lEncoder I• (Partial)
Non- Max imaQ
Berger

~~~~
__

~~~
__

_1 
~—v---

)

In fo rma t i on  Check ~ P- 5 6 1 4

(c

Figure 3.2. Checkers for  unordered codes under the s ingle faul t
- : assumption (a and b) and an application to addition (c) .
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X2 k 3  Xak.1

X 1 X2 X3 X4X 5 X6 Xzk..2 X 2k
_ I t i l l  _ _  _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
_

_

_  _

•5• ~~~“1 •.. (7

I I
I

Figure 3.3. Smith’s TSC checker for k-out-of-Zk codes [Si].
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be used as such under the single fault assumption. For k-out-of-2k codes

the cost ratio is of the order of k(2k2 + 2k + 2 )  gates for Smith ’ s vs.  2 ( k - l )

gates for a balanced tree of exclusive OR gates (Figure 3.4)),

3.8. Checking for Asymmetric Errors

As seen earlier the class of asymmetric faults is very large. In

this section it is shown that asymmetric errors can be easily detected using

known checkers but that  there do not exist t o t a l ly  self-checking checkers with

respect to asymmetric f a u l t s .

Theorem 3.7:  Under the asymmetric f au l t  mode l there is always a possible

faul t  pat tern  that wil l ,  produce an incorrect code output , independently of

the type of code used.

Proof : The faul t  pat tern  referred to has the fo l lowing  p rope r t i e s :  1)

The outputs of the network are stuck (or some equivalent faults are presen t )

such that  they permanent ly present a codeword . 2)  If d0 d 1 ( i.e. the

number of lines stuck-at-0 equals the number of lines stuck-at-l) then insert

one extra fault that will be covered by a fault already present. The resulting

fault pattern is clearly asymmetric. If d
0 ~ 

d1, then the output  error is

asymmetric without the extra fault. Therefore such f a u l t s  produce an unde-

tectab le erroneous output. Q.E.D.

Corollary 3.8: It is not possible to construc t checkers that are

TSC with respect to asymmetric faults.

Proof: From the above theorem it fol low s that such a checker cannot be

fault secure nor self-testing with respect to the set of asymmetric faults.

However , one can relax the fault secure property , use unordered codewords

and produce a checker that will detect all asymmetric errors.

0

~LA _______- -
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X 1 X2 X3 X 4 X k 1  X k X k.i.1 Xk+ 2 X k+3 Xk+4 X 2k_ 1 X 2k

FP 5615

Figure 3.4. Balanced TSC checker under the single fault
assumption for k-out-of-2k codes.



52

Theorem 3.9: A totally self-checking checker under unid irectional

faul t s  is also asytt!netric error preserving if the code spaces are fixed

weight code spaces.

Proof : Any asymmetric error with d
1 
and d

0 
can be viewed as a uni-

directional error of multip licity jd 1-d0 1 and direction I if d
1
>d

0 and

direction 0 otherwise. Moreover a fixed weight code will never be changed

into another codeword since d
1 # d 0. Q .E . D .

Note that this theorem is not true for unordered codes in general. For

example an asymmetric error could transform the Berger codeword 00011

into the codeword 11100 .

3.9. Concluding Remarks

In this chapter we have presented results that are both theoretical

and practical. The theoretical resui~ 3 provide guidelines to find part i t ions

or subsets of sets of rn-vertices that wil l  cover maximally the set of (in-l)-

vertices. This problem is known to be applicable to the design of checkers.

However these results and those of the previous chapter give a new approach

to some well-known problems in comb inatorics as well.

The results on Berger checkers seem to reinforce the feel ing that

the price to pay for separability of information and redundancy lies in more

d i f f i cu l t  or less appealing checkers.

On the practical side we have seen some compromises that result  in

substantial savings in designing checkers for unordered codes under the single

fault assumption. Also fixed-weight codes have been shown to be superior in

error coverage , an advantage in memor ies where faults and errors coincide

generally. There the cost is reflected in the circuitry needed to extract
a

_______________________ _________ ___________ ________ L _JII~~i
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meaningful information. This problem is going to be discussed in Chapter 5 ,

after another fault model and circuit structures are discussed in Chapter 4.

The reason for looking at arithmetic faults and codes is simply

that unordered codes are not easily adaptable to arithmetic circuits. It

appears that each code is ideal under a particular fault model. It is pro-

posed that different codes be used where they fit well, hence the need to

look at arithmetic codes for designing TSC ALUs. This is done in the

next chapter. Chapter 5 will discuss the general problem of going from one

code to another.

a

4
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4. T~ rALLY SEL1-Cl~~CKING ARITl~~ TIC C~~CUITS

4.1. Introduction

In this chapter we shall be concerned with the checking of arith-

metic operations ,’ using well-known arithmetic codes : parity, AR and residue

codes. Fixed-weight codes , like the biquinary and 2-out-of-S codes, have

been used in decimal adders and an extension to general adders is far from

simpLe (48]. Ho has studied a TSC two-rail adder and incorporated it in a TSC

system (24]. Algebraic codes are mainly co unication codes and have been

mostly used only as such. One exception to this is the possible use of Reed-

Muller codes tc. check (and correct) addition; it necessitates, however , a

special adder structure (41].

Arithmetic codes are designed to correct or detect arithmetic errors

i.e. errors that can cause borrow and carry propagation of logic faults

resulting in several faulty output bits. These errors are characterized by

output changes of the form +2~~±2~~~.. . Techniques to check parity of

words are simple and well-known. However checking arithmetic using parity

codes requires acce ss to internal carries of the adder and duplication of

carries is required for increased error coverage. As expected complexity of

checking increases with increases in concurrency and look-ahead. On the

other hand residue checking requires no modification to the adder. The check

bits of the s~~ are obtained only fr om the check bits of each operand by

simple modular addition. More complex adders may impose more check bits on

the operands but the design procedure is always straightforward.

Similar observations can be made about AR codes. Kolupaev pre-

sented self-testing residue trees (28]. His approach combines fixed-weight
a

code and res idue codes in the sense that these trees were mapping residue codes 
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into codes of the form ].-OUt-of-2 where n was the byte size. Although

modular (2 types of module were used) this approach exhibits very large fan-

in and is generally very expensive as well. Our approach shall be more con-

ventional.

