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INTRODUCTION

The objective of this report is to compare probability of error (Pe)

vs received signal-to-noise ratio (SNR) for various basic binary, digital,
FM transmission schemes. 1he SNR is the ratio E/_, where E is the en-

ergy per bit, and n is the noise power per Hz of ban'éwidth. The scope
of this report is limited to binary rather than multi-level, digital FM for
the following reasons:

1. Binary systems are often more practical and economical in
terms of design (Ref 1).

2. The available literature for angular feedback FSK (frequency shift
keying) demodulators (phase-lock loops) deals primarily with binary systems.

3. Probability of error is more readily analyzed for binary systems. ]

Figure 1 compares the relative error performance of the systems discussed !
in this report.

Binary digital FM for rectangular modulating waveforms can be
considered as a form of FSK in which the signal wave is treated like an
FM signal.

Emphasis will be placed on the phase-incoherent detection schemes
because it is generally impractical to maintain a coherent phase reference
at the receiver for FSK. In fact, phase shift keyed (psk) transmission Y
offers superior performance and should be used if it is available.

GENERATION OF DIGITAL FM

In generating digital FM signals, phase continuity should be main-
tained at the switching instants in order to avoid undesirable transients |
in the FM wave. For this reason, the digital baseband data transitions |
are fed to an FM modulator rather than switching between different inde- |
pendent oscillators.

The shaped signal at the output of the pre-modulation filter can be
described as:

S(t) = 2 bng(t—nT)

n=-eo
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Where bn is the binary data sequence and g (t-nT) represents the filtered

pulse which is either positive or negative (corresponding to a mark or a
space) . The transmitter osc :tor frequency follow: the baseband (Ref 2) .
t
V(t) = A cos [wct + 90 +u [s(A)dA]
t
o

Where A = constant carrier amplitude, w, is the carrier frequency, t0
and 90 are arbitrary reference time and phase, respectively, and u relates

frequency displacement to baseband signal voltage. Another way to visual-
ize the binary FSK process is to consider modulator instantaneous output
frequencies constant over the duration of the signal pulses:

A cos 27 f; t, For mark

S A cos 2m f, t, For space

0<t<T

Having generated the digital binary FM signal, the next step is to
consider the error rate performance for the various basic detection schemes.

NONCOHERENT DETECTION USING A PAIR OF TONE FILTERS

Noncoherent FSK detection uses only the FM signal envelope ampli-
tude information to decide whether a mark or a space was sent. A pair of
tone filters, one centered on the mark frequency and the other centered
on the space frequency,is used to detect the binary FM wave as shown in
Figure 2 (Ref 3) . Since the signal in a filter is a finite bandwidth pulsed
sinusoid, there is a partial response, or cross talk, in the other filter.
This cross talk is ignored in the following calculation of Pe ‘

—] "Hiter | envelops |
at fy detector I
e ] sampling largest of | message
s pulse decision L.autput
- b.tﬁ ass - envelope *
r
.',‘L° 2 at f5 detector

Figure 2 Noncoherent FSK detection




The FSK detector compares the difference of the envelope amplitudes
out of the tone filters against a zero threshold which is independent of in-
put SNR. The SNR in the filter output containing the signal is computed
in order to obtain an expression for the Pe'

When the instantaneous frequency (mark or space) is the same as
the respective filter center frequency, the probability density function
(pdf) of the signal in narrow band noise, P (r,}, can be represented in
terms of the modified Bessel function of the first kind and zero order (Ref 3):

= 2 2
Pd=ghr BT BTN e

Where u = signal level in the filter momentarily containing the signalled
tone. The other filter, which contains no frequency component, has a
pdf for r, of:

% 2 &
B it g SR

An error occurs when r, > r,, so that the probability of an error is:

P,=PROB (r; >r;) = [ P(r,) [ P(ry)dr,] dr,
r,=o =1,

This integral relationship reduces to:

