
7’ AD—AUSé 23*. ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND *OERD——E TC F/s 20/8
CHAMBERS FOR THE ELECTRODYNAMIC CONTAINMENT OF CHARGED AEROSOL ——ET C(U)
MAY 78 ft H FRICKEL. R E SHAFFER

L*ICLASSIFIED ARCSL TR—llfll SBIE—AD EkLO 033 NL

I~~
j 

?c~~ 23

ef l f l  E 
_
_ 

U _ _ 1111! _

END 

U

8- 78
0Dc

H 
_ _ _ _ _ _





Pr 
_ _ _ _

_ _  ~ r~i



IThJI’l
SECURITY CLASSI FICATION OF THIS PAGE (Whw Data ftnt. r.d~ ___________________________________

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
L REPORT NUMBER(1 4!~~~CSL-TR.77O~T] 

GOVT ACCESSION NO 3. RECIPIENT’S CATALOG NUMBER

~~ TITLE (ond S~bSitJ.) ~b TYPE OF REPORT & PERIOD COVERED
—

~~ 
- 4

~~Technlc epgrt . I —CHAMBERS FOR THE ELECTRODYNAMIC ~ONTA1NMENT Lf JW 97~~j~~u 7 I r I
OF CHARGED AEROSO1~~ARTICLES. •~ ~~~.a . n e~~~~ ..D(

~III NUMIER

~
.

_______________ S. CONTRACT OR GRANT NUMSER(.)

ii ~ l Robert H./Fricke l ~ jH ‘
~~Roy E.)Shaffer

~~~~
, .~4 James B. Mamatoff _________________________________
I. ~~ ERFORMIN G ORGANIZATION NAME AND ADDRESS ID. PROGF~AM ELEMENT PROJECT , TASK

AREA *,IORE~
J.IMIT NU~~&E~~~Commander/Director , Chemical Systems .5b~orato1y Project! I 80621 16A08 1 

~ JAttn : DRDAR-CLB.P
Aberdeen Proving Ground, Maryland 21~~~~ ~J~~%J/~j ~~~~ 

Proiecd lTl6l IOIA9 1AI J _

II. CONTROLLING OFFICE NAME AND ADDRESS ~~~~~~~~~~~~~~~~~~ ~~~~
REPOR .1 ~~J

Commander/Director , Chemical Systems Laboratory May 1*78 /
Attn: DRDAR-CU.R L NUa l~~~~ PA
Aberdeen Proving Ground , Maryland 21010 61 ~ i 7~~j /

1 4. MONITORING AGENCY NAME & AODRESS(U dSff.omt f ro m Ccntroliin5 Offi c.) IS. SECURITY CLA S~ .—(.d~~Ilk

UNCLASSIFIED
ISa. DECLA SSIFICATI O N/OOW NGRA DING

SCHEDULE

______________________________________________ NA
15. DISTRIBUTION STATEMENT (of Ala Rspofl) D DC

f?f~)f?flfl flI~.flApproved for public release ; distribution unlimited. j~’~) JUL 17 1978 I I I
¶7. DISTRIBUTION STATEMENT (of  ha ab.tract .nt.t.d in Dlock 20. ii dlf I .r.n t Ir on, Raport) u 161 ii

B

IS. SUPPLEM ENTARY NOTES

1$. ~~~ Y WORD S (Continua on ~•v.ra• aid. if n.c.aa~~y ond ld.niify by block numb.r)

Aerosols Aerodynamic drag Mathieu’s equation
Droplets Electrodynamic containment Bihemispheric electrodes
Electrostatics Evaporation of droplets Bihyperboloidal electrodes
Aerosol particles Stroboscopic observations Electroaerodynamic stability
Charged droplets

AC~’ (C~~~~~i. ~~~,.v.,.. ~~~~ H ‘om. ’.~~y ~~d idslwily by block ntatb.v)

Chambers  capable of the electrodynamic containmen t of electrostatically charged 2O~ to
I OO micron.diameter particles have been constructed, along with (a) a device for introducing a preselected
particle into the chamber and (b) a system for measuring the charge, size , and motion of the particle. One of
the chambers contains two hemispheres and a central ring ; in the other , the two electrodes are hyperboloidal.
The latter chamber incorporates additional provisions for the precise control of the temperature and
composition of the gas In the chamber. Measurements of the particle motion agree with theoretical
calculations

~~~ FO~N 0 

sE~~m~~ C~~AWFICATION OF ThIS PAOE (~~ sn D~~a ~~~~~~~

F I NOV SI IS OBSOI.EttI IAN 7) UNCLASSIFIED

~~~~~~~~~~~~~~ ~a_17.~~_ _ ~~~-



PREFACE

The work described in this report was authorized under Project I B062 11 6A08 I ,
Chemical Dissemination and Dispersion Technique. This work was started in June 1970 and
completed in August 1971. The experimental data are recorded in notebook 8384.

The use of trade names in this report does not constitute an official endorsement or
approval of the use of such commercial hardware or software. This report may not be cited for
purposes of advertisement.

Reproduction of this document in whole or in part is prohibited except with
permission of the Commander/Director , Chemical Systems Laboratory , Attn : DRDAR-CLJ-R,
Aberdeen Proving Ground , Maryland 21010; however, Defense Documentation Center and the
National Technical Information Service are authorized to reproduce this document for US
Government purposes.

Acknowledgments

The authors wish to acknowledge the technical assistance of H.W. Eppes and Charles
M. Townsley for their invaluable contribution to the experimental work, and of Thomas E.
Brewster for his assistance in computation.

~~~~~~~~~~~~

. 

~~~~~~~~~  

.
- . -

~

~SV~.C~~JL

L 
‘ I

~~

2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~ - - .- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



CONTENTS

INTRODUCf ION • 5

II. DESCRIPTION OF ELECTRODE CHAMBERS AND ASSOCIATED
APPARATUS 6

A. The Bihemispheric Electrode Configuration 6

B. The Bihyperboloidal Electrode Configuration 8

1. General 8
2. Electrical System 11
3. Observation Systems 11
4. Thermal System 12
5. Atmospheric System 12
6. Particle Insertion Device and Method 12

III. MOTIONS AND OBSERVATIONS OF CHARGED AEROSOL PARTICLES .  14

A. Solutions of the Equation of Motion 14

B. Experimental Verifications 33

1. Verification of the Instability Boundary Curve 33
2. Rate of Instabilization and the ~,/2 Boundary 37
3. Passing Through the First Instability Region 37
4. Phase Angle 38
5. Particle Discharge 39
6. Charge Decay Due to Cosmic Ray Ionization 39

LITERATURE CITED 41

APPENDIXES

A. Derivation of Coefficients 43

B. List of Symbols 55

DISTRIBUTION LIST 59

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



LIST OF FIGURES

Figure

1 Bihemispheric Configuration With Ring in Zero-Potential Plane 7

2 Circuitry for Bihemispheric Configuration 8
I

3 Chamber for Bihyperboloida] Configuration 9

4 Cross-Section of Bihyperboloidal Configuration 10

5 Circuitry for Bihyperboloidal Chamber 10

6 Aerosol Particle Insertion Apparatus 13

7 Instability Boundaries 21

8 E i-Dependence of Instability Boundaries 23

9 Phase Angle in Particle Oscillation 24

10 Particle Distance Below Null Point , Vdc = 0 26

11 Lag Angle and Coincidence Point 29

12 Amplitude of Vibration in Unstable Region 30

13 A Suspended Glycerine Particle 80 pm in Diameter 33

14 Instability Boundary Curve 36



-~ — —  .~ ~~~~~~~~~~~~~~~

CHAMBERS FOR THE ELECTRODYNAMIC CONTAINMENT
OF CHARGED AEROSOL PARTICLES

I. INTRODUCTION.

Under proper conditions an electrically-charged aerosol particle can be contained at
a point in space by an alternating electric field. This phenomenon may be used to make such a
particle accessible for a variety of physical measurements. The obvious advantage of electrical
suspension is to avoid artifacts required by mechanical suspension.

A positively-charged particle would remain at rest in stable equilibrium only at the
point of minimum electrical potential within a potential well. However, Earnshaw’s Theorem
states that there cannot be an electrostatic potential well in free space; therefore , containment
via electrostatic fields of a charged particle at a point in free space is impossible.

On the other hand , under the proper conditions an alternating electric field permits
containment by producing on a charged particle a net time-averaged force directed toward a
single point in space. The physical basis underlying this phenomenon may be explained by
visualizing an electrically-charged particle oscillating in an alternating electric field. If this field is
uniform (as between two flat , parallel, conducting plates), the charged particle oscillates at the
driving frequency of the ac voltage, and the net (time-averaged) force is zero. If , however, an
ac voltage is applied to an electrode with an arbitrarily curved geometric shape , a nonuniform
electric fi eld results, and an oscillating charged particle experiences net (time-averaged) forces in
the directions of decreasing magnitude of instantaneous field strength. A charged particle can be
contained within a small region of space by an alternating voltage on an electrode configuration
whose electric field has a constant null point , e.g., on a ring electrode. The net (time-averaged)
force toward the null point is used to counteract gravitational or other constant forces.

H. Strauble ,”2 using a single-ring electrode connected to a high-voltage, low-
frequency (50-hertz) source, succeeded in suspending electrically charged aerosol droplets with
diameters between 30 and 100 pm. R. F. Wuerker et al. 3 were able to contain small, electrically
charged, metallic spheres in an evacuated chamber using hyperboli c electrodes and gave a brief
theoretical discussion on the general motion of the contained particles. A. Muller4 gave a more
detailed theoretical treatment. For more recent ~applications of the same principles, the reader is
referred to the work of K. S. Fansler et al. , 5 J. W. Schweizer and D. N. Hanson ,6 S. Ataman and
D. N. Hanson ,7 and T. G. Owe Berg and T. A. Gaukler.8

Our primary objective was to determine the best electrode design for, and the
usefulness of , the phenomenon of electrodynamic containment as an aid in basic studies of
aerosol particles. To achieve this objective, theoretical calculations for idealized geometries were
compared to experimental measurements for two electrode configurations.

For the purpose of computation it was assumed that the electric field varied linearly
with distance in each direction from the null point, the vector proportionality constant being a
function of direction ; this assumption resulted in a linear differential equation of motion readily
transposable into a modified Mathieu equation. The numerical calculations were performed using
standard methods.

5
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Two electrode configurations were chosen for the experimental work. A bihyper-
boloidal electrode configuration had the advantages of producing a radially linear electric field
strength while completely enclosing the suspended particle. The chamber with the bihyper-
boloidal configuration made possible accurate verifications of the theoretical results. It was
further equipped to operate under widely varying internal ambient conditions. As a result , this
system has become a sophisticated tool for use in aerosol research. The second configuration
consisted of a ring electrode and two hemispheric electrodes. Although its resulting field strength
is only approximately radially linear, the simplicity of construction of this system was
appropriate for initiating the work. Both configurations are described in detail in the next
sections.

II. DESCRIPTION OF ELECTRODE CHAMBERS AND ASSOCIATED APPARATUS.

The bihemispheric system, the bihyperboloidal system , the associated circuitry , and
the apparatus for inserting charged particles are described in the following sections.

A. The Bihemispheric Electrode Configuration.

Figures 1 and 2 show the appara tus for this case. Figure 1 is a photograph of the
polystyrene and wood chamber. The brass ring electrode was connected to the ac high-voltage
power supply through a voltage-dividing circuit that supplied the necessary voltage to the ring
(49.4% of the ac voltage on the hemispheres) to in sure an approximately linear field strength
around the null point. Removable microscope slides, used as illumination and observation
windows, allowed introduction of the aerosol particles. The ring also had a small arc removed to
allow access of the particle-entry track to the interior of the chamber.

Figure 2 shows the schematic diagram of the electrical circuitry for the bihemi-
spheric configuration. The variable ac voltage unit could be replaced w t h  a variable-frequency
device for obtaining driving frequencies other than 60 hertz . The dc voltage supply was designed
to apply equal , opposite polari ty voltages to the two hemispherical electrodes, leaving the ring
plane at zero potential ; the static field could then be calculated as that of the idealized geometry .
The continuously variable dc power supply was capable of placing a maximum potential difference
of 200 volts between the hemispheres.

One source of particle illumination was a strobe light positioned behind the chamber
and facing the observer. When the strobe light was flashing at the same rate as the ac driving
frequency, a single sharp image of the particle was visible through the microscope. With this type
of illumination particle-size measurements could be made using a micrometer Filar eyepiece in
the microscope.

An alternative light source consisted of a strip filament lam p with a vertical beam
focused on a point in the vicinity of the null point from below the axis of the system. Wi th this
device , the moving particle could be viewed as a short white line against a much darker
background.

6
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Figure 1. Bihemisphenc Cont iguration With Ring in Zero-Potential Plant
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Figure 2. Circuitry for Bihemispheric Configuration

B. The Bihyperboloidal Electrode Configuration.

1. General.

Figures 3, 4, and 5 depict the apparatus for this case. Figure 3 is a photograph of
the Teflon chamber, showing the chrome-plated, brass electrodes. The chamber was thermally
insulated by placing it entirely inside a cube of styrofoam . Figure 4 is a cross-section of the
chamber.

To produce the desired electric field , the electrodes must be surfaces described by
the equation

2z2 — r 2 Cj

where z and r are shown in figure 4 and C~ are constants , a positive constant for the two-sheet
hyperboloid forming the top and bottom of the chamber, and a negative constant for the
one-sheet hyperboloid forming the sides of the chamber.

These electrodes produce an electric field strength that is zero at the origin and has
the described linearity , provided that the two sheets are at the same potential, as shown in
section III.
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Figure 3. Chamber for Bihyperbo loida l Confi gurat ion

9

I’



- 
-
~~~~~~~~~~~~ . - ~-~~~—-—