4.2. Arithmetic Codes

This section presents a brief overview of arithmetic codes. Parity

codes will  also be dealt with , but need l i t t le  introduction .
n-I

Definition 4.1: An expression for an integer I of the form I~~ E j 4
.2J ,

i— a -J
€ (-l ,O,+l~ is called the modified binary form (NBF) of I.

There exists a “canonical” MBF for each integer; it has the properties that

no two non-zero i
1

’s are adjacent (also called “non-adjacent form”) and that

it is unique .

Definition 4 . 2 :  Th~ ari thmetic weight of the integer I , denoted

is the least number of non-zero coefficients which are necessary in a MBF of I.

De finition 4.3: The arithmetic distance between integers I~ and

denoted D
A

(I l, I2) is the arithmetic weight of their difference i.e.

DA
(I l, 12) W

A
(I
l
_ 1
2
).

Definition 4.4: An AN code can be defined as a code generated by a

positive integer A and is the set of integers AN for 0 < N < B, where B is

specified.

It can easily be verified that the sum and produc t of AN codepoints

are also AN codepoints. The code capabilities of AN codes are defined in the

following theorem:

Theorem 4.1: For any t > 0 and s > 0, an AN code can correc t all error s

of weight t or less in its codepoints and can detect all other errors of
a

weight t+s or less in its codepoints if and only if DA in 
>2t+s.
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Definition 4.5: Let Z be the set of integers modulo rn. A multiresiduem

code in Zm~ 
generated by the set of integers ml , m2,...,mk such that

m~>O and divides m, is the set of (k+1)-tup les of integers

N — (N, (Ni rn (NJ ,...,(N1~~~ where [NJ — N mod

Multiresidue codes with a single residue check will be called simply residue

codes. Again it cm easily be seen that the check digits of a sum or a product

of 2 encoded numbers are the sum or product of the check digits of the encoded

numbers. These codes are also clearly systematic.

Definition 4.6: The associated AN code for a multiresidue code is the AN

code whose generator is A — least comnon multiple (ni~~ i=l ,k) and whose

number of codepoints B satisfies m :AB.

The code capabilities can now be defined in the following theorem:

Theorem 4.2: A inultiresidue code has the same error detecting and —

correcting abilities as its associated AR codes (Proof in (42]).

E final comment is in order. Although minimum arithmetic distance

is used to define code capabilities in an arithmetic environment, codes with

similar minimum distance may have completely different overall error coverage.

For example the residue 3 and 15 codes will both detect all single arithmetic

errors but while only 2/3 of all possible error patterns (in a 4-bit byte) are

detected by the residue 3 code, the residue 15 code will detect 14/15 of all

possible error patterns. This will be discussed further in section 4.3.

4.3. Consnents on the Choice of a Modulus

In theory any modulus or any generator can be used to construct

arithmetic codes. In fact moduli of the form ±2
i
±21 ±z k (like Il , 13, 19 ,

21 etc.) can be attractive since they have a minimum arithmetic distance a 

- - - -
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equal to 3, hereby providing double arithmetic error detection or sing le

arithmetic error correction. However it is relative ly difficult to check

those codes as they are awkward to check using regular binary arithmetic.

One has either to provide additional logic to conventional adders or to

design a new adder with the proper modulus so they can be used as checkers.

In any case the resulting checker will have very little structure since the

weight distribution of the bits in a binary encoded argument, modulo a

relatively prime modulus, has an order equal to the modulus minus one. In

other words the size of the bytes equals the modulus-l, which is inconvenient

as usual word sizes are multiples of 8 or 12. These difficulties have pre-

vented generalized use of such tnoduli.

The most common moduli are of the form ~~~~ Although these moduli

provide only single arithmetic error detection (their “real” capabilities are

discussed in the next sec-ti.~n) checkit’g is accomplished by simple one ’s comple-

ment addition. Moreover the one ’s complement algorithm applies directly to

lef t and right shif tings , complementation and other more specialized operations

(33). Encodings and decoding into/from non-separate codes is also easy.

Avizienis discusses the properties and details of implementation of such codes

[4,6]. The design of checkers for (2n_l)_encoded arguments is straight-

forward but it results in slow operation due to end-around carries. So far it

is the only practical approach that has been used for arithmetic codes.

4.4. Different Concepts of Dis tance

The capabilities of arithmetic codes are defined in terms of their

arithmetic or modular distances. On the other hand the inputs to a checker have

code capabilities which are usually best measured in terms of Hanuning distances.

In this section we will look at some of the considerations imposed by this a
discrepancy .

_______ - -~~~~~r~~~ L - --- - n~
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Definition 4.7: The circuit distances of a circuit is the set of Ham-

ming weights of possible errors at the circuit outputs caused by a modeled

f au l t  for code space inputs.  -

The bound of interest in the case of circuit distance is the upper one : the

maximum circuit distance. Clear ly we have :

1) A circuit  is faul t -secure  if the maximum circuit distance is

less than the minimum Hamming distance of the output code.

(In general errors will be detected if the code distance set

is disjoin t from the circuit distance set) [1).

2) In a bit sliced circuit  the maximum circuit distance cannot

exceed the multiplicity of the largest modeled fault.

3) The maximum circuit distance is bound by the number of outputs.

As indicated previously the relation between arithmetic distance

and Hanuning distance (which is in turn simply related to circuit distance) is

not straightforward : the Hamming distance in arithmetic codes is a function

of the codewords themselves as well as the set of arithmetic distances.

The Hamming distances between arithmetic codewords vary much more widely than

the Hamming distances of good (well-packed) communication codes. However bound s

on both types of distance are simply related and sufficient conditions can be

derived from those to design totally self-checking arithmetic checkers. In

the following we investigate briefly this relationship and shall provide

guidelines to design functional circuits that have maximum circuit distance

su f f i c i en t ly  small for given ari thmetic codes.

Example 4.1: The example illustrates the effects of single faults on the

value of the outputs of a full-adder (Figure 4.1). The faults on the left

of the dotted line may affect both the sum and the carry while those on

the right will not. 

