- AD-A056 280 ILLINOIS UNIV AT URBANA=CHAMPAIGN COORDINATED SCIENCE LAB F/6 9/2

! ON THE DESIGN OF SELF-CHECKING SYSTEMS UNDER VARIOUS FAULT MODE=--ETC(U)
i OCT 77 J DUSSAULT DAABOT-??-C-0259
UNCLASSIFIFD R=791

oo
=0 &

P g
2

I i ne

—_—
e —
e —

B e e e e

iy 3 3 F LY

i .

| Aﬁ No.

JOC FiLE copy,

F —

ADADS56280

VILU-ENG 77-2238

ORDINATED SCIENCE LABORATORY

CsLlY)

ON THE DESIGN OF
SELF-CHECKING SYSTEMS
UNDER VARIOUS FAULT MODELS -

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

UNCLASSIFIED ~ J
: P4

REPORT DOCUMENTATION PAGE e ITRCLTIONS

REPO NUMBER r. GOVT ACCESSION NO.| 3. RECIPIENT’S CATALOG NUMBER

=
/4 ON THE DESIGN OF SELF-CHECKING SYSTEMS {

RT & PERIOD COVERED

4. TITLE (and Subtitle)

rhwfvﬂl OF REP.

Technical l’e@t . p

Yy

>

“UNDER VARIOUS FAULT MODELS .
= |

LY BRCUN TN

——]

7. AUTHOR ' 2
I/ Jean/ Dussault < |5

R-791, UIL
CONTRACT OR GRAN

[3. PERFORMING ONGANIZATION NAME AND AODRESS
Coordinated Science -Laboratory /
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

11. CONTROLLING OFFICE NAME AND ADORESS

| | /] 0ct champenn 77

Joint Services Electronics Program

97
T3, WONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) | 1. SECURITY CLASS. (of thie report)
UNCLASSIFIED

15a. D!CkASSlFICATIONfOO'NGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited
L]

szm

N
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) - ‘\‘%
Q v &
a4
N N

18. SUPPLEMENTARY NOTES . §'

19. KEY WORDS (Continue on reverse side if necessary and identify by block number) /,

Fault-Tolerant Design

Self Checking

Coding Techniques
Arithmetic Circuits

-

20. RSTRACT (Continue on reverse side if necessary and identify by block number))
One of the objectives of this work is to study the design of totally self-
checking systems that are made up of blocks whose fault behavior is different
from one another. Consequently, different codes are mentioned and their associ-
ated circuit structures discussed in detail.
' Codes that are used to protect against unidirectional errors are studied.
Systematic and non-systematic codes are shown to have the same basic structure.
The structure of non-systematic unordered codes, more precisely the class of

fixed-weight codes, if further examined. It is shown that these codes have _ . JL/

DD 1;2:“73 1‘73 EDITION OF | NOV OLET ,, ‘ ‘
A (A Wy — wdlyf
& 7) -

’

]
|

i
!
!

UNCLASSIFIED
TY PICATION OF THIS PAO Date Bntored)

it

\ 20. ABSTRACT (continued)

\

codewords that can be effectively classified in terms of congruence,
cycling and complementation classes.

The capabilities of unordered codes are defined with respect to
circuit structure and fault models. Some results, based on the previous
classification scheme, are presented on the design of two-level minimal
checkers.

Some[practical suggestions for and limitations on the use of
unordered codes under different fault models are described. After a
brief introduction to arithmetic codes, previous concepts about self-
checking are adapted to arithmetic circuits and checkers. It is
demonstrated that ‘known checkers and adders are TSC provided some basic
rules are followed eand some increase in the hardcore is tolerable.
Finally a discussion\of translators attempts to unify the different
codes and fault models. :

UNCLASSIFIED

. SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

H

[e—
v

UILU-ENG 77-2238

ON THE DESIGN OF SELF-CHECKING SYSTEMS
UNDER VARIOUS FAULT MODELS

by

Jean Dussault

This work was supported in part by the Joint Services
Electronics Program (U.S. Army, U.S. Navy and U.S. Air Force)
under Contract DAAB-07-72-C-0259.

Reproduction in whole or in part is permitted for any
purpose of the United States Government.

Approved for public release. Distribution unlimited.

ACCFSS'IN “or

NTIS

0oe
INANND:I0
JKS'E 6"

R

Pm Rm‘ll ‘-

|
n

LN

b PR3

¢ on W

G
G

.
AL

ON THE DESIGN OF SELF-CHECKING SYSTEMS
UNDER VARIOQUS FAULT MODELS

BY
s‘ JEAN DUSSAULT

B.Sc.A., Université d'Ottawa, 1973
M.A.Sc., Université d'Ottawa, 1974

THESIS
Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana~-Champaign, 1977

Thesis Adviser: Professor Gernot Metze

Urbana, Illinois

ON THE DESIGN OF SELF-CHECKING SYSTEMS
UNDER VARIOUS FAULT MODELS

Jean Dussault, Ph.D.
Coordinated Science Laboratory and

Department of Electrical Engineering
University of Illinois at Urbana-Champaign, 1977

One of the objectives of this work is to study the design of
totally self-checking systems that are made up of blocks whose fault
behavior is different from one another. Consequently, different codes
are mentioned and their associated circuit structures discussed in detail.

Codes that are used to protect against unidirectional errors are
studied. Systematic and non-systematic codes are shown to have the same
basic structure. The structure of non-systematic unordered codes, more
precisely the class of fixed-weight codes, is further examined. It is
shown that these codes have codewords that can be effectively classified
in terms of congruence, cycling and complementation classes.

The capabilities of unordered codes are defined with respect to
circuit structure and fault models. Some results, based on the previous
classification scheme, are presented on the design of two-level minimal
checkers.

Some practical suggestions for and limitations on the use of
unordered codes under different fault models are described. After a brief
introduction to arithmetic codes, previous concepts about self-checking are
adapted to arithmetic circuits and checkers. It is demonstrated that known
checkers and adders are TSC provided some basic rules are followed and some
increase in the hardcore is tolerable. Finally a discussion of translators

attempts to unify the different codes and fault models.

iii

ACKNOWLEDGMENT
The author would like to express his gratitude to his thesis

advisor, Professor Gernot Metze, for his guidance during the research of

T S e -

this thesis. Further, the author would also like to thank his colleagues
of the Digital Systems Group at the Coordinated Science Laboratory for
i their help and friendship. The technical support of the Coordinated

Science Laboratory, and the clerical support of Mrs. H. Corray are greatly

appreciated. Finally the author would like to thank the Department of

Education of the Province of Québec for supporting this research.

iv

TABLE OF CONTENTS
Page

Tl e P VO A *

1.1, Survey of the Literature esccccccsccecesscsccscccsssccscss

1.2, Summary of TRERLS o.ccc:iasaanavascsssitensssinseassnnesssse 5 4
2. THE STRUCTURE OF UNORDERED CODEScevveeessecocsccaonncacoesns 7

2:1. Introduct Eom (e as ot e et e aisiaals ol el a1 il mimmmliake =a e ale 7

2.2. Lattices and their ProdBcta ,c.sscvsesesacsimensnicsesssivns

2.3. Unordered Codes cicsiscoscsssosorscossencsssssnssosesnccsse 9

2.4, The Classification of Fixed-Weight Codewords ...c..eeceae 15

2.5. Rates of Unoxdered Codes ccevesesccosccssseoscenssessasnas 23 1
2.6, Concluding RemMAXKE ... 4coscosanevovnnssnoacmonasssssensss 20

3. SOME RESULTS ON THE DESIGN OF TSC CHECKERS FOR
UNORDERED CODES ccccccoscccscccccscacccsoscossscsssscssonsccacss 28

3.1, Introduction and Definfcions ,.iicccssssavessssnsvisnsane 28
3.2, Erxrora and Faults . .iivivicsciisssmosioness ssnunsinssoscnse L9
3.3 Basfic DefInltions ..cvvesvidvnosnnvasvussssnwnosavssonsse I3
3.4. Some Results on the Design of Two-Level TSCC ceceeeeeeecs 36
3.5. Self-Checking and Growth and Existence TeStS seeecececess 42
3.6. Checkers for Berger Codeés ceccsssesvesssssossasscsscansns &I
3.7. Design of Checkers under the Single Fault Assumption 46
3.8. Checking for Asymmetric EITOrS c.acssccecccssecscssssvsse 90

3+9, Concluding Remarks ccosvecssscenvnisvsnssasoscsinvsassssve I&
4, TOTALLY SELF~CHECKING ARITHMETIC CIRCUITScvvveeenanaesces O

&vle TOREOAUECEON cosvsvisesssssrnevevsssivnsssnsssrsvssssossne b
#s2s Arithmetic Codes civiviissscsssvinnuivssnssvruvsnssssnces 9
4,3, Comments on the Choice of a Modulus .se.cvvvevecccecnseeas 356
4.4bs Different Concepts of Distance seveoesesssivnvcscsvsssese I
&5, MAxitimetic Codes ag Test SELS .sivveissvovsvsovnssvnnsnssss Ol

Page
4.6. Checking Arithmetic COdeScccecsesassasensnansscnns 63
4.7. A Low-cost TSC Checker for Residue 3 and 3N Codes...... 69
§.8. Checking Logical Operations ..sscssscssrsosssasmancnsns 73

4.9. Concluding Bemarks ... cccenscaensessasssssnsoasonasses 74
5. CODE TRANSLATION o i e S A e TN S g o 5 76

5.1. Introduction: A Summary of the Advantages of Codes ... 76
5.2. On the Use of Different Fault Modelsc.cccecceue 77

5.3. General Consideration About Translatorsc.eo.ccoee 78
5.4. An Example: A TSC Memory Architecturecocce.eee 82
5.5. The Problem of Functional Mappingseecoceevacacens 85

3.6, Concluding REMATKS .convssvrisvimennsnnysnrssssssnnsessss 87
G CONCEUSION ccvccoicnsunscinnoy wnsvionsensabessssssssseeniensss 88

6.1l. Totally Self-Checking with Respect to the Pin

Fault MOAEL sciiscsssisnonsoivvnassassivssansssconcaness 88
6.2, SummaYy of THe818 .iiicissvssssnssnssssssssssssonsnsnis 89
6.3. Topica for Further Research .iisscsesvsecsssassnsssvone 90

4 REFERENCES v cndansonvvsnssiosensseesssss O R e (6 92

WERA Zaenis wsmee e B e S N T e A B S g see 97

1. INTRODUCT ION

l.1. Survey of the Literature

Around 1956 the study of reliability was pursued within the scope of
automata and information theories. Among the results established then, Von
Neumann [53], Shannon and Moore [49] demonstrated that it was possible to
construct arbitrarily reliable computers out of unreliable computing elements.
In the same vein, Elias has shown that a simple combinational computer can be
made arbitrarily reliable by encoding its inputs and outputs [18]. These three
papers form the foundation of reliable computation including the area of self-
checking: indeed, error detection is a special case of reliability improvement
employing coding techniques.

By the time results were available the IBM 650 was already in
existence (1955). It was perhaps the first machine to contain what are now
called totally self-checking elements: its one-digit decimal adder consisted
of an inverter-free circuit with biquinary-coded inputs and outputs as well
as two-rail carry [48]. However all validity checkers did not satisfy the
requirements of totally self-checking checkers, i.e., a faulty checker could
have passed erroneous information without proper error signalling. Hence the
system was not totally self-checking. This type of overall structure is
characteristic of all the work performed in the 1955-1968 period and some
hereafter and will be referred to simply as self-checking or self-testing.
Sellers, Hsiao and Bearnson give a good description of the theory and practices
followed in that time span. The codes most widely used were parity [48],

residue [33], fixed weight [19] and algebraic [41] codes.

As the area of self checking advanced, some progress was made
concurrently in the area of redundancy i.e. fault masking. Most common
examples of these techniques are triple modular redundancy (TMR) and quadded
logic [39]. In the late sixties the STAR (Self-Testing and Repairing) [5]
computer drew attention to both areas as they merged to produce the dynami-
cally redundant computer. In the early seventies Carter et al. also
studied the logic design for dynamic and interactive recovery [12,13].

After 1968 self-testing continues to be used extensively, at
least in practice. As for as the theory is concerned it is still discussed
[56,57] but it is often presented as a compromise or imperfect alternative
to totally self-checking which, at that time, had just formally made its
first appearance.

A totally self-checking (TSC) circuit is characterized informally
by the following design rules: 1) the normal set of input regularly tests
the circuit including checkers for any modeled fault, 2) when an output is
produced it is either correct or non-code. Figure 1.1 gives a block diagram
of a totally self-checking circuit. Most of the work has been concentrated
upon such circuits characterized by an inverter-free structure and a fixed
weight code space input. This type of circuit is well suited for the
detection of unidirectional faults which are intrinsic to memories and some

communication channels.

Carter and Schneider introduced the idea of totally self-checking

circuits and applied it to parity and two-rail codes [l1]. Anderson formalized
it by introducing the notions of self testing, fault-secure and code dis-
joint properties later refined by Smith [1,2,52]. The remainder of this

section is an overview of the work generated in this area.

b

3

Rl il S SR A e LA S TR

]

. !
o iR =
_.——___‘ e T

Inputs | TSC, Encoded o | o Outputs

e Functional |Outputs . L.
S Bk !

| |

| oo o :

: [

: 1

|

\ J

I |

I |

' 1

| |

| |

| |

| |

AP sG A

Error Indication
FP-5059
Figure 1.1. The totally self-checking model [1].

.

‘I

Among the first results generated in that area were designs of TSC

parity che~kers and duplication comparators (Carter and Schneider [l1],
Anderson and Metze [2]). These were simply exclusive-or trees and were TSC
with respect to the occurrence of single faults [2,11]. At the same time

designs of two-rail checkers were also presented, TSC this time with respect

to unidirectional faults [1,11]. Anderson then provided a general method |
to construct checkers for m-out-of-n codes using majority functions [1,2].
Then came other blocks: Ho studies a TSC two-rail adder [23] and used it
in TSC systems (i.e. a computer) whose design he alsc discussed in detail
[4]. Along the same lines Cook et al. introduced a design for a self-
checked microprogram control [15]. Smith formalized and improved previous
results [50-52] and gave general design rules for the construction of TSC
checkers for m-out-of-n code. He also linked the existence of TSC checkers
to Ramsey numbers and derived bounds on the size of checkers and tests

sets [50]. His thesis [52] dealt with the design of TSC combinational
circuits. Among the results were rules for the interconnection of TSC
blocks, guidelines to design TSC circuits in general and an excellent

checker for k-out-of -2k codes requiring only 2k tests. Reddy had earlier

presented more restricted results, namely TSC checkers for k-out-of-2k,
(k+1) and k-out-of-(2k+ 1) codes [44] and an easily testable realization
for p and (p or more)-out-of-n codes [44].

Besides fixed weight codes there is a class of systematic
unordered codes (Berger codes and their extensions [8]) which has received
some attention recently. The advantage of these codes is that the infor-
mation digits are separate from the check digits. Reddy [46] and Smith
[52] have both proposed schemes to construct TSC checkers for these codes

but so far the results obtained are not as satisfactory as the results

accumulated in the case of m-out-of-n codes. The fact is that separability
does not enhance the ease of construction of TSC circuits for these codes.
As far as the design of TSC sequential machines using coding
techniques is concerned, the tendency is toward asynchronism and is
exemplified in the works of Diaz (17], Pitt [40], OzgUner [33]), and Reddy
and Kuhl [29]. An alternative to coding techniques to achieve TSC design
is the use of time redundancy schemes (i.e. alternating logic) proposed
and studied by Bark and Kinne [7], Reynolds [47], and Woodard [58].
Synchronous sequential machines have also been studied in that context

(47,58].

1.2. Summary of Thesis

One of the objectives of this thesis is to study the design of
totally self-checking systems that are made up of blocks whose fault be-
havior (and therefore also the input and output codes used) is different
from one another. Consequently, different codes will be mentioned and
their associated circuit structures discussed in detail.

In the next chapter, codes that are used to protect against uni-
directional errors are presented. Systematic and non-systematic codes are
shown to have the same basic structure. Indeed they can be produced using
the same generation rules that are expressed in terms of products of
lattices. The structure of non-systematic unordered codes, more precisely
the class of fixed-weight codes, will further be examined. It is shown
that these codes have codewords that can be effectively classified in terms
of congruence, cycling and complementation classes. These results will be

used in the following chapters.

