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STEPS INTO COMPUTATIONAL GEOMETRY:
NOTEBOOK II
Abstract
In this notebook we present a collection of new results in
computational geometry, which all concern problems of planar geometry.
The first problem is that of triangulating a simple n-vertex polygon;
we show that this can be done in time O(nlogn), by first decomposing in
time O(nlogn) the given polygon into a collection of special polygons,
called monotone, which can be individually triangulated in time propor-
tional to their numbers of edges. The second result concerns the all-
nearest neighbor problem for an n-vertex polygon: a surprising result
is that, also no method faster than O(nlogn) is known for constructing the
Voronoi diagram of a convex polygon, the all-nearest-neighbor problem can
be solved in time O(n). Finally, we show the feasibility of an optimal
real-time algorithm for constructing the convex hull of a set of n points
in the plane. This algorithm constructs the hull by successive updates,
using total O(nlogn) time - which is optimal -~ with an interpoint delay

0(logn), which gives the real-time property.
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STEPS INTO COMPUTATIONAL GEOMETRY
NOTEBOOK II

F. P. Preparata, Editor

Our earlier '"Notebook'", by the title of ''Steps into computational
geometry", was issued in March of this year and consisted of an anthology
of selected results into this thriving area of computational complexity.

After a few months, we have assembled a new collection of results to
be enclosed in this report. As was the case with the first notebook, there
is no strong unifying scheme for the results to be presented, with the
exception that they all concern problems of planar geometry. One of the
main reasons of this collection is simplicity of access by interested
readers.

The first problem is that of triangulating a simple n-vertex polygon;
we show that this can be done in time O(nlogn), by first decomposing in
time O(nlogn) the given polygon into a collection of special polygons,
called monotone, which can be individually triangulated in time proportional
to their numbers of edges. The second result concerns the all-nearest
neighbor problem for an n-vertex polygon: a surprising result is that, also
no method faster than O(nlogn) is known for constructing the Voronoi
diagram of a convex polygon, the all-nearest-neighbor problem can be solved
in time O(n). Finally, we show the feasibility of an optimal real-time
algorithm for constructing the convex hull of a set of n points in the
plane. This algorithm constructs the hull by successive updates, using
total O(nlogn) time - which is optimal - with an interpoint delay 0(logn),

which gives the real-time property.
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TRIANGUIATING A SIMPLE POLYGON

Franco P, Preparata

September 27, 1977
The efficient algorithmic construction of a triangulation of a set of

points in the plane is an interesting geometric problem, which has received
considerable importance from recent development in finite element methods and
interpolation techniques [1,2]. 1In fact, if a function f of two variables

x and y has been evaluated at a finite set S of points and an approximation
is desired at a new point, it is convenient to visualize the diagram of £
as a surface consisting of triangular plane facets. Therefore, given a
triangulation of S, the function f can be evaluated by linear interpolation.

The problem of triangulating a set S of n points has been elegantly solved
by Shamos [3,4]. 1Indeed, a triangulation is the dual graph of the Voronoi
diagram of S [5], which is a well-known construct for solving proximity
problems and can be algorithmically construc;ed with O(nlogn) steps on a
random-access machine with real number arithmetic [3,4].

A more difficult problem - for which only 0(n2) brute force solutions are
known so far - is the triangulation of a simple polygon, which we state as
follows: "Given an n-vertex simple polygon P, subdivide its interior into
triangles whose vertices are also vertices of the polygon".

Notice that the general method developed for a set of points {3] is not

applicable to this problem, not only because no triangulation edges may exist

This work was supported in part by the National Science Foundation under
Grant MCS76-17321 and in part by the Joint Services Electronics Program

under Contract DAAB-07-72-C-0259.
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in the exterior of P, but also because the edges of P must belong to
the triangulation. In this note we show that the problem can also be
solved with at most O(nlogn) steps.