——---- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~ --~ - -- .,. 
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I 

_ _ _ _ _ _ _  
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co

Figure 4.1. A full-adder.

No-Fault Faulty Output
Input output output Fault change

a b S C
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S C
0

1 1 0 0 1 1 0 line 1 ÷2i - 2 i+l

stuck-at-i
1 1 1 1. 1 0 1 1.

and equivalent -2

1 0 1. 0 1 1 0 line 2
stuck-at-I
and equivalent ~2

1

0 1 1 0 1 1 0 line 3 
~. ~~~~~~~stuck-at-i +2 - 2 
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Theorem 4.3:  Ari thmetic  codes (AN or Residue ) have a minimum Hamming

distance equal to the arithmetic weight of the generator or residue .

Proof: The minimum Hamming distatice cannot he greater since a carry Les~
or borrowless addition of an ar i thmet ic  error vector equa l to the generator

or residue results in another codeword ; that is in an undetectable erroneous

output .  In other words there exist arithmetic error vectors of arithmetic

weight equal to that  of the residue or generator that cause Hamming weight

changes at least equal to the arithmetic weight which are undetectable. By

the same token the minimum Hamming distance cannot be smal ler since s ome

errors with smaller weight than the arithmetic weight of the residue ~r the

generator will not be detected. It therefore follows that the minimum

Hanzning distance is equal to the arithmetic weight of the generator or

residue. Q.E.D.

This s ignif ies  that  the minimum Hamming distance is quite small in

general and therefore fault secureness could be very vulnerable to larger

ci rcui t -d is tances .  Consider the fol lowing :

Suppose we have residue ?-i and (2’~-l)N codes. As n increases

the redundancy increases. However , according to the above theorem , no

matter how large n is , codes of the form 2~~ l are equally vulnerable. Since

the theoremstates that there is a double arithmetic fault , namely f-i. itself ,

that will not be detected. In practice , however , one has to look hard to

find a single fault in the adder circuitry that produces such a double fault

(for n large). The overall code capabilities actually increase and it may

be justified since f-z error patterns are now detectable. Indeed the

picture is not so bleak when the distribution of Hamming weight changes , at

the output , is considered . This is formalized in the concept of arithmetic
a

circuit distance set. 

~~~~~~~ 
-
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Definition 4.8: The arithmetic circuit distance set is the set of

arithmetic weights of potential error patterns caused at the output by

members of the fault set.

Of special concern are those patterns that can be generated at the

end of paths that originated from fanout points. They have the largest

arithmetic weights and are the most like ly to produce changes at the ouputs

that are equal to the modulus or the generator.

Theorem 4.4: In an arithmetic circuit if the arithmetic weight of the

generator or the modulus is not a member of the arithmetic circuit distance

set , then the circuit is faul t  secure .

Proof: It follows directly from the definition of fault secureness and

the previous discussion.

4.5. Ar ithmetic Codes as Test Sets

In this section we show that common arithmetic codes provide a

sufficient test set for adders that are fault secure with respect to the types

of arithmetic errors that the codes are designed to protect against. It

will f i rs t  be indicated that the AN codes considered are cyclic , that there

exists a test set for a small number of consecutive full-adders and finally

show that it covers all adders in a paral le l  adder using the cyc l ing proper ty .

Theorem 4.5: The generator A and the number of codewords B in a cyclic

AN-code satisfy AB — 2&.l. Conversely , every A which divides 2~ -l generates

a cyclic code with B — (2~ - l) /A  codewords (statement and proof in [30]).

This theorem seems to impose a constraint on the size of the code.

Previously , the only requirement was that the generator be of the form 2n_ 1~

these two apparently conflicting cases can be reconciled by noting that the

constraint AB — 2~ -l simply implies that the codeword size be an integer a

IIhI~
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multip le of the byte size. For example , remarking that 3 — 2
2_ I  divides

if and only if j is even , it can be seen that codeword sizes should

also be even , i.e. of length 2,4,6 etc. Similar consideration can be

applied to other moduli and is formalized in the theory of exponents [31].

To test an irredundant adder it is sufficient to app ly all possible

input combinations. Because of carry dependencies , more than one adder

stage has to be considered . For ripple-through carry adders , 2 stages are

sufficient ; it may be more for adders with look-ahead . Because of the

cycling property, this test set will be eventually applied to all stages.

For 2 stages , assuming bytes of size n (i.e. generator = f-i) all the

combinations are produced by the first 4 codewords. Underlined bits are

those applied to the first 2 stages.

n

f-i 11...ll

ill.. . 10

3 (2
r~~1) ii... = (2 n 1) + 2 (2 n1~~1)

Each operand will eventually produce these codewords independently so that

all 16 input combinations will be applied. The cycling property will then

insure that all  stages will be checked for carry and sum error s. For adders

with a more parallel structure this analysis must be repeated .

For residue codes the prob lem is much simpler. The adder and the

checker are completely independent units and both will receive all possible

input combinations and are therefore  t o t a l l y se l f -checked .

a
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4.6. Checking Arithmetic Codes

In this section , we show that, under certain conditions , essentially

all known methods for checking arithmetic can be extended easily so that they

are totally self-checking. We shall see that the main difference lie in the

size of the hardcore. First, a look at par ity codes:

In the case of parity checking, the main constraints are imposed on

the adder i t se l f .  The parity 
~~~ 

of the sum (S — A + B) can be computed as

follow:

p~ 
~A 

+ + where is the parity of the carries.

However , in practice a fault may affect both the carry and the sum digits ,

producing an undetected error. One approach to the problem is to duplicate

the carries i.e. generate independently pairs of carries. One set of carries

is then used to compute the sum and the other set is used for checking. The

adder must also have a small (= 1) or odd circuit distance so that it is

fault-secure. The parity of the sum is then predicted by computing the

modulo 2 sum of the parity of the operands and of the carries. The result of

the sum (or subtraction) along with its predicted carry are then fed into a

totally self-checking parity checker (Carter and Schneider [11], Anderson

[1]). It is possible, although more expensive , to merge prediction and

checking into the double tree of exc iusive-ORs forming the TSC checker.