Z AXIS

HOT/COLD FLUID OUTLET HOT/COLD FLUID INLET

_______ _________ 

TEFLON SEAL

LIGHT APERTURE

GLASS WINDOW 

R AX~~- 
-

OBJECTIVE LENS

OPTIC A P E R T U R E
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The top and bottom hyperboloidal sheets were separated from the central, single-
sheet hyperboloid by two horizontal Teflon rings and could be fastened rigidly to the central
hyperboloid with a set of six plastic screws and nuts. In practice, only the bottom sheet was
fastened; the top sheet simply rested in place for easy removal.

Two collinear holes, 1/8 inch in diameter, were drilled diametrically opposite each
other at the narrowest portion of the electrode. In viewing the suspended particles, one hole,
sealed from the outside by a cylindrical glass window, formed an illumination port; the second
hole, a viewing port , formed an optic aperture for the microscope objective lens.

2. Electrical System.

The circuitry used to produce the particle-suspending alternating electric field and
the balancing constant electric field is shown in figure 5. The ac potential was impressed upon
the one-sheet hyperboloidal conductor. The dc potential was impressed symmetrically on the top
and bottom sheets of the two-sheet hyperboloidal electrode, above and below, respectively, the
common ground with respect to which the ac potential oscillated.

The symmetry of the dc potential was maintained by a series of variable potenti-
ometers for a range of potential differences up to 200 volts. A scaling switch permitted the most
accurate use of the two synchronized helipots that controlled this voltage.

The ac supply, variable up to 4,000 volts, originated from a high-voltage trans-
former. The input to this transformer could be either from line voltage or from a Belman-Invar
Invertron power amplifier connected to a variable oscillator. Because the study utilized a
60-hertz ac electric field , line voltage was acceptable as input.

A Kintel Model 301 standard dc voltage supply , a potentiometer , and precision
resistance boxes were used to calibrate both ac and dc potentials. The voltages were monitored
with a Honeywell model 1108 Visicorder and a Tektronix type 564 storage oscilloscope. The
dc voltage could be determined to an accuracy of ±0.5 volts , and the ac voltage to an accuracy of
±10 volts.

3. Observation Systems.

The two modes of observing suspended particles were direct observation through a
microscope eyepiece and photographic observation utilizing a 32-millimeter movie camera.

Lighting for both of these modes was provided by a General Radio type I 538-A
stroboscope firing through the back-lighting port . The strobe frequency could be manually varied
from 110 to 150,000 flashes per minute. Because the apparatus normally operated at 60 hertz ,
the stroboscope was automatically synchronized with the 60-hertz line voltage. A time-delay
device permitted the observation of particles at any point in their 60-hertz vertical oscillations.
A circuit that automatically doubled the stroboscope frequency to 120 hertz was also introduced
to produce double images of the particles. With the proper time delay the separation of the two
images of a particle would reach a maximum corresponding to the oscillation endpoints
separation.

The particle image seen through the second port was formed using a Bausch and
Lomb 32-mm focal length microscope objective lens with a numerical aperture of 0.10 in

11
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conjunction with a Vickers-AEI image.splitting ey epiece mounted at the end of a 6-inch-long
optical tube equipped with an adjustable iris. The optical apparatus , supported by a tripod, was
physically independent of the chamber. When viewing the particle,, the observer adjusted the
eyepiece tube to touch the tube containing the objective lens, obtaining a focused image with a
fixed magnification. The eyepiece could then be calibrated for measuring particle diameters. Its
image-splitter consisted of a prism controlled by a ruled micrometer. By bringing the two split
images into apparent contact, a diameter measurement could be made in the range 10 to 250 pm
with an accuracy of * 1 pm.

The 32-mm movie camera required a bright source of light flashing at a suitable
frequency while the camera shutter was open. These requirements were met by use of a multiple
timer, additional electronic circuitry , and a large capacitor attached to the stroboscope. The
resulting film records of suspended particles were useful in analyzing the changes in shape and
size of the particles.

4. Thermal System.

The top and bottom sheets of the bihyperboloid electrode configuration contained
reservoirs for liquid (see figure 4) that were used to control the temperature of the chamber.
Once a given chamber temperature had been established, it was maintained by the insulating
foam enclosure. Because measurements of the dc balancing voltage and the ac splitting voltage
(see section III) were severely affected by thermally-induced convection currents, the observer
had to wait for thermal equilibrium for 1/2 hour from the time liquid circulation ceased before

• taking measurements.

A small thermocouple, inserted through the lower Teflon ring and connected to the
Honeywell Visicorder allowed the temperature of the interior of the chamber to be determined
to within ± 1°C.

5. Atmospheric System .

Ports in both the top and bottom Teflon rings were used to control the ambient
atm osphere in the chamber. With appropriate equipment connected to these ports, the desired
pressure and composition of the gas in the chamber could be established.

In the calibration experiments, very low ambient humidi ty was obtained by slowly
circulating air first through phosphorus pentoxide and then through the chamber. This air
circulation was stopped during measurements.

6. Particle Insertion Device and Method.

Figure 6 is a photograph of the apparatus used to insert aerosol-sized particles into a
chamber. This apparatus consisted of three 22-inch, parallel, metal rods. One rod was placed
below the other two rods so that the cross-section formed a V-shaped track supported by a
small, notched, plastic rectangle on one end and by a larger rectangular plastic shield on the
other end. The top two rods, joined behind the plastic shield by a loop, were connected to the
ac voltage source. The bottom rod was rounded. The open end of the track was placed in the
chamber (in the case of the bihyperboloidal chamber , after removal of the upper sheet).
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Figure 6. Aerosol Particle Insertion Apparatus

The liquid or dissolved solid to be studied was placed inside a glass capillary tube
that was connected to a variable dc high-voltage source normally operating between 4,000 and
10,000 volts. A polydisperse spray of charged particles was then obtained by striking the
capillary tube, causing it to vibrate.

These particles were allowed to fall through the loop connecting the two upper rods,
where particles with appropriate charge and mass, depending on the voltage on the rods, were
captured; the track was then tilted downwards toward the chamber to move the particles. All
particles except the one selected for observation were removed from the track (or, if necessary ,
from the chamber) by means of plastic rods that attracted the unwanted particles either by
induction or by virtue of being charged opposi:ely to the charge on the particles. Once the
selected particle was in the chamber , the track was removed. In the case of the bihyperboloidal
system, the upper sheet was then replaced.