The solution will be obtained in two stages, which are kept separate
for expository reasons, although they are algorithm :lly combinable. 1Iu
the first stage we decompose in time at most O(nlogn) the given simple
polygon P into a collection of simple polygons PI’P2""’Pk’ of a sgpecial
type called monotone. Since, as we shall show, a monotone simple polygon
can be triangulated in time proportional to the number of its vertices, in

the second step we triangulate each of the P,, thereby obtaining the

1,
desired triangulation of P.
For convenience, and without loss of generality, we choose the y-axis

as a preferred direction. We say that a polygonal line or chain whose

vertices are the sequence (ul,uz,...,up) is monotone (with respect to the
y-axis) if y(ul) 2 y(uz) 2 ,e0 y(up). A simple polygon P is monotone if its
boundary consists of two monotone chains with common extremes. We will now
prove the following proposition.

Proposition. In n-vertex monotone polygon P can be triangulated in time
O(n), and this is optimal.

Proof: The proof is algorithmic. The algorithm consists of at most

n-2+y steps, where v is the number of nonconvex (reflex) vertices of the
polygon. Each step runs in time bounded by a constant and is either a
triangulation step, where a triangulation edge is created, or a data
manipulation step. For easy reference, we distinguish in P a left and

a right chain, with obvious meanings.




We assume inductively that at the i-th step the algorithm examines a
structure consisting of two monotone chains (uo,ul,uz,...,us) and (uo,w)
with s 2 1, y(“s) 2 y(w) and, if 8 2 2, ¢ (uj+1ujuj-1) > n (1) for j=1,...,s-1.
Without loss of generality we shall assume that (uo,...,us) is on the left of
(uo,w) (see figure 1). The data structure which realizes ("0""’“5) is a
stack, stored in an array A, with two pointers V and L, such that L = V+1
and A[L] = us, Alv] = us-l' Let £ be the successor of u in the original left
chain of the polygon P. We distinguish the following cases:

(1) y(&) > y(w) and X (Zusus_l) > m (figure la). This is not a
triangulation step. Vertex £ is added to the left chain, i.e., V = V+1,

L « I+1, and A[L] < £ (in other words, £ is '"pushed" into the stack).

(2) y(£) > y(w) and X (zusus_l) < 1 (figure 1b). This i{s a triangula-
tion step. In fact, triangle Lusus.1 cannot contain any vertex of the polygon
since the chains are monotone. Thus, the triangulation edge ZG;jI can be
created. At this point we check ;(Lus_lus_z); if this angle is > m, then

we update the stack by setting A[L] - £; otherwise we set V «~ V-1, and

create the triangulation edge zus_z. This process is repeated until either
9 (zuiui_l) > mor Alv] = v, (the stack is empty); at this point we set
L ~ V41, and then A[L] ~ 2.

(3) y(2) < y(w) (figure lc). 1In this case the region enclosed by the
polygon UgWu U, g ooty does not contain any vertex of the polygon. Moreover,
by the hypothesis that g (“j+1ujuj-1) >mw for j =1,...,8-1, all vertices
Ujsee0,u  are vigsible from w. So triangulation edges ;ﬁ-, for j=1,...,s

can be created.

(1)"¥ (a,b,c)" denotes the counterclockwise angle formed by segments ba

and Ec
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Clearly, n-3 triangulation edges are created in this process, each
requiring a fixed amount of time; case (1) can occur at most as many times
as there are reflex verteces in P, i.e., < n-3 times. Thus we conclude

that P can be triangulated in time O(n), and this is optimal.