We now turn our attention to arithmetic codes of the form (2”-I)N

or residue (f-l). Consider Figures 4.2 and 4.3 describing serial and tree

structured checking. In the first instance checking is accomplished in a

serial fashion : bytes of length n are taken one at the time and accumulated

modulo f-i (i.e. modulo the residue or the generator). The overall delay

is, - f course , the number of bytes times the assimilation time in the checker.

I
__________________________ --
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-
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Figure 4.2. Serial and tree checkers tor AN codes. 
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Figure 4.3. Serial and tree checkers for residue codes. a
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In the figures below (b),  modulo f-i adders are connected in a tree fashion

to form the checker. In that case the total delay is ~1og
2
(number of bytesfl

times the delay at each level. However the number of modulo adders is

greatly increased to (# of bytes-I).

Cost and time are not the only factors involved in comparing the

two approaches as their behaviors under modeled faults are quite different.

In the byte serial mode it should be obvious that any single stuck-at fault

in the checker will not be detected if and only if the number of bytes in

the whole data word times the arithmetic circuit distance is an integer

multip le of the modulus. This is the only constraint to be met in order that

the fault-secureness property be satisfied. On the other hand if a tree-

structured checker is used then the only requirements for it to be totally

self-checking are that each module be irredundant and have maximum arith-

metic circuit distance not exceeding the code capabilities.

Another point that should be brought up at this time is the

distinction between AN and residue codes as far as checking is concerned.

They both use the same checking structure but residue codes are separate

whereas AN codes are not . The ul t imate result of self-checking is to provide

a coded output tha t determines the -‘ ‘ idity of the data. The difference

arises one time per iod before (in the ser ial mode) or one level above (in

the tree approach) the final assimilation that provides the coded checker

output. In the case of residue coding, the residue of the data part of a

word following an operation should equal the check bits. Inasmuch AN

codes are concerned the checker output is normally zero : it follows that

the last two bytes to be added in the checker are complementary (l’s

complement) or all zeros. The all-one vector may normally never be produced a
in the hardware even thought is is correct. Also no matter how 0 mod 2’~-l 
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is encoded , the checkers described before will produce the all-zero vector

if and only if they are presented with all-zero inputs. From the previous

considerations it should be clear that due to dependenc ies at the final level ,

the checker may not operate in a fault-secure mode at that instant and may

not be completely tested. In the case of serial checking the adder in the

final assimilation period is neither operating in a fault secure nor self-

testing mode. However it may not matter since the probability that conditions

propitious to the generation of an erroneous code output at that time are

virtually nil. It may however be unsatisfactory from a r igorous point of

view on self-checking. For tree-checking the prob lem arises also but for

both AN and residue codes where only equal or complementary inputs p lus the

all-zero input are available. The problem is now more acute since the final

module is never fault-secure and is not comp letely self-tested .

For AN codes the problem may be alleviated by replacing the final

adder by a row of exclusive-OR gates that compare corresponding bits from

each of the two final bytes. This leads to the situation where the hardcore

will be larger than usual. The number of lines that will form the hardcore

will be equal to the byte ’s size and will take the value of all zeros or all

ones. Clearly further reduction is not possible. It should also be emphasized 
•

that the TSC property of this final level of exclusive-OR gates is conditional

on the sufficiently repeated application of the all-zero or all-one vector

to its inputs so that ouputs can alternate and therefore be checked . As

mentioned earlier the checker will produce the all-zero vector if an only if

it is presented with the all-zero vector . In a computer the all-zero vector ,

being an initialization vector , is certainly more cos on than any other vector

so it is reasonab le to assume that the level of exclusive-or gates is going

to be sufficiently tested. Let us sussnar ize and con tras t with res idue codes :

L
- -, -

~~~~~~ ~~~~~~~~ -~~•-
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For AN codes: The inputs to the final assimilation are of the form

x x . . .x  x x . . .x  and hopefull y 0.. .0 0. ..012  xi 1 2
xi xi

-The finaL Level of exclusive-OR gates is totally self-
checked

-The hardcore consists of xi lines, the all-one or all-
zero vector indicating a correct codeword.

For residue codes: The inputs to the final assimilation are of the form

x x  . . .x  x x  . . .x12  xi 1 2  xi

-A final level of exclusive-OR gates will not be totally
self-checked.

-The hardcore therefore consists of 2n lines.

So for residue codes (and to a lesser extent for AN codes) we are faced with

a fundamentaL problem, namely a substantially sized hardcore. It is not

solved by merely inverting one byte and feeding it to a level of exclusive-

OR gates (which is the same as using inverse residue coding ~4J). In doing H

so, one would still have to generate ,~~~g 
~~~~ 