R =

In Chapter 3 the capabilities of unordered codes are defined with

respect to circuit structure and fault models. Some results will be pre-

sented on the design of two-level minimal checkers. In fact the problem

of finding partitions that checkers must satisfy will be discussed in detail

and some guidelines based on the previous classification scheme are presented.

The concept of growth and existence tests is extended to the design of TSC
circuits and using this as a basis it is shown that there do not exist 2-
level TSC checkers for a class of systematic unordered codes, the Berger
codes. Finally some practical suggestions for and limitations on the use
of unordered codes under different fault models are described.

Chapter 4 touches an area where the design of TSC circuits has
been restricted: arithmetic circuits. After a brief introduction to arith-
metic codes, previous concepts about self-checking will be adapted to
arithmetic circuits and checkers. It is demonstrated that known checkers
and adders are TSC provided some basic rules are followed and some increase
in the hardcore is tolerable. At the same time it will be apparent that
practical TSC checkers are not known to exist if the hardcore size cannot
be increased.

The following chapter attempts to unify the different codes and
fault models by presenting some thoughts on translators and ways of using
codes to their best advantage. Encoding and decoding circuits as well as
a TSC memory architecture will be given in examples.

In conclusion, a brief look at the pin fault model will explain

why it was kept out of contention in the previous chapters. The thesis will

be summarized and finally topics for further research will be suggested.

2. THE STRUCTURE OF UNORDERED CODES

2.1. Introduction

In this chapter we examine the structure and properties of a class

of codes using lattice theory and other tools from modern algebra. The
codes in question are unordered and have already been discussed by
Anderson (1] and Smith [52]. The following treatment will unify the
structure of all unordered codes under a common set of generating rules.
The second part of this chapter will describe the structure of a subclass
of such codes, the fixed-weight codes, in terms of congruence and cycling
classes. These codes are non-systematic and this is a first attempt to
introduce some kind of useful classification of their codewords. Although
this classification does not solve completely the problems of encoding and
decoding such codes, it nevertheless simplifies it greatly. Practical
considerations for those circuits will be deferred to Chapter 5. We begin

by giving a brief introduction to lattices.

2.2. Lattices and their Products

The content of this section has been extracted mainly from Birkhoff

[10] which may be consulted for further details. Partial ordering is a

binary relation that satisfies the reflexive, antisymmetric and transitive
properties. A set together with a partial ordering relation is referred

to as a partially ordered set (poset). A lattice is a poset in which every
pair of elements has a least upper bound (l.u.b.) and a greatest lower

(8.1.b.). A Boolean algebra is a distributive complemented lattice. The

set of vertices of a Boolean lattice is the set of binary vectors. Binary

vectors with exactly k ones will be called k-tuples. The partial ordering

k____‘___;m‘gl_, R

S e s i B i

t
X
\
/

Binag soe e P v v Tt
00 o01\01'0 /100
8! B2 B3
1111
omZ 1011 1101 1110 |
oon<o1 1001 0110 1010\1100

§

II.

0001 0010 0100 1000 t

FP-%609

Be .

4

3

Figure 2.1. Hasse diagrams of Boolean lattices.

E

i

i

.

|

|

9
relation on the elements of a Boolean lattice is the usual covering relation:

a<b 1if and only if a; S-bi vi

where the ai’s and bi's are the components of binary vectors a and b,

respectively.
Example 2.1: Hasse diagrams of some Boolean lattices appear in Figure 2.1.
We say that vertex a is adjacent to vertex b if they are connected by an

edge in the lattice. Immediate predecessors gi's and immediate successors

gi's to vertex b are vertices adjacent to vertex b; also 3 < b and

b < & Vi respectively. A subset of vertices is said to be ordered and

is called a chain if any two elements are adjacent. A subset of vertices
is said to be unordered and is called an antichain if every pair of elements
is not adjacent. A maximal antichain is such that its cardinality cannot
be increased.
Example 2.2: In Figure 2.1 all antichains consisting of all k-vertices
(i.e. all vertices with exactly k ones) are maximal.
Let A and B be two lattices. The direct product A X B is a lattice

whose elements form the set of ordered pairs (a,b) and
(8, 0y) o (a5 by) = @y, b,0D,) o = g.l.b or lL.u.b

Example 2.3: All higher order Boolean lattices Bi, i> 1 are isomorphic to

the direct product of lattices Bj

86-32 sz- 83X31 etc. A subproduct is any subset of a direct product

whose exponents j add up to i: e.g.

and may neither be a lattice nor a chain.

2.3. Unordered Codes

We first equate unordered codes with antichains. A maximal

unordered code is simply a maximal antichain. It is possible to look at

ki

10

a lattice and pick out an antichain and use it as a code. For example in
Figure 2.1 the antichain consisting of 0011, 0101, 1001, 0110, 1010 and

1100 is the (maximal) 2-out-of-4 code. This approach however gives no in-
sight into the structure or the construction of unordered codes from smaller
lattices, and it does not tell how closely related all the unordered codes are.
We shall instead combine smaller lattices using very simple mappings.

By the converse of l.u.b. (g.l.b.) we mean g.l.b. (l.u.b.). By
inspection it can easily be seen that the converse of a Boolean lattice is
the lattice itself upside down.

In the following only Boolean lattices will be considered. Let
A and B be such lattices. If B is the converse of A then a complementary
antichain of A in B is located "at the same level" as its complement in A.
This idea of complementarity will be generalized to the notion of relatively
unordered antichains. Intuitively it is easier to visualize relatively
unordered antichains as being '"comparably located" in a lattice with respect
to a converse. The concept of comparable location can be formalized as
follow:

Definition 2.1: Two antichains @ and B, respectively, are comparably
located if:

Vg, 2« 33125 and

i
VaiSa 35155 and vice versa with aiEA and ﬁiEB.
If A is a Boolean lattice and B the converse of a Boolean lattice
then comparably located antichains in A and B are said to be relatively

unordered. Comparably located maximal antichains in Bk and in its converse

are not only relatively unordered but are also complementary. Relative

unordering can also be defined functionally:

11 b
Definition 2.2: Two sets of elements are said to be relatively
unordered if their product is an antichain.
Unordered codes have been defined as antichains. This point of view implies
that antichains are selected from a lattice or a product of lattices. An-
other approach is to use smaller lattices and define a subproduct that maps
them simply and exactly into desired antichains. It is easily shown that
all unordered codes can be constructed in the same manner whether they are
systematic or not.
Theorem 2.1: Any unordered code is a subproduct of relatively unorderd
antichains.
Proof: It follows directly from the definition of antichains (= unordered
codes) and the concept of relative unordering.
In fact, the mappings can be performed in several ways, for example:
-Every element in A and every element in relatively unordered anti-
chains in B are used.
-Every element in A and some elements in every relatively unordered
antichain in B are used.
-Some elements in A and some elements in relatively unordered anti-
chains in B are used.

Clearly the mappings are listed in order of decreasing efficiency
or rate since fewer and fewer elements are being used. As it can be seen
the construction rules are very broad. Since lattices can be defined in
terms of smaller lattices it turns out that their antichains can always
be constructed out of relatively unordered antichains of smaller lattices.
Hence all unordered codes can be obtained in that manner.

Fixed weight or m-out-of-n codes are codes made up of all the

binary vectors of length n with exactly m ones. Berger codes are systematic,

12

i.e. they comprise all the vectors of length n (information vector) to each
of which is attached a check vector whose value reflects the number of
zeroes in the information bits. Fixed weight codes are produced by the first
type of mappings, Berger codes by the second. More precisely let X denote

a complete concatenation product of relatively unordered antichains. Then
all fixed weight codes of the form k-out-of-(k+ j) can be obtained as

kaBj. As a special case k-out-of-2k codes are produced most efficiently

as kaBk. In the case of Berger codes it involves mapping complete anti-
chains of Bk with singletons of relatively unordered antichains of

r
B]"“’821;I . Let % represent such mappings; then Berger codes are of the

r
form Bk *B logzlﬂ‘

Two examples follow. In both cases, concatenation
products are indicated by the arrows and the small letters label the anti-
chains.
Example 2.4: The construction of a 3-out-of-6 code from B3. Using Figure 2.2
the mappings are as follow:
ax§: 000111
bxy: 001011, 001101, OOl1110, O10011, 010101, 010110, 100011, 100101, 100110
cxf: 011001, Ol1010, O11l100, 101001, 101010, 101100, 11001, 110010, 110100
dxa: 111000

The construction of the 3-out-of-6 code is not unique. However

g3

the construction from B * B~ is the most "efficient" one since lattices of

the same size are used. All the codewords are thus produced since

|8« B3| = lax8| + [bx¥Y| + |ex8| + |axal

= 1x1 + 3x3 + 3x3 + 1x1

« 20 w (g).

T T
———

Fre=

— ~ V/ .
(1 1 - _110 011, 101, S0y ¥
(001 0107 _100 8
000 a
Figure 2.2. Construction of the 3-out-of-6 code.
d
c Q@
10y
b (001
Q

[l] 281

Figure 2.3. Construction of the maximal Berger code with 3
information digits.

14

In geﬁeral this satisfies the well-known identity
k
k\2 2k
z () -()
Hi

so that effectively all k-out-of-2k codewords are generated in this fashion.

3 rlogz:;l
Example 2.5: The construction of the maximal Berger code with B™ *B .

The two lattices are given in Figure 2.3. The arrows give the following

mappings:
a x §: 00011
b x y: 00110, C1010, 10010 ;

¢ X g: 01101, 10101, 11001
d X a: 11100
It can also be seen that the only other maximal unordered code than can be
obtained from 33 * B ﬁogzﬂ is:
aXx &: 00011
b Xx g: 00101, 01001, 10001
¢ X Y: 01110, 10110, 11010
d x a: 11100

These examples represent by no means a complete cross-section of
all unordered codes. T@ey are however indicative of what the structure
of all m-out-of-n and all Berger (maximal and others) codes. More specifi-
cally we have not considered mappings of the third type. These mappings
are most inefficient (they are subsets of the first 2 types) and will not
be considered in the remainder of this thesis.

It has just been seen that all unordered codes have essentially

the same structure. In the next chapter, it will be shown that despite

15

this fact, checkers for different unordered codes do not look alike. But
first we examine the structure of fixed-weight codes which are widely used

in totally self-checking systems.

2.4, The Classification of Fixed-Weight Codewords

In recent years there has been an increase in the use of fixed-
weight codes mainly in the design of totally self-checking digital circuits.
Even though these codes are nonordered and nonsystematic they were also
considered earlier for asymmetric communication channels [19]. 1In this
section we present a method for classifying some of the fixed weight codes
into classes thus bringing the encoding method closer to a 'systematic"
procedure. An approach to the construction of such codes was suggested
by Kautz and Elpsas a few years ago [25]. It involved solving problems
in combinatorics related to the Steiner Triple system and its generalization,
balanced incomplete block designs [22]. As they pointed out, results in
that area were not very useful in coding theory. Here we present a method
by which one can produce a complete set of generators without repetition
for some of the fixed weight codes with higher rates.

As mentioned earlier m-out-of-n codewords contain precisely m
ones 1in a toctal of n digit positions. Let the positions of the ones in
a particular codeword be labelled Cp» CgreeesChs where the numbering
scheme of these digit locations Starts with 0 and goes up to n-1,

Example 2.6: The ci's corresponding to 011010 are 1,2 and 4 respectively.
In the following, codewords will be designated by an m-tuple consisting

of the ci's obtained from their binary representation, e.g. 011010124

16

Definition 2.2: Let us define the permutation T on the elements of a

fixed-weight codeword (m-out-of-n) as follows:

T(Ci) = c. + 1 mod n

3

This notation can be extended naturally to sets of elements as follow:
T(C) = T(Ci) VCiEC

the set of cl's to which T is applied is called the ensemble of elements
moved by T.

Definition 2.3: A permutation T is said to be cyvclic if

T(Ci) o g 1 mod n Vi< m

Definition 2.4: A permutation T is quasi-cyclic if the set of elements

left fixed by the cycle T is non-empty i.e.

T(ci) » G + 1 mod n for some (but not all) i < m.

Definition 2.5: A (quasi) cyclic permutation T is ordered if the

elements of the cycle are ordered. In the case of non-negative integers

0.1 23 «vanm
(12384 ... 0"

definition is made only for convenience as there exists an isomorpism

this is the same as cycles of the form This last
between the elements of cycles with identical length. Using concepts
just mentioned we can define:

Definition 2.6: A fixed-weight code is said to be (quasi-)cyclic if
it is closed under an ordered (quasi-)cyclic permutation T.
We shall see that they all are. Let us denote the greatest common divisor
of m and n by (myn)., If (myn)=1, m and n are said to be relatively prime.

It is now possible to establish some results concerning the structure of

fixed weight codes.

17

Theorem 2.2: If (m,n) =1 the codewords in an m-out-of-n code can be
grouped into exactly (;)/n classes each of which is closed under cyclic

shifting and contains exactly n codewords. Moreover a complete set of

(:)/n generators can be listed by finding the m-tuples whose ci's satisfy
m

T N = jmod n for a fixed j, 0 < j <n.

i=]

Proof: First we know there are (:) codewords. Suppose we pick any
codeword and find that the summation of its ci's is congruent, say, to b
mod n. Cyclic shifting T corresponds to the addition of 1 (modulo n) to
each of the ci's or equivalently to the addition of m to the summation

(= b mod n) of the ci's. Since (m,n) =1, the length of the cycle will be
exactly the modulus n. Hence there are (:)/n classes of cardinality n.
It is easy to see from the above that each class will contain exactly one
codeword with tci- j mod n for each j in the range 0 to 2k. Q

This theorem covers, among others, codes of higher rates or the
form m+ l-out-of-2m, m-out-of-2m+ 1, those with least rate, l-out-of-m
(m-l-out-of-m), those of the form "even'('"odd")-out-of-"odd'"("even"). The
'i fact that we are using a fixed congruence relation, i.e. j wcd n guarantees
that the solutions are in distinct classes. Clearly there are other sets of
generators; indeed there are n(;)/n such sets. Note that when half of
| the m-out-of-n codes have been found the other half can be obtained directly

by complementing each of the codewords in every code, i.e. replacing them

{ by their complement in the set {0,1...,m-l}. This procedure is obvious since

n

-) and corresponds to bit by bit complementation.

5 (o) =«
1 Example 2.7: Table 2.1 gives all the codewords of a 3-out-of-7 codes. The
!i elements of each column are congruent to the value indicated by the heading

of the columns. The order in which they are given follows the natural ordering

of the cycle staring with O mod 7.

.

0 mod 7
016
034
025
124

356

18

{

Tl TZ T3 T4 '1‘5 T6 i
|

|

3 mod 7 6 mod 7 2 mod 7 5 mod 7 1 mod 7 4 mod 7

012 123 234 345 456 056 3
145 256 036 014 125 236 . |
136 024 135 246 035 146 { :
235 346 045 156 026 013
046 015 126 023 134 245

Tabie 2.1 - The codewords in a 3-out-of-7 code.

19

Theorem 2.3: If (m,n) #1 then the m-out-of-n code can be constructed
as follow:
1) Construct the m-out-of-(n«l) code using Theorem 2.2.
2) 1f ((m-1),(n-1)) #1 then set m=m-1, n=n-1 and reapply 1.
3) 1f ((m~1),(n-1)) =1 then
3a) construct the (m-1)-out-of-(n-1) code using Theorem 2.2.
3b) concatenate the current n-1 to the current (m-1)-out-of-
(n~1) code
3c) merge the resulting code with the current m-out-of-
(n=1) code.
4) Set m=m+ 1, n=n+1 and reapply 3b until the originally
looked for m-out-of-n code is obtained.
In other words the code can be constructed recursively and when recursion
is exhausted we have aclassification for the codewords of the m-out-of-n
code. The code thus obtained will be quasi-cyclic.

Proof: If (m,n) #1 then (myn=1)=1, It follows that the m-out-of-
(n-1) code can be constructed using the previous theorem. The subcode thus
produced will consist of all m-vertices which do not have n-1 as a digit
position. (Remember that the range of digit positions {s 0 to n-1.) The
next step consists of producing all the (m=1)-out-of-(n-1) vertices and
concatenate them with the digit (n-1). The merging of these two subcodes

produces exactly all the codewords of the m-out-of-n code. Numerically

this is verified by the well-known recursion formula for binomial coefficients:

i g) RO €9

oot o e —

.

