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STEPS INTO COMPUTATIONAL GEOMETRY:
NOTEBOOK II

Abstract

In this notebook we present a collection of new results in

computational geomet ry , which all concern p roblems of planar geometry .

The first p rob lem is that of triangulating a simple n—vertex polygon ;

we show that this can be done in time O(nlogn) , by first decomposin g in

time O(nlogn ) the given polygon into a collection of special polygons ,

called monotone, which can be individually triangulated in t ime propor-

tional to their numbers of edges . The second result concerns the all—

nearest neighbor problem for an n—vertex polygon: a surprising result

is that , also no method faster than O(nlogn ) is known for constructing the

Voronol diagram of a convex polygon , the all—nearest—neighbor problem can

be solved in time 0(n). Finally , we show the feasibility of an opt imal

real—time algorithm for constructing the convex hull of a set of n points

in the plane . This algorithm constructs the hull by successive updates,

using total 0(nlogn) time — which is optimal — with an interpoint delay
O(logn), which gives the real—time property.
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STEPS INTO COMPUTA.TIONkL GEOMETRY

NOTEBOOK II

F. P. Preparata, Edi tor

Our earlier “Notebook”, by the title of “Steps into computational

geome try”, was issued in March of this year and consisted of an anthology

of selected results into this thriving area of computational complexity.

• After a few months, we have assembled a new collection of results to

be enclosed in this report. As was the case with the first notebook, there

is no strong unifying scheme for the results to be presented , with the

exception that they all concern problems of planar geometry. One of the

main reasons of this collection is simplicity of access by interested

readers.

The first problem is that of triangulating a simple n-vertex polygon;

we show that this can be done in time 0(nlogn), by firs t decompo sing in

time O(n].ogn) the given polygon into a collection of specia l po lygons ,

called monotone , which can be individually triangulated in time proportiona l

to their numbers of edges. The second result concerns the all-nearest

neighbor problem for an n-vertex polygon: a surprising result is that, also

no method faster than 0(nlogn) is known for constructing the Voronoi

diagra m of a convex pol ygon, the all-nearest-neighbor problem can be solved

in time 0(n). Finally, we show the feasibility of an optimal real-time

algorithm for constructing the convex hull of a set of n points in the

plane. This algorithm constructs the hull by successive updates, using

total 0(nlogn) time - which is optimal - with an interpoint delay O(logn),
which gives the real-time property.
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TRIANGULATING A SIMPLE POLYGON

Franco P. Preparata

September 27, 1977

The efficient algorithmic construction of a triangulation of a se t of

points in the plane is an interesting geometric problem, which has received

considerable importance from recent development in finite element methods and

interpolation techniques [1,2]. in fact, if a function f of two variables

x and y has been evaluated at a finite set S of points and an approximation

is desired at a new point, it is convenient to visualize the diagram of f

as a surface consisting of triangular plane facets. Therefore, given a

• triangulation of S, the function f can be evaluated by linear interpolation.

The problem of triangulating a set S of n points has been elegantly solved

by Shamos [3,4]. Indeed, a triangulation is the dual graph of the voronot

diagram of S [5], which is a well-known construct for solving proximity

problems and can be algorithmically cons truc ted wi th O(nlogn) steps on a

random-access machine with real number arithmetic [3,4].

A more difficult problem - for which only 0(n
2
) brute force solutions are

known so far - is the triangulation of a simple polygon , which we state as

follows : “Given an n-vertex simple polygon P, subdivide its interior into

triangles whose vertices are also vertices of the polygon”.

Notice that the general method developed for a set of points [3] is not

applicable to this problem, not only because no triangulation edges may exist

This work was supported in part by the National Science Foundation under
Grant MCS76-17321 and in part by the Joint Services Electronics Program
under Contract DAAB-O7-72-C-0259.
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in the exterior of P , but also because the edges of P mus t belong to

the triangulation. In this note we show that the problem can also be

solved with at most O(nlogn) steps .