or 
~~~~~~ 

which are
xi xi xi xi

certainly valid codewords; they are also never normally generated. Possibly

the simplest way around is to devise some scheme that is going to generate

periodically vectors of the form ~~~ or ~~~~ This may be equivalent to

moving the problem into another section of the ALU where those codewords

may be generated by a unit that La perhaps not totally self—checked. Another

approach would be to design from scratch checkers with the desired properties.

So far no general method that eclipses the simplicity and structure of

checkers constructed out of modulo f-i adders , has been found.

a 

•~~
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There are other problems that must be looked at when designing

TSC arithmetic checkers. For example special care must be exercised in

two cases:

1) Design of checkers for minimally redundant arithmetic codes.

2) Design of checkers for arithmetic circuits with large amount
of look-ahead or parallelism (i.e. circuits with large
arithmetic circuit distance).

Clearly most designs will fall between these 2 extremes, so that guidelines

that take into account each of these will always app ly, but to varying

extent. In the case of minimally redundant arithmetic codes, i.e. the

residue3an d  3N codes , precautions must be taken in designing bo th the adder

and the checker so that no error will produce output changes equal to the

modulus. This is the case when any two adjacent output bits are erroneous

unidirectionally. Incidentally “standard ” checkers for these codes are

t~ taliy self—checking with just 2 outputs. This is discussed further in the

example of the next section. Fortunately for codes with identical arith-

metic distance but with more redundancy this problem does not exist : any

changes in boundary bits of different bytes will never cause a change equal

to the modulus. However, carry propagation schemes other than the basic

ripp le through carry might possess just the right defeating arithmetic circuit

distance in the carry propagation circuit. So as in the case of minimally

redundant codes care must be taken so that circuits with large arithmetic

distance do not exceed the code capabilities.

4.7. A Low-cost TSC Checker for Residue 3 and 3N Codes fi6 l.

This section illustrates the kind of considerations one has to make

as well as the type of results that would be satisfactory in designing arith-

inetic checkers. The example used is the design of a low-cost totally self-

:1 
- - - - -
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checkers for the residue 3 and 3N codes. These codes are the least redun-

dant arithmetic codes. It is therefore assumed that the adder has a cir-

cuit distance of at most 1. One sufficient (but not necessary) condition

for this situation to be achieved is to require that the adder produces

independent sum and carries. Such a circuit in its minimal version requires

9 gates per stage versus the absolute minimum of 6. Other minimal adders

have a circuit distance of 1 and the only way to find their circuit distance

is to examine their behaviour under single faults.

The purpose of the design is to find a functional block that can

be used as in Figure 4.3 or that can be interconnected as in Figure 4.4 to

produce ultimately the checker’s outputs. In Figure 4.4 the checker is

connected in a tree fashion to the 3N-encoded adder ’s output. A 3N-coded

result causes the final output of the checker to be either 00 or 11. In

the case of residue 3 coding the situation is essentially the same except

that the check bits are separate from the data word. In both cases it does

not matter at which level of the checker the inputs are connected as long

as the overall structure is acyclic and the weight order respected (i.e.

lines with weights 1. and 2 are connected to corresponding inputs of the

modules).

In the course of the design it has been possible to obtain an

encoding that permitted a more uniformly distributed alternation of the

output signals. The encodings for 0 mod 3 were allowed to be both 00 and

11. This is actually a secondary result , as the prime target was to

introduce more synmetry in the function realizing the checker. Another

design goal was the elimination of end-around carries for a faster operation:

the time of assimilation is reduced by half at each level. It is easily seen 
a

that this property will probably be the most difficult one to generalize
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for more powerful codes. Another design objective achieved was a high

degree of modularity. As seen from Figure 4.4 , one basic block per-

forms F(x 1,x2,x3, x4). The checker ’s output functions f and g are

F(x1,x2,x3,x4) and F(x2,x11x4,x3) respectively . Minimal circuits , computed

by a modified version of Davidson ’s branch and bound program , are

given in Figure 4.5. In line with previous resul ts  the final assimilation

is performed using exclusive-OR gates which are TSC. The code must however

be produced by the same type of circuits (i.e. the same f and g) so as to

provide a sufficient and necessary test set.

4.8. Checking Logical Operations

A function that is also expected from an ALIJ is the capabi l i ty

to perform logical operations. However it has been shown by Peterson [33]

that nothing short of dup lication will check for correctness of bitwise

logical operations. In designing totally self-checking circuits one is

competing with duplication scheme s so that al ternat ives have to be found

to jus t i fy  the use of coding techni ques. It may seem that no matter  what

code is used in checking ari thmetic operations it is not going to work for

logical operations . Fortunately it is known from the days of ALU ’s with

very limited logical powers that all logical operations can be performed

using well defined sequences of addition (subtraction) , shifting and a

single Boolean operation. For example the following relations are well

known:

A + B  = A A B + A V B

A e B = A + B - 2 ( A A B )

where log ical opera tions are performed b itwise , Therefo re , given the

added cost of an AND circuit it is possible to compute the b i twise  OR 

-
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(a) Uncomplemented variables only

I 

FP-5$O$

(b) Complements available

Figure 4.5. Minimal NOR implementation of the checker.
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and exc lusive-OR of two words using simple arithmetic. One cannot escape

the fact that at least this AND section must be dup licated in order for

the whole structure to be totally self-checking. This AND circuit must be

checked by a TSC dup lication comparator [I].

If a major function of the ALU is to perform logical operations —

it may then be necessary to increase the hardware to gain some speed. An

alternative approach may consist in using the ALU to p er form a r i thmet ic

operat ions (and perhaps somd log ical ones ’
~ in a totally seif-checking mode

and logical operations in a non fault secure mode . This is often referred

to as partiall y selt-checking and typical of compromises currently made in

imp lementation (56 ,57].

4.9. Conc luding Remarks

Throughout th is  chapter , r e f e r en c e s  to the more general case at

AN codes , the AN+B codes have been omitted. A l l  the r e s ult s  for  AN c o l e s

cle ar ly  hold for AN +B codes; it has to be remembered however , that the

checker ’s valid output 0 is now d isp laced by the value B.

It has been seen that  provided some gu ide l ines  are fol lowed con-

vent iona l s t ructures  to check a r i thmet ic  codes arc’ TSC , but  have a larger

hardcore. These guidelines stem from the stud y of distance and its relation

to irithmetic distance. Because the by te ’ s size of res idue 3 and 3N codes

coincides with the smallest possible hardcore it was possible to design a

ch.c~ . r  (or such t~ ’d~ S wi thout  rel y in g  on m odu lo 3 adders. This examp le

~ l.d p~~ ~~~ ~d out sonic desirable characteristics that less c O n v e n t  iona~

h.. ~~er ~~ f- ’r arithnict Ic ~oth’s sh ould i d e a l l y  ~avt ’

I
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- Arithmetic codes have been seen to lend themselves naturally

to the design of TSC arithmetic circuits. As observed in the discussion