u, Yy
o |
Ysa1 ’
5 :
s
Lo
w w
Figure 1. Triangulation of a monotone polygon.
B}ﬁf Notice that if the i-th steps examines a two chain structure as described,

oy

by (1), (2), and (3) above so will the (i+l)-st step. O

We shall now show that any simple n-vertex polygon Q can be decomposed in
time O(nlogn) into a collection of monotone polygons, by means of a rather
straightforward modification of an algorithm by Lee and Preparata called
"Regularization of a simple polygon" ([6], p.603). The objective of the latter
procedure was the addition of edges to a given simple polygon to ensure that
each vertex was contained in some monotone chain between the two vertices of
largest and smallest y-coordinate (extreme vertices). This was done as follows.
Assume, for simplicity of explanation, that no two vertices in the vertex
sequence (VO’vl""’vn-l) of the polygon Q have identical y-coordinates (these
ties, however can be taken care of very easily). Let a cusp be a vertex vj
for which either y(vj_l) < y(vj) and y(vj+1) < y(vj) or y(vj_l) > y(vj) and

y(vj+1) > y(vj). The above objective is met if, for each vertex v of Q -
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except the two extremes vertices - there are two vertices v' and v" such

that y(v') > y(v) > y( v"). This condition is s¢’ isfied by all vertices except
for cusps: thus only a cusp - if it is not one of the two extreme vertex -

is to be connected to another vertex of Q by means of an edge not crossing any
other edge. This task can be carried out by the above mentioned 'regulariza-
tion procedure" in time 0O(logn) per vertex. The variant, in our

present problem is that not all nonextreme cusps need be connected, but

only those whose reflex angle is inside Q. Thus all that is needed is a
preliminary scan of the vertex sequence of Q to tag only the cusp which

need additional connection; next we can apply a regularization procedure
which will omit connecting untagged vertices. The different results of the
original [6] and of the modified procedures are shown in Figures 2a and 2b, |
respectively. The preliminary scan runs in time O0(n), whereas the decompo-
sition step runs in time O(nlogn). The latter task is responsible for the
order of complexity of the entire process. In figure 2(c) we show the end

product of the triangulation process.

(a) (b) (c)

Figure 2. Simple polygon @ (a) regularized; (b) decomposed into monotone
polygons; (c) triangulated.
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THE ALL NEAREST-NEIGHBOR PROBLEM FOR CONVEX POLYGONS*

D. T. Lee

August 1977

Introduction

The problem of finding the nearest neighbor for each of N arbitrary
points in the Euclidean plane has been shown [1] to require time O(NlogN),
and the algorithms achieving the lower bound have also been given in
[1,2]. However, the lower bound does not apply to the same problem when
the given points, rather than being arbitrarily placed, form a convex
polygon. In this paper, we shall show tha; this additional information
indeed enables us to obtain a linear time algorithm, whose running time is
obviously optimal within a multiplicative constant.
Main result
Let a convex polygon P be denoted by a sequence of vertices (po,pl,...,pN_l)
in which 3:3;:;,(1) 0 $i{ <N, is an edge. Define an index set I={0,1,...,N-1}.
Let d(pi,pj), i,j € 1, denote the distance between pi and pj and D(P) denote

the diameter of P, i.e., D(P) = e d(p,,pP,), the largest distance between
£ €1 £759

*
This work was supported in part by the National Science Foundatian under
Grant MCS-76-17321 and in part by the Joint Services Electronics Program
under Contract DAAB-07-72-C-0259.

(1)A11 indices in the text are taken modulo N.

i |



the vertices of P. The nearest neighbor NN(pi) of Py is pj such that

min
d(pi,pj) T I~{1}d(pi’pk)’ Consider now the following conditions:

Condition (i): the two farthest points of P are the extremes of an edge,
i'e" D(P) = d(pilpi+1) for some i.

Condition (ii): all vertices of P lie inside a circle with diameter D(P).

A convex polygon P, which satisfies both (i) and (ii), is said to have the

semi-circle property. Figure 1 shows a convex polygon having the semi-circle

property.

T

Figure 1. A convex polygon with the semi-circle property.

Lemma 1 [3] Given a convex polygon P = (po,pl,...,pN_l), there exists a

linear time algorithm to decompose it into at most four convex polygons which
have the semi-circle porperty.