P =1/2 o~ E/M) (E/'q)/ZQ (\E7m .0 =1/2¢ (E/n)/2

Where the MARCOM Q function is defined by:

T
Q (a,B) = J'ﬁtl0 (at) e AR )/Zdt

and where E/n is the ratio of energy per bit, E, divided by the noise
power per Hz. This result is plotted together with the results for the
other binary demodulation schemes in Figure 1.
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OPTIMUM COHERENT FSK DETECTION OF ORTHOGONAL SIGNALS

The optimum, coherent, binary FM detector can be implemented by
a pair of matched filters and a sampler which makes a decision on each
received bit. Another form of the optimum receiver might use a different
matched filter for each of 2N different messages, where N = number of
symbols per message. In this case,a single decision will be made as to
which message is most likely to have been transmitted.

The optimum receiver receives two transmitted waveforms, corre-
sponding to a mark or a space:

S, (t) = A cos w,t
S; (t) = sin w,t
These waveforms satisfy the orthogonality condition:

T T TA!
J S;t)*S;(t)dt=0, [ S; () S, (t)dt=-——2
o (o]

For orthogonality to hold, the frequency separation between S, and S,
must be w , = | Wg - W,| , where wyT=nm, n=1,2,3,.... The matched
filters can be in the form of integrate-and-dump circuits, one for the mark
signal and the other for the space signal. These two matched filters cross-
correlate the received signal-plus-noise with the receiver generated repli-

ca of either S, or S;. If S, is transmitted, the output of the filter matched
to S, is:

T T
Ve, = Jves; (dt=TA?/2+f n(t)e S, (Ddt
1 0 o

T
The S; matched filter output is : Vf’ = [ n(t)e S, (t)dt The mean of
0

the S, filter output is zero, while the variance = n (T A?/2) for both filters.

The optimum receiver decides S, (t) was transmitted when the S, matched
filter output is bigger than the S, matched filter output.

The calculation of P_ is facilitated by the signal space representa-
tion shown in Figure 3 (Rgf 4) .
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boundary between decision
regions when P(S1) = P(S,)=1/2

1
ﬁ— (energy)
s =k

s
Figure 3 Binary orthogonal signal set

An error occurs when 8, is transmitted if the noise component exceeds d/2,
the distance from a sigral to a decision boundary. The noise is zero mean
gaussian with variance N /2. Since S, and S, are assumed to be equally

likely, the conditional prgbability of error is the same, by symmetry, for
each signal:

Pe=P(Sl) P(E/S,) +P(S;) P(E/S;) = P(E/S,;)

5 1
2
and P(B/,) = \No ¢ "% /MNo 44

therefore: =
erefore Pe Q S/No)
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This result is plotted in Figure 1 along with the curves for the other
digital FM transmission schemes.

PERFORMANCE OF THE LIMITER DISCRIMINATOR

The non-linearity of the FM process and the non-gaussian distribu-~
tion of post-detection noise makes the prediction of error rates difficult
(Ref 5). This difficulty has led to somewhat different models for the trans-
mitter-receiver and different ways of looking at the error mechanism.

For example, Salz and others showed that if both transmitting and receiving
filters are optimized subject to the constraint that average signal power
at the receiver be fixed, the binary error rate performance curve is only
about 1/4 dB poorer than the ideal phase modulation with comparison de-
tection (Ref 6). This performance is about 1dB better than optimally-de-
tected coherent FSK (at P = 10~*), which signals over the infinite band-
width white gaussian noi§e (WGN) channel with an optimum peak-to-peak
frequency deviation of 70% of the bit rate. This discrepancy is thought to
be due to Salz's inclusion of optimized transmitter and receiver filters
which cause the received signal to possess both amplitude and frequenc:-
information; the received wave is no longer "pure FM." Another example
of the different conclusions that are reached has to do with narrow band
FM. Salz and others conclude that, for narrowband FM, clicks make no
significant contribution to the error rate (Ref 6). On the other hand, Klapper
demonstrates that, for deviation indices greater than 1/2, the major cause
of errors is spikes for which the threshold impulse origin encirclement
opposes the instantaneous frequency deviation of the signal (Ref 7, 8, 9).