- on distance their error coverage is best expressed in terms of arithmetic

distance and when used elsewhere in a computer these codes have an error

coverage which is diff icult to def ine accurately in terms of the dominant

fault model. In other words arithmetic codes generally perform well only -

in arithmetic circuits and other codes should be used in the non-arithmetic

sec tions of a compu ter. The following chapter presents general considerations

concerning the use of different codes in a single digital system.

1
1.

~LL - 
-
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5. CODE TRANSLATION

— 5.1. Introduction: A Summary of the Advantages of Codes

In the preceding chapters codes were presented along with the

fault models they were to protect against. Parity codes are designed to

protect against single errors. In general they will detect any asymmetric

error of odd net weight. It is difficult to design circuits so that this

will always be the case. Therefore parity checking is usually restricted

to single fault detection in logic circuits. Parity codes can also be used

in arithmetic circuits. It requires internal modification to the adders

but it is in general acceptab le. The next codes in terms of redundancy are

the least redundant arithmetic codes followed by all other such codes. As

indicated earlier the simplest type of arithmetic errors to visualize are

those caused by carryless addition of an error vector . Indeed all arith-

metic errors can be viewed as such although it is not an intuitively satis-

fying way of doing so. From the preceding discussions on distance it should

be clear that all single faults will be detected by arithmetic codes as

long as the circuit distance is small enough. Minimally redundant arith-

metic codes have only an extra bit compared with parity codes and can be

used easily in data transfers as well as performing arithmetic without

internal changes to adders. Other types of non-arithmetic mappings are

difficult and not well, defined . Unordered codes can detect all unidirectional

faults. This set includes single faults as uell as a subset of arithmetic

faults. These codes are generally too redundant and difficult to use under

the single fault assumption. Arithmetic with unordered codes has been

restricted essentially to two-rail codes. Fixed-weight codes have the

1
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additional advantage of detecting all asymmetric errors. This is especially

handy in memories where the nature of faul ts is such that asymmetr ic fa ults

will always produce asyttis .~tr~ c eri ors.

The remainder of this chapter looks at the problem of translation

of codes including decoders and encoders. Such an approach is justified

in the following section.

5.2. On the Use of Different Fault Models

In this thesis we examined techniques to construct totally self-

checking circuits using different codes and different fault models . Although

this approach may seem quite incoheren t, it is, in our opinion, justified by

the different fault behaviours of different sections of a digital system.

This is illustrated in another context , at the interface of computers and

digital communication channels. Once the communication errors have been

detected and correc ted , all , or most, of the redundan t check b its, are

eliminated for further processing by the computer. Similarly it is believed

that fault patterns in memories are quite different from those occurring in

random logic, and they both bear little resemblance to those arising in

peripherals. Unidirectional faults are often quoted as coriunon to memory and

busses. Arithmetic codes have been devised to check for errors that are

intrinsic to adders. Parity codes will do well in both cases if sing le faults

are assumed. This points to the interesting situation where the checker

has a very different fault behaviour of that of the unit being checked.

Three approaches to the problem can be taken. In the first the

designer selects a code which is good for a particular section and uses it

throughout. The result will probab ly be hardship (some times into lerable) in

des ign ing the other sections and poor protection in some of them. In the

- J1~.,
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second situation , a compromise is made : the designer selects a code around

which the whole machine can be designed fairly easily. The result is likely

to be a mediocre code and/or mediocre error coverage in every section.

Mediocre error coverage refers both to expensive waste or insufficient pro-

tection. In a third approach one can use the “best” codes in every section

and translate them as the information is passed from one to another. This

method does not compromise error protection in any section and eliminates

potential waste present in the form of unnecessary redundancy. The trade-off

is, of course , in the cost of designing, and implementing code translators.

5.3. General Considerations About Translators

A code translator is a functional block that maps codewords of a

certain type onto codewords of a diffetent type. Translators form a very

large class of circuits but excludes specifically circuits with more than a

single input code space. A checker can be viewed as a special case of code

translator where code inputs are mapped onto code outputs of smaller size.

A checker for rn-out-of-n codes can be seen to perform a translation onto the

smallest Berger code 01 and 10 (which also happens to be the 2-rail code).

However this is just a special case. Another special situation arises in the

case of encoders and decoders. At one point or another , especially in non-

by te orien ted mach ines , the information bits must be encoded , processed and

eventually decoded. Encoders and decoders have input and output code spaces

exactly equal to the input and output spaces , respectively. In a totally self-

checking system all these functiona l blocks must satisfy certain properties

to preserve the circuit ’s checking abilities . However there may be some pro-

blems especially in the case of encoders and decoders. This section examines

some of those. 

-= - —~~~- --——.-— ---- — .  -- -- jl~
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A code translator maps a code space onto another code space. From

a structural point of view the translator is located at the boundary of

functional blocks that have different fault models (typically). The question

that comes up naturally is what is a valid fault model for the code trans-

lator. The answer is contigent mainly on two factors:

-The method used to translate the codes (i.e. structural
considerations).

-The respective capabilities of the input and output codes.

For example if the check digit of a residue code is computed using

adders then the appropr iate fau lt mode l is expected to produce arithmetic

errors. On the other hand if translation from parity codes to unordered codes

is performe d, the translator is not expected to be more than fault secure with

respect to single faults unless some structural constraints are imposed (e.g.

inverter-freeness).

It is recognized that the TSC properties do not exist beyond hardcore

and non code spaces. For that reason we have to define TSC decoders as having

outputs that are coded in a certain manner. The obvious way to proceed is to

encode the outputs of decoders using systematic codes. After checking is

performed , the check bits can be discarded and the information bits used

subsequently for non TSC functions. Typically not much can be done about

encoders as anything connected to their inputs is by definition unprotected .

It is however possible to have a circuit structure that will guarantee a

correct coded output (i.e. a fault-secure encoder) as well as being self-

testing. For systematic codes one proceeds as follows : a checker connected

to the inputs of the encoder and to the output check bits will determine

whether the encoder has interpreted correctly the input lines (and not that

the input lines were correct). For non-systematic codes the coded value must a.
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first be decoded so it can be compared with the input lines. Again such a