20

Of course m-1 and n-1 may not be relatively prime hence the reason for
reapplying step 1. Eventually these terms will be relatively prime since
m and n are decremented all the time. The ultimate situation where m=1 and
n is anything ((l1,n) =1) guarantees a finite number of steps in the recursive
process., Typically, however, the recursion will not have to proceed that
far. Steps 3 and 4 are provided to guide the concatenation and subsequent
merging in cases where a number of recursion levels is required.

The procedure given above constructs recursively the (m-1)-out-of-
(n-1) and m-out-of-(n-1) codes. At each recursion interval a new bit is
concatenated so that ultimately the codewords have the desired length.
This is best illustrated by an example.
Example 2.8: The construction or classification of the codewords for the
3-out-0f-9 code. The 3-out-of-8 and the 2-out-of-8 codes have to be realized
((g) + (:) = (g)). The 3-out-of-8 code. is constructed first using
Theorem 2.2 yielding 56 codewords. This is going to be the cyclic part of
the 3-out-of-9 code. The 2-out-0f-8 code cannot be built using Theorem 2.2
so the work is divided in two: the realization of the l-out-of-7 and 2-out-
of-7 codes, both of which can be constructed using Theorem 2.2 (this process
yields a total of 28 codewords). The l-out-of-7 code is then concatenated
with the digit 7 and the result is merged with the 2-out-of-7 code. These
28 codewords are then concatenated with the digit 8 (forming the quasi-cyclic
part of the code) and merged with the 56 codewords obtained above. All the
3-out-0f-9 codewords have been obtained since none of the 56 codewords
constructed at the beginning contained a 1 in position 8.

Corollary 2.4: The set of codewords in a k-out-of-2k code can be
sorted into exactly 2(2::})/2k-1 classes,half of which are closed under the
quasi-cyclic shifting operation and half of which are closed under the cycling

operation T.

PRESAceE

21

Proof: (by construction) Suppose we have obtained the codewords of
a (k-1)-out of-(2k-1) using the previous theorem. (We can use Theorem 2.2
since (k-1, 2k-1)=1). We first observe that (- = 2(*X-1). By
concatenating the number 2k-1 to each of the codewords of the (k-1)-out-
of-(2k-1) code, exactly half of the k-out-of-2k code is obtained. All
congruence properties mod 2k-1 are preserved, that is,all the elements in
this half of the k-out-of-2k code are still congruent to the same number
mod 2k-1 as they were in the (k-1)-out-of-(2k-1) code. Since the digit
position 2k-1 is constant throughout this half of the k-out-of-2k code,
this portion of the code is quasi-cyclic. The other half of the k-out-of-
2k is made up of the k-out-of-(2k-1l) code obtained by complementing the

first half; since none of the codewords in this half contains a c, equal

i
to 2k-1 we conclude that all the codewords have been obtained U,
This corollary is perhaps the most interesting application of
Theorem 2.3 since it shows how simply fixed codes with highest rate can
be generated. They are such that exactly half of the codewords are cyclic
and half are quasi-cyclic. In fact all the codewords are cyclic in the
first (2k-1) positions.
Example 2.9: Table 2.2 lists all the codewords in the 4-out-of-8 code.
The first half is simply the 3-out-of-7 code to which is concatenated the

digit 7. Since the digit 7 is stationary throughout, this part is the

quasi-cyclic part of the code. The cyclic part consists of the second

half and its elements are obtained by satisfying the same congruence relation.

Simpler yet,one just has to complement the first half of the code.
By complementation is meant bit by bit complementation or
equivalently complementation in the set {0,1,...,n-1}. For codes of the

form k-out-of-2k half of the codewords can be obtained by complementing the

i
;
|

To T1 T2

0 mod 7 3 mod 7 6 mod 7
0167 0127 1237
0347 3457 2567
0257 1367 0247
1247 2357 3467
3567 0467 0157

0 mod 7 4 mod 7 1 mod 7
2345 3456 0456
1256 0236 0134
1346 0245 1356
0356 0146 0125
0124 1235 2346

22

T3

2 mod 7
2347
0367
1357
0457

1267

5 mod 7
0156
1245
0246
1236

0345

T&

TS

5 mod 7 1 mod

3457
0147
2467
1567

0237

2 mod
0126
2356
0135
0234

1456

4567
1257
0357
0267

1347

7 6 mod
0123
0346
1246
1345

0256

T6

7 4 mod 7
0567 |
2367
1467 ¢

0137

2451

7 3 mod 7
1234
0145
0235
2456

0126

Table 2.2 Codewords of the 4-out-of-8 codes as obtained
from the 3-out-of-7 code.

From

Table
2.1

23

the first half as long as it makes up an integer number of cycling classes.
If we now define the classes of a k-out-of-2k code in terms of quasi-cyclic

shift and complementation then the number of generators is half the number

2k-1
L e

generators for the 4-out-of-9, S5-out-0f-10, S5-out-of-11 and 6-out-of-12

of classes given by Corollary 2.4 i.e.)/2k-1. Complete sets of

codes are given in Table 2.3 (the digit should add up in this case to 0 mod 9
and 1l respectively). Finally some statistics on the number of classes are

presented in Table 2.4 for codes with higher rates.

2.5. Rates of Unordered Codes

Unordered codes have enough redundancy to detect all single and
multiple unidirectional errors (that is, errors that change only Os to ls
or only 1ls to Os). This can be explained by the fact that such errors
cause elements of relatively unordered antichains (that are used in the
product realizing the code) to move in the same direction and become ordered
with respect to some codeword. Code capabilities will be discussed further
in the next chapter,

Although they detect a fairly large class of errors, unordered
codes have a reasonably good rate. Rate is defined as log2 (# of codewords)/
(# of bits in the cordword). Graph 2.4 plots the rates for both k-out-of 2k
and Berger codes. The graph is defined only at discrete points and curves
are drawn only to indicate the general aspect. The price to pay for
separability is evident from the graph since Berger codes have consistently
lower rates. It is also seen that the rate increases with the size of the
codeword. However, this is more than compensated for by the complexity of
hardware that has to manipulate those codes (especially for the fixed weight

codes).

0126 0135 0234 0378 0468 0567 1278

1368 1458 1467 2358 2367 2457 3456

a - A complete set of generators for the 4-out-0f-9 and 5-out-of 10 codes

01235 012910 013810 014710 01485 015610 01579

01678 023710 02389 024610 02479 02569 02578 |
034510 03469 03478 03568 04567 068910 123610

12379 124510 12469 12478 12568 13459 13468

13567 158910 167910 23458 23467 248910 257910
267810 347910 356910 357810 36783 45789 456810

b - A complete set of generators for the 5-out-of-11 and 6-out-of-12 codes.

Table 2.3.

P —— — ¥

(m,n)
@,5)
3,6)
3,7
4,8)
(4,9)
(5,10)
(5,11)
6,12)
(6,13)
(7,14)
(7,15)
(8,16)
(8,17)
(9,18)
(9,19)
(10,20)

Table 2.4:

25

of codewords # of classes
10 2
20 2x
35 5
70 5%
126 14
252 14%
462 42
924 42%
1716 132
3432 132%
6435 429
12870 429%
24310 1430
48620 1430%*
92378 4862
184756 4862%

Number of codewords and number of classes for
some m-out-of-n codes (m,n).

*Permutation - complementation classes.

26

0.9

0.8}

0.7

Rate

0.5

04 L:7§ W NP Y £1o] L JRBN, W) DN D DN, SO 18 L5 N R . Y
(0] q 6 8 _10 ; 12 14 16 18 20
Number of Bits in Codeword

FP-%612

Figure 2.4. Relative rates for best fixed-weight and Berger
codes.

2.6. Concluding Remarks

The previous theorems and corollary grouped fixed weight codes
into classes and complete sets of generators were obtained by satisfying
a fixed congruence relation. Nothing, however, has been said as far as the
actual computation of these sets is concerned. The exhaustive computation

can be quite tedious (even for a computer) but once the generators have

been found there is obviously no need to recompute them all the time.
(The proof of Theorem 2.2 suggests a way of obtaining those generators.)
In fact a way of encoding a binary word into a fixed weight codeword would
be to use some of the bits of that word to address a table and other bits
to determine the amount of shifting and complementation to be performed on
the contect of that location. Complementation is an inexpensive operation
so that in implementation both permutation and complementation, if possible,
should be used as basic constructs. This will be discussed further in
Chapter 5.

Although codewords in a particular code can be systematically
classified, no general relation between the classes and generators of
different codes has been found. This would be a useful relation since it

would simplify functional mappings between fixed weight codes of different

lengths and weights.

28

3. SOME RESULTS ON THE DESIGN OF TSC CHECKERS FOR
UNORDERED CODES

3.1. Introduction and Definitions

This chapter presents some results on the design of TSC checkers
for both the fixed-weight and Berger codes. Two-level checkers are in
general desirable since they can detect malfunctions most rapidly. However

for codes with only a moderate codeword size, fanout restrictions become

prohibitive. The problem of finding minimal two-level checkers can be
identified with the problem of finding a minimal partition on the set of
code vertices and this partition must be satisfied by all checkers. There
are difficulties associated with checkers for Berger codes and they will

be discussed in Section 3.6. The following sections give some consideration
to the use of unordered codes under the single fault and asymmetric error
assumptions. But first some definitions about circuits are provided.

In the following we shall present some results pertaining to the
class of acyclic combinational circuits that totally self-checking checkers
make up. Circuits, denoted by the letter G, will perform functional mappings
from an input space X to an output space Y. In a network with several

functional blocks G,, the notion of input and output spaces can be extended

i’
so it emcompases all network inputs and outputs. For circuits with r in-
puts and s outputs, the domain will be the set X of ol vertices of the
r-cube and the range the set Y of 2% vertices of the s-cube. In order that
it be possible to detect failures, only proper subsets of the input and
output spaces may be applied to, and produced by the circuit during normal
operation. These subsets are called the code spaces. The circuit then per-

forms partial mappings from a domain called the input code space A (A C {2r

vertices]) onto a codomain called the output code space B(BC:{2S vertices}).

29

The relative complement of the code spaces A and B with respect to the
spaces of 2* input vertices or u output vertices will be referred to as
input and output non-code spaces,respectively. Elements of the code spaces
will be called codewords and all remaining elements will be called non-code-

words.

3.2. Errors and Faults

Perhaps the most widespread concept of distance in use is the
Hamming distance. The Hamming distance is simply a metric measuring the
number of positions in which binary vectors differ. Codes with capabilities
specified in terms of minimum Hamming distance also assume that error patterns
are completely random. However there are situations where the distribution
of the faults is not so random. Memories and busses tend to exhibit error
patterns that have dependent components. Similarly, failures of integrated
circuits may affect multiple lines and are likely to be in the same direction.
These types of faults are referred to as asymmetric faults and can be best
characterized in terms of polarized distance [1]:

The polarized weight is defined only on error vectors obtained by
borrowless arithmetic subtraction of the erroneous vector from the '"correct"

vector.

Definition 3.1: The polarized weight wp(E), of an error vector E is the
2-tuple Gﬂ+, w-) where w+ and @~ are the numbers of positive and negative
components in E, respectively.

Definition 3.2: The polarized distance between two vectors x and y
is Wp(ﬁ-x) (component by component borrowless subtraction).

Anderson has carried out an extensive study of the properties of polarized

distance [l]. For the present purposes it suffices to provide the following

definitions:

e

|
|

30

Definition 3.3: Asymmetric errors have polarized weights such that

ot o, 1

Definition 3.4: Unidirectional errors have polarized weights with
the following characteristics:
if o # 0 thenw =0
and vice versa if # 0 then o' = 0.
One may readily observe that
-Unidirectional errors form a subset of asymmetric errors.

-Single errors form a subset of unidirectional errors.

Up to this point we have mentioned errors only in the context of s
coding theory. In logic networks these will appear as hardware failures which
are of a permanent nature. Transient failures may also occur and will be
detected if the propitious conditions are present i.e. if and only if a
codeword that sensitizes the fault is applied during its lifetime. So,
for all practical purposes, transient faults either will appear as permanent
stuck-at faults or simply be non-existent, as far as fault modeling is
concerned. This is the classical stuck-at fault model where lines get
solidly stuck-at-1 (s-a-1) or stuck-at-0 (s-a-0).

A fault in a circuit will be denoted by the set ui/di, 1<i<k}
where Li is usually some gate input or output line stuck at the value
d; €{0,1}; k is the multiplicity of the fault. The faultset 8 is the set
of modeled faults and is usually justified in terms of both simplicity
and likelyhood. The notions of asymmetric and unidirectional errors carry
over very simply tothe definition of fauit sets. Asymmetric and unidirectional

d errors may have any multiplicity. In addition asymmetric faults are such

that the number of di = 0 is nct equal to the number of di = 1; in the case

of unidirectional faults all the di's are equal. Single faults simply have 1

31

unit multiplicity. The absolute number of faults of different types are
given below. The qualifier '"absolute' means that circuit structure and
fault equivalence classes are not taken into account. In a circuit with
n lines:

The number of single faults = 2n

The number of multiple faults = 3".1

The number of unidirectional faults = 2(2“-1)

u n i In/2] n, ,n-1i
The number of symmetric faults = L (i)('/Z) = 0 i
even i * i 5

n =
The number of asymmetric faults = (3"-1) - I (?)(172)
even i

The number of unicdirectional faults is obtained by computing

the number of all 0's or all l's patterns with the multiplicity ranging

from 1 to n. This comes out to 2; (2) = 2(2“-1). For symmetric f{aults

one computes the number of synmetr;c faults ((i/Z) term) times the number
of patterns with even multiplicity ((:) term with i even) and performs

the summation of the product terms for all even i's. Equivalently we can
calculate the summation of the number of lines taken i at the time,
multiplied by the number of lines stuck in the other direction, also taken

i at the time, but out of the remaining n-i lines. The number of asymmetric
faults is presented as a difference to emphasize that this number and the
number of multiple faults are of the same order. Indeed circuits with
complete test sets for asymmetric faults will cover a very large number of

the multiple faults. Figure 3.1 gives an idea of how some classes of faults

overlap.

S &bt Al R A

Asymmetric Faults {
i) ; } Symmetric
Unidirectional Faults
Faults Double |
Foults"!"
:
Multiple Faults i,

Figure 3.1. Classes of faults.

33

In a circuit with 4 lines, about 22.5% of all multiple faults will
be symmetric whereas for a circuit with 20 lines the figure is about 11%
and less than 8% for a circuit with 40 lines. This means that, ignoring
structural constraints, a circuit with about 40 lines, designed to be totally
self-checking with respect to.asymmetric faults, will be self-checking with
respect to more than 927 of all possible faults. From a coding theory stand-
point, if information is encoded (using unordered codes) in blocks of 40
bits, then on the average the code will detect 927 of all errors. Unfor-

tunately the code will not correct any error.

3.3. Basic Definitions

In this section, basic concepts and results relevant to the scope
of this chapter as well as the rest of the thesis are presented. The
formalism in the following is due to Smith {49-51].

As before let A be the input code space and B, the output code"
space. The functional block G will perform a mapping G(a,f) where the first
argument is some member of the input space and f is an element of the fault
set & Mappings under the no fault situation are denoted by G(a,»). The
following definitions are made with respect to a fault set 3.

Definition 3.5: A functional block is fault secure if

Vf€3 VYa€A G(a,f) = G(a,p) or G(a,f) €B

In words: G will never produce, under a modeled fault, an incorrect codeword.

Definition 3.6: A functional block is self-testing if
VE€d HTa€eA such that G(a,f) € B

That is, all modeled failures can be detected by some codeword.

I e e s i i

34

Definition 3.7: A functional block is totally self-checking (TSC) if
it is fault secure and self-testing. Removing the overlap between the self-
testing and fault secure properties an equivalent definition of TSC is
obtained.

Definition 3.8: A functional block is totally self-checking if it

is fault secure and
VEE€3 Ta€A such that G(a,f) # G(a,p)
An equally interesting concept in the idea of essentially totally self-

checking circuits.,

Definition 3.9: A functional block G is essentially totally self-

checking (ETSC) with respect to the fault set 3 if:
i) it is totally self-checking with respect to 3.
or ii) it is fault secure with respect to 3 and for any £€3
which is not tested by input codewords, the network G
under f is ETSC with respect to 3% = {3-£}.