The solution will be obtained in two stages, which are kept separate

for expository reasons, al though they are algorithnu ~.lly combinable. Ii.

the first stage we decompose in time at most O(nlogn) the given simple

polygon P into a collection of simple polygons 
~1’~ 2”••’

~k’ of a spe cial

type called monotone. Since, as we shall show, a mono tone simple polygon

can be triangulated in time proportional to the number of its vertices, in

the second s tep we triangula te each of the P~, thereby obtaining the

desired triangulation of P.

For convenience , and without loss of generality, we choose the y-axis

as a preferred direction. We say that a polygonal line or chain whose

vertices are the sequence (u1,u2,...,u ) is monotone (with respect to the

y-axis) if y(u1) 
� y(u~) � ... y(u~,). A simple polygon P is monotone if its

boundary consists of two monotone chains with common extremes • We will now

prove the following proposition.

Proposition. In n-vertex monotone polygon P can be triangulated in time

0(n) , and this is optimal.

Proof: The proof is algorithmic. The algorithm consists of at most

n-2+v steps, where v is the number of nonconvex (reflex) vertices of the

polygon. Each step runs in time bounded by a constant and is either a

triangula tion s tep, where a triangulation edge is created, or a data

manipulation step. For easy reference, we distinguish in P a left and

a right chain, with obvious meanings .

__  J
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We assume inductively that at the i-th step the algori thm examines a

structure consisting of two monotone chains (u0,u1,u2,...,u3) and (130,w)

with s � 1, y(u
8) ~ y(w) and, if a � 2, ‘9 (u~÷1u.u~..1) > ir (1) for j—i,...,s-i.

Without loss of generality we shall assume that (u0,...,u8
) is on the left of

(u0,w) (see figure 1). The data structure which realizes (u0,...,u5
) is a

• stack, stored in an array A, with two pointers V and L, such that L V+1

and A [L1 = u , AEV] — U
5 1
. Let L be the successor of u in the original left

chain of the polygon P. We distinguish the following cases:

(1) y(.L) > y(w) and ~ (Lu
5
u
5 1

) > r~ (figure la). This is not a

triangulation step. Vertex £ is added to the left chain, i.e., V V-fl,

L LI-i, and ALL] L (in other words, L is “pushed” into the stack).

(2) y (L )  > y(w) and ) (Lu5u5 ~~ 
it (f igure ib) . This is a triangula-

tion step. In fact, triangle 5tu8u ~ 
cannot contain any vertex of the polygon

k’ since the chains are monotone. Thus, the triangulation edge Lu5 1  
can be

created . At this point we check 
~

(Lu5...iu
~~2);  if this angle is > ri , then

we update the stack by setting ALL] £; otherwise we set V ‘- V-i, and

create the triangulation edge Lu82. This process is repeated until either

‘9 (Lu~u~~1) > iT or A[V] u
0 (

the stack is empty); at this point we set

L ‘- V-fl, and then ALL] L.

(3) y(L) ~ y(w) (figure ic). In this case the region enclosed by the

polygon u
0
wuu 1,..u1 

does not contain any vertex of the polygon. Moreover,

by the hypothesis that ~9 (u
j+i

u
j
u
j..i) > ii, for j = l,...,s-l, all vertices

are visible from w. So triangulation edges wu
j~ 

for j—l,...,s

can be created.

(a ,b,c)” denotes the counterclockwise angle formed by segments
and bc
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Clearly, n-3 triangulation edges are created in this process, each

requiring a fixed amount of time; case (1) can occur at most as many times

as there are reflex verteces in P, i.e., � n-3 times. Thus we conclude

that P can be triangulated in time 0(n) , and this is optimal.

£ 

~

- 

~~~~~~~~~~~~ 

~~~~~~~~~~~~~ 

~

5

~
1
~~~

:

2

~~~~~~~~~~~

Figure 1. Triangulation of a monotone polygon.

Notice that if the i-th steps examines a two chain structure as described ,

by (1), (2), and (3) above so will the (i+l)-st step . 0

We shall now show that any simple n-vertex polygon Q can be decomposed in

time O(nlogn) into a collection of monotone polygons, by means of a rather

straightforward modification of an algorithm by Lee and Preparata called

“Regularization of a simple polygon” ([6], p.603). The objective of the latter

procedure was the addition of edges to a given simple polygon to ensure that

each vertex was contained in some monotone chain between the two vertices of

largest and smallest y-coordinate (extreme vertices). This was done as follows.

