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~t method for recording slow crack growth, using a conventional ultrasonic tester and
chart recorder , is described. The problems caused by changes in the measuring system orer
long periods were overcome by rela ting crack growth to the amplitude difference between
the crack reflection and a reference reflection. Some app lications of the technique are
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I. INTRODUCTION
Application of fracture mechanics princi ples (ref. I) has enabled critical defect sizes to be

estimated in critical components of hi gh performance structures provided a stress anal ysis of the
compone nt is available and the fracture toughness of the material is known. In an effort to
investi gate how long a given defect will take to reach this critical level, a number of techni ques
have been developed to monitor crack-growth rates in small precracked test specimens. These
methods include (a) optical monitoring at the specimen surface, (b) measuring the change in
crack-opening-disp lacement (COD), (c) electrical potential methods, (d) acoustic emission , and
(e) ultr asonic pulse-echo techniques. The choice of crack-measuring techni que is determined by
(a) type of information sought, (b) method of specimen loading, (c) visibility, accessibility and
geometry of the crack under study, and (d) specimen geometry. Acoust ic emission, electrical
potenti al and COD measurements provide information from which mean cracking rates across
the crack front can be calculated, whereas optical and ultrasonic measurements give more
localised information on the progress of cracking.

Since stress-corrosion cracking is often controlled by processes occurring in the plane-strain
region near the specimen centre , the ultrasonic pulse-echo technique is ideally suited for this type
of study. If the ultrasonic probe is aligned normal to the crack plane , a typical trace on the tester
screen shows a transm itted pu lse , a reflection from the crack and a reflection from the back-wall
(fig. 1). In one method of operation (refs. 2—5), the ultrason ic probe is adjusted such that the
amplitude of the reflected signal from the crack is just less than some preset level. Once cracking
starts , the (crack-peak) amplitude exceeds this preset level and the probe is moved a given
distance ahead of the crack to wait for the signal to reach the preset level. In instances where the
probe cannot be moved readily (e.g. in a vacuum system or enclosed space), a second method has
been developed in which the probe is cemented in position and crack growth determined from
the change in amplit ude of the reflected signal from the crack (refs. 6—9). Precalibra tion in this
instance was achieved by extending a slot with a thin saw to simulate crack growth.

Crack growth during stress-corrosion cracking (SCC) is often so slow that it takes several
days to extend the crack a measurable amount. Under these circumstances , drift in the ultrasonic
tester electronics becomes a problem and may seriously impair the sensitivity of the method. The
present work describes a new mode of operation which distinguishes between crack growth and
long-te rm drift effects. The method makes use of the changes in amp litude of the reflected signals
from both the crack and the back-wall of the specimen during cracking. Since the amp litude of
the crack-peak increases and the back-wall peak decreases during cracking, the difference (.~H
provides a sensitive measure of the cracking process. Long-term di ift effects due to changes in
temperature , probe pressure and electronic instabilities will cause the amp litudes of bot h peaks
to move i n phase and hence they can be readily distinguished from changes due to crack growth.

2. EXPERIMENTAL
Following the experience of other workers (refs. 2, 3, 9), the ultrasonic techniq ue was

designed to operate with 23 mm thick side-grooved l—T WOL specimens (fig. 2A) (re f. 10) using
either D6AC or SDI9 steel. Heat-treatment for D6AC steel used in this study involved austen itis-
ing for 30 minutes at 930°C, quenching to ‘Ausbay ’ at 520°C and holding for 30 minutes , further
qu enching into circulating hot oil at 60°C, cooling to 25°C and double-tempering for I + I hours
at either 290°C or 565°C. SDI9 steel was austenitised for 1 hour at 860 C, quenched into
circulating hot oil at 52CC , cooled to 25°C and double-tempered for I + I hours at 400 C.
Composition , tensile and fracture toughness properties are listed in Table I . Specimens were
machined with cracks aligned in either the T-L or L-T orientations (fig. 3). Prior to SCC.



specimens were fatigue precracked at 10 Hz in air at 25°C and cracks extended to approximatel y
5 mm from the notch with the stress intensity vary ing from 2 to 20 MPa m 1.

The crack was monitored ultrasonicall y with a Krautkramer ultrasonic detector coupled in
tur n to each of four 6mm diameter , 12 MHz probes mounted on the specimen with their centres
located at intervals of 3’25 mm in the direction of cracking (fig. 2B). Apiezon L vacuum grease
was used as cou plant and each probe was held on the specimen surface by a compression spring
loaded by a bolt. With each probe monitoring approximatel y 3 mm of crack growth , it was
possible to register 12 mm crack growth before resetting the probes. As shown in fi g. 4, the
demodulated signal from the ultrasonic tester , i.e. the signal displayed on the tester screen , is
gated and the amplitude of the gated signal sampled by a sample-and-hold (SAH) circuit. In the
sample pulse-switching circuit (fig. 5), two sets of sampling pulses are generated , one set ~being
adjusted to coincide with the crack pulse and the other to coincide with the back-wall pulse. At
ten second intervals , the sampling pulse is switched to the SAH samp li ng pulse input , so that the
amplit ude of the crack pulse and the back-wall pulse appear alternatel y on the chart recorder. A
detailed description of the circuits appears in reference I I .

Calibration of the ultrasonics was achieved by stress-corrodi ng the specimen at constant
load and monitoring the change in crack length using both the ultrasonic tester and a linear
variable di fferential transducer (LVDT) mounted on the top face of the specimen to monitor
changes in the crack-opening-disp lacement (COD). Provided the whole crack front moves at the
same rate, crack growth rates calculated fro m the LVDT output can be used to calibrat e the
ultraso nics. This condition was achieved by positioning the first ultrasonic probe well ahead of
the crack fro nt prior to SCC such that steady-state cracking at constant load was reached by the
time the crack front crossed the ultrasonic beam.

Since the theoretical compliance C (change in COD/load P) is known over the full length of
the l— T WOL specimen (re f. 10), then SCC crack-growth data can be readil y calculated from
COD measurements by adopting the following iterative procedure , provided the initial crack
length of the specimen prior to stress-corrosion cracking is known :

(a) Afte r the SCC experiment is terminated , the specimen is broken open and the fracture
surface used to measure the mean crack length from the load line prior to the commence-
ment of SCC. This value is easily measured as the fracture surface of the fati gue pre-
crack is usually much smoother than the SCC fracture surface (fig. 6).

(b) The change in COD (J”1~) during application of load P prior to SCC is measured and
converted to an equivalent value at the load line (V 2f ) using similar triang les and knowing
the initial crack length a (fi g. 7).

(c) By continuall y monitoring the change in COD on a chart recorder, a new COD ( I - ~ ~
) is

obtained after a small increment of SCC at constant load P. If the new crack length .
~

assumed to be a+da , then the new COD at the load line is calculated by similar t r iang les
to be Vil (fi g. 7).

(d) Dividing the change in COD at the load line (V 2j — I’2~) by the load P gives the change in
compliance ( S C)  during SCC.

(e) If the mean crack lengt h during SCC is taken as a + da/ 2 and the theoretical rate of
change in compliance with crack length is known (ref. 10) ((dCjda)th,or). then d iv id ing
xC by (dC/ da)theor gives a better approximation of the estimated value c/a. Substitution
of da back into step (c) and repeating iteratively gives continuall y better estimates of the
stress-corrosion crack-growth increment.

The above procedure was the n repeated for successive selected increments of stress-corrosion
crack growth th roughout the life of the specimen. Provided crack-growth rates did not vary
rapidly, crack growth increments of 1 m m were adequate to quantify the crackin g kinetics.
Errors of less than 10% were found when the sum of these calculated values of crack-growth
were compared with values experimentall y measured from the fracture surface (ref. 12). These
rates were then used to calibrate the ultrasonic data using calculated .~H values. In order to
standa rdise the ultrasonic output , the gain on the Krautk r amer was adjusted to give a signal
amp l itude of 0 50+ 005  volts when the amplitude of both the crack and back-wall peaks were
equal (‘cross-over ’).

Calibration runs were performed using D6AC steel specimens tempered to 290 C and stress-
corroded in the L-T orientation at low-medium stress intensities in distilled water at 25 C. Stress-
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corrosion cracking with this heat treatment of steel was rap id (1 ~cm/sec) and bowing of the crack
front was not observed. The water was app lied in the form of a continual drip in the region of the
crack so that the ultrasonic probes were kept dry throughout.

- 3. RESULTS

A typical trace of the change in amplitude of the crack and back-wall peaks during SCC is
shown in fig. 8. Using the known cracking rate from LVDT data , the change in .~H with increasing
crack length was determined (fig. 9). It was noted that the crack-growth rate often remained
constant during its progress across each of the probes. In the region of the ‘cross-over ’ of the
crack and back-wall peaks, ~ H was found te - y linearl y with crack lengt.. over a distance of
approximatel y 1 mm. The tech n ique can still be used , but with red uced sensitivity, over the
remainder of the probe range. Repetition of the probe calibration revealed that the rate of
increase in crack-peak amplitude did not always match the rate of decrease in back-wall peak
amplitude (fig. 10) . The reason for this behaviour was not investi gated but its effect was to
increase the scatter in the measured ultrasonic sensitivity. A mean value for d(.~sH)/ da was
obtained from 13 independent experiments and found to be O’55 volt/mm , with a standard
deviation of O~ 16 volt/m m. Although the reproducibility of the calibration appears poor, it
compares favourably with the scatter obtained in measuring stress-corrosion crack-growth rates
in hi gh strength steels—scatter bands incorporating ten-fold variations are not uncommon in the
stress-corrosion cracking of D6AC steel (ref. 13). A similar sensitivity was found when the
calibration was carried out with D6AC steel tempered to 565°C, where the stress-corrosion rates
were 100 times slower.

In short-term experiments (a few minutes), changes in crack length of 0~ I mm could be
readil y detected. The effect of long-term drift in amplit ude of both the crack and back-wall peaks
is shown in fig. I I  for a stationary crack. The results showed that , if estimations of crack growth
were made solely from changes in amplitude of the crack-peak , then the ultrasonics could not
positivel y determine cracking unless increments of crack growth exceeded 1 mm. This value is
close to the accuracy obtained by BIau (ref. 5) in which crack-growth measurements based on the
height of the crack-peak amp lit ude were taken over the course of several days during SCC of an
aluminium alloy. Since the amplitudes of both the crack and back-wall peaks moved in phase .
the effects of long-term drift could be largely eliminated throug h calculation of .~H , thereby
enabling crack extensions of 0 15 mm to be positivel y identified over a period of several days.
Factors which affected long-term drift of the ultrasonics included temperature , mains voltage
supply variations and creep in the coupling grease.

The success of the technique is dependent on minimisi ng the scatter of the ultrasonic beam
when it is reflected from the fracture surface back to the transducer. This condition was less
likel y to be satisfied with rough fracture surfaces (reg ion A , fig. 6), hence it was not surprising to
find the amplitude behaviour of the crack-peak becoming erratic when some specimens were
stress-corroded at high stress intensity (fi g. 12).

In some instances at low stress intensity, however, it was found that , in the region of cracking
after the ‘cross-over ’, the amplitude of the crack-peak suddenly stopped increasing or even
decreased with increasi ng crack length. When such behaviour occurred , information regarding
cracking was lost since the precalibrated ultrasonic sensitivity no longer applied. Consequentl y,
the best range over which sensitive experiments should be conducted is in the vic ini ty  of . and
imm ediatel y preceding, the ‘cross-over ’ point.

4. APPLICATIONS

4.1 Incubation Periods due to Reduction in Stress Intensity

Measurements of change in COD during SCC provide crack-growth data averaged over the
full width of the crack front. Previous work (ref. 14) using the COD techni q ue showed that a
propagating stress-corrosion crack experienced an incubation period when the app lied load was
partially removed. The results of similar experiments using D6AC steel specimens tempered to
290CC and stress-corroded in the L-T orientation in distilled water at 25~C are shown in fi g. 13.

3
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Whereas LVDT data suggested that a drop in stress intensity introduced a short period during
which crack growth slowed or stopped , ultrasonic monitoring of the crack indicated that propa-
gation continued at the specimen centre. If the rate of crack growth across the full width of the
ultrasonic beam ( — 3  mm) at the specimen centre is assumed to be uniform , then it appeared that
the crack grew by approxi matel y 0 2  mm at the specimen centre before any change in COD was
registered , for both load reductions cited (fi g. 13). If it is assumed th .J little crack growth occurred
near the speci men edges during this period , then the mean crack growth across the full crack
front would be substantiall y less than 0~2 mm and the lack of response of the LVDT may be
partly due to resolution limitations of the LVDT techni que (-. 2x  10 volts = 0 0 5 mm crack
growt h).

4.2 Accelerated Crack Growth due to Crack-Front Bowing
During stress-corrosion cracking of steels and , more particularly, of aluminium alloys , there

is a tendency for curved crack fronts to develop. A side-grooved 1-1 WOL specimen of D6AC
steel tempered to 565°C was fatigue precracked and stress-corroded in the L-T orientation in
distilled water at 25°C. Cracking was monitored both ultrasonicall y and with a LVDT. Three
ultrasonic probes were used to monitor cracking and the mean rate , as calc ulated from LVDT
data , for the period during which the crack was monitored by each probe was 0~0l1 , 0 013 and
O~Ol 3 j.~m/sec, respectively. The ultrasonic data for the first and third probes produced rates
which agreed substantially with COD measurements , however the cracking rate during the
period when the second probe was operatio nal appeared to be almost treble the rate predicted by
COD data. This anomal y can be explained by the fact that oxidation markings on the fracture
surface (fi g. 14) suggest that crack-front bowing developed during the period when the second
probe was operating, thus confirming that cracki ng occurred faster at the centre than near the
edges during this short period.

4.3 Incuba tion Periods due to Changes in Environment
Stress-corrosion cracking in pure gas environments is most easily studied using self-

loaded specimens in a vacuum system into which the gas is admitted. The COD at the load line
is then constant and ultrasonic monitoring of crack growth complements optical measurements
at the specimen surface. With steel specimens , however , the latter techni que is not reliable due to
difficulties in optically resolving the crack tip.

A bolt-loaded 1—T WOL specimen of D6AC steel tempered to 565 C, was stress-corroded
at 80 MPa m 1 in the T—L orientation in water vapour and water-vapour /oxygen mixtures at
22 -C (ref. 15). The changes observed in .~H during cracking are shown in fig. I S . Addition of
6 5  Pa oxygen to 1 9 kPa water vapour stopped the crack for 8 hours before propagation
recommenced. When the oxygen partial pressure was increased by 0 -2  kPa . the crack either
stopped or slowed down for about one day before continuing to propagate at a constant rate. A
similar experiment with SDI9 steel (ref. 15) showed that a crack , which had previousl y been
propagating at a stress intensity of 40 MPa m 1 in 1 4 kPa water vapour -~t 22 C. stopped for
48 hours after 0 101 MPa (I atmosp here) air was added and the relative humidi ty  subsequentl y
increased to 100 % (fig. 16). After this incubation period , crack propagatio n resumed at a rate
l0-~ times slower than in the pure water-vapour environment. In both the experiments cited .
optical monitoring of the crack front and fractograp hic examination confirmed the ultrasonic
results obtained. However , the current ultrasonic method gave more immediate indications of
when cracking started again.

5. CONCLUSIONS
The di fference mode of operation of the ultrasonic pulse-echo techni que has been de m-

onstr ated to be particularly useful in long-term experiments where instrument drift has to he
distinguished from changes due to crack growth. It has also been shown th at  the use of a single
crack-g rowth measuring techni que can someti mes inadequatel y define the cracking kinetics .
In formation derived using the current ultrasonic pulse-echo techni que can greatly supp lement
data obtained from optical and COD measurements.
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TABLE I
Composition and Properties of D6AC and S[H9 Steels

Wt. % C Mn Si P S Cr Ni Mo V Fe

D6AC O•45 075  0’22 0•004 0’OOS I ’ lO  O’67 1’OO 0~090 remainder
SDL9 0~4l 0~68 0~25 <0’04 <0 04 1’06 O ’l l  0~2l — remainder

Tempering
Steel Temperature Orientation UTS

(°C) (MPa) (MPam 4)

D6AC 290 TL 1860 50—65
D6AC 290 LT 1860 62*
D6AC 565 TL 1600 90-99
D6AC 565 LT 1600 98— 108
SD 19 400 TL 1310 48*

* Estimated using 23 mm thick I— T WOL specimens. 
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FIG. 1 TYP ICAL ULTRASONIC TEST ER SCREEN DISPLAY
A: The i n i t i a l  t ransmitted pulse
B: The pulse reflecte d from the crack
C: The back-wall echo.
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FIG. 2A MODIFIED WOL SPECIMEN WITH ULTRASONIC PROBE ATTACHMENT.

FIG. 2B ULTRASONIC PROBE HOLDER.
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Ultrasonic output
voltage (volts)
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FIG. 8 CHANGE IN AMPLITUDE OF CRACK AND BACK-WALL PEAKS
D U R I N G  SCC OF D6AC STEEL
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FIG. 10 CHANGE IN AMPLITUDE OF CRACK AND BACK-WALL PEAKS DURING
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FIG. 14 FRACTURE SURFACE OF D6AC STEEL TEMPERED TO 565~C A N D
STRESS-CORRODED IN L-TORIENTATION IN DISTILLED WATER
AT 25° C.
A Region of cracking monitored by f i rs t  u l t rasonic probe.

B : Reg ion of cracking monitored by second ul t rasonic  probe.

C : Reg ion of cracking monitored by th i r d  ultrasonic probe. 

Oxi d ati on mark i n gs on f rac t ur e surface ou tl i n i n g crac k a t var i ous
stages of cracking. 
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