It was found necessary to assist the initial capture of the particle in the chamber by
impressing a dc voltage on the electrodes. In the case of the bihemispheric system , this was
approximately a gravity-balancing voltage. In the case of the bihyperboloidal system , however,

• the ac field , distorted by the removal of the upper sheet , repelled the particle from the apex of
the lower sheet , permitting it to slide down and out of the containing volume; it was therefore

13
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necessary to impress upon the lower sheet a dc voltage of opposite sign to the gravity-balancing
voltage to attract the particle back toward the apex of the sheet. This voltage was removed when
the chamber was closed.

IlL MOTIONS AND OBSERVATIONS OF CHARGED AEROSOL PARTICLES.

Theoretical considerations, discussed in the next section, show that some electro-
dynamic parameters of a particle can be used to determine other physical properties of the
particle such as charge and mass. These considerations are presented in detail for the
biliyperboloidal system, for which the equations of motion are linear and hence reasonably
tractable. The results for the bthemispheric system are essentially the same, differing only in
minor variations introduced by the nonlinearity of the ac field and, of course, different values of
the geometric parameters.

A. Solutions of the Equation c Motion.

The equation governing the motion of the particle in the chamber is

mR -K~ R + q (E 1 +E cos ~~t)+qE ~~ +mg ( I )

where

R = position of the particle relative to null point

m mass of the particle

q = charge on the particle (considered positive here)

coefficient describing aerodynamic drag force

E cos ~ t = the alternating part of null-point field

E1 = constant part of null-point field

angular frequency of applied voltage

t = independent variable, time

Edc = static field between the upper and lower portions of the outer
electrode where these parts are at different potentials

g = acceleration due to gravity

NOTE: Dots i~dlcatc differentiation with respect to time.

For small values of the Reynolds num ber, Re ( pd R I/ n), KD is given by

KD = 3ir~ d (Stokes’ Law)

-



where d is the particle diameter , and 17 and p are the viscosity and density of the air, respectively.
For larger values of the Reynolds number a correction term must be added , as in the formula due
to Oseen :

• KD = 3w17 d(1 +~~ Re)

Any cylindrically symmetric potential function in charge-free space can be written in
the form

4’ A1~r/ ~ P,~ (cos O~)

where r5 and O~ are the radial and polar angle coordinates of a spherical coordinate system ,
P,~ (cos O~) are Legendre polynomials, and the constant coefficients A~ depend on the geometry
of the field source.

• If the potential is also symmetric about the plane 0 -
~~~~, as in the null-point fields

considered here, the odd-term coefficients are all zero. If the series is now rewritten in cylindrical
coordinates r , 0, z the field becomesS

4’ = ~~ + A2f r 2 - ~~2) + A4(3r4 - 24r2 + 8z4 ) (2)

+A 6 (5r 6 — 90r4z2 + 120r2z4 — 16z 6) + .

where A~ are a new set of constant coefficients. In the case of the bihemispheric configuration ,
the potentials relative to a distant ground on the ring and on the spheres were adjusted so that
A4 = 0, leaving in the series (besides the quadratic term) only terms of sixth and higher powers,
which are very small in the region around the origin. The potential is then approximated by

4 ’= A0 + A 2(r2 _ 2 z 2) (3)

If the quartic and higher terms of equation 2 are dropped altogether, so that equation 3 is exact ,
the equipotentials are hyperboloids of revolution described by

r2 - ~~2 = 4 ’-Ap (4)

the right-hand side being constant on an equipotentiat. The electrodes in the bihyperboloidal
configuration are described by

(5)

r 2 _ 2 z 2 _2202 (6)

— • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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where r0 is the radius of the one-sheet hyperboloid and 2z0 is the distance between the upper and
lower sheets of the two-sheet hyperboloid. The values of A0 and A2 can be found by noting that
the two-sheet hyperboloid is grounded (4’ 0), and that the potential 4’ on the one-sheet hyper-
boloid is —v cos ~ t (where V is the peak voltage), equating the right-hand sides of equations 4
and 5, and equating the right-hand sides of equations 4 and 6. When these values are substituted
into equation 3, the expression for 4’ becomes

= V COS (i~t (~~2 - r2 - 2z02 )
r02 +2z 0

2

on the electrodes and inside the chamber.

The electric field E~ is

4Vcos~~,t r -E~ -V4~~~~2~~~~~(~~?b _
zk)

where r0 and k are the radial and axial unit vectors, respectively. In the work covered by this
report k is directed upward. The choice of sign for the potential on the one-sheet hyperboloid
is arbitrary . If the voltage on the one-sheet hyperboloid is biased with respect to ground , its
potential is —V 1 — V cos ~,: and

4(V 1 + V c o s c,~t )  /~~~ . -

~,

\~~~~U

Note that

E~ = E 1 + E c o s c~,t

where E 1 and E are defined in equation I .

The quantity Edc is the field produced by imposing a static potential difference
between the two sheets of the two-sheet hyperboloid. The expression for the potential from this
source contains only the odd terms of the Legendre polynomial expansion and the field in cylin-
drical coordinates is

Edc A + [ 4A3z + A5 (3,2 - 4z2 )z + . . . I (8)

+ IA 3 (2,2 -3z 2) + 14 5 (5z 2 —3r 2 ) z2 + ... 1k



In this investigation higher power terms are dropped and Edc is approximated as

Edc = A 1 k = Cdc Vdck (9)

V where Vdc is the potential difference between the sheets (Vdc >0 if the lower sheet is at the
higher potential) and Cdc is an experimentally determined geometric constant. Equation 9 is
exact in two cases, to wit: (I ) when Vdc = 0 and the particle oscillates below the null point
only under the influence of the null-point ac field and gravity, and (2) when the particle is
balanced at the null point because

qE~~ +mg = 0

r and z are then zero and the higher power terms of equation 8 vanish.

The principal situation of interest in this investigation for which equation 9 is not
exact occurs when the particle is balanced at the null point but is oscillating about the null point
because it is in an unstable region of the ~c-E chart (described later in this section).

The axis of symmetry of the apparatus is vertical so that

g - g k

To transform equation 1 into dimensionless form , let
V 

= (lOa )

El = x/d (l Ob)
= y/ d (lOc )

= z/ d (lOd)

where x, y, and z are the cartesian coordinates of R, and d is the particle diameter. Let equa-
tion 10 be substituted into equation 1 and the latter be divided by w2. Then equation 1 written
in terms of its components is

r + ( ~ +~~1u)~’ + (E  c o s T + E j )~ +h 0 (11)

r + (K + K 1U)r ’ -FE ~~ ~ + E 1)~ = 0 (12)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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where the primes denote differentiation with respect to r, and where

V 

K 18n
p5wd2

u = IR ’I/d

E 1

V 

E~~~ a-V
w2m

~~~~~~~~~~~~~ ~dc
~~

2d c~,
2dm

~ represents E 1 or E2~ 
p 5 is the density of the particle material, and C is the geometric constant

relating the potential on the electrodes to the null-point field strength . From equation 7 it is
easy to see that for hyperboloidal electrodes,

4C =

Because = 1.25 cm and = 1.75 cm for the device described in this report , C = 5 ,203 m~
2.

If the aerodynamic drag is described by Stokes’ Law,

“1 = 0

If the drag is described by Oseen’s Law,

K1 = ~ 2
• 8 P3

Now equations 11 and 12 are of esseiltially the same form ; for reasons that will
become clear later, equation 11 has more physical significan ce than equation 12 , and the discussion
will concentrate on equation 11 but is applicable to both . Solutions are first discussed for the
case of Stokes’ Law, and the effects of deviations from Stokes’ Law are considered later. For
Stokes’ Law equation 11 is linear, viz.:

(13)

18



The solution of equation 13 has the form

= A~1(r) + B~2 (r) + p(r) (14)

where 
~ I 

and 
~2 are independent solutions of the homogeneous equation

(15)

and

p f r ) = ~~~~~a~emT (16)

The method of calculating the coefficients a~ is shown in appendix A. The coefficients a~ are
proportional to h and vanish if h 0. By means of the transformation

(l7a)

(1 7b)

equation 15 may be written as the Mathieu equation

~~“ 
~
i (

~~ - 2~ cos 2i )? 0

where à and ~j  are constants. Properties of 
~ ~ 

and 
~2 may then be discussed in terms of the

well-known properties of solutions to the Mathieu equation. From this comparison (see
appendix A) it is seen that the solutions 

~ 
and r2 should be of the form

= e 2 e”tTP (.i)  (18a)

= e 2 
KT _lvj,( ) (1 8b)

where Pf r)  is a bounded periodic function with period 2w , and ~ can take one of the forms

(19a)

(19b)

7 = 01 (l9c)

19 V

V • _ _ _ _ _  •~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ — —• •——-~~~~~~~~~•.~~~~~~~~~ • • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~ 
~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~V V

where cx and g3 are real. It is evident that cx may be considered positive without loss of generality.
The coefficients A and B of equation 14 can be calculated from the conditions at any particular
value of r; in general neither vanishes. Therefore ~ is stable (bounded for r >  0, where i = 0

represented the initial situation) only if 
~l and r2 are both stable, i.e.,

R(7) -

whence

where R(y) is the real part of ~y. This condition is obviously satisfied for the case

7 = j31

and requires that cx ~ s d 2  in equation 19. A method for calculating 7 is shown in appendix A.