Assume, for simplicity of explanation, that no two vertices in the vertex

sequence (v0,v1,...,v0_1) of the polygon Q have identical y-coordinates (these

ties, howeve; can be taken care of very easily). Let a be a vertex v~

for which either Y(Vj_1) < Y(Vj) and Y(Vj÷1) < Y(vj) or Y(V
j ..1) > y(v

j
) and

Y(vj+i) > Y(Vj). The above objective is met if, for each vertex v of Q -
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I
except the two extremes vertices - there are two vertices v’ and v” such

that y(v’) > y(v) > y( v”). This condition is s~ i.sfied by all vertices except

for cusps: thus only a cusp - if it is not one of the two extreme vertex -

is to be connected to another vertex of Q by means of an edge not cross ing any

other edge. This task can be carried out by the above mentioned “regulariza-

tion procedure” in time O(logn) per vertex. The variant, in our

present problem is that not all nonextreme cusps need be connected, but

only those whose reflex angle is inside Q. Thus all that is needed is a

preliminary scan of the vertex sequence of Q to tag only the cusp which

need additional connection; next we can apply a regularization procedure

which will omit connecting untagged vertices. The different results of the

original [6] and of the modified procedures are shown in Figures 2a and 2b,

respectively. The preliminary scan runs in time 0(n), whereas the decompo-

sition steP runs in time O(nlogn). The latter task is responsible for the

order of complexity of the entire process. In figure 2(c) we show the end

product of the triangulation process. 

(a) (b) (c)

Figure 2. Simple polygon Q (a) regularized ; (b) decomposed into monotone
• po lygons ; (c) triangulated.
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THE ALL NEAREST-NEIGHBOR PROBlEM FOR CONVEX POLYGONS*

D. T. Lee

August 1977

Introduction

The problem of finding the nearest neighbor for each of N arbitrary

points in the Euclidean plane has been shown [iJ to require time O(NlogN),

and the algorithms achieving the lower bound have also been given in

[1,2]. However , the lower bound does not apply to the same problem when

the given points , rather than being arbitrarily placed , form a convex

polygon. In this paper , we shall show that this additional information

indeed enables us to obtain a linear time algorithm, whose running time is

obviously optimal within a multiplicative constant.

Main result

Let a convex polygon P be denoted by a sequence of vertices

in which ~~~~~~~~~ 0 ~ i < N , is an edge. Define an index set I=[0,l,...,N-1}.

Let d(Pi,Pj), i,j E I, denote the distance between p~ 
and p

3 
and D(P) denote

the diameter of P, i.e., D(P) — 

~ 
d(p~ ,p~), the largest distance between

*This work was supported in part by the National Science Foundati x~ under
Grant MCS-76-l7321 and in part by the Joint Services Electronics Program
under Contract DA.AB-07-72-C-0259.

~
1
~A1l indices in the text are taken modulo N. 
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the vertices of P. The nearest neighbor NN(P~) of p~ is p~ such that

= 
k -(ir1

~~i’~k~ 
Consider now the following conditions:

Condition (i) : the two farthest points of P are the extremes of an edge,

i.e., D(P) = d(Pi,pi+1) for some i.

Condition (ii): all vertices of P lie inside a circle with diameter D(P).

A convex polygon P, which satisfies both (i) and (ii), is said to have the

semi-circle property. Figure 1 shows a convex polygon having the semi-circle

property.

Pg

Figure 1. A convex polygon with the semi -circle property.