Proof: First of all, we apply the linear time algorithm [4] to find the

diameter. Let D(P) = d(pu,pv). The chord S;E; will, in general, divide P

into two convex polygons P1 = (pu,pu+1,...,pv) and P2=(pv,pv+1,...,pN_l,po,...,pu)

(Figure 2), where D(Pl) = D(PZ) = d(pu,pv). Let Py € P1 be the vertex with




L g largest distance from the chord p“pv. Let P € P2 be defined similarly.
| It is obvious that Py and p, can be found in O(N) time. P, will divide
L Pl into two convex polygons P11 = (pu,pu_._l,...,pz) and P12 =(pL’pL+1”"’Pv)‘

Similarly, Pp divides P2 into P21 = (pv’pv+1""’pm) and

P22 = (pm,pm+1,...,pN_l,po,...,pu). We claim that Pll’ P12, P21, and P22
satisfy the semi-circle property. Without loss of generality we shall just

consider P12'

Figure 2. Decomposition of a convex polygon into four convex polygons
satisfying semi-circle property.

In Figure 3, since pupv is the longest chord, all vertices PysPyy12 e3Py
E must lie within the region qupv where Q is the intersection of the two
circles with radius d(pu,pv) and centered at By and Py respectively. By

convexity the vertices of Pl must lie in the region pLQ'pv, and

2
2 T s — '

D(Plz) d(pz,pv). The line A P, perpendicular to PPy, intersects pﬁQ at A'.

The region sz'pv is contained in the right triangle va'pt, which i{¢ obviously

contained in the semi-circle with diameter PyP, and center A. d




[ 10
a
Iy Q' A
Wi
\\\
B Q
A
A P,
Figure 3. Proof that Pl2 has semi-circle property.

Lenma 2 [3]: Given a convex polygon P = (Py,Pys---»Py_;) With the semi-circle
property, for any vertex pi, its nearest neighbor pj is adjacent to P>
] i.e., either j = i+l or j = i-1.

Proof: Without loss of generality, we may assume that D(P) = d(pO’pN-l)'

E;;; Suppose for some Pys NN(Pi) =P where k > i+l (Figure 4). Consider the
%ﬂ triangle PiPy 1Pk - Since d(pi’pk) < d(Pi’p1+1) by assumption, the angle

P 4 P; Py 4+1Px is less than the angle ¥ Pi B Pyyr® By convexity, Py and Py

must lie above chords pyp, ., and p, Py respectively. Thus ¥ p.p, P,
4 must be greater than & popi_'_le_1 which is greater than m™/2 by the semi-
:
>
_ circle property of the given polygon. That is, ¥ PiPiPse1 > X P;Ps41Pk /2
which is impossible. Therefore NN(pi) must be adjacent to Py for

; all i € 1. a
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Fa-1 1
Figure 4. 1Illustration of the proof of lemma 2.

Lemma 3. Given a convex polygon P = (po,pl, stoiery pN-I) satisfying con-
dition (i) above, the nearest neighbor NN(pi) of Py for all 1 € I, can be

found in O(N) time.

Proof: Suppose D(P) = d(pO’PN-l)' Let Py be the vertex with the largest
distance to the chord ;53&_1. By lemma 1, the two convex polygons

P1 = (PO’pl’ ooty pi) and P2 = (pi,p1+1, ey pN-l) satisfy the semi-circle
property. The nearest neighbor of each vertex in Ps, (s = 1,2) can be

found separately by a simple scan through the vertices of Ps by lemma 2.
This step takes O(N) time. We must still check whether the nearest neighbor
of a vertex in, say PI’ belongs to P2, and this can be done as follows. Let
Py-1 be the origin, and the chord ;;:I;b, directed from Py-1 to Pg? define
the positive x-axis. By assumption, Py has the largest y-coordinate. We

projeat all the vertices on the vertical line piq through Py (Figure 5).