Totally self-checking circuits for unidirectional faults are con-
structed without inverters. fhey implement unate functions; these are
completely monotonic and therefore preserve the direction of the fault and
propagate it to the outputs [10,49]. Totally self-checking checkers are
TSC circuits whose function is defined by the code disjoint property:

Definition 3.10: A circuit is code disjoint if it always maps non-

code inputs to noncode outputs.
This is the original definition. Actually some non-codewords may
never be produced by a fault set. These non-codewords will be referred to

as improbable. The property of mapping probable non-codewords (and perhaps

not all improbable non-codewords) into non-code outputs is the error

preserving property. It is equally satisfying in practical checkers as f

IR T RIS IEIRIIIE==—===—= ¥y

35

the code disjecint property. One may also require that error preserving
mappings be performed under the no fault condition. However asymmetric
faults may afflict both a circuit and its checker, in which case the fault-
secure and code disjoint properties combine to produce a non-code output.
In the single fault case it is assumed that a fault in a circuit implies
the exclusion of a fault in its checker and vice versa. In that case a
checker is code disjoint under the no-fault situation and fault-secure

in the faulty mode. Totally self —~checking checkers usually have 2 outputs;
this figure is a minimum and there is nothing conceptually incorrect with
more outputs (although less economical). These 2 outputs will be produced
by functions F and G, be labelled (f,g) and take normal values in the set
{(,1),(1,0)}. Non-code space inputs or faults inthe checker will produce
(£,8) € [(0,0),(1,1)}. Smith has shown that the following two conditions
are necessary and sufficient for the realization of TSC checkers for m-out-
of-n codes [50,52].

Condition 1: Every (m+ l)-vertex covers at least one m-vertex in
F and at least one m-vertex in G.

Condition 2: Every (m =~ 1l)-vertex is covered by at least one
m-vertex in F and at least one m-vertex in G.

The problem has now the flavour of combinatorics. Indeed the existence of
satisfactory partitions for arbitrary m and n has been linked to the
existence of the Ramsey number N(m+ 1, m+1l; m) = R(m) as follows:

Theorem 3.1: (Smith [50-52]) for m‘i(%), R(m)>m if and only if the
m-vertices of the n-cube can be partitioned to meet conditions 1 and 2.
Ramsey numbers known in this case are R(l) =3 and R(2) =6 inferring the
existence of checkers for the l-out-of-2, 2-out-of-4, and 2(3)-out-of-5

codes. Since 13< R(3) <17, checkers for the 3-out-of-n codes certainly

36

exist for 6 <n<12, perhaps for 13<m<17 and definitely not for n>17.

These results did not tell anything new; however they give an idea of the
magnitude of the design problem. The problem of finding a satisfactory
partition of the code vertices into F and G is in general difficult

(relatively easier for k-out-of-2k codes). If a satisfactory partition exists,
let H(m,n) be the minimal number of code vertices that must be in block F.

Then the 2-level AND-OR realization of F has H(m,n) +1 gates; similarly

the OR-AND 2-level realization of G has H(m,n) +1 gates (such realizatioms

will be called hybrid). H(m,n) is bounded as folloﬁ:

szt [fg2 fpd]], fa sf-fo2 o))

3.44 Some Results on the Design of Two-Level TSCC

Theorem 3.2: Given a set of implicants of size m such that all (m-1)-
vertices are contained in these implicants, let us form a set of implicates
by taking the relat.ve complement of th-se implicants. Then the irredundant
two-level hybrid realization using these implicants and implicates is a
totally self-checking checker for the m-out-of-2m code. By irredundancy
it is meant no duplication of implicants or implicates. |

Proof: As usual for checkers it has to be proven that they are code
disjoint, fault-secure, and self-testing. As mentioned before it suffices
to prove the following:

1) f(m) = 1 iff g(m) = 0 2) f(m) = 0 {ff g(m) =1

3) f(m<1l) = 0 and g(m-1) =0 4) f(m+l) = 1 and g(m+l) =1
The function f is the AND-OR part of the checker while g is the OR-AND
section. By f(m) it is meant that the domain of f is a set m-vertices.

Cases 1 and 2 are easily proven using the relative complement constraint.

R N Sina o commara- z“J

37

Suppose first f(m) =1. Clearly an implicant is equal to 1, i.e m variables
are 1, and therefore its relative complement is all zeros. It follows that
the corresponding implicate is zero thus forcing the final AND gate to zero,
hence g(m) =0. Inasmuch the second case is concerned suppose that at least
one variable in an implicate is 1, then at least one of the variables in
the corresponding implicant is set to zero. Since g(m) =1, it implies that
each and every implicate has at least one on-variable causing all the
implicants to be zero thus f(m) = 0. These arguments are dual in the other
direction and need not be given here. Case 3 is equally simple to prove.
If an (m-1) vertex is applied to the checker then no implicant will be
true since they all have size m. Also all (m-1)-vertices are subsets of
some implicants and because of the relative complement property each (m-1)-
vertex will have no element in common with at least one implicate. Thus
g(m-1) =0, For case & one has to show that there is an implicant which is
a subset of each (m+l)-vertex and that all implicates have some elements
in common with each (m+l)-vertex. Suppose we have the set of all (m-1)-
vertices and a set of m-vertices that covers all of them. Since we are
dealing with closed sets then by simple complementation arguments we can
say that all (m+l)-vertices (i.e. the relative complement of all (m-1l)-
vertices) covers the relative complement of the set of m-vertices. But
both the set of m-vertices and its complement are of the same size and cover
all m-1 vertices so that the set of all m-vertices is covered by the set of
all (m+l)-vertices. Q.E.D.
The previous theorem establishes an equivalence between the
problem of constructing hybrid 2-level TSCC and that of finding a set of
m-vertices which has for subset the set of all (m-1l)-vertices. Moreover

it can be observed that if the cardinality of this set of implicants is

38

minimal then the corresponding realization of the 2-level TSSC is minimal.
This situation occurs when there is no large overlap between the m-vertices.

This is going to be formalized in the following

A minimal set of m-vertices such that all (m-l)-vertices are con-
tained in it without repetition has the property that each m-vertex con-
tains or covers exactly m(m-1l)-vertices that are not covered by any other
m-vertex. It can be verified for the 2-out-of-4 and 4-out-of-8 codes that
there are exactly (ifl)/k members in the minimal set of m-vertices. How-
ever nothing can be said in general. For example m does not divide exactly
the cardinality of the set of (m-l)-vertices for m larger thamn 5. Note that
this situation is taken into account by using the ceiling of terms in H(m,n)
instead of the ceiling of the product of the terms. It is, however, possible
to approach the minimum number of m-vertices needed by reducing the amount
of overlap between m-vertices.

Let us use the same notations as the one used in the previous
chapter and represent vertices by numbers (ci's) representing the positions
of the ones in the vertex. Suppose we have twoc m-vertices such that all but
one of their ci's are the same, then both m-vertices have one (m-1l)-vertex
in common. For example vertices 12789 and 01278 both cover vertex 1278.

Now assume that two m-vertices have the same ci's except for two that are
found to be not common to both. It is then possible to show that the set of
(m-1)-vertices produced from or covered by those m-vertices is irredundant.

Theorem 3.3: The set of (m-1l)-vertices produced by a set of m-vertices
such that their elements,taken pairwise, are the same in all but two of the
ci's is irredundant i.e. no two (m-1l)-vertices produced are the same.

Proof: Such m-vertices have exactly one (m-2)-vertex in common. The

construction of (m-l)-vertices covering an (m-2)-vertex requires the

39

concatenation of a ¢y which appears in no more than one m-vertex to the
common (m-2)-vertex. Also the m-l1 other (m-l)-vertices contain no more
than one of the ci's that do not belong to both m-vertices. It therefore
follows that, under those conditions, the (m-1l)-vertices are produced from
the m-vertices without repetition. Q.E.D.

In the previous chapter it was shown how fixed weight codewords
could be arranged in congruence classes. The next theorem provides an aid
in finding a minimal or near minimal partition that satisfies conditions 1
and 2 based on those classes.

Theorem 3.4: The elements of a congruence class (excluding a comple-
mentary subclass) are such that any pair of such m-vertices have all but
exactly two ci's in common.

Proof: By definition all the elements in a congruence class are
congruent to the same value modulo n. In order to move from one element
to another in the same class, and thus preserve the congruence relation,

changes to the digit positions ¢, must be performed in a symmetrical fashion.

i
Changes are said to be symmetric if the value c is added to one digit
position and subtracted from another digit position to maintain the

resulting vertex in the same congruence class (all the operations are per-
formed modulo n). Some values of c will be inappropriate since they would
change some digit positions into digit positions that are not going to be
altered by the change. Such inappropriate changes produce vertices that
shall be excluded automatically from the congruence class. The elemental
change that can be effected is the simple addition of +1 to a digit position

and of -1 to another. All other changes can be expressed in terms of that

simple change. For this change of +1 and -1 it can easily be seen that

v ol S e

40

exactly two digit positions are affected. Also a systematic production of
m-vertices from a single m-vertex that satisfies the congruence relation is
possible and will generate all m-vertices that satisfy the congruence relation
of the initial vertex. In this generation scheme complements will also be
produced. The reason for excluding a complementary subclass in general is
that 0 and n have the same value modulo n; hence the presence of both
0x,X,...X, and X,X ...xjn in the same congruence class. Because its

L J i

elements do not differ in two ci’s the complementary subclass that is to be

excluded is one of the 2 subclasses that contains half the vertices just

described i.e. for each vertex of the form Oxlxz...xj exclude the one of the

form X)X, esX 0 Or vice versa. The complementary subclass is empty for

]

cyclic codes since 0 mod n is represented solely by the number 0. So, as
long as that complementary subclass is excluded each pair of elements in
the resulting set of m-vertices Belonging to a congruence class will have
exactly m-2 digit positions in common. Q.E.D.

The results of the previous two theorems can be expressed also
in terms of distance. Two m-vertices that have all but two ci's in
common are at a distance of 4. Indeed since each vertex comprises a 1 in
two positions that are not shared by the other vertex, the resulting
distance is 4.

These results do not give a complete solution to the problem of
generating minimal partitions that meet conditions 1 and 2. However they
indicate not only a good initial guess but also the sequence in which a
heuristic procedure to construct those partitions should proceed: First
select a congruence class as starting set, remove the complementary sub-

class described above (if any) and select other codewords to be compared

with the initial set in an order such that complete congruence classes

41

are examined one after the other. When this is over it is probable that
some (m-1l)-vertices will not have been covered. These (m-l)-vertices must
then be covered with as few m-vertices as possible and this is the standard
covering problem often encountered in switching theory.

Example 3.1: A starting set for constructing a minimal set of 5 vertices
that will cover all 4-vertices can be the congruence class in the 5-out-of-

10 code whose elements have value 0 mod 9:

01269 34578 12789 01278
01359 24678 13689 01368
02349 15678 14589 01458
03789 12456 14679 01467
04689 12357 23589 02358
05679 12348 23679 02367

24579 02457

34569 03456

The second and fourth columns are the complements of the first
and third respectively. Also the third columns differs from the fourth
only in the digit 9 being replaced by the digit 0. Therefore for each
complementary pair one element has to be removed. The resulting set will
cover 20 x5 =100 of the (tO) =210 4-vertices without repetition.

Example 3.2: A minimal set of 4-vertices that will cover all 3-vertices
i.e. a minimal partition for the 4-out-of-8 code is:
0123 0145 0167 0256 0247 0346 0357

4567 2367 2345 1347 1356 1257 1246

42

In this case most of the elements are congruent to 1 and 6 mod 7.
This set has the property of being self-complementary. The two-level hybrid
complementation of the checker is such that the inputs to the AND-OR section
are exactly the same as those to the OR-AND section. Although this situation
occurs also for the 2-out-of-4 code we are unable to conjecture anything

about other codes.

3.5. Self-Checking and Growth and Existence Tests

In this section we extend the notion of growth and existence tests
to the idea of self-checking. The next section will present an application
of that approach. |

These two types of tests were introduced by Paige [35] and by
Kohavi [26] who called then "a" and "b' tests. We shall consider only the
simplest form, i.e. tests for two-level structures. The '"existence' tests
verify the existence of an implicant. Growth tests consist in making
implicants independent of a particular variable thus causing cubes to grow
into larger ones. {he no-fault result of the application of a growth test
is an output equal to zero. More precisely suppose f =1;1 Pi' In order to
check that none of the inputs to the jth AND gate is stu:k at 0 one needs
only to select an input vector 3 €Pj and 8, g 1§j P,. Also if the k-th

input to the jth AND gate is stuck at 1, the behaviour of the network changes

as if a supplementary subcube ij (adjacent to P,) was added to the original

h|

function. The test set is therefore the set of b kGP

3 J

bJKQZ Pi' Due to fault equivalence, the OR gate is completely tested by
i

the above tests. Although there is one existence test per implicant, a

k such that

growth test can check the growth of several implicants upon a single

43

application. These ideas extend very easily to design constraints for
the self checking part of two-level totally self-checking circuits.
The set of existence tests must be such that

Vy f(y)=1 Ja €AD f(a,) = f(y) and a, ¢ T P

Dually f can be replaced by g. In words it simply means that each and

|

every existence test must be performed using code space inputs. Also, the
growth of an implicant must be checkable by a code space input:
Let bj = Pj and ij be adjacent boolean subcubes. Then these must

exist input vectors

Vkand b, €L P

b - -
k€ jk < Py % Tyr

3 i

Theorem 3.5: Assuming code disjoint design, the existence of "existence
tests'" is necessary and sufficient to guarantee that a 2-level irredundant
AND-OR realization be totally self-checking.

Proof: Since f € g = 1 if and only if their domain is some code space
input then every growth test in f must be an existence test ing and vice versa

Since test sets for two level structures are sufficient (but not
necessary) test sets for any irredundant multilevel realization of the same

function, very little can be inferred from results for 2-level realizatioms.

3.6. Checkers for Berger Codes

Although Berger codes have the advantage of being separable, no
good checkers are known for such codes. If the checkers have to be TSC with
respect to unidirectional faults then the only method known is to translate
the Berger code into an m-out-of-n code and then check that code using

known checkers. One way is to translate the Berger code with n information

44

bits into the l-out-of-2" code and then check that code [46]. This is of
course a very expensive approach for maximal codes with large n. Smith

[51] maps the (3,5) Berger code onto the less redundant 2-out-of-4 codes.
However no general methods are known to perform such mappings. If the

fault model is the single fault assumption thenthe use of inverting gates

is permitted and there is a variety of "simpler'" ways to check Berger codes.
One can use any irredundant structure that counts the number of ones in the
information bits and compares it with the value of the check bits. Such a
structure may be made up of half adders or be a unate array whose outputs
produce the functions '"m or more ones'" combined with inverters to give a value
that can be compared with the check bits [45].

It is in general recognized that ideal checkers should respond
quickly to changes in their inputs. This is achieved by an implementation
with the smallest number of levels. The next theorem is concerned with the
non-existence of 2-level checkers for maximal Berger codes. What is less
obvious is that it addresses essentially the same partition problem as for
the fixed-weight codes.,

Theorem 3.6: There do not exist 2-level realization of TSC checkers
(with respect to unidirectional faults,i.e. inverter-free structure) for
maximal Berger codes.

Proof: In maximal Berger codes there is a single codeword of the form
= 0...01l...1. 1In order to check that codeword

X,eeeX X

l..x
n n+l

1 -
the checker under no fault must produce the output (f,g) = (0,1) or (1,0).

n+1032(n+l)

Also because of unateness constraints the functions f and g are completely
defined for all the non code inputs. For example the pair (f,g) for all

inputs X,...X X S

1 - 0...0l...1 is (1,1). Now suppose that

>
n+1032(n+1)

45

£(0...01...1) =0 then there must exist codewords yl'"ynyn+1"'yn+logz(n+1)
such that f(yl"'yn+logz(n+1)) will cover the ones imposed by the code dis-
joint property. To preserve the unateness property and satisfy the require-
ment for an existence test, this will have to be achieved by a set of
codewords whose check bits are at a distance 1 from the check bits of 0...01
esels ‘Jhis requirement is needed so that there are existence tests composed
of single implicants that are also code vertices. The only such set is
[{(n-l)-vertices}ll...lO}. The function f({(n-l)-vertices}ll...10) must be
1 for it it is O it leaves uncovered a set of 1l in vertices of the form
{(n-l)-vetticeszlll...l. So far so good. The next codewords to be covered

by the function are [{(n-2)-vertices}11...101}. The check bits 11...01 are

not adjacent ot the check bits 11...10. Therefore there is no way in which

n-2

vertices)}ll"'lo

it is possible to cover by f the sets of ls in the {(

n-1

vertices)}ll"'lo) equals 0 and still have an

positions giveu that £({(
existence test within the set of codewords. Dually f can be replaced by g
and the theorem is proved in general. Q.E.D.
Example 3.3: Application of the proof to the Berger code with 7 information
bits and 3 check bits. In the table below let a, b and ¢ represent the
check bits. The top row of digits gives the number of ones or the weight

of the information bits. The squares represent code space outputs (0,l) or

(1,0) and 0 and 1 stand for (0,0) and (1,1) respectively. All the non-code

space inputs are completely defined by the unateness and code disjoint

property.