Lenmia 1 [3] Given a convex polygon P = 

~~~~~~~~~~~~~~~ 
there exists a

linear time algorithm to decompose it into at most four convex polygons which

have the semi-circle porperty.

Proof: Firs t of all, we apply the linear time algorithm [4] to find the

diameter. Let D(P) = d(p
u~

pv)• The chord 
~
j i will , in general, divide P

into two convex polygons P
1 

= (p ,p~~ 1, . . . , p ) and

(Figure 2), where D(P1
) = D(P

2
) = d(p

~
,p
~

) .  Let Pj  E P1 be the vertex with
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• largest distance from the chord 
~~~~ 

Let p E P
2 
be defined similarly.

It is obvious that and p can be found in 0(N) time . will divide

into two convex polygons P11 = 
~~~~~~~~~~~~~~~~~~~~ 

and P12 “<PL)PL+1,...~P).

Similarly, ‘yin 
divides P

2 
into P21 = v’~ vI-l’ . , p )  and

— 

~~~~~~~~~~~~~~~~~~~~~~~~~ 
We claim that P11, P12, P21, and P22

satisfy the semi-circle property. Without loss of generality we shall just

consider P
• 12

p1..,

‘-4

Figure 2. Decomposition of a convex polygon into four convex polygons
satisfying semi -circle property.

In Figure 3, since ~~~~ is the longest chord , all vertices

must lie within the region 
~~~~~ 

where Q is the intersection of the two

circles with radius d(p
~

,p
~
) and centered at Pu 

and 
~ 

respectively. By

convexity the vertices of P12 must lie in the region 
~~~~~~ 

and

D(P 12) — d(pL,pv). The line A ’p
~ 

perpendicular to 
~u~v 

intersects p1Q’ at A ’ .

The region 
~L~

’
~v 

is contained in the right triangle PA ’PL, which ~ obviously

contained in the semi-circle with diameter 
~L~v 

and center A.
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Figure 3. Proof that has semi-circle property.

Lemma 2[3]: Given a convex polygon P = 
~~~~~~~~~~~~~~ 

with the semi-circle

property, for any vertex p~, its nearest neighbor p3 
is adjacent to

i.e., either 3 = i+l or 3 i-l.

Proof: Without loss of generality, we may assume that D(P) = d(p o,PN I ) .

Suppose for some p~ , NN(P~) = 

~k 
where k > i+l (Figure 4). Consider the

r ‘ triangle 
~j~i+j~k 

. Since d(pi,pk
) < d (p~~p~41) by assumption, the angle

~ 
p
~ Pi+lPk is less than the angle 

~ 
By convexity, p~ and

must lie above chords and 
~i-I-l~N-l 

respectively. Thus 
~

must be greater than 
~ ~0~j+l~Nl  which is greater than rr/2 by the semi-

circle property of the given polygon. That is, 
~ 

> 
~ 

> rt/2

which is impossible. Therefore NN (pi
) must be adjacent to for

all i E l .  0 

~--~~ •—- 
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Figure 4. Illustration of the proof of lemma 2.

Lemma 3. Given a convex polygon p (p0,p1, 
~~~~~~~ 

p~~~) satisfying con-

dition (i) above, the nearest neighbor NN(p1) of p~, for all i E I, can be

found in 0(N) time.

Proof: Suppose D(P) d(p
O
,pN l). Let p~ be the vertex with the largest

distance to the chord 
~O~N 1 • By lenina 1, the two convex polygons

P1 
= (p0,p1, ... , p

1
) and P2 ~~~~~~~~~~~~~~~~~ ~~~~ 

p~~~) satisfy the semi-circle

property. The nearest neighbor of each vertex in P
8
, (a 12) can be

found separately by a simple scan through the vertices of P
5 
by lemma 2.

This step takes 0(N) time. We must still check whether the nearest neighbor

of a vertex in, say P1, belongs to P2, and this can be done as follows. Let

be the origin, and the chord 
~N-l~O’ directed from to p

0
, define

the positive x-axis. By assumption, r 1 has the largest y-coordinate. We

projeot all the vertices on the vertical line p~
q through Pt (Figure 5).

The projections of the vertices in P1 
and P2, denoted by L(P

1
) [L(p

0
),

I
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... , £(p~)3 and 2(P2) ~~~~~~ ~i+l~’ 
2(PN_ l )) are ordered as

(~~Pj)~ ~~~i—l~ ’ 
... , L(p~)) and (L(

~~). ~~~~~~~ “~N-l” 
respectively,

from top to bottom. Let

Figure 5. Projections of vertices onto are ordered in y-coordinate .