Salz and others analyzed the performance of the limiter discriminator
(LD) using a model involving in-phase and quadrature components of the
band-limited input signal and an asymptotic approximation of the statistics
of the sampled output of the postdetection integrate-and-dump filter (Ref 2,
9, 10) . These results show that P_ is affected by system memory and that

error curves can be given as bounds for the worst and best data sequences.

Two different analyses of the LD error mechanism are discussed in
this report. An analysis by Klapper was selected because his results can
be used to explain and predict the observed experimental behavior of angu-
lar feedback demodulators (Ref 8, 11) . However, the analysis by Shaft
yielded theoretical results which agreed more closely with the experimental
error-rate performance for the limiter discriminators (Ref 12).




In Shaft's model of the binary FM transmission system, a sequence
of data pulses is fed to an FM modulator. The demodulator consists of an
LD followed by a sampler and decision network as shown in Figure 4.

In order to determine the probability of an incorrect decision, the proba-
bility density of the signal (send f, or f, for "0" or "1", respectively)

plus noise is integrated over the region of incorrect decision. At the
output of the LD this probability density is Rician (not gaussian). Shaft
used the earlier published values for this integration by Meyerhoff and
Mazer to determine Pe for a system operating with the following parameters
(Ref 12):

1. boT =1, where b0 = equivalent noise bandwidth of the IF
T = bit length

2. Af=.796/T This value for the separation between
the two transmitting frequencies
(f,and f,) yields the minimum error
rate.

The resulting Py expressed as a function of receiver input bit energy-to-
noise density is:

Pe =1/2 exp (-E/n)
This result is plotted in Figure 1.

The deviation index is given by D = TAf. It turns out that the opti-
mum D = ,796, a value very close to the value D = .7, for which the angular
feedback demodulator error performance is optimum.

One of the objectives of this report is to outline the advantages of
using angular feedback demodulators (which include phase-lock loops) .
Since the error rate performance of these demodulators is more readily
analyzed in terms of threshold impulses (TI) and loss-of-lock impulses
(LLI), the Klapper approach will be emphasized. The Klapper approach
has the further advantage of predicting P when the predetection band-
width is much wider than the bit rate (due to doppler shifts and system
frequency instabilities) . There is a link between the threshold mechanism
in analog FM and error generation in digital FM in that encirclement
spikes are found to be the prime cause of errors, even for carrier-to-
noise ratios substantially above the FM threshold level (Ref 11).
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The noise at the output of the LD is composed of a small (Rician)
component plus superimposed randomly-occurring threshold impulses.
These impulses are generated each time the vector, resulting from the
addition of instantaneous noise to the instantaneous signal, encircles the
origin.

The encirclement is a 2w jump in phase which, when differentiated,
yields a spike of unity area in the frequency vs time plane. These spikes
are called threshold impulses. The communication system model used by
Klapper (Ref 7) for determining the error rate performance of an LD is
shown in Figure 5.

The predetection filter removes out-of-band noise. The integrate-
and-dump circuit integrates the LD output for the duration of each bit.
The integrator output is proportional to the difference in phase between
the beginning and end of each bit. The phase difference due to the signal
component having rectangular transitions is:

T

eSR =27 ({ Af dt = 2r AT

The modulation index, D, is defined as D = 2Af/BR, where BR = bit rate
=1/T. In terms of D, the phase difference is GSR = nD. The phase dif-
ference introduced by the noise is analyzed in terms of the resultant sig-
nal-plus-noise vector. For reasonably small error rates, the noise ampli-
tude for most bit intervals tends to be small and noise does not signifi-
cantly affect the resultant vector. On relatively rare occasions,the noise

is high enough to cause the resultant vector to encircle the origin, giving

a 2n phase shift. Since for FSK the carrier is offset, these encirclements
usually are in a direction to oppose the signal deviation. Klapper has
shown (Fig 6) that errors are made according to the deviation index (Ref 8) .