0 1 2 3 4 5 6 7
abe
000 0 0 0 0 0 0 0]
001 0 0 0 0 0 0 d 1
01L 0 0 0 0 a 1 1 1
010 © 0 0 0 0 ! 1 1

B e e e e o - gbe
110 0 - L1 1 1 1 1 Y 4
111 (0 g Sy 1 1 1 1 13’:/
101 0 g iRy oy ek LML S b i 1]
100 © 0 0 Q 1 1 1 1

Let £(0000000111) = 1. Then abc is the only unate function that
can cover it. Its existence test is 0000000111 and the growth tests are
subsets of {l-vertices} 110, {2-vertices] 101 and {4-vertices} 0l1. If we
let f({l-vertices} 110) = 1 we do not have an essential growth test any
more, Therefore let f([l-vertices} 110) be 0. The unate function g that
will cover {l-vertices} 110 is (TM(l or more ones)).ab. The function

f({2-vertices] 110) has to be covered by a unate function whose existence

tests are (TI(2 ones or more) ANDed with the consensus of 110 and 101. How-
ever such consensus does not exist thus precluding the existence of an exist-

ence test for the unate function that has to cover (2 or more ones)s (ab + ac)

indicated by the dotted contour.

3.7. Design of Checkers under the Single Fault Assumption

Perhaps the most prevailing fault model being used is the single
fault assumption. Totally self-checking systems have traditionally con-
centrated on other fault models as well, These other fault sets cover the

single fault set as indicated {in section 3.2, and it is the reason for the

placement of this section., Smith presented a general treatment of the design

of circuits that use unordered code under the single fault assumption [52].
In this section we show that one can easily check unordered codes under
that assumption. In section 5.5 {t will be demonstrated that one cannot
fmprove the handling of those codes under that same assumption.

It is possible to use m-out-of-n or Berger codes in sections of
the computer different from memory or busses and where the single fault model
is generally accepted. The trade-off is between translation into a more
appropriate code and having to care for unnecessary redundancy. Of course,
if the fault model is no longer unidirectional, as typically it won't be in
the case of checkers, then it is possible to relax the inverter-freeness
constraint on the design. Moreover the improbable fault set {s increased to
auni. asingle' For example for k-out-of-2k codes under the single fault
assumption one has to check only for non-codewords of the form (k-1) and
(k+1)=-out-of-2k. This means that parity checking is sufficient.

Indeed in both the fixed weight codes and the Berger codes, the
parity bit is evident. In fixed weight codes, the parity bit (or its
complement) is just any bit. In Berger codes the least significant check
bit is the parity of the information bits. Checking can be accomplished
simply by using a TSCC for parity codes. These two situations are described
in Figures 3.2aand b, Also note that in the case of Berger codes, trans-
lation into parity codes is accomplished by simply ignoring all the check
bits except the least significant one. Figure 3.2c¢ shows an example where
this {dea is used to advantage. Code translation will be discussed further

in Chapter 5 and the parity checked adder in Chapter &4,

Smith's checker (Figure 3.3) is an excellent checker which {s TSC

under the unidirectional fault assumption. However {t {s too expensive to

48

Infg Bits Checl:oqszngs m-out-of-n
P e e — Code nput
eee L e 0 o o o
e & O
TSC Parity Checker TSC Parity
n+1 input Checker
(a) (b)
Operand 1 Operand 2
Information Check Information Check
Maximal
Berger
o o0 L] e o0 []
Code
o
Parity Parity Checked Adder ___Checker
Quiput
Berger
° Code
L : Encoder
Non- Maximal (Porhol)
Berger L l
Code \7L P AE/ S
N | DR S
Information Check FP-5614

=)

Figure 3.2. Checkers for unordered codes under the single fault
assumption (a and b) and an application to addition (c).

49

. Xok-3 X2k-1
X1 Xz X3 X4x5 Xeg X2k-2 X 2k

rlll | 1

= —— 7,%:’J<4A
k-1 j g —
-
i —
. . . . /'E

Y1 Y2

r l l l FP-5053

Figure 3.3. Smith's TSC checker for k-out-of-2k codes [51].

be used as such under the single fault assumption. For k-out-of-2k codes
the cost ratio is of the order of k(2k2 + 2k +2) gates for Smith's vs. 2(k-1)

gates for a balanced tree of exclusive OR gates (Figure 3.4)).

3.8. Checking for Asymmetric Errors

As seen earlier the class of asymmetric faults is very large. 1In
this section it is shown that asymmetric errors can be easily detected using
known checkers but that there do not exist totally self-checking checkers with
respect to asymmetric faults,
Theorem 3.7: Under the asymmetric fault model there is always a possible
fault pattern that will produce an incorrect code output, independently of
the type of code used.
Proof: The fault pattern referred to has the following properties: 1)
The outputs of the network are stuck (or some equivalent faults are present)
such that they permanently present a codeword. 2) If dO = d1 (i.e. the
number of lines stuck-at-0 equals the number of lines stuck-at-1) then insert
one extra fault that will be covered by a fault already present. The resulting
fault pattern is clearly asymmetric. If do # dl’ then the output error is '
asymmetric without the extra fault. Therefore such faults produce an unde-
tectable erroneous output. Q.E.D,
Corollary 3.8: 1t is not possible to construct checkers that are
TSC with respect to asymmetric faults.
Proof: From the above theorem it follows that such a checker cannot be

fault secure nor self-testing with respect to the set of asymmetric faults. ,

However, one can relax the fault secure property, use unordered codewords

and produce a checker that will detect all asymmetric errors.

i
C——

51

X1 X2 X3 Xg Xk-1 Xk Xkel Xk+2 Xk+3 Xkeq X2k-1 X2k

FP-%5615

Figure 3.4. Balanced TSC checker under the single fault
assumption for k-out-of-2k codes.

Theorem 3.9: A totally self-checking checker under unidirectional
faults is also asymmetric error preserving if the code spaces are fixed
weight code spaces.

Proof: Any asymmetric error with d, and d0 can be viewed as a uni-

R

directional error of multiplicity |d1-d0| and direction 1 if d,>d_, and

170
direction O otherwise. Moreover a fixed weight code will never be changed
into another codeword since dlfdo. Q.E.D.
Note that this theorem is not true for unordered codes in general. For

example an asymmetric error could transform the Berger codeword 00011l

into the codeword 11100.

3.9. Concluding Remarks

In this chapter we have presented results that are both theoretical
and practical. The theoretical results provide guidelines to find partitions
or subsets of sets of m-~vertices that will cover maximally the set of (m-1)-
vertices. This problem is known to be applicable to the design of checkers.
However these results and those of the previous chapter give a new approach
to some well-known problems in combinatorics as well.

The results on Berger checkers seem to reinforce the feeling that
the price to pay for separability of information and redundancy lies in more
difficult or less appealing checkers.

On the practical side we have seen some compromises that result in
substantial savings in designing checkers for unordered codes under the single
fault assumption. Also fixed-weight codes have been shown to be superior in
error coverage, an advantage in memories where faults and errors coincide

generally. There the cost is reflected in the circuitry needed to extract

3

;

}

?

é

53 ?

i

meaningful information. This problem is going to be discussed in Chapter 5, 1

i

after another fault model and circuit structures are discussed in Chapter 4.
The reason for looking at arithmetic faults and codes is simply
that unordered codes are not easily adaptable to arithmetic circuits. It

appears that each code is ideal under a particular fault model. It is pro- :

posed that different codes be used where they fit well hence the need to
look at arithmetic codes for designing TSC ALUs. This is done in the

next chapter. Chapter 5 will discuss the general problem of going from one

cede to another.

4. TOTALLY SELF-CHECKING ARITHMETIC CIRCUITS
4.1. Introduction
In this chapter we shall be concerned witn the checking of arith-

metic operatiomns, using well-known arithmetic codes: parity, AN and residue

o

codes. Fixed-weight codes, like the biquinary and 2-out-of-5 codes, have
been used in decimal adders:. and an extension to general adders is far from
simple (48]. Ho has studied a TSC two-rail adder and incorporated it in a TSC
system [24]. Algebraic codes are mainly communication codes and have been
mostly used only as such. One exception to this is the possible use of Reed-
Muller codes tc check (and correct) addition; it necessitates, however, a
special adder structure [41].
Arithmetic codes are designed to correct or deCec:.arithmetic errors

i.e. errors that can cause borrow and carry propagation of logic faults
resulting in several faulty output bits. These errors are characterized by
output changes of the form :2"1-_2j +.. . Techniques to check parity of
words are simple and well-known. However checking arithmetic using parity
codes requires access to internal carries of the adder and duplication of
carries is required for increased error coverage. As expected complexity of
checking increases with increases in concurrency and look-ahead. On the
other hand residue checking requires no modification to the adder. The check
bits of the sum are obtained only from the check bits of each operand by
simple modular addition. More complex adders may impose more check bits on
the operands but the design procedure is always straightforward.

. Similar observations can be made about AN codes. Kolupaev pre-
sented self-testing residue trees [28]. His approach combines fixed-weight

code and residue codes in the sense that these trees were mapping residue codes

into codes of the form l-out-of-2" where n was the byte size. Although

modular (2 types of module were used) this approach exhibits very large fan-
in and is generally very expensive as well. Our approach shall be more con-

ventional.

4,2. Arithmetic Codes

This section presents a brief overview of arithmetic codes. Parity

codes will also be dealt with, but need little introduction.
n-1
Definition 4.1: An expression for an integer I of the form I= T ij'2j,
j=0

ijE [-1,0,+1} is called the modified binary form (MBF) of I.

There exists a '"canonical" MBF for each integer; it has the properties that

no two non-zero i,'s are adjacent (also called ''mon-adjacent form'") and that

j

it is unique.

Definition 4.2: The arithmetic weight of the integer I, denoted WA(I)’

is the least number of non-zero coefficients which are necessary in a MBF of I.

Definition 4.3: The arithmetic distance between integers I1 and 12,

denoted DA(II’IZ) is the arithmetic weight of their difference i.e.
DA(II’IZ) = WA(II-IZ)'

Definition 4.4: An AN code can be defined as a code generated by a
positive integer A and is the set of integers AN for 0 < N < B, where B is
specified.

It can easily be verified that the sum and product of AN codepoints
are also AN codepoints. The code capabilities of AN codes are defined in the
following theorem:

Theorem 4.1: For any t > 0 and s > 0, an AN code can correct all errors
of weight t or less in its codepoints and can detect all other errors of

weight t+s or less in its codepoints if and only if DAmin >2t +s.

-

56

Definition 4.5: Let Zm be the set of integers modulo m. A multiresidue
code in Zm, generated by the set of integers Wy sMyse e e, My such that

mi>'0 and m, divides m, is the set of (k+ 1)-tuples of integers

i

N = {N, [N]ml - [N]mz,...,[N]mk} where [N]mi = N mod m

g:

Multiresidue codes with a single residue check will be called simply residue
codes. Again it ¢an easily be seen that the check digits of a sum or a product
of 2 encoded numbers are the sum or product of the check digits of the encoded

numbers. These codes are also clearly systematic.

Definition 4.6: The associated AN code for a multiresidue code is the AN

code whose generator is A = least common multiple (mi, i=1,k) and whose

number of codepoints B satisfies m=AB.

The code capabilities can now be defined in the following theorem:
Theorem 4.2: A multiresidue code has the same error detecting and

correcting abilities as its associated AN codes (Proof in [42]).

A final comment is in order. Although minimum arithmetic distance
is used to define code capabilities in an arithmetic environment, codes with
similar minimum distance may have completely different overall error coverage.
For example the residue 3 and 15 codes will both detect all single arithmetic
errors but while only 2/3 of all possible error patterns (in a 4-bit byte) are
detected by the residue 3 code, the residue 15 code will detect 14/15 of all

possible error patterns. This will be discussed further in section &4.3.

4,3. Comments on the Choice of a Modulus

In theory any modulus or any generator can be used to comstruct
srithmetic codes. In fact moduli of the form +2°+29+2% (like 11, 13, 19,

21 etc,) can be attractive since they have a minimum arithmetic distance

57

equal to 3, hereby providing double arithmetic error detection or single
arithmetic error correction. However it is relatively difficult to check
those codes as they are awkward to check using regular binary arithmetic.
One has either to provide additional logic to conventional adders or to
design a new adder with the proper modulus so they can be used as checkers.
In any case the resulting checker will have very little structure since the
weight distribution of the bits in a binary encoded argument, modulo a
relatively prime modulus, has an order equal to the modulus minus one. In
other words the size of the bytes equals the modulus-1, which is inconvenient
as usual word sizes are multiples of 8 or 12. These difficulties have pre-
vented generalized use of such moduli.

The most common moduli are of the form 2"-1. Although these moduli
provide only single arithmetic error detection (their ''real' capabilities are
discussed in the next secticn) checking is accomplished by simple one's comple-
ment addition. Moreover the one's complement algorithm applies directly to
left and right shiftings, complementation and other more specialized operations
[33]. Encodings and decoding into/from non-separate codes is also easy.
Avizienis discusses the properties and details of implementation of such codes
[4,6]. The design of checkers for (Zn-l)-encoded arguments is straight-
forward but it results in slow operation due to end-around carries. So far it

is the only practical approach that has been used for arithmetic codes.

4.4. Different Concepts of Distance

The capabilities of arithmetic codes are defined in terms of their
arithmetic or modular distances. On the other hand the inputs to a checker have
code capabilities which are usually best measured in terms of Ramming distances.

In this section we will look at some of the considerations imposed by this

discrepancy.

1
4
|
1
|

58

Definition 4.7: The circuit distances of a circuit is the set of Ham-
ming weights of possible errors at the circuit outputs caused by a modeled
fault for code space inputs,

The bound of interest in the case of circuit distance is the upper one: the
maximum circuit distance. Clearly we have:
1) A circuit is fault-secure if the maximum circuit distance is
less than the minimum Hamming distance of the output code.
(In general errors will be detected if the code distance set
is disjoint from the circuit distance set) [1].
2) In a bit sliced circuit the maximum circuit distance cannot
exceed the multiplicity of the largest modeled fault.
3) The maximum circuit distance is bound by the number of outputs.
As indicated previously the relation between arithmetic distance
and Hamming distance (which is in turn simply related to circuit distance) is
not straightforward: the Hamming distance in arithmetic codes is a function
of the codewords themselves as well as the set of arithmetic distances.
The Hamming distances between arithmetic codewords vary much more widely than
the Hamming distances of good (well-packed) communication codes: However bounds
on both types of distance are simply related and sufficient conditions can be
derived from those to design totally self-checking arithmetic checkers. 1In
the following we investigate briefly this relationship and shall provide
guidelines to design functional circuits that have maximum circuit distance
sufficiently small for given arithmetic codes.
Example 4.1: The example illustrates the effects of single faults on the
value of the outputs of a full-adder (Figure 4.1). The faults on the left
of the dotted line may affect both the sum and the carry while those on

the right will not.

b
Input
a b
P SR -
1 0
v 1

~—

59

FP=5616

2 L.:
CH\
|
1 Cm :}>
|
‘ |
3
A= D). i =)=
e —
Figure 4.1. A full-adder.
No-Fault Faulty Qutput
output output Fault change
S Co Co
0 g 0 line 1 . ¥
1 stuck-at-1
and equivalent
o e 0 line 2 ¥
stuck-at-1
and equivalent
0 1 0 line 3
stuck-at-1 +21 - 21+1

and equivalent

Theorem 4.3: Arithmetic codes (AN or Residue) have a minimum Hamming

distance equal to the arithmetic weight of the generator or residue.
Proof: The minimum Hamming distance cannot bhe greater since a carryless ;
or borrowless addition of an arithmetic error vector equal to the generator -
or residue results in another codeword; that is in an undetectable erroneous
output. In other words there exist arithmetic error vectors of arithmetic

weight equal to that of the residue or generator that cause Hamming weight

changes at least equal to the arithmetic weight which are undetectable. By
the same token the minimum Hamming distance cannot be smaller since some
errors with smaller weight than the arithmetic weight of the residue or the
generator will not be detected. It therefore follows that the minimum
Hamming distance is equal to the arithmetic weight of the generator or
residue. Q.E.D.