test confirms only that the encoder produces the right codeword of what it

sees at its inputs.

It has just been seen that it is possible to inibed easily in TSC

systems encoders and decoders if systematic codes are used throughout. More-

over a large class of translators can be related to the design of encoders:

Theorem 5.1: The TSC translation of systematic codes A into systematic

code B is equivalent to the design of TSC encoders for code B.

Proof: Once code A is checked its check bits may be discarded and its

information bits used to produce the check bits of code B as described before. ~

Of course we do not have to discard the check bits. Indeed it is a

good idea to use them if the mapping is from A to B and B is a subcode of A.

Such a situation was presented before in the translation of Berger codes into

parity codes. But it is the exception rather than the rule : the information

content of the check bits is in general not easily transferable from one code

to another.

Example 5.1: In the f i rs t  chapter it was shown that fixed-weight codewords

can be classified into cycling classes and suggested that it could be used to

decode them serially. This example illustrates how it could be done in

practice (see Figure 5.1). The cyclic codewords are loaded into a recycling

register. Each of the flip-flops is connected to a collection of AND gates

that implement the rn-vertices of one congruence class. Only one of those will

be high at any time thus generating a l-out-of-(number of classes) code which

can be checked by a TSC checker. This value along with the encoded number of

shifts (i of Ti- ) performed is loaded into a block whose function is to extract

the meaningful information. If its output is encoded then it is TSC. Note
I 
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Figure 5.1. TSC sequential decoder for rn-out-of-n codes.
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that some tuning is required for the clock , counter (a sequential machine

that can be made TSC using cod ing techniques [341) and the control signals 
- ‘

to be TSC.

5.4. An Example: A TSC Memory Architecture

Although memories are essential components of computers not much

has been said on how to make them TSC and how to incorporate them in TSC

systems. Clearly one of the goals is to protect against memory failures

themselves. In a TSC system this translates into the necessity of encoding

memory words so that modeled faults will not produce incorrect codewords.

Codewords are checked before being stored and after being retrieved. Since

it is assumed that all the locations are eventually accessed , the self-testing

property is inherent for both the adders and storage mechanisms. Another

problem that tmlst be dealt with in the case of memories is whether the

correct location is accessed. Troy et al. [15] and Ho [24] have suggested

schemes whereby the decoded address is re-encoded and compared with the original

address in the memory address register (MAR). This actually checks the

decoded address lines but no failure beyond. In other words it will detect

if a line is stuck or open somewhere but not if it is connected (or not) to

further addressing circuitry . It also assumes access to decoded lines.

One way of overcoming these problems is to store in memory along

with the encoded content the address and use a TSC dup lication comparator

to check if the desired and stored address match. In this situation re-

encoding circuitry is exchanged for more memory. In line with this chapter

i.e. considering different fault models , we shall discuss other and more

appealing alternatives. In TSC systems the address that eventually gets to

the memory address register is encoded . This redundancy can effectively

-
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be used to check whether or not the content gated into the memory buffer

— 
register (MBR) is from the correc t loca tion in the following manner: Instead

of storing a complete copy of the address one can store only its check bits.

If the code is non-systematic and/or not redundant enough to guard against

failure modes in the memory (failure modes cannot be easily altered to fit

the codes) then an appropriate code translator is required. Appropriate

refers, according to the case , to a translator that will map the non-systematic

code into a systematic one and/or a systematic code into another systematic

code with a sufficient amount of redundancy. For example the address lines

may be encoded using parity check. If memory failures are assumed to be

unidirectional , the scheme presented here will call for generating check bits

for the Berger codeword of this address and store it in memory along with the

encoded data. This architecture, that assumes unidirectional faults in

memory and singie fault elsewhere, is described in Figure 5.2.

It is st ill possible to object to the amount of redundancy used as

memories tend to be expensive. If it is assumed that single fault may occur

in either the addressing circuitry or in the memory content but not both , or

in the case of unidirectional faul ts, that the faults will be in the same

direction in both the memory and addressing circuits , then it is possible

to protect both address and data with very little redundancy more than what is

needed to check data only. In the single fault case this approach is suggested :

store in memory whatever data is desired and attach to it the stan mod 2 of the

parity of this data and of the parity of the address. To protect from uni-

direc tional fa ults in both address and da ta, one can store the Berger code

check bits of the concatenation of the address and data along with the data

itself in memory. The amount of redundancy required in this case may be
I

slight ly larger than the redundancy to protect solely the content . This is 
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because the number of check bits required increases by one each time the

amount of information bits doubles. If both parity and Berger codes are

used then , using similar ideas , one has to store the Berger check b its with

its least significant bit modified to reflect the parity of the other code-

word. That is simp ly the sum mod 2 of the parity bit (of the parity encoded

word (address and data)) and the least significant bit of the Berger encoded

word. The resulting parity bit will detect all single faults in the word

formed by the conca tenation of the address and data and the remaining check

bits will detect unidirectional faults in the appropriate word . In this

circumstance the redundancy of the concatenated word is the same as in the

Berger encoded word alone.

Finally it can be said that the process of writing into and reading

out of memory is code disjoint so checking may be done only af ter read ing so

~is to detect writing errors as well. However many memory architectures show

a dual purpose memory buffer register that stores data to be written into or

read out of memory ; therefore checking is achieved before writing and after

reading at no extra cost.

5.5. The Problem of Functional Mappings

In general, codes are devised so they suit a par ticular struc ture

that realizes a well defined function. It turns out that codes are essentially

special purpose and very cumbersome for situations other than that they were

designed for . The prob lem of functional mappings of code spaces can be

equated to the problem of translation followed by functional mapping of non-

code or systematically coded spaces as seen in the following steps:

As before the A
t
’s represent code space inputs which are either

equal or transla ted in to a systematic code space with infor mation I
i 
and

L
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A1 x A2 x ... X Ak ~~ (I
11C1
) X (1

2
,C2) x .. .x (I

k
,Ck)

-4 (1l x 12
x...x tk , C1 xC 2 x...X Ck) (*)

The functional mapping is performed next. Let 0~ be the information at the

output with checks and final coded output B~ .

(*) (O1 XO2
x...XO~~ C 1X C

2
X ...x~~ .)

(O~,~ 1)X (02,C2)X ...X (Ok,~~.)

~~B XB X...XB. .1 2

If the C1 are non-existent then the process is not self-checking.

We can now formalize the idea of codes and the structure that fits them