V 
A chart showing the nature of ~y as a function of K and E, for E 1 = 0, is shown in

figure 7. In the space defined by sc and £ there is a series of regions where a * 0 that are
separated by regions where ‘

~‘ = 01. In the former regions ‘~‘ is alternately given by 7 = a and
= cx + ~~ It is evident that in regions where ‘y = a the periodicity of ~ is 2w , and that in

regions w~ere ~ = a + -.
~~
- i, the periodicity of ~ is 4w; in regions where ‘

~
‘ = 13i the function is in

general not periodic. On the boundaries between ~y = ~i and y = a, a and L~ both vanish , so tha t
= 0. On the boundaries between ‘

~
‘ = 01 and ~ = cx + i regions, 7 = -~-i . In the interiors of

the regions where a * 0 are regions where a > -~-sc ; in t~ese interior regions the solution ~ of V

equation 13 i~ not stable. The curves on which a = 1K are the boundaries between regions of
stable and unstable solutions of equation 13 and are designated as instability boundaries or
quasi-instability boundaries in thi s report . Figure 7 shows the firs t such unstable region and part
of a second .

In region R 0 in figure 7, 7 is real, but a never exceeds -I~ 
the fu nction ~ is stable

everywhere in R0 and there is no instability boundary. The periodicity of ~ in R0 is 2w . In the V

region I j ,  7 = J3i, and ~ is stable and nonperiodic. In regions R 1 ~~ 
and R 1 ,11, ~ = a + -~-i , and

the period of ~ is 4w. In R 1~~, a < -~ sc, and ~ is stable; in R I U ,  a >  -i-K, and ~ is unstable.
The boundary between R 1 ~ and R 1 ,~j  is the first instability boundary . 21n the regions R 2~ and
R2 ,~ . ~ = a, and the period of ~ is 2w . The second instability boundary separates R2,~, where
a > —~sc, and ~ is unstable. Between R 1 1g and R 2,5 lies the narrow region ‘2’ where ~ = 31, and
r is stable and nonpenodic. The quantity v , shown in figure 7 are curves of constant v, is given
by

P = a -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V ~~~~~~~~~~~~~~~~~~~~~~~~~~~ VV • • .•~~~~•
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and represents the rate of expansion (or damping for v < 0) of ~ with increasing r. At the
instability boundary , v 0.

The dependence of the instability boundaries on the value of E 1 is illustrated in
figure 8. The most radical difference between the E 1 = 0 curve and the E i * 0 curves is the
appearance of a new boundary in the lowest 7 = a region for the case of E 1 <0 .  On the 

V

horizontal axis of the chart E 0, and equation 15 is

+ ~
‘ * E 1~ = 0

Then ~ is given by

77 - -KT -77e +Be 2 e
where

~~~~~

l I E 1 > -4
4

sc2, ~y = 01; if  0< E 1 < -‘-K2, y = a <  -~-#c ; in either case ~ is stable. If  E l < 0 ,

= a>  -~ sc , and ~ is unstable. The new stability boundary is the upper boundary of this
unstable region. V

In the stable regions of the gc-E chart the functions 
~~ 

and 
~2 become vanishingly

small as r increases; except very near the stability boundary , 
~l ’ the more slowly decreasing of

the two functions , decreases to 10—6 of its initial value (or of the initial value of ~‘) in a few
tens of cycles. Equation 14 describing ~ can then be represented by

= p( r)  (20)

Physically this means that in the stable region the particle motion is described by p (r)  alone. It
has been noted above that if h = 0, p(r) = 0. Hence if the value of Edc is set at mg/ q, so that
h = 0, the particle will be at rest at the null point if g and E lie in the stable region.

If there is no potential difference between the two sheets of the hyperboloid , the
force holding the particle against gravity is supplied by the phase difference between the applied
field and the particle motion. This can be shown by substituting equation 16 into equation 13
and integrating with respect to r over one cycle of cos r. The result is

2saç1E 1 + ir (a 1 +a _ 1 ) E + 2 i r h = O  (21)
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Note that a~ = a.~~. Let V

V a~~~R~~+I ~l

a...fl Rf l V I fl I V

when R~ and I,~ are real .
V Then

pf t) aO +ECn cOs (f l r _ ø n ) (22)

where C,~ = 2Ia~ I and tan = —I~/R~ as shown in figure 9. The phase angle 
~~ 

is the angle by
which the nth component of the particle motion lags the driving voltage .

~~~~~~~~~~~~~ I
-In

R~ 
.

Figure 9. Phase Angle in Particle Oscillation

If equation 21 is written in terms of equation 22 and the physical quantities , it

becomes

_.�?fL (a 0Vi + -~-VC1 cos d + —i-- = 0

whence the required restoring force , mg, is given by

mg _ C q ( V1ao +~4 VC1 cos cbi) d

We shall consider henceforth only the case E 1 = V1 = 0.

Then

mg = - -~-Cq (VC 1 cos ~1 )d (23)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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In the case now under consideration, where the constant term in equation 11 is due
to gravity alone, a0 < 0, and the particle path lies a~tirely below the null point. The particle
position is approximately 

V

z = p( r)d = (a 0 + C1 cos (~ t —q 1 )~d (24)

and the field strength is approximately

E � (CIa0 IV cos r)k (25)

Equation 25 reflects only the osculation of direction of the field E. In fact , because
the field becomes weaker in the direction of the null point (upward), the particle is in a stronger
field when it is below the null point a distance Ia0dI than when it is above . Equation 23 shows
that cos must be negative. If cos ~l = -.1, so that 

~ 1 = ir , equations 24 and 25 show tha t
below the null point the particle is in the stronger part of the field when the field is directed
upward , and in the weaker part of the field when the field is directed downward ; the net electric
force is upward , opposite the force of gravity.

Figure 10 shows the particle depression (the mean distance below the null point of
the vibrating particle) when it is being held up only by the null-point ac field. The constant c is
defined by the equation

Ia0dI =

The quantity Ia0dI is the particle depression ; for a frequency of 60 hertz it is given by the follow-
ing expression in millimeters:

Ia0d I = 0.0689 Sc

The dotted lines in figure 10 are the instability boundaries. When K and E are such that the
general solution described by equation 18 is stable and Vdc = 0, maximum stability corresponds
to the minimum particle depression. The electrodynaznic quantities that may be varied are the
peak voltage V and the angular frequency ~~~. The curve labeled “E minimum” in figure 10 is the
set of (ic, E) pairs for which the particle depression is minimal when ~ is constant and E is varied,
i.e., when the frequency is constant and the voltage is varied, if only the frequency is varied , the
values of ~ and E for which the particle depression is minimal fall on the curve marked “frequency
minimum’~ These curves are of significance when the particle is first being captured in the chamber
before gravity can be overcome by applying the proper voltage Vdc between the two hyperboloidal V

sheets; when the proper voltage Vd~ has been applied , the part of the oscillation described by
p( r)  vanishes altogether. The particle depression minimum curves can be used to establish chamber
design requirements for containment of particles in various size ranges. 

-~~~~~~~~~~~~~~~~~~ - -~~~ -~~~-~~~ 
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We have seen that when Vdc = 0 the net electrodynamic force is proportional to the
cosine of 

~ l~ 
the angle by which the fundamental term of the Fourier series p (r)  describing the

motion of the particle after 
~ 1 and 

~2 are damped out lags the driving voltage — V cos r. For small
values of E

tan~~~~ —sc (26)

A quan tity related to the lag angle 
~ 

is the value for which

PCr0 ) = P (~0 + ir) (27)

Experimentally this quan tity is determined by observing the vibrating particle in the light of a
stroboscope flashed twice per cycle of the driving voltage. Two separate images of the particle
are observed except when the strobe flash occurs at a point in the cycle for which equation 27
is true , when the two images coincide. From equations 22 and 27

a0 ~~~~~~ cos (n’r - Ø,~) a0 ~~~~ cos (nr + nir -

whence

cos [(2n+ l) T— * 2fl+l l = 0 (28)
n 0

If E is small enough the particle motion is simple harmonic and p(r) can be represented by

p(r) a0 +C 1 cos (r —~~1)

In this case equation 28 becomes

C1 c o s f r — ~~1) = 0

and because if C1 vanished there would be no electrodynaniuc force to hold up the particle ,

~ ~ l ~ -~~~

Then from equation 26,

cot ~ -tan � DC

_ _  -
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For larger values of E ,
C3 C32 C5