8(p
3
) be the distance from p

3 
to its nearest neighbor NN (p

3
) where NN(p

3
)

and p
3 
are in the same polygon P

5, 
a = 1,2 , and let 6-circle (p

3
) denote

the circle with radius 8(p
3

) and centered at p
3
. Consider the case when

p
3

E P 1. The only possible nearest neighbor of p
3 

is among those p
k
EP

2

whose projections 
~~~~ 

are contained in the 6-circle (p
3

) (Figure 5).

For each t
~~k~’ 

there can be at most four 6-circles that pass through it

(21. Therefore, in order to find NN(p
3

) for all p
3 
E P

1 
we need only

examine at most four times the number of points in P2. Specifically, let

the vertices of P
1 

and P
2 
be kept as two ordered lists 

~~
j’~ il ’ ~

and 
~~i’~i÷l’ ~~~~~~~ ~N-l~ ’ 

respectively and let and 82 be pointers

associated with these two lists, respectively. In a first scan we shall

determine the nearest neighbor of each p
3 

E P1; anologously, in a second

scan (not to be described) we shall process P2
. In each step, we shall
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examine the 6-circle (p5 ) for p5 E P1 and the projection £(p ) for p E P
1 1 ~2 ~2 2

We start by setting 
~1 ~ 

i and • i+l. If the 6-circle (p5 ) does not
— 1

intersect p~
q (Figure 5), the nearest neighbor of p belongs to P1 and was

found earlier . So we update s
~ 

4 - 1. Suppose , for some p5 , the
— 

1
8-circle (p5 ) intersects ~~ at u and v where u is above v (Figure 6).

1
Then we examine the projection £(p5 ) to see if it belongs to the segment

2
uv. If £( p5 ) is above u, we update ~2 ~2 

+ 1, since p can not be the
2

nearest neighbor of p8 . Let f be the smallest value of so that
1

belongs uv. Since Pf is a possible candidate , we check if d(p ,p,~) is less
~1

than d(p ,NN( p5 ) ) .  If so , we update NN(p )
1 

iT~r2

Figure 6. Illustration of the procedure in lemma 3.

accordingly. We keep advancing 
~2 

and do the same checking and updating

until we reach a vertex Pt whose projection ~~~~ 
is below V. At this

point, the nearest neighbor NN(p 5 ) of p is determined and we update
1

_-

~ -
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- 1. Suppose 6-circle (p ,), for some p8, E P 1, is the next circle

that intersects at u ’ and v ’ where u’ is above v ’ (Figure 6) .  If

is above u’, we advance Otherwise, we scan backward and if 
~~~~ 

is

on u ’v ’ we do the checking and updating as before until we reach a vertex

p5 whose projection L(p5) is above u’; then we scan forward from on

and do the same until we meet a vertex p whose projection is below

v’. At this point, the nearest neighbor of p5, is determined, we update ~l1
Note that ~~~ a~ — r. The process is repeated until all the nearest

neighbor of p
3
’s in P1 are determined. As pointed out above, each projec-

tion can only be examined at most four times, so the time required for the

first pass is 0(n2) where n2 is the number of vertices in P2. Similarly,

the t ime for the second pass in 0(n 1) where is the number of vertices in

P1. Therefore, this step takes 0(n1+n2) = 0(N) time .

Since each step takes 0(N) time, the proof of this lemma is

completed . 0

Based on the above lemmas , we have the following theorem.

Theorem: Given a convex polygon P = (p0,p 1, 
~~~~ ~~~~~ 

the nearest

neighbor of each vertex can be found in 0(N ) time.

Proof: Let D(P) — d(p
~
,p
~
). The chord 

~u~~v divides the polygon P into

two polygons 
~
‘l ~

‘u ‘ ~u+l’ •

~~~~
•‘  and P2 

= , 

~~~~ 
. 