best. This occurs when

given I
~ 

X 1
2

X . . .  X ‘k 01 
X 0

2 
X ... x

then Cl XC 2 X ...X Ck~~~~l X C 2 X ...X~ j 
for systematic codes

or A1 XA 2 X ... XA .~ B1
XB

2
X ... XB~ for non-systematic codes.

For data transfer ~ is simple transmittance (works well for all codes); for

- arithmetic codes ~ can be any operation in modular arithmetic. Unordered

codes are such that the redundancy essentially contains information about

the weight of the codeword . Logical and arithmetic operations in general

are not weight preserving. Therefore it is extreme ly d i f f i cu l t  to map

unordered codes in general. The intuitive ways of doing it have more in

coutnon with abstract automata theory than they have with practical switching

theory. Except for the pathological case of the 2-out-of-4 codes which can

be mapped one-to-one onto the integers 0 to 5 using weight 3,2,1,-I , it is

felt that no such mappings exist in general.

I



Therefore the prob lem of processing encoded information is

essentially the same as decoding and then processing . The 2-step approach

may be concep tually simpler however it is typically not easier , as seen in

Section 5.3.

5.6. Concluding Remarks

Code translation has alr&~ady been studied formally for Smith [52].

In this section it has been suggested that the use of different codes for

different blocks is advantageous in TSC systems, hence the need for code

translators. M’reover translation for systematic codes is essentially

equivalent to encoding and decoding. For most systematic codes methods to

systematically obtain the check bits are known and very similar to the

techniques used for checking. For example, the residue bits can be obtained

from modulo adders and the par ity bit , from a tree of exclusive-OR gates.

These simple properties underscore the desirability of systematic codes in

general. Non-systematic code translation is generally more efficient. In

the case of AN code the codewords can be ob tained from a series of ADD and

SRIF~ operations; decoding is more expensive as division requires use of

the ALU. More difficult is the manipulation of fixed-weight codes.
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6. CONCLUSION

6.1. Totally Self-Checking with Respect to the Pin Fault Model

The pin fault model was introduced by Ketelsen [27) and assumes

that stuck-at faults occur only at the input or output pins of integrated

circuit modules. The pin fault model includes multiple as well as single

stuck-at pin faults. The pin fault model is justified by a variety of

reasons. Available failure data for digital IC’s indicates that lead

bond failures are predominant. These result from either packaging

defects or from stresses suffered during normal operation. These stresses

are either mechanical, environmental or electrical. It is important to

separate failures according to the period of time in which they occur.

If most pin faults occur during the infancy of a product then the pin fault

model is useful mainly for devising initial test sets and has very limited

value in a self-checking system. If most faults occur during the normal

life of a digital system then it may be interesting to consider the design

of TSC systems with respect to a pin fault set.

However, there are some problems. As one may expect, the multiple

fault assumption complicates thepicture. It is known that a test set for

a module realizing C(x,~) exists if for every input x~ there exists test

vectors t~ and t~ which differ only in the value applied to x~ and have

G(t~~~) # G(t~~Ø). This test set exists for all non-vacuous functions G.

Application of pairs of vectors is checked by comparing with the expected

value. Ideally one would like to sequence the tests so that the output

alternate; failure to do so indicates an error. As far as designing self

checking circuits it implies (since vectors are applied randomly)
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a) That there taist be some way of recognizing that a valid pair

of test vectors is being applied to the circuit.

b) That a correct pair of coded ouput vectors is also being

generated.

Since imiltiple faults are assumed there does not exist a way from

within the chip to determine that indeed such a pair of vectors is being

applied. Duplication of the basic modules p lus logic on each to detect a

valid test pair seems to be the only way to go; If it is indeed the case

the fault set may as well be enlarged considerably so as to justify the

cost of duplication . Therefore , the pin fau lt model does not seem to be a

reasonable fault model from the point of view of TSC design.

6.2. Summary of Thesis

In this thesis we have looked at a variety of codes and their

associated circuit structures. Parity, unordered and arithmetic codes were

the main ones discussed. Each one fit a particular fault model very well

but interchangeability was shown to be difficult. At the system level the

use of translators was suggested.

Chapter 2 was an investigation of the algebraic structure of

unordered codes. Unordered codes were shown to have common construction

rules whether separable or not. In addition, fixed-weight codes exhibited

nice class properties , especially those with higher rates.

Some of these results were carried into Chapter 3 where they were

used to provide some ideas about the partitioning problems related to the

- j design of checkers. Some results were established concerning the design of

checkers for Berger codes. Finally some practical considerations were given

to checking under the single fault assumption and also for asymmetric errors.

- - - - - -
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Chapter 4 discussed the problems encountered when designing arith-

metic circuits using arithmetic code.. As long as certain rules are obeyed

conventional checkers for arithmetic codes can be used but with a substantial

increase in hardcore . Ideal checkers were exemplified by a residue 3 and

3N checker but generalized results have not been obtained.

The main topic of thapter 5 was code translation. It was sug-

gested that in a system with several different blocks and fault models, the

best way of taking advantage of coding techniques is to use the best codes

for each of the sections and translate them as information is passed from

a section to another. Separable codes were preferred for translation pur-

poses but may not be as good as non-systematic codes.

6.3. Topics for Further Research

In this thesis we have tried to solve, some problems and have

obtained a mixture of results. Some are perhaps promising, some are

clearly negative. Perhaps the result that eluded this research most was

method s to map codes that were meant for some specific applications and

used in different circumstances. The whole study of Chapter 2 was

originally aimed at that problem. Hence the idea of universal codes.

But we know that there are no such thing as codes for logical operations.

One area of interest is along the lines suggested by Carter et al. (14]

where they use morphic Boolean functions: simply encode each input and

replace gates by their morphism that will preserve information and

protection . The problem is especially dif ficu lt since we are competing

with duplication schemes.

Berger codes have the desired property of being separab le . How-

ever their checker s do not have the simplicity nor the structure of



- ~~~~~~~~

—~
, —- ___ 

~~~

91

comb inatorial checkers . Good checkers would be handy especially since

those codes feel better to use.

Arithmetic codes have been shown to perform reasonably well in

a TSC environment . Perhaps there exist less conventional structures that

could perform checking and reduce the size of the hardcore to a minim~~.

This thesis has discussed coding techniques to detect errors.

It is possible to introduce more redundancy and be able to correct some

errors. By p lacing checkers appropriately it may be possible to keep

the system self checking. Such systems may be competitive with various

forms of multiple redundancy. It is also felt that systems with inter-

active recovery should also be looked at from that point of view e.g.

duplicated systems with encodings.

1~.
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