The projections of the vertices in P, and P,, denoted by £(P,) = {t(po),
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L(py)s -v» £(p)} and £(R)) = {£(p;), £(py 1)s +--s £(py_ ;)] are ordered as

! (£(py)> £(p;_1)s -5 £(py)) and (2(p,)> L(Pypq)s +oes £(py_))» respectively,

from top to bottom. Let

Pl“! q ?O

Figure 5. Projections of vertices onto p;q are ordered in y-coordinate.

b(pj) be the distance from pj to its nearest neighbor NN(pj) where NN(pj)
and pj are in the same polygon Ps’ 8 = 1,2, and let §-circle (pj) denote
the circle with radius 6 (p j) and centered at p 5 Consider the case when
pj €P1. The only possible nearest neighbor of pj is among those pk€P2
whose projections z(pk) are contained in the 8-circle (pj) (Figure 5).
For each l(pk), there can be at most four 8-circles that pass through it
[2]. Therefore, in order to find NN(pj) for all pj GPl we need only
examine at most four times the number of points in PZ' Specifically, let
the vertices of I’1 and P2 be kept as two ordered lists (pi’pi-l’ Sy po)
and (pi’piﬂ’ v pN-l)’ respectively and let 81 and s, be pointers
associated with these two lists, respectively. In a first scan we shall
determine the nearest neighbor of each pj EPI; anologously, in a second

scan (not to be described) we shall process PZ' In each step, we shall
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examine the 8-circle (p, ) for pg € P, and the projection £(p, ) for p  €P,.
1 1 5 o IR
We start by setting s, « i and sy « i+l. If the é-circle (ps ) does not
= 1
intersect Py (Figure 5), the nearest neighbor of Pg belongs to P1 and was
1
found earlier. So we update s, "81 = 1. Suppose, for some Pg > the
1
8-circle (ps ) intersects P4 at u and v where u is above v (Figure 6).
1
Then we examine the projection l(ps ) to see if it belongs to the segment
2

<+ g, + 1, since P, can not be the

2 2

nearest neighbor of Py - Let f be the smallest value of s, so that z(pf)
1
belongs uv. Since Pg is a possible candidate, we check if d(ps ,pf)is less
1

av. If l(ps ) is above u, we update s
2

than d(ps ,NN(ps )). I1If so, we update NN(ps )
1 1 1

Figure 6. Illustration of the procedure in lemma 3.

accordingly. We keep advancing sy and do the same checking and updating
until we reach a vertex Pe whose projection l(pt) is below v. At this

point, the nearest neighbor NN(ps ) of Pg is determined and we update
1 1
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s, g -1, Suppose 8§-circle (p_,), for some p , €P., is the next circle
1 1 s 81 1
that intersects P;d at u' and v' where u' is above v' (Figure 6). If —C(pt)
is above u', we advance s, Otherwise, we scan backward and if l(pt) is
on u'v' we do the checking and updating as before until we reach a vertex
Pg whose projection l(ps) is above u'; then we scan forward from t(pt) on
and do the same until we meet a vertex P, whose projection l(pr) is below
v'. At this point, the nearest neighbor of Pg! is determined, we update s

1
Note that now s, =rT. The process is repeated until all the nearest

1

neighbor of p j's in Pl are determined. As pointed out above, each projec-
tion can only be examined at most four times, so the time required for the
first pass is O(nz) where n, is the number of vertices in P2. Similarly,
the time for the second pass in O(nl) where o, is the number of vertices in

P Therefore, this step takes 0(n1+n2) = O(N) time.

1°
Since each step takes O(N) time, the proof of this lemma is

completed. O

Based on the above lemmas, we have the following theorem.

Theorem: Given a convex polygon P = (po,pl, sy pN-I)’ the nearest

neighbor of each vertex can be found in O(N) time.