~~~~~~~ l’~
’O’ 

~~

,

By lemma 3 , the nearest neighbor NN(p
3

) E P 3 of p3
EP5, (s1 ,2) czan be

found in 0(N) time. Now, we project all the vertices in P5,(s l,2) onto

the chord p~p~,• Since the projections of the vertices in P5,(s
w l,2) are

ordered respectively, by a technique similar to that described in lemma 3,

we can find for each vertex p~ EP, its nearest neighbor in 0(N) time. - 

— - -
~~~ -~~~~~- ~--~~~~~~~~--—~~~ - •-~ • - - • • -- 
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Since the diameter of P can be found in 0(N) time , the total running time

is 0(N). 0

Conc lusion

It is rather interesting that the nearest-neighbor problem for a set

of N arbitrary points is lower-bounded by O(N log N), whereas the problem

can be solved in linear time if the given set of points forms a convex

polygon . In [1], the nearest neighbor problem was solved by the Voronoi

diagram technique. The construction of the Voronoi diagram for a set of

N points has also been shown to require O(N log N) time [1]. But whether

the construction of the Voronoi diagram for the set of vertices of a

convex polygon can be solved in less than O(N log N) time still remains an

open problem. However, we know at least that the nearest neighbor problem

for the set of vertices of a convex polygon is not as time-consuming as

the presently known techniques for constructing the Voronoi diagram for it.
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AN OPTIM&L REAL-TINE ALGORITHM FOR PLANAR CONVEX HULLS

F. P. Prepa rata

October 3, 1977

1. Introduction

Algorithms for finding the conv ex hull of a finite set of a

points in the plane have been developed by several authors in recent

years (1,2,3,4]. Most of these algorithms are also optimal, that is, as

pointed out in (5], they have worst-case running time O(n log a), which is

also the best achievable performance.

A common feature of the above mentioned a lgorithms is that they

are all off-line, i.e., they operate on the data collectively. In other

words , information about all points of the set must be available before

any of those a lgorithms can be applied .

Instead , it is desirable to develop an algorithm which receives one

point at a time and updates the convex hull accordingly, so that, after

points p1, p2, . . . ,  p~ have been 
received their convex hull is available.

Such an algorithm is appropriately called on-line. A general feature of

on-line a lgorithms is that no bound is placed on the update t ime , or ,

equivalently, a new item (point) is input on request as soon as the update

relative to the last item has been completed . We shall refer to the time

This work was supported in part by the National Science Foundation under
Grant MCS76-l732l and in part by the Joint Services Electronics Program
under Contract DAAB-07-72-C-0259.
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interva l between two consecutive inputs as the interarrival de lay.

Frequently, known on-line algorithms are less efficient on the

entire set than the corresponding off-line algorithms (some price must

generally be paid to acquire the on-line property). For the planar convex

hull problem, however, Shamos has designed an elegant on-line algorithm (6],

which runs in time O(n log n), thereby matching the performance of off-line

algorithms for the same problem.

A more demanding case of on-line applications occurs when the inter-

arrival delay is outside the control of the algorithm. In this case the

• update must be completed in time no greater than the minimum interarrival

delay. Algorithms for such applications are appropriately called in 
~~~~]-~

time. Shamos points out in [6] that, since any convex hull algorithm on

n points requires C) (nlogn) operations, any real-time algorithm for this

problem must be allowed O(log n) processing time between successive inputs.

Unfortunately, the algorithm described by Shamos exceeds this

allowance, since its interarrival delay can be 0((logn)
2) . The algorithm

works as follows. When the point p~ is supplied, assume inductively, that

the algorithm has available the convex hull of the set of points

C p , . . .,  p~~1), a point 0 internal to H~_1 1 and the polar angles of the

vertices of H~~1 - a convex polygon - about 0. The vertices of H~~1 are

arranged in a height-balanced tree (e.g., an AVL tree), in the order

of their polar angles. Thus point p~ can be located between two consecutive

vertices of H~~1 in time at most O(logi) and tested for inclusion in

If it is internal, it is discarded ; otherwise, two vertices L and r of

have to be located so that the segments p
~
L and p~r belong to lines of

support of ~~~~ The points 4 and r can each be located by performing a
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standard binary search on the vertex cycle of on the other hand, each

probe of this search is itself a search in the AVL tree, thereby resulting

— 
in a worst-case running time O((logi)2) = O((logn)2) for an update.