= —
~ 

+ ~~~~~ S1fl ~J’3 + 3—~- cos SU~ ~I 3  -
~

- S~~ ~l5 + .

where

= 
~~ l -

and

= 

~~ i ‘~~ 5

Figure 11 shows 
~l and cot as functions of K for several values of E. Experi-

mental values of cot i’~ , taken from observations on an evaporating particle, are also shown. The
value of £ was about 0.26 at the beginning of the observation period when sc was smal l , but
in-: eased markedly toward the end , accounting for the large difference between ic and cot

en K was large.

When Oseen’s Law is used to describe the aerodynamic drag, equation 11 is no
longer linear, and &e method of continued fractions described in the appendix A is no longer
applicable . For this case equation 11 is integrated numerically using Taylor expansions for ~ and

r and a computer. The principal effect of the velocity squared term is that , in the unstable

regions R 1 ,~j  and R2,~ of figure 7, the amplitude of the particle vibration does not expand

indefinitely as required by the solutions to the linear equation but approaches a constant ampli-
tude. Except near the stability boundary this constant amplitude is reached in a few tens of
cycles.

Figure 12 shows the amplitude of vibration (the total length of the path of the
particle) as a function of E for various values of ~~, for the case h 0. The curves are
labelled according to the value of K to which they correspond. The marks labeled LO~ and
UO~ represent the intersections of the K = x line on figure 7 with the lower and upper boundaries
of the (odd) instability region R 1 u~ 

LE~ and UE~ designate similar boundaries for R2 u~ 
The

curve labelled IC = 0.1 represents ~ 9
’2-pm particle at 60 hertz in air. The amplitude in~reases

from zero starting at £ = 0.46 , which is seen from figure 7 to represent the lowest stability
boundary . The vibration has a period of 4,r (twice the period of the driving voltage) as required
by the linear solution. The curve rises sharply from the poin t E = 0.46 and continues past the
second stable region (E = 3.76) and into the region R2 u, increasing monotonically. The perio-
dicity in is 4ir, in contrast to the periodicity of ~,r required by the linear solution in this
region. Since the height of the bihyperboloidal chamber for this case is only 190 particle diame-
ters, observation of this mode of vibration for this particle size is extremely difficult.

The curves labeled K 1.0 represent a 29-pm particle in air at 60 hertz. The larger
of these curves increases from zero at E ~ 1.18 as required by the linear solution , and the period
of vibration is 4~r. Notice that this curve extends past E = 4.2 , the upper boundary of R 1 ~~ 

and

_ _ _ _ _ _  
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and E = 4.4, the beginning of R2U .  Some of the calculated points fell on this extended portion
of this curve. Other calculations gave zero amplitude for values of £ lying above the upper
boundary of R 1 ,~~~ 

or lay on the smaller sc = 1.0 curve rising from zero at E = 4.4 , the beginning
of R2,~ . The periodicity of points lying on the lower curve is 2ir , as required by the linear
solution. Whether the amplitude calculated for a given value of E >  4.2 lies on the larger or the
smaller K = 1.0 curve appears to depend at least in part on the initial values of ~ and ~~

‘. The
chamber height for this size particle is 600 diameters.

V 
The curve for ic = 2.0 , representing a 2 1-pm particle , rises comparatively slowly from

zero, the value predicted by the linear solution at E = 3.0, and increases monotonically until
E = 5.50, a value somewhat greater than the value E = 5.10 representing the upper boundary of
R 1 ,u~ 

as determined from the linear equation. The amplitude for E = 5.55 , the next higher
value for which a calculation was made , is zero . At E = 6.2 , the lower boundary of R2,u, the
amplitude begins to increase slowly with increasing E; the period of vibration is 2,r on this part
of the curve, as required by the linear solutions. Particles of this size (20-pm) and smaller can
readily be experimentally observed vibrating in the 4s-period mode described here .

The instability curves for horizontal vibration can be seen from equation 12 to be
the same as for the vertical vibrations discussed hithert o, with the following exceptions:

(1) For a given value of V, the signs before E and E 1 are different from the signs
for the vertical case. The sign of E is immaterial physically, since the phase of i~ is arbitrary . The
difference in the sign before E 1 means that the new instability region that appears for vertical
motion when E 1 is negative appears for horizontal motion when E 1 is positive. Therefore , for

any given nonzero value of E l,  there is an unstable region at the bottom of the K-E chart either
for vertical motion or for horizontal motion.

(2) The coefficients E and E 1 are multiplied by one-half. This means that
corresponding points on the chart require twice as much alternating voltage for the horizontal
component of motion as for the vertical component. Hence for values of ic less than about 1.8,
the horizontal and the vertical instability regions overlap; while for values of ~ greater than 1.8,
there is a region of horizontal double-period oscillation lying somewhat above the first vertical
instability region and overlapping the second (single-period oscillation) vertical instability region.

(3) With the axis of the chamber vertical , there is no term corresponding to h.
Hence there is no horizontal equivalent to the part of the motion described by pft).

A number of phenomena that can be correlated with the theoretical discussion have
been observed experimentally. Generally, when ~ and E lie outside the unstable regions, and
Vdc = 0, the particle is observed to oscillate below the null point with the frequency of the
driving voltage (60 hertz in this case), as described by equation 20. When the weight of the 
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particle is balanced electrostatically by setting Vdc at the proper value, the particle is observed
to come to rest at the null point; this corresponds to the fact that h vanishes in this case, and 

V

because all coefficients of p(r) are proportional to h , p (r)  also vanishes.

The charge-to-mass ratio of the particle is found by electrostatically balancing the
particle at the null point; it is given by

q =  g
V m CdcVdc

where Vdc is the voltage necessary to balance the particle. The value of E for any particular
V 

setting of the alternating voltage V is then

Cg v
E =  -,

CdCw’ ‘dc

The value of Cdc has not been calculated geometrically for the hyperboloidal chamber; it was
V found experimentally to be 17.7 ± 0.1 meter~~, as described later in this report . Then for any

particle for which Vdc has been measured, E corresponding to the alternating voltage is

E = 0.02l0__ !~i-_Vdc

When particles of any diameter over 19 pm were balanced at the null point and
made to oscillate by increasing the alternating voltage V, the oscillation was invariably in the
double-period mode required by the theory, and the values of experimental quantities were
consistent with the values of E and K in the calculated stability boundaries.

The increase in amplitude of oscillation with increasing alternating voltage was large
for large particles — so large that it was virtually impossible to maintain large particles
(>75 pm) in this mode. For smaller particles the increase in amplitude was less marked; particles
of 20-pm diameter or less could be held stably at any point in the instability region. These
observations ate consistent with the calculations summarized in figure 10.

Particles of 18.5-pm diameter or less could not be made to oscillate horizontally in
the double-period mode. For these particles, c >  2.5 ; figure 7 shows that the first unstable
region does not extend this far to the right , so double-period vibration is not to be expected.

V - - - - - V- - V
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When the alternating voltage was just below that required to produce constant-
amplitude , double-period oscillations, and the laboratory table was jarred , a double-period
oscillation that disappeared in a few seconds was observed; the jarring of the table introduced
a new set of initial conditions and new values of A and B in equation 14, so that the amplitude
of the and 

~2 functions became appreciable . The function 
~2 described in equation 18 no

doubt damped out almost instanteously, but because near the boundary I vI = I 
~~
- Ic ‘2 1 is very

small, the time required for to damp out and become negligible was long enough for the
oscillation to be observed.

One calculated result not observed experimentally is shown in figure 12. Calculation
based on Oseen’s Law indicated that for a 21-pm particle (K = 2.0 in air at 60 hertz), as the

alternating voltage is raised above the value required to produce double-period oscillation , the
amplitude should rise monotonically until E is somewhat above the upper boundary of R 1 ~~~~~

and then drop suddenly. Qualitative observations of 20-pm particles seemed to show that the
amplitude reaches a peak somewhere in the R 1 ,~j  

region and then decreases gradually with increas-
ing voltage. That Oseen’s modification of Stokes’ Law is itself an approximation may account for
this discrepancy.

- B. Experimental Verifications.

1. Verifica tion of the Instability Boundary Curve.
4

A 50% solution of glycerine and water was placed in the capillary described in section II.
A single particle was selected and inserted into the chamber. Figure 13 is a photograph of a
suspended glycerine particle.

Figure 13. A Suspended Glycerine Particle 80 pm in Diameter
Focusing of the backlight by the particle itself causes the central white spot.

33
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The water solution was used because it accepted more charge than pure glycerine. The
water quickly evaporated leaving an almost pure glycerine particle that was highly charged.

Glycerine was chosen as the calibrating material for several reasons. First, it is liquid
at operating temperature. As a result , the particle is spherical due to surface tension. Therefo~~,
the diameter d is an actual value rather than an average value , making the calculation of Ic more
accurate. Second , glycerine is soluble in water , yet not highly hygroscopic. Hence water , used
to obtain a more highly charged particle, could be more easily removed by placing the particle
in a low-humidity chamber. Finally, the vapor pressure of glycerine is appropriate for the time
frame required to make these measurements.

The ideal situation for calibration was to maintain a decreasing evaporation rate so
that the rate of change of the particle diameter remained approximately 10 pm/hr . Glycerine
particles 100 pm in diameter would evaporate far too slowly at room temperature . Therefore ,

- chamber was heated at the beginning of the run and then slowly cooled during the time the

~asurements were made. Because of this procedure the evaporation rate decreased as the
temperature decreased , and thereby a fairly constant rate of change of the particle diameter was
maintained. In addition , this procedure eliminated thermally induced convection currents.

Typical runs started with a 100-pm-diameter particle at 55°C and ended with a
I 0-pm-diameter particle at 30°C. Measurements were taken at various time intervals during the
run. The procedure consisted of several steps. First , the flow of dry air was shut off. Next ,
the diameter of the particle was determined using the calibrated image-splitting eyepiece. The
particle was then balanced by varying the dc voltage until the two images of the particle , formed
by operating the stroboscope at 120 flashes per second , coincided. The dc voltage was then
recorded on the visicorder and oscilloscope. Next , the ac splitting voltage was determined and
recorded on both the visicorder and the oscilloscope. Finally, the temperature was recorded on
the visicorder.

Because all of the previously described measurements were taken within 1 minute ,
changes in the particle during the measurement were negligible.

From elementary theory , if the ac voltage is increased to , or becomes greater than ,
the value obtained from the instability boundary curve corresponding to a particular particle
dia meter and density, the particle should begin to oscillate at one-half the driving frequency w,
with increasing amplitude. The amplitude increases until the particle impacts on one of the
electrodes. As a result , it appears as if measuring the ac splitting voltage requires losing the
particle.
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Because of nonlinear effects not described by Stokes’ Law, this was not the case. At
the instability boundary the particle did begin to oscillate in the w/2 mode. However, the
amplitude did not increase with time until the ac voltage was increased beyond the stability
boundary. As a result the ac splitting voltage could be measured without losing the particle by
noting the sharp transition point to the w/2 mode.

Figure 14 is a graph of the theoretically calculated instability boundary. This
boundary, as shown in the theoretical section, is independent of chamber design. The curve
is plotted in this figure with E and d coordinate axes. Actually the boundary is a function of
E and ,c as previously shown. However, the diameter d , may be related to K by the equation

d = ( 18h7~~
2

\ Kpc~)/

where the variables, previously described , were applied to the case of a suspended glycerine
particle.

Superimposed ~ this graph are experimental data points computed fro m the formula

- 
C~0gV~E0-

Cdc W2 Vdc

using the actual diameter d in micrometers.

In summary, for calculating data points or the theoretical curve, g, w, ,-j, and p were
known constant values.9 For the data points, Vac, Vdc, and d were experimentally determined ,
whereas for the theoretical curve these variables were allowed to assume a continuous range of
values.

The effect of chamber design was included by means of the parameters by Cac and
Cdc, the electric field linearity constants. Ideally , both parameters could be calculated theoreti-
cally from the shape of the electrodes. In fact , Cac was easily calculated (as shown in section III. A),
but the calculation of Cdc failed in spite of many approaches attempted , and hence, Cdc was
experimentally determined - Section III . A shows that for large particles, E limits to a constant V

value of 0.464. By measuring Vac/Vdc for many glycerine particles with a diameter greater than
110 p m and by knowing Cac, g, and w, the quantity Cdc was determined to be 17.7 ± 0.1
meter ’.
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2. Rate of Instabilization and the ~,/2 Boundary.

As already mentioned , because of nonlinear effects not described by Stokes’ Law, a
particle maintains stable oscillation beyond the instability boundary. After the boundary is
crossed , the particle oscillates with increasing amplitude in the c~/2 mode. If Stokes’ Law were
obeyed , the amplitude would continue to increase and the boundary would be a true instability
boundary. However , as shown in the theoretical section , nonlinear drag effects become impor-
tant even for small amplitudes and velocities of oscillation. The nonlinear theory predicts that
the displacement amplitude increases to some value and then becomes constant. Therefore the
boundary is actually a quasi-instability boundary. For a given percent increase in E beyond the
boundary , the theory also predicts that larger particles have larger constant amplitudes than
smaller particles in the same state.

Experimentally it was found that for larger particles , ac voltage increases beyond the
splitting voltage cause large-amplitude changes. This is not true for smaller particles. Although
quantitat ive measurements were not made, this phenomenon is completely consistent with the
theoretical results concerning the rate of instabilization.

In summary , the instability boundary is actually the boundary at which w/2 frequency
oscillation begins to appear. Because of nonlinear drag effects , oscillation at this frequency V

stabilizes at an amplitude that is a function of the value of E above the instability boundary. In
this sense the boundary is not a true instability boundary.

Although the ~ /2 frequency oscillation begins to appear at this boundary , the insta-
bility boundary is not the point at which the w/2 frequency is allowed. As shown in the
theoretical section , the ~,/2 boundary is an entirely different curve . However , oscillation in the
o/2 mode is damped and not visible until the instability boundary is crossed.

Experimentally it was found that after the ~ /2 boundary has been crossed , but before
the instability boundary has been crossed , the particle oscillates only in the ce., mode (if unbalanced).
On the other hand , if the particle is balanced and then subjected to a vibration , it then oscillates in
the w/2 mode until the motion has been eliminated by damping. Experimentally it was also found
that the degree of w/2 mode damping lessens as one approaches the instability boundary ; this is
also consistent with theoretical results.

3. Passing Through the First Instability Region.

From the theoretical description , it was noted that the first instability region is bounded
and separated from a second instability region. When the value of E increases from zero , a particle
starts in a stable state , passes through an unstable region , and finally ends in a stable region of
motion.
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It appears that the requirement of passing through the primary instability region would
prohibit observing the top portion of the first instability boundary . However , because of the
quasi-instability character of the boundary as a result of nonlinear drag effects , a particle with a

diameter of 20-pm or less passes through this region. In other words, the constant amplitude of

motion in the c42 mode did not exceed the distance between the top and bottom sheets of the
hyperboloid for this particle diameter.

When smaller particles were used , the top portion of the first boundary was easily
observed. Starting in the first stable region, as the ac voltage was increased , the particle began

to oscillate in the c~/2 mode , indicating that the first boundary had been reached. As higher
voltages were applied, larger amplitude oscillations were observed. Finally the amplitude decreased

to zero indicating that the top portion of the first instability region had been crossed. Further
increase of the ac voltage resulted in lower values of the restoring force as the second instability
region was approached. At the second boundary there was no restoring force at all . As a result ,

this boundary was never experimentally observed.

At a particle diameter of 18.5 pm or less there was no firs t instability boundary . In
this case it was observed that the ac voltage could be varied over a large range of values. In this
region (K> 2.4) as the ac voltage was increased the particle would move toward the null point
until a certain voltage was attained. If a further increase of voltage were applied , the particle
would then move away from the null point. Thj s indicated that the net restoring force reached
a maximum as the ac voltage was increased with this maximum being dependent on the particle
size as shown in figure 10.

4. Phase Angle .

As mentioned in the introduction and described in detail in section I11.A , the
phase angle between the ac voltage oscillation and the particle oscillation was the basic parameter
in accounting for the nonzero time-averaged force toward a point in space experienced by the
particle. The value of the phase angle varied with different-sized particles and could have been
used to measure particle diameter.

Experimental measurement of the phase angle was accomplished by flashing the
stroboscope at 120 hertz. The time-delay attachment to the stroboscope was varied until the
two images of the particle coincided , at which poin t the stroboscope was flashing in phase with
the particle motion. The phase angle was then determined from the displaying of the ac voltage
and the stroboscope flash on a two-channel oscilloscope.

As shown in section III .A (figure 11), act ual phase angle measurements made for
the bihemispheric system with a 50% solution of water and ethylene glycol were in excellent
agreement with the calculated values. However similar phase angle measurements were not made
for the bihyperboloidal system described in this report.

— ~~~~~~~ V~~~~~~~~~~ V
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5. Particle Discharge.

Particle discharge has been investigated and reported by others’. In theory particle
discharge should occur when the electrostatic force , which increases during evaporation of the
droplet as the charge-to-mass ratio increases, equals the surface tension force . l’his condition is
commonly known as the Rayleigh stability limit. The nature of particle discharge has been
described as the ejection of several small highly-charged droplets comprising about 30% of the
electric charge and 5% of the mass of the original droplet.

In practice particle discharge was noted by the sudden disappearance of the droplet.
If the ac voltage was high enough to contain t-he particle , the particle could be returned to the
field of view by increasing the dc voltage. The illumination from the stroboscope was not
suffi cient to distinguish any small ejected droplets; however, the electrical measurements on the
large droplet after discharge indicated a 20% to 40% loss of charge. The 5% decrease in mass
could not be measured accurately because of the time required for rebalancing the particle to
compensate for the charge loss .

In the chamber at the time of discharge , the forces should be related by

3 .768p~d
3

where a is the surface tension and the right-hand side is the electrostatic force. Calculations for
several droplets were made fro m the data just prior to discharge of the droplet. These results
varied considerably from the measured surface tension of the bulk liquid (63 dynes/cm) and
ranged in value from 20 to 50 dynes/cm. No apparent reason for this wide range of values has
been determined.

6. Charge Decay Due to Cosmic Ray Ionization.

One source of interest and possible error was the rate of loss of charge due to cosmic
ray ionization. A polyethylene bead , 66.7 pm in diameter , was placed in the chamber and sus-
pended for 68 hours . Loss of charge was indicated by an increase in the dc balancing voltage.
The measured rate of increase was approximately 1.76 X I 0~ volts/second.

With dry air circulating through the chamber , the atmosphere was free of contaminants.
A logical explanation of the discharge seemed to be ionization caused by cosmic ray radiation.

39
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The rate of ion-pair production at sea level is 1.5 to 2 ion pairs per sec-cm3 .~o These
ions are small and have a mobility of about 2 cm2/(v-sec). Thus they can only exist within the
chamber, impinging on the chamber walls or on the particle, for less than one-half of a cycle of
the ac voltage.

Calculations showed that the charge on the polyethylene particle was approximately
1.8 X 1 0~l 2 coulombs. It was found that the electric field due to the particle equaled the ac field
at a distance of 0.5 cm from the particle. Based on this fact and the design of the chamber, one
would expect that , during one-half of a cycle, ions contained in a disk 2.50 cm in diameter and
1 cm in length and ions contained in a cylinder 3.50 cm in length and 1 cm in diameter, both
coaxial with the symmetry axis of the chamber, would impinge on the particle. Thus the rate of
discharge would be approximately 2.9 to 3.9 electronic charges per second. (Note that one-half
of the ion pairs produce a discharge for one-half of a cycle.)

From the relation 
-

V 