Proof: Let D(P) = d(pu’pv)' The chord P, Py divides the polygon P into
two polygons Pl = (pu’ a1’ C? pv) and PZ = (pv’ v+1? s PyopsPgr cccs pu).
By lemma 3, the nearest neighbor NN(pj) GPS of pj EPs, (s =1,2) can be

found in O(N) time. Now, we project all the vertices in Ps,(s =1,2) onto

the chord PPy’ Since the projections of the vertices in Ps.(s =1,2) are

ordered respectively, by a technique similar to that described in lemma 3,

we can find for each vertex Py €P, its nearest neighbor in O(N) time.




F
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Since the diameter of P can be found in O(N) time, the total running time
is O(N). =
Conclusion

It is rather interesting that the nearest-neighbor problem for a set
of N arbitrary points is lower-bounded by O(N log N), whereas the problem
can be solved in linear time if the given set of points forms a convex
polygon. In [1], the nearest neighbor problem was solved by the Voronoi
diagram technique. The construction of the Voronoi diagram for a set of
N points has also been shown to require O(N log N) time [l1]. But whether
the construction of the Voronoi diagram for the set of vertices of a
convex polygon can be solved in less than O(N log N) time still remains an
open problem. However, we know at least that the nearest neighbor problem
for the set of vertices of a convex polygon is not as time-consuming as

the presently known techniques for constructing the Voronoi diagram for it.
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AN OPTIMAL REAL-TIME ALGORITHM FOR PLANAR CONVEX HULLS

F. P. Preparata

October 3, 1977

1. Introduction

Algorithms for finding the convex hull of a finite set of n
points in the plane have been developed by several authors in recent
years [1,2,3,4]. Most of these algorithms are also optimal, that is, as
pointed out in [5], they have worst-case running time O(n log n), which is
also the best achievable performance.

A common feature of the above mentioned algorithms is that they
are all off-line, i.e., they operate on the data collectively. In other
words, information about all points of the set must be available before
any of those algorithms can be applied.

Ingstead, it is desirable to develop an algorithm which receives one
point at a time and updates the convex hull accordingly, so that, after
points Pys Pys cves Py have been received their convex hull is available.
Such an algorithm is appropriately called on-line. A general feature of
on-line algorithms is that no bound is placed on the update time, or,
equivalently, a new item (point) is input on request as soon as the update

relative to the last item has been completed. We shall refer to the time

This work was supported in part by the National Science Foundation under
Grant MCS76-17321 and in part by the Joint Services Electronics Program
under Contract DAAB-07-72-C-0259.
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interval between two consecutive inputs as the interarrival delay.

Frequently, known on-line algorithms are less efficient on the
entire set than the corresponding off-line algorithms (some price must
generally be paid to acquire the on-line property). For the planar convex
hull problem, however, Shamos has designed an elegant on-line algorithm (6],

which runs in time O(n logn), thereby matching the performance of off-line

algorithms for the same problem.

A more demanding case of on-line applications occurs when the inter-
arrival delay is outside the control of the algorithm. In this case the
updatg must be completed in time no greater than the minimum interarrival

delay. Algorithms for such applications are apprcpriately called in real-

time. Shamos points out in [6] that, since any convex hull algorithm on
n points requires Q0 (n logn) operations, any real-time algorithm for this

&

problem must be allowed O(logn ) processing time between successive inputs.

NS

Unfortunately, the algorithm described by Shamos exceeds this
allowance, since its interarrival delay can be 0((logn)2). The algorithm
works as follows. When the point P; is supplied, assume inductively. that

the algorithm has available the convex hull H of the set of points

i-1
{pi, B pi_l], a point O internal to H, ,, and the polar angles of the ﬂ

vertices of H - a convex polygon -~ about 0. The vertices of Hi-l are

i-1
arranged in a height-balanced tree (e.g., an AVL tree), in the order

of their polar angles. Thus point p; can be located between two consecutive
vertices of Hi-l in time at most O(logi) and tested for inclusion in Hi-l‘
If it is internal, it is discarded; otherwise, two vertices 2 and r of Hi-l

have to be located so that the segments pil and Py belong to lines of

support of H The points 4 and r can each be located by performing a

i-1°

N——-—————.—___—_ﬁ-—__f . . So— ,
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standard binary search on the vertex cycle of Hi-l; on the other hand, each
probe of this search is itself a search in the AVL tree, thereby resulting
in a worst-case running time 0((1031)2) = 0((logn)2) for an update.