This signifies that the minimum Hamming distance is quite small in
general and therefore fault secureness could be very vulnerable to larger
circuit~-distances. Consider the following:

Suppose we have residue 2"-1 and (Zn-l)N codes. As n increases ,i
the redundancy increases. However, according to the above theorem, no
matter how large n is, codes of the form 2"-1 are equally vulnerable. Since
the theoremstates that there is a double arithmetic fault, namely 2 -l itself,
that will not be detected. In practice, however, one has to look hard to
find a single fault in the adder circuitry that produces such a double fault
(for n large). The overall code capabilities actually increase and it may
be justified since 2"-2 error patterns are now detectable. Indeed the
picture is not so bleak when the distribution of Hamming weight changes, at

the output, is considered. This is formalized in the concept of arithmetic

circuit distance set.

61

Definition 4.8: The arithmetic circuit distance set is the set of

arithmetic weights of potential error patterns caused at the output by
members of the fault set.

Of special concern are those patterns that can be generated at the
end of paths that originated from fanout points. They have the largest
arithmetic weights and are the most likely to produce changes at the ouputs
: that are equal to the modulus or the generator.

Theorem 4.4: In an arithmetic circuit if the arithmetic weight of the

generator or the modulus is not a member of the arithmetic circuit distance
set, then the circuit is fault secure.
Proof: It follows directly from the definition of fault secureness and

the previous discussion.

4.5. Arithmetic Codes as Test Sets

In this section we show that common arithmetic codes provide a
sufficient test set for adders that are fault secure with respect to the types
of arithmetic errors that the codes are designed to protect against. It
will first be indicated that the AN codes considered are cyclic, that there
exists a test set for a small number of consecutive full-adders and finally E
show that it covers all adders in a parallel adder using the cycling proé;rty. ‘

Theorem 4.5: The generator A and the number of codewords B in a cyclic

AN-code satisfy AB = 21-1. Conversely, every A which divides 2J

-1 generates
a cyclic code with B = (21-1)/A codewords (statement and proof in [30]).
This theorem seems to impose a constraint on the size of the code.

Previously, the only requirement was that the generator be of the form 2"-1.

these two apparently conflicting cases can be reconciled by noting that the

constraint AB = ZJ-I simply implies that the codeword size be an integer A

62

multiple of the byte size. For example, remarking that 3 = 22-1 divides
2j-l if and only if j is even, it can be seen that codeword sizes should
also be even, i.e. of length 2,4,6 etc. Similar consideration can be
applied to other moduli and is formalized in the theory of exponents [31].
To test an irredundant adder it is sufficient to apply all possible
input combinations. Because of carry dependencies, more than one adder
stage has to be considered. For ripple-through carry adders, 2 stages are
sufficient; it may be more for adders with look-ahead. Because of the
cycling property, this test set will be eventually applied to all stages.
For 2 stages, assuming bytes of size n (i.e. generator = 2“-1) all the
combinations are produced by the first 4 codewords. Underlined bits are

those applied to the first 2 stages.

n
0 00...00’
2"-1 ¥l

2@y Til.+i10

3(2"-1) 11...01 = (2"1) + 2(2"-1)

Each operand will eventually produce these codewords independently so that
all 16 input combinations will be applied. The cycling property will then
insure that all stages will be checked for carry and sum errors, For adders
with a more parallel structure this analysis must be repeated.

For residue codes the problem is much simpler. The adder and the
checker are completely independent units and both will receive all possible

input combinations and are therefore totally self-checked.

SN

i

63

4.6. Checking Arithmetic Codes

In this section, we show that, under certain conditions, essentially
all known methods for checking arithmetic can be extended easily so that they
are totally self-checking. We shall see that the main difference lie in the
size of the hardcore. First, a look at parity codes:

In the case of parity checking, the main constraints are imposed on
the adder itself. The parity PS of the sum (S = A + B) can be computed as
follow:

PS = PA + PB + PC where PC is the parity of the carries.

However , in practice a fault may affect both the carry and the sum digits,
producing an undetected error. One approach to the problem is to duplicate
the carries i.e. generate independently pairs of carries. One set of carries
is then used to compute the sum and the other set is used for checking. The
adder must also have a small (= 1) or odd circuit distance so that it is
fault-secure. The parity of the sum is then predicted by computing the
modulo 2 sum of the parity of the operands and of the carries. The result of
the sum (or subtraction) along with its predicted carry are then fed into a
totally self-checking parity checker (Carter and Schneider [11], Anderson
[1]). 1t is possible, although more expensive, to merge prediction and
checking into the double tree of exclusive-ORs forming the TSC checker.

We now turn our attention to arithmetic codes of the form (2“-1)N
or residue (Zn-l). Consider Figures 4.2 and 4.3 describing serial and tree
structured checking. In the first instance checking is accomplished in a
serial fashion: bytes of length n are taken one at the time and accumulated
modulo 2"-1 (i.e. modulo the residue or the generator). The overall delay

is, »f course, the number of bytes times the assimilation time in the checker.

IS = v o in 3

64

Shift Register ——»

n Bits n Bits n Bits
y
Accumulator
Mod 2"-1
Y
O Mod 2"-1 Check
Detector Enable
n Bits n Bits n Bits n Bits
I:r“"“. ‘_JL_ {3 R
Adder Wl Adder
Mod 2™-1 Mod 2"-1
. o ‘ ‘ ‘
Adder =
Mod 27-1
O Mod 2™-1
Detector
‘ FP-%606

Figure 4.2.

Serial and tree checkers for AN codes.

Shift Register

n Bits n Bits Bits
) ;
Accumulator
Mod 2"-1
i KRN
Comparator (E:?\r:t;gm
v
n Bits Bits o<
| P
V. 0"‘...‘ ‘...‘ V...‘
Adder Adder
Mod 27 -1 Mod 2" -1
e free
Adder
Mod 2"-1
.‘ . . .‘
Comparator
‘ FP-5607

Figure 4.3.

Serial and tree checkers for residue codes.

66

In the figures below (b), modulo 2% adders are connected in a tree fashion
to form the checker. In that case the total delay is rlogz(number of bytes)]
times the delay at each level. However the number of modulo adders is
greatly increased to (# of bytes-1).

Cost and time are not the only factors involved in comparing the
two approaches as their behaviors under modeled faults are quite different.
In the byte serial mode it should be obvious that any single stuck-at fault
in the checker will not be detected if and only if the number of bytes in
the whole data word times the arithmetic circuit distance is an integer
multiple of the modulus. This is the only constraint to be met in order that
the fault-secureness property be satisfied. On the other hand if a tree-
structured checker is used then the only requirements for it to be totally
self-checking are that each module be irredundant and have maximum arith-
metic circuit distance not exceeding the code capabilities.

Another point that should be brought up at this time is the
distinction between AN and residue codes as far as checking is concerned.
They both use the same checking structure but residue codes are separate
whereas AN codes are not. The ultimate result of self-checking is to provide
a coded output that determines the v-idity of the data. The difference
arises one time period before (in the serial mode) or one level above (in
the tree approach) the final assimilation that provides the coded checker
output. In the case of residue coding, the residue of the data part of a
word following an operation should equal the check bits. Inasmuch AN
codes are concerned the checker output is normally zero: it follows that
the last two bytes to be added in the checker are complementary (l's
complement) or all zeros. The all-one vector may normally never be produced

in the hardware even thought is is correct. Also no matter how 0 mod 2“-1

eo—

67

is encoded, the checkers described before will produce the all-zero vector
if and only if they are presented with all-zero inputs. From the previous
considerations it should be clear that due to dependencies at the final level,
the checker may not operate in a fault-secure mode at that instant and may
not be completely tested. In the case of serial checking the adder in the
final assimilation period is neither operating in a fault secure nor self-
testing mode. However it may not matter since the probability that conditions
propitious to the generation of an erroneous code output at that time are
virtually nil. It may however be unsatisfactory from a rigorous point of
view on self-checking. For tree-checking the problem arises also but for
both AN and residue codes where only equal or complementary inputs plus the
all-zero input are available. The problem is now more acute since the final
module is never fault-secure and is not completely self-tested.

For AN codes the problem may be alleviated by replacing the €£inal
adder by a row of exclusive-QR gates that compare corresponding bits from
each of the two final bytes. This leads to the situation where the hardcore
will be larger than usual. The number of lines that will form the hardcore
will be equal to the byte's size and will take the value of all zeros or all
ones. Clearly further reduction is not possible. It should also be emphasized
that the TSC property of this final level of exclusive-OR gates is conditional
on the sufficiently repeated application of the all-zero or all-one vector
to its inputs so that ouputs can alternate and therefore be checked. As
mentioned earlier the checker will produce the all-zero vector if an only if
it is presented with the all-zero vector. 1In a computer the all-zero vector,
being an initialization vector, is certainly more common than any other vector
so it is reasonable to assume that the level of exclusive-or gates is going

to be sufficiently tested. Let us summarize and contrast with residue codes:

For AN codes: The inputs to the final assimilation are of the form

X XpeeoX) XXpeeoX and hopefully 0...0 0...0

n n

-The final level of exclusive-OR gates is totally self-
checked

-The hardcore consists of n lines, the all-one or all-
zero vector indicating a correct codeword.

For residue codes: The inputs to the final assimilation are of the form

xlxz oo .xn xlxz .o .xn

-A final level of exclusive-OR gates will not be totally
self-checked.

-The hardcore therefore consists of 2n lines.
So for residue codes (and to a lesser extent for AN codes) we are faced with
a fundamental problem, namely a substantially sized hardcore. It is not
solved by merely inverting one byte and feeding it to a level of exclusive-
OR gates (which is the same as using inverse residue coding [4]). In doing

so, one would still have to generate 0...0 l...l or l...1 0...0 which are
n n n n

certainly valid codewords; they are also never normally generated. Possibly
(

the simplest way around is to devise some scheme that is going to generate
periodically vectors of the form 0™1" or 1™0". This may be equivalent to

moving the problem into another section of the ALU where those codewords

may be generated by a unit that is perhaps not totally self-checked. Another

approach would be to design from scratch checkers with the desired properties.

So far no general method that eclipses the simplicity and structure of

checkers constructed out of modulo 2“-1 adders, has been found.

69

There are other problems that must be looked at when designing
TSC arithmetic checkers. For example special care must be exercised in
two cases:
1) Design of checkers for minimally redundant arithmetic codes.
2) Design of checkers for arithmetic circuits with large amount
of look-ahead or parallelism (i.e. circuits with large '
arithmetic circuit distance).
Clearly most designs will fall between these 2 extremes, so that guidelines
that take into account each of these will always apply, but to varying
extent. In the case of minimally redundant arithmetic codes, i.e. the
residue 3 and 3N codes, precautions must be taken in designing both the adder
and the checker so that no error will produce output changes equal to the
modulus. This is the case when any two adjacent output bits are erroneous
unidirectionally. Incidentally '"standard'" checkers for these codes are
ctaliy self-checking with just 2 outputs. This is discussed further in the
example of the next section. Fortunately for codes with identical arith-
metic distance but with more redundancy this problem does not exist: any
changes in boundary bits of different bytes will never cause a change equal
to the modulus. However, carry propagation schemes other than the basic
ripple through carry might possess just the right defeating arithmetic circuit
distance in the carry propagation circuit. So as in the case of minimally
redundant codes care must be taken so that circuits with large arithmetic

distance do not exceed the code capabilities.

4.,7. A Low-cost TSC Checker for Residue 3 and 3N Codes [l16].

This section illustrates the kind of considerations one has to make
as well as the type of results that would be satisfactory in designing arith-

metic checkers. The example used is the design of a low-cost totally self-

70

checkers for the residue 3 and 3N codes. These codes are the least redun-
dant arithmetic codes. It is therefore assumed that the adder has a cir-
cuit distance of at most 1. One sufficient (but not necessary) condition
for this situation to be achieved is to require that the adder produces
independent sum and carries. Such a circuit in its minimal version requires

9 gates per stage versus the absolute minimum of 6. Other minimal adders

have a circuit distance of 1 and the only way to find their ecircuit distance

is to examine their behaviour under single faults.

The purpose of the design is to find a functional block that can
be used as in Figure 4.3 or that can be interconnected as in Figure 4.4 to
produce ultimately the checker's outputs, In Figure 4.4 the checker is
connected in a tree fashion to the 3N-encoded adder's output. A 3N-coded
result causes the final output of the checker to be either 00 or ll. 1In
the case of residue 3 coding the situation is essentially the same except
that the check bits are separate from the data word. In both cases it does
not matter at which level of the checker the inputs are connected as long
as the overall structure is acyclic and the weight order respected (i.e.
lines with weights 1 and 2 are connected to corresponding inputs qf the
modules).

In the course of the design it has been possible to obtain an
encoding that permitted a more uniformly distributed alternation of the
output signals. The encodings for O mod 3 were allowed to be both 00 and
11. This is actually a secondary result, as the prime target was to

introduce more symmetry in the function realizing the checker. Another

design goal was the elimination of end-around carries for a faster operation:

the time of assimilation is reduced by half at each level. It is easily seen

that this property will probably be the most difficult one to generalize

T | R R —— -

ol s i

M M M M
(a)
X1 X2 X3 Xg
e) i e e e 5 b
| |
! !
I |
I |
| :
| I
| I
: |
|
|
{ F F !
{ i
I |
| {
| TR (ORI SRR AU SISy
f g FP~ 3220
(b)
f X3 Xe g X3 X X3 Xq
oy, Q20L 110 wx, 2001 1 10 oo 00 01 11 10
'Too{ 1[0 (11 'Moof1{1{1]0 O 1O
om[ol1]0]0 oml1/0]1]0 al O |®
1 1/0f1]1 ufl1f1j1|o nloQ 10
v/1|0]|1]|0 10[0|0(0]1 of Q| |O
O Code Space & Improbable Code Space
=822
()
Figure 4.4. A low cost tree checker for residue 3 and 3N codes.

FP-5219

72

for more powerful codes. Another design objective achieved was a high
degree of modularity. As seen from Figure 4.4, one basic block per-

forms F(xl,xz,x3.xé). The checker's output functions f and g are
F(xl,xz,x3,xa) and F(xz,xl,xa,xB) respectively. Minimal circuits, computed
by a modified version of Davidson's branch and bound program, are

given in Figure 4.5. 1In line with previous results the final assimilation
is performed using exclusive~OR gates which are TSC. The code must however
be produced by the same type of circuits (i.e. the same f and g) so as to

provide a sufficient and necessary test set.

4.8. Checking lLogical Operations

A function that is also expected from an ALU is the capability
to perform logical operations. However it has been shown by Peterson [33]
that nothing short of duplication will check for correctness of bitwise
logical operations. In designing totally self-checking circuits one is
competing with duplication schemes so that alternatives have to be found
to justify the use of coding techniques. It may seem that no matter what
code is used in checking arithmetic operations it is not going to work for
logical operations. Fortunately it is known from the days of ALU's with
very limited logical powers that all logical operations can be performed
using well defined sequences of addition (subtraction), shifting and a
single Boolean operation. For example the following relations are well

known :
A+B=AAB+AVESB

A®B=A+B - 2(AAB)
where logical operations are performed bitwise, Therefore, given the

added cost of an AND circuit it is possible to compute the bitwise OR

73

=P = B
:iﬁ)c X2 4:>°_>__F
i Do =0

3

(a) Uncomplemented variables only

Xq R3~—1>_‘

S

X4 |

31— £
| >O—

X1 ‘
xs.!_j:
24—2-:q>_ FP-5608

(b) Complements available

Figure 4.5. Minimal NOR implementation of the checker.