~~~= _!!~L~~ 2 dVdc
dt Cdc 

dc dt

where all the quantities have been previously described , the rate of increase of Vdc was found to
correspond to a discharge rate of 3.8 electronic charges per second.

•
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APPENDIX A

DERIVATION OF COEFFICIENTS

V 

The relation between equation 15

+ 4’ + (E ~ + E cos r) ~(r) = 0 (15)

and the Mathieu equation

I? r ( r ) + ( a - 2 q  cos 2i- )~(r) 0 (A-i)

is described, for instance, in reference 11.

Let

V 

Then

r( r) = -
~~ 

e~~ (~ - wY) (A-2)

~“(r) = -~~~ e~~’ (
~~ 

- 2~r ’ + g 
2~~

Substituting equation A-2 into equation 15 yields

~~
“fr) + (4E 1 - K

2 + 4E cos 2~)r(~) = 0

This is equation A-I where

a = 4E1 -
(A-3)

q -2E

as described in reference 11.



The solutions to equation A-I are of the form

= e t~ ~~~~~~e21P2Y (A4)

- 

=

where ~ takes one of the forms

a

~ =~~+i (A-5)

‘V =

where ~ and ~3 are real and a is nonnegative.

~
,

From equations 17 , A-4, and A-5 it is evident that the solutions of equation 15 are

~
‘l 2

1CT e7T~~~~~~1~~euh7T

= e I
~
t e11~~~~ b~e~~

T

where 7 may be of the form ~ = a, ‘y = a + -s-i. or ~ = 13i for real a and j3 .

The values of ~ and ~1 as functions of a and q have been calculated and are displayed,
e.g., in reference I 1, as m c c ’s chart. it is possible to take values from m c c ’s chart and use them
for the chart shown in figure 7 via equations 17 and A-3. In this investigation, however, calcu-
lations were made directly from equations 15 and 18 by the method of continued fractions
described in references 11 and 12.

The solution to the inhomogeneous form of equation 15 given by equation 13

( 13)



contains a third term having the same periodicity as cos r; the entire solution is thus given by
equation 14, using equation 16, i.e.,

- 
- 

~(r)  = A~1f r)  + B~2(r) + p(r) (14)

where

p (r)  = a~eff i T (16)

The function p(r) was also calculated by the method of continued fractions.