The intuitive reason why the algorithm sketched above fails to
achieve an 0(logn) update time is that a binary search is artificially
forced on a search tree, rather than letting the latter be the guide of the
search operation. This natural observation is the basis of the following
convex hull algorithm, which runs in time O(n logn), and is therefore

optimal, and has update time 0(logn), and is therefore in real-time.

2. The Real-time Algorjithm
Let P be a polygon in the plane and let (vo, lete s vs-l) be the

counterclockwise cycle of its vertices (indices are modulo s). The vertices
of P will be stored in a data.structure T(P) which is a height balanced tree
modified in a trivial way. Specifically in the node associated with vertex

v, we also store a pointer NEXT [vil, which gives the address of the node of

i

v Let also min T(P) denote the first member of the vertex cycle, The

1+1°
convex-hull algorithm will make use of two procedures: TEST and RESTRUCTURE.

Procedure TEST (P,m,p) accepts as its inputs a point p, a convex polygon P,
represented by the tree T(P), and the minimum element m = min T(P), this
algorithm tests whether p is internal or external to P, and, in the latter

case, it determines two vertices £ and r, previously defined (see Figure 1):

notice that £ and r are named so that ¥ (rpl) < ﬂ(l). If p is internal, the
algorithm terminates without altering T(P); otherwise the string of vertices
comprised between £ and r is deleted, and the vertex p is then inserted

between £ and r. This operation is performed by procedure RESTRUCTURE (P,p,4,r)

(1)¥ (abc) denotes the counterclockwise angle formed by segments ba and be.




i B
Figure 1. Definition of vertices L and r.

Less informally, we have (A is the empty symbol):

CONVEX-HULL UPDATE

Emput: Ty ) Py
Qutput: T(H,)
l. begin m *~ min T(Bi-l)
2. (L,r) = TEST (ni.-l’m’pi)
3. 1f (4,r) # (A,A)  then H, ~ RESTRUCTURE (H, ,,P;,%,r) else H, ~H
end

Obviously, Step 1 runs in time at most 0(logi) (search in height balanced tree
with at most 1 elements). We shall now show that both TEST and RESTRUCTURE
run in time at most 0(logi). We begin by considering TEST. Let T = T(Bi-l)’
m = min(T), and M = ROOT(T). Given point Py and a vertex v of Hi-l' we shall
say that v is convex (with respect to pi) if the segment piv intersects the
interior of Hi-l; otherwise, if the two vertices adjacent to v lie on the

same side of the line containing PV, v is supporting; in the reaining case,

v is reflex (see figure 2). We also denote as « the angle X (mpin): obviously

(b) O

Figure 2. Illustration of convex, supporting, and reflex vertices.

i-1
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a is classifiable as convex (< m) or reflex (> m). Depending upon the
classifications of m, M, band o, we have in total 18 possible cases. These
elementary cases can be conveniently grouped into eight new cases, illustrated
in figure 3, each requiring distinct algorithmic actions. Notationally, let
the two supporting vertices £ and r be on the left and on the right of an
observer placed in Py and facing the polygon 31-1' We shall make use of two
procedures, called LEFTSEARCH and RIGHTSEARCH, which determine £ and r,
respectively. The arguments of these procedures are binary search trees.