The intuitive reason ‘why the algorithm sketched above fails to

achieve an O(logn) update time is that a binary search is artificially

forced on a search tree, rather than letting the latter be the guide of the

search operation. This natural observation is the basis of the following

convex hull algorithm, which runs in time O(n logn), and is therefore

optimal, and has update time O(logn), and is therefore in real-time.

2. The Real-time Algorithm

Let P be a polygon in the plane and let (v0, ... , v5 - ~ 
be the

counterclockwise cycle of its vertices (indices are modulo s). The vertices

of p will be stored in a data.structure T(P) which is a height balanced tree

modified in a trivial way. Specifically in the node associated with vertex

we also store a pointer NEXT [vi
], which gives the address of the node of

Let also mm T(P) denote the first member of the vertex cycle. The

convex-hull algorithm will make use of two procedures: TEST and RESTRUCTURE.

Procedure TEST (P,m,p) accepts as its inputs a point p, a convex polygon P,

represented by the tree T(P), and the minimum element m = mm T(P), this

algorithm tests whether p is internal or external to F, and, in the latter

case, it determines two vertices £ and r, previously defined (see Figure 1):

notice that 2 and r are named so that ~ (rpL) < If p is internal, the

algorithm terminates without altering T(P); otherwise the string of vertices

comprised between 2 and r is deleted, and the vertex p is then inserted

between £ and r. This operation is performed by procedure RESTRUCTu RE (P,p ,.~,r)

(abc) denotes the counterclockwise angle formed by segments and 1~~.

-~
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p

Figure 1. Definition of vertices £ and r.

Less informally, we have (A is the empty symbol):

CONVEX-HULL UPDATE

Input: T(H~~1)~ Pt
Output: T(R~) 

-

1. begin m mm

2. (L,r) TEST

3. If (L,r) ,~ (A ,A) then H~ 
- RESTRUCTURE ~~~~~~~~~~~~ else R.~ ‘-

Obviously, Step 1 runs in time at most O(logi) (search in height balanced tree

with at most 1. elements). We shall now show that both TEST and RESTRUCTU RE

run in time at most O(logi). We begin by considering TEST. Let T —

m — min (T), and N — ROOT(T) . Given point Pt and a vertex v of H~_1~ we shall

say that v is convex (with respect to ~~ if the segment p~v intersects the

interior of H~~1; otherwise, if the two vertices adjacent to v lie on the

same side of the line containing p~v, v is supporting; in the rsiaining case,

v is reflex (see figure 2). We also denote as ~ the angle ~ (mP~l4): obviously

~ f1_ ___, 
~ -

(a) (b) (c) \

\

Figure 2. Illustration of convex, supporting, and reflex vertices .
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~ is classifiable as convex (~ t~) or reflex (> ri). Depending upon the

classifications of m, M, and ~~~, we have in total 18 possible cases . These

elementary cases can be conveniently grouped into eight new cases , illustrated

in figure 3, each requiring distinct algorithmic actions.. Notationally , let

the two supporting vertices £ and r be on the left and on the right of an

observer placed in Pt and facing the polygon U~~1. We shall make use of two

procedures , called LEF~SEARCR and RIGRTSEARCR, which determine £ and r ,

respectively. The arguments of these procedures are binary search trees .

We also let L(M) and R(M) denote the left and the right subtree of the node M,

respectively. The analysis of the eight cases and their corresponding action8

is straightforward. It is worth pointing out that when p~, is internal to

cases 1 or 7 will occur repeatedly , the algorithm will examine a nested family

of subtrees ,and will terminate when the subtree consists of only one leaf ,

i.e., when m — M (see Step 2 below) . We can now explicitly give the algorithm:

TEST (Lm ,p)

Input: H, a polygon, represented as a modified AVL tree T(H)

p a point , m the minimum element in T(H) .