To solve for the coefficients in equation 16 let

then 

= p(r )  = ~~~

V ~“ ~~ ina,~e m’

r = ~~~~~ _n 2a~emT

and , because cos r = 4.(e~T + e lT + e~~ ) equation 13 becomes

h + ~~~~ Ea~(-n2 + j ng + E 1 ) euhlT + ~~~~~~~~~~~ + eI O~~~) T)] = 0 (A-6)

The coefficient of et’” in the left side of equation A-6 must vanish for each value of
n, whence

a~(E 1 ...n2 + j n K ) + L a I ~~~~~~~~ 
an+I =0 ( if n *  0) (A-7)

and EE 1a0 + - ~-~ ....1 +f a i + h = 0  (A-8)

Let r,,~ be defined by

= (A-9)
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Then equation A-7 can be written as

(E i-n 2 +lnIc)+fJ- + ~r,~~~=0 (A-b )

whence

1 (A-li)
-ì 

(n2- E 1 - inK) -r ~÷j

1f~~ is

a fl (A-12)

equation A-I 0 yields

= 1 
(A-13)

I (n 2 -E 1 + inK)- 
~~~~

It is evident that for any value of n0, T~0 can be expressed as a continued fraction in
~ •~1 terms of r~ where n> n0.

To assume that the series representing p(r) converges, we require that for some value of
n0, Ir ,1 I and IT~ I be less than some upper bound if n >  n0. Then for large enough n1

IT~1 + 1 1 << -~ ln 1
2 -E 1-in~ t

and
Tn1 + 1 l<< Ifl l

2.,.E +jnK I (A-14)

For n = n 
~ 

equation A-i l may be written

1
2~~ 2~~ . .— ~n1 -~l ~‘~i”

in 1 = 
1 (A-iS)

-~~
- (n 1

2- E1+fn 1tc)
E
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Using these values of and Yn~ ‘n1-I and may be calculated from equa-

tion A-il. In the same way values of ~ and ; may be calculated for successively lower values

of n, until r1 and T1 have been found. Equations A-iS show that , since E, n, E 1, and ~ are

real , 
~~1 ,

~~~~ equations A-I l and A-13 show that if rn+ 1 ~~~~ then ~ — 7~~ . Hence

= rf l’ (A-16)

for all n, and only the r, need be calculated.

From equations A-9, A-I 2, and A-I 6

a1 r 1a0

and 
V

a_ 1 r 1*aO

whence equation A-8 can be written

+ ER(r 1 )J + h 0 (A-Il)

or
h

a0 - 
E 1 + ER (r 1)

where R(r 1 ) is the real part of r 1. The value of a0, the mean position of the particle with respect

to the null point , is real, as it must be, being a physical quantity. Then R(a 1) = a0R(r1 ) and

equation A-17 can be written

ER(a 1) + h  + a0E 1 = 0

This equation is essentially equation 21 reached in a different way.

Starting from equation A-i 8, successive coefficients of p(r) may be calculated as

Cflf1 rf l f) afl

~~~~~~
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In actual calculation., the starting value of n need not be so high that equation A-14
applies; the error in ~ decreases very rapidly as n decreases. For E < 10, the value of n 1 need
exceed by no more than 10 the highest value of n for which an accurate value of a~ is required .

In order to determine the value of ~y in equation 18, the expression for ~ is substituted
into equation 15 yieldIng

Ee1t1Te(7_
f~

c)n ( (.y2 __
~~ac2 _ n 2 + E 1 + 21n7)b ~ + 4(b~÷i +b~...1 ) I = 0

whence

(b~~1 + b~..1 ) -3 (n 2 + ~ K 2 72 . E 1 - 2in7~~ = 0 (A-19)

Let r~ and P-~ be

— b~
ufl~land

—~~~~~ b~
respectively. u...(n l )

Then equation A-l9 is

1+r ~~1 -~~(n 2 + -~- K 2 72 -E 1-2 1n7 )

= 
2 (,~2 + 1g2 ,. 72 -E 1-  2 in 7) - r~+ 1 

(A-20)

~z 2 1 
(A-2l)

j (ii 2 + .......~~
2 - ’y2 ..E 1 + 2in7)-7~+l

As before , ~~ 1 is regarded as negligible for some sufficiently large value of n , and r1~
are calculated for successively lower n. For n = 0, equation A-i 9 is

+ T1 = 3(+Dc 2.72. E 1 ) (A-22)
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In general , equation A-22 is not true. If any three of the four quantities E. E 1, K , and
7 are known, a value of the fousth quantity must be sought for which equation A-22 is satisfied.
In this investigation the entities to be determined were boundaries between various regions and
curves of constant value of v , where

in regions where 7 * 0.

On these curves

or 
7 P +- 4

j
K

On periodicity boundaries between regions where 7 a and ~ = j3 i, it is evident that
unless ~ is a discontinuous function of ic and E,

7 0

On periodicity boundaries between 
~ 

= a + 
~~

i and ~ =

On stability boundaries a = 
~~~~~~~ 

so that

or 

4K++1

Excep~ for the calculations leading to figure 8, E 1 0. In any case E 1 was taken as
a known quantity. Then , depending on the part of the curve being calculated , either ic was fixed
and corresponding values of E were sought, or vice versa.

On periodicity boundaries where ~ = 0, equations A-20, A-2 1, and A-22 are



— V_ L _ r  ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 
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Tn
_ 

I (n 2 + 2 -E j ) - T ~f 1  
(A-23)

r+T
~~~ (F? - E l)

It is evident that ~ and T,~ are real and

=

so that equation A-23 is

= J.. ( 1~~2 -E 1 )

On periodicity boundaries where ~ =

1
r~~~~~ 2 1 1 2

!E (n+
~~

) +- ~-K - E 1 J - r ~+1

i~I = 
~~~~~~~~~~~~~~~~~~ - T ~.1. 1

Tfl r f l l

and equation A-23 is

~o + r 1 = 2-(~~g 2 + I - E 1)

On stability boundaries where y =

r~ l(n 2 Ej ‘~~
)-‘

~+i

LL~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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!1

Tn =

j .(n2 -E 1 + 1flIC) T~ +I

—Tp n

and
E 1R(r 1 ) = -

~~~~~

V 

On stability boundaries where 7 = -~-ic + -s-i,

Tn =
I (n+-12

)~ - - i(n+4
2

)ic ] - Ta..!

~~[( n_ ~~)2 _ E 1 - i(n--~ )acJ- ‘n+l

- V

~ —
= *rf l f l ’

r 1 +r0~ = ~~(~~-E 1 - 3~i)

On lines of constant v where ~ = ~ + K ,

1 1
= 

~ - [ n 2 - v(v +~~) - E 1 -  in ( 2 v + i c) I -  ~~~

T~~
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R(T 1) = _ J . _ [ p (p  + K)  + E 1 I

On lines of constant v w h e r e 7 = v + -~-K + .i~i ,

r~ 
f [(n+_ ~

..)2
~ v(v + K) -  E1 - i(n+-~-)(2v + ,c))- rn+~

- -  1Tn — 
~~~~~~~~~~~~~~~~~~~ + i ( n —_ l -) ( 2 v +~~) 1 — T ~+l

— — * -

(A-25)

For each of these cases the scheme of calculation was as follows:

I .  The value of E 1 was fixed , usually at Li = 0.

2. For the case of lines of constant v, the value of v was fixed.

3. The value of ~ (Or in some cases the value of E) was fixed.

4. Using a guessed value of E (or sc), T1 and , if necessary, r0 were computed by repeated
application of equation A-20, starting from some sufficiently high value of n, Note that equa-
tion A-2 1 is not us- d in the computation , being required only to establish the relation r1~ =

5. The difference between the two sides of equation A-25 was determined.

6. A new guess at E (or K) was made , usually by interpolation.

7. When a value of E (or K) was found for which equation A-25 was sufficiently
nearly satisfied , a new K (or E) was fixed and steps 4 through 6 repeated.

The curves shown in figure 12 were calculated by writing the Taylor expansion for

~ and ~“ from equation 11.
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= —(g + g1u)r ’ — (E hos t +E 1 )~ - h

V c” = —(~ + ~1 u) ~” - (g1 u’ +E cos t + E i )~ ’ + L~ sin r

~(r +~~~) = ~(r) + ~~i~~ ’f r)  + ~~~~~j 2~ aI
(7) + _L ~~~

3
~ ”(r)

~~(r +~~~) =  ~‘(r) +~~~~”(r) + 1~~ .2~ ”(r)

where &~ is the amount by which r is incremented , usually u / I  25 (that is , cycle of cos r) ,
and u is the magnitude of the velocity as represented by I ~‘ L In these computations u was
taken as I ~‘I  and the contribution of the horizontal component of the velocity was ignored ,
even though where the horizontal unstable region overlaps the vertical stable region , the hon-
zontal contribution is not negligible. Most of the region in sc-E space where there is instability
in both directions has been hitherto inaccessible to experimental observation in any case. Near
the nose of the first instability curve where observation in the fi rst unstable region is easy, the
horizontal contribution damps out.

Computations were carried out on Mathetron calculators and on a Univac 1108 computer.
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APPENDIX B

LIST OF SYMBOLS

A integration constant in solution to dimensionless equation of motion

f A~ coefficients in expression for potential 4 in cylindrical coordinates

coefficients in expression for potential 4 in spherical coordinates

coefficient in Mathieu’s equation

coefficients of Fourier expansion of p (r)  in terms of e~~
t

B integration constant in solution to diniensionless equation of motion

C ratio of gradient of vertical component of electric field at null point to potential
difference between electrodes

c constant given by c~,
2 Ia0d h g

C~ constants used to define electrode hyperboloids

Cdc ratio of field strength at center of chamber to potential difference between sheets
of hyperboloid

Cn coefficients of Fourier expansion of p(i) in terms of cos (n i ±

d diameter of particle

E peak value of field strength due to alternating potential difference between
electrodes

field strength due to constant potential difference between electrodes

E~ E1 + E c o s ~~t

Edc field strength due to potential difference between sheets of two-sheet electrodes

e 2.7 18281828 . .