We also let L(M) and R(M) denote the left and the right subtree of the node M,

respectively. The analysis of the eight cases and their corresponding actionS

is straightforward. It is worth pointing oﬁt that when pi is internal to Hi-l’
cases 1 or 7 will occur repeatedly, the algorithm will examine a nested family
of subtrees,and will terminate when the subtree consists of only one leaf,

. i.e., when m = M (see Step 2 below). We can now explicitly give the algorithm:
TEST (H,m,p)

Ioput: H, a polygon, represented as a modified AVL tree T(H) )

P a point, m the minimum element in T(H)‘.
Qutput: either a pair (4,r) of integers or (A,A)

1. begin M < ROOT (T(H)), T - T(H)

Vir If m =M then r - £ - A (Comment: Py is internal)
3. else begin If o < m then

4, If m is convex then
L If M is convex then T ~ R(M), m = NEXT(M), u -~ 0 (case 1)
6. else Tl ~ T-R(M), '1‘2 ~ R(M), u*=1 (case 2)

7. else If M is reflex then T ~ L(M), u = 0 (case 3)

9. else If m is reflex then

8. ' . else T, - T - LMW, T, = L0, u = 1 (case 4)
10. If M is reflex then T - R(M),m = NEXT(M) u ~ 0 (case 5) |

i
?
|
‘ ‘
A , ad
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11. else '].‘1 - R(M),T2 ~T - R(M), u+ 1 (case 6)
12, else If M is convex then T « L(M), u < 0 (case 7)
13. else T1 - L(M), T2 “T - L(M), u+~ 1 (case 8)
14, 1’_5 u = 0 then (L,r) « TEST(T,m,pi)
15. else £ ~ LEFTSEARCH(TI), P RIGHTSEARCH(TZ)

end
16. return (4,r)

(8

Figure 3. The eight possible cases handled by algorithm TEST.

We shall now describe the procedure LEFTSEARCH used by the algorithm
TEST (RIGHTSEARCH is analogous with obvious modifications).
Procedure LEFTSEARCH
Input: a tree T, describing a sequence of vertices
Qutput: a vertex £

1. begin ¢ < ROOT(T)

Zs If pc is supporting then d+-c
3. else begin If c is reflex then T < L(c) else T = R(c)
&, £ ~ LEFTSEARCH(T)
end
5. return 2

WO S— T

o
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It is obvious that LEFTSEARCH involves tracing a path of the tree T,
spending a bounded time at each node. Since T is a balanced tree with at
most (i-1) nodes, the running time is 0(logi). Referring now to the time
performance of TEST, we notice that the bulk of the work is done either in
Step 14 (recursive call of TEST) or in Step 15 (calls of LEFTSEARCH AND
RIGHTSEARCH), whereas the decisions leading to either of these steps (Steps
3-13) take time bounded by'a constant. Typically, algorithm TEST could be viewed as
tracing a path from the root to some node c of T(Hi-l)’ recursively calling
, then ¢ is a leaf of T(H

itself. If Py is internal to H ; otherwise,

1-1 1-1)

starting at node ¢, two paths of T(Hi-l) are traced by LEFTSEARCH and

RIGHTSEARCH, respectively, until £ and r are found. Since the amount of work

expended at each node is bounded by a constant, TEST runs in time O(logi).
Finally, we consider the procedure RESTRUCTURE, which is invoked only

be the number of vertices H

when Py is external to H Let n

i-1° i-1 i-1°

As mentioned earlier, the vertices comprised between £ and r must be deleted

and Py must be inserted. With regard to the deletion, slightly different actions

will be taken depending upon whether £ precedes r in T(Hi-l) or not. In the

first case we have to éplit twice and splice once AVL trees with at most
i-1 elements; in the second case, only two splittings occur. But split and l
splice of AVL trees are standard operations, known as Crane's algorithms
([7), p.465), which can be performed in time O(logi) and will not be further j
discussed. Similarly,insertion of p; can be done in time 0(logi), whereas the
update of the function NEXT only involves two pointers, associated with £
and P; respectively.

Therefore, we conclude that CONVEX-HULL UPDATE can be executed in time

0(logi) after i points have been processed and can be used for an optimal

-

[

real-time algorithm,
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