Output: either a pair (L ,r) of integers or (A,A)

1. begin N - ROOT (T(H)), T ~
- T(E)

2. If m — M then r ‘- £ - A (Co~ssant: p~ is internal)

3. else begin If ~ � it then

4. If m is convex then

5. If N is convex then T - R(14), r n -  NEXT(N) , u ~~
- 0 (case 1)

6. else T1 ‘- T-R(M) , T2 
- R(M) , u 1 (case 2)

7. else If M is reflex then T ‘- L(M) , u - 0 (case 3)

8. • else T1 T - L(M) , T2 L(M), u - 1 (case 4)

9. else If in is reflex then

10. If N is reflex then T ‘- R(14),in ~EXT(M) u ‘- 0 (case 5)
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11. else T1 R(M) ,T2 
- T - R(M), u 4- 1 (case 6)

12. else It M is convex then T L(M), u ‘- 0 (case 7)

U. else T1 L(M), T2 T - L(N) , u I (case 8)

14. If ~ — 0 then (L,r) 4- TEST(T ,m ,p~)

15. else £ LEF7SEARCH(T1), r 4- RIGHTSEARCH(T2)end

16. return (L,r)
L(M)

R(M)~~~~~~~~/~ 

T~
R(Mç

~~~~I

(1) p (2) p (3) (4) p

R(~~

7ç

~~~~\ 

‘~~T-R(M) 
~
‘
~~:~~A~~

I1M) 

L(~cT~~~~~~;~~T L (N)

(5) 
P 

(6) p (7) p (8) p

Figure 3. The eigh t possible cases handled by algorithm TEST.

We shall now describe the procedure LEFTSEARCH used by the algorithm

TEST (EIGHTSEARCH is analogous with obvious modifications).

Procedure LEF~SEARCH

Inpu t: a tree T, describing a sequence of vertices

Output: a vertex 2

1. begin c - ROOT(T)

2. If pc is supporting then £ c

3. else begin If c is reflex then T 4- L(c) else T 4- R(c)

4. 2 ‘- LEFTSEARCR(T)

end

5. return L

~

-- - - - -- .

~

-- --- 

_
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It is obvious that LEF~SEARCH involves tracing a path of the tree T,

spending a bounded time at each node. Since T is a balanced tree with at

most (i-l) nodes, the running time is O(logi). Referring now to the time

performance of TEST, we notice that the bulk of the work is done either in

Step 14 (recursive call of TEST) or in Step 15 (calls of LEF~SEARCH AND

RIGHTSEARCH) , whereas the decisions leading to either of these steps (Steps

3-13) take time bounded bya constant. Typically, algorithm TEST could be viewed as

tracing a path from the root to some node c of T(Hi...1), recursively calling

itself. If is internal to H~_1, then c is a leaf of T(Hi_1); otherwise,

starting at node c, two paths of T(Hi_1) are traced by LEFTSEARCH and

RIGHTSEARCH , respectively, until £ and r are found. Since the amount of work

expended at each node is bounded by a constant, TEST runs in time O(logi).

Finally, we consider the procedure RESTRUCTURE, which is invoked only

when p~ 
is external to Hi1. Let n~~1 be the number of vertices Ru

As mentioned earlier, the vertices comprised between L and r must be deleted

and p~ must be inserted. With regard to the deletion, slightly different actions

will be taken depending upon whether 2 precedes r in T(Ri 1) or not. In the

first case we have to split twice and splice once AVL trees with at most

i-l elements; in the second case, only two splittings occur. But split and

splice of AVL trees are standard operations, known as Crane’s algorithms

([7], p.465), which can be performed in time 0(logi) and will not be further

discussed. Similarly,insertion of Pt can be done in time O(logi), whereas the

update of the function NEXT only involves two pointers, associated with £

and 
~t 

respectively.

Therefore, we conclude that CONVEX-HULL UPDATE can be executed in time

0(logi) after i points have been processed and can be used for an optimal

real-time algorithm.

i

~

--

~

- ----

~
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