E coefficient of ~ cos wi in dimensionless equation of motion (due to E)

E 1 coefficient of ~ in dimensionless equation of motion (due to El )

g acceleration due to gravity

g magnitude of g

h constant term in dimensionless equation of motion (due to gravity and Edc)
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first region where 7 (31

imaginary part of a~

KD coefficient describing aerodynamic drag

k unit vector along vertical axis (z axis)

m mass of particle

— n summation index

P,,~ nth Legendre polynomial

P periodic factor in solution to equation of motion

p periodic solution to inhomogeneous equation

q charge on particle

coefficient in Mathieu ’s equation

R position of particle

L R (X) real part of X

R~ real part of a~
Re Reynolds number

R0 lowest ~ = a region

R~S stable part of ~ = a or 7 = a -~-i region

R~ U unstable part of ‘y = a or ‘y = a + -i-i region

r radial coordinate in cylindrical coordinate system

radial coordinate in spherical coordinate system

inner radius of one-sheet hyperboloidal electrode

unit radial vector in cylindrical coordinate system

t time

u magnitude of particle velocity divided by particle diameter

V peak value of alternating part of potential difference between electrodes

V1 constant part of potential difference between electrodes

Vdc potential difference between sheets of two-sheet electrode

Appendix~~ 
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x. y horizontal cartesian coordinates

z vertical cartesian or cylindrical coordinate

z0 half-height of hyperboloidal chamber (distance from null point to nose of two-
sheet hyperboloidal electrode)

a real part of ‘
~
‘ for equation of motion

real part of ~ for Mathieu ’s equation

(3 imaginary part of 7 for equation of motion

imaginary part of 7 for Mathieu’s equation

7 exponential coefficient in solution to equation of motion

exponential coefficient in solution to Mathieu ’s equation

solution to dimensionless equation of motion

i~ ~2 two independent solutions to dimensionless equation of motion for vertical motion

~ ~l ‘~ 2 solutions to Mathieu ’s equation

viscosity of air

o equatorial angle in cylindrical coordinate system

polar angle in spherical coordinate system

drag term coefficient in dimensionless equation of motion

IC velocity squared drag term coefficient in dimensionless equation of motion

P

E~ E l ,  E2 solutions to dimensionless equations of motion for horizontal motion

11 3.14159265 .

p density of air

density of particle material

r wt (independent variable in dimensionless equation of motion)

independent variable in Mathieu’s equation

to value of r at coincidence point

0 potential function

Lt4~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _



lag angle for nth term of series representing p(r) in terms of cosines
• 

~~

a surface tension of particle material

angular frequency of alternating potential difference between electrodes

asterisks complex conjugate

dots differentiation with respect to time (t)

primes differentiation with respect to r
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ENVIRONMENTAL TECHNOLOG Y DIVISION Ann : AEMPM

Aun : DRDAR ~CLT-D • 3 APO New York 09403

MUNITIONS DIVISION US ARMY HEALTH SERVICE COMMAND
Atm: DRDARCLN 5

- - Super intendent
PHYSICAL PROTECTION DIVISION Academy of Health Sciences

Atm: DRDAR-CLW-C I - (IS Army
Atm : DRDAR-CLW-P 1 Atm: HSA-CDC

Attn : HSA-IHE
RESEARCH DIVISION Fort Sam Houston . TX 75234

Atm: DRDAR -CLB
Ann: DRDAR~CLB-B 1 US ARMY MATERIEL DEVELOPMENT AND
At m: DRDAR~CLB.C 1 READINESS COMMAND
Aun: DRDA R~CLB-P I
Atm : DRDAR-CLB-R 1 Commander
Attn: DRDAR~CLB-T I US Army Materiel Development and Readiness Command
Attn : DRDAR-CLB-TE I Ann : DRCLDC

Atm: DRCSF-P
SYSTEMS ASSESSMENTS OFFICE 5001 EIsenhower Ave

Atm: DRDAR~CLY-A 1 Alexandria , VA 22333
Atm: DRDAR~CLY-R I

Office of the Project Manager for Chemical DemIlitarIzation
DEPARTMENT OF DEFENSE and Installation Restor ati on

-‘ 
Attn DRCPM-DR-T 2

Adm inistrator Aberdeen Proving Ground , Ml) 21010
Defense Documentation Center

Ann : Accessions DivIsion (DDC-TC) 12 Human Engineering Laboratory HFE Detachment
— 

. Cameron Station Attn : DRXHE -EA
Alexandria , VA 22314 Building E3220

APG-Edgewood Area
- • 

- Director
• Defense Intelligence Agency Commander

Ann : D B-4G1 1 US Army Foreign Science & Technology Center
Washington , DC 20301 Ann : DP.XST-CX2

220 Seventh St•, NE
Charlotte sville, VA 22901
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• DISTRIBUTION LIST 3 (Contd )

Names Copies Names Copies

Commander Comntinder
US Army Missile Research and Development Command Rocky Mount ain Arsenal
Redstone Scientific Information Center Aun : SARRM -QA

Atm: DRDMI-T BD I Attfl SARRM-MD
Redstone Arsenal , Al. 35809 Commerce City, CO 80022

Director Commander
DARCOM Field Safety Activity Pine Bluff Arsenal

Atm: DRXOS-C AtUt SARPB .ETA
Charlestown , IN 47111 Pine Bluff , AR 71611

Commander US ARM Y TRAINING & DOCTRINE COMMAND
US Army Materiel Development and Readiness Command
Installations and Services Activity Commandant

Attn : DRC IS-RI-IU I (IS Army Infantry School
Rock Island , IL 61299 Atm : NBC Division

Fort Benning, GA 31905
US ARMY ARMAMENT RESEARCH AND

DEVELOPMENT COMMAND Commandant
US Army Missile & Munitions Center & School

- rn mander Atm: ATSK-CD-MD
US Arm y Armament Research and Development Command Attn : ATSK-DT-MU-EOD

Ann: DRDAR-LCE -M 1 Redstone Arsenal , AL 35809
Atm : DRDAR -LCH 1
Attn : DRDAR-LCU 1 Commandant
Attn : DRDAR-SER I US Army Military Police School/Training Center
At m: DRDAR -TSS 2 Atm: ATZN-CDM

Dove r, NJ 07801 Atm: ATZN-TDP-C
Port McClellan, AL 36205

Director
Ballistic Research Laboratory Commander

Attn: DRDAR-TSB-S 1 US Army Infantry Center
Building 328 Atm ATSH.CD-MS-C
Aberdeen Proving Ground , MD 21005 Fort Benning, GA 31905

CDR, APG Commandant
USA ARRADCOM US Army Ordnance & Chemical Center & School

Ann : DRDAR-G C L 1 At m : ATSL~CLCD
Aberdeen Provin g Ground , MD 21010 Aberdeen Proving Ground , Ml) 21005

US ARMY ARMAMENT MATERIEL READINESS COMMAND US ARMY TEST & EVALU ATION COMMAND

Commander Commander
US Army Armam ent Materiel Readiness Command US Army Test & Evaluation Command

Ann : DRSAR-ASN i Atm: DRSTE-FA
Attn : DRSAR-IM B-C i Aberdeen Proving Ground , MD 21005
Attn : DRSAR-SF I

Rock Island , IL 61299 Commander
US Army Cold Regions Test Center

CDR, APG Attn : STECR-TD
LISA ARRCOM APO Seattle, WA 95733

Atm : SARTE 1
Aberdeen Proving Ground , MD 21010 DEPARTMENT OF THE NAVY

Commander Chief of Naval Research
US Army Dugway Proving Grou nd Attn Code 443

Attn : Technical Library , Docu Sect 1 500 N. Quincy Street
Dugway , UT 54022 ArlingtOn, VA 22217
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• DISTRIBUTION LIST 3 (Con td )

Names Copies Names Copies

Commander HO AFISC/SEV• Naval Explosive Ordnance Disposal Facility Norton AFB , CA 92409
Ann: Army Chemical Officer, Code 604 I

Indianhead, MI) 20640 NORAD Combat Operations Center/DBN
Cheyenne Mtn Complex , CO 80914

Commander
Naval Surface Weapons Center OUT SIDE AGENCIES
White Oak Laboratory

Aim: Tech Lib & Info Svcs Br I Batte lle , Colum bus Laboratories
‘ Silver Spring, MD 20910 Atm: TACTEC

505 King Avenue
Commander Columbus, OH 43201
Nuclear Weapons Training Group, Atlantic
Nav al Air Station Director of Toxicology

Att n : Code 2) 1 National Research Council
Norfolk , VA 235 11 2101 Constitution Aye, NW

Washington , DC 20418
Chief , Bureau of Medicin e & Surgery I
Department of the Navy ADDITIONAL ADDRESSEES
Washington , DC 20372

US Public Health Service
Commande r Room 1 7A.46 (CPT Osheroff)
Naval Weapons Center 5600 Fishers Lane

Ann: A. B. Galloway/Code 3171 1 Rockville, MD 20857
Atm : Technical Library/Code 233 I

China Lake , CA 93555 Commander
US Army Environment al Hygiene Agency

US MARINE CORPS Atm : Librarian , Bldg 2100
Aberdeen Proving Ground , MD 21010

Director . bevelopment Center
Marine Corp s Development & Education Command Commander

Atm : Fire Power Division I DARCOM , STITEUR 
VQua ntico , VA 22134 Atm: DRXST-STJ

Box 48 , APO New York 09710
DEPARTMENT OF THE AIR FORCE

Commander
HO Foreign Technology Division (AFSC) US Army Science & Technology Center-Far East Office

PDRR I APt) San Francisco 96328
Wright-Patterson AFB , OH 45433

HQD A DASG-RDZ (SGRD-PL)
Commander WASH DC 203 14
Aeronautical Systems Division

Atm: ASD/AELI ) I Commander
Wright-Patterson AFB , OH 45433 USEUCOM

Ann: ECJ S.O/LTC James H. Alley
AMRL /MEB I APO New York 09128
Wright-Patterson AFR , OH 45433

HQ, USAF/SGPR I
Forrestal Bldg
WASH DC 20314

HO USAF/RDPN I
WASH DC 20330
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