This table is summarized by the equation: k = D/2 (using the next
higher integer for k), where k spikes occur in bit time interval T. In

accordance with Rice's theory, the origin encirclements caused by spikes
follow a Poisson distribution:

P(k)=e T (NT) k/k!
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where N is the average number of spikes per second. Since the carrier
is offset by Af, the spike rate is approximately (Ref 7):

N=Afe 1.

Where n = Carrier-to-noise ratio (CNR) at the LD input. The number of

! spikes per bit is NT. Using the relationship: D = 2AfT, NT = D/2 e ?
Then using the Poisson distribution given above, the probability of error is:

_amk M

P g » Kk = number of spikes per bit

e

Figure 7 is a sketch of P_ as a function of the deviation index (D) for

e
a constant noise level, with p, the input CNR to the LD, as a parameter
(Ref 8) . This sketch shows a "zigzag" or staircase behavior.

_..-=-==== NI (P=3 dB)

.-=""" N (p =5 dB)
Pe (p =9 dB)

Figure 7 Error probability vs deviation
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Experimental error rates obtained for phase-lock demodulators
demonstrate the rapid changes in slope or staircase behavior as shown
in Figure 7. However, the conventional limiter discriminator shows a
smooth monotonic decrease in error rate with increasing CNR. Since the
bit energy increases with D, the error rate decreases with D. The smooth
curve for the LD is thought to be due to: (1) The smearing of encircle-
ments into adjacent bits caused by narrow predetection filter bandwidth
and the effect of other parameters. (2) The presence of nonencirclement
(non-impulsive) noise (Ref 7). On the other hand, phase-lock demodu-
lators generally exhibit much greater sharpness of impulses.

In order to compare the LD error curve against the other detection
methods, the parameter, p, can be expressed in terms of E/n at the re-
ceiver input (not at the LD input):

E/m=Kp BT

where: Bn = predetection filter noise bandwidth
p = CNR at LD input
T = bit duration
K = unmodualted p/modulated p
(K is a constant allowing for receiver filter losses)
E = signal energy per bit
N = noise density

Figure 8 is a sketch of Pe vs D, with E/n as a parameter (Ref 6):
10”4

'o.’l 3

1074 % =9 dB

T
10-¢
1677 -
16-7
16~ 1

107 ¢ \E/nz 1§ dB

10-% }

+
(V]

ol ' " A A A " 4 Ky 4

2 4 6 8 10
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Figure 8 Error probability with E/ﬂ as a parameter
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PHASE-LOCK LOOP (ANGULAR FEEDBACK) DEMODULATOR

The threshold for analog FM can be significantly reduced by using
angular feedback demodulators. Since the error mechanism for analog
and digital FM have been shown to be related, there is reason to expect
that phase-lock demodulators can also reduce the error rate for digital
FM as compared to a LD. In practice, a modified first-order/phase-lock
loop (PLL) can give about a $ dB improvement in error performance (for
D = .7 with the predetection on filter bandwidth determined by signal
modulation parameters) (Ref 8). This degree of improvement is less than
can be achieved for analog FM because: (1) The PLL bandwidth has to
be wide enough so that the loop phase error transient response due to
frequency steps (FSK data transitions) is within acceptable limits.

(2) Ordinarily the receiver predetection filter is relatively narrow since
error rate, and not waveform fidelity, is the performance criterion.

The design of PLL for binary FM demodulation is concerned largely
with minimization of the total spike rate (TI and LLI). Intersymbol inter-
ference is not a problem in practice because as the bandwidth is reduced
the PLL starts producing spikes before intersymbol interference becomes
unreasonable.