>~

74

and exclusive-OR of two words using simple arithmetic. One cannot escape
the fact that at least this AND section must be duplicated in order for
the whole structure to be totally self-checking. This AND circuit must be
checked by a TSC duplication comparator [l].

If a major function of the ALU is to perform logical operations
it may then be necessary to increase the hardware to gain some speed. An
alternative approach may consist in using the ALU to perform arithmetic
operations (and perhaps somd logical ones) in a totally seif-checking mode
and logical operations in a non fault secure mode. This is often referred
to as partially self-checking and typical of compromises currently made in

implementation [56,57].

4.9. Concluding Remarks

Throughout this chapter, references to the more general case of
AN codes, the AN+ B codes have been omitted. All the results for AN codes
clearly hold for AN+ B codes; it has to be remembered however, that the
checker's valid output O is now displaced by the value B.

It has been seen that provided some guidelines are followed con-

ventional structures to check arithmetic codes are TSC, but have a larger

hardcore. These guidelines stem from the study of distance and its relation

to arithmetic distance. Because the byte's size of residue 3 and 3N codes
coincides with the smallest possible hardcore it was possible to design a
checker for such codes without relying on modulo 3 adders. This example

4lao pointed out some desirable characteristics that less conventional

beohers for arithmetic codes should ideally have.

Vi
|
i
t
i
}
!
¥
[
:
i
i

75

Arithmetic codes have been seen to lend themselves naturally
to the design of TSC arithmetic circuits. As observed in the discussion
on distance their error coverage is best expressed in terms of arithmetic
distance and when used elsewhere in a computer these codes have an error
coverage which is difficult to define accurately in terms of the dominant
fault model. In other words arithmetic codes generally perform well only
in arithmetic circuits and other codes should be used in the non-arithmetic

sections of a computer. The following chapter presents general considerations

concerning the use of different codes in a single digital system.

5. CODE TRANSLATION

S5.1. Introduction: A Summary of the Advantages of Codes

In the preceding chapters codes were presented along with the

fault models they were to protect against. Parity codes are designed to

protect against single errors. In general they will detect any asymmetric

error of odd net weight. It is difficult to design circuits so that this
will always be the case. Therefore parity checking is usually restricted

to single fault detection in logic circuits., Parity codes can also be used

in arithmetic circuits. It requires internal modification to the adders
but it is in general acceptable. The next codes in terms of redundancy are
the least redundant arithmetic codes followed by all other such codes. As
indicated earlier the simplest type of arithmetic errors to visualize are :;
those caused by carryless addition of an error vector. Indeed 21l arith- '3
metic errors can be viewed as such although it is not an intuitively satis- 14
fying way of doing so. From the preceding discussions on distance it should

be clear that all single faults will be detected by arithmetic codes as

long as the circuit distance is small enough. Minimally redundant arith-

metic codes have only an extra bit compared with parity codes and can be

used easily in data transfers as well as performing arithmetic without

internal changes to adders. Other types of non-arithmetic mappings are

difficult and not well defined. Unordered codes can detect all unidirectional 3
faults. 7This set includes single faults aswell as a subset of arithmetic

faults. These codes are generally too redundant and difficult to use under

the single fault assumption. Arithmetic with unordered codes has been

restricted essentially to two-rail codes. Fixed-weight codes have the

PRRERETSSESS

77

additional advantage of detecting all asymmetric errors. This is especially
héndy in memories where the nature of faults is such that asymmetric faults
will always produce asymmetric eriors.

The remainder of this chapter looks at the problem of translation
of codes including decoders and encoders. Such an approach is justified

in the following section.

5.2. On the Use of Different Fault Models

In this thesis we examined techniques to construct totally self-
checking circuits using different codes and different fault models. Although
this approach may seem quite incoherent, it is, in our opinion, justified by
the different fault behaviours of different sections of a digital system.
This is illustrated in another context, at the interface of computers and
digital communication channels. Once the communication errors have been
detected and corrected, all, or most, of the redundant check bits, are
eliminated for further processing by the computer. Similarly it is believed
that fault patterns in memories are quite different from those occurring in
random logic, and they both bear little resemblance to those arising in
peripherals. Unidirectional faults are often quoted as common to memory and
busses. Arithmetic codes have been devised to check for errors that are
intrinsic to adders. Parity codes will do well in both cases if single faults
are assumed. This points to the interesting situation where the checker
has a very different fault behaviour of that of the unit being checked.

Three approaches to the problem can be taken. In the first the
designer selects a code which is good for a particular section and uses it
throughout. The result will probably be hardship (sometimes intolerable) in

designing the other sections and poor protection in some of them. In the

PP VeI

78

second situation, a compromise is made: the designer selects a code around
which the whole machine can be designed fairly easily. The result is likely
to be a mediocre code and/or mediocre error coverage in every section.
Mediocre error coverage refers both to expensive waste or insufficient pro-
tection. In a third approach one can use the 'best'" codes in every section
and translate them as the information is passed from one to another. This
method does not compromise error protection in any section and eliminates
potential waste present in the form of unnecessary redundancy. The trade-off

is, of course, in the cost of designing, and implementing code translators.

5.3. General Considerations About Translators

A code translator is a functional block that maps codewords of a
certain type onto codewords of a different type. Translators form a very
large class of circuits but excludes specifically circuits with more than a
single input code space. A checker can be viewed as a special case of code
translator where code inputs are mapped onto code outputs of smaller size.

A checker for m-out-of-n codes can be seen to perform a translation onto the
smallest Berger code Ol and 10 (which also happens to be the 2-rail code).
However this is just a special case. Another special situation arises in the
case of encoders and decoders. At one point or another, especially in non-
byte oriented machines, the information bits must be encoded, processed and
eventually decoded. Encoders and decoders have input and output code spaces
exactly equal to the input and output spaces, respectively. In a totally self-
checking system all these functional blocks must satisfy certain properties
to preserve the circuit's checking abilities. However there may be some pro-
blems especially in the case of encoders and decoders. This section examines

some of those.

79

A code translator maps a code space onto another code space. From
a structural point of view the tramslator is located at the boundary of
functional blocks that have different fault models (typically). The question
that comes up naturally is what is a valid fault model for the code trans-
lator. The answer is contigent mainly on two factors:

-The method used to translate the codes (i.e. structural
considerations).

-The respective capabilities of the input and output codes.

For example if the check digit of a residue code is computed using
adders then the appropriate fault model is expected to produce arithmetic
errors. On the other hand if translation from parity codes to unordered codes
is performed, the translator is not expected to be more than fault secure with
respect to single faults unless some structural constraints are imposed (e.g.
inverter-freeness).

It is recognized that the TSC properties do not exist beyond hardcore
and non code spaces. For that reason we have to define TSC decoders as having
outputs that are coded in a certain manner. The obvious way to proceed is to
encode the outputs of decoders using systematic codes. After checking is
performed, the check bits can be discarded and the information bits used
subsequently for non TSC functions. .Typically not much can be done about
encoders as anything connected to their inputs is by definition unprotected.
It is however possible to have a circuit structure that will guarantee a
correct coded output (i.e. a fault-secure encoder) as well as being self-
testing. For systematic codes one proceeds as follows: a checker connected
to the inputs of the encoder and to the output check bits will determine
whether the encoder has interpreted correctly the input lines (and not that

the input lines were correct). For non-systematic codes the coded value must

80

first be decoded so it can be compared with the input lines. Again such a
test confirms only that the encoder produces the right codeword of what it
sees at its inputs.

It has just been seen that it is possible to imbed easily in TSC
systems encoders and decoders if systematic codes are used throughout, More-
over a large class of translators can be related to the design of encoders:

Theorem 5.1: The TSC translation of systematic codes A into systematic
code B is equivalent to the design of TSC encoders for code B.

Proof: Once code A is checked its check bits may be discarded and its
information bits used to produce the check bits of code B as described before.

Of course we do not have to discard the check bits, Indeed it is a
good idea to use them if the mapping is from A to B and B is a subcode of A.
Such a situation was presented before in the translation of Berger codes into
parity codes. But it is the exception rather than the rule: the information
content of the check bits is in general not easily transferable from one code
to another.,

Example 5.1: 1In the first chapter it was shown that fixed-weight codewords
can be classified into cycling classes and suggested that it could be used to
decode them serially. This example illustrates how it could be done in
practice (see Figure 5.1). The cyclic codewords are loaded into a recycling
register. Each of the flip-flops is connected to a collection of AND gates
that implement the m-vertices of one congruence class. Only one of those will
be high at any time thus generating a l-out-of-(number of classes) code which
can be checked by a TSC checker. This value along with the encoded number of
shifts (i of T“i) performed is loaded into a block whose function is to extract

the meaningful information. If its output is encoded then it is TSC. Note

Clock
O~

Cycling Register
—_—

i of To =D
(Encoded)

{

Counter

EEE

e T

\/ kJ %) j}

\

vy

P

‘Decoded Value

Figure 5.1.

TSCC 1-out-of-n

Class Detected

FP-5618

TSC sequential decoder for m-out-of-n codes.

T e,

that some tuning is required for the clock, counter (a sequential machine
that can be made TSC using coding techniques [34]) and the control signals

to be TSC.

5.4. An Example: A TSC Memory Architecture

Although memories are essential components of computers not much
has been said on how to make them TSC and how to incorporate them in TSC
systems. Clearly one of the goals is to protect against memory failures
themselves. In a TSC system this translates into the necessity of encoding
memory words so that modeled faults will not produce incorrect codewords.
Codewords are checked before being stored and after being retrieved. Since
it is assumed that all the locations are eventually accessed, the self-testing
property is inherent for both the adders and storage mechanisms. Another
problem that mst be dealt with in the case of memories is whether the
correct location is accessed. Troy et al. [15] and Ho [24] have suggested
schemes whereby the decoded address is re-encoded and compared with the original
address in the memory address register (MAR). This actually checks the
decoded address lines but no failure beyond. In other words it will detect
if a line is stuck or open somewhere but not if it is connected (or not) to
further addressing circuitry. It also assumes access to decoded lines.

One way of overcoming these problems is to store in memory along
with the encoded content the address and use a TSC duplication comparator
to check if the desired and stored address match. 1In this situation re-
encoding circuitry is exchanged for more memory. In line with this chapter
i.e. considering different fault models, we shall discuss other and more
appealing alternatives. In TSC systems the address that eventually gets to

the memory address register is encoded. This redundancy can effectively

[83

% be used to check whether or not the content gated into the memory buffer
register (MBR) is from the correct location in the following manner: Instead
of storing a complete copy of the address one’;an store only its check bits,
1f the code is non-systematic and/or not redundant enough to guard against
failure modes in the memory (failure modes cannot be easily altered to fit

the codes) then an appropriate code translator is required. Appropriate

refers, according to the case, to a translator that will map the non-systematic

code into a systematic one and/or a systematic code into another systematic
code with a sufficient amount of redundancy. For example the address lines

E may be encoded using parity check. If memory failures are assumed to be
unidirectional, the scheme presented here will call for generating check bits
for the Berger codeword of this address and store it in memory along with the
encoded data. This architecture, that assumes unidirectional faults in
memory and singlie fault elsewhere, is described in Figure 5.2.

It is still possible to object to the amount of redundancy used as
memories tend to be expensive. If it is assumed that single fault may occur
in either the addressing circuitry or in the memory content but not both, or
in the case of unidirectional faults, that the faults will be in the same
direction jin both the memory and addressing circuits, then it is possible
to protect both address and data with very little redundancy more than what is
needed to check data only. In the single fault case this approach is suggested:
store in memory whatever data is desired and attach to it the sum mod 2 of the

parity of this data and of the parity of the address. To protect from uni-

directional faults in both address and data, one can store the Berger code
| check bits of the concatenation of the address and data along with the data

itself in memory. The amount of redundancy required in this case may be

slightly larger than the redundancy to protect solely the content, This is

Q b

28|

TSC Berger
Checker

|
|
|
|
|
i
|
|
|
|
|
|
|
|
I
I
!
J

Check

Memory on the

: : Address
Berger

Encoded

k) (o g

A o Data

Unordered
Code

-t

it e e e e

/
¢ d MBR

a b
LllL TSCC

L~

- Unidirectional
Tz or T2* Failures Possible
Anderson [1] Within this Block L [
l [(Single Fault Outside) ¢ d

Correct Address
and Correct Result Fp-8617

Figure 5.2. A TSC memory.

PR _

85

because the number of check bits required increases by one each time the

amount of information bits doubles. 1If both parity and Berger codes are

used then, using similar ideas, one has to store the Berger check bits with

its least significant bit wmodified to reflect the parity of the other code-
word, That is simply the sum mod 2 of the parity bit (of the parity encoded
word (address and data)) and the least significant bit of the Berger encoded
word. The resulting parity bit will detect all single faults in the word
formed by the concatenation of the address and data and the remaining check
bits will detect unidirect;onal faults in the appropriate word. In this
circumstance the redundancy of the concatenated word is the same as in the
Berger encoded word alone.

Finally it can be said that the process of writing into and reading
out of memory is code disjoint so checking may be done only after reading so
as to detect writing errors as well., However many memory architectures show
a dual purpose memory buffer register that stores data to be written into or
read out of memory; therefore checking is achieved before writing and after

reading at no extra cost. |

5.5. The Problem of Functional Mappings

In general, codes are devised so they suit a particular structure
that realizes a well defined function. It turns out that codes are essentially
special purpose and very cumbersome for situations other than that they were
designed for. The problem of functional mappings of code spaces can be
equated to the problem of translation followed by functional mapping of non-
code or systematically coded spaces as seen in the following steps:

As before the Ai's represent code space inputs which are either

equal or translated into a systematic code space with information Ii and

check Ci-

T T e

L

e T ——

p——

R AN S R S A A AP S A%

‘i
i
|

i i B P S SR b 6 T e ey Sl oo

86

Alez > il XAk - (11’01) X (Iz’cz) b e (Ik’ck)

(leI x...ka,Clxczx...x Ck) ()

2

The functional mapping is performed next. Let O, be the information at the

i
output with checks Ei and final coded output B,.

(*) =+ (olxo x...xoj, l;GCZX...ij)

2

=
> BIXBZX"'XBj'

If the Ci are non-existent then the process is not self-checking.

We can now formalize the idea of codes and the structure that fits them

best. This occurs when

?

i x... L)
given I]_)(I2 XIk -’OIXOZX >(0j
then Cl X C2 XiTeahik Ck gl X gz e xbj for systematic codes
or A XA X aue X g B. XB, X X B, for non-systematic codes
1% o e M T .

For data transfer ¢ is simple transmittance (works well for all codes); for

arithmetic codes ¢ can be any operation in modular arithmetic. Unordered
codes are such that the redundancy essentially contains information about
the weight of the codeword. Logical and arithmetic operations in general

are not weight preserving. Therefore it is extremely difficult to map

unordered codes in general. The intuitive ways of doing it have more in

common with abstract automata theory than they have with practical switching

theory. Except for the pathological case of the 2-out-of-4 codes which can

be mapped one-to-one onto the integers 0 to 5 using weight 3,2,1,-1, it is

felt that no such mappings exist in general.

87

Therefore the problem of processing encoded information is

essentially the same as decoding and then processing. The 2-step approach

may be conceptually simpler however it is typically not easier, as seen in

Section 5.3.

5.6. Concluding Remarks

Code translation has already been studied formally for Smith [52].
In this section it has been suggested that the use of different codes for
different blocks is advantageous in TSC systems, hence the need for code
translators. Mworeover translation for systematic codes is essentially
equivalent to encoding and decoding. For most systematic codes methods to
systematically obtain the check bits are known and very similar to the
techniques used for checking. For example, the residue bits can be obtained
from modulo adders and the parity bit, from a tree of exclusive-OR gates.
These simple properties underscore the desirability of systematic codes in
general. Non-systematic code translation is generally more efficient. In

the case of AN code the codewords can be obtained from a series of ADD and

SHIFT operations; decoding is more expensive as division requires use of

the ALU. More difficult is the manipulation of fixed-weight codes.

AD-A056 280

UNCLASSIFIFD

ILLINOIS UNIV AT URBANA=-CHAMPAIGN COORDINATED SCIENCE LAB F/G 9/2
ON THE DESIGN OF SELF=CHECKING SYSTEMS UNDER VARIOUS FAULT MODE=--=ETC(U)
ocT 77 J DUSSAULT DAA807-72'C'0259

2 2 END
8 78

""l |0 e s

=

20

|||||_';-—I =

L

12 Tt e

MICROCOPY RESOLUTION TEST CHARI
NATIONAL BUREAL O ANDA

88

6. CONCLUSION

6.1. Totally Self-Checking with Respect to the Pin Fault Model

The pin fault model was introduced by Ketelsen [27] and assumes
that stuck-at faults occur only at the input or output pins of integrated
circuit modules. The pin fault model includes multiple as well as single
stuck-at pin faults. The pin fault model is justified by a variety of
reasons. Available failure data for digital IC's indicates that lead
bond failures are predominant. These result . from either packaging
defects or from stresses suffered during normal operation. These stresses
are either mechanical, environmental or electrical. It is important to
separate failures according to the period of time in which they occur.

If most pin faults occur during the infancy of a product then the pin fault
model is useful mainly for devising initial test sets and has very limited
value in a self-checking system. If most faults occur during the normal
life of a digital system then it may be interesting to consider the design
of TSC systems with respect to a pin fault set.

However, there are some problems. As one may expect, the multiple
fault assumption complicates the picture. It is known that a test set §°r

a module realizing G(X,p) exists if for every input x there exists test

i

vectors ti and tj which differ only in the value applied to X

G(tj,¢) # G(ti’¢)' This test set exists for all non-vacuous functions G.

and have

Application of pairs of vectors is checked by comparing with the expected
value. Ideally one would like to sequence the tests so that the output
alternate; failure to do so indicates an error. As far as designing self

checking circuits it implies (since vectors are applied randomly)

. PR

89

a) That there must be some way of recognizing that a valid pair
of test vectors is being applied to the circuit.

b) That a correct pair of coded ouput vectors is also being

i generated.

Gl

Since multiple faults are assumed there does not exist a way from
within the chip to determine that indeed such a pair of vectors is being

applied. Duplication of the basic modules plus logic on each to detect a

valid test pair seems to be the only way to go. If it is indeed the case
the fault set may as well be enlarged considerably so as to justify the
cost of duplication. Therefore, the pin fault model does not seem to be a

reasonable fault model from the point of view of TSC design. !j

6.2. Summary of Thesis ﬁ

In this thesis we have looked at a variety of codes and their
associated circuit structures. Parity, unordered and arithmetic codes were E
the main ones discussed. Each one fit a particular fault model very well
but interchangeability was shown to be difficult. At the system level the }
use of translators was suggested.

Chapter 2 was an investigation of the algebraic structure of ‘:
unordered codes. Unordered codes were shown to have common construction
rules whether separable or not. In addition, fixed-weight codes exhibited

nice class properties, especially those with higher rates. |

Some of these results were carried into Chapter 3 where they were
used to provide some ideas about the partitioning problems related to the

design of checkers., Some results were established concerning the design of

checkers for Berger codes. Finally some practical considerations were given

to checking under the single fault assumption and also for asymmetric errors.

>

90

Chapter 4 discussed the problems encountered when designing arith-
metic circuits using arithmetic codes. As long as certain rules are obeyed
conventional checkers for arithmetic codes can be used but with a substantial
increase in hardcore. Ideal checkers were exemplified by a residue 3 and
3N checker but generalized results have not been obtained.

The main topic of Chapter 5 was code translation. It was sug-
gested that in a system with several different blocks and fault models, the
best way of taking advantage of coding techniques is to use the best codes
for each of the sections and translate them as information is passed from
a section to another, Separable codes were preferred for translation pur-

poses but may not be as good as non-systematic codes.

6.3. Topics for Further Research

In this thesis we have tried to solve.some problems and have
obtained a mixture of results. Some are perhaps promising, some are
clearly negative. Perhaps the result that eluded this research most was
methods to map codes that were meant for some specific applications and
used in different circumstances. The whole study of Chapter 2 was
originally aimed at that problem. Hence the idea of universal codes.

But we know that there are no such thing as codes for logical operationms.
One area of interest is along the lines suggested by Carter et al. [14]
where they use morphic Boolean functions: simply encode each input and
replace gates by their morphism that will preserve information and
protection. The problem is especially difficult since we are competing
with duplication schemes.

Berger codes have the desired property of being separable. How-

ever their checkers do not have the simplicity nor the structure of

el

ORGP RAIgy Ti

e —

91

combinatorial checkers. Good checkers would be handy especially since
those codes feel better to use.

Arithmetic codes have been shown to perform reasonably well in
a TSC environment. Perhaps there exist less conventional structures that
could perform checking and reduce the size of the hardcore to a minimum.

This thesis has discussed coding techniques to detect errors.
It is possible to introduce more redundancy and be able to correct some
errors. By placing checkers appropriately it may be possible to keep
the system self checking. Such systems may be competitive with various
forms of multiple redundancy. It is also felt that systems with inter-
active recovery should also be looked at from that point of view e.g.

duplicated systems with encodings.

10.

ll.

12.

REFERENCES

Anderson, D. A., '"Design of Self-Checking Digital Networks Using
Coding Techniques,'" Coordinated Science Laboratory Report R-527,
University of Illinois, September 1971.

Anderson, D. A. and Metze, G., 'Design of Totally Self-Checking Check

Circuits for m-out-of-n Codes," JEEE Transactions on Computers, Vol.
C-22, pp. 263-265, March 1973.

Ashjaee,M. and Reddy, S. M., "Totally Self-Checking Checkers for a
Class of Separable Codes," Proc. of the 12th Annual Allerton Conference
on Circuit and System Theory, Monticello, Illinois, pp. 238-243,
October 1974.

Avizienis, A., "Arithmetic Algorithms for Error-Coded Operands,' Digest

1972 International Symposium on Fault-Tolerant Computing, Pasadena,
December 1971.

Avizienis, A., et al., "The STAR Computer: An Investigation of the Theory
and Practice of Fault-Tolerant Computer Design," IEEE Transactions on
Computers, Vol. C-20, pp. 1312-1321, November 1971.

Avizienis, A., "Arithmetic Error Codes: Cost and Effectiveness Studies
for Application in Digital System Design," IEEE Transactions on
Computers, Vol. C-20, pp. 1322-1331, November 1971.

Bark, A. and Kinne, C. B., '"The Application of Pulse Position Modulation
to Digital Computers,'" Proc. National Electronics Conf., pp. 656-664,
September 1953.

Berger, J. M., "A Note on Error Detection Codes for Asymmetric Channels,"
Information and Control, Vol. 4, pp. 68-73, March 1961.

Betancourt, R., "Derivation of Minimum Test Sets for Unate Logical

Circuits,” IEEE Transactions on Computers, Vol. C-20, pp. 1264-1269,
November 1971.

Birkhoff, G., "Lattice Theory," 3rd Edition, Department of Mathematics,
Harvard University, Cambridge, 1963.

Carter, W. C. and Schneider, P. R., '"Design of Dynamically Checked
Computers," IFIP 68, Vol. 2, Edinburgh,Scotland, pp. 878-883,
August 1968.

Carter, W. C., Bouricius, W. G., Jessep, D. C., Roth, J. P.,
Schneider, P. R., and Wadia, A. B., "A Theory of Design of Fault-
Tolerant Computers Using Standby Sparing,'" Digest 1971 Symposium
on Fault-Tolerant Computing, Pasadena, pp. 83-86, March 1971.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

93

Carter, W. C., et al., "Logic Design for Dynamic and Interactive

Recovery,' IEEE Transactions on Computers, Vol. C-20, pp. 1300-1311,
November 1971.

Carter, W. C., Wadia, A. B., and Jessep, D. C., "Implementation ol
Checkable Acyclic Automata by Morphic Boolean Functions," Proc. of
the Symposium on Computer and Automata, Polytechnic Institute of
Brooklyn, April 13-15, 1971.

Cook, R. W., et al., "Design of a Self-Checking Microprogram Control,"

IEEE Transactions on Computers, Vol. C-22, No. 3., pp. 255-262,
March 1973.

Dussault, J. and Metze, G., "A Low-Cost Totally Self-Checking Checker
for 3N and Residue 3 Codes,'" Proc. of the l4th Annual Allerton
Conference on Circuit and System Theory, Monticello, September 30-
October 1, 1976.

Diaz, M., 'Design of Totally Self-Checking and Fail-Safe Sequential
Machines,'" The Fourth Annual International Symposium of Fault-
Tolerant Computing, pp. 3-19 to 3-24, June 1974,

Elias, P., '"Computation in the Presence of Noise,' IBM Journal of
Research and Development, Vol. 2, pp. 346-353, October .

Freiman, C. V., "Protective Rlock Codes for Asymmetric Binary
Channels," Columbia University, Ph.D. Thesis, May 1961.

Freiman, C. V., "Upper Bounds for Fixed Weight Codes of Specified
Minimum Distance,' IEEE Transactions on Information Theory, pp.246-

Garner, H. L., "Error Codes for Arithmetic Operations," IEEE Trans-

actions on Flectronic Computers, Vol. EC-15, pp. 763-770, October
1966.

Hall, M., "A Survey of Combinatorial Analysis,'" Some Aspects of
Analysis and Probability, Vol. IV, John Wiley, 1958, pp. 77-104.

Ho, D. S., "The Study of a Totally Self-Checking Adder," Coordinated
Science Laboratory Report R-582, University of Illinois, August 1972.

Ho, D. S., "The Design of Totally Self-Checking Systems,' Coordinated
Science Laboratory Report R-723, University of Illinois, April 1976.

Kautz, W. H. and Elspas, B., "Single<-Error-Correcting Codes for
Constant Weight Data Words,'" IEEE Transactions on Information Theory,
Vol. IT-11, pp. 132-141, January 1965.

Kohavi, I., "Fault Diagnosis in Logical Circuits," Conf. Rec. of the
1969 Tenth Annual Symposium on Switching and Automata Theory,
pp. 166-173, October 1969.

e

27.

28.

29.

30.

31.

32.

33.

34,

35.

36.

37.

38.

39.

40.

41.

9%

Ketelsen, M. L., "An Integrated Circuit Fault Model for Digital
Systems," Coordinated Science Laboratory Report R-743, September

1976.

Kolupaev, S. G., '"Self-Testing Residue Trees,'" Technical Report No.
49, Digital Systems Laboratory, Stanford University, August 1573.

Kuhl, J. G. and Reddy, S. M., '"Design of Asynchronous Circuits -
Some Problems,'" Proceedings of the l4th Allerton Conference,
Monticello, pp. 191-200, 1976.

Massey, J. L., "éurvey of Residue Coding for Arithmetic Errors,"
ICC Bulletin, Vol. 3, Rome, Italy, pp. 195-203, October 1964.

Massey, J. L. and Garcia, 0. M., "Error-Correcting Codes in Computer
Arithmetic," Advances in Information Sciences, Chap. 5.

Metze, G. and Smith, J. E., "The Design of Totally Self-Checked
Combinational Logic Circuits,'" Proc. of the 1976 Conf. on Information
Sciences and Systems, Baltimore, Maryland, 1976.

Monteiro, P. and Rao, T.R.N., "A Residue Checker for Arithmetic and
Logical Operations," Digest of the 1972 Symposium on Fault-Tolerant
Computing, Newton, MA., pp. 8-13, June 1972.

Ozguner, F., "Design of Totally Self-Checking Asynchronous Sequential
Machines," Coordinated Science Laboratory Report R-679, May 1975.

Paige, M. R., "Generation of Diagnostic Tests Using Prime Implicants,"
Coordinated Science Laboratory Report R-414, University of Illinois,
May 1969.

Peterson, W. W., "On Checking an Adder," IBM Journal of Research and
Development, Vol. 2, pp. 166-168, April 1958.

Peterson, W. W. and Rabin, M. 0., "On Codes for Checking Logical
Operations,'" IBM Journal of Research and Development, Vol. 3,
pp. 163-168, April 1959.

Peterson, W. W., Error-Correcting Codes, The M.I.T. Press, Cambridge,
1972.

Pierce, W. H., Failure Tolerant Computer Design, Academic Press,
New York, 1965.

Pitt, D. A., "Design of Totally Self-Checking Asynchronous Sequential
Machines," Report No. UIUCDCS~R-73-593, University of Illinois,
September 1973.

Pradhan, D. K. and Reddy, S. M., "A Design Technique for the Synthesis
of Fault-Tolerant Adders,''Digest of the 1972 Symposium on Fault-Tolerant
Computing, Newton, MA., pp. 20-24, June 1972.

42.

43.

44,

45.

47.

48.

“9.

50.

51.

52.

53.

S4.

95 i

Rao, T.R.N., "Biresidue Error-Correcting Codes for Computer Arith-

metic,'" IEEE Transactions on Computers, Vol. C-15, pp. 398-402,
May 1970.

Rao, T.R.N. and Garcia, 0. N., "Cyclic and Multiresidue - :2s for

Arithmetic Operations,' IEEE Transactions on Information Theory,
Vol. IT-17, pp. 85-91, January 1971.

Reddy, S. M. and Wilson, J. R., "Easily Testable Cellular Realizations
for the (Exactly P)-out-of-n and (P or More)-out-of-n Logic Functioms,'
IEEE Transactions on Computers, Vol. C-23, pp. 98-100, January 1974.

Reddy, S. M., "A Note on Self-Checking Checkers," IEEE Transactions on
Computers, Vol. C-23, pp. 1100-1102, October 1974.

Reddy, S. M. and Ashjaee, M. J., '"On Totally Self-Checking Checkers

for Separable Codes,'" Proc. of the 1976 International Symposium on
Fault Tolerant Computing, pp. 151-156, June 21-23, 1976.

Reynolds, D. A., "The Design of Alternating Logic Systems with Fault
Detection Capabilities," Coordinated Science Laboratory Report R-738,
August 1976.

Sellers, F. F., Hsiao, M. Y. and Bearnsom, L. W., Error Detecting
Logic for Digital Computers, McGraw-Hill, 1968.

Shannon, £. E. and Moore, E. F., "Reliable Circuits Using Less
Reliable Relays," J. of the Franklin Institute, Vol. 262, 191-208 &
(Sept. 1956), 281-297 (Oct. 1956). ﬁ

Smith, J. E. and Metze, G., ''General Design Rules for the Construction
of m-out-of-n Totally Self-Checking Checkers," Coordinated Science
Laboratory Report R-693, University of Illinois, October 1975.

Smith, J. E. and Metze, G., "General Design Rules for the Construction |
of m-out-of-n Totally Self-Checking Checkers," Proc. of the 13th ﬂ
Annual Allerton Conference on Circuit and System Theory, Monticello,
Illinois, pp. 704-715, October 1975.

Smith, J. E., "The Design of Totally Self-Checking Combinational
Circuits," Coordinated Science Laboratory Report R~737, University
of Illinois, August 1976.

Von Neumann, J., '"Probabilistic Logics and the Synthesis of Reliable
Organisms from Unreliable Components," Annals of Mathematical Studies,
No. 34, pp. 43-98, Princeton University Press, Princeton, N.J., 1956.

Winograd, S., "Coding for Logical Operation," IBM Journal of Research
and Development, Vol. 6, pp. 430-436, October 1962,

35.

56.

57.

58.

96

Wakerly, J. F., '"Checked Binary Addition Using Parity Prediction
and Checksum Codes,'" Technical Note No. 39, Digital Systems
Laboratory, Stanford University, January 1974.

Wakerly, J. F., "Partially Self-Checking Circuits and Their Use in

Performing Logical Operations,'" IEEE Transactions on Computers,
Vol, C-23, pp. 658-666, July 1974.

Wakerly, J. F. and McCluskey, E. J., '"Design of Low-Cost General
Purpose Self-Diagnosing Computers,' Technical Note No. 38, Digital
Systems Laboratory, Stanford University, January 1974.

Woodard, S. and Metze, G., 'Self-Checking Alternating Logic:
Combinational Network Analysis,' Proc. of the 15th Allerton
Conference, Monticello, Illinois, September 28-30, 1977.

N i

e ek S e O R O O

97

VITA
Jean Dussault was born in Hull, Québec on June 4, 1953. He
received his B.A. Sc. (1973) and M.A. Sc. (1974) degrees in electrical
engineering both from the University of Ottawa. From 1973 to 1977 his
work was supported by graduate scholarships from the Province of Québec.

From 1974 to 1977 he was a research fellow with the Digital Systems Group

at the Coordinated Science Laboratory.