The best type of PLL for demodulation of binary FM is called a modi-
fied first-order loop (MFOL) (Ref 11). The MFOL has an active loop filter
characterized by a single pole near zero frequency (or at a frequency as
low as can be practically achieved) and a zero determined by the loop band-
width. To achieve a minimum spike rate, the optimum loop bandwidth has
been empirically determined tc be Bn = 3.5 Af Hz (Ref 9). As far as the

data is concerned, the loop operates as a first-order loop because the asymp-
totic open loop response has a slope of -6 dB/octave over most of the range
(Fig 9). For D < 2, the zero gain crossover point of the open loop response
is taken equal to the bit rate (Ref 9) . This crossover is many times higher
than the pole or zero frequency of the active loop filter.

15




gpole
/-12 dB per octave

. ACTIVE LOOP FILTER
zero

=5 db per octave

Open loop gain; dB

crossover point

f (Log scale) +

Figure 9 Open loop response

The advantage of the modified first-order loop is that, when the sig-
nal input is a series of alternating frequency steps (square wave data),
the loop peak phase error is lower than for second-order types (Ref 9).
A lower peak phase error is desirable to reduce the frequency of LLI.
This transient behavior of a first-order loop for alternating frequency
steps is not to be confused with the case where the loop input is a single,
non-recurring frequency step,in which case the phase error response is
minimum for the critically damped second-order loop.

16




COMPARISON OF ORTHOGONAL FSK TO PSK

Binary coherent PSK (phase shifts of 90°) is the most efficient sig-
nalling scheme. A way to compare coherently detected orthogonal FSK
to PSK is to use signal space diagrams. The binary PSK signal vector set
is antipodal as shown in Figure 10.

decision boundary

'l e

S a2 3 a/2 S,

Figure 10 PSK signal set

An error occurs when either vector's distance from the decision
boundary (d/2) is exceeded by the zero mean gaussian noise component.
The antipodal vector orientation is the "minimum energy" signal set that
can be used to communicate at a given error rate. As shown in Figure 3,
the distance from a signal vector to the decision boundary is shorter for
orthogonal FSK. Hence, the antipodal signalling is 3 dB more efficient
than orthogonal signalling. The probability of error for PSK is given by:

P,=Q [\ZE/m]

where: E = Signal energy/bit
7 = PSD of noise

This result is plotted in Figure 1 along with the Probabilities of Error for
the other signalling/detection schemes discussed in this report.
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COHERENT DETECTION OF BINARY FM FOR OPTIMUM MODULATION INDEX

The error rate performance for optimum coherent detection of ortho-
gonal signals (using two matched filters) can be bettered by about .85 dB
by spacing the tones (6, and 6,) closer together so that the space filter
output is negative when the mark is transmitted and vice-versa (Ref 3).

At the optimum deviation index, D = .75 (peak-to-peak frequency deviation,
f, is 75% of the bit rate) , the mark and space signals are no longer ortho-
gonal, because for orthogonality, AWT =N=®n, n=1,2,3,.... E.F. Smith
calculated the probability of error for an optimally detected coherent FSK
system operating at D = .75 with the assumption of no interbit dependence
in the modulating binary data stream (Ref 13). Smith's result is plotted

in Figure 1.

CONCLUSIONS

Conventional telemetry systems are designed using "rule of thumb"
or "cookbook" procedures. This report, initiated as part of a study on
frequency shift keyed (FSK) modulation, was developed to estimate sys-
tem improvements attainable by use of a phase-lock loop demodulator.
The study of FSK modulation is associated with a transponder locating
technique for a munitions recovery system.

It is concluded that the selection of a specific modulation technique,
for use in a digital telemetry data link, requires consideration of system
parameters. The following factors were considered:

1 Transmission link signal-to-noise ratio
2 Signal bandwidth
3. Data rate
4 Required bit error probability
5

System complexity and cost

It is further concluded that,when FSK-modulated data is demodulated
by a phase-lock loop, the required received energy ratio (E/n) can be % dB
less (for a given error rate) than the conventional limiter discriminator .
The particular advantages of this technique were discussed in this report.
The various basic binary digital FM systems were compared (Fig 1) for
relative error performance